blob: dc428c4adeb856269d964538451df46c7ed56179 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
253``extern_weak``
254 The semantics of this linkage follow the ELF object file model: the
255 symbol is weak until linked, if not linked, the symbol becomes null
256 instead of being an undefined reference.
257``linkonce_odr``, ``weak_odr``
258 Some languages allow differing globals to be merged, such as two
259 functions with different semantics. Other languages, such as
260 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000261 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000262 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
263 global will only be merged with equivalent globals. These linkage
264 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000265``external``
266 If none of the above identifiers are used, the global is externally
267 visible, meaning that it participates in linkage and can be used to
268 resolve external symbol references.
269
Sean Silvab084af42012-12-07 10:36:55 +0000270It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000271other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000272
Sean Silvab084af42012-12-07 10:36:55 +0000273.. _callingconv:
274
275Calling Conventions
276-------------------
277
278LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
279:ref:`invokes <i_invoke>` can all have an optional calling convention
280specified for the call. The calling convention of any pair of dynamic
281caller/callee must match, or the behavior of the program is undefined.
282The following calling conventions are supported by LLVM, and more may be
283added in the future:
284
285"``ccc``" - The C calling convention
286 This calling convention (the default if no other calling convention
287 is specified) matches the target C calling conventions. This calling
288 convention supports varargs function calls and tolerates some
289 mismatch in the declared prototype and implemented declaration of
290 the function (as does normal C).
291"``fastcc``" - The fast calling convention
292 This calling convention attempts to make calls as fast as possible
293 (e.g. by passing things in registers). This calling convention
294 allows the target to use whatever tricks it wants to produce fast
295 code for the target, without having to conform to an externally
296 specified ABI (Application Binary Interface). `Tail calls can only
297 be optimized when this, the GHC or the HiPE convention is
298 used. <CodeGenerator.html#id80>`_ This calling convention does not
299 support varargs and requires the prototype of all callees to exactly
300 match the prototype of the function definition.
301"``coldcc``" - The cold calling convention
302 This calling convention attempts to make code in the caller as
303 efficient as possible under the assumption that the call is not
304 commonly executed. As such, these calls often preserve all registers
305 so that the call does not break any live ranges in the caller side.
306 This calling convention does not support varargs and requires the
307 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000308 function definition. Furthermore the inliner doesn't consider such function
309 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000310"``cc 10``" - GHC convention
311 This calling convention has been implemented specifically for use by
312 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
313 It passes everything in registers, going to extremes to achieve this
314 by disabling callee save registers. This calling convention should
315 not be used lightly but only for specific situations such as an
316 alternative to the *register pinning* performance technique often
317 used when implementing functional programming languages. At the
318 moment only X86 supports this convention and it has the following
319 limitations:
320
321 - On *X86-32* only supports up to 4 bit type parameters. No
322 floating point types are supported.
323 - On *X86-64* only supports up to 10 bit type parameters and 6
324 floating point parameters.
325
326 This calling convention supports `tail call
327 optimization <CodeGenerator.html#id80>`_ but requires both the
328 caller and callee are using it.
329"``cc 11``" - The HiPE calling convention
330 This calling convention has been implemented specifically for use by
331 the `High-Performance Erlang
332 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
333 native code compiler of the `Ericsson's Open Source Erlang/OTP
334 system <http://www.erlang.org/download.shtml>`_. It uses more
335 registers for argument passing than the ordinary C calling
336 convention and defines no callee-saved registers. The calling
337 convention properly supports `tail call
338 optimization <CodeGenerator.html#id80>`_ but requires that both the
339 caller and the callee use it. It uses a *register pinning*
340 mechanism, similar to GHC's convention, for keeping frequently
341 accessed runtime components pinned to specific hardware registers.
342 At the moment only X86 supports this convention (both 32 and 64
343 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000344"``webkit_jscc``" - WebKit's JavaScript calling convention
345 This calling convention has been implemented for `WebKit FTL JIT
346 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
347 stack right to left (as cdecl does), and returns a value in the
348 platform's customary return register.
349"``anyregcc``" - Dynamic calling convention for code patching
350 This is a special convention that supports patching an arbitrary code
351 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000352 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000353 allocated. This can currently only be used with calls to
354 llvm.experimental.patchpoint because only this intrinsic records
355 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000356"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 This calling convention attempts to make the code in the caller as
358 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000359 calling convention on how arguments and return values are passed, but it
360 uses a different set of caller/callee-saved registers. This alleviates the
361 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000362 call in the caller. If the arguments are passed in callee-saved registers,
363 then they will be preserved by the callee across the call. This doesn't
364 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000365
366 - On X86-64 the callee preserves all general purpose registers, except for
367 R11. R11 can be used as a scratch register. Floating-point registers
368 (XMMs/YMMs) are not preserved and need to be saved by the caller.
369
370 The idea behind this convention is to support calls to runtime functions
371 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000372 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000373 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000374 registers, which haven't already been saved by the caller. The
375 `PreserveMost` calling convention is very similar to the `cold` calling
376 convention in terms of caller/callee-saved registers, but they are used for
377 different types of function calls. `coldcc` is for function calls that are
378 rarely executed, whereas `preserve_mostcc` function calls are intended to be
379 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
380 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000381
382 This calling convention will be used by a future version of the ObjectiveC
383 runtime and should therefore still be considered experimental at this time.
384 Although this convention was created to optimize certain runtime calls to
385 the ObjectiveC runtime, it is not limited to this runtime and might be used
386 by other runtimes in the future too. The current implementation only
387 supports X86-64, but the intention is to support more architectures in the
388 future.
389"``preserve_allcc``" - The `PreserveAll` calling convention
390 This calling convention attempts to make the code in the caller even less
391 intrusive than the `PreserveMost` calling convention. This calling
392 convention also behaves identical to the `C` calling convention on how
393 arguments and return values are passed, but it uses a different set of
394 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000395 recovering a large register set before and after the call in the caller. If
396 the arguments are passed in callee-saved registers, then they will be
397 preserved by the callee across the call. This doesn't apply for values
398 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000399
400 - On X86-64 the callee preserves all general purpose registers, except for
401 R11. R11 can be used as a scratch register. Furthermore it also preserves
402 all floating-point registers (XMMs/YMMs).
403
404 The idea behind this convention is to support calls to runtime functions
405 that don't need to call out to any other functions.
406
407 This calling convention, like the `PreserveMost` calling convention, will be
408 used by a future version of the ObjectiveC runtime and should be considered
409 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000410"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000411 Clang generates an access function to access C++-style TLS. The access
412 function generally has an entry block, an exit block and an initialization
413 block that is run at the first time. The entry and exit blocks can access
414 a few TLS IR variables, each access will be lowered to a platform-specific
415 sequence.
416
Manman Ren19c7bbe2015-12-04 17:40:13 +0000417 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000418 preserving as many registers as possible (all the registers that are
419 perserved on the fast path, composed of the entry and exit blocks).
420
421 This calling convention behaves identical to the `C` calling convention on
422 how arguments and return values are passed, but it uses a different set of
423 caller/callee-saved registers.
424
425 Given that each platform has its own lowering sequence, hence its own set
426 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000427
428 - On X86-64 the callee preserves all general purpose registers, except for
429 RDI and RAX.
Sean Silvab084af42012-12-07 10:36:55 +0000430"``cc <n>``" - Numbered convention
431 Any calling convention may be specified by number, allowing
432 target-specific calling conventions to be used. Target specific
433 calling conventions start at 64.
434
435More calling conventions can be added/defined on an as-needed basis, to
436support Pascal conventions or any other well-known target-independent
437convention.
438
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000439.. _visibilitystyles:
440
Sean Silvab084af42012-12-07 10:36:55 +0000441Visibility Styles
442-----------------
443
444All Global Variables and Functions have one of the following visibility
445styles:
446
447"``default``" - Default style
448 On targets that use the ELF object file format, default visibility
449 means that the declaration is visible to other modules and, in
450 shared libraries, means that the declared entity may be overridden.
451 On Darwin, default visibility means that the declaration is visible
452 to other modules. Default visibility corresponds to "external
453 linkage" in the language.
454"``hidden``" - Hidden style
455 Two declarations of an object with hidden visibility refer to the
456 same object if they are in the same shared object. Usually, hidden
457 visibility indicates that the symbol will not be placed into the
458 dynamic symbol table, so no other module (executable or shared
459 library) can reference it directly.
460"``protected``" - Protected style
461 On ELF, protected visibility indicates that the symbol will be
462 placed in the dynamic symbol table, but that references within the
463 defining module will bind to the local symbol. That is, the symbol
464 cannot be overridden by another module.
465
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000466A symbol with ``internal`` or ``private`` linkage must have ``default``
467visibility.
468
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000469.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000470
Nico Rieck7157bb72014-01-14 15:22:47 +0000471DLL Storage Classes
472-------------------
473
474All Global Variables, Functions and Aliases can have one of the following
475DLL storage class:
476
477``dllimport``
478 "``dllimport``" causes the compiler to reference a function or variable via
479 a global pointer to a pointer that is set up by the DLL exporting the
480 symbol. On Microsoft Windows targets, the pointer name is formed by
481 combining ``__imp_`` and the function or variable name.
482``dllexport``
483 "``dllexport``" causes the compiler to provide a global pointer to a pointer
484 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
485 Microsoft Windows targets, the pointer name is formed by combining
486 ``__imp_`` and the function or variable name. Since this storage class
487 exists for defining a dll interface, the compiler, assembler and linker know
488 it is externally referenced and must refrain from deleting the symbol.
489
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000490.. _tls_model:
491
492Thread Local Storage Models
493---------------------------
494
495A variable may be defined as ``thread_local``, which means that it will
496not be shared by threads (each thread will have a separated copy of the
497variable). Not all targets support thread-local variables. Optionally, a
498TLS model may be specified:
499
500``localdynamic``
501 For variables that are only used within the current shared library.
502``initialexec``
503 For variables in modules that will not be loaded dynamically.
504``localexec``
505 For variables defined in the executable and only used within it.
506
507If no explicit model is given, the "general dynamic" model is used.
508
509The models correspond to the ELF TLS models; see `ELF Handling For
510Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
511more information on under which circumstances the different models may
512be used. The target may choose a different TLS model if the specified
513model is not supported, or if a better choice of model can be made.
514
Sean Silva706fba52015-08-06 22:56:24 +0000515A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000516the alias is accessed. It will not have any effect in the aliasee.
517
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000518For platforms without linker support of ELF TLS model, the -femulated-tls
519flag can be used to generate GCC compatible emulated TLS code.
520
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000521.. _namedtypes:
522
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000523Structure Types
524---------------
Sean Silvab084af42012-12-07 10:36:55 +0000525
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000526LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000527types <t_struct>`. Literal types are uniqued structurally, but identified types
528are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000529to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000530
Sean Silva706fba52015-08-06 22:56:24 +0000531An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000532
533.. code-block:: llvm
534
535 %mytype = type { %mytype*, i32 }
536
Sean Silvaa1190322015-08-06 22:56:48 +0000537Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000538literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000539
540.. _globalvars:
541
542Global Variables
543----------------
544
545Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000546instead of run-time.
547
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000548Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000549
550Global variables in other translation units can also be declared, in which
551case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000552
Bob Wilson85b24f22014-06-12 20:40:33 +0000553Either global variable definitions or declarations may have an explicit section
554to be placed in and may have an optional explicit alignment specified.
555
Michael Gottesman006039c2013-01-31 05:48:48 +0000556A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000557the contents of the variable will **never** be modified (enabling better
558optimization, allowing the global data to be placed in the read-only
559section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000560initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000561variable.
562
563LLVM explicitly allows *declarations* of global variables to be marked
564constant, even if the final definition of the global is not. This
565capability can be used to enable slightly better optimization of the
566program, but requires the language definition to guarantee that
567optimizations based on the 'constantness' are valid for the translation
568units that do not include the definition.
569
570As SSA values, global variables define pointer values that are in scope
571(i.e. they dominate) all basic blocks in the program. Global variables
572always define a pointer to their "content" type because they describe a
573region of memory, and all memory objects in LLVM are accessed through
574pointers.
575
576Global variables can be marked with ``unnamed_addr`` which indicates
577that the address is not significant, only the content. Constants marked
578like this can be merged with other constants if they have the same
579initializer. Note that a constant with significant address *can* be
580merged with a ``unnamed_addr`` constant, the result being a constant
581whose address is significant.
582
583A global variable may be declared to reside in a target-specific
584numbered address space. For targets that support them, address spaces
585may affect how optimizations are performed and/or what target
586instructions are used to access the variable. The default address space
587is zero. The address space qualifier must precede any other attributes.
588
589LLVM allows an explicit section to be specified for globals. If the
590target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000591Additionally, the global can placed in a comdat if the target has the necessary
592support.
Sean Silvab084af42012-12-07 10:36:55 +0000593
Michael Gottesmane743a302013-02-04 03:22:00 +0000594By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000595variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000596initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000597true even for variables potentially accessible from outside the
598module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000599``@llvm.used`` or dllexported variables. This assumption may be suppressed
600by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602An explicit alignment may be specified for a global, which must be a
603power of 2. If not present, or if the alignment is set to zero, the
604alignment of the global is set by the target to whatever it feels
605convenient. If an explicit alignment is specified, the global is forced
606to have exactly that alignment. Targets and optimizers are not allowed
607to over-align the global if the global has an assigned section. In this
608case, the extra alignment could be observable: for example, code could
609assume that the globals are densely packed in their section and try to
610iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000611iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000612
Nico Rieck7157bb72014-01-14 15:22:47 +0000613Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
614
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000615Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000616:ref:`Thread Local Storage Model <tls_model>`.
617
Nico Rieck7157bb72014-01-14 15:22:47 +0000618Syntax::
619
620 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000621 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000622 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000623 [, section "name"] [, comdat [($name)]]
624 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000625
Sean Silvab084af42012-12-07 10:36:55 +0000626For example, the following defines a global in a numbered address space
627with an initializer, section, and alignment:
628
629.. code-block:: llvm
630
631 @G = addrspace(5) constant float 1.0, section "foo", align 4
632
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000633The following example just declares a global variable
634
635.. code-block:: llvm
636
637 @G = external global i32
638
Sean Silvab084af42012-12-07 10:36:55 +0000639The following example defines a thread-local global with the
640``initialexec`` TLS model:
641
642.. code-block:: llvm
643
644 @G = thread_local(initialexec) global i32 0, align 4
645
646.. _functionstructure:
647
648Functions
649---------
650
651LLVM function definitions consist of the "``define``" keyword, an
652optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000653style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
654an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000655an optional ``unnamed_addr`` attribute, a return type, an optional
656:ref:`parameter attribute <paramattrs>` for the return type, a function
657name, a (possibly empty) argument list (each with optional :ref:`parameter
658attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000659an optional section, an optional alignment,
660an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000661an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000662an optional :ref:`prologue <prologuedata>`,
663an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000664an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000665an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000666
667LLVM function declarations consist of the "``declare``" keyword, an
668optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000669style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
670an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000671an optional ``unnamed_addr`` attribute, a return type, an optional
672:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000673name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000674:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
675and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000676
Bill Wendling6822ecb2013-10-27 05:09:12 +0000677A function definition contains a list of basic blocks, forming the CFG (Control
678Flow Graph) for the function. Each basic block may optionally start with a label
679(giving the basic block a symbol table entry), contains a list of instructions,
680and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
681function return). If an explicit label is not provided, a block is assigned an
682implicit numbered label, using the next value from the same counter as used for
683unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
684entry block does not have an explicit label, it will be assigned label "%0",
685then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000686
687The first basic block in a function is special in two ways: it is
688immediately executed on entrance to the function, and it is not allowed
689to have predecessor basic blocks (i.e. there can not be any branches to
690the entry block of a function). Because the block can have no
691predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
692
693LLVM allows an explicit section to be specified for functions. If the
694target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000695Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000696
697An explicit alignment may be specified for a function. If not present,
698or if the alignment is set to zero, the alignment of the function is set
699by the target to whatever it feels convenient. If an explicit alignment
700is specified, the function is forced to have at least that much
701alignment. All alignments must be a power of 2.
702
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000703If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000704be significant and two identical functions can be merged.
705
706Syntax::
707
Nico Rieck7157bb72014-01-14 15:22:47 +0000708 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000709 [cconv] [ret attrs]
710 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000711 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000712 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000713 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000714
Sean Silva706fba52015-08-06 22:56:24 +0000715The argument list is a comma separated sequence of arguments where each
716argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000717
718Syntax::
719
720 <type> [parameter Attrs] [name]
721
722
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000723.. _langref_aliases:
724
Sean Silvab084af42012-12-07 10:36:55 +0000725Aliases
726-------
727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Aliases, unlike function or variables, don't create any new data. They
729are just a new symbol and metadata for an existing position.
730
731Aliases have a name and an aliasee that is either a global value or a
732constant expression.
733
Nico Rieck7157bb72014-01-14 15:22:47 +0000734Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000735:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
736<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000737
738Syntax::
739
David Blaikie196582e2015-10-22 01:17:29 +0000740 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000741
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000742The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000743``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000744might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000745
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000746Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000747the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
748to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000749
Rafael Espindola64c1e182014-06-03 02:41:57 +0000750Since aliases are only a second name, some restrictions apply, of which
751some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000752
Rafael Espindola64c1e182014-06-03 02:41:57 +0000753* The expression defining the aliasee must be computable at assembly
754 time. Since it is just a name, no relocations can be used.
755
756* No alias in the expression can be weak as the possibility of the
757 intermediate alias being overridden cannot be represented in an
758 object file.
759
760* No global value in the expression can be a declaration, since that
761 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000762
David Majnemerdad0a642014-06-27 18:19:56 +0000763.. _langref_comdats:
764
765Comdats
766-------
767
768Comdat IR provides access to COFF and ELF object file COMDAT functionality.
769
Sean Silvaa1190322015-08-06 22:56:48 +0000770Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000771specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000772that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000773aliasee computes to, if any.
774
775Comdats have a selection kind to provide input on how the linker should
776choose between keys in two different object files.
777
778Syntax::
779
780 $<Name> = comdat SelectionKind
781
782The selection kind must be one of the following:
783
784``any``
785 The linker may choose any COMDAT key, the choice is arbitrary.
786``exactmatch``
787 The linker may choose any COMDAT key but the sections must contain the
788 same data.
789``largest``
790 The linker will choose the section containing the largest COMDAT key.
791``noduplicates``
792 The linker requires that only section with this COMDAT key exist.
793``samesize``
794 The linker may choose any COMDAT key but the sections must contain the
795 same amount of data.
796
797Note that the Mach-O platform doesn't support COMDATs and ELF only supports
798``any`` as a selection kind.
799
800Here is an example of a COMDAT group where a function will only be selected if
801the COMDAT key's section is the largest:
802
803.. code-block:: llvm
804
805 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000806 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000807
Rafael Espindola83a362c2015-01-06 22:55:16 +0000808 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000809 ret void
810 }
811
Rafael Espindola83a362c2015-01-06 22:55:16 +0000812As a syntactic sugar the ``$name`` can be omitted if the name is the same as
813the global name:
814
815.. code-block:: llvm
816
817 $foo = comdat any
818 @foo = global i32 2, comdat
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821In a COFF object file, this will create a COMDAT section with selection kind
822``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
823and another COMDAT section with selection kind
824``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000825section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000826
827There are some restrictions on the properties of the global object.
828It, or an alias to it, must have the same name as the COMDAT group when
829targeting COFF.
830The contents and size of this object may be used during link-time to determine
831which COMDAT groups get selected depending on the selection kind.
832Because the name of the object must match the name of the COMDAT group, the
833linkage of the global object must not be local; local symbols can get renamed
834if a collision occurs in the symbol table.
835
836The combined use of COMDATS and section attributes may yield surprising results.
837For example:
838
839.. code-block:: llvm
840
841 $foo = comdat any
842 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000843 @g1 = global i32 42, section "sec", comdat($foo)
844 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000845
846From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000847with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000848COMDAT groups and COMDATs, at the object file level, are represented by
849sections.
850
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000851Note that certain IR constructs like global variables and functions may
852create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000853COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000854in individual sections (e.g. when `-data-sections` or `-function-sections`
855is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000856
Sean Silvab084af42012-12-07 10:36:55 +0000857.. _namedmetadatastructure:
858
859Named Metadata
860--------------
861
862Named metadata is a collection of metadata. :ref:`Metadata
863nodes <metadata>` (but not metadata strings) are the only valid
864operands for a named metadata.
865
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000866#. Named metadata are represented as a string of characters with the
867 metadata prefix. The rules for metadata names are the same as for
868 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
869 are still valid, which allows any character to be part of a name.
870
Sean Silvab084af42012-12-07 10:36:55 +0000871Syntax::
872
873 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000874 !0 = !{!"zero"}
875 !1 = !{!"one"}
876 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000877 ; A named metadata.
878 !name = !{!0, !1, !2}
879
880.. _paramattrs:
881
882Parameter Attributes
883--------------------
884
885The return type and each parameter of a function type may have a set of
886*parameter attributes* associated with them. Parameter attributes are
887used to communicate additional information about the result or
888parameters of a function. Parameter attributes are considered to be part
889of the function, not of the function type, so functions with different
890parameter attributes can have the same function type.
891
892Parameter attributes are simple keywords that follow the type specified.
893If multiple parameter attributes are needed, they are space separated.
894For example:
895
896.. code-block:: llvm
897
898 declare i32 @printf(i8* noalias nocapture, ...)
899 declare i32 @atoi(i8 zeroext)
900 declare signext i8 @returns_signed_char()
901
902Note that any attributes for the function result (``nounwind``,
903``readonly``) come immediately after the argument list.
904
905Currently, only the following parameter attributes are defined:
906
907``zeroext``
908 This indicates to the code generator that the parameter or return
909 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000910 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000911``signext``
912 This indicates to the code generator that the parameter or return
913 value should be sign-extended to the extent required by the target's
914 ABI (which is usually 32-bits) by the caller (for a parameter) or
915 the callee (for a return value).
916``inreg``
917 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000918 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000919 a function call or return (usually, by putting it in a register as
920 opposed to memory, though some targets use it to distinguish between
921 two different kinds of registers). Use of this attribute is
922 target-specific.
923``byval``
924 This indicates that the pointer parameter should really be passed by
925 value to the function. The attribute implies that a hidden copy of
926 the pointee is made between the caller and the callee, so the callee
927 is unable to modify the value in the caller. This attribute is only
928 valid on LLVM pointer arguments. It is generally used to pass
929 structs and arrays by value, but is also valid on pointers to
930 scalars. The copy is considered to belong to the caller not the
931 callee (for example, ``readonly`` functions should not write to
932 ``byval`` parameters). This is not a valid attribute for return
933 values.
934
935 The byval attribute also supports specifying an alignment with the
936 align attribute. It indicates the alignment of the stack slot to
937 form and the known alignment of the pointer specified to the call
938 site. If the alignment is not specified, then the code generator
939 makes a target-specific assumption.
940
Reid Klecknera534a382013-12-19 02:14:12 +0000941.. _attr_inalloca:
942
943``inalloca``
944
Reid Kleckner60d3a832014-01-16 22:59:24 +0000945 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000946 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000947 be a pointer to stack memory produced by an ``alloca`` instruction.
948 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000949 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000950 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000951
Reid Kleckner436c42e2014-01-17 23:58:17 +0000952 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000953 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000954 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000955 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000956 ``inalloca`` attribute also disables LLVM's implicit lowering of
957 large aggregate return values, which means that frontend authors
958 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000959
Reid Kleckner60d3a832014-01-16 22:59:24 +0000960 When the call site is reached, the argument allocation must have
961 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000962 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000963 space after an argument allocation and before its call site, but it
964 must be cleared off with :ref:`llvm.stackrestore
965 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000966
967 See :doc:`InAlloca` for more information on how to use this
968 attribute.
969
Sean Silvab084af42012-12-07 10:36:55 +0000970``sret``
971 This indicates that the pointer parameter specifies the address of a
972 structure that is the return value of the function in the source
973 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000974 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000975 not to trap and to be properly aligned. This may only be applied to
976 the first parameter. This is not a valid attribute for return
977 values.
Sean Silva1703e702014-04-08 21:06:22 +0000978
Hal Finkelccc70902014-07-22 16:58:55 +0000979``align <n>``
980 This indicates that the pointer value may be assumed by the optimizer to
981 have the specified alignment.
982
983 Note that this attribute has additional semantics when combined with the
984 ``byval`` attribute.
985
Sean Silva1703e702014-04-08 21:06:22 +0000986.. _noalias:
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000989 This indicates that objects accessed via pointer values
990 :ref:`based <pointeraliasing>` on the argument or return value are not also
991 accessed, during the execution of the function, via pointer values not
992 *based* on the argument or return value. The attribute on a return value
993 also has additional semantics described below. The caller shares the
994 responsibility with the callee for ensuring that these requirements are met.
995 For further details, please see the discussion of the NoAlias response in
996 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000997
998 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000999 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001000
1001 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001002 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1003 attribute on return values are stronger than the semantics of the attribute
1004 when used on function arguments. On function return values, the ``noalias``
1005 attribute indicates that the function acts like a system memory allocation
1006 function, returning a pointer to allocated storage disjoint from the
1007 storage for any other object accessible to the caller.
1008
Sean Silvab084af42012-12-07 10:36:55 +00001009``nocapture``
1010 This indicates that the callee does not make any copies of the
1011 pointer that outlive the callee itself. This is not a valid
1012 attribute for return values.
1013
1014.. _nest:
1015
1016``nest``
1017 This indicates that the pointer parameter can be excised using the
1018 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001019 attribute for return values and can only be applied to one parameter.
1020
1021``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001022 This indicates that the function always returns the argument as its return
1023 value. This is an optimization hint to the code generator when generating
1024 the caller, allowing tail call optimization and omission of register saves
1025 and restores in some cases; it is not checked or enforced when generating
1026 the callee. The parameter and the function return type must be valid
1027 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1028 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001029
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001030``nonnull``
1031 This indicates that the parameter or return pointer is not null. This
1032 attribute may only be applied to pointer typed parameters. This is not
1033 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001034 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001035 is non-null.
1036
Hal Finkelb0407ba2014-07-18 15:51:28 +00001037``dereferenceable(<n>)``
1038 This indicates that the parameter or return pointer is dereferenceable. This
1039 attribute may only be applied to pointer typed parameters. A pointer that
1040 is dereferenceable can be loaded from speculatively without a risk of
1041 trapping. The number of bytes known to be dereferenceable must be provided
1042 in parentheses. It is legal for the number of bytes to be less than the
1043 size of the pointee type. The ``nonnull`` attribute does not imply
1044 dereferenceability (consider a pointer to one element past the end of an
1045 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1046 ``addrspace(0)`` (which is the default address space).
1047
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001048``dereferenceable_or_null(<n>)``
1049 This indicates that the parameter or return value isn't both
1050 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001051 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001052 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1053 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1054 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1055 and in other address spaces ``dereferenceable_or_null(<n>)``
1056 implies that a pointer is at least one of ``dereferenceable(<n>)``
1057 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001058 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001059 pointer typed parameters.
1060
Sean Silvab084af42012-12-07 10:36:55 +00001061.. _gc:
1062
Philip Reamesf80bbff2015-02-25 23:45:20 +00001063Garbage Collector Strategy Names
1064--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001065
Philip Reamesf80bbff2015-02-25 23:45:20 +00001066Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001067string:
1068
1069.. code-block:: llvm
1070
1071 define void @f() gc "name" { ... }
1072
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001073The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001074<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001075strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001076named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001077garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001078which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001079
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001080.. _prefixdata:
1081
1082Prefix Data
1083-----------
1084
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001085Prefix data is data associated with a function which the code
1086generator will emit immediately before the function's entrypoint.
1087The purpose of this feature is to allow frontends to associate
1088language-specific runtime metadata with specific functions and make it
1089available through the function pointer while still allowing the
1090function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001091
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001092To access the data for a given function, a program may bitcast the
1093function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001094index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001095the prefix data. For instance, take the example of a function annotated
1096with a single ``i32``,
1097
1098.. code-block:: llvm
1099
1100 define void @f() prefix i32 123 { ... }
1101
1102The prefix data can be referenced as,
1103
1104.. code-block:: llvm
1105
David Blaikie16a97eb2015-03-04 22:02:58 +00001106 %0 = bitcast void* () @f to i32*
1107 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001108 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001109
1110Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001111of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001112beginning of the prefix data is aligned. This means that if the size
1113of the prefix data is not a multiple of the alignment size, the
1114function's entrypoint will not be aligned. If alignment of the
1115function's entrypoint is desired, padding must be added to the prefix
1116data.
1117
Sean Silvaa1190322015-08-06 22:56:48 +00001118A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119to the ``available_externally`` linkage in that the data may be used by the
1120optimizers but will not be emitted in the object file.
1121
1122.. _prologuedata:
1123
1124Prologue Data
1125-------------
1126
1127The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1128be inserted prior to the function body. This can be used for enabling
1129function hot-patching and instrumentation.
1130
1131To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001132have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001133bytes which decode to a sequence of machine instructions, valid for the
1134module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001135the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001136the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001137definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001138makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001139
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001140A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001141which encodes the ``nop`` instruction:
1142
1143.. code-block:: llvm
1144
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001145 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001146
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001147Generally prologue data can be formed by encoding a relative branch instruction
1148which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001149x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1150
1151.. code-block:: llvm
1152
1153 %0 = type <{ i8, i8, i8* }>
1154
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001155 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001156
Sean Silvaa1190322015-08-06 22:56:48 +00001157A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001158to the ``available_externally`` linkage in that the data may be used by the
1159optimizers but will not be emitted in the object file.
1160
David Majnemer7fddecc2015-06-17 20:52:32 +00001161.. _personalityfn:
1162
1163Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001164--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001165
1166The ``personality`` attribute permits functions to specify what function
1167to use for exception handling.
1168
Bill Wendling63b88192013-02-06 06:52:58 +00001169.. _attrgrp:
1170
1171Attribute Groups
1172----------------
1173
1174Attribute groups are groups of attributes that are referenced by objects within
1175the IR. They are important for keeping ``.ll`` files readable, because a lot of
1176functions will use the same set of attributes. In the degenerative case of a
1177``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1178group will capture the important command line flags used to build that file.
1179
1180An attribute group is a module-level object. To use an attribute group, an
1181object references the attribute group's ID (e.g. ``#37``). An object may refer
1182to more than one attribute group. In that situation, the attributes from the
1183different groups are merged.
1184
1185Here is an example of attribute groups for a function that should always be
1186inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1187
1188.. code-block:: llvm
1189
1190 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001191 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001192
1193 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001194 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001195
1196 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1197 define void @f() #0 #1 { ... }
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199.. _fnattrs:
1200
1201Function Attributes
1202-------------------
1203
1204Function attributes are set to communicate additional information about
1205a function. Function attributes are considered to be part of the
1206function, not of the function type, so functions with different function
1207attributes can have the same function type.
1208
1209Function attributes are simple keywords that follow the type specified.
1210If multiple attributes are needed, they are space separated. For
1211example:
1212
1213.. code-block:: llvm
1214
1215 define void @f() noinline { ... }
1216 define void @f() alwaysinline { ... }
1217 define void @f() alwaysinline optsize { ... }
1218 define void @f() optsize { ... }
1219
Sean Silvab084af42012-12-07 10:36:55 +00001220``alignstack(<n>)``
1221 This attribute indicates that, when emitting the prologue and
1222 epilogue, the backend should forcibly align the stack pointer.
1223 Specify the desired alignment, which must be a power of two, in
1224 parentheses.
1225``alwaysinline``
1226 This attribute indicates that the inliner should attempt to inline
1227 this function into callers whenever possible, ignoring any active
1228 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001229``builtin``
1230 This indicates that the callee function at a call site should be
1231 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001232 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001233 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001234 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001235``cold``
1236 This attribute indicates that this function is rarely called. When
1237 computing edge weights, basic blocks post-dominated by a cold
1238 function call are also considered to be cold; and, thus, given low
1239 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001240``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001241 In some parallel execution models, there exist operations that cannot be
1242 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001243 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001244
Justin Lebar58535b12016-02-17 17:46:41 +00001245 The ``convergent`` attribute may appear on functions or call/invoke
1246 instructions. When it appears on a function, it indicates that calls to
1247 this function should not be made control-dependent on additional values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001248 For example, the intrinsic ``llvm.cuda.syncthreads`` is ``convergent``, so
1249 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001250 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001251
Justin Lebar58535b12016-02-17 17:46:41 +00001252 When it appears on a call/invoke, the ``convergent`` attribute indicates
1253 that we should treat the call as though we're calling a convergent
1254 function. This is particularly useful on indirect calls; without this we
1255 may treat such calls as though the target is non-convergent.
1256
1257 The optimizer may remove the ``convergent`` attribute on functions when it
1258 can prove that the function does not execute any convergent operations.
1259 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1260 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001261``inaccessiblememonly``
1262 This attribute indicates that the function may only access memory that
1263 is not accessible by the module being compiled. This is a weaker form
1264 of ``readnone``.
1265``inaccessiblemem_or_argmemonly``
1266 This attribute indicates that the function may only access memory that is
1267 either not accessible by the module being compiled, or is pointed to
1268 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001269``inlinehint``
1270 This attribute indicates that the source code contained a hint that
1271 inlining this function is desirable (such as the "inline" keyword in
1272 C/C++). It is just a hint; it imposes no requirements on the
1273 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001274``jumptable``
1275 This attribute indicates that the function should be added to a
1276 jump-instruction table at code-generation time, and that all address-taken
1277 references to this function should be replaced with a reference to the
1278 appropriate jump-instruction-table function pointer. Note that this creates
1279 a new pointer for the original function, which means that code that depends
1280 on function-pointer identity can break. So, any function annotated with
1281 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001282``minsize``
1283 This attribute suggests that optimization passes and code generator
1284 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001285 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001286 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001287``naked``
1288 This attribute disables prologue / epilogue emission for the
1289 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001290``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001291 This indicates that the callee function at a call site is not recognized as
1292 a built-in function. LLVM will retain the original call and not replace it
1293 with equivalent code based on the semantics of the built-in function, unless
1294 the call site uses the ``builtin`` attribute. This is valid at call sites
1295 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001296``noduplicate``
1297 This attribute indicates that calls to the function cannot be
1298 duplicated. A call to a ``noduplicate`` function may be moved
1299 within its parent function, but may not be duplicated within
1300 its parent function.
1301
1302 A function containing a ``noduplicate`` call may still
1303 be an inlining candidate, provided that the call is not
1304 duplicated by inlining. That implies that the function has
1305 internal linkage and only has one call site, so the original
1306 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001307``noimplicitfloat``
1308 This attributes disables implicit floating point instructions.
1309``noinline``
1310 This attribute indicates that the inliner should never inline this
1311 function in any situation. This attribute may not be used together
1312 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001313``nonlazybind``
1314 This attribute suppresses lazy symbol binding for the function. This
1315 may make calls to the function faster, at the cost of extra program
1316 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001317``noredzone``
1318 This attribute indicates that the code generator should not use a
1319 red zone, even if the target-specific ABI normally permits it.
1320``noreturn``
1321 This function attribute indicates that the function never returns
1322 normally. This produces undefined behavior at runtime if the
1323 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001324``norecurse``
1325 This function attribute indicates that the function does not call itself
1326 either directly or indirectly down any possible call path. This produces
1327 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001328``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001329 This function attribute indicates that the function never raises an
1330 exception. If the function does raise an exception, its runtime
1331 behavior is undefined. However, functions marked nounwind may still
1332 trap or generate asynchronous exceptions. Exception handling schemes
1333 that are recognized by LLVM to handle asynchronous exceptions, such
1334 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001335``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001336 This function attribute indicates that most optimization passes will skip
1337 this function, with the exception of interprocedural optimization passes.
1338 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001339 This attribute cannot be used together with the ``alwaysinline``
1340 attribute; this attribute is also incompatible
1341 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001342
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001343 This attribute requires the ``noinline`` attribute to be specified on
1344 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001345 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001346 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001347``optsize``
1348 This attribute suggests that optimization passes and code generator
1349 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001350 and otherwise do optimizations specifically to reduce code size as
1351 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001352``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001353 On a function, this attribute indicates that the function computes its
1354 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001355 without dereferencing any pointer arguments or otherwise accessing
1356 any mutable state (e.g. memory, control registers, etc) visible to
1357 caller functions. It does not write through any pointer arguments
1358 (including ``byval`` arguments) and never changes any state visible
1359 to callers. This means that it cannot unwind exceptions by calling
1360 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001361
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001362 On an argument, this attribute indicates that the function does not
1363 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001364 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001365``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001366 On a function, this attribute indicates that the function does not write
1367 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001368 modify any state (e.g. memory, control registers, etc) visible to
1369 caller functions. It may dereference pointer arguments and read
1370 state that may be set in the caller. A readonly function always
1371 returns the same value (or unwinds an exception identically) when
1372 called with the same set of arguments and global state. It cannot
1373 unwind an exception by calling the ``C++`` exception throwing
1374 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001375
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001376 On an argument, this attribute indicates that the function does not write
1377 through this pointer argument, even though it may write to the memory that
1378 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001379``argmemonly``
1380 This attribute indicates that the only memory accesses inside function are
1381 loads and stores from objects pointed to by its pointer-typed arguments,
1382 with arbitrary offsets. Or in other words, all memory operations in the
1383 function can refer to memory only using pointers based on its function
1384 arguments.
1385 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1386 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001387``returns_twice``
1388 This attribute indicates that this function can return twice. The C
1389 ``setjmp`` is an example of such a function. The compiler disables
1390 some optimizations (like tail calls) in the caller of these
1391 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001392``safestack``
1393 This attribute indicates that
1394 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1395 protection is enabled for this function.
1396
1397 If a function that has a ``safestack`` attribute is inlined into a
1398 function that doesn't have a ``safestack`` attribute or which has an
1399 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1400 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001401``sanitize_address``
1402 This attribute indicates that AddressSanitizer checks
1403 (dynamic address safety analysis) are enabled for this function.
1404``sanitize_memory``
1405 This attribute indicates that MemorySanitizer checks (dynamic detection
1406 of accesses to uninitialized memory) are enabled for this function.
1407``sanitize_thread``
1408 This attribute indicates that ThreadSanitizer checks
1409 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001410``ssp``
1411 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001412 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001413 placed on the stack before the local variables that's checked upon
1414 return from the function to see if it has been overwritten. A
1415 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001416 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001417
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001418 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1419 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1420 - Calls to alloca() with variable sizes or constant sizes greater than
1421 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001422
Josh Magee24c7f062014-02-01 01:36:16 +00001423 Variables that are identified as requiring a protector will be arranged
1424 on the stack such that they are adjacent to the stack protector guard.
1425
Sean Silvab084af42012-12-07 10:36:55 +00001426 If a function that has an ``ssp`` attribute is inlined into a
1427 function that doesn't have an ``ssp`` attribute, then the resulting
1428 function will have an ``ssp`` attribute.
1429``sspreq``
1430 This attribute indicates that the function should *always* emit a
1431 stack smashing protector. This overrides the ``ssp`` function
1432 attribute.
1433
Josh Magee24c7f062014-02-01 01:36:16 +00001434 Variables that are identified as requiring a protector will be arranged
1435 on the stack such that they are adjacent to the stack protector guard.
1436 The specific layout rules are:
1437
1438 #. Large arrays and structures containing large arrays
1439 (``>= ssp-buffer-size``) are closest to the stack protector.
1440 #. Small arrays and structures containing small arrays
1441 (``< ssp-buffer-size``) are 2nd closest to the protector.
1442 #. Variables that have had their address taken are 3rd closest to the
1443 protector.
1444
Sean Silvab084af42012-12-07 10:36:55 +00001445 If a function that has an ``sspreq`` attribute is inlined into a
1446 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001447 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1448 an ``sspreq`` attribute.
1449``sspstrong``
1450 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001451 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001452 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001453 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001454
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001455 - Arrays of any size and type
1456 - Aggregates containing an array of any size and type.
1457 - Calls to alloca().
1458 - Local variables that have had their address taken.
1459
Josh Magee24c7f062014-02-01 01:36:16 +00001460 Variables that are identified as requiring a protector will be arranged
1461 on the stack such that they are adjacent to the stack protector guard.
1462 The specific layout rules are:
1463
1464 #. Large arrays and structures containing large arrays
1465 (``>= ssp-buffer-size``) are closest to the stack protector.
1466 #. Small arrays and structures containing small arrays
1467 (``< ssp-buffer-size``) are 2nd closest to the protector.
1468 #. Variables that have had their address taken are 3rd closest to the
1469 protector.
1470
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001471 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001472
1473 If a function that has an ``sspstrong`` attribute is inlined into a
1474 function that doesn't have an ``sspstrong`` attribute, then the
1475 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001476``"thunk"``
1477 This attribute indicates that the function will delegate to some other
1478 function with a tail call. The prototype of a thunk should not be used for
1479 optimization purposes. The caller is expected to cast the thunk prototype to
1480 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001481``uwtable``
1482 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001483 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001484 show that no exceptions passes by it. This is normally the case for
1485 the ELF x86-64 abi, but it can be disabled for some compilation
1486 units.
Sean Silvab084af42012-12-07 10:36:55 +00001487
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001488
1489.. _opbundles:
1490
1491Operand Bundles
1492---------------
1493
1494Note: operand bundles are a work in progress, and they should be
1495considered experimental at this time.
1496
1497Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001498with certain LLVM instructions (currently only ``call`` s and
1499``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001500incorrect and will change program semantics.
1501
1502Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001503
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001504 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001505 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1506 bundle operand ::= SSA value
1507 tag ::= string constant
1508
1509Operand bundles are **not** part of a function's signature, and a
1510given function may be called from multiple places with different kinds
1511of operand bundles. This reflects the fact that the operand bundles
1512are conceptually a part of the ``call`` (or ``invoke``), not the
1513callee being dispatched to.
1514
1515Operand bundles are a generic mechanism intended to support
1516runtime-introspection-like functionality for managed languages. While
1517the exact semantics of an operand bundle depend on the bundle tag,
1518there are certain limitations to how much the presence of an operand
1519bundle can influence the semantics of a program. These restrictions
1520are described as the semantics of an "unknown" operand bundle. As
1521long as the behavior of an operand bundle is describable within these
1522restrictions, LLVM does not need to have special knowledge of the
1523operand bundle to not miscompile programs containing it.
1524
David Majnemer34cacb42015-10-22 01:46:38 +00001525- The bundle operands for an unknown operand bundle escape in unknown
1526 ways before control is transferred to the callee or invokee.
1527- Calls and invokes with operand bundles have unknown read / write
1528 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001529 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001530 callsite specific attributes.
1531- An operand bundle at a call site cannot change the implementation
1532 of the called function. Inter-procedural optimizations work as
1533 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001534
Sanjoy Dascdafd842015-11-11 21:38:02 +00001535More specific types of operand bundles are described below.
1536
1537Deoptimization Operand Bundles
1538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1539
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001540Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001541operand bundle tag. These operand bundles represent an alternate
1542"safe" continuation for the call site they're attached to, and can be
1543used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001544specified call site. There can be at most one ``"deopt"`` operand
1545bundle attached to a call site. Exact details of deoptimization is
1546out of scope for the language reference, but it usually involves
1547rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001548
1549From the compiler's perspective, deoptimization operand bundles make
1550the call sites they're attached to at least ``readonly``. They read
1551through all of their pointer typed operands (even if they're not
1552otherwise escaped) and the entire visible heap. Deoptimization
1553operand bundles do not capture their operands except during
1554deoptimization, in which case control will not be returned to the
1555compiled frame.
1556
Sanjoy Das2d161452015-11-18 06:23:38 +00001557The inliner knows how to inline through calls that have deoptimization
1558operand bundles. Just like inlining through a normal call site
1559involves composing the normal and exceptional continuations, inlining
1560through a call site with a deoptimization operand bundle needs to
1561appropriately compose the "safe" deoptimization continuation. The
1562inliner does this by prepending the parent's deoptimization
1563continuation to every deoptimization continuation in the inlined body.
1564E.g. inlining ``@f`` into ``@g`` in the following example
1565
1566.. code-block:: llvm
1567
1568 define void @f() {
1569 call void @x() ;; no deopt state
1570 call void @y() [ "deopt"(i32 10) ]
1571 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1572 ret void
1573 }
1574
1575 define void @g() {
1576 call void @f() [ "deopt"(i32 20) ]
1577 ret void
1578 }
1579
1580will result in
1581
1582.. code-block:: llvm
1583
1584 define void @g() {
1585 call void @x() ;; still no deopt state
1586 call void @y() [ "deopt"(i32 20, i32 10) ]
1587 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1588 ret void
1589 }
1590
1591It is the frontend's responsibility to structure or encode the
1592deoptimization state in a way that syntactically prepending the
1593caller's deoptimization state to the callee's deoptimization state is
1594semantically equivalent to composing the caller's deoptimization
1595continuation after the callee's deoptimization continuation.
1596
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001597.. _ob_funclet:
1598
David Majnemer3bb88c02015-12-15 21:27:27 +00001599Funclet Operand Bundles
1600^^^^^^^^^^^^^^^^^^^^^^^
1601
1602Funclet operand bundles are characterized by the ``"funclet"``
1603operand bundle tag. These operand bundles indicate that a call site
1604is within a particular funclet. There can be at most one
1605``"funclet"`` operand bundle attached to a call site and it must have
1606exactly one bundle operand.
1607
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001608If any funclet EH pads have been "entered" but not "exited" (per the
1609`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1610it is undefined behavior to execute a ``call`` or ``invoke`` which:
1611
1612* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1613 intrinsic, or
1614* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1615 not-yet-exited funclet EH pad.
1616
1617Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1618executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1619
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001620GC Transition Operand Bundles
1621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1622
1623GC transition operand bundles are characterized by the
1624``"gc-transition"`` operand bundle tag. These operand bundles mark a
1625call as a transition between a function with one GC strategy to a
1626function with a different GC strategy. If coordinating the transition
1627between GC strategies requires additional code generation at the call
1628site, these bundles may contain any values that are needed by the
1629generated code. For more details, see :ref:`GC Transitions
1630<gc_transition_args>`.
1631
Sean Silvab084af42012-12-07 10:36:55 +00001632.. _moduleasm:
1633
1634Module-Level Inline Assembly
1635----------------------------
1636
1637Modules may contain "module-level inline asm" blocks, which corresponds
1638to the GCC "file scope inline asm" blocks. These blocks are internally
1639concatenated by LLVM and treated as a single unit, but may be separated
1640in the ``.ll`` file if desired. The syntax is very simple:
1641
1642.. code-block:: llvm
1643
1644 module asm "inline asm code goes here"
1645 module asm "more can go here"
1646
1647The strings can contain any character by escaping non-printable
1648characters. The escape sequence used is simply "\\xx" where "xx" is the
1649two digit hex code for the number.
1650
James Y Knightbc832ed2015-07-08 18:08:36 +00001651Note that the assembly string *must* be parseable by LLVM's integrated assembler
1652(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001653
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001654.. _langref_datalayout:
1655
Sean Silvab084af42012-12-07 10:36:55 +00001656Data Layout
1657-----------
1658
1659A module may specify a target specific data layout string that specifies
1660how data is to be laid out in memory. The syntax for the data layout is
1661simply:
1662
1663.. code-block:: llvm
1664
1665 target datalayout = "layout specification"
1666
1667The *layout specification* consists of a list of specifications
1668separated by the minus sign character ('-'). Each specification starts
1669with a letter and may include other information after the letter to
1670define some aspect of the data layout. The specifications accepted are
1671as follows:
1672
1673``E``
1674 Specifies that the target lays out data in big-endian form. That is,
1675 the bits with the most significance have the lowest address
1676 location.
1677``e``
1678 Specifies that the target lays out data in little-endian form. That
1679 is, the bits with the least significance have the lowest address
1680 location.
1681``S<size>``
1682 Specifies the natural alignment of the stack in bits. Alignment
1683 promotion of stack variables is limited to the natural stack
1684 alignment to avoid dynamic stack realignment. The stack alignment
1685 must be a multiple of 8-bits. If omitted, the natural stack
1686 alignment defaults to "unspecified", which does not prevent any
1687 alignment promotions.
1688``p[n]:<size>:<abi>:<pref>``
1689 This specifies the *size* of a pointer and its ``<abi>`` and
1690 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001691 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001692 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001693 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001694``i<size>:<abi>:<pref>``
1695 This specifies the alignment for an integer type of a given bit
1696 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1697``v<size>:<abi>:<pref>``
1698 This specifies the alignment for a vector type of a given bit
1699 ``<size>``.
1700``f<size>:<abi>:<pref>``
1701 This specifies the alignment for a floating point type of a given bit
1702 ``<size>``. Only values of ``<size>`` that are supported by the target
1703 will work. 32 (float) and 64 (double) are supported on all targets; 80
1704 or 128 (different flavors of long double) are also supported on some
1705 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001706``a:<abi>:<pref>``
1707 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001708``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001709 If present, specifies that llvm names are mangled in the output. The
1710 options are
1711
1712 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1713 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1714 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1715 symbols get a ``_`` prefix.
1716 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1717 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001718 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1719 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001720``n<size1>:<size2>:<size3>...``
1721 This specifies a set of native integer widths for the target CPU in
1722 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1723 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1724 this set are considered to support most general arithmetic operations
1725 efficiently.
1726
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001727On every specification that takes a ``<abi>:<pref>``, specifying the
1728``<pref>`` alignment is optional. If omitted, the preceding ``:``
1729should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1730
Sean Silvab084af42012-12-07 10:36:55 +00001731When constructing the data layout for a given target, LLVM starts with a
1732default set of specifications which are then (possibly) overridden by
1733the specifications in the ``datalayout`` keyword. The default
1734specifications are given in this list:
1735
1736- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001737- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1738- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1739 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001740- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001741- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1742- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1743- ``i16:16:16`` - i16 is 16-bit aligned
1744- ``i32:32:32`` - i32 is 32-bit aligned
1745- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1746 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001747- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001748- ``f32:32:32`` - float is 32-bit aligned
1749- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001750- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001751- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1752- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001753- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001754
1755When LLVM is determining the alignment for a given type, it uses the
1756following rules:
1757
1758#. If the type sought is an exact match for one of the specifications,
1759 that specification is used.
1760#. If no match is found, and the type sought is an integer type, then
1761 the smallest integer type that is larger than the bitwidth of the
1762 sought type is used. If none of the specifications are larger than
1763 the bitwidth then the largest integer type is used. For example,
1764 given the default specifications above, the i7 type will use the
1765 alignment of i8 (next largest) while both i65 and i256 will use the
1766 alignment of i64 (largest specified).
1767#. If no match is found, and the type sought is a vector type, then the
1768 largest vector type that is smaller than the sought vector type will
1769 be used as a fall back. This happens because <128 x double> can be
1770 implemented in terms of 64 <2 x double>, for example.
1771
1772The function of the data layout string may not be what you expect.
1773Notably, this is not a specification from the frontend of what alignment
1774the code generator should use.
1775
1776Instead, if specified, the target data layout is required to match what
1777the ultimate *code generator* expects. This string is used by the
1778mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001779what the ultimate code generator uses. There is no way to generate IR
1780that does not embed this target-specific detail into the IR. If you
1781don't specify the string, the default specifications will be used to
1782generate a Data Layout and the optimization phases will operate
1783accordingly and introduce target specificity into the IR with respect to
1784these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001785
Bill Wendling5cc90842013-10-18 23:41:25 +00001786.. _langref_triple:
1787
1788Target Triple
1789-------------
1790
1791A module may specify a target triple string that describes the target
1792host. The syntax for the target triple is simply:
1793
1794.. code-block:: llvm
1795
1796 target triple = "x86_64-apple-macosx10.7.0"
1797
1798The *target triple* string consists of a series of identifiers delimited
1799by the minus sign character ('-'). The canonical forms are:
1800
1801::
1802
1803 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1804 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1805
1806This information is passed along to the backend so that it generates
1807code for the proper architecture. It's possible to override this on the
1808command line with the ``-mtriple`` command line option.
1809
Sean Silvab084af42012-12-07 10:36:55 +00001810.. _pointeraliasing:
1811
1812Pointer Aliasing Rules
1813----------------------
1814
1815Any memory access must be done through a pointer value associated with
1816an address range of the memory access, otherwise the behavior is
1817undefined. Pointer values are associated with address ranges according
1818to the following rules:
1819
1820- A pointer value is associated with the addresses associated with any
1821 value it is *based* on.
1822- An address of a global variable is associated with the address range
1823 of the variable's storage.
1824- The result value of an allocation instruction is associated with the
1825 address range of the allocated storage.
1826- A null pointer in the default address-space is associated with no
1827 address.
1828- An integer constant other than zero or a pointer value returned from
1829 a function not defined within LLVM may be associated with address
1830 ranges allocated through mechanisms other than those provided by
1831 LLVM. Such ranges shall not overlap with any ranges of addresses
1832 allocated by mechanisms provided by LLVM.
1833
1834A pointer value is *based* on another pointer value according to the
1835following rules:
1836
1837- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001838 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001839- The result value of a ``bitcast`` is *based* on the operand of the
1840 ``bitcast``.
1841- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1842 values that contribute (directly or indirectly) to the computation of
1843 the pointer's value.
1844- The "*based* on" relationship is transitive.
1845
1846Note that this definition of *"based"* is intentionally similar to the
1847definition of *"based"* in C99, though it is slightly weaker.
1848
1849LLVM IR does not associate types with memory. The result type of a
1850``load`` merely indicates the size and alignment of the memory from
1851which to load, as well as the interpretation of the value. The first
1852operand type of a ``store`` similarly only indicates the size and
1853alignment of the store.
1854
1855Consequently, type-based alias analysis, aka TBAA, aka
1856``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1857:ref:`Metadata <metadata>` may be used to encode additional information
1858which specialized optimization passes may use to implement type-based
1859alias analysis.
1860
1861.. _volatile:
1862
1863Volatile Memory Accesses
1864------------------------
1865
1866Certain memory accesses, such as :ref:`load <i_load>`'s,
1867:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1868marked ``volatile``. The optimizers must not change the number of
1869volatile operations or change their order of execution relative to other
1870volatile operations. The optimizers *may* change the order of volatile
1871operations relative to non-volatile operations. This is not Java's
1872"volatile" and has no cross-thread synchronization behavior.
1873
Andrew Trick89fc5a62013-01-30 21:19:35 +00001874IR-level volatile loads and stores cannot safely be optimized into
1875llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1876flagged volatile. Likewise, the backend should never split or merge
1877target-legal volatile load/store instructions.
1878
Andrew Trick7e6f9282013-01-31 00:49:39 +00001879.. admonition:: Rationale
1880
1881 Platforms may rely on volatile loads and stores of natively supported
1882 data width to be executed as single instruction. For example, in C
1883 this holds for an l-value of volatile primitive type with native
1884 hardware support, but not necessarily for aggregate types. The
1885 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001886 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001887 do not violate the frontend's contract with the language.
1888
Sean Silvab084af42012-12-07 10:36:55 +00001889.. _memmodel:
1890
1891Memory Model for Concurrent Operations
1892--------------------------------------
1893
1894The LLVM IR does not define any way to start parallel threads of
1895execution or to register signal handlers. Nonetheless, there are
1896platform-specific ways to create them, and we define LLVM IR's behavior
1897in their presence. This model is inspired by the C++0x memory model.
1898
1899For a more informal introduction to this model, see the :doc:`Atomics`.
1900
1901We define a *happens-before* partial order as the least partial order
1902that
1903
1904- Is a superset of single-thread program order, and
1905- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1906 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1907 techniques, like pthread locks, thread creation, thread joining,
1908 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1909 Constraints <ordering>`).
1910
1911Note that program order does not introduce *happens-before* edges
1912between a thread and signals executing inside that thread.
1913
1914Every (defined) read operation (load instructions, memcpy, atomic
1915loads/read-modify-writes, etc.) R reads a series of bytes written by
1916(defined) write operations (store instructions, atomic
1917stores/read-modify-writes, memcpy, etc.). For the purposes of this
1918section, initialized globals are considered to have a write of the
1919initializer which is atomic and happens before any other read or write
1920of the memory in question. For each byte of a read R, R\ :sub:`byte`
1921may see any write to the same byte, except:
1922
1923- If write\ :sub:`1` happens before write\ :sub:`2`, and
1924 write\ :sub:`2` happens before R\ :sub:`byte`, then
1925 R\ :sub:`byte` does not see write\ :sub:`1`.
1926- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1927 R\ :sub:`byte` does not see write\ :sub:`3`.
1928
1929Given that definition, R\ :sub:`byte` is defined as follows:
1930
1931- If R is volatile, the result is target-dependent. (Volatile is
1932 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001933 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001934 like normal memory. It does not generally provide cross-thread
1935 synchronization.)
1936- Otherwise, if there is no write to the same byte that happens before
1937 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1938- Otherwise, if R\ :sub:`byte` may see exactly one write,
1939 R\ :sub:`byte` returns the value written by that write.
1940- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1941 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1942 Memory Ordering Constraints <ordering>` section for additional
1943 constraints on how the choice is made.
1944- Otherwise R\ :sub:`byte` returns ``undef``.
1945
1946R returns the value composed of the series of bytes it read. This
1947implies that some bytes within the value may be ``undef`` **without**
1948the entire value being ``undef``. Note that this only defines the
1949semantics of the operation; it doesn't mean that targets will emit more
1950than one instruction to read the series of bytes.
1951
1952Note that in cases where none of the atomic intrinsics are used, this
1953model places only one restriction on IR transformations on top of what
1954is required for single-threaded execution: introducing a store to a byte
1955which might not otherwise be stored is not allowed in general.
1956(Specifically, in the case where another thread might write to and read
1957from an address, introducing a store can change a load that may see
1958exactly one write into a load that may see multiple writes.)
1959
1960.. _ordering:
1961
1962Atomic Memory Ordering Constraints
1963----------------------------------
1964
1965Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1966:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1967:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001968ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001969the same address they *synchronize with*. These semantics are borrowed
1970from Java and C++0x, but are somewhat more colloquial. If these
1971descriptions aren't precise enough, check those specs (see spec
1972references in the :doc:`atomics guide <Atomics>`).
1973:ref:`fence <i_fence>` instructions treat these orderings somewhat
1974differently since they don't take an address. See that instruction's
1975documentation for details.
1976
1977For a simpler introduction to the ordering constraints, see the
1978:doc:`Atomics`.
1979
1980``unordered``
1981 The set of values that can be read is governed by the happens-before
1982 partial order. A value cannot be read unless some operation wrote
1983 it. This is intended to provide a guarantee strong enough to model
1984 Java's non-volatile shared variables. This ordering cannot be
1985 specified for read-modify-write operations; it is not strong enough
1986 to make them atomic in any interesting way.
1987``monotonic``
1988 In addition to the guarantees of ``unordered``, there is a single
1989 total order for modifications by ``monotonic`` operations on each
1990 address. All modification orders must be compatible with the
1991 happens-before order. There is no guarantee that the modification
1992 orders can be combined to a global total order for the whole program
1993 (and this often will not be possible). The read in an atomic
1994 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1995 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1996 order immediately before the value it writes. If one atomic read
1997 happens before another atomic read of the same address, the later
1998 read must see the same value or a later value in the address's
1999 modification order. This disallows reordering of ``monotonic`` (or
2000 stronger) operations on the same address. If an address is written
2001 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2002 read that address repeatedly, the other threads must eventually see
2003 the write. This corresponds to the C++0x/C1x
2004 ``memory_order_relaxed``.
2005``acquire``
2006 In addition to the guarantees of ``monotonic``, a
2007 *synchronizes-with* edge may be formed with a ``release`` operation.
2008 This is intended to model C++'s ``memory_order_acquire``.
2009``release``
2010 In addition to the guarantees of ``monotonic``, if this operation
2011 writes a value which is subsequently read by an ``acquire``
2012 operation, it *synchronizes-with* that operation. (This isn't a
2013 complete description; see the C++0x definition of a release
2014 sequence.) This corresponds to the C++0x/C1x
2015 ``memory_order_release``.
2016``acq_rel`` (acquire+release)
2017 Acts as both an ``acquire`` and ``release`` operation on its
2018 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2019``seq_cst`` (sequentially consistent)
2020 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002021 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002022 writes), there is a global total order on all
2023 sequentially-consistent operations on all addresses, which is
2024 consistent with the *happens-before* partial order and with the
2025 modification orders of all the affected addresses. Each
2026 sequentially-consistent read sees the last preceding write to the
2027 same address in this global order. This corresponds to the C++0x/C1x
2028 ``memory_order_seq_cst`` and Java volatile.
2029
2030.. _singlethread:
2031
2032If an atomic operation is marked ``singlethread``, it only *synchronizes
2033with* or participates in modification and seq\_cst total orderings with
2034other operations running in the same thread (for example, in signal
2035handlers).
2036
2037.. _fastmath:
2038
2039Fast-Math Flags
2040---------------
2041
2042LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2043:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002044:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2045be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002046
2047``nnan``
2048 No NaNs - Allow optimizations to assume the arguments and result are not
2049 NaN. Such optimizations are required to retain defined behavior over
2050 NaNs, but the value of the result is undefined.
2051
2052``ninf``
2053 No Infs - Allow optimizations to assume the arguments and result are not
2054 +/-Inf. Such optimizations are required to retain defined behavior over
2055 +/-Inf, but the value of the result is undefined.
2056
2057``nsz``
2058 No Signed Zeros - Allow optimizations to treat the sign of a zero
2059 argument or result as insignificant.
2060
2061``arcp``
2062 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2063 argument rather than perform division.
2064
2065``fast``
2066 Fast - Allow algebraically equivalent transformations that may
2067 dramatically change results in floating point (e.g. reassociate). This
2068 flag implies all the others.
2069
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002070.. _uselistorder:
2071
2072Use-list Order Directives
2073-------------------------
2074
2075Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002076order to be recreated. ``<order-indexes>`` is a comma-separated list of
2077indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002078value's use-list is immediately sorted by these indexes.
2079
Sean Silvaa1190322015-08-06 22:56:48 +00002080Use-list directives may appear at function scope or global scope. They are not
2081instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002082function scope, they must appear after the terminator of the final basic block.
2083
2084If basic blocks have their address taken via ``blockaddress()`` expressions,
2085``uselistorder_bb`` can be used to reorder their use-lists from outside their
2086function's scope.
2087
2088:Syntax:
2089
2090::
2091
2092 uselistorder <ty> <value>, { <order-indexes> }
2093 uselistorder_bb @function, %block { <order-indexes> }
2094
2095:Examples:
2096
2097::
2098
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002099 define void @foo(i32 %arg1, i32 %arg2) {
2100 entry:
2101 ; ... instructions ...
2102 bb:
2103 ; ... instructions ...
2104
2105 ; At function scope.
2106 uselistorder i32 %arg1, { 1, 0, 2 }
2107 uselistorder label %bb, { 1, 0 }
2108 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002109
2110 ; At global scope.
2111 uselistorder i32* @global, { 1, 2, 0 }
2112 uselistorder i32 7, { 1, 0 }
2113 uselistorder i32 (i32) @bar, { 1, 0 }
2114 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2115
Sean Silvab084af42012-12-07 10:36:55 +00002116.. _typesystem:
2117
2118Type System
2119===========
2120
2121The LLVM type system is one of the most important features of the
2122intermediate representation. Being typed enables a number of
2123optimizations to be performed on the intermediate representation
2124directly, without having to do extra analyses on the side before the
2125transformation. A strong type system makes it easier to read the
2126generated code and enables novel analyses and transformations that are
2127not feasible to perform on normal three address code representations.
2128
Rafael Espindola08013342013-12-07 19:34:20 +00002129.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002130
Rafael Espindola08013342013-12-07 19:34:20 +00002131Void Type
2132---------
Sean Silvab084af42012-12-07 10:36:55 +00002133
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002134:Overview:
2135
Rafael Espindola08013342013-12-07 19:34:20 +00002136
2137The void type does not represent any value and has no size.
2138
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002139:Syntax:
2140
Rafael Espindola08013342013-12-07 19:34:20 +00002141
2142::
2143
2144 void
Sean Silvab084af42012-12-07 10:36:55 +00002145
2146
Rafael Espindola08013342013-12-07 19:34:20 +00002147.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002148
Rafael Espindola08013342013-12-07 19:34:20 +00002149Function Type
2150-------------
Sean Silvab084af42012-12-07 10:36:55 +00002151
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002152:Overview:
2153
Sean Silvab084af42012-12-07 10:36:55 +00002154
Rafael Espindola08013342013-12-07 19:34:20 +00002155The function type can be thought of as a function signature. It consists of a
2156return type and a list of formal parameter types. The return type of a function
2157type is a void type or first class type --- except for :ref:`label <t_label>`
2158and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002159
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002160:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002161
Rafael Espindola08013342013-12-07 19:34:20 +00002162::
Sean Silvab084af42012-12-07 10:36:55 +00002163
Rafael Espindola08013342013-12-07 19:34:20 +00002164 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002165
Rafael Espindola08013342013-12-07 19:34:20 +00002166...where '``<parameter list>``' is a comma-separated list of type
2167specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002168indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002169argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002170handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002171except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002172
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002173:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002174
Rafael Espindola08013342013-12-07 19:34:20 +00002175+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2176| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2177+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2178| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2179+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2180| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2181+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2182| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2183+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2184
2185.. _t_firstclass:
2186
2187First Class Types
2188-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002189
2190The :ref:`first class <t_firstclass>` types are perhaps the most important.
2191Values of these types are the only ones which can be produced by
2192instructions.
2193
Rafael Espindola08013342013-12-07 19:34:20 +00002194.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002195
Rafael Espindola08013342013-12-07 19:34:20 +00002196Single Value Types
2197^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002198
Rafael Espindola08013342013-12-07 19:34:20 +00002199These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002200
2201.. _t_integer:
2202
2203Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002204""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002205
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002206:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002207
2208The integer type is a very simple type that simply specifies an
2209arbitrary bit width for the integer type desired. Any bit width from 1
2210bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2211
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002212:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002213
2214::
2215
2216 iN
2217
2218The number of bits the integer will occupy is specified by the ``N``
2219value.
2220
2221Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002222*********
Sean Silvab084af42012-12-07 10:36:55 +00002223
2224+----------------+------------------------------------------------+
2225| ``i1`` | a single-bit integer. |
2226+----------------+------------------------------------------------+
2227| ``i32`` | a 32-bit integer. |
2228+----------------+------------------------------------------------+
2229| ``i1942652`` | a really big integer of over 1 million bits. |
2230+----------------+------------------------------------------------+
2231
2232.. _t_floating:
2233
2234Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002235""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002236
2237.. list-table::
2238 :header-rows: 1
2239
2240 * - Type
2241 - Description
2242
2243 * - ``half``
2244 - 16-bit floating point value
2245
2246 * - ``float``
2247 - 32-bit floating point value
2248
2249 * - ``double``
2250 - 64-bit floating point value
2251
2252 * - ``fp128``
2253 - 128-bit floating point value (112-bit mantissa)
2254
2255 * - ``x86_fp80``
2256 - 80-bit floating point value (X87)
2257
2258 * - ``ppc_fp128``
2259 - 128-bit floating point value (two 64-bits)
2260
Reid Kleckner9a16d082014-03-05 02:41:37 +00002261X86_mmx Type
2262""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002263
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002264:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002265
Reid Kleckner9a16d082014-03-05 02:41:37 +00002266The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002267machine. The operations allowed on it are quite limited: parameters and
2268return values, load and store, and bitcast. User-specified MMX
2269instructions are represented as intrinsic or asm calls with arguments
2270and/or results of this type. There are no arrays, vectors or constants
2271of this type.
2272
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002273:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002274
2275::
2276
Reid Kleckner9a16d082014-03-05 02:41:37 +00002277 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002278
Sean Silvab084af42012-12-07 10:36:55 +00002279
Rafael Espindola08013342013-12-07 19:34:20 +00002280.. _t_pointer:
2281
2282Pointer Type
2283""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002284
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002285:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002286
Rafael Espindola08013342013-12-07 19:34:20 +00002287The pointer type is used to specify memory locations. Pointers are
2288commonly used to reference objects in memory.
2289
2290Pointer types may have an optional address space attribute defining the
2291numbered address space where the pointed-to object resides. The default
2292address space is number zero. The semantics of non-zero address spaces
2293are target-specific.
2294
2295Note that LLVM does not permit pointers to void (``void*``) nor does it
2296permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002297
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002298:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002299
2300::
2301
Rafael Espindola08013342013-12-07 19:34:20 +00002302 <type> *
2303
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002304:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002305
2306+-------------------------+--------------------------------------------------------------------------------------------------------------+
2307| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2308+-------------------------+--------------------------------------------------------------------------------------------------------------+
2309| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2310+-------------------------+--------------------------------------------------------------------------------------------------------------+
2311| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2312+-------------------------+--------------------------------------------------------------------------------------------------------------+
2313
2314.. _t_vector:
2315
2316Vector Type
2317"""""""""""
2318
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002319:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002320
2321A vector type is a simple derived type that represents a vector of
2322elements. Vector types are used when multiple primitive data are
2323operated in parallel using a single instruction (SIMD). A vector type
2324requires a size (number of elements) and an underlying primitive data
2325type. Vector types are considered :ref:`first class <t_firstclass>`.
2326
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002327:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002328
2329::
2330
2331 < <# elements> x <elementtype> >
2332
2333The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002334elementtype may be any integer, floating point or pointer type. Vectors
2335of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002336
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002337:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002338
2339+-------------------+--------------------------------------------------+
2340| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2341+-------------------+--------------------------------------------------+
2342| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2343+-------------------+--------------------------------------------------+
2344| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2345+-------------------+--------------------------------------------------+
2346| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2347+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002348
2349.. _t_label:
2350
2351Label Type
2352^^^^^^^^^^
2353
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002354:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002355
2356The label type represents code labels.
2357
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002358:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002359
2360::
2361
2362 label
2363
David Majnemerb611e3f2015-08-14 05:09:07 +00002364.. _t_token:
2365
2366Token Type
2367^^^^^^^^^^
2368
2369:Overview:
2370
2371The token type is used when a value is associated with an instruction
2372but all uses of the value must not attempt to introspect or obscure it.
2373As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2374:ref:`select <i_select>` of type token.
2375
2376:Syntax:
2377
2378::
2379
2380 token
2381
2382
2383
Sean Silvab084af42012-12-07 10:36:55 +00002384.. _t_metadata:
2385
2386Metadata Type
2387^^^^^^^^^^^^^
2388
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002389:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002390
2391The metadata type represents embedded metadata. No derived types may be
2392created from metadata except for :ref:`function <t_function>` arguments.
2393
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002394:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002395
2396::
2397
2398 metadata
2399
Sean Silvab084af42012-12-07 10:36:55 +00002400.. _t_aggregate:
2401
2402Aggregate Types
2403^^^^^^^^^^^^^^^
2404
2405Aggregate Types are a subset of derived types that can contain multiple
2406member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2407aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2408aggregate types.
2409
2410.. _t_array:
2411
2412Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002413""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002414
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002415:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002416
2417The array type is a very simple derived type that arranges elements
2418sequentially in memory. The array type requires a size (number of
2419elements) and an underlying data type.
2420
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002421:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002422
2423::
2424
2425 [<# elements> x <elementtype>]
2426
2427The number of elements is a constant integer value; ``elementtype`` may
2428be any type with a size.
2429
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002430:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002431
2432+------------------+--------------------------------------+
2433| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2434+------------------+--------------------------------------+
2435| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2436+------------------+--------------------------------------+
2437| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2438+------------------+--------------------------------------+
2439
2440Here are some examples of multidimensional arrays:
2441
2442+-----------------------------+----------------------------------------------------------+
2443| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2444+-----------------------------+----------------------------------------------------------+
2445| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2446+-----------------------------+----------------------------------------------------------+
2447| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2448+-----------------------------+----------------------------------------------------------+
2449
2450There is no restriction on indexing beyond the end of the array implied
2451by a static type (though there are restrictions on indexing beyond the
2452bounds of an allocated object in some cases). This means that
2453single-dimension 'variable sized array' addressing can be implemented in
2454LLVM with a zero length array type. An implementation of 'pascal style
2455arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2456example.
2457
Sean Silvab084af42012-12-07 10:36:55 +00002458.. _t_struct:
2459
2460Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002461""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002462
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002463:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002464
2465The structure type is used to represent a collection of data members
2466together in memory. The elements of a structure may be any type that has
2467a size.
2468
2469Structures in memory are accessed using '``load``' and '``store``' by
2470getting a pointer to a field with the '``getelementptr``' instruction.
2471Structures in registers are accessed using the '``extractvalue``' and
2472'``insertvalue``' instructions.
2473
2474Structures may optionally be "packed" structures, which indicate that
2475the alignment of the struct is one byte, and that there is no padding
2476between the elements. In non-packed structs, padding between field types
2477is inserted as defined by the DataLayout string in the module, which is
2478required to match what the underlying code generator expects.
2479
2480Structures can either be "literal" or "identified". A literal structure
2481is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2482identified types are always defined at the top level with a name.
2483Literal types are uniqued by their contents and can never be recursive
2484or opaque since there is no way to write one. Identified types can be
2485recursive, can be opaqued, and are never uniqued.
2486
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002487:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002488
2489::
2490
2491 %T1 = type { <type list> } ; Identified normal struct type
2492 %T2 = type <{ <type list> }> ; Identified packed struct type
2493
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002494:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002495
2496+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2497| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2498+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002499| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002500+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2501| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2502+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2503
2504.. _t_opaque:
2505
2506Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002507""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002508
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002509:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002510
2511Opaque structure types are used to represent named structure types that
2512do not have a body specified. This corresponds (for example) to the C
2513notion of a forward declared structure.
2514
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002515:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002516
2517::
2518
2519 %X = type opaque
2520 %52 = type opaque
2521
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002522:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002523
2524+--------------+-------------------+
2525| ``opaque`` | An opaque type. |
2526+--------------+-------------------+
2527
Sean Silva1703e702014-04-08 21:06:22 +00002528.. _constants:
2529
Sean Silvab084af42012-12-07 10:36:55 +00002530Constants
2531=========
2532
2533LLVM has several different basic types of constants. This section
2534describes them all and their syntax.
2535
2536Simple Constants
2537----------------
2538
2539**Boolean constants**
2540 The two strings '``true``' and '``false``' are both valid constants
2541 of the ``i1`` type.
2542**Integer constants**
2543 Standard integers (such as '4') are constants of the
2544 :ref:`integer <t_integer>` type. Negative numbers may be used with
2545 integer types.
2546**Floating point constants**
2547 Floating point constants use standard decimal notation (e.g.
2548 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2549 hexadecimal notation (see below). The assembler requires the exact
2550 decimal value of a floating-point constant. For example, the
2551 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2552 decimal in binary. Floating point constants must have a :ref:`floating
2553 point <t_floating>` type.
2554**Null pointer constants**
2555 The identifier '``null``' is recognized as a null pointer constant
2556 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002557**Token constants**
2558 The identifier '``none``' is recognized as an empty token constant
2559 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002560
2561The one non-intuitive notation for constants is the hexadecimal form of
2562floating point constants. For example, the form
2563'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2564than) '``double 4.5e+15``'. The only time hexadecimal floating point
2565constants are required (and the only time that they are generated by the
2566disassembler) is when a floating point constant must be emitted but it
2567cannot be represented as a decimal floating point number in a reasonable
2568number of digits. For example, NaN's, infinities, and other special
2569values are represented in their IEEE hexadecimal format so that assembly
2570and disassembly do not cause any bits to change in the constants.
2571
2572When using the hexadecimal form, constants of types half, float, and
2573double are represented using the 16-digit form shown above (which
2574matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002575must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002576precision, respectively. Hexadecimal format is always used for long
2577double, and there are three forms of long double. The 80-bit format used
2578by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2579128-bit format used by PowerPC (two adjacent doubles) is represented by
2580``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002581represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2582will only work if they match the long double format on your target.
2583The IEEE 16-bit format (half precision) is represented by ``0xH``
2584followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2585(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002586
Reid Kleckner9a16d082014-03-05 02:41:37 +00002587There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002588
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002589.. _complexconstants:
2590
Sean Silvab084af42012-12-07 10:36:55 +00002591Complex Constants
2592-----------------
2593
2594Complex constants are a (potentially recursive) combination of simple
2595constants and smaller complex constants.
2596
2597**Structure constants**
2598 Structure constants are represented with notation similar to
2599 structure type definitions (a comma separated list of elements,
2600 surrounded by braces (``{}``)). For example:
2601 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2602 "``@G = external global i32``". Structure constants must have
2603 :ref:`structure type <t_struct>`, and the number and types of elements
2604 must match those specified by the type.
2605**Array constants**
2606 Array constants are represented with notation similar to array type
2607 definitions (a comma separated list of elements, surrounded by
2608 square brackets (``[]``)). For example:
2609 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2610 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002611 match those specified by the type. As a special case, character array
2612 constants may also be represented as a double-quoted string using the ``c``
2613 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002614**Vector constants**
2615 Vector constants are represented with notation similar to vector
2616 type definitions (a comma separated list of elements, surrounded by
2617 less-than/greater-than's (``<>``)). For example:
2618 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2619 must have :ref:`vector type <t_vector>`, and the number and types of
2620 elements must match those specified by the type.
2621**Zero initialization**
2622 The string '``zeroinitializer``' can be used to zero initialize a
2623 value to zero of *any* type, including scalar and
2624 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2625 having to print large zero initializers (e.g. for large arrays) and
2626 is always exactly equivalent to using explicit zero initializers.
2627**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002628 A metadata node is a constant tuple without types. For example:
2629 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002630 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2631 Unlike other typed constants that are meant to be interpreted as part of
2632 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002633 information such as debug info.
2634
2635Global Variable and Function Addresses
2636--------------------------------------
2637
2638The addresses of :ref:`global variables <globalvars>` and
2639:ref:`functions <functionstructure>` are always implicitly valid
2640(link-time) constants. These constants are explicitly referenced when
2641the :ref:`identifier for the global <identifiers>` is used and always have
2642:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2643file:
2644
2645.. code-block:: llvm
2646
2647 @X = global i32 17
2648 @Y = global i32 42
2649 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2650
2651.. _undefvalues:
2652
2653Undefined Values
2654----------------
2655
2656The string '``undef``' can be used anywhere a constant is expected, and
2657indicates that the user of the value may receive an unspecified
2658bit-pattern. Undefined values may be of any type (other than '``label``'
2659or '``void``') and be used anywhere a constant is permitted.
2660
2661Undefined values are useful because they indicate to the compiler that
2662the program is well defined no matter what value is used. This gives the
2663compiler more freedom to optimize. Here are some examples of
2664(potentially surprising) transformations that are valid (in pseudo IR):
2665
2666.. code-block:: llvm
2667
2668 %A = add %X, undef
2669 %B = sub %X, undef
2670 %C = xor %X, undef
2671 Safe:
2672 %A = undef
2673 %B = undef
2674 %C = undef
2675
2676This is safe because all of the output bits are affected by the undef
2677bits. Any output bit can have a zero or one depending on the input bits.
2678
2679.. code-block:: llvm
2680
2681 %A = or %X, undef
2682 %B = and %X, undef
2683 Safe:
2684 %A = -1
2685 %B = 0
2686 Unsafe:
2687 %A = undef
2688 %B = undef
2689
2690These logical operations have bits that are not always affected by the
2691input. For example, if ``%X`` has a zero bit, then the output of the
2692'``and``' operation will always be a zero for that bit, no matter what
2693the corresponding bit from the '``undef``' is. As such, it is unsafe to
2694optimize or assume that the result of the '``and``' is '``undef``'.
2695However, it is safe to assume that all bits of the '``undef``' could be
26960, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2697all the bits of the '``undef``' operand to the '``or``' could be set,
2698allowing the '``or``' to be folded to -1.
2699
2700.. code-block:: llvm
2701
2702 %A = select undef, %X, %Y
2703 %B = select undef, 42, %Y
2704 %C = select %X, %Y, undef
2705 Safe:
2706 %A = %X (or %Y)
2707 %B = 42 (or %Y)
2708 %C = %Y
2709 Unsafe:
2710 %A = undef
2711 %B = undef
2712 %C = undef
2713
2714This set of examples shows that undefined '``select``' (and conditional
2715branch) conditions can go *either way*, but they have to come from one
2716of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2717both known to have a clear low bit, then ``%A`` would have to have a
2718cleared low bit. However, in the ``%C`` example, the optimizer is
2719allowed to assume that the '``undef``' operand could be the same as
2720``%Y``, allowing the whole '``select``' to be eliminated.
2721
2722.. code-block:: llvm
2723
2724 %A = xor undef, undef
2725
2726 %B = undef
2727 %C = xor %B, %B
2728
2729 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002730 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002731 %F = icmp gte %D, 4
2732
2733 Safe:
2734 %A = undef
2735 %B = undef
2736 %C = undef
2737 %D = undef
2738 %E = undef
2739 %F = undef
2740
2741This example points out that two '``undef``' operands are not
2742necessarily the same. This can be surprising to people (and also matches
2743C semantics) where they assume that "``X^X``" is always zero, even if
2744``X`` is undefined. This isn't true for a number of reasons, but the
2745short answer is that an '``undef``' "variable" can arbitrarily change
2746its value over its "live range". This is true because the variable
2747doesn't actually *have a live range*. Instead, the value is logically
2748read from arbitrary registers that happen to be around when needed, so
2749the value is not necessarily consistent over time. In fact, ``%A`` and
2750``%C`` need to have the same semantics or the core LLVM "replace all
2751uses with" concept would not hold.
2752
2753.. code-block:: llvm
2754
2755 %A = fdiv undef, %X
2756 %B = fdiv %X, undef
2757 Safe:
2758 %A = undef
2759 b: unreachable
2760
2761These examples show the crucial difference between an *undefined value*
2762and *undefined behavior*. An undefined value (like '``undef``') is
2763allowed to have an arbitrary bit-pattern. This means that the ``%A``
2764operation can be constant folded to '``undef``', because the '``undef``'
2765could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2766However, in the second example, we can make a more aggressive
2767assumption: because the ``undef`` is allowed to be an arbitrary value,
2768we are allowed to assume that it could be zero. Since a divide by zero
2769has *undefined behavior*, we are allowed to assume that the operation
2770does not execute at all. This allows us to delete the divide and all
2771code after it. Because the undefined operation "can't happen", the
2772optimizer can assume that it occurs in dead code.
2773
2774.. code-block:: llvm
2775
2776 a: store undef -> %X
2777 b: store %X -> undef
2778 Safe:
2779 a: <deleted>
2780 b: unreachable
2781
2782These examples reiterate the ``fdiv`` example: a store *of* an undefined
2783value can be assumed to not have any effect; we can assume that the
2784value is overwritten with bits that happen to match what was already
2785there. However, a store *to* an undefined location could clobber
2786arbitrary memory, therefore, it has undefined behavior.
2787
2788.. _poisonvalues:
2789
2790Poison Values
2791-------------
2792
2793Poison values are similar to :ref:`undef values <undefvalues>`, however
2794they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002795that cannot evoke side effects has nevertheless detected a condition
2796that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002797
2798There is currently no way of representing a poison value in the IR; they
2799only exist when produced by operations such as :ref:`add <i_add>` with
2800the ``nsw`` flag.
2801
2802Poison value behavior is defined in terms of value *dependence*:
2803
2804- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2805- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2806 their dynamic predecessor basic block.
2807- Function arguments depend on the corresponding actual argument values
2808 in the dynamic callers of their functions.
2809- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2810 instructions that dynamically transfer control back to them.
2811- :ref:`Invoke <i_invoke>` instructions depend on the
2812 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2813 call instructions that dynamically transfer control back to them.
2814- Non-volatile loads and stores depend on the most recent stores to all
2815 of the referenced memory addresses, following the order in the IR
2816 (including loads and stores implied by intrinsics such as
2817 :ref:`@llvm.memcpy <int_memcpy>`.)
2818- An instruction with externally visible side effects depends on the
2819 most recent preceding instruction with externally visible side
2820 effects, following the order in the IR. (This includes :ref:`volatile
2821 operations <volatile>`.)
2822- An instruction *control-depends* on a :ref:`terminator
2823 instruction <terminators>` if the terminator instruction has
2824 multiple successors and the instruction is always executed when
2825 control transfers to one of the successors, and may not be executed
2826 when control is transferred to another.
2827- Additionally, an instruction also *control-depends* on a terminator
2828 instruction if the set of instructions it otherwise depends on would
2829 be different if the terminator had transferred control to a different
2830 successor.
2831- Dependence is transitive.
2832
Richard Smith32dbdf62014-07-31 04:25:36 +00002833Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2834with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002835on a poison value has undefined behavior.
2836
2837Here are some examples:
2838
2839.. code-block:: llvm
2840
2841 entry:
2842 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2843 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002844 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002845 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2846
2847 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002848 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002849
2850 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2851
2852 %narrowaddr = bitcast i32* @g to i16*
2853 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002854 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2855 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002856
2857 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2858 br i1 %cmp, label %true, label %end ; Branch to either destination.
2859
2860 true:
2861 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2862 ; it has undefined behavior.
2863 br label %end
2864
2865 end:
2866 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2867 ; Both edges into this PHI are
2868 ; control-dependent on %cmp, so this
2869 ; always results in a poison value.
2870
2871 store volatile i32 0, i32* @g ; This would depend on the store in %true
2872 ; if %cmp is true, or the store in %entry
2873 ; otherwise, so this is undefined behavior.
2874
2875 br i1 %cmp, label %second_true, label %second_end
2876 ; The same branch again, but this time the
2877 ; true block doesn't have side effects.
2878
2879 second_true:
2880 ; No side effects!
2881 ret void
2882
2883 second_end:
2884 store volatile i32 0, i32* @g ; This time, the instruction always depends
2885 ; on the store in %end. Also, it is
2886 ; control-equivalent to %end, so this is
2887 ; well-defined (ignoring earlier undefined
2888 ; behavior in this example).
2889
2890.. _blockaddress:
2891
2892Addresses of Basic Blocks
2893-------------------------
2894
2895``blockaddress(@function, %block)``
2896
2897The '``blockaddress``' constant computes the address of the specified
2898basic block in the specified function, and always has an ``i8*`` type.
2899Taking the address of the entry block is illegal.
2900
2901This value only has defined behavior when used as an operand to the
2902':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2903against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002904undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002905no label is equal to the null pointer. This may be passed around as an
2906opaque pointer sized value as long as the bits are not inspected. This
2907allows ``ptrtoint`` and arithmetic to be performed on these values so
2908long as the original value is reconstituted before the ``indirectbr``
2909instruction.
2910
2911Finally, some targets may provide defined semantics when using the value
2912as the operand to an inline assembly, but that is target specific.
2913
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002914.. _constantexprs:
2915
Sean Silvab084af42012-12-07 10:36:55 +00002916Constant Expressions
2917--------------------
2918
2919Constant expressions are used to allow expressions involving other
2920constants to be used as constants. Constant expressions may be of any
2921:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2922that does not have side effects (e.g. load and call are not supported).
2923The following is the syntax for constant expressions:
2924
2925``trunc (CST to TYPE)``
2926 Truncate a constant to another type. The bit size of CST must be
2927 larger than the bit size of TYPE. Both types must be integers.
2928``zext (CST to TYPE)``
2929 Zero extend a constant to another type. The bit size of CST must be
2930 smaller than the bit size of TYPE. Both types must be integers.
2931``sext (CST to TYPE)``
2932 Sign extend a constant to another type. The bit size of CST must be
2933 smaller than the bit size of TYPE. Both types must be integers.
2934``fptrunc (CST to TYPE)``
2935 Truncate a floating point constant to another floating point type.
2936 The size of CST must be larger than the size of TYPE. Both types
2937 must be floating point.
2938``fpext (CST to TYPE)``
2939 Floating point extend a constant to another type. The size of CST
2940 must be smaller or equal to the size of TYPE. Both types must be
2941 floating point.
2942``fptoui (CST to TYPE)``
2943 Convert a floating point constant to the corresponding unsigned
2944 integer constant. TYPE must be a scalar or vector integer type. CST
2945 must be of scalar or vector floating point type. Both CST and TYPE
2946 must be scalars, or vectors of the same number of elements. If the
2947 value won't fit in the integer type, the results are undefined.
2948``fptosi (CST to TYPE)``
2949 Convert a floating point constant to the corresponding signed
2950 integer constant. TYPE must be a scalar or vector integer type. CST
2951 must be of scalar or vector floating point type. Both CST and TYPE
2952 must be scalars, or vectors of the same number of elements. If the
2953 value won't fit in the integer type, the results are undefined.
2954``uitofp (CST to TYPE)``
2955 Convert an unsigned integer constant to the corresponding floating
2956 point constant. TYPE must be a scalar or vector floating point type.
2957 CST must be of scalar or vector integer type. Both CST and TYPE must
2958 be scalars, or vectors of the same number of elements. If the value
2959 won't fit in the floating point type, the results are undefined.
2960``sitofp (CST to TYPE)``
2961 Convert a signed integer constant to the corresponding floating
2962 point constant. TYPE must be a scalar or vector floating point type.
2963 CST must be of scalar or vector integer type. Both CST and TYPE must
2964 be scalars, or vectors of the same number of elements. If the value
2965 won't fit in the floating point type, the results are undefined.
2966``ptrtoint (CST to TYPE)``
2967 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002968 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002969 pointer type. The ``CST`` value is zero extended, truncated, or
2970 unchanged to make it fit in ``TYPE``.
2971``inttoptr (CST to TYPE)``
2972 Convert an integer constant to a pointer constant. TYPE must be a
2973 pointer type. CST must be of integer type. The CST value is zero
2974 extended, truncated, or unchanged to make it fit in a pointer size.
2975 This one is *really* dangerous!
2976``bitcast (CST to TYPE)``
2977 Convert a constant, CST, to another TYPE. The constraints of the
2978 operands are the same as those for the :ref:`bitcast
2979 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002980``addrspacecast (CST to TYPE)``
2981 Convert a constant pointer or constant vector of pointer, CST, to another
2982 TYPE in a different address space. The constraints of the operands are the
2983 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002984``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002985 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2986 constants. As with the :ref:`getelementptr <i_getelementptr>`
2987 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002988 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002989``select (COND, VAL1, VAL2)``
2990 Perform the :ref:`select operation <i_select>` on constants.
2991``icmp COND (VAL1, VAL2)``
2992 Performs the :ref:`icmp operation <i_icmp>` on constants.
2993``fcmp COND (VAL1, VAL2)``
2994 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2995``extractelement (VAL, IDX)``
2996 Perform the :ref:`extractelement operation <i_extractelement>` on
2997 constants.
2998``insertelement (VAL, ELT, IDX)``
2999 Perform the :ref:`insertelement operation <i_insertelement>` on
3000 constants.
3001``shufflevector (VEC1, VEC2, IDXMASK)``
3002 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3003 constants.
3004``extractvalue (VAL, IDX0, IDX1, ...)``
3005 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3006 constants. The index list is interpreted in a similar manner as
3007 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3008 least one index value must be specified.
3009``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3010 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3011 The index list is interpreted in a similar manner as indices in a
3012 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3013 value must be specified.
3014``OPCODE (LHS, RHS)``
3015 Perform the specified operation of the LHS and RHS constants. OPCODE
3016 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3017 binary <bitwiseops>` operations. The constraints on operands are
3018 the same as those for the corresponding instruction (e.g. no bitwise
3019 operations on floating point values are allowed).
3020
3021Other Values
3022============
3023
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003024.. _inlineasmexprs:
3025
Sean Silvab084af42012-12-07 10:36:55 +00003026Inline Assembler Expressions
3027----------------------------
3028
3029LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003030Inline Assembly <moduleasm>`) through the use of a special value. This value
3031represents the inline assembler as a template string (containing the
3032instructions to emit), a list of operand constraints (stored as a string), a
3033flag that indicates whether or not the inline asm expression has side effects,
3034and a flag indicating whether the function containing the asm needs to align its
3035stack conservatively.
3036
3037The template string supports argument substitution of the operands using "``$``"
3038followed by a number, to indicate substitution of the given register/memory
3039location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3040be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3041operand (See :ref:`inline-asm-modifiers`).
3042
3043A literal "``$``" may be included by using "``$$``" in the template. To include
3044other special characters into the output, the usual "``\XX``" escapes may be
3045used, just as in other strings. Note that after template substitution, the
3046resulting assembly string is parsed by LLVM's integrated assembler unless it is
3047disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3048syntax known to LLVM.
3049
3050LLVM's support for inline asm is modeled closely on the requirements of Clang's
3051GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3052modifier codes listed here are similar or identical to those in GCC's inline asm
3053support. However, to be clear, the syntax of the template and constraint strings
3054described here is *not* the same as the syntax accepted by GCC and Clang, and,
3055while most constraint letters are passed through as-is by Clang, some get
3056translated to other codes when converting from the C source to the LLVM
3057assembly.
3058
3059An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003060
3061.. code-block:: llvm
3062
3063 i32 (i32) asm "bswap $0", "=r,r"
3064
3065Inline assembler expressions may **only** be used as the callee operand
3066of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3067Thus, typically we have:
3068
3069.. code-block:: llvm
3070
3071 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3072
3073Inline asms with side effects not visible in the constraint list must be
3074marked as having side effects. This is done through the use of the
3075'``sideeffect``' keyword, like so:
3076
3077.. code-block:: llvm
3078
3079 call void asm sideeffect "eieio", ""()
3080
3081In some cases inline asms will contain code that will not work unless
3082the stack is aligned in some way, such as calls or SSE instructions on
3083x86, yet will not contain code that does that alignment within the asm.
3084The compiler should make conservative assumptions about what the asm
3085might contain and should generate its usual stack alignment code in the
3086prologue if the '``alignstack``' keyword is present:
3087
3088.. code-block:: llvm
3089
3090 call void asm alignstack "eieio", ""()
3091
3092Inline asms also support using non-standard assembly dialects. The
3093assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3094the inline asm is using the Intel dialect. Currently, ATT and Intel are
3095the only supported dialects. An example is:
3096
3097.. code-block:: llvm
3098
3099 call void asm inteldialect "eieio", ""()
3100
3101If multiple keywords appear the '``sideeffect``' keyword must come
3102first, the '``alignstack``' keyword second and the '``inteldialect``'
3103keyword last.
3104
James Y Knightbc832ed2015-07-08 18:08:36 +00003105Inline Asm Constraint String
3106^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3107
3108The constraint list is a comma-separated string, each element containing one or
3109more constraint codes.
3110
3111For each element in the constraint list an appropriate register or memory
3112operand will be chosen, and it will be made available to assembly template
3113string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3114second, etc.
3115
3116There are three different types of constraints, which are distinguished by a
3117prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3118constraints must always be given in that order: outputs first, then inputs, then
3119clobbers. They cannot be intermingled.
3120
3121There are also three different categories of constraint codes:
3122
3123- Register constraint. This is either a register class, or a fixed physical
3124 register. This kind of constraint will allocate a register, and if necessary,
3125 bitcast the argument or result to the appropriate type.
3126- Memory constraint. This kind of constraint is for use with an instruction
3127 taking a memory operand. Different constraints allow for different addressing
3128 modes used by the target.
3129- Immediate value constraint. This kind of constraint is for an integer or other
3130 immediate value which can be rendered directly into an instruction. The
3131 various target-specific constraints allow the selection of a value in the
3132 proper range for the instruction you wish to use it with.
3133
3134Output constraints
3135""""""""""""""""""
3136
3137Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3138indicates that the assembly will write to this operand, and the operand will
3139then be made available as a return value of the ``asm`` expression. Output
3140constraints do not consume an argument from the call instruction. (Except, see
3141below about indirect outputs).
3142
3143Normally, it is expected that no output locations are written to by the assembly
3144expression until *all* of the inputs have been read. As such, LLVM may assign
3145the same register to an output and an input. If this is not safe (e.g. if the
3146assembly contains two instructions, where the first writes to one output, and
3147the second reads an input and writes to a second output), then the "``&``"
3148modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003149"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003150will not use the same register for any inputs (other than an input tied to this
3151output).
3152
3153Input constraints
3154"""""""""""""""""
3155
3156Input constraints do not have a prefix -- just the constraint codes. Each input
3157constraint will consume one argument from the call instruction. It is not
3158permitted for the asm to write to any input register or memory location (unless
3159that input is tied to an output). Note also that multiple inputs may all be
3160assigned to the same register, if LLVM can determine that they necessarily all
3161contain the same value.
3162
3163Instead of providing a Constraint Code, input constraints may also "tie"
3164themselves to an output constraint, by providing an integer as the constraint
3165string. Tied inputs still consume an argument from the call instruction, and
3166take up a position in the asm template numbering as is usual -- they will simply
3167be constrained to always use the same register as the output they've been tied
3168to. For example, a constraint string of "``=r,0``" says to assign a register for
3169output, and use that register as an input as well (it being the 0'th
3170constraint).
3171
3172It is permitted to tie an input to an "early-clobber" output. In that case, no
3173*other* input may share the same register as the input tied to the early-clobber
3174(even when the other input has the same value).
3175
3176You may only tie an input to an output which has a register constraint, not a
3177memory constraint. Only a single input may be tied to an output.
3178
3179There is also an "interesting" feature which deserves a bit of explanation: if a
3180register class constraint allocates a register which is too small for the value
3181type operand provided as input, the input value will be split into multiple
3182registers, and all of them passed to the inline asm.
3183
3184However, this feature is often not as useful as you might think.
3185
3186Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3187architectures that have instructions which operate on multiple consecutive
3188instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3189SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3190hardware then loads into both the named register, and the next register. This
3191feature of inline asm would not be useful to support that.)
3192
3193A few of the targets provide a template string modifier allowing explicit access
3194to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3195``D``). On such an architecture, you can actually access the second allocated
3196register (yet, still, not any subsequent ones). But, in that case, you're still
3197probably better off simply splitting the value into two separate operands, for
3198clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3199despite existing only for use with this feature, is not really a good idea to
3200use)
3201
3202Indirect inputs and outputs
3203"""""""""""""""""""""""""""
3204
3205Indirect output or input constraints can be specified by the "``*``" modifier
3206(which goes after the "``=``" in case of an output). This indicates that the asm
3207will write to or read from the contents of an *address* provided as an input
3208argument. (Note that in this way, indirect outputs act more like an *input* than
3209an output: just like an input, they consume an argument of the call expression,
3210rather than producing a return value. An indirect output constraint is an
3211"output" only in that the asm is expected to write to the contents of the input
3212memory location, instead of just read from it).
3213
3214This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3215address of a variable as a value.
3216
3217It is also possible to use an indirect *register* constraint, but only on output
3218(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3219value normally, and then, separately emit a store to the address provided as
3220input, after the provided inline asm. (It's not clear what value this
3221functionality provides, compared to writing the store explicitly after the asm
3222statement, and it can only produce worse code, since it bypasses many
3223optimization passes. I would recommend not using it.)
3224
3225
3226Clobber constraints
3227"""""""""""""""""""
3228
3229A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3230consume an input operand, nor generate an output. Clobbers cannot use any of the
3231general constraint code letters -- they may use only explicit register
3232constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3233"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3234memory locations -- not only the memory pointed to by a declared indirect
3235output.
3236
3237
3238Constraint Codes
3239""""""""""""""""
3240After a potential prefix comes constraint code, or codes.
3241
3242A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3243followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3244(e.g. "``{eax}``").
3245
3246The one and two letter constraint codes are typically chosen to be the same as
3247GCC's constraint codes.
3248
3249A single constraint may include one or more than constraint code in it, leaving
3250it up to LLVM to choose which one to use. This is included mainly for
3251compatibility with the translation of GCC inline asm coming from clang.
3252
3253There are two ways to specify alternatives, and either or both may be used in an
3254inline asm constraint list:
3255
32561) Append the codes to each other, making a constraint code set. E.g. "``im``"
3257 or "``{eax}m``". This means "choose any of the options in the set". The
3258 choice of constraint is made independently for each constraint in the
3259 constraint list.
3260
32612) Use "``|``" between constraint code sets, creating alternatives. Every
3262 constraint in the constraint list must have the same number of alternative
3263 sets. With this syntax, the same alternative in *all* of the items in the
3264 constraint list will be chosen together.
3265
3266Putting those together, you might have a two operand constraint string like
3267``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3268operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3269may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3270
3271However, the use of either of the alternatives features is *NOT* recommended, as
3272LLVM is not able to make an intelligent choice about which one to use. (At the
3273point it currently needs to choose, not enough information is available to do so
3274in a smart way.) Thus, it simply tries to make a choice that's most likely to
3275compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3276always choose to use memory, not registers). And, if given multiple registers,
3277or multiple register classes, it will simply choose the first one. (In fact, it
3278doesn't currently even ensure explicitly specified physical registers are
3279unique, so specifying multiple physical registers as alternatives, like
3280``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3281intended.)
3282
3283Supported Constraint Code List
3284""""""""""""""""""""""""""""""
3285
3286The constraint codes are, in general, expected to behave the same way they do in
3287GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3288inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3289and GCC likely indicates a bug in LLVM.
3290
3291Some constraint codes are typically supported by all targets:
3292
3293- ``r``: A register in the target's general purpose register class.
3294- ``m``: A memory address operand. It is target-specific what addressing modes
3295 are supported, typical examples are register, or register + register offset,
3296 or register + immediate offset (of some target-specific size).
3297- ``i``: An integer constant (of target-specific width). Allows either a simple
3298 immediate, or a relocatable value.
3299- ``n``: An integer constant -- *not* including relocatable values.
3300- ``s``: An integer constant, but allowing *only* relocatable values.
3301- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3302 useful to pass a label for an asm branch or call.
3303
3304 .. FIXME: but that surely isn't actually okay to jump out of an asm
3305 block without telling llvm about the control transfer???)
3306
3307- ``{register-name}``: Requires exactly the named physical register.
3308
3309Other constraints are target-specific:
3310
3311AArch64:
3312
3313- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3314- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3315 i.e. 0 to 4095 with optional shift by 12.
3316- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3317 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3318- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3319 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3320- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3321 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3322- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3323 32-bit register. This is a superset of ``K``: in addition to the bitmask
3324 immediate, also allows immediate integers which can be loaded with a single
3325 ``MOVZ`` or ``MOVL`` instruction.
3326- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3327 64-bit register. This is a superset of ``L``.
3328- ``Q``: Memory address operand must be in a single register (no
3329 offsets). (However, LLVM currently does this for the ``m`` constraint as
3330 well.)
3331- ``r``: A 32 or 64-bit integer register (W* or X*).
3332- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3333- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3334
3335AMDGPU:
3336
3337- ``r``: A 32 or 64-bit integer register.
3338- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3339- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3340
3341
3342All ARM modes:
3343
3344- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3345 operand. Treated the same as operand ``m``, at the moment.
3346
3347ARM and ARM's Thumb2 mode:
3348
3349- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3350- ``I``: An immediate integer valid for a data-processing instruction.
3351- ``J``: An immediate integer between -4095 and 4095.
3352- ``K``: An immediate integer whose bitwise inverse is valid for a
3353 data-processing instruction. (Can be used with template modifier "``B``" to
3354 print the inverted value).
3355- ``L``: An immediate integer whose negation is valid for a data-processing
3356 instruction. (Can be used with template modifier "``n``" to print the negated
3357 value).
3358- ``M``: A power of two or a integer between 0 and 32.
3359- ``N``: Invalid immediate constraint.
3360- ``O``: Invalid immediate constraint.
3361- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3362- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3363 as ``r``.
3364- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3365 invalid.
3366- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3367 ``d0-d31``, or ``q0-q15``.
3368- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3369 ``d0-d7``, or ``q0-q3``.
3370- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3371 ``s0-s31``.
3372
3373ARM's Thumb1 mode:
3374
3375- ``I``: An immediate integer between 0 and 255.
3376- ``J``: An immediate integer between -255 and -1.
3377- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3378 some amount.
3379- ``L``: An immediate integer between -7 and 7.
3380- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3381- ``N``: An immediate integer between 0 and 31.
3382- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3383- ``r``: A low 32-bit GPR register (``r0-r7``).
3384- ``l``: A low 32-bit GPR register (``r0-r7``).
3385- ``h``: A high GPR register (``r0-r7``).
3386- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3387 ``d0-d31``, or ``q0-q15``.
3388- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3389 ``d0-d7``, or ``q0-q3``.
3390- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3391 ``s0-s31``.
3392
3393
3394Hexagon:
3395
3396- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3397 at the moment.
3398- ``r``: A 32 or 64-bit register.
3399
3400MSP430:
3401
3402- ``r``: An 8 or 16-bit register.
3403
3404MIPS:
3405
3406- ``I``: An immediate signed 16-bit integer.
3407- ``J``: An immediate integer zero.
3408- ``K``: An immediate unsigned 16-bit integer.
3409- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3410- ``N``: An immediate integer between -65535 and -1.
3411- ``O``: An immediate signed 15-bit integer.
3412- ``P``: An immediate integer between 1 and 65535.
3413- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3414 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3415- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3416 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3417 ``m``.
3418- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3419 ``sc`` instruction on the given subtarget (details vary).
3420- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3421- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003422 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3423 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003424- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3425 ``25``).
3426- ``l``: The ``lo`` register, 32 or 64-bit.
3427- ``x``: Invalid.
3428
3429NVPTX:
3430
3431- ``b``: A 1-bit integer register.
3432- ``c`` or ``h``: A 16-bit integer register.
3433- ``r``: A 32-bit integer register.
3434- ``l`` or ``N``: A 64-bit integer register.
3435- ``f``: A 32-bit float register.
3436- ``d``: A 64-bit float register.
3437
3438
3439PowerPC:
3440
3441- ``I``: An immediate signed 16-bit integer.
3442- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3443- ``K``: An immediate unsigned 16-bit integer.
3444- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3445- ``M``: An immediate integer greater than 31.
3446- ``N``: An immediate integer that is an exact power of 2.
3447- ``O``: The immediate integer constant 0.
3448- ``P``: An immediate integer constant whose negation is a signed 16-bit
3449 constant.
3450- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3451 treated the same as ``m``.
3452- ``r``: A 32 or 64-bit integer register.
3453- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3454 ``R1-R31``).
3455- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3456 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3457- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3458 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3459 altivec vector register (``V0-V31``).
3460
3461 .. FIXME: is this a bug that v accepts QPX registers? I think this
3462 is supposed to only use the altivec vector registers?
3463
3464- ``y``: Condition register (``CR0-CR7``).
3465- ``wc``: An individual CR bit in a CR register.
3466- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3467 register set (overlapping both the floating-point and vector register files).
3468- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3469 set.
3470
3471Sparc:
3472
3473- ``I``: An immediate 13-bit signed integer.
3474- ``r``: A 32-bit integer register.
3475
3476SystemZ:
3477
3478- ``I``: An immediate unsigned 8-bit integer.
3479- ``J``: An immediate unsigned 12-bit integer.
3480- ``K``: An immediate signed 16-bit integer.
3481- ``L``: An immediate signed 20-bit integer.
3482- ``M``: An immediate integer 0x7fffffff.
3483- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3484 ``m``, at the moment.
3485- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3486- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3487 address context evaluates as zero).
3488- ``h``: A 32-bit value in the high part of a 64bit data register
3489 (LLVM-specific)
3490- ``f``: A 32, 64, or 128-bit floating point register.
3491
3492X86:
3493
3494- ``I``: An immediate integer between 0 and 31.
3495- ``J``: An immediate integer between 0 and 64.
3496- ``K``: An immediate signed 8-bit integer.
3497- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3498 0xffffffff.
3499- ``M``: An immediate integer between 0 and 3.
3500- ``N``: An immediate unsigned 8-bit integer.
3501- ``O``: An immediate integer between 0 and 127.
3502- ``e``: An immediate 32-bit signed integer.
3503- ``Z``: An immediate 32-bit unsigned integer.
3504- ``o``, ``v``: Treated the same as ``m``, at the moment.
3505- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3506 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3507 registers, and on X86-64, it is all of the integer registers.
3508- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3509 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3510- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3511- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3512 existed since i386, and can be accessed without the REX prefix.
3513- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3514- ``y``: A 64-bit MMX register, if MMX is enabled.
3515- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3516 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3517 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3518 512-bit vector operand in an AVX512 register, Otherwise, an error.
3519- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3520- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3521 32-bit mode, a 64-bit integer operand will get split into two registers). It
3522 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3523 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3524 you're better off splitting it yourself, before passing it to the asm
3525 statement.
3526
3527XCore:
3528
3529- ``r``: A 32-bit integer register.
3530
3531
3532.. _inline-asm-modifiers:
3533
3534Asm template argument modifiers
3535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3536
3537In the asm template string, modifiers can be used on the operand reference, like
3538"``${0:n}``".
3539
3540The modifiers are, in general, expected to behave the same way they do in
3541GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3542inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3543and GCC likely indicates a bug in LLVM.
3544
3545Target-independent:
3546
Sean Silvaa1190322015-08-06 22:56:48 +00003547- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003548 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3549- ``n``: Negate and print immediate integer constant unadorned, without the
3550 target-specific immediate punctuation (e.g. no ``$`` prefix).
3551- ``l``: Print as an unadorned label, without the target-specific label
3552 punctuation (e.g. no ``$`` prefix).
3553
3554AArch64:
3555
3556- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3557 instead of ``x30``, print ``w30``.
3558- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3559- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3560 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3561 ``v*``.
3562
3563AMDGPU:
3564
3565- ``r``: No effect.
3566
3567ARM:
3568
3569- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3570 register).
3571- ``P``: No effect.
3572- ``q``: No effect.
3573- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3574 as ``d4[1]`` instead of ``s9``)
3575- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3576 prefix.
3577- ``L``: Print the low 16-bits of an immediate integer constant.
3578- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3579 register operands subsequent to the specified one (!), so use carefully.
3580- ``Q``: Print the low-order register of a register-pair, or the low-order
3581 register of a two-register operand.
3582- ``R``: Print the high-order register of a register-pair, or the high-order
3583 register of a two-register operand.
3584- ``H``: Print the second register of a register-pair. (On a big-endian system,
3585 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3586 to ``R``.)
3587
3588 .. FIXME: H doesn't currently support printing the second register
3589 of a two-register operand.
3590
3591- ``e``: Print the low doubleword register of a NEON quad register.
3592- ``f``: Print the high doubleword register of a NEON quad register.
3593- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3594 adornment.
3595
3596Hexagon:
3597
3598- ``L``: Print the second register of a two-register operand. Requires that it
3599 has been allocated consecutively to the first.
3600
3601 .. FIXME: why is it restricted to consecutive ones? And there's
3602 nothing that ensures that happens, is there?
3603
3604- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3605 nothing. Used to print 'addi' vs 'add' instructions.
3606
3607MSP430:
3608
3609No additional modifiers.
3610
3611MIPS:
3612
3613- ``X``: Print an immediate integer as hexadecimal
3614- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3615- ``d``: Print an immediate integer as decimal.
3616- ``m``: Subtract one and print an immediate integer as decimal.
3617- ``z``: Print $0 if an immediate zero, otherwise print normally.
3618- ``L``: Print the low-order register of a two-register operand, or prints the
3619 address of the low-order word of a double-word memory operand.
3620
3621 .. FIXME: L seems to be missing memory operand support.
3622
3623- ``M``: Print the high-order register of a two-register operand, or prints the
3624 address of the high-order word of a double-word memory operand.
3625
3626 .. FIXME: M seems to be missing memory operand support.
3627
3628- ``D``: Print the second register of a two-register operand, or prints the
3629 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3630 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3631 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003632- ``w``: No effect. Provided for compatibility with GCC which requires this
3633 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3634 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003635
3636NVPTX:
3637
3638- ``r``: No effect.
3639
3640PowerPC:
3641
3642- ``L``: Print the second register of a two-register operand. Requires that it
3643 has been allocated consecutively to the first.
3644
3645 .. FIXME: why is it restricted to consecutive ones? And there's
3646 nothing that ensures that happens, is there?
3647
3648- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3649 nothing. Used to print 'addi' vs 'add' instructions.
3650- ``y``: For a memory operand, prints formatter for a two-register X-form
3651 instruction. (Currently always prints ``r0,OPERAND``).
3652- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3653 otherwise. (NOTE: LLVM does not support update form, so this will currently
3654 always print nothing)
3655- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3656 not support indexed form, so this will currently always print nothing)
3657
3658Sparc:
3659
3660- ``r``: No effect.
3661
3662SystemZ:
3663
3664SystemZ implements only ``n``, and does *not* support any of the other
3665target-independent modifiers.
3666
3667X86:
3668
3669- ``c``: Print an unadorned integer or symbol name. (The latter is
3670 target-specific behavior for this typically target-independent modifier).
3671- ``A``: Print a register name with a '``*``' before it.
3672- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3673 operand.
3674- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3675 memory operand.
3676- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3677 operand.
3678- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3679 operand.
3680- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3681 available, otherwise the 32-bit register name; do nothing on a memory operand.
3682- ``n``: Negate and print an unadorned integer, or, for operands other than an
3683 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3684 the operand. (The behavior for relocatable symbol expressions is a
3685 target-specific behavior for this typically target-independent modifier)
3686- ``H``: Print a memory reference with additional offset +8.
3687- ``P``: Print a memory reference or operand for use as the argument of a call
3688 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3689
3690XCore:
3691
3692No additional modifiers.
3693
3694
Sean Silvab084af42012-12-07 10:36:55 +00003695Inline Asm Metadata
3696^^^^^^^^^^^^^^^^^^^
3697
3698The call instructions that wrap inline asm nodes may have a
3699"``!srcloc``" MDNode attached to it that contains a list of constant
3700integers. If present, the code generator will use the integer as the
3701location cookie value when report errors through the ``LLVMContext``
3702error reporting mechanisms. This allows a front-end to correlate backend
3703errors that occur with inline asm back to the source code that produced
3704it. For example:
3705
3706.. code-block:: llvm
3707
3708 call void asm sideeffect "something bad", ""(), !srcloc !42
3709 ...
3710 !42 = !{ i32 1234567 }
3711
3712It is up to the front-end to make sense of the magic numbers it places
3713in the IR. If the MDNode contains multiple constants, the code generator
3714will use the one that corresponds to the line of the asm that the error
3715occurs on.
3716
3717.. _metadata:
3718
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003719Metadata
3720========
Sean Silvab084af42012-12-07 10:36:55 +00003721
3722LLVM IR allows metadata to be attached to instructions in the program
3723that can convey extra information about the code to the optimizers and
3724code generator. One example application of metadata is source-level
3725debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003726
Sean Silvaa1190322015-08-06 22:56:48 +00003727Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003728``call`` instruction, it uses the ``metadata`` type.
3729
3730All metadata are identified in syntax by a exclamation point ('``!``').
3731
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003732.. _metadata-string:
3733
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003734Metadata Nodes and Metadata Strings
3735-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003736
3737A metadata string is a string surrounded by double quotes. It can
3738contain any character by escaping non-printable characters with
3739"``\xx``" where "``xx``" is the two digit hex code. For example:
3740"``!"test\00"``".
3741
3742Metadata nodes are represented with notation similar to structure
3743constants (a comma separated list of elements, surrounded by braces and
3744preceded by an exclamation point). Metadata nodes can have any values as
3745their operand. For example:
3746
3747.. code-block:: llvm
3748
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003749 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003750
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003751Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3752
3753.. code-block:: llvm
3754
3755 !0 = distinct !{!"test\00", i32 10}
3756
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003757``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003758content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003759when metadata operands change.
3760
Sean Silvab084af42012-12-07 10:36:55 +00003761A :ref:`named metadata <namedmetadatastructure>` is a collection of
3762metadata nodes, which can be looked up in the module symbol table. For
3763example:
3764
3765.. code-block:: llvm
3766
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003767 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003768
3769Metadata can be used as function arguments. Here ``llvm.dbg.value``
3770function is using two metadata arguments:
3771
3772.. code-block:: llvm
3773
3774 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3775
Peter Collingbourne50108682015-11-06 02:41:02 +00003776Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3777to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003778
3779.. code-block:: llvm
3780
3781 %indvar.next = add i64 %indvar, 1, !dbg !21
3782
Peter Collingbourne50108682015-11-06 02:41:02 +00003783Metadata can also be attached to a function definition. Here metadata ``!22``
3784is attached to the ``foo`` function using the ``!dbg`` identifier:
3785
3786.. code-block:: llvm
3787
3788 define void @foo() !dbg !22 {
3789 ret void
3790 }
3791
Sean Silvab084af42012-12-07 10:36:55 +00003792More information about specific metadata nodes recognized by the
3793optimizers and code generator is found below.
3794
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003795.. _specialized-metadata:
3796
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003797Specialized Metadata Nodes
3798^^^^^^^^^^^^^^^^^^^^^^^^^^
3799
3800Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003801to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003802order.
3803
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003804These aren't inherently debug info centric, but currently all the specialized
3805metadata nodes are related to debug info.
3806
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003807.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003808
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003809DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003810"""""""""""""
3811
Sean Silvaa1190322015-08-06 22:56:48 +00003812``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003813``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3814fields are tuples containing the debug info to be emitted along with the compile
3815unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003816references to them from instructions).
3817
3818.. code-block:: llvm
3819
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003820 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003821 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3822 splitDebugFilename: "abc.debug", emissionKind: 1,
3823 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003824 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003825
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003826Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003827specific compilation unit. File descriptors are defined using this scope.
3828These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003829keep track of subprograms, global variables, type information, and imported
3830entities (declarations and namespaces).
3831
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003832.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003833
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003834DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003835""""""
3836
Sean Silvaa1190322015-08-06 22:56:48 +00003837``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003838
3839.. code-block:: llvm
3840
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003841 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003842
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003843Files are sometimes used in ``scope:`` fields, and are the only valid target
3844for ``file:`` fields.
3845
Michael Kuperstein605308a2015-05-14 10:58:59 +00003846.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003847
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003848DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003849"""""""""""
3850
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003851``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003852``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003853
3854.. code-block:: llvm
3855
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003856 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003857 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003858 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003859
Sean Silvaa1190322015-08-06 22:56:48 +00003860The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003861following:
3862
3863.. code-block:: llvm
3864
3865 DW_ATE_address = 1
3866 DW_ATE_boolean = 2
3867 DW_ATE_float = 4
3868 DW_ATE_signed = 5
3869 DW_ATE_signed_char = 6
3870 DW_ATE_unsigned = 7
3871 DW_ATE_unsigned_char = 8
3872
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003873.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003874
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003875DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003876""""""""""""""""
3877
Sean Silvaa1190322015-08-06 22:56:48 +00003878``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003879refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003880types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003881represents a function with no return value (such as ``void foo() {}`` in C++).
3882
3883.. code-block:: llvm
3884
3885 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3886 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003887 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003888
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003889.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003890
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003891DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003892"""""""""""""
3893
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003894``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003895qualified types.
3896
3897.. code-block:: llvm
3898
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003899 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003900 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003901 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003902 align: 32)
3903
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003904The following ``tag:`` values are valid:
3905
3906.. code-block:: llvm
3907
3908 DW_TAG_formal_parameter = 5
3909 DW_TAG_member = 13
3910 DW_TAG_pointer_type = 15
3911 DW_TAG_reference_type = 16
3912 DW_TAG_typedef = 22
3913 DW_TAG_ptr_to_member_type = 31
3914 DW_TAG_const_type = 38
3915 DW_TAG_volatile_type = 53
3916 DW_TAG_restrict_type = 55
3917
3918``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003919<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3920is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003921``DW_TAG_formal_parameter`` is used to define a member which is a formal
3922argument of a subprogram.
3923
3924``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3925
3926``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3927``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3928``baseType:``.
3929
3930Note that the ``void *`` type is expressed as a type derived from NULL.
3931
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003932.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003933
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003934DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003935"""""""""""""""
3936
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003937``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003938structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003939
3940If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003941identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003942can refer to composite types indirectly via a :ref:`metadata string
3943<metadata-string>` that matches their identifier.
3944
3945.. code-block:: llvm
3946
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003947 !0 = !DIEnumerator(name: "SixKind", value: 7)
3948 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3949 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3950 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003951 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3952 elements: !{!0, !1, !2})
3953
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003954The following ``tag:`` values are valid:
3955
3956.. code-block:: llvm
3957
3958 DW_TAG_array_type = 1
3959 DW_TAG_class_type = 2
3960 DW_TAG_enumeration_type = 4
3961 DW_TAG_structure_type = 19
3962 DW_TAG_union_type = 23
3963 DW_TAG_subroutine_type = 21
3964 DW_TAG_inheritance = 28
3965
3966
3967For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003968descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003969level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003970array type is a native packed vector.
3971
3972For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003973descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003974value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003975``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003976
3977For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3978``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003979<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003980
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003981.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003982
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003983DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003984""""""""""
3985
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003986``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003987:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003988
3989.. code-block:: llvm
3990
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003991 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3992 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3993 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003994
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003995.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003996
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003997DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003998""""""""""""
3999
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004000``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4001variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004002
4003.. code-block:: llvm
4004
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004005 !0 = !DIEnumerator(name: "SixKind", value: 7)
4006 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4007 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004008
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004009DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004010"""""""""""""""""""""""
4011
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004012``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004013language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004014:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004015
4016.. code-block:: llvm
4017
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004018 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004019
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004020DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004021""""""""""""""""""""""""
4022
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004023``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004024language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004025but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004026``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004027:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004028
4029.. code-block:: llvm
4030
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004031 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004032
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004033DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004034"""""""""""
4035
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004036``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004037
4038.. code-block:: llvm
4039
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004040 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004041
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004042DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004043""""""""""""""""
4044
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004045``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004046
4047.. code-block:: llvm
4048
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004049 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004050 file: !2, line: 7, type: !3, isLocal: true,
4051 isDefinition: false, variable: i32* @foo,
4052 declaration: !4)
4053
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004054All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004055:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004056
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004057.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004058
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004059DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004060""""""""""""
4061
Peter Collingbourne50108682015-11-06 02:41:02 +00004062``DISubprogram`` nodes represent functions from the source language. A
4063``DISubprogram`` may be attached to a function definition using ``!dbg``
4064metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4065that must be retained, even if their IR counterparts are optimized out of
4066the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004067
4068.. code-block:: llvm
4069
Peter Collingbourne50108682015-11-06 02:41:02 +00004070 define void @_Z3foov() !dbg !0 {
4071 ...
4072 }
4073
4074 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4075 file: !2, line: 7, type: !3, isLocal: true,
4076 isDefinition: false, scopeLine: 8,
4077 containingType: !4,
4078 virtuality: DW_VIRTUALITY_pure_virtual,
4079 virtualIndex: 10, flags: DIFlagPrototyped,
4080 isOptimized: true, templateParams: !5,
4081 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004082
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004083.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004084
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004085DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004086""""""""""""""
4087
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004088``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004089<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004090two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004091fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004092
4093.. code-block:: llvm
4094
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004095 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004096
4097Usually lexical blocks are ``distinct`` to prevent node merging based on
4098operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004099
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004100.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004101
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004102DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004103""""""""""""""""""
4104
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004105``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004106:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004107indicate textual inclusion, or the ``discriminator:`` field can be used to
4108discriminate between control flow within a single block in the source language.
4109
4110.. code-block:: llvm
4111
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004112 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4113 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4114 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004115
Michael Kuperstein605308a2015-05-14 10:58:59 +00004116.. _DILocation:
4117
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004118DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004119""""""""""
4120
Sean Silvaa1190322015-08-06 22:56:48 +00004121``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004122mandatory, and points at an :ref:`DILexicalBlockFile`, an
4123:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004124
4125.. code-block:: llvm
4126
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004127 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004128
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004129.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004130
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004131DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004132"""""""""""""""
4133
Sean Silvaa1190322015-08-06 22:56:48 +00004134``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004135the ``arg:`` field is set to non-zero, then this variable is a subprogram
4136parameter, and it will be included in the ``variables:`` field of its
4137:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004138
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004139.. code-block:: llvm
4140
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004141 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4142 type: !3, flags: DIFlagArtificial)
4143 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4144 type: !3)
4145 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004146
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004147DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004148""""""""""""
4149
Sean Silvaa1190322015-08-06 22:56:48 +00004150``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004151:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4152describe how the referenced LLVM variable relates to the source language
4153variable.
4154
4155The current supported vocabulary is limited:
4156
4157- ``DW_OP_deref`` dereferences the working expression.
4158- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4159- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4160 here, respectively) of the variable piece from the working expression.
4161
4162.. code-block:: llvm
4163
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004164 !0 = !DIExpression(DW_OP_deref)
4165 !1 = !DIExpression(DW_OP_plus, 3)
4166 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4167 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004168
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004169DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004170""""""""""""""
4171
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004172``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004173
4174.. code-block:: llvm
4175
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004176 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004177 getter: "getFoo", attributes: 7, type: !2)
4178
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004179DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004180""""""""""""""""
4181
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004182``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004183compile unit.
4184
4185.. code-block:: llvm
4186
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004187 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004188 entity: !1, line: 7)
4189
Amjad Abouda9bcf162015-12-10 12:56:35 +00004190DIMacro
4191"""""""
4192
4193``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4194The ``name:`` field is the macro identifier, followed by macro parameters when
4195definining a function-like macro, and the ``value`` field is the token-string
4196used to expand the macro identifier.
4197
4198.. code-block:: llvm
4199
4200 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4201 value: "((x) + 1)")
4202 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4203
4204DIMacroFile
4205"""""""""""
4206
4207``DIMacroFile`` nodes represent inclusion of source files.
4208The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4209appear in the included source file.
4210
4211.. code-block:: llvm
4212
4213 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4214 nodes: !3)
4215
Sean Silvab084af42012-12-07 10:36:55 +00004216'``tbaa``' Metadata
4217^^^^^^^^^^^^^^^^^^^
4218
4219In LLVM IR, memory does not have types, so LLVM's own type system is not
4220suitable for doing TBAA. Instead, metadata is added to the IR to
4221describe a type system of a higher level language. This can be used to
4222implement typical C/C++ TBAA, but it can also be used to implement
4223custom alias analysis behavior for other languages.
4224
4225The current metadata format is very simple. TBAA metadata nodes have up
4226to three fields, e.g.:
4227
4228.. code-block:: llvm
4229
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004230 !0 = !{ !"an example type tree" }
4231 !1 = !{ !"int", !0 }
4232 !2 = !{ !"float", !0 }
4233 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004234
4235The first field is an identity field. It can be any value, usually a
4236metadata string, which uniquely identifies the type. The most important
4237name in the tree is the name of the root node. Two trees with different
4238root node names are entirely disjoint, even if they have leaves with
4239common names.
4240
4241The second field identifies the type's parent node in the tree, or is
4242null or omitted for a root node. A type is considered to alias all of
4243its descendants and all of its ancestors in the tree. Also, a type is
4244considered to alias all types in other trees, so that bitcode produced
4245from multiple front-ends is handled conservatively.
4246
4247If the third field is present, it's an integer which if equal to 1
4248indicates that the type is "constant" (meaning
4249``pointsToConstantMemory`` should return true; see `other useful
4250AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4251
4252'``tbaa.struct``' Metadata
4253^^^^^^^^^^^^^^^^^^^^^^^^^^
4254
4255The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4256aggregate assignment operations in C and similar languages, however it
4257is defined to copy a contiguous region of memory, which is more than
4258strictly necessary for aggregate types which contain holes due to
4259padding. Also, it doesn't contain any TBAA information about the fields
4260of the aggregate.
4261
4262``!tbaa.struct`` metadata can describe which memory subregions in a
4263memcpy are padding and what the TBAA tags of the struct are.
4264
4265The current metadata format is very simple. ``!tbaa.struct`` metadata
4266nodes are a list of operands which are in conceptual groups of three.
4267For each group of three, the first operand gives the byte offset of a
4268field in bytes, the second gives its size in bytes, and the third gives
4269its tbaa tag. e.g.:
4270
4271.. code-block:: llvm
4272
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004273 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004274
4275This describes a struct with two fields. The first is at offset 0 bytes
4276with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4277and has size 4 bytes and has tbaa tag !2.
4278
4279Note that the fields need not be contiguous. In this example, there is a
42804 byte gap between the two fields. This gap represents padding which
4281does not carry useful data and need not be preserved.
4282
Hal Finkel94146652014-07-24 14:25:39 +00004283'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004284^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004285
4286``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4287noalias memory-access sets. This means that some collection of memory access
4288instructions (loads, stores, memory-accessing calls, etc.) that carry
4289``noalias`` metadata can specifically be specified not to alias with some other
4290collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004291Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004292a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004293of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004294subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004295instruction's ``noalias`` list, then the two memory accesses are assumed not to
4296alias.
Hal Finkel94146652014-07-24 14:25:39 +00004297
Hal Finkel029cde62014-07-25 15:50:02 +00004298The metadata identifying each domain is itself a list containing one or two
4299entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004300string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004301self-reference can be used to create globally unique domain names. A
4302descriptive string may optionally be provided as a second list entry.
4303
4304The metadata identifying each scope is also itself a list containing two or
4305three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004306is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004307self-reference can be used to create globally unique scope names. A metadata
4308reference to the scope's domain is the second entry. A descriptive string may
4309optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004310
4311For example,
4312
4313.. code-block:: llvm
4314
Hal Finkel029cde62014-07-25 15:50:02 +00004315 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004316 !0 = !{!0}
4317 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004318
Hal Finkel029cde62014-07-25 15:50:02 +00004319 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004320 !2 = !{!2, !0}
4321 !3 = !{!3, !0}
4322 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004323
Hal Finkel029cde62014-07-25 15:50:02 +00004324 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004325 !5 = !{!4} ; A list containing only scope !4
4326 !6 = !{!4, !3, !2}
4327 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004328
4329 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004330 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004331 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004332
Hal Finkel029cde62014-07-25 15:50:02 +00004333 ; These two instructions also don't alias (for domain !1, the set of scopes
4334 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004335 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004336 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004337
Adam Nemet0a8416f2015-05-11 08:30:28 +00004338 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004339 ; the !noalias list is not a superset of, or equal to, the scopes in the
4340 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004341 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004342 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004343
Sean Silvab084af42012-12-07 10:36:55 +00004344'``fpmath``' Metadata
4345^^^^^^^^^^^^^^^^^^^^^
4346
4347``fpmath`` metadata may be attached to any instruction of floating point
4348type. It can be used to express the maximum acceptable error in the
4349result of that instruction, in ULPs, thus potentially allowing the
4350compiler to use a more efficient but less accurate method of computing
4351it. ULP is defined as follows:
4352
4353 If ``x`` is a real number that lies between two finite consecutive
4354 floating-point numbers ``a`` and ``b``, without being equal to one
4355 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4356 distance between the two non-equal finite floating-point numbers
4357 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4358
4359The metadata node shall consist of a single positive floating point
4360number representing the maximum relative error, for example:
4361
4362.. code-block:: llvm
4363
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004364 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004365
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004366.. _range-metadata:
4367
Sean Silvab084af42012-12-07 10:36:55 +00004368'``range``' Metadata
4369^^^^^^^^^^^^^^^^^^^^
4370
Jingyue Wu37fcb592014-06-19 16:50:16 +00004371``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4372integer types. It expresses the possible ranges the loaded value or the value
4373returned by the called function at this call site is in. The ranges are
4374represented with a flattened list of integers. The loaded value or the value
4375returned is known to be in the union of the ranges defined by each consecutive
4376pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004377
4378- The type must match the type loaded by the instruction.
4379- The pair ``a,b`` represents the range ``[a,b)``.
4380- Both ``a`` and ``b`` are constants.
4381- The range is allowed to wrap.
4382- The range should not represent the full or empty set. That is,
4383 ``a!=b``.
4384
4385In addition, the pairs must be in signed order of the lower bound and
4386they must be non-contiguous.
4387
4388Examples:
4389
4390.. code-block:: llvm
4391
David Blaikiec7aabbb2015-03-04 22:06:14 +00004392 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4393 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004394 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4395 %d = invoke i8 @bar() to label %cont
4396 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004397 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004398 !0 = !{ i8 0, i8 2 }
4399 !1 = !{ i8 255, i8 2 }
4400 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4401 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004402
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004403'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004404^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004405
4406``unpredictable`` metadata may be attached to any branch or switch
4407instruction. It can be used to express the unpredictability of control
4408flow. Similar to the llvm.expect intrinsic, it may be used to alter
4409optimizations related to compare and branch instructions. The metadata
4410is treated as a boolean value; if it exists, it signals that the branch
4411or switch that it is attached to is completely unpredictable.
4412
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004413'``llvm.loop``'
4414^^^^^^^^^^^^^^^
4415
4416It is sometimes useful to attach information to loop constructs. Currently,
4417loop metadata is implemented as metadata attached to the branch instruction
4418in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004419guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004420specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004421
4422The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004423itself to avoid merging it with any other identifier metadata, e.g.,
4424during module linkage or function inlining. That is, each loop should refer
4425to their own identification metadata even if they reside in separate functions.
4426The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004427constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004428
4429.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004430
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004431 !0 = !{!0}
4432 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004433
Mark Heffernan893752a2014-07-18 19:24:51 +00004434The loop identifier metadata can be used to specify additional
4435per-loop metadata. Any operands after the first operand can be treated
4436as user-defined metadata. For example the ``llvm.loop.unroll.count``
4437suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004438
Paul Redmond5fdf8362013-05-28 20:00:34 +00004439.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004440
Paul Redmond5fdf8362013-05-28 20:00:34 +00004441 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4442 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004443 !0 = !{!0, !1}
4444 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004445
Mark Heffernan9d20e422014-07-21 23:11:03 +00004446'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004448
Mark Heffernan9d20e422014-07-21 23:11:03 +00004449Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4450used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004451vectorization width and interleave count. These metadata should be used in
4452conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004453``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4454optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004455it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004456which contains information about loop-carried memory dependencies can be helpful
4457in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004458
Mark Heffernan9d20e422014-07-21 23:11:03 +00004459'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004460^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4461
Mark Heffernan9d20e422014-07-21 23:11:03 +00004462This metadata suggests an interleave count to the loop interleaver.
4463The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004464second operand is an integer specifying the interleave count. For
4465example:
4466
4467.. code-block:: llvm
4468
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004469 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004470
Mark Heffernan9d20e422014-07-21 23:11:03 +00004471Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004472multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004473then the interleave count will be determined automatically.
4474
4475'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004476^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004477
4478This metadata selectively enables or disables vectorization for the loop. The
4479first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004480is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000044810 disables vectorization:
4482
4483.. code-block:: llvm
4484
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004485 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4486 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004487
4488'``llvm.loop.vectorize.width``' Metadata
4489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4490
4491This metadata sets the target width of the vectorizer. The first
4492operand is the string ``llvm.loop.vectorize.width`` and the second
4493operand is an integer specifying the width. For example:
4494
4495.. code-block:: llvm
4496
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004497 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004498
4499Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004500vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000045010 or if the loop does not have this metadata the width will be
4502determined automatically.
4503
4504'``llvm.loop.unroll``'
4505^^^^^^^^^^^^^^^^^^^^^^
4506
4507Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4508optimization hints such as the unroll factor. ``llvm.loop.unroll``
4509metadata should be used in conjunction with ``llvm.loop`` loop
4510identification metadata. The ``llvm.loop.unroll`` metadata are only
4511optimization hints and the unrolling will only be performed if the
4512optimizer believes it is safe to do so.
4513
Mark Heffernan893752a2014-07-18 19:24:51 +00004514'``llvm.loop.unroll.count``' Metadata
4515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4516
4517This metadata suggests an unroll factor to the loop unroller. The
4518first operand is the string ``llvm.loop.unroll.count`` and the second
4519operand is a positive integer specifying the unroll factor. For
4520example:
4521
4522.. code-block:: llvm
4523
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004524 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004525
4526If the trip count of the loop is less than the unroll count the loop
4527will be partially unrolled.
4528
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004529'``llvm.loop.unroll.disable``' Metadata
4530^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4531
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004532This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004533which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004534
4535.. code-block:: llvm
4536
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004537 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004538
Kevin Qin715b01e2015-03-09 06:14:18 +00004539'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004541
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004542This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004543operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004544
4545.. code-block:: llvm
4546
4547 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4548
Mark Heffernan89391542015-08-10 17:28:08 +00004549'``llvm.loop.unroll.enable``' Metadata
4550^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4551
4552This metadata suggests that the loop should be fully unrolled if the trip count
4553is known at compile time and partially unrolled if the trip count is not known
4554at compile time. The metadata has a single operand which is the string
4555``llvm.loop.unroll.enable``. For example:
4556
4557.. code-block:: llvm
4558
4559 !0 = !{!"llvm.loop.unroll.enable"}
4560
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004561'``llvm.loop.unroll.full``' Metadata
4562^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4563
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004564This metadata suggests that the loop should be unrolled fully. The
4565metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004566For example:
4567
4568.. code-block:: llvm
4569
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004570 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004571
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004572'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004574
4575This metadata indicates that the loop should not be versioned for the purpose
4576of enabling loop-invariant code motion (LICM). The metadata has a single operand
4577which is the string ``llvm.loop.licm_versioning.disable``. For example:
4578
4579.. code-block:: llvm
4580
4581 !0 = !{!"llvm.loop.licm_versioning.disable"}
4582
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004583'``llvm.mem``'
4584^^^^^^^^^^^^^^^
4585
4586Metadata types used to annotate memory accesses with information helpful
4587for optimizations are prefixed with ``llvm.mem``.
4588
4589'``llvm.mem.parallel_loop_access``' Metadata
4590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4591
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004592The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4593or metadata containing a list of loop identifiers for nested loops.
4594The metadata is attached to memory accessing instructions and denotes that
4595no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004596with the same loop identifier.
4597
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004598Precisely, given two instructions ``m1`` and ``m2`` that both have the
4599``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4600set of loops associated with that metadata, respectively, then there is no loop
4601carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004602``L2``.
4603
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004604As a special case, if all memory accessing instructions in a loop have
4605``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4606loop has no loop carried memory dependences and is considered to be a parallel
4607loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004608
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004609Note that if not all memory access instructions have such metadata referring to
4610the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004611memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004612safe mechanism, this causes loops that were originally parallel to be considered
4613sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004614insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004615
4616Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004617both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004618metadata types that refer to the same loop identifier metadata.
4619
4620.. code-block:: llvm
4621
4622 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004623 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004624 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004625 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004626 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004627 ...
4628 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004629
4630 for.end:
4631 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004632 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004633
4634It is also possible to have nested parallel loops. In that case the
4635memory accesses refer to a list of loop identifier metadata nodes instead of
4636the loop identifier metadata node directly:
4637
4638.. code-block:: llvm
4639
4640 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004641 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004642 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004643 ...
4644 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004645
4646 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004647 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004648 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004649 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004650 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004651 ...
4652 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004653
4654 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004655 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004656 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004657 ...
4658 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004659
4660 outer.for.end: ; preds = %for.body
4661 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004662 !0 = !{!1, !2} ; a list of loop identifiers
4663 !1 = !{!1} ; an identifier for the inner loop
4664 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004665
Peter Collingbournee6909c82015-02-20 20:30:47 +00004666'``llvm.bitsets``'
4667^^^^^^^^^^^^^^^^^^
4668
4669The ``llvm.bitsets`` global metadata is used to implement
4670:doc:`bitsets <BitSets>`.
4671
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004672'``invariant.group``' Metadata
4673^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4674
4675The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4676The existence of the ``invariant.group`` metadata on the instruction tells
4677the optimizer that every ``load`` and ``store`` to the same pointer operand
4678within the same invariant group can be assumed to load or store the same
4679value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4680when two pointers are considered the same).
4681
4682Examples:
4683
4684.. code-block:: llvm
4685
4686 @unknownPtr = external global i8
4687 ...
4688 %ptr = alloca i8
4689 store i8 42, i8* %ptr, !invariant.group !0
4690 call void @foo(i8* %ptr)
4691
4692 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4693 call void @foo(i8* %ptr)
4694 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4695
4696 %newPtr = call i8* @getPointer(i8* %ptr)
4697 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4698
4699 %unknownValue = load i8, i8* @unknownPtr
4700 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4701
4702 call void @foo(i8* %ptr)
4703 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4704 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4705
4706 ...
4707 declare void @foo(i8*)
4708 declare i8* @getPointer(i8*)
4709 declare i8* @llvm.invariant.group.barrier(i8*)
4710
4711 !0 = !{!"magic ptr"}
4712 !1 = !{!"other ptr"}
4713
4714
4715
Sean Silvab084af42012-12-07 10:36:55 +00004716Module Flags Metadata
4717=====================
4718
4719Information about the module as a whole is difficult to convey to LLVM's
4720subsystems. The LLVM IR isn't sufficient to transmit this information.
4721The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004722this. These flags are in the form of key / value pairs --- much like a
4723dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004724look it up.
4725
4726The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4727Each triplet has the following form:
4728
4729- The first element is a *behavior* flag, which specifies the behavior
4730 when two (or more) modules are merged together, and it encounters two
4731 (or more) metadata with the same ID. The supported behaviors are
4732 described below.
4733- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004734 metadata. Each module may only have one flag entry for each unique ID (not
4735 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004736- The third element is the value of the flag.
4737
4738When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004739``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4740each unique metadata ID string, there will be exactly one entry in the merged
4741modules ``llvm.module.flags`` metadata table, and the value for that entry will
4742be determined by the merge behavior flag, as described below. The only exception
4743is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004744
4745The following behaviors are supported:
4746
4747.. list-table::
4748 :header-rows: 1
4749 :widths: 10 90
4750
4751 * - Value
4752 - Behavior
4753
4754 * - 1
4755 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004756 Emits an error if two values disagree, otherwise the resulting value
4757 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004758
4759 * - 2
4760 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004761 Emits a warning if two values disagree. The result value will be the
4762 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004763
4764 * - 3
4765 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004766 Adds a requirement that another module flag be present and have a
4767 specified value after linking is performed. The value must be a
4768 metadata pair, where the first element of the pair is the ID of the
4769 module flag to be restricted, and the second element of the pair is
4770 the value the module flag should be restricted to. This behavior can
4771 be used to restrict the allowable results (via triggering of an
4772 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004773
4774 * - 4
4775 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004776 Uses the specified value, regardless of the behavior or value of the
4777 other module. If both modules specify **Override**, but the values
4778 differ, an error will be emitted.
4779
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004780 * - 5
4781 - **Append**
4782 Appends the two values, which are required to be metadata nodes.
4783
4784 * - 6
4785 - **AppendUnique**
4786 Appends the two values, which are required to be metadata
4787 nodes. However, duplicate entries in the second list are dropped
4788 during the append operation.
4789
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004790It is an error for a particular unique flag ID to have multiple behaviors,
4791except in the case of **Require** (which adds restrictions on another metadata
4792value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004793
4794An example of module flags:
4795
4796.. code-block:: llvm
4797
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004798 !0 = !{ i32 1, !"foo", i32 1 }
4799 !1 = !{ i32 4, !"bar", i32 37 }
4800 !2 = !{ i32 2, !"qux", i32 42 }
4801 !3 = !{ i32 3, !"qux",
4802 !{
4803 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004804 }
4805 }
4806 !llvm.module.flags = !{ !0, !1, !2, !3 }
4807
4808- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4809 if two or more ``!"foo"`` flags are seen is to emit an error if their
4810 values are not equal.
4811
4812- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4813 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004814 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004815
4816- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4817 behavior if two or more ``!"qux"`` flags are seen is to emit a
4818 warning if their values are not equal.
4819
4820- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4821
4822 ::
4823
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004824 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004825
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004826 The behavior is to emit an error if the ``llvm.module.flags`` does not
4827 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4828 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004829
4830Objective-C Garbage Collection Module Flags Metadata
4831----------------------------------------------------
4832
4833On the Mach-O platform, Objective-C stores metadata about garbage
4834collection in a special section called "image info". The metadata
4835consists of a version number and a bitmask specifying what types of
4836garbage collection are supported (if any) by the file. If two or more
4837modules are linked together their garbage collection metadata needs to
4838be merged rather than appended together.
4839
4840The Objective-C garbage collection module flags metadata consists of the
4841following key-value pairs:
4842
4843.. list-table::
4844 :header-rows: 1
4845 :widths: 30 70
4846
4847 * - Key
4848 - Value
4849
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004850 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004851 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004852
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004853 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004854 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004855 always 0.
4856
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004857 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004858 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004859 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4860 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4861 Objective-C ABI version 2.
4862
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004863 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004864 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004865 not. Valid values are 0, for no garbage collection, and 2, for garbage
4866 collection supported.
4867
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004868 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004869 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004870 If present, its value must be 6. This flag requires that the
4871 ``Objective-C Garbage Collection`` flag have the value 2.
4872
4873Some important flag interactions:
4874
4875- If a module with ``Objective-C Garbage Collection`` set to 0 is
4876 merged with a module with ``Objective-C Garbage Collection`` set to
4877 2, then the resulting module has the
4878 ``Objective-C Garbage Collection`` flag set to 0.
4879- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4880 merged with a module with ``Objective-C GC Only`` set to 6.
4881
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004882Automatic Linker Flags Module Flags Metadata
4883--------------------------------------------
4884
4885Some targets support embedding flags to the linker inside individual object
4886files. Typically this is used in conjunction with language extensions which
4887allow source files to explicitly declare the libraries they depend on, and have
4888these automatically be transmitted to the linker via object files.
4889
4890These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004891using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004892to be ``AppendUnique``, and the value for the key is expected to be a metadata
4893node which should be a list of other metadata nodes, each of which should be a
4894list of metadata strings defining linker options.
4895
4896For example, the following metadata section specifies two separate sets of
4897linker options, presumably to link against ``libz`` and the ``Cocoa``
4898framework::
4899
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004900 !0 = !{ i32 6, !"Linker Options",
4901 !{
4902 !{ !"-lz" },
4903 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004904 !llvm.module.flags = !{ !0 }
4905
4906The metadata encoding as lists of lists of options, as opposed to a collapsed
4907list of options, is chosen so that the IR encoding can use multiple option
4908strings to specify e.g., a single library, while still having that specifier be
4909preserved as an atomic element that can be recognized by a target specific
4910assembly writer or object file emitter.
4911
4912Each individual option is required to be either a valid option for the target's
4913linker, or an option that is reserved by the target specific assembly writer or
4914object file emitter. No other aspect of these options is defined by the IR.
4915
Oliver Stannard5dc29342014-06-20 10:08:11 +00004916C type width Module Flags Metadata
4917----------------------------------
4918
4919The ARM backend emits a section into each generated object file describing the
4920options that it was compiled with (in a compiler-independent way) to prevent
4921linking incompatible objects, and to allow automatic library selection. Some
4922of these options are not visible at the IR level, namely wchar_t width and enum
4923width.
4924
4925To pass this information to the backend, these options are encoded in module
4926flags metadata, using the following key-value pairs:
4927
4928.. list-table::
4929 :header-rows: 1
4930 :widths: 30 70
4931
4932 * - Key
4933 - Value
4934
4935 * - short_wchar
4936 - * 0 --- sizeof(wchar_t) == 4
4937 * 1 --- sizeof(wchar_t) == 2
4938
4939 * - short_enum
4940 - * 0 --- Enums are at least as large as an ``int``.
4941 * 1 --- Enums are stored in the smallest integer type which can
4942 represent all of its values.
4943
4944For example, the following metadata section specifies that the module was
4945compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4946enum is the smallest type which can represent all of its values::
4947
4948 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004949 !0 = !{i32 1, !"short_wchar", i32 1}
4950 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004951
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004952.. _intrinsicglobalvariables:
4953
Sean Silvab084af42012-12-07 10:36:55 +00004954Intrinsic Global Variables
4955==========================
4956
4957LLVM has a number of "magic" global variables that contain data that
4958affect code generation or other IR semantics. These are documented here.
4959All globals of this sort should have a section specified as
4960"``llvm.metadata``". This section and all globals that start with
4961"``llvm.``" are reserved for use by LLVM.
4962
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004963.. _gv_llvmused:
4964
Sean Silvab084af42012-12-07 10:36:55 +00004965The '``llvm.used``' Global Variable
4966-----------------------------------
4967
Rafael Espindola74f2e462013-04-22 14:58:02 +00004968The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004969:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004970pointers to named global variables, functions and aliases which may optionally
4971have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004972use of it is:
4973
4974.. code-block:: llvm
4975
4976 @X = global i8 4
4977 @Y = global i32 123
4978
4979 @llvm.used = appending global [2 x i8*] [
4980 i8* @X,
4981 i8* bitcast (i32* @Y to i8*)
4982 ], section "llvm.metadata"
4983
Rafael Espindola74f2e462013-04-22 14:58:02 +00004984If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4985and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004986symbol that it cannot see (which is why they have to be named). For example, if
4987a variable has internal linkage and no references other than that from the
4988``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4989references from inline asms and other things the compiler cannot "see", and
4990corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004991
4992On some targets, the code generator must emit a directive to the
4993assembler or object file to prevent the assembler and linker from
4994molesting the symbol.
4995
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004996.. _gv_llvmcompilerused:
4997
Sean Silvab084af42012-12-07 10:36:55 +00004998The '``llvm.compiler.used``' Global Variable
4999--------------------------------------------
5000
5001The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5002directive, except that it only prevents the compiler from touching the
5003symbol. On targets that support it, this allows an intelligent linker to
5004optimize references to the symbol without being impeded as it would be
5005by ``@llvm.used``.
5006
5007This is a rare construct that should only be used in rare circumstances,
5008and should not be exposed to source languages.
5009
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005010.. _gv_llvmglobalctors:
5011
Sean Silvab084af42012-12-07 10:36:55 +00005012The '``llvm.global_ctors``' Global Variable
5013-------------------------------------------
5014
5015.. code-block:: llvm
5016
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005017 %0 = type { i32, void ()*, i8* }
5018 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005019
5020The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005021functions, priorities, and an optional associated global or function.
5022The functions referenced by this array will be called in ascending order
5023of priority (i.e. lowest first) when the module is loaded. The order of
5024functions with the same priority is not defined.
5025
5026If the third field is present, non-null, and points to a global variable
5027or function, the initializer function will only run if the associated
5028data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005029
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005030.. _llvmglobaldtors:
5031
Sean Silvab084af42012-12-07 10:36:55 +00005032The '``llvm.global_dtors``' Global Variable
5033-------------------------------------------
5034
5035.. code-block:: llvm
5036
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005037 %0 = type { i32, void ()*, i8* }
5038 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005039
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005040The ``@llvm.global_dtors`` array contains a list of destructor
5041functions, priorities, and an optional associated global or function.
5042The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005043order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005044order of functions with the same priority is not defined.
5045
5046If the third field is present, non-null, and points to a global variable
5047or function, the destructor function will only run if the associated
5048data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005049
5050Instruction Reference
5051=====================
5052
5053The LLVM instruction set consists of several different classifications
5054of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5055instructions <binaryops>`, :ref:`bitwise binary
5056instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5057:ref:`other instructions <otherops>`.
5058
5059.. _terminators:
5060
5061Terminator Instructions
5062-----------------------
5063
5064As mentioned :ref:`previously <functionstructure>`, every basic block in a
5065program ends with a "Terminator" instruction, which indicates which
5066block should be executed after the current block is finished. These
5067terminator instructions typically yield a '``void``' value: they produce
5068control flow, not values (the one exception being the
5069':ref:`invoke <i_invoke>`' instruction).
5070
5071The terminator instructions are: ':ref:`ret <i_ret>`',
5072':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5073':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005074':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005075':ref:`catchret <i_catchret>`',
5076':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005077and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005078
5079.. _i_ret:
5080
5081'``ret``' Instruction
5082^^^^^^^^^^^^^^^^^^^^^
5083
5084Syntax:
5085"""""""
5086
5087::
5088
5089 ret <type> <value> ; Return a value from a non-void function
5090 ret void ; Return from void function
5091
5092Overview:
5093"""""""""
5094
5095The '``ret``' instruction is used to return control flow (and optionally
5096a value) from a function back to the caller.
5097
5098There are two forms of the '``ret``' instruction: one that returns a
5099value and then causes control flow, and one that just causes control
5100flow to occur.
5101
5102Arguments:
5103""""""""""
5104
5105The '``ret``' instruction optionally accepts a single argument, the
5106return value. The type of the return value must be a ':ref:`first
5107class <t_firstclass>`' type.
5108
5109A function is not :ref:`well formed <wellformed>` if it it has a non-void
5110return type and contains a '``ret``' instruction with no return value or
5111a return value with a type that does not match its type, or if it has a
5112void return type and contains a '``ret``' instruction with a return
5113value.
5114
5115Semantics:
5116""""""""""
5117
5118When the '``ret``' instruction is executed, control flow returns back to
5119the calling function's context. If the caller is a
5120":ref:`call <i_call>`" instruction, execution continues at the
5121instruction after the call. If the caller was an
5122":ref:`invoke <i_invoke>`" instruction, execution continues at the
5123beginning of the "normal" destination block. If the instruction returns
5124a value, that value shall set the call or invoke instruction's return
5125value.
5126
5127Example:
5128""""""""
5129
5130.. code-block:: llvm
5131
5132 ret i32 5 ; Return an integer value of 5
5133 ret void ; Return from a void function
5134 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5135
5136.. _i_br:
5137
5138'``br``' Instruction
5139^^^^^^^^^^^^^^^^^^^^
5140
5141Syntax:
5142"""""""
5143
5144::
5145
5146 br i1 <cond>, label <iftrue>, label <iffalse>
5147 br label <dest> ; Unconditional branch
5148
5149Overview:
5150"""""""""
5151
5152The '``br``' instruction is used to cause control flow to transfer to a
5153different basic block in the current function. There are two forms of
5154this instruction, corresponding to a conditional branch and an
5155unconditional branch.
5156
5157Arguments:
5158""""""""""
5159
5160The conditional branch form of the '``br``' instruction takes a single
5161'``i1``' value and two '``label``' values. The unconditional form of the
5162'``br``' instruction takes a single '``label``' value as a target.
5163
5164Semantics:
5165""""""""""
5166
5167Upon execution of a conditional '``br``' instruction, the '``i1``'
5168argument is evaluated. If the value is ``true``, control flows to the
5169'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5170to the '``iffalse``' ``label`` argument.
5171
5172Example:
5173""""""""
5174
5175.. code-block:: llvm
5176
5177 Test:
5178 %cond = icmp eq i32 %a, %b
5179 br i1 %cond, label %IfEqual, label %IfUnequal
5180 IfEqual:
5181 ret i32 1
5182 IfUnequal:
5183 ret i32 0
5184
5185.. _i_switch:
5186
5187'``switch``' Instruction
5188^^^^^^^^^^^^^^^^^^^^^^^^
5189
5190Syntax:
5191"""""""
5192
5193::
5194
5195 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5196
5197Overview:
5198"""""""""
5199
5200The '``switch``' instruction is used to transfer control flow to one of
5201several different places. It is a generalization of the '``br``'
5202instruction, allowing a branch to occur to one of many possible
5203destinations.
5204
5205Arguments:
5206""""""""""
5207
5208The '``switch``' instruction uses three parameters: an integer
5209comparison value '``value``', a default '``label``' destination, and an
5210array of pairs of comparison value constants and '``label``'s. The table
5211is not allowed to contain duplicate constant entries.
5212
5213Semantics:
5214""""""""""
5215
5216The ``switch`` instruction specifies a table of values and destinations.
5217When the '``switch``' instruction is executed, this table is searched
5218for the given value. If the value is found, control flow is transferred
5219to the corresponding destination; otherwise, control flow is transferred
5220to the default destination.
5221
5222Implementation:
5223"""""""""""""""
5224
5225Depending on properties of the target machine and the particular
5226``switch`` instruction, this instruction may be code generated in
5227different ways. For example, it could be generated as a series of
5228chained conditional branches or with a lookup table.
5229
5230Example:
5231""""""""
5232
5233.. code-block:: llvm
5234
5235 ; Emulate a conditional br instruction
5236 %Val = zext i1 %value to i32
5237 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5238
5239 ; Emulate an unconditional br instruction
5240 switch i32 0, label %dest [ ]
5241
5242 ; Implement a jump table:
5243 switch i32 %val, label %otherwise [ i32 0, label %onzero
5244 i32 1, label %onone
5245 i32 2, label %ontwo ]
5246
5247.. _i_indirectbr:
5248
5249'``indirectbr``' Instruction
5250^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5251
5252Syntax:
5253"""""""
5254
5255::
5256
5257 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5258
5259Overview:
5260"""""""""
5261
5262The '``indirectbr``' instruction implements an indirect branch to a
5263label within the current function, whose address is specified by
5264"``address``". Address must be derived from a
5265:ref:`blockaddress <blockaddress>` constant.
5266
5267Arguments:
5268""""""""""
5269
5270The '``address``' argument is the address of the label to jump to. The
5271rest of the arguments indicate the full set of possible destinations
5272that the address may point to. Blocks are allowed to occur multiple
5273times in the destination list, though this isn't particularly useful.
5274
5275This destination list is required so that dataflow analysis has an
5276accurate understanding of the CFG.
5277
5278Semantics:
5279""""""""""
5280
5281Control transfers to the block specified in the address argument. All
5282possible destination blocks must be listed in the label list, otherwise
5283this instruction has undefined behavior. This implies that jumps to
5284labels defined in other functions have undefined behavior as well.
5285
5286Implementation:
5287"""""""""""""""
5288
5289This is typically implemented with a jump through a register.
5290
5291Example:
5292""""""""
5293
5294.. code-block:: llvm
5295
5296 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5297
5298.. _i_invoke:
5299
5300'``invoke``' Instruction
5301^^^^^^^^^^^^^^^^^^^^^^^^
5302
5303Syntax:
5304"""""""
5305
5306::
5307
5308 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005309 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005310
5311Overview:
5312"""""""""
5313
5314The '``invoke``' instruction causes control to transfer to a specified
5315function, with the possibility of control flow transfer to either the
5316'``normal``' label or the '``exception``' label. If the callee function
5317returns with the "``ret``" instruction, control flow will return to the
5318"normal" label. If the callee (or any indirect callees) returns via the
5319":ref:`resume <i_resume>`" instruction or other exception handling
5320mechanism, control is interrupted and continued at the dynamically
5321nearest "exception" label.
5322
5323The '``exception``' label is a `landing
5324pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5325'``exception``' label is required to have the
5326":ref:`landingpad <i_landingpad>`" instruction, which contains the
5327information about the behavior of the program after unwinding happens,
5328as its first non-PHI instruction. The restrictions on the
5329"``landingpad``" instruction's tightly couples it to the "``invoke``"
5330instruction, so that the important information contained within the
5331"``landingpad``" instruction can't be lost through normal code motion.
5332
5333Arguments:
5334""""""""""
5335
5336This instruction requires several arguments:
5337
5338#. The optional "cconv" marker indicates which :ref:`calling
5339 convention <callingconv>` the call should use. If none is
5340 specified, the call defaults to using C calling conventions.
5341#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5342 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5343 are valid here.
5344#. '``ptr to function ty``': shall be the signature of the pointer to
5345 function value being invoked. In most cases, this is a direct
5346 function invocation, but indirect ``invoke``'s are just as possible,
5347 branching off an arbitrary pointer to function value.
5348#. '``function ptr val``': An LLVM value containing a pointer to a
5349 function to be invoked.
5350#. '``function args``': argument list whose types match the function
5351 signature argument types and parameter attributes. All arguments must
5352 be of :ref:`first class <t_firstclass>` type. If the function signature
5353 indicates the function accepts a variable number of arguments, the
5354 extra arguments can be specified.
5355#. '``normal label``': the label reached when the called function
5356 executes a '``ret``' instruction.
5357#. '``exception label``': the label reached when a callee returns via
5358 the :ref:`resume <i_resume>` instruction or other exception handling
5359 mechanism.
5360#. The optional :ref:`function attributes <fnattrs>` list. Only
5361 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5362 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005363#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005364
5365Semantics:
5366""""""""""
5367
5368This instruction is designed to operate as a standard '``call``'
5369instruction in most regards. The primary difference is that it
5370establishes an association with a label, which is used by the runtime
5371library to unwind the stack.
5372
5373This instruction is used in languages with destructors to ensure that
5374proper cleanup is performed in the case of either a ``longjmp`` or a
5375thrown exception. Additionally, this is important for implementation of
5376'``catch``' clauses in high-level languages that support them.
5377
5378For the purposes of the SSA form, the definition of the value returned
5379by the '``invoke``' instruction is deemed to occur on the edge from the
5380current block to the "normal" label. If the callee unwinds then no
5381return value is available.
5382
5383Example:
5384""""""""
5385
5386.. code-block:: llvm
5387
5388 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005389 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005390 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005391 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005392
5393.. _i_resume:
5394
5395'``resume``' Instruction
5396^^^^^^^^^^^^^^^^^^^^^^^^
5397
5398Syntax:
5399"""""""
5400
5401::
5402
5403 resume <type> <value>
5404
5405Overview:
5406"""""""""
5407
5408The '``resume``' instruction is a terminator instruction that has no
5409successors.
5410
5411Arguments:
5412""""""""""
5413
5414The '``resume``' instruction requires one argument, which must have the
5415same type as the result of any '``landingpad``' instruction in the same
5416function.
5417
5418Semantics:
5419""""""""""
5420
5421The '``resume``' instruction resumes propagation of an existing
5422(in-flight) exception whose unwinding was interrupted with a
5423:ref:`landingpad <i_landingpad>` instruction.
5424
5425Example:
5426""""""""
5427
5428.. code-block:: llvm
5429
5430 resume { i8*, i32 } %exn
5431
David Majnemer8a1c45d2015-12-12 05:38:55 +00005432.. _i_catchswitch:
5433
5434'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005436
5437Syntax:
5438"""""""
5439
5440::
5441
5442 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5443 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5444
5445Overview:
5446"""""""""
5447
5448The '``catchswitch``' instruction is used by `LLVM's exception handling system
5449<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5450that may be executed by the :ref:`EH personality routine <personalityfn>`.
5451
5452Arguments:
5453""""""""""
5454
5455The ``parent`` argument is the token of the funclet that contains the
5456``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5457this operand may be the token ``none``.
5458
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005459The ``default`` argument is the label of another basic block beginning with
5460either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5461must be a legal target with respect to the ``parent`` links, as described in
5462the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005463
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005464The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005465:ref:`catchpad <i_catchpad>` instruction.
5466
5467Semantics:
5468""""""""""
5469
5470Executing this instruction transfers control to one of the successors in
5471``handlers``, if appropriate, or continues to unwind via the unwind label if
5472present.
5473
5474The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5475it must be both the first non-phi instruction and last instruction in the basic
5476block. Therefore, it must be the only non-phi instruction in the block.
5477
5478Example:
5479""""""""
5480
5481.. code-block:: llvm
5482
5483 dispatch1:
5484 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5485 dispatch2:
5486 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5487
David Majnemer654e1302015-07-31 17:58:14 +00005488.. _i_catchret:
5489
5490'``catchret``' Instruction
5491^^^^^^^^^^^^^^^^^^^^^^^^^^
5492
5493Syntax:
5494"""""""
5495
5496::
5497
David Majnemer8a1c45d2015-12-12 05:38:55 +00005498 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005499
5500Overview:
5501"""""""""
5502
5503The '``catchret``' instruction is a terminator instruction that has a
5504single successor.
5505
5506
5507Arguments:
5508""""""""""
5509
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005510The first argument to a '``catchret``' indicates which ``catchpad`` it
5511exits. It must be a :ref:`catchpad <i_catchpad>`.
5512The second argument to a '``catchret``' specifies where control will
5513transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005514
5515Semantics:
5516""""""""""
5517
David Majnemer8a1c45d2015-12-12 05:38:55 +00005518The '``catchret``' instruction ends an existing (in-flight) exception whose
5519unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5520:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5521code to, for example, destroy the active exception. Control then transfers to
5522``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005523
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005524The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5525If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5526funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5527the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005528
5529Example:
5530""""""""
5531
5532.. code-block:: llvm
5533
David Majnemer8a1c45d2015-12-12 05:38:55 +00005534 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005535
David Majnemer654e1302015-07-31 17:58:14 +00005536.. _i_cleanupret:
5537
5538'``cleanupret``' Instruction
5539^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5540
5541Syntax:
5542"""""""
5543
5544::
5545
David Majnemer8a1c45d2015-12-12 05:38:55 +00005546 cleanupret from <value> unwind label <continue>
5547 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005548
5549Overview:
5550"""""""""
5551
5552The '``cleanupret``' instruction is a terminator instruction that has
5553an optional successor.
5554
5555
5556Arguments:
5557""""""""""
5558
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005559The '``cleanupret``' instruction requires one argument, which indicates
5560which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005561If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5562funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5563the ``cleanupret``'s behavior is undefined.
5564
5565The '``cleanupret``' instruction also has an optional successor, ``continue``,
5566which must be the label of another basic block beginning with either a
5567``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5568be a legal target with respect to the ``parent`` links, as described in the
5569`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005570
5571Semantics:
5572""""""""""
5573
5574The '``cleanupret``' instruction indicates to the
5575:ref:`personality function <personalityfn>` that one
5576:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5577It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005578
David Majnemer654e1302015-07-31 17:58:14 +00005579Example:
5580""""""""
5581
5582.. code-block:: llvm
5583
David Majnemer8a1c45d2015-12-12 05:38:55 +00005584 cleanupret from %cleanup unwind to caller
5585 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005586
Sean Silvab084af42012-12-07 10:36:55 +00005587.. _i_unreachable:
5588
5589'``unreachable``' Instruction
5590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5591
5592Syntax:
5593"""""""
5594
5595::
5596
5597 unreachable
5598
5599Overview:
5600"""""""""
5601
5602The '``unreachable``' instruction has no defined semantics. This
5603instruction is used to inform the optimizer that a particular portion of
5604the code is not reachable. This can be used to indicate that the code
5605after a no-return function cannot be reached, and other facts.
5606
5607Semantics:
5608""""""""""
5609
5610The '``unreachable``' instruction has no defined semantics.
5611
5612.. _binaryops:
5613
5614Binary Operations
5615-----------------
5616
5617Binary operators are used to do most of the computation in a program.
5618They require two operands of the same type, execute an operation on
5619them, and produce a single value. The operands might represent multiple
5620data, as is the case with the :ref:`vector <t_vector>` data type. The
5621result value has the same type as its operands.
5622
5623There are several different binary operators:
5624
5625.. _i_add:
5626
5627'``add``' Instruction
5628^^^^^^^^^^^^^^^^^^^^^
5629
5630Syntax:
5631"""""""
5632
5633::
5634
Tim Northover675a0962014-06-13 14:24:23 +00005635 <result> = add <ty> <op1>, <op2> ; yields ty:result
5636 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5637 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5638 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005639
5640Overview:
5641"""""""""
5642
5643The '``add``' instruction returns the sum of its two operands.
5644
5645Arguments:
5646""""""""""
5647
5648The two arguments to the '``add``' instruction must be
5649:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5650arguments must have identical types.
5651
5652Semantics:
5653""""""""""
5654
5655The value produced is the integer sum of the two operands.
5656
5657If the sum has unsigned overflow, the result returned is the
5658mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5659the result.
5660
5661Because LLVM integers use a two's complement representation, this
5662instruction is appropriate for both signed and unsigned integers.
5663
5664``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5665respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5666result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5667unsigned and/or signed overflow, respectively, occurs.
5668
5669Example:
5670""""""""
5671
5672.. code-block:: llvm
5673
Tim Northover675a0962014-06-13 14:24:23 +00005674 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005675
5676.. _i_fadd:
5677
5678'``fadd``' Instruction
5679^^^^^^^^^^^^^^^^^^^^^^
5680
5681Syntax:
5682"""""""
5683
5684::
5685
Tim Northover675a0962014-06-13 14:24:23 +00005686 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005687
5688Overview:
5689"""""""""
5690
5691The '``fadd``' instruction returns the sum of its two operands.
5692
5693Arguments:
5694""""""""""
5695
5696The two arguments to the '``fadd``' instruction must be :ref:`floating
5697point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5698Both arguments must have identical types.
5699
5700Semantics:
5701""""""""""
5702
5703The value produced is the floating point sum of the two operands. This
5704instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5705which are optimization hints to enable otherwise unsafe floating point
5706optimizations:
5707
5708Example:
5709""""""""
5710
5711.. code-block:: llvm
5712
Tim Northover675a0962014-06-13 14:24:23 +00005713 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005714
5715'``sub``' Instruction
5716^^^^^^^^^^^^^^^^^^^^^
5717
5718Syntax:
5719"""""""
5720
5721::
5722
Tim Northover675a0962014-06-13 14:24:23 +00005723 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5724 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5725 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5726 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005727
5728Overview:
5729"""""""""
5730
5731The '``sub``' instruction returns the difference of its two operands.
5732
5733Note that the '``sub``' instruction is used to represent the '``neg``'
5734instruction present in most other intermediate representations.
5735
5736Arguments:
5737""""""""""
5738
5739The two arguments to the '``sub``' instruction must be
5740:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5741arguments must have identical types.
5742
5743Semantics:
5744""""""""""
5745
5746The value produced is the integer difference of the two operands.
5747
5748If the difference has unsigned overflow, the result returned is the
5749mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5750the result.
5751
5752Because LLVM integers use a two's complement representation, this
5753instruction is appropriate for both signed and unsigned integers.
5754
5755``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5756respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5757result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5758unsigned and/or signed overflow, respectively, occurs.
5759
5760Example:
5761""""""""
5762
5763.. code-block:: llvm
5764
Tim Northover675a0962014-06-13 14:24:23 +00005765 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5766 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005767
5768.. _i_fsub:
5769
5770'``fsub``' Instruction
5771^^^^^^^^^^^^^^^^^^^^^^
5772
5773Syntax:
5774"""""""
5775
5776::
5777
Tim Northover675a0962014-06-13 14:24:23 +00005778 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005779
5780Overview:
5781"""""""""
5782
5783The '``fsub``' instruction returns the difference of its two operands.
5784
5785Note that the '``fsub``' instruction is used to represent the '``fneg``'
5786instruction present in most other intermediate representations.
5787
5788Arguments:
5789""""""""""
5790
5791The two arguments to the '``fsub``' instruction must be :ref:`floating
5792point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5793Both arguments must have identical types.
5794
5795Semantics:
5796""""""""""
5797
5798The value produced is the floating point difference of the two operands.
5799This instruction can also take any number of :ref:`fast-math
5800flags <fastmath>`, which are optimization hints to enable otherwise
5801unsafe floating point optimizations:
5802
5803Example:
5804""""""""
5805
5806.. code-block:: llvm
5807
Tim Northover675a0962014-06-13 14:24:23 +00005808 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5809 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005810
5811'``mul``' Instruction
5812^^^^^^^^^^^^^^^^^^^^^
5813
5814Syntax:
5815"""""""
5816
5817::
5818
Tim Northover675a0962014-06-13 14:24:23 +00005819 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5820 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5821 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5822 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005823
5824Overview:
5825"""""""""
5826
5827The '``mul``' instruction returns the product of its two operands.
5828
5829Arguments:
5830""""""""""
5831
5832The two arguments to the '``mul``' instruction must be
5833:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5834arguments must have identical types.
5835
5836Semantics:
5837""""""""""
5838
5839The value produced is the integer product of the two operands.
5840
5841If the result of the multiplication has unsigned overflow, the result
5842returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5843bit width of the result.
5844
5845Because LLVM integers use a two's complement representation, and the
5846result is the same width as the operands, this instruction returns the
5847correct result for both signed and unsigned integers. If a full product
5848(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5849sign-extended or zero-extended as appropriate to the width of the full
5850product.
5851
5852``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5853respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5854result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5855unsigned and/or signed overflow, respectively, occurs.
5856
5857Example:
5858""""""""
5859
5860.. code-block:: llvm
5861
Tim Northover675a0962014-06-13 14:24:23 +00005862 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005863
5864.. _i_fmul:
5865
5866'``fmul``' Instruction
5867^^^^^^^^^^^^^^^^^^^^^^
5868
5869Syntax:
5870"""""""
5871
5872::
5873
Tim Northover675a0962014-06-13 14:24:23 +00005874 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005875
5876Overview:
5877"""""""""
5878
5879The '``fmul``' instruction returns the product of its two operands.
5880
5881Arguments:
5882""""""""""
5883
5884The two arguments to the '``fmul``' instruction must be :ref:`floating
5885point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5886Both arguments must have identical types.
5887
5888Semantics:
5889""""""""""
5890
5891The value produced is the floating point product of the two operands.
5892This instruction can also take any number of :ref:`fast-math
5893flags <fastmath>`, which are optimization hints to enable otherwise
5894unsafe floating point optimizations:
5895
5896Example:
5897""""""""
5898
5899.. code-block:: llvm
5900
Tim Northover675a0962014-06-13 14:24:23 +00005901 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005902
5903'``udiv``' Instruction
5904^^^^^^^^^^^^^^^^^^^^^^
5905
5906Syntax:
5907"""""""
5908
5909::
5910
Tim Northover675a0962014-06-13 14:24:23 +00005911 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5912 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005913
5914Overview:
5915"""""""""
5916
5917The '``udiv``' instruction returns the quotient of its two operands.
5918
5919Arguments:
5920""""""""""
5921
5922The two arguments to the '``udiv``' instruction must be
5923:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5924arguments must have identical types.
5925
5926Semantics:
5927""""""""""
5928
5929The value produced is the unsigned integer quotient of the two operands.
5930
5931Note that unsigned integer division and signed integer division are
5932distinct operations; for signed integer division, use '``sdiv``'.
5933
5934Division by zero leads to undefined behavior.
5935
5936If the ``exact`` keyword is present, the result value of the ``udiv`` is
5937a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5938such, "((a udiv exact b) mul b) == a").
5939
5940Example:
5941""""""""
5942
5943.. code-block:: llvm
5944
Tim Northover675a0962014-06-13 14:24:23 +00005945 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005946
5947'``sdiv``' Instruction
5948^^^^^^^^^^^^^^^^^^^^^^
5949
5950Syntax:
5951"""""""
5952
5953::
5954
Tim Northover675a0962014-06-13 14:24:23 +00005955 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5956 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005957
5958Overview:
5959"""""""""
5960
5961The '``sdiv``' instruction returns the quotient of its two operands.
5962
5963Arguments:
5964""""""""""
5965
5966The two arguments to the '``sdiv``' instruction must be
5967:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5968arguments must have identical types.
5969
5970Semantics:
5971""""""""""
5972
5973The value produced is the signed integer quotient of the two operands
5974rounded towards zero.
5975
5976Note that signed integer division and unsigned integer division are
5977distinct operations; for unsigned integer division, use '``udiv``'.
5978
5979Division by zero leads to undefined behavior. Overflow also leads to
5980undefined behavior; this is a rare case, but can occur, for example, by
5981doing a 32-bit division of -2147483648 by -1.
5982
5983If the ``exact`` keyword is present, the result value of the ``sdiv`` is
5984a :ref:`poison value <poisonvalues>` if the result would be rounded.
5985
5986Example:
5987""""""""
5988
5989.. code-block:: llvm
5990
Tim Northover675a0962014-06-13 14:24:23 +00005991 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005992
5993.. _i_fdiv:
5994
5995'``fdiv``' Instruction
5996^^^^^^^^^^^^^^^^^^^^^^
5997
5998Syntax:
5999"""""""
6000
6001::
6002
Tim Northover675a0962014-06-13 14:24:23 +00006003 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006004
6005Overview:
6006"""""""""
6007
6008The '``fdiv``' instruction returns the quotient of its two operands.
6009
6010Arguments:
6011""""""""""
6012
6013The two arguments to the '``fdiv``' instruction must be :ref:`floating
6014point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6015Both arguments must have identical types.
6016
6017Semantics:
6018""""""""""
6019
6020The value produced is the floating point quotient of the two operands.
6021This instruction can also take any number of :ref:`fast-math
6022flags <fastmath>`, which are optimization hints to enable otherwise
6023unsafe floating point optimizations:
6024
6025Example:
6026""""""""
6027
6028.. code-block:: llvm
6029
Tim Northover675a0962014-06-13 14:24:23 +00006030 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006031
6032'``urem``' Instruction
6033^^^^^^^^^^^^^^^^^^^^^^
6034
6035Syntax:
6036"""""""
6037
6038::
6039
Tim Northover675a0962014-06-13 14:24:23 +00006040 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006041
6042Overview:
6043"""""""""
6044
6045The '``urem``' instruction returns the remainder from the unsigned
6046division of its two arguments.
6047
6048Arguments:
6049""""""""""
6050
6051The two arguments to the '``urem``' instruction must be
6052:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6053arguments must have identical types.
6054
6055Semantics:
6056""""""""""
6057
6058This instruction returns the unsigned integer *remainder* of a division.
6059This instruction always performs an unsigned division to get the
6060remainder.
6061
6062Note that unsigned integer remainder and signed integer remainder are
6063distinct operations; for signed integer remainder, use '``srem``'.
6064
6065Taking the remainder of a division by zero leads to undefined behavior.
6066
6067Example:
6068""""""""
6069
6070.. code-block:: llvm
6071
Tim Northover675a0962014-06-13 14:24:23 +00006072 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006073
6074'``srem``' Instruction
6075^^^^^^^^^^^^^^^^^^^^^^
6076
6077Syntax:
6078"""""""
6079
6080::
6081
Tim Northover675a0962014-06-13 14:24:23 +00006082 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006083
6084Overview:
6085"""""""""
6086
6087The '``srem``' instruction returns the remainder from the signed
6088division of its two operands. This instruction can also take
6089:ref:`vector <t_vector>` versions of the values in which case the elements
6090must be integers.
6091
6092Arguments:
6093""""""""""
6094
6095The two arguments to the '``srem``' instruction must be
6096:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6097arguments must have identical types.
6098
6099Semantics:
6100""""""""""
6101
6102This instruction returns the *remainder* of a division (where the result
6103is either zero or has the same sign as the dividend, ``op1``), not the
6104*modulo* operator (where the result is either zero or has the same sign
6105as the divisor, ``op2``) of a value. For more information about the
6106difference, see `The Math
6107Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6108table of how this is implemented in various languages, please see
6109`Wikipedia: modulo
6110operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6111
6112Note that signed integer remainder and unsigned integer remainder are
6113distinct operations; for unsigned integer remainder, use '``urem``'.
6114
6115Taking the remainder of a division by zero leads to undefined behavior.
6116Overflow also leads to undefined behavior; this is a rare case, but can
6117occur, for example, by taking the remainder of a 32-bit division of
6118-2147483648 by -1. (The remainder doesn't actually overflow, but this
6119rule lets srem be implemented using instructions that return both the
6120result of the division and the remainder.)
6121
6122Example:
6123""""""""
6124
6125.. code-block:: llvm
6126
Tim Northover675a0962014-06-13 14:24:23 +00006127 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006128
6129.. _i_frem:
6130
6131'``frem``' Instruction
6132^^^^^^^^^^^^^^^^^^^^^^
6133
6134Syntax:
6135"""""""
6136
6137::
6138
Tim Northover675a0962014-06-13 14:24:23 +00006139 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006140
6141Overview:
6142"""""""""
6143
6144The '``frem``' instruction returns the remainder from the division of
6145its two operands.
6146
6147Arguments:
6148""""""""""
6149
6150The two arguments to the '``frem``' instruction must be :ref:`floating
6151point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6152Both arguments must have identical types.
6153
6154Semantics:
6155""""""""""
6156
6157This instruction returns the *remainder* of a division. The remainder
6158has the same sign as the dividend. This instruction can also take any
6159number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6160to enable otherwise unsafe floating point optimizations:
6161
6162Example:
6163""""""""
6164
6165.. code-block:: llvm
6166
Tim Northover675a0962014-06-13 14:24:23 +00006167 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006168
6169.. _bitwiseops:
6170
6171Bitwise Binary Operations
6172-------------------------
6173
6174Bitwise binary operators are used to do various forms of bit-twiddling
6175in a program. They are generally very efficient instructions and can
6176commonly be strength reduced from other instructions. They require two
6177operands of the same type, execute an operation on them, and produce a
6178single value. The resulting value is the same type as its operands.
6179
6180'``shl``' Instruction
6181^^^^^^^^^^^^^^^^^^^^^
6182
6183Syntax:
6184"""""""
6185
6186::
6187
Tim Northover675a0962014-06-13 14:24:23 +00006188 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6189 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6190 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6191 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006192
6193Overview:
6194"""""""""
6195
6196The '``shl``' instruction returns the first operand shifted to the left
6197a specified number of bits.
6198
6199Arguments:
6200""""""""""
6201
6202Both arguments to the '``shl``' instruction must be the same
6203:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6204'``op2``' is treated as an unsigned value.
6205
6206Semantics:
6207""""""""""
6208
6209The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6210where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006211dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006212``op1``, the result is undefined. If the arguments are vectors, each
6213vector element of ``op1`` is shifted by the corresponding shift amount
6214in ``op2``.
6215
6216If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6217value <poisonvalues>` if it shifts out any non-zero bits. If the
6218``nsw`` keyword is present, then the shift produces a :ref:`poison
6219value <poisonvalues>` if it shifts out any bits that disagree with the
6220resultant sign bit. As such, NUW/NSW have the same semantics as they
6221would if the shift were expressed as a mul instruction with the same
6222nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6223
6224Example:
6225""""""""
6226
6227.. code-block:: llvm
6228
Tim Northover675a0962014-06-13 14:24:23 +00006229 <result> = shl i32 4, %var ; yields i32: 4 << %var
6230 <result> = shl i32 4, 2 ; yields i32: 16
6231 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006232 <result> = shl i32 1, 32 ; undefined
6233 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6234
6235'``lshr``' Instruction
6236^^^^^^^^^^^^^^^^^^^^^^
6237
6238Syntax:
6239"""""""
6240
6241::
6242
Tim Northover675a0962014-06-13 14:24:23 +00006243 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6244 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006245
6246Overview:
6247"""""""""
6248
6249The '``lshr``' instruction (logical shift right) returns the first
6250operand shifted to the right a specified number of bits with zero fill.
6251
6252Arguments:
6253""""""""""
6254
6255Both arguments to the '``lshr``' instruction must be the same
6256:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6257'``op2``' is treated as an unsigned value.
6258
6259Semantics:
6260""""""""""
6261
6262This instruction always performs a logical shift right operation. The
6263most significant bits of the result will be filled with zero bits after
6264the shift. If ``op2`` is (statically or dynamically) equal to or larger
6265than the number of bits in ``op1``, the result is undefined. If the
6266arguments are vectors, each vector element of ``op1`` is shifted by the
6267corresponding shift amount in ``op2``.
6268
6269If the ``exact`` keyword is present, the result value of the ``lshr`` is
6270a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6271non-zero.
6272
6273Example:
6274""""""""
6275
6276.. code-block:: llvm
6277
Tim Northover675a0962014-06-13 14:24:23 +00006278 <result> = lshr i32 4, 1 ; yields i32:result = 2
6279 <result> = lshr i32 4, 2 ; yields i32:result = 1
6280 <result> = lshr i8 4, 3 ; yields i8:result = 0
6281 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006282 <result> = lshr i32 1, 32 ; undefined
6283 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6284
6285'``ashr``' Instruction
6286^^^^^^^^^^^^^^^^^^^^^^
6287
6288Syntax:
6289"""""""
6290
6291::
6292
Tim Northover675a0962014-06-13 14:24:23 +00006293 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6294 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006295
6296Overview:
6297"""""""""
6298
6299The '``ashr``' instruction (arithmetic shift right) returns the first
6300operand shifted to the right a specified number of bits with sign
6301extension.
6302
6303Arguments:
6304""""""""""
6305
6306Both arguments to the '``ashr``' instruction must be the same
6307:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6308'``op2``' is treated as an unsigned value.
6309
6310Semantics:
6311""""""""""
6312
6313This instruction always performs an arithmetic shift right operation,
6314The most significant bits of the result will be filled with the sign bit
6315of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6316than the number of bits in ``op1``, the result is undefined. If the
6317arguments are vectors, each vector element of ``op1`` is shifted by the
6318corresponding shift amount in ``op2``.
6319
6320If the ``exact`` keyword is present, the result value of the ``ashr`` is
6321a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6322non-zero.
6323
6324Example:
6325""""""""
6326
6327.. code-block:: llvm
6328
Tim Northover675a0962014-06-13 14:24:23 +00006329 <result> = ashr i32 4, 1 ; yields i32:result = 2
6330 <result> = ashr i32 4, 2 ; yields i32:result = 1
6331 <result> = ashr i8 4, 3 ; yields i8:result = 0
6332 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006333 <result> = ashr i32 1, 32 ; undefined
6334 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6335
6336'``and``' Instruction
6337^^^^^^^^^^^^^^^^^^^^^
6338
6339Syntax:
6340"""""""
6341
6342::
6343
Tim Northover675a0962014-06-13 14:24:23 +00006344 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006345
6346Overview:
6347"""""""""
6348
6349The '``and``' instruction returns the bitwise logical and of its two
6350operands.
6351
6352Arguments:
6353""""""""""
6354
6355The two arguments to the '``and``' instruction must be
6356:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6357arguments must have identical types.
6358
6359Semantics:
6360""""""""""
6361
6362The truth table used for the '``and``' instruction is:
6363
6364+-----+-----+-----+
6365| In0 | In1 | Out |
6366+-----+-----+-----+
6367| 0 | 0 | 0 |
6368+-----+-----+-----+
6369| 0 | 1 | 0 |
6370+-----+-----+-----+
6371| 1 | 0 | 0 |
6372+-----+-----+-----+
6373| 1 | 1 | 1 |
6374+-----+-----+-----+
6375
6376Example:
6377""""""""
6378
6379.. code-block:: llvm
6380
Tim Northover675a0962014-06-13 14:24:23 +00006381 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6382 <result> = and i32 15, 40 ; yields i32:result = 8
6383 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006384
6385'``or``' Instruction
6386^^^^^^^^^^^^^^^^^^^^
6387
6388Syntax:
6389"""""""
6390
6391::
6392
Tim Northover675a0962014-06-13 14:24:23 +00006393 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006394
6395Overview:
6396"""""""""
6397
6398The '``or``' instruction returns the bitwise logical inclusive or of its
6399two operands.
6400
6401Arguments:
6402""""""""""
6403
6404The two arguments to the '``or``' instruction must be
6405:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6406arguments must have identical types.
6407
6408Semantics:
6409""""""""""
6410
6411The truth table used for the '``or``' instruction is:
6412
6413+-----+-----+-----+
6414| In0 | In1 | Out |
6415+-----+-----+-----+
6416| 0 | 0 | 0 |
6417+-----+-----+-----+
6418| 0 | 1 | 1 |
6419+-----+-----+-----+
6420| 1 | 0 | 1 |
6421+-----+-----+-----+
6422| 1 | 1 | 1 |
6423+-----+-----+-----+
6424
6425Example:
6426""""""""
6427
6428::
6429
Tim Northover675a0962014-06-13 14:24:23 +00006430 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6431 <result> = or i32 15, 40 ; yields i32:result = 47
6432 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006433
6434'``xor``' Instruction
6435^^^^^^^^^^^^^^^^^^^^^
6436
6437Syntax:
6438"""""""
6439
6440::
6441
Tim Northover675a0962014-06-13 14:24:23 +00006442 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006443
6444Overview:
6445"""""""""
6446
6447The '``xor``' instruction returns the bitwise logical exclusive or of
6448its two operands. The ``xor`` is used to implement the "one's
6449complement" operation, which is the "~" operator in C.
6450
6451Arguments:
6452""""""""""
6453
6454The two arguments to the '``xor``' instruction must be
6455:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6456arguments must have identical types.
6457
6458Semantics:
6459""""""""""
6460
6461The truth table used for the '``xor``' instruction is:
6462
6463+-----+-----+-----+
6464| In0 | In1 | Out |
6465+-----+-----+-----+
6466| 0 | 0 | 0 |
6467+-----+-----+-----+
6468| 0 | 1 | 1 |
6469+-----+-----+-----+
6470| 1 | 0 | 1 |
6471+-----+-----+-----+
6472| 1 | 1 | 0 |
6473+-----+-----+-----+
6474
6475Example:
6476""""""""
6477
6478.. code-block:: llvm
6479
Tim Northover675a0962014-06-13 14:24:23 +00006480 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6481 <result> = xor i32 15, 40 ; yields i32:result = 39
6482 <result> = xor i32 4, 8 ; yields i32:result = 12
6483 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006484
6485Vector Operations
6486-----------------
6487
6488LLVM supports several instructions to represent vector operations in a
6489target-independent manner. These instructions cover the element-access
6490and vector-specific operations needed to process vectors effectively.
6491While LLVM does directly support these vector operations, many
6492sophisticated algorithms will want to use target-specific intrinsics to
6493take full advantage of a specific target.
6494
6495.. _i_extractelement:
6496
6497'``extractelement``' Instruction
6498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6499
6500Syntax:
6501"""""""
6502
6503::
6504
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006505 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006506
6507Overview:
6508"""""""""
6509
6510The '``extractelement``' instruction extracts a single scalar element
6511from a vector at a specified index.
6512
6513Arguments:
6514""""""""""
6515
6516The first operand of an '``extractelement``' instruction is a value of
6517:ref:`vector <t_vector>` type. The second operand is an index indicating
6518the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006519variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006520
6521Semantics:
6522""""""""""
6523
6524The result is a scalar of the same type as the element type of ``val``.
6525Its value is the value at position ``idx`` of ``val``. If ``idx``
6526exceeds the length of ``val``, the results are undefined.
6527
6528Example:
6529""""""""
6530
6531.. code-block:: llvm
6532
6533 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6534
6535.. _i_insertelement:
6536
6537'``insertelement``' Instruction
6538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6539
6540Syntax:
6541"""""""
6542
6543::
6544
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006545 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006546
6547Overview:
6548"""""""""
6549
6550The '``insertelement``' instruction inserts a scalar element into a
6551vector at a specified index.
6552
6553Arguments:
6554""""""""""
6555
6556The first operand of an '``insertelement``' instruction is a value of
6557:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6558type must equal the element type of the first operand. The third operand
6559is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006560index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006561
6562Semantics:
6563""""""""""
6564
6565The result is a vector of the same type as ``val``. Its element values
6566are those of ``val`` except at position ``idx``, where it gets the value
6567``elt``. If ``idx`` exceeds the length of ``val``, the results are
6568undefined.
6569
6570Example:
6571""""""""
6572
6573.. code-block:: llvm
6574
6575 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6576
6577.. _i_shufflevector:
6578
6579'``shufflevector``' Instruction
6580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6581
6582Syntax:
6583"""""""
6584
6585::
6586
6587 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6588
6589Overview:
6590"""""""""
6591
6592The '``shufflevector``' instruction constructs a permutation of elements
6593from two input vectors, returning a vector with the same element type as
6594the input and length that is the same as the shuffle mask.
6595
6596Arguments:
6597""""""""""
6598
6599The first two operands of a '``shufflevector``' instruction are vectors
6600with the same type. The third argument is a shuffle mask whose element
6601type is always 'i32'. The result of the instruction is a vector whose
6602length is the same as the shuffle mask and whose element type is the
6603same as the element type of the first two operands.
6604
6605The shuffle mask operand is required to be a constant vector with either
6606constant integer or undef values.
6607
6608Semantics:
6609""""""""""
6610
6611The elements of the two input vectors are numbered from left to right
6612across both of the vectors. The shuffle mask operand specifies, for each
6613element of the result vector, which element of the two input vectors the
6614result element gets. The element selector may be undef (meaning "don't
6615care") and the second operand may be undef if performing a shuffle from
6616only one vector.
6617
6618Example:
6619""""""""
6620
6621.. code-block:: llvm
6622
6623 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6624 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6625 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6626 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6627 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6628 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6629 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6630 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6631
6632Aggregate Operations
6633--------------------
6634
6635LLVM supports several instructions for working with
6636:ref:`aggregate <t_aggregate>` values.
6637
6638.. _i_extractvalue:
6639
6640'``extractvalue``' Instruction
6641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6642
6643Syntax:
6644"""""""
6645
6646::
6647
6648 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6649
6650Overview:
6651"""""""""
6652
6653The '``extractvalue``' instruction extracts the value of a member field
6654from an :ref:`aggregate <t_aggregate>` value.
6655
6656Arguments:
6657""""""""""
6658
6659The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006660:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006661constant indices to specify which value to extract in a similar manner
6662as indices in a '``getelementptr``' instruction.
6663
6664The major differences to ``getelementptr`` indexing are:
6665
6666- Since the value being indexed is not a pointer, the first index is
6667 omitted and assumed to be zero.
6668- At least one index must be specified.
6669- Not only struct indices but also array indices must be in bounds.
6670
6671Semantics:
6672""""""""""
6673
6674The result is the value at the position in the aggregate specified by
6675the index operands.
6676
6677Example:
6678""""""""
6679
6680.. code-block:: llvm
6681
6682 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6683
6684.. _i_insertvalue:
6685
6686'``insertvalue``' Instruction
6687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6688
6689Syntax:
6690"""""""
6691
6692::
6693
6694 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6695
6696Overview:
6697"""""""""
6698
6699The '``insertvalue``' instruction inserts a value into a member field in
6700an :ref:`aggregate <t_aggregate>` value.
6701
6702Arguments:
6703""""""""""
6704
6705The first operand of an '``insertvalue``' instruction is a value of
6706:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6707a first-class value to insert. The following operands are constant
6708indices indicating the position at which to insert the value in a
6709similar manner as indices in a '``extractvalue``' instruction. The value
6710to insert must have the same type as the value identified by the
6711indices.
6712
6713Semantics:
6714""""""""""
6715
6716The result is an aggregate of the same type as ``val``. Its value is
6717that of ``val`` except that the value at the position specified by the
6718indices is that of ``elt``.
6719
6720Example:
6721""""""""
6722
6723.. code-block:: llvm
6724
6725 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6726 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006727 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006728
6729.. _memoryops:
6730
6731Memory Access and Addressing Operations
6732---------------------------------------
6733
6734A key design point of an SSA-based representation is how it represents
6735memory. In LLVM, no memory locations are in SSA form, which makes things
6736very simple. This section describes how to read, write, and allocate
6737memory in LLVM.
6738
6739.. _i_alloca:
6740
6741'``alloca``' Instruction
6742^^^^^^^^^^^^^^^^^^^^^^^^
6743
6744Syntax:
6745"""""""
6746
6747::
6748
Tim Northover675a0962014-06-13 14:24:23 +00006749 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006750
6751Overview:
6752"""""""""
6753
6754The '``alloca``' instruction allocates memory on the stack frame of the
6755currently executing function, to be automatically released when this
6756function returns to its caller. The object is always allocated in the
6757generic address space (address space zero).
6758
6759Arguments:
6760""""""""""
6761
6762The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6763bytes of memory on the runtime stack, returning a pointer of the
6764appropriate type to the program. If "NumElements" is specified, it is
6765the number of elements allocated, otherwise "NumElements" is defaulted
6766to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006767allocation is guaranteed to be aligned to at least that boundary. The
6768alignment may not be greater than ``1 << 29``. If not specified, or if
6769zero, the target can choose to align the allocation on any convenient
6770boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006771
6772'``type``' may be any sized type.
6773
6774Semantics:
6775""""""""""
6776
6777Memory is allocated; a pointer is returned. The operation is undefined
6778if there is insufficient stack space for the allocation. '``alloca``'d
6779memory is automatically released when the function returns. The
6780'``alloca``' instruction is commonly used to represent automatic
6781variables that must have an address available. When the function returns
6782(either with the ``ret`` or ``resume`` instructions), the memory is
6783reclaimed. Allocating zero bytes is legal, but the result is undefined.
6784The order in which memory is allocated (ie., which way the stack grows)
6785is not specified.
6786
6787Example:
6788""""""""
6789
6790.. code-block:: llvm
6791
Tim Northover675a0962014-06-13 14:24:23 +00006792 %ptr = alloca i32 ; yields i32*:ptr
6793 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6794 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6795 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006796
6797.. _i_load:
6798
6799'``load``' Instruction
6800^^^^^^^^^^^^^^^^^^^^^^
6801
6802Syntax:
6803"""""""
6804
6805::
6806
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006807 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006808 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006809 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006810 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006811 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006812
6813Overview:
6814"""""""""
6815
6816The '``load``' instruction is used to read from memory.
6817
6818Arguments:
6819""""""""""
6820
Eli Bendersky239a78b2013-04-17 20:17:08 +00006821The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006822from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006823class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6824then the optimizer is not allowed to modify the number or order of
6825execution of this ``load`` with other :ref:`volatile
6826operations <volatile>`.
6827
JF Bastiend1fb5852015-12-17 22:09:19 +00006828If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6829<ordering>` and optional ``singlethread`` argument. The ``release`` and
6830``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
6831produce :ref:`defined <memmodel>` results when they may see multiple atomic
6832stores. The type of the pointee must be an integer, pointer, or floating-point
6833type whose bit width is a power of two greater than or equal to eight and less
6834than or equal to a target-specific size limit. ``align`` must be explicitly
6835specified on atomic loads, and the load has undefined behavior if the alignment
6836is not set to a value which is at least the size in bytes of the
6837pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00006838
6839The optional constant ``align`` argument specifies the alignment of the
6840operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006841or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006842alignment for the target. It is the responsibility of the code emitter
6843to ensure that the alignment information is correct. Overestimating the
6844alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006845may produce less efficient code. An alignment of 1 is always safe. The
6846maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006847
6848The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006849metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006850``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006851metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006852that this load is not expected to be reused in the cache. The code
6853generator may select special instructions to save cache bandwidth, such
6854as the ``MOVNT`` instruction on x86.
6855
6856The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006857metadata name ``<index>`` corresponding to a metadata node with no
6858entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006859instruction tells the optimizer and code generator that the address
6860operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006861Being invariant does not imply that a location is dereferenceable,
6862but it does imply that once the location is known dereferenceable
6863its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006864
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006865The optional ``!invariant.group`` metadata must reference a single metadata name
6866 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6867
Philip Reamescdb72f32014-10-20 22:40:55 +00006868The optional ``!nonnull`` metadata must reference a single
6869metadata name ``<index>`` corresponding to a metadata node with no
6870entries. The existence of the ``!nonnull`` metadata on the
6871instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006872never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006873on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006874to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006875
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006876The optional ``!dereferenceable`` metadata must reference a single metadata
6877name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006878entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006879tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006880The number of bytes known to be dereferenceable is specified by the integer
6881value in the metadata node. This is analogous to the ''dereferenceable''
6882attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006883to loads of a pointer type.
6884
6885The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006886metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6887``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006888instruction tells the optimizer that the value loaded is known to be either
6889dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006890The number of bytes known to be dereferenceable is specified by the integer
6891value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6892attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006893to loads of a pointer type.
6894
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006895The optional ``!align`` metadata must reference a single metadata name
6896``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6897The existence of the ``!align`` metadata on the instruction tells the
6898optimizer that the value loaded is known to be aligned to a boundary specified
6899by the integer value in the metadata node. The alignment must be a power of 2.
6900This is analogous to the ''align'' attribute on parameters and return values.
6901This metadata can only be applied to loads of a pointer type.
6902
Sean Silvab084af42012-12-07 10:36:55 +00006903Semantics:
6904""""""""""
6905
6906The location of memory pointed to is loaded. If the value being loaded
6907is of scalar type then the number of bytes read does not exceed the
6908minimum number of bytes needed to hold all bits of the type. For
6909example, loading an ``i24`` reads at most three bytes. When loading a
6910value of a type like ``i20`` with a size that is not an integral number
6911of bytes, the result is undefined if the value was not originally
6912written using a store of the same type.
6913
6914Examples:
6915"""""""""
6916
6917.. code-block:: llvm
6918
Tim Northover675a0962014-06-13 14:24:23 +00006919 %ptr = alloca i32 ; yields i32*:ptr
6920 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006921 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006922
6923.. _i_store:
6924
6925'``store``' Instruction
6926^^^^^^^^^^^^^^^^^^^^^^^
6927
6928Syntax:
6929"""""""
6930
6931::
6932
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006933 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6934 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006935
6936Overview:
6937"""""""""
6938
6939The '``store``' instruction is used to write to memory.
6940
6941Arguments:
6942""""""""""
6943
Eli Benderskyca380842013-04-17 17:17:20 +00006944There are two arguments to the ``store`` instruction: a value to store
6945and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006946operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006947the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006948then the optimizer is not allowed to modify the number or order of
6949execution of this ``store`` with other :ref:`volatile
6950operations <volatile>`.
6951
JF Bastiend1fb5852015-12-17 22:09:19 +00006952If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
6953<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
6954``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
6955produce :ref:`defined <memmodel>` results when they may see multiple atomic
6956stores. The type of the pointee must be an integer, pointer, or floating-point
6957type whose bit width is a power of two greater than or equal to eight and less
6958than or equal to a target-specific size limit. ``align`` must be explicitly
6959specified on atomic stores, and the store has undefined behavior if the
6960alignment is not set to a value which is at least the size in bytes of the
6961pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00006962
Eli Benderskyca380842013-04-17 17:17:20 +00006963The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006964operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006965or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006966alignment for the target. It is the responsibility of the code emitter
6967to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006968alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006969alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006970safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006971
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006972The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00006973name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006974value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00006975tells the optimizer and code generator that this load is not expected to
6976be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00006977instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00006978x86.
6979
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006980The optional ``!invariant.group`` metadata must reference a
6981single metadata name ``<index>``. See ``invariant.group`` metadata.
6982
Sean Silvab084af42012-12-07 10:36:55 +00006983Semantics:
6984""""""""""
6985
Eli Benderskyca380842013-04-17 17:17:20 +00006986The contents of memory are updated to contain ``<value>`` at the
6987location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00006988of scalar type then the number of bytes written does not exceed the
6989minimum number of bytes needed to hold all bits of the type. For
6990example, storing an ``i24`` writes at most three bytes. When writing a
6991value of a type like ``i20`` with a size that is not an integral number
6992of bytes, it is unspecified what happens to the extra bits that do not
6993belong to the type, but they will typically be overwritten.
6994
6995Example:
6996""""""""
6997
6998.. code-block:: llvm
6999
Tim Northover675a0962014-06-13 14:24:23 +00007000 %ptr = alloca i32 ; yields i32*:ptr
7001 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007002 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007003
7004.. _i_fence:
7005
7006'``fence``' Instruction
7007^^^^^^^^^^^^^^^^^^^^^^^
7008
7009Syntax:
7010"""""""
7011
7012::
7013
Tim Northover675a0962014-06-13 14:24:23 +00007014 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007015
7016Overview:
7017"""""""""
7018
7019The '``fence``' instruction is used to introduce happens-before edges
7020between operations.
7021
7022Arguments:
7023""""""""""
7024
7025'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7026defines what *synchronizes-with* edges they add. They can only be given
7027``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7028
7029Semantics:
7030""""""""""
7031
7032A fence A which has (at least) ``release`` ordering semantics
7033*synchronizes with* a fence B with (at least) ``acquire`` ordering
7034semantics if and only if there exist atomic operations X and Y, both
7035operating on some atomic object M, such that A is sequenced before X, X
7036modifies M (either directly or through some side effect of a sequence
7037headed by X), Y is sequenced before B, and Y observes M. This provides a
7038*happens-before* dependency between A and B. Rather than an explicit
7039``fence``, one (but not both) of the atomic operations X or Y might
7040provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7041still *synchronize-with* the explicit ``fence`` and establish the
7042*happens-before* edge.
7043
7044A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7045``acquire`` and ``release`` semantics specified above, participates in
7046the global program order of other ``seq_cst`` operations and/or fences.
7047
7048The optional ":ref:`singlethread <singlethread>`" argument specifies
7049that the fence only synchronizes with other fences in the same thread.
7050(This is useful for interacting with signal handlers.)
7051
7052Example:
7053""""""""
7054
7055.. code-block:: llvm
7056
Tim Northover675a0962014-06-13 14:24:23 +00007057 fence acquire ; yields void
7058 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007059
7060.. _i_cmpxchg:
7061
7062'``cmpxchg``' Instruction
7063^^^^^^^^^^^^^^^^^^^^^^^^^
7064
7065Syntax:
7066"""""""
7067
7068::
7069
Tim Northover675a0962014-06-13 14:24:23 +00007070 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007071
7072Overview:
7073"""""""""
7074
7075The '``cmpxchg``' instruction is used to atomically modify memory. It
7076loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007077equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007078
7079Arguments:
7080""""""""""
7081
7082There are three arguments to the '``cmpxchg``' instruction: an address
7083to operate on, a value to compare to the value currently be at that
7084address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007085are equal. The type of '<cmp>' must be an integer or pointer type whose
7086bit width is a power of two greater than or equal to eight and less
7087than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7088have the same type, and the type of '<pointer>' must be a pointer to
7089that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7090optimizer is not allowed to modify the number or order of execution of
7091this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007092
Tim Northovere94a5182014-03-11 10:48:52 +00007093The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007094``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7095must be at least ``monotonic``, the ordering constraint on failure must be no
7096stronger than that on success, and the failure ordering cannot be either
7097``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007098
7099The optional "``singlethread``" argument declares that the ``cmpxchg``
7100is only atomic with respect to code (usually signal handlers) running in
7101the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7102respect to all other code in the system.
7103
7104The pointer passed into cmpxchg must have alignment greater than or
7105equal to the size in memory of the operand.
7106
7107Semantics:
7108""""""""""
7109
Tim Northover420a2162014-06-13 14:24:07 +00007110The contents of memory at the location specified by the '``<pointer>``' operand
7111is read and compared to '``<cmp>``'; if the read value is the equal, the
7112'``<new>``' is written. The original value at the location is returned, together
7113with a flag indicating success (true) or failure (false).
7114
7115If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7116permitted: the operation may not write ``<new>`` even if the comparison
7117matched.
7118
7119If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7120if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007121
Tim Northovere94a5182014-03-11 10:48:52 +00007122A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7123identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7124load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007125
7126Example:
7127""""""""
7128
7129.. code-block:: llvm
7130
7131 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007132 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007133 br label %loop
7134
7135 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007136 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007137 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007138 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007139 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7140 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007141 br i1 %success, label %done, label %loop
7142
7143 done:
7144 ...
7145
7146.. _i_atomicrmw:
7147
7148'``atomicrmw``' Instruction
7149^^^^^^^^^^^^^^^^^^^^^^^^^^^
7150
7151Syntax:
7152"""""""
7153
7154::
7155
Tim Northover675a0962014-06-13 14:24:23 +00007156 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007157
7158Overview:
7159"""""""""
7160
7161The '``atomicrmw``' instruction is used to atomically modify memory.
7162
7163Arguments:
7164""""""""""
7165
7166There are three arguments to the '``atomicrmw``' instruction: an
7167operation to apply, an address whose value to modify, an argument to the
7168operation. The operation must be one of the following keywords:
7169
7170- xchg
7171- add
7172- sub
7173- and
7174- nand
7175- or
7176- xor
7177- max
7178- min
7179- umax
7180- umin
7181
7182The type of '<value>' must be an integer type whose bit width is a power
7183of two greater than or equal to eight and less than or equal to a
7184target-specific size limit. The type of the '``<pointer>``' operand must
7185be a pointer to that type. If the ``atomicrmw`` is marked as
7186``volatile``, then the optimizer is not allowed to modify the number or
7187order of execution of this ``atomicrmw`` with other :ref:`volatile
7188operations <volatile>`.
7189
7190Semantics:
7191""""""""""
7192
7193The contents of memory at the location specified by the '``<pointer>``'
7194operand are atomically read, modified, and written back. The original
7195value at the location is returned. The modification is specified by the
7196operation argument:
7197
7198- xchg: ``*ptr = val``
7199- add: ``*ptr = *ptr + val``
7200- sub: ``*ptr = *ptr - val``
7201- and: ``*ptr = *ptr & val``
7202- nand: ``*ptr = ~(*ptr & val)``
7203- or: ``*ptr = *ptr | val``
7204- xor: ``*ptr = *ptr ^ val``
7205- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7206- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7207- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7208 comparison)
7209- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7210 comparison)
7211
7212Example:
7213""""""""
7214
7215.. code-block:: llvm
7216
Tim Northover675a0962014-06-13 14:24:23 +00007217 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007218
7219.. _i_getelementptr:
7220
7221'``getelementptr``' Instruction
7222^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7223
7224Syntax:
7225"""""""
7226
7227::
7228
David Blaikie16a97eb2015-03-04 22:02:58 +00007229 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7230 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7231 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007232
7233Overview:
7234"""""""""
7235
7236The '``getelementptr``' instruction is used to get the address of a
7237subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007238address calculation only and does not access memory. The instruction can also
7239be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007240
7241Arguments:
7242""""""""""
7243
David Blaikie16a97eb2015-03-04 22:02:58 +00007244The first argument is always a type used as the basis for the calculations.
7245The second argument is always a pointer or a vector of pointers, and is the
7246base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007247that indicate which of the elements of the aggregate object are indexed.
7248The interpretation of each index is dependent on the type being indexed
7249into. The first index always indexes the pointer value given as the
7250first argument, the second index indexes a value of the type pointed to
7251(not necessarily the value directly pointed to, since the first index
7252can be non-zero), etc. The first type indexed into must be a pointer
7253value, subsequent types can be arrays, vectors, and structs. Note that
7254subsequent types being indexed into can never be pointers, since that
7255would require loading the pointer before continuing calculation.
7256
7257The type of each index argument depends on the type it is indexing into.
7258When indexing into a (optionally packed) structure, only ``i32`` integer
7259**constants** are allowed (when using a vector of indices they must all
7260be the **same** ``i32`` integer constant). When indexing into an array,
7261pointer or vector, integers of any width are allowed, and they are not
7262required to be constant. These integers are treated as signed values
7263where relevant.
7264
7265For example, let's consider a C code fragment and how it gets compiled
7266to LLVM:
7267
7268.. code-block:: c
7269
7270 struct RT {
7271 char A;
7272 int B[10][20];
7273 char C;
7274 };
7275 struct ST {
7276 int X;
7277 double Y;
7278 struct RT Z;
7279 };
7280
7281 int *foo(struct ST *s) {
7282 return &s[1].Z.B[5][13];
7283 }
7284
7285The LLVM code generated by Clang is:
7286
7287.. code-block:: llvm
7288
7289 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7290 %struct.ST = type { i32, double, %struct.RT }
7291
7292 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7293 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007294 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007295 ret i32* %arrayidx
7296 }
7297
7298Semantics:
7299""""""""""
7300
7301In the example above, the first index is indexing into the
7302'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7303= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7304indexes into the third element of the structure, yielding a
7305'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7306structure. The third index indexes into the second element of the
7307structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7308dimensions of the array are subscripted into, yielding an '``i32``'
7309type. The '``getelementptr``' instruction returns a pointer to this
7310element, thus computing a value of '``i32*``' type.
7311
7312Note that it is perfectly legal to index partially through a structure,
7313returning a pointer to an inner element. Because of this, the LLVM code
7314for the given testcase is equivalent to:
7315
7316.. code-block:: llvm
7317
7318 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007319 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7320 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7321 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7322 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7323 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007324 ret i32* %t5
7325 }
7326
7327If the ``inbounds`` keyword is present, the result value of the
7328``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7329pointer is not an *in bounds* address of an allocated object, or if any
7330of the addresses that would be formed by successive addition of the
7331offsets implied by the indices to the base address with infinitely
7332precise signed arithmetic are not an *in bounds* address of that
7333allocated object. The *in bounds* addresses for an allocated object are
7334all the addresses that point into the object, plus the address one byte
7335past the end. In cases where the base is a vector of pointers the
7336``inbounds`` keyword applies to each of the computations element-wise.
7337
7338If the ``inbounds`` keyword is not present, the offsets are added to the
7339base address with silently-wrapping two's complement arithmetic. If the
7340offsets have a different width from the pointer, they are sign-extended
7341or truncated to the width of the pointer. The result value of the
7342``getelementptr`` may be outside the object pointed to by the base
7343pointer. The result value may not necessarily be used to access memory
7344though, even if it happens to point into allocated storage. See the
7345:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7346information.
7347
7348The getelementptr instruction is often confusing. For some more insight
7349into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7350
7351Example:
7352""""""""
7353
7354.. code-block:: llvm
7355
7356 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007357 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007358 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007359 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007360 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007361 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007362 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007363 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007364
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007365Vector of pointers:
7366"""""""""""""""""""
7367
7368The ``getelementptr`` returns a vector of pointers, instead of a single address,
7369when one or more of its arguments is a vector. In such cases, all vector
7370arguments should have the same number of elements, and every scalar argument
7371will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007372
7373.. code-block:: llvm
7374
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007375 ; All arguments are vectors:
7376 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7377 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007378
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007379 ; Add the same scalar offset to each pointer of a vector:
7380 ; A[i] = ptrs[i] + offset*sizeof(i8)
7381 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007382
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007383 ; Add distinct offsets to the same pointer:
7384 ; A[i] = ptr + offsets[i]*sizeof(i8)
7385 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007386
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007387 ; In all cases described above the type of the result is <4 x i8*>
7388
7389The two following instructions are equivalent:
7390
7391.. code-block:: llvm
7392
7393 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7394 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7395 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7396 <4 x i32> %ind4,
7397 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007398
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007399 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7400 i32 2, i32 1, <4 x i32> %ind4, i64 13
7401
7402Let's look at the C code, where the vector version of ``getelementptr``
7403makes sense:
7404
7405.. code-block:: c
7406
7407 // Let's assume that we vectorize the following loop:
7408 double *A, B; int *C;
7409 for (int i = 0; i < size; ++i) {
7410 A[i] = B[C[i]];
7411 }
7412
7413.. code-block:: llvm
7414
7415 ; get pointers for 8 elements from array B
7416 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7417 ; load 8 elements from array B into A
7418 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7419 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007420
7421Conversion Operations
7422---------------------
7423
7424The instructions in this category are the conversion instructions
7425(casting) which all take a single operand and a type. They perform
7426various bit conversions on the operand.
7427
7428'``trunc .. to``' Instruction
7429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7430
7431Syntax:
7432"""""""
7433
7434::
7435
7436 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7437
7438Overview:
7439"""""""""
7440
7441The '``trunc``' instruction truncates its operand to the type ``ty2``.
7442
7443Arguments:
7444""""""""""
7445
7446The '``trunc``' instruction takes a value to trunc, and a type to trunc
7447it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7448of the same number of integers. The bit size of the ``value`` must be
7449larger than the bit size of the destination type, ``ty2``. Equal sized
7450types are not allowed.
7451
7452Semantics:
7453""""""""""
7454
7455The '``trunc``' instruction truncates the high order bits in ``value``
7456and converts the remaining bits to ``ty2``. Since the source size must
7457be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7458It will always truncate bits.
7459
7460Example:
7461""""""""
7462
7463.. code-block:: llvm
7464
7465 %X = trunc i32 257 to i8 ; yields i8:1
7466 %Y = trunc i32 123 to i1 ; yields i1:true
7467 %Z = trunc i32 122 to i1 ; yields i1:false
7468 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7469
7470'``zext .. to``' Instruction
7471^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7472
7473Syntax:
7474"""""""
7475
7476::
7477
7478 <result> = zext <ty> <value> to <ty2> ; yields ty2
7479
7480Overview:
7481"""""""""
7482
7483The '``zext``' instruction zero extends its operand to type ``ty2``.
7484
7485Arguments:
7486""""""""""
7487
7488The '``zext``' instruction takes a value to cast, and a type to cast it
7489to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7490the same number of integers. The bit size of the ``value`` must be
7491smaller than the bit size of the destination type, ``ty2``.
7492
7493Semantics:
7494""""""""""
7495
7496The ``zext`` fills the high order bits of the ``value`` with zero bits
7497until it reaches the size of the destination type, ``ty2``.
7498
7499When zero extending from i1, the result will always be either 0 or 1.
7500
7501Example:
7502""""""""
7503
7504.. code-block:: llvm
7505
7506 %X = zext i32 257 to i64 ; yields i64:257
7507 %Y = zext i1 true to i32 ; yields i32:1
7508 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7509
7510'``sext .. to``' Instruction
7511^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7512
7513Syntax:
7514"""""""
7515
7516::
7517
7518 <result> = sext <ty> <value> to <ty2> ; yields ty2
7519
7520Overview:
7521"""""""""
7522
7523The '``sext``' sign extends ``value`` to the type ``ty2``.
7524
7525Arguments:
7526""""""""""
7527
7528The '``sext``' instruction takes a value to cast, and a type to cast it
7529to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7530the same number of integers. The bit size of the ``value`` must be
7531smaller than the bit size of the destination type, ``ty2``.
7532
7533Semantics:
7534""""""""""
7535
7536The '``sext``' instruction performs a sign extension by copying the sign
7537bit (highest order bit) of the ``value`` until it reaches the bit size
7538of the type ``ty2``.
7539
7540When sign extending from i1, the extension always results in -1 or 0.
7541
7542Example:
7543""""""""
7544
7545.. code-block:: llvm
7546
7547 %X = sext i8 -1 to i16 ; yields i16 :65535
7548 %Y = sext i1 true to i32 ; yields i32:-1
7549 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7550
7551'``fptrunc .. to``' Instruction
7552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7553
7554Syntax:
7555"""""""
7556
7557::
7558
7559 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7560
7561Overview:
7562"""""""""
7563
7564The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7565
7566Arguments:
7567""""""""""
7568
7569The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7570value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7571The size of ``value`` must be larger than the size of ``ty2``. This
7572implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7573
7574Semantics:
7575""""""""""
7576
Dan Liew50456fb2015-09-03 18:43:56 +00007577The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007578:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007579point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7580destination type, ``ty2``, then the results are undefined. If the cast produces
7581an inexact result, how rounding is performed (e.g. truncation, also known as
7582round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007583
7584Example:
7585""""""""
7586
7587.. code-block:: llvm
7588
7589 %X = fptrunc double 123.0 to float ; yields float:123.0
7590 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7591
7592'``fpext .. to``' Instruction
7593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7594
7595Syntax:
7596"""""""
7597
7598::
7599
7600 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7601
7602Overview:
7603"""""""""
7604
7605The '``fpext``' extends a floating point ``value`` to a larger floating
7606point value.
7607
7608Arguments:
7609""""""""""
7610
7611The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7612``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7613to. The source type must be smaller than the destination type.
7614
7615Semantics:
7616""""""""""
7617
7618The '``fpext``' instruction extends the ``value`` from a smaller
7619:ref:`floating point <t_floating>` type to a larger :ref:`floating
7620point <t_floating>` type. The ``fpext`` cannot be used to make a
7621*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7622*no-op cast* for a floating point cast.
7623
7624Example:
7625""""""""
7626
7627.. code-block:: llvm
7628
7629 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7630 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7631
7632'``fptoui .. to``' Instruction
7633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7634
7635Syntax:
7636"""""""
7637
7638::
7639
7640 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7641
7642Overview:
7643"""""""""
7644
7645The '``fptoui``' converts a floating point ``value`` to its unsigned
7646integer equivalent of type ``ty2``.
7647
7648Arguments:
7649""""""""""
7650
7651The '``fptoui``' instruction takes a value to cast, which must be a
7652scalar or vector :ref:`floating point <t_floating>` value, and a type to
7653cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7654``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7655type with the same number of elements as ``ty``
7656
7657Semantics:
7658""""""""""
7659
7660The '``fptoui``' instruction converts its :ref:`floating
7661point <t_floating>` operand into the nearest (rounding towards zero)
7662unsigned integer value. If the value cannot fit in ``ty2``, the results
7663are undefined.
7664
7665Example:
7666""""""""
7667
7668.. code-block:: llvm
7669
7670 %X = fptoui double 123.0 to i32 ; yields i32:123
7671 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7672 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7673
7674'``fptosi .. to``' Instruction
7675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7676
7677Syntax:
7678"""""""
7679
7680::
7681
7682 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7683
7684Overview:
7685"""""""""
7686
7687The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7688``value`` to type ``ty2``.
7689
7690Arguments:
7691""""""""""
7692
7693The '``fptosi``' instruction takes a value to cast, which must be a
7694scalar or vector :ref:`floating point <t_floating>` value, and a type to
7695cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7696``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7697type with the same number of elements as ``ty``
7698
7699Semantics:
7700""""""""""
7701
7702The '``fptosi``' instruction converts its :ref:`floating
7703point <t_floating>` operand into the nearest (rounding towards zero)
7704signed integer value. If the value cannot fit in ``ty2``, the results
7705are undefined.
7706
7707Example:
7708""""""""
7709
7710.. code-block:: llvm
7711
7712 %X = fptosi double -123.0 to i32 ; yields i32:-123
7713 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7714 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7715
7716'``uitofp .. to``' Instruction
7717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7718
7719Syntax:
7720"""""""
7721
7722::
7723
7724 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7725
7726Overview:
7727"""""""""
7728
7729The '``uitofp``' instruction regards ``value`` as an unsigned integer
7730and converts that value to the ``ty2`` type.
7731
7732Arguments:
7733""""""""""
7734
7735The '``uitofp``' instruction takes a value to cast, which must be a
7736scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7737``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7738``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7739type with the same number of elements as ``ty``
7740
7741Semantics:
7742""""""""""
7743
7744The '``uitofp``' instruction interprets its operand as an unsigned
7745integer quantity and converts it to the corresponding floating point
7746value. If the value cannot fit in the floating point value, the results
7747are undefined.
7748
7749Example:
7750""""""""
7751
7752.. code-block:: llvm
7753
7754 %X = uitofp i32 257 to float ; yields float:257.0
7755 %Y = uitofp i8 -1 to double ; yields double:255.0
7756
7757'``sitofp .. to``' Instruction
7758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7759
7760Syntax:
7761"""""""
7762
7763::
7764
7765 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7766
7767Overview:
7768"""""""""
7769
7770The '``sitofp``' instruction regards ``value`` as a signed integer and
7771converts that value to the ``ty2`` type.
7772
7773Arguments:
7774""""""""""
7775
7776The '``sitofp``' instruction takes a value to cast, which must be a
7777scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7778``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7779``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7780type with the same number of elements as ``ty``
7781
7782Semantics:
7783""""""""""
7784
7785The '``sitofp``' instruction interprets its operand as a signed integer
7786quantity and converts it to the corresponding floating point value. If
7787the value cannot fit in the floating point value, the results are
7788undefined.
7789
7790Example:
7791""""""""
7792
7793.. code-block:: llvm
7794
7795 %X = sitofp i32 257 to float ; yields float:257.0
7796 %Y = sitofp i8 -1 to double ; yields double:-1.0
7797
7798.. _i_ptrtoint:
7799
7800'``ptrtoint .. to``' Instruction
7801^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7802
7803Syntax:
7804"""""""
7805
7806::
7807
7808 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7809
7810Overview:
7811"""""""""
7812
7813The '``ptrtoint``' instruction converts the pointer or a vector of
7814pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7815
7816Arguments:
7817""""""""""
7818
7819The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007820a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007821type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7822a vector of integers type.
7823
7824Semantics:
7825""""""""""
7826
7827The '``ptrtoint``' instruction converts ``value`` to integer type
7828``ty2`` by interpreting the pointer value as an integer and either
7829truncating or zero extending that value to the size of the integer type.
7830If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7831``value`` is larger than ``ty2`` then a truncation is done. If they are
7832the same size, then nothing is done (*no-op cast*) other than a type
7833change.
7834
7835Example:
7836""""""""
7837
7838.. code-block:: llvm
7839
7840 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7841 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7842 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7843
7844.. _i_inttoptr:
7845
7846'``inttoptr .. to``' Instruction
7847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7848
7849Syntax:
7850"""""""
7851
7852::
7853
7854 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7855
7856Overview:
7857"""""""""
7858
7859The '``inttoptr``' instruction converts an integer ``value`` to a
7860pointer type, ``ty2``.
7861
7862Arguments:
7863""""""""""
7864
7865The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7866cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7867type.
7868
7869Semantics:
7870""""""""""
7871
7872The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7873applying either a zero extension or a truncation depending on the size
7874of the integer ``value``. If ``value`` is larger than the size of a
7875pointer then a truncation is done. If ``value`` is smaller than the size
7876of a pointer then a zero extension is done. If they are the same size,
7877nothing is done (*no-op cast*).
7878
7879Example:
7880""""""""
7881
7882.. code-block:: llvm
7883
7884 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7885 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7886 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7887 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7888
7889.. _i_bitcast:
7890
7891'``bitcast .. to``' Instruction
7892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7893
7894Syntax:
7895"""""""
7896
7897::
7898
7899 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7900
7901Overview:
7902"""""""""
7903
7904The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7905changing any bits.
7906
7907Arguments:
7908""""""""""
7909
7910The '``bitcast``' instruction takes a value to cast, which must be a
7911non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007912also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7913bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007914identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007915also be a pointer of the same size. This instruction supports bitwise
7916conversion of vectors to integers and to vectors of other types (as
7917long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007918
7919Semantics:
7920""""""""""
7921
Matt Arsenault24b49c42013-07-31 17:49:08 +00007922The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7923is always a *no-op cast* because no bits change with this
7924conversion. The conversion is done as if the ``value`` had been stored
7925to memory and read back as type ``ty2``. Pointer (or vector of
7926pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007927pointers) types with the same address space through this instruction.
7928To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7929or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007930
7931Example:
7932""""""""
7933
7934.. code-block:: llvm
7935
7936 %X = bitcast i8 255 to i8 ; yields i8 :-1
7937 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7938 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7939 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7940
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007941.. _i_addrspacecast:
7942
7943'``addrspacecast .. to``' Instruction
7944^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7945
7946Syntax:
7947"""""""
7948
7949::
7950
7951 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7952
7953Overview:
7954"""""""""
7955
7956The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7957address space ``n`` to type ``pty2`` in address space ``m``.
7958
7959Arguments:
7960""""""""""
7961
7962The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7963to cast and a pointer type to cast it to, which must have a different
7964address space.
7965
7966Semantics:
7967""""""""""
7968
7969The '``addrspacecast``' instruction converts the pointer value
7970``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00007971value modification, depending on the target and the address space
7972pair. Pointer conversions within the same address space must be
7973performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007974conversion is legal then both result and operand refer to the same memory
7975location.
7976
7977Example:
7978""""""""
7979
7980.. code-block:: llvm
7981
Matt Arsenault9c13dd02013-11-15 22:43:50 +00007982 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
7983 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
7984 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007985
Sean Silvab084af42012-12-07 10:36:55 +00007986.. _otherops:
7987
7988Other Operations
7989----------------
7990
7991The instructions in this category are the "miscellaneous" instructions,
7992which defy better classification.
7993
7994.. _i_icmp:
7995
7996'``icmp``' Instruction
7997^^^^^^^^^^^^^^^^^^^^^^
7998
7999Syntax:
8000"""""""
8001
8002::
8003
Tim Northover675a0962014-06-13 14:24:23 +00008004 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008005
8006Overview:
8007"""""""""
8008
8009The '``icmp``' instruction returns a boolean value or a vector of
8010boolean values based on comparison of its two integer, integer vector,
8011pointer, or pointer vector operands.
8012
8013Arguments:
8014""""""""""
8015
8016The '``icmp``' instruction takes three operands. The first operand is
8017the condition code indicating the kind of comparison to perform. It is
8018not a value, just a keyword. The possible condition code are:
8019
8020#. ``eq``: equal
8021#. ``ne``: not equal
8022#. ``ugt``: unsigned greater than
8023#. ``uge``: unsigned greater or equal
8024#. ``ult``: unsigned less than
8025#. ``ule``: unsigned less or equal
8026#. ``sgt``: signed greater than
8027#. ``sge``: signed greater or equal
8028#. ``slt``: signed less than
8029#. ``sle``: signed less or equal
8030
8031The remaining two arguments must be :ref:`integer <t_integer>` or
8032:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8033must also be identical types.
8034
8035Semantics:
8036""""""""""
8037
8038The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8039code given as ``cond``. The comparison performed always yields either an
8040:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8041
8042#. ``eq``: yields ``true`` if the operands are equal, ``false``
8043 otherwise. No sign interpretation is necessary or performed.
8044#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8045 otherwise. No sign interpretation is necessary or performed.
8046#. ``ugt``: interprets the operands as unsigned values and yields
8047 ``true`` if ``op1`` is greater than ``op2``.
8048#. ``uge``: interprets the operands as unsigned values and yields
8049 ``true`` if ``op1`` is greater than or equal to ``op2``.
8050#. ``ult``: interprets the operands as unsigned values and yields
8051 ``true`` if ``op1`` is less than ``op2``.
8052#. ``ule``: interprets the operands as unsigned values and yields
8053 ``true`` if ``op1`` is less than or equal to ``op2``.
8054#. ``sgt``: interprets the operands as signed values and yields ``true``
8055 if ``op1`` is greater than ``op2``.
8056#. ``sge``: interprets the operands as signed values and yields ``true``
8057 if ``op1`` is greater than or equal to ``op2``.
8058#. ``slt``: interprets the operands as signed values and yields ``true``
8059 if ``op1`` is less than ``op2``.
8060#. ``sle``: interprets the operands as signed values and yields ``true``
8061 if ``op1`` is less than or equal to ``op2``.
8062
8063If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8064are compared as if they were integers.
8065
8066If the operands are integer vectors, then they are compared element by
8067element. The result is an ``i1`` vector with the same number of elements
8068as the values being compared. Otherwise, the result is an ``i1``.
8069
8070Example:
8071""""""""
8072
8073.. code-block:: llvm
8074
8075 <result> = icmp eq i32 4, 5 ; yields: result=false
8076 <result> = icmp ne float* %X, %X ; yields: result=false
8077 <result> = icmp ult i16 4, 5 ; yields: result=true
8078 <result> = icmp sgt i16 4, 5 ; yields: result=false
8079 <result> = icmp ule i16 -4, 5 ; yields: result=false
8080 <result> = icmp sge i16 4, 5 ; yields: result=false
8081
8082Note that the code generator does not yet support vector types with the
8083``icmp`` instruction.
8084
8085.. _i_fcmp:
8086
8087'``fcmp``' Instruction
8088^^^^^^^^^^^^^^^^^^^^^^
8089
8090Syntax:
8091"""""""
8092
8093::
8094
James Molloy88eb5352015-07-10 12:52:00 +00008095 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008096
8097Overview:
8098"""""""""
8099
8100The '``fcmp``' instruction returns a boolean value or vector of boolean
8101values based on comparison of its operands.
8102
8103If the operands are floating point scalars, then the result type is a
8104boolean (:ref:`i1 <t_integer>`).
8105
8106If the operands are floating point vectors, then the result type is a
8107vector of boolean with the same number of elements as the operands being
8108compared.
8109
8110Arguments:
8111""""""""""
8112
8113The '``fcmp``' instruction takes three operands. The first operand is
8114the condition code indicating the kind of comparison to perform. It is
8115not a value, just a keyword. The possible condition code are:
8116
8117#. ``false``: no comparison, always returns false
8118#. ``oeq``: ordered and equal
8119#. ``ogt``: ordered and greater than
8120#. ``oge``: ordered and greater than or equal
8121#. ``olt``: ordered and less than
8122#. ``ole``: ordered and less than or equal
8123#. ``one``: ordered and not equal
8124#. ``ord``: ordered (no nans)
8125#. ``ueq``: unordered or equal
8126#. ``ugt``: unordered or greater than
8127#. ``uge``: unordered or greater than or equal
8128#. ``ult``: unordered or less than
8129#. ``ule``: unordered or less than or equal
8130#. ``une``: unordered or not equal
8131#. ``uno``: unordered (either nans)
8132#. ``true``: no comparison, always returns true
8133
8134*Ordered* means that neither operand is a QNAN while *unordered* means
8135that either operand may be a QNAN.
8136
8137Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8138point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8139type. They must have identical types.
8140
8141Semantics:
8142""""""""""
8143
8144The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8145condition code given as ``cond``. If the operands are vectors, then the
8146vectors are compared element by element. Each comparison performed
8147always yields an :ref:`i1 <t_integer>` result, as follows:
8148
8149#. ``false``: always yields ``false``, regardless of operands.
8150#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8151 is equal to ``op2``.
8152#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8153 is greater than ``op2``.
8154#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8155 is greater than or equal to ``op2``.
8156#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8157 is less than ``op2``.
8158#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8159 is less than or equal to ``op2``.
8160#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8161 is not equal to ``op2``.
8162#. ``ord``: yields ``true`` if both operands are not a QNAN.
8163#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8164 equal to ``op2``.
8165#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8166 greater than ``op2``.
8167#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8168 greater than or equal to ``op2``.
8169#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8170 less than ``op2``.
8171#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8172 less than or equal to ``op2``.
8173#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8174 not equal to ``op2``.
8175#. ``uno``: yields ``true`` if either operand is a QNAN.
8176#. ``true``: always yields ``true``, regardless of operands.
8177
James Molloy88eb5352015-07-10 12:52:00 +00008178The ``fcmp`` instruction can also optionally take any number of
8179:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8180otherwise unsafe floating point optimizations.
8181
8182Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8183only flags that have any effect on its semantics are those that allow
8184assumptions to be made about the values of input arguments; namely
8185``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8186
Sean Silvab084af42012-12-07 10:36:55 +00008187Example:
8188""""""""
8189
8190.. code-block:: llvm
8191
8192 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8193 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8194 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8195 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8196
8197Note that the code generator does not yet support vector types with the
8198``fcmp`` instruction.
8199
8200.. _i_phi:
8201
8202'``phi``' Instruction
8203^^^^^^^^^^^^^^^^^^^^^
8204
8205Syntax:
8206"""""""
8207
8208::
8209
8210 <result> = phi <ty> [ <val0>, <label0>], ...
8211
8212Overview:
8213"""""""""
8214
8215The '``phi``' instruction is used to implement the φ node in the SSA
8216graph representing the function.
8217
8218Arguments:
8219""""""""""
8220
8221The type of the incoming values is specified with the first type field.
8222After this, the '``phi``' instruction takes a list of pairs as
8223arguments, with one pair for each predecessor basic block of the current
8224block. Only values of :ref:`first class <t_firstclass>` type may be used as
8225the value arguments to the PHI node. Only labels may be used as the
8226label arguments.
8227
8228There must be no non-phi instructions between the start of a basic block
8229and the PHI instructions: i.e. PHI instructions must be first in a basic
8230block.
8231
8232For the purposes of the SSA form, the use of each incoming value is
8233deemed to occur on the edge from the corresponding predecessor block to
8234the current block (but after any definition of an '``invoke``'
8235instruction's return value on the same edge).
8236
8237Semantics:
8238""""""""""
8239
8240At runtime, the '``phi``' instruction logically takes on the value
8241specified by the pair corresponding to the predecessor basic block that
8242executed just prior to the current block.
8243
8244Example:
8245""""""""
8246
8247.. code-block:: llvm
8248
8249 Loop: ; Infinite loop that counts from 0 on up...
8250 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8251 %nextindvar = add i32 %indvar, 1
8252 br label %Loop
8253
8254.. _i_select:
8255
8256'``select``' Instruction
8257^^^^^^^^^^^^^^^^^^^^^^^^
8258
8259Syntax:
8260"""""""
8261
8262::
8263
8264 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8265
8266 selty is either i1 or {<N x i1>}
8267
8268Overview:
8269"""""""""
8270
8271The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008272condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008273
8274Arguments:
8275""""""""""
8276
8277The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8278values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008279class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008280
8281Semantics:
8282""""""""""
8283
8284If the condition is an i1 and it evaluates to 1, the instruction returns
8285the first value argument; otherwise, it returns the second value
8286argument.
8287
8288If the condition is a vector of i1, then the value arguments must be
8289vectors of the same size, and the selection is done element by element.
8290
David Majnemer40a0b592015-03-03 22:45:47 +00008291If the condition is an i1 and the value arguments are vectors of the
8292same size, then an entire vector is selected.
8293
Sean Silvab084af42012-12-07 10:36:55 +00008294Example:
8295""""""""
8296
8297.. code-block:: llvm
8298
8299 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8300
8301.. _i_call:
8302
8303'``call``' Instruction
8304^^^^^^^^^^^^^^^^^^^^^^
8305
8306Syntax:
8307"""""""
8308
8309::
8310
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008311 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008312 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008313
8314Overview:
8315"""""""""
8316
8317The '``call``' instruction represents a simple function call.
8318
8319Arguments:
8320""""""""""
8321
8322This instruction requires several arguments:
8323
Reid Kleckner5772b772014-04-24 20:14:34 +00008324#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008325 should perform tail call optimization. The ``tail`` marker is a hint that
8326 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008327 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008328 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008329
8330 #. The call will not cause unbounded stack growth if it is part of a
8331 recursive cycle in the call graph.
8332 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8333 forwarded in place.
8334
8335 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008336 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008337 rules:
8338
8339 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8340 or a pointer bitcast followed by a ret instruction.
8341 - The ret instruction must return the (possibly bitcasted) value
8342 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008343 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008344 parameters or return types may differ in pointee type, but not
8345 in address space.
8346 - The calling conventions of the caller and callee must match.
8347 - All ABI-impacting function attributes, such as sret, byval, inreg,
8348 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008349 - The callee must be varargs iff the caller is varargs. Bitcasting a
8350 non-varargs function to the appropriate varargs type is legal so
8351 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008352
8353 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8354 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008355
8356 - Caller and callee both have the calling convention ``fastcc``.
8357 - The call is in tail position (ret immediately follows call and ret
8358 uses value of call or is void).
8359 - Option ``-tailcallopt`` is enabled, or
8360 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008361 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008362 met. <CodeGenerator.html#tailcallopt>`_
8363
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008364#. The optional ``notail`` marker indicates that the optimizers should not add
8365 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8366 call optimization from being performed on the call.
8367
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008368#. The optional ``fast-math flags`` marker indicates that the call has one or more
8369 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8370 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8371 for calls that return a floating-point scalar or vector type.
8372
Sean Silvab084af42012-12-07 10:36:55 +00008373#. The optional "cconv" marker indicates which :ref:`calling
8374 convention <callingconv>` the call should use. If none is
8375 specified, the call defaults to using C calling conventions. The
8376 calling convention of the call must match the calling convention of
8377 the target function, or else the behavior is undefined.
8378#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8379 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8380 are valid here.
8381#. '``ty``': the type of the call instruction itself which is also the
8382 type of the return value. Functions that return no value are marked
8383 ``void``.
8384#. '``fnty``': shall be the signature of the pointer to function value
8385 being invoked. The argument types must match the types implied by
8386 this signature. This type can be omitted if the function is not
8387 varargs and if the function type does not return a pointer to a
8388 function.
8389#. '``fnptrval``': An LLVM value containing a pointer to a function to
8390 be invoked. In most cases, this is a direct function invocation, but
8391 indirect ``call``'s are just as possible, calling an arbitrary pointer
8392 to function value.
8393#. '``function args``': argument list whose types match the function
8394 signature argument types and parameter attributes. All arguments must
8395 be of :ref:`first class <t_firstclass>` type. If the function signature
8396 indicates the function accepts a variable number of arguments, the
8397 extra arguments can be specified.
8398#. The optional :ref:`function attributes <fnattrs>` list. Only
8399 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8400 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008401#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008402
8403Semantics:
8404""""""""""
8405
8406The '``call``' instruction is used to cause control flow to transfer to
8407a specified function, with its incoming arguments bound to the specified
8408values. Upon a '``ret``' instruction in the called function, control
8409flow continues with the instruction after the function call, and the
8410return value of the function is bound to the result argument.
8411
8412Example:
8413""""""""
8414
8415.. code-block:: llvm
8416
8417 %retval = call i32 @test(i32 %argc)
8418 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8419 %X = tail call i32 @foo() ; yields i32
8420 %Y = tail call fastcc i32 @foo() ; yields i32
8421 call void %foo(i8 97 signext)
8422
8423 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008424 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008425 %gr = extractvalue %struct.A %r, 0 ; yields i32
8426 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8427 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8428 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8429
8430llvm treats calls to some functions with names and arguments that match
8431the standard C99 library as being the C99 library functions, and may
8432perform optimizations or generate code for them under that assumption.
8433This is something we'd like to change in the future to provide better
8434support for freestanding environments and non-C-based languages.
8435
8436.. _i_va_arg:
8437
8438'``va_arg``' Instruction
8439^^^^^^^^^^^^^^^^^^^^^^^^
8440
8441Syntax:
8442"""""""
8443
8444::
8445
8446 <resultval> = va_arg <va_list*> <arglist>, <argty>
8447
8448Overview:
8449"""""""""
8450
8451The '``va_arg``' instruction is used to access arguments passed through
8452the "variable argument" area of a function call. It is used to implement
8453the ``va_arg`` macro in C.
8454
8455Arguments:
8456""""""""""
8457
8458This instruction takes a ``va_list*`` value and the type of the
8459argument. It returns a value of the specified argument type and
8460increments the ``va_list`` to point to the next argument. The actual
8461type of ``va_list`` is target specific.
8462
8463Semantics:
8464""""""""""
8465
8466The '``va_arg``' instruction loads an argument of the specified type
8467from the specified ``va_list`` and causes the ``va_list`` to point to
8468the next argument. For more information, see the variable argument
8469handling :ref:`Intrinsic Functions <int_varargs>`.
8470
8471It is legal for this instruction to be called in a function which does
8472not take a variable number of arguments, for example, the ``vfprintf``
8473function.
8474
8475``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8476function <intrinsics>` because it takes a type as an argument.
8477
8478Example:
8479""""""""
8480
8481See the :ref:`variable argument processing <int_varargs>` section.
8482
8483Note that the code generator does not yet fully support va\_arg on many
8484targets. Also, it does not currently support va\_arg with aggregate
8485types on any target.
8486
8487.. _i_landingpad:
8488
8489'``landingpad``' Instruction
8490^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8491
8492Syntax:
8493"""""""
8494
8495::
8496
David Majnemer7fddecc2015-06-17 20:52:32 +00008497 <resultval> = landingpad <resultty> <clause>+
8498 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008499
8500 <clause> := catch <type> <value>
8501 <clause> := filter <array constant type> <array constant>
8502
8503Overview:
8504"""""""""
8505
8506The '``landingpad``' instruction is used by `LLVM's exception handling
8507system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008508is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008509code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008510defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008511re-entry to the function. The ``resultval`` has the type ``resultty``.
8512
8513Arguments:
8514""""""""""
8515
David Majnemer7fddecc2015-06-17 20:52:32 +00008516The optional
Sean Silvab084af42012-12-07 10:36:55 +00008517``cleanup`` flag indicates that the landing pad block is a cleanup.
8518
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008519A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008520contains the global variable representing the "type" that may be caught
8521or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8522clause takes an array constant as its argument. Use
8523"``[0 x i8**] undef``" for a filter which cannot throw. The
8524'``landingpad``' instruction must contain *at least* one ``clause`` or
8525the ``cleanup`` flag.
8526
8527Semantics:
8528""""""""""
8529
8530The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008531:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008532therefore the "result type" of the ``landingpad`` instruction. As with
8533calling conventions, how the personality function results are
8534represented in LLVM IR is target specific.
8535
8536The clauses are applied in order from top to bottom. If two
8537``landingpad`` instructions are merged together through inlining, the
8538clauses from the calling function are appended to the list of clauses.
8539When the call stack is being unwound due to an exception being thrown,
8540the exception is compared against each ``clause`` in turn. If it doesn't
8541match any of the clauses, and the ``cleanup`` flag is not set, then
8542unwinding continues further up the call stack.
8543
8544The ``landingpad`` instruction has several restrictions:
8545
8546- A landing pad block is a basic block which is the unwind destination
8547 of an '``invoke``' instruction.
8548- A landing pad block must have a '``landingpad``' instruction as its
8549 first non-PHI instruction.
8550- There can be only one '``landingpad``' instruction within the landing
8551 pad block.
8552- A basic block that is not a landing pad block may not include a
8553 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008554
8555Example:
8556""""""""
8557
8558.. code-block:: llvm
8559
8560 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008561 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008562 catch i8** @_ZTIi
8563 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008564 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008565 cleanup
8566 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008567 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008568 catch i8** @_ZTIi
8569 filter [1 x i8**] [@_ZTId]
8570
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008571.. _i_catchpad:
8572
8573'``catchpad``' Instruction
8574^^^^^^^^^^^^^^^^^^^^^^^^^^
8575
8576Syntax:
8577"""""""
8578
8579::
8580
8581 <resultval> = catchpad within <catchswitch> [<args>*]
8582
8583Overview:
8584"""""""""
8585
8586The '``catchpad``' instruction is used by `LLVM's exception handling
8587system <ExceptionHandling.html#overview>`_ to specify that a basic block
8588begins a catch handler --- one where a personality routine attempts to transfer
8589control to catch an exception.
8590
8591Arguments:
8592""""""""""
8593
8594The ``catchswitch`` operand must always be a token produced by a
8595:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8596ensures that each ``catchpad`` has exactly one predecessor block, and it always
8597terminates in a ``catchswitch``.
8598
8599The ``args`` correspond to whatever information the personality routine
8600requires to know if this is an appropriate handler for the exception. Control
8601will transfer to the ``catchpad`` if this is the first appropriate handler for
8602the exception.
8603
8604The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8605``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8606pads.
8607
8608Semantics:
8609""""""""""
8610
8611When the call stack is being unwound due to an exception being thrown, the
8612exception is compared against the ``args``. If it doesn't match, control will
8613not reach the ``catchpad`` instruction. The representation of ``args`` is
8614entirely target and personality function-specific.
8615
8616Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8617instruction must be the first non-phi of its parent basic block.
8618
8619The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8620instructions is described in the
8621`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8622
8623When a ``catchpad`` has been "entered" but not yet "exited" (as
8624described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8625it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8626that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8627
8628Example:
8629""""""""
8630
8631.. code-block:: llvm
8632
8633 dispatch:
8634 %cs = catchswitch within none [label %handler0] unwind to caller
8635 ;; A catch block which can catch an integer.
8636 handler0:
8637 %tok = catchpad within %cs [i8** @_ZTIi]
8638
David Majnemer654e1302015-07-31 17:58:14 +00008639.. _i_cleanuppad:
8640
8641'``cleanuppad``' Instruction
8642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8643
8644Syntax:
8645"""""""
8646
8647::
8648
David Majnemer8a1c45d2015-12-12 05:38:55 +00008649 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008650
8651Overview:
8652"""""""""
8653
8654The '``cleanuppad``' instruction is used by `LLVM's exception handling
8655system <ExceptionHandling.html#overview>`_ to specify that a basic block
8656is a cleanup block --- one where a personality routine attempts to
8657transfer control to run cleanup actions.
8658The ``args`` correspond to whatever additional
8659information the :ref:`personality function <personalityfn>` requires to
8660execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008661The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008662match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8663The ``parent`` argument is the token of the funclet that contains the
8664``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8665this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008666
8667Arguments:
8668""""""""""
8669
8670The instruction takes a list of arbitrary values which are interpreted
8671by the :ref:`personality function <personalityfn>`.
8672
8673Semantics:
8674""""""""""
8675
David Majnemer654e1302015-07-31 17:58:14 +00008676When the call stack is being unwound due to an exception being thrown,
8677the :ref:`personality function <personalityfn>` transfers control to the
8678``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008679As with calling conventions, how the personality function results are
8680represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008681
8682The ``cleanuppad`` instruction has several restrictions:
8683
8684- A cleanup block is a basic block which is the unwind destination of
8685 an exceptional instruction.
8686- A cleanup block must have a '``cleanuppad``' instruction as its
8687 first non-PHI instruction.
8688- There can be only one '``cleanuppad``' instruction within the
8689 cleanup block.
8690- A basic block that is not a cleanup block may not include a
8691 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008692
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008693When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8694described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8695it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8696that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008697
David Majnemer654e1302015-07-31 17:58:14 +00008698Example:
8699""""""""
8700
8701.. code-block:: llvm
8702
David Majnemer8a1c45d2015-12-12 05:38:55 +00008703 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008704
Sean Silvab084af42012-12-07 10:36:55 +00008705.. _intrinsics:
8706
8707Intrinsic Functions
8708===================
8709
8710LLVM supports the notion of an "intrinsic function". These functions
8711have well known names and semantics and are required to follow certain
8712restrictions. Overall, these intrinsics represent an extension mechanism
8713for the LLVM language that does not require changing all of the
8714transformations in LLVM when adding to the language (or the bitcode
8715reader/writer, the parser, etc...).
8716
8717Intrinsic function names must all start with an "``llvm.``" prefix. This
8718prefix is reserved in LLVM for intrinsic names; thus, function names may
8719not begin with this prefix. Intrinsic functions must always be external
8720functions: you cannot define the body of intrinsic functions. Intrinsic
8721functions may only be used in call or invoke instructions: it is illegal
8722to take the address of an intrinsic function. Additionally, because
8723intrinsic functions are part of the LLVM language, it is required if any
8724are added that they be documented here.
8725
8726Some intrinsic functions can be overloaded, i.e., the intrinsic
8727represents a family of functions that perform the same operation but on
8728different data types. Because LLVM can represent over 8 million
8729different integer types, overloading is used commonly to allow an
8730intrinsic function to operate on any integer type. One or more of the
8731argument types or the result type can be overloaded to accept any
8732integer type. Argument types may also be defined as exactly matching a
8733previous argument's type or the result type. This allows an intrinsic
8734function which accepts multiple arguments, but needs all of them to be
8735of the same type, to only be overloaded with respect to a single
8736argument or the result.
8737
8738Overloaded intrinsics will have the names of its overloaded argument
8739types encoded into its function name, each preceded by a period. Only
8740those types which are overloaded result in a name suffix. Arguments
8741whose type is matched against another type do not. For example, the
8742``llvm.ctpop`` function can take an integer of any width and returns an
8743integer of exactly the same integer width. This leads to a family of
8744functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8745``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8746overloaded, and only one type suffix is required. Because the argument's
8747type is matched against the return type, it does not require its own
8748name suffix.
8749
8750To learn how to add an intrinsic function, please see the `Extending
8751LLVM Guide <ExtendingLLVM.html>`_.
8752
8753.. _int_varargs:
8754
8755Variable Argument Handling Intrinsics
8756-------------------------------------
8757
8758Variable argument support is defined in LLVM with the
8759:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8760functions. These functions are related to the similarly named macros
8761defined in the ``<stdarg.h>`` header file.
8762
8763All of these functions operate on arguments that use a target-specific
8764value type "``va_list``". The LLVM assembly language reference manual
8765does not define what this type is, so all transformations should be
8766prepared to handle these functions regardless of the type used.
8767
8768This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8769variable argument handling intrinsic functions are used.
8770
8771.. code-block:: llvm
8772
Tim Northoverab60bb92014-11-02 01:21:51 +00008773 ; This struct is different for every platform. For most platforms,
8774 ; it is merely an i8*.
8775 %struct.va_list = type { i8* }
8776
8777 ; For Unix x86_64 platforms, va_list is the following struct:
8778 ; %struct.va_list = type { i32, i32, i8*, i8* }
8779
Sean Silvab084af42012-12-07 10:36:55 +00008780 define i32 @test(i32 %X, ...) {
8781 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008782 %ap = alloca %struct.va_list
8783 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008784 call void @llvm.va_start(i8* %ap2)
8785
8786 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008787 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008788
8789 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8790 %aq = alloca i8*
8791 %aq2 = bitcast i8** %aq to i8*
8792 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8793 call void @llvm.va_end(i8* %aq2)
8794
8795 ; Stop processing of arguments.
8796 call void @llvm.va_end(i8* %ap2)
8797 ret i32 %tmp
8798 }
8799
8800 declare void @llvm.va_start(i8*)
8801 declare void @llvm.va_copy(i8*, i8*)
8802 declare void @llvm.va_end(i8*)
8803
8804.. _int_va_start:
8805
8806'``llvm.va_start``' Intrinsic
8807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8808
8809Syntax:
8810"""""""
8811
8812::
8813
Nick Lewycky04f6de02013-09-11 22:04:52 +00008814 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008815
8816Overview:
8817"""""""""
8818
8819The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8820subsequent use by ``va_arg``.
8821
8822Arguments:
8823""""""""""
8824
8825The argument is a pointer to a ``va_list`` element to initialize.
8826
8827Semantics:
8828""""""""""
8829
8830The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8831available in C. In a target-dependent way, it initializes the
8832``va_list`` element to which the argument points, so that the next call
8833to ``va_arg`` will produce the first variable argument passed to the
8834function. Unlike the C ``va_start`` macro, this intrinsic does not need
8835to know the last argument of the function as the compiler can figure
8836that out.
8837
8838'``llvm.va_end``' Intrinsic
8839^^^^^^^^^^^^^^^^^^^^^^^^^^^
8840
8841Syntax:
8842"""""""
8843
8844::
8845
8846 declare void @llvm.va_end(i8* <arglist>)
8847
8848Overview:
8849"""""""""
8850
8851The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8852initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8853
8854Arguments:
8855""""""""""
8856
8857The argument is a pointer to a ``va_list`` to destroy.
8858
8859Semantics:
8860""""""""""
8861
8862The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8863available in C. In a target-dependent way, it destroys the ``va_list``
8864element to which the argument points. Calls to
8865:ref:`llvm.va_start <int_va_start>` and
8866:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8867``llvm.va_end``.
8868
8869.. _int_va_copy:
8870
8871'``llvm.va_copy``' Intrinsic
8872^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8873
8874Syntax:
8875"""""""
8876
8877::
8878
8879 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8880
8881Overview:
8882"""""""""
8883
8884The '``llvm.va_copy``' intrinsic copies the current argument position
8885from the source argument list to the destination argument list.
8886
8887Arguments:
8888""""""""""
8889
8890The first argument is a pointer to a ``va_list`` element to initialize.
8891The second argument is a pointer to a ``va_list`` element to copy from.
8892
8893Semantics:
8894""""""""""
8895
8896The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8897available in C. In a target-dependent way, it copies the source
8898``va_list`` element into the destination ``va_list`` element. This
8899intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8900arbitrarily complex and require, for example, memory allocation.
8901
8902Accurate Garbage Collection Intrinsics
8903--------------------------------------
8904
Philip Reamesc5b0f562015-02-25 23:52:06 +00008905LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008906(GC) requires the frontend to generate code containing appropriate intrinsic
8907calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008908intrinsics in a manner which is appropriate for the target collector.
8909
Sean Silvab084af42012-12-07 10:36:55 +00008910These intrinsics allow identification of :ref:`GC roots on the
8911stack <int_gcroot>`, as well as garbage collector implementations that
8912require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008913Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008914these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008915details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008916
Philip Reamesf80bbff2015-02-25 23:45:20 +00008917Experimental Statepoint Intrinsics
8918^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8919
8920LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008921collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008922to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008923:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008924differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008925<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008926described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008927
8928.. _int_gcroot:
8929
8930'``llvm.gcroot``' Intrinsic
8931^^^^^^^^^^^^^^^^^^^^^^^^^^^
8932
8933Syntax:
8934"""""""
8935
8936::
8937
8938 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8939
8940Overview:
8941"""""""""
8942
8943The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8944the code generator, and allows some metadata to be associated with it.
8945
8946Arguments:
8947""""""""""
8948
8949The first argument specifies the address of a stack object that contains
8950the root pointer. The second pointer (which must be either a constant or
8951a global value address) contains the meta-data to be associated with the
8952root.
8953
8954Semantics:
8955""""""""""
8956
8957At runtime, a call to this intrinsic stores a null pointer into the
8958"ptrloc" location. At compile-time, the code generator generates
8959information to allow the runtime to find the pointer at GC safe points.
8960The '``llvm.gcroot``' intrinsic may only be used in a function which
8961:ref:`specifies a GC algorithm <gc>`.
8962
8963.. _int_gcread:
8964
8965'``llvm.gcread``' Intrinsic
8966^^^^^^^^^^^^^^^^^^^^^^^^^^^
8967
8968Syntax:
8969"""""""
8970
8971::
8972
8973 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8974
8975Overview:
8976"""""""""
8977
8978The '``llvm.gcread``' intrinsic identifies reads of references from heap
8979locations, allowing garbage collector implementations that require read
8980barriers.
8981
8982Arguments:
8983""""""""""
8984
8985The second argument is the address to read from, which should be an
8986address allocated from the garbage collector. The first object is a
8987pointer to the start of the referenced object, if needed by the language
8988runtime (otherwise null).
8989
8990Semantics:
8991""""""""""
8992
8993The '``llvm.gcread``' intrinsic has the same semantics as a load
8994instruction, but may be replaced with substantially more complex code by
8995the garbage collector runtime, as needed. The '``llvm.gcread``'
8996intrinsic may only be used in a function which :ref:`specifies a GC
8997algorithm <gc>`.
8998
8999.. _int_gcwrite:
9000
9001'``llvm.gcwrite``' Intrinsic
9002^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9003
9004Syntax:
9005"""""""
9006
9007::
9008
9009 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9010
9011Overview:
9012"""""""""
9013
9014The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9015locations, allowing garbage collector implementations that require write
9016barriers (such as generational or reference counting collectors).
9017
9018Arguments:
9019""""""""""
9020
9021The first argument is the reference to store, the second is the start of
9022the object to store it to, and the third is the address of the field of
9023Obj to store to. If the runtime does not require a pointer to the
9024object, Obj may be null.
9025
9026Semantics:
9027""""""""""
9028
9029The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9030instruction, but may be replaced with substantially more complex code by
9031the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9032intrinsic may only be used in a function which :ref:`specifies a GC
9033algorithm <gc>`.
9034
9035Code Generator Intrinsics
9036-------------------------
9037
9038These intrinsics are provided by LLVM to expose special features that
9039may only be implemented with code generator support.
9040
9041'``llvm.returnaddress``' Intrinsic
9042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9043
9044Syntax:
9045"""""""
9046
9047::
9048
9049 declare i8 *@llvm.returnaddress(i32 <level>)
9050
9051Overview:
9052"""""""""
9053
9054The '``llvm.returnaddress``' intrinsic attempts to compute a
9055target-specific value indicating the return address of the current
9056function or one of its callers.
9057
9058Arguments:
9059""""""""""
9060
9061The argument to this intrinsic indicates which function to return the
9062address for. Zero indicates the calling function, one indicates its
9063caller, etc. The argument is **required** to be a constant integer
9064value.
9065
9066Semantics:
9067""""""""""
9068
9069The '``llvm.returnaddress``' intrinsic either returns a pointer
9070indicating the return address of the specified call frame, or zero if it
9071cannot be identified. The value returned by this intrinsic is likely to
9072be incorrect or 0 for arguments other than zero, so it should only be
9073used for debugging purposes.
9074
9075Note that calling this intrinsic does not prevent function inlining or
9076other aggressive transformations, so the value returned may not be that
9077of the obvious source-language caller.
9078
9079'``llvm.frameaddress``' Intrinsic
9080^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9081
9082Syntax:
9083"""""""
9084
9085::
9086
9087 declare i8* @llvm.frameaddress(i32 <level>)
9088
9089Overview:
9090"""""""""
9091
9092The '``llvm.frameaddress``' intrinsic attempts to return the
9093target-specific frame pointer value for the specified stack frame.
9094
9095Arguments:
9096""""""""""
9097
9098The argument to this intrinsic indicates which function to return the
9099frame pointer for. Zero indicates the calling function, one indicates
9100its caller, etc. The argument is **required** to be a constant integer
9101value.
9102
9103Semantics:
9104""""""""""
9105
9106The '``llvm.frameaddress``' intrinsic either returns a pointer
9107indicating the frame address of the specified call frame, or zero if it
9108cannot be identified. The value returned by this intrinsic is likely to
9109be incorrect or 0 for arguments other than zero, so it should only be
9110used for debugging purposes.
9111
9112Note that calling this intrinsic does not prevent function inlining or
9113other aggressive transformations, so the value returned may not be that
9114of the obvious source-language caller.
9115
Reid Kleckner60381792015-07-07 22:25:32 +00009116'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9118
9119Syntax:
9120"""""""
9121
9122::
9123
Reid Kleckner60381792015-07-07 22:25:32 +00009124 declare void @llvm.localescape(...)
9125 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009126
9127Overview:
9128"""""""""
9129
Reid Kleckner60381792015-07-07 22:25:32 +00009130The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9131allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009132live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009133computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009134
9135Arguments:
9136""""""""""
9137
Reid Kleckner60381792015-07-07 22:25:32 +00009138All arguments to '``llvm.localescape``' must be pointers to static allocas or
9139casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009140once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009141
Reid Kleckner60381792015-07-07 22:25:32 +00009142The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009143bitcasted pointer to a function defined in the current module. The code
9144generator cannot determine the frame allocation offset of functions defined in
9145other modules.
9146
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009147The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9148call frame that is currently live. The return value of '``llvm.localaddress``'
9149is one way to produce such a value, but various runtimes also expose a suitable
9150pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009151
Reid Kleckner60381792015-07-07 22:25:32 +00009152The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9153'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009154
Reid Klecknere9b89312015-01-13 00:48:10 +00009155Semantics:
9156""""""""""
9157
Reid Kleckner60381792015-07-07 22:25:32 +00009158These intrinsics allow a group of functions to share access to a set of local
9159stack allocations of a one parent function. The parent function may call the
9160'``llvm.localescape``' intrinsic once from the function entry block, and the
9161child functions can use '``llvm.localrecover``' to access the escaped allocas.
9162The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9163the escaped allocas are allocated, which would break attempts to use
9164'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009165
Renato Golinc7aea402014-05-06 16:51:25 +00009166.. _int_read_register:
9167.. _int_write_register:
9168
9169'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9170^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9171
9172Syntax:
9173"""""""
9174
9175::
9176
9177 declare i32 @llvm.read_register.i32(metadata)
9178 declare i64 @llvm.read_register.i64(metadata)
9179 declare void @llvm.write_register.i32(metadata, i32 @value)
9180 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009181 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009182
9183Overview:
9184"""""""""
9185
9186The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9187provides access to the named register. The register must be valid on
9188the architecture being compiled to. The type needs to be compatible
9189with the register being read.
9190
9191Semantics:
9192""""""""""
9193
9194The '``llvm.read_register``' intrinsic returns the current value of the
9195register, where possible. The '``llvm.write_register``' intrinsic sets
9196the current value of the register, where possible.
9197
9198This is useful to implement named register global variables that need
9199to always be mapped to a specific register, as is common practice on
9200bare-metal programs including OS kernels.
9201
9202The compiler doesn't check for register availability or use of the used
9203register in surrounding code, including inline assembly. Because of that,
9204allocatable registers are not supported.
9205
9206Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009207architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009208work is needed to support other registers and even more so, allocatable
9209registers.
9210
Sean Silvab084af42012-12-07 10:36:55 +00009211.. _int_stacksave:
9212
9213'``llvm.stacksave``' Intrinsic
9214^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9215
9216Syntax:
9217"""""""
9218
9219::
9220
9221 declare i8* @llvm.stacksave()
9222
9223Overview:
9224"""""""""
9225
9226The '``llvm.stacksave``' intrinsic is used to remember the current state
9227of the function stack, for use with
9228:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9229implementing language features like scoped automatic variable sized
9230arrays in C99.
9231
9232Semantics:
9233""""""""""
9234
9235This intrinsic returns a opaque pointer value that can be passed to
9236:ref:`llvm.stackrestore <int_stackrestore>`. When an
9237``llvm.stackrestore`` intrinsic is executed with a value saved from
9238``llvm.stacksave``, it effectively restores the state of the stack to
9239the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9240practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9241were allocated after the ``llvm.stacksave`` was executed.
9242
9243.. _int_stackrestore:
9244
9245'``llvm.stackrestore``' Intrinsic
9246^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9247
9248Syntax:
9249"""""""
9250
9251::
9252
9253 declare void @llvm.stackrestore(i8* %ptr)
9254
9255Overview:
9256"""""""""
9257
9258The '``llvm.stackrestore``' intrinsic is used to restore the state of
9259the function stack to the state it was in when the corresponding
9260:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9261useful for implementing language features like scoped automatic variable
9262sized arrays in C99.
9263
9264Semantics:
9265""""""""""
9266
9267See the description for :ref:`llvm.stacksave <int_stacksave>`.
9268
Yury Gribovd7dbb662015-12-01 11:40:55 +00009269.. _int_get_dynamic_area_offset:
9270
9271'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009272^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009273
9274Syntax:
9275"""""""
9276
9277::
9278
9279 declare i32 @llvm.get.dynamic.area.offset.i32()
9280 declare i64 @llvm.get.dynamic.area.offset.i64()
9281
9282 Overview:
9283 """""""""
9284
9285 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9286 get the offset from native stack pointer to the address of the most
9287 recent dynamic alloca on the caller's stack. These intrinsics are
9288 intendend for use in combination with
9289 :ref:`llvm.stacksave <int_stacksave>` to get a
9290 pointer to the most recent dynamic alloca. This is useful, for example,
9291 for AddressSanitizer's stack unpoisoning routines.
9292
9293Semantics:
9294""""""""""
9295
9296 These intrinsics return a non-negative integer value that can be used to
9297 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9298 on the caller's stack. In particular, for targets where stack grows downwards,
9299 adding this offset to the native stack pointer would get the address of the most
9300 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9301 complicated, because substracting this value from stack pointer would get the address
9302 one past the end of the most recent dynamic alloca.
9303
9304 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9305 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9306 compile-time-known constant value.
9307
9308 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9309 must match the target's generic address space's (address space 0) pointer type.
9310
Sean Silvab084af42012-12-07 10:36:55 +00009311'``llvm.prefetch``' Intrinsic
9312^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9313
9314Syntax:
9315"""""""
9316
9317::
9318
9319 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9320
9321Overview:
9322"""""""""
9323
9324The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9325insert a prefetch instruction if supported; otherwise, it is a noop.
9326Prefetches have no effect on the behavior of the program but can change
9327its performance characteristics.
9328
9329Arguments:
9330""""""""""
9331
9332``address`` is the address to be prefetched, ``rw`` is the specifier
9333determining if the fetch should be for a read (0) or write (1), and
9334``locality`` is a temporal locality specifier ranging from (0) - no
9335locality, to (3) - extremely local keep in cache. The ``cache type``
9336specifies whether the prefetch is performed on the data (1) or
9337instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9338arguments must be constant integers.
9339
9340Semantics:
9341""""""""""
9342
9343This intrinsic does not modify the behavior of the program. In
9344particular, prefetches cannot trap and do not produce a value. On
9345targets that support this intrinsic, the prefetch can provide hints to
9346the processor cache for better performance.
9347
9348'``llvm.pcmarker``' Intrinsic
9349^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9350
9351Syntax:
9352"""""""
9353
9354::
9355
9356 declare void @llvm.pcmarker(i32 <id>)
9357
9358Overview:
9359"""""""""
9360
9361The '``llvm.pcmarker``' intrinsic is a method to export a Program
9362Counter (PC) in a region of code to simulators and other tools. The
9363method is target specific, but it is expected that the marker will use
9364exported symbols to transmit the PC of the marker. The marker makes no
9365guarantees that it will remain with any specific instruction after
9366optimizations. It is possible that the presence of a marker will inhibit
9367optimizations. The intended use is to be inserted after optimizations to
9368allow correlations of simulation runs.
9369
9370Arguments:
9371""""""""""
9372
9373``id`` is a numerical id identifying the marker.
9374
9375Semantics:
9376""""""""""
9377
9378This intrinsic does not modify the behavior of the program. Backends
9379that do not support this intrinsic may ignore it.
9380
9381'``llvm.readcyclecounter``' Intrinsic
9382^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9383
9384Syntax:
9385"""""""
9386
9387::
9388
9389 declare i64 @llvm.readcyclecounter()
9390
9391Overview:
9392"""""""""
9393
9394The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9395counter register (or similar low latency, high accuracy clocks) on those
9396targets that support it. On X86, it should map to RDTSC. On Alpha, it
9397should map to RPCC. As the backing counters overflow quickly (on the
9398order of 9 seconds on alpha), this should only be used for small
9399timings.
9400
9401Semantics:
9402""""""""""
9403
9404When directly supported, reading the cycle counter should not modify any
9405memory. Implementations are allowed to either return a application
9406specific value or a system wide value. On backends without support, this
9407is lowered to a constant 0.
9408
Tim Northoverbc933082013-05-23 19:11:20 +00009409Note that runtime support may be conditional on the privilege-level code is
9410running at and the host platform.
9411
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009412'``llvm.clear_cache``' Intrinsic
9413^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9414
9415Syntax:
9416"""""""
9417
9418::
9419
9420 declare void @llvm.clear_cache(i8*, i8*)
9421
9422Overview:
9423"""""""""
9424
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009425The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9426in the specified range to the execution unit of the processor. On
9427targets with non-unified instruction and data cache, the implementation
9428flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009429
9430Semantics:
9431""""""""""
9432
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009433On platforms with coherent instruction and data caches (e.g. x86), this
9434intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009435cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009436instructions or a system call, if cache flushing requires special
9437privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009438
Sean Silvad02bf3e2014-04-07 22:29:53 +00009439The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009440time library.
Renato Golin93010e62014-03-26 14:01:32 +00009441
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009442This instrinsic does *not* empty the instruction pipeline. Modifications
9443of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009444
Justin Bogner61ba2e32014-12-08 18:02:35 +00009445'``llvm.instrprof_increment``' Intrinsic
9446^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9447
9448Syntax:
9449"""""""
9450
9451::
9452
9453 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9454 i32 <num-counters>, i32 <index>)
9455
9456Overview:
9457"""""""""
9458
9459The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9460frontend for use with instrumentation based profiling. These will be
9461lowered by the ``-instrprof`` pass to generate execution counts of a
9462program at runtime.
9463
9464Arguments:
9465""""""""""
9466
9467The first argument is a pointer to a global variable containing the
9468name of the entity being instrumented. This should generally be the
9469(mangled) function name for a set of counters.
9470
9471The second argument is a hash value that can be used by the consumer
9472of the profile data to detect changes to the instrumented source, and
9473the third is the number of counters associated with ``name``. It is an
9474error if ``hash`` or ``num-counters`` differ between two instances of
9475``instrprof_increment`` that refer to the same name.
9476
9477The last argument refers to which of the counters for ``name`` should
9478be incremented. It should be a value between 0 and ``num-counters``.
9479
9480Semantics:
9481""""""""""
9482
9483This intrinsic represents an increment of a profiling counter. It will
9484cause the ``-instrprof`` pass to generate the appropriate data
9485structures and the code to increment the appropriate value, in a
9486format that can be written out by a compiler runtime and consumed via
9487the ``llvm-profdata`` tool.
9488
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009489'``llvm.instrprof_value_profile``' Intrinsic
9490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9491
9492Syntax:
9493"""""""
9494
9495::
9496
9497 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9498 i64 <value>, i32 <value_kind>,
9499 i32 <index>)
9500
9501Overview:
9502"""""""""
9503
9504The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9505frontend for use with instrumentation based profiling. This will be
9506lowered by the ``-instrprof`` pass to find out the target values,
9507instrumented expressions take in a program at runtime.
9508
9509Arguments:
9510""""""""""
9511
9512The first argument is a pointer to a global variable containing the
9513name of the entity being instrumented. ``name`` should generally be the
9514(mangled) function name for a set of counters.
9515
9516The second argument is a hash value that can be used by the consumer
9517of the profile data to detect changes to the instrumented source. It
9518is an error if ``hash`` differs between two instances of
9519``llvm.instrprof_*`` that refer to the same name.
9520
9521The third argument is the value of the expression being profiled. The profiled
9522expression's value should be representable as an unsigned 64-bit value. The
9523fourth argument represents the kind of value profiling that is being done. The
9524supported value profiling kinds are enumerated through the
9525``InstrProfValueKind`` type declared in the
9526``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9527index of the instrumented expression within ``name``. It should be >= 0.
9528
9529Semantics:
9530""""""""""
9531
9532This intrinsic represents the point where a call to a runtime routine
9533should be inserted for value profiling of target expressions. ``-instrprof``
9534pass will generate the appropriate data structures and replace the
9535``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9536runtime library with proper arguments.
9537
Sean Silvab084af42012-12-07 10:36:55 +00009538Standard C Library Intrinsics
9539-----------------------------
9540
9541LLVM provides intrinsics for a few important standard C library
9542functions. These intrinsics allow source-language front-ends to pass
9543information about the alignment of the pointer arguments to the code
9544generator, providing opportunity for more efficient code generation.
9545
9546.. _int_memcpy:
9547
9548'``llvm.memcpy``' Intrinsic
9549^^^^^^^^^^^^^^^^^^^^^^^^^^^
9550
9551Syntax:
9552"""""""
9553
9554This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9555integer bit width and for different address spaces. Not all targets
9556support all bit widths however.
9557
9558::
9559
9560 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9561 i32 <len>, i32 <align>, i1 <isvolatile>)
9562 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9563 i64 <len>, i32 <align>, i1 <isvolatile>)
9564
9565Overview:
9566"""""""""
9567
9568The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9569source location to the destination location.
9570
9571Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9572intrinsics do not return a value, takes extra alignment/isvolatile
9573arguments and the pointers can be in specified address spaces.
9574
9575Arguments:
9576""""""""""
9577
9578The first argument is a pointer to the destination, the second is a
9579pointer to the source. The third argument is an integer argument
9580specifying the number of bytes to copy, the fourth argument is the
9581alignment of the source and destination locations, and the fifth is a
9582boolean indicating a volatile access.
9583
9584If the call to this intrinsic has an alignment value that is not 0 or 1,
9585then the caller guarantees that both the source and destination pointers
9586are aligned to that boundary.
9587
9588If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9589a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9590very cleanly specified and it is unwise to depend on it.
9591
9592Semantics:
9593""""""""""
9594
9595The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9596source location to the destination location, which are not allowed to
9597overlap. It copies "len" bytes of memory over. If the argument is known
9598to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009599argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009600
9601'``llvm.memmove``' Intrinsic
9602^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9603
9604Syntax:
9605"""""""
9606
9607This is an overloaded intrinsic. You can use llvm.memmove on any integer
9608bit width and for different address space. Not all targets support all
9609bit widths however.
9610
9611::
9612
9613 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9614 i32 <len>, i32 <align>, i1 <isvolatile>)
9615 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9616 i64 <len>, i32 <align>, i1 <isvolatile>)
9617
9618Overview:
9619"""""""""
9620
9621The '``llvm.memmove.*``' intrinsics move a block of memory from the
9622source location to the destination location. It is similar to the
9623'``llvm.memcpy``' intrinsic but allows the two memory locations to
9624overlap.
9625
9626Note that, unlike the standard libc function, the ``llvm.memmove.*``
9627intrinsics do not return a value, takes extra alignment/isvolatile
9628arguments and the pointers can be in specified address spaces.
9629
9630Arguments:
9631""""""""""
9632
9633The first argument is a pointer to the destination, the second is a
9634pointer to the source. The third argument is an integer argument
9635specifying the number of bytes to copy, the fourth argument is the
9636alignment of the source and destination locations, and the fifth is a
9637boolean indicating a volatile access.
9638
9639If the call to this intrinsic has an alignment value that is not 0 or 1,
9640then the caller guarantees that the source and destination pointers are
9641aligned to that boundary.
9642
9643If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9644is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9645not very cleanly specified and it is unwise to depend on it.
9646
9647Semantics:
9648""""""""""
9649
9650The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9651source location to the destination location, which may overlap. It
9652copies "len" bytes of memory over. If the argument is known to be
9653aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009654otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009655
9656'``llvm.memset.*``' Intrinsics
9657^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9658
9659Syntax:
9660"""""""
9661
9662This is an overloaded intrinsic. You can use llvm.memset on any integer
9663bit width and for different address spaces. However, not all targets
9664support all bit widths.
9665
9666::
9667
9668 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9669 i32 <len>, i32 <align>, i1 <isvolatile>)
9670 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9671 i64 <len>, i32 <align>, i1 <isvolatile>)
9672
9673Overview:
9674"""""""""
9675
9676The '``llvm.memset.*``' intrinsics fill a block of memory with a
9677particular byte value.
9678
9679Note that, unlike the standard libc function, the ``llvm.memset``
9680intrinsic does not return a value and takes extra alignment/volatile
9681arguments. Also, the destination can be in an arbitrary address space.
9682
9683Arguments:
9684""""""""""
9685
9686The first argument is a pointer to the destination to fill, the second
9687is the byte value with which to fill it, the third argument is an
9688integer argument specifying the number of bytes to fill, and the fourth
9689argument is the known alignment of the destination location.
9690
9691If the call to this intrinsic has an alignment value that is not 0 or 1,
9692then the caller guarantees that the destination pointer is aligned to
9693that boundary.
9694
9695If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9696a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9697very cleanly specified and it is unwise to depend on it.
9698
9699Semantics:
9700""""""""""
9701
9702The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9703at the destination location. If the argument is known to be aligned to
9704some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009705it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009706
9707'``llvm.sqrt.*``' Intrinsic
9708^^^^^^^^^^^^^^^^^^^^^^^^^^^
9709
9710Syntax:
9711"""""""
9712
9713This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9714floating point or vector of floating point type. Not all targets support
9715all types however.
9716
9717::
9718
9719 declare float @llvm.sqrt.f32(float %Val)
9720 declare double @llvm.sqrt.f64(double %Val)
9721 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9722 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9723 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9724
9725Overview:
9726"""""""""
9727
9728The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9729returning the same value as the libm '``sqrt``' functions would. Unlike
9730``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9731negative numbers other than -0.0 (which allows for better optimization,
9732because there is no need to worry about errno being set).
9733``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9734
9735Arguments:
9736""""""""""
9737
9738The argument and return value are floating point numbers of the same
9739type.
9740
9741Semantics:
9742""""""""""
9743
9744This function returns the sqrt of the specified operand if it is a
9745nonnegative floating point number.
9746
9747'``llvm.powi.*``' Intrinsic
9748^^^^^^^^^^^^^^^^^^^^^^^^^^^
9749
9750Syntax:
9751"""""""
9752
9753This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9754floating point or vector of floating point type. Not all targets support
9755all types however.
9756
9757::
9758
9759 declare float @llvm.powi.f32(float %Val, i32 %power)
9760 declare double @llvm.powi.f64(double %Val, i32 %power)
9761 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9762 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9763 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9764
9765Overview:
9766"""""""""
9767
9768The '``llvm.powi.*``' intrinsics return the first operand raised to the
9769specified (positive or negative) power. The order of evaluation of
9770multiplications is not defined. When a vector of floating point type is
9771used, the second argument remains a scalar integer value.
9772
9773Arguments:
9774""""""""""
9775
9776The second argument is an integer power, and the first is a value to
9777raise to that power.
9778
9779Semantics:
9780""""""""""
9781
9782This function returns the first value raised to the second power with an
9783unspecified sequence of rounding operations.
9784
9785'``llvm.sin.*``' Intrinsic
9786^^^^^^^^^^^^^^^^^^^^^^^^^^
9787
9788Syntax:
9789"""""""
9790
9791This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9792floating point or vector of floating point type. Not all targets support
9793all types however.
9794
9795::
9796
9797 declare float @llvm.sin.f32(float %Val)
9798 declare double @llvm.sin.f64(double %Val)
9799 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9800 declare fp128 @llvm.sin.f128(fp128 %Val)
9801 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9802
9803Overview:
9804"""""""""
9805
9806The '``llvm.sin.*``' intrinsics return the sine of the operand.
9807
9808Arguments:
9809""""""""""
9810
9811The argument and return value are floating point numbers of the same
9812type.
9813
9814Semantics:
9815""""""""""
9816
9817This function returns the sine of the specified operand, returning the
9818same values as the libm ``sin`` functions would, and handles error
9819conditions in the same way.
9820
9821'``llvm.cos.*``' Intrinsic
9822^^^^^^^^^^^^^^^^^^^^^^^^^^
9823
9824Syntax:
9825"""""""
9826
9827This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9828floating point or vector of floating point type. Not all targets support
9829all types however.
9830
9831::
9832
9833 declare float @llvm.cos.f32(float %Val)
9834 declare double @llvm.cos.f64(double %Val)
9835 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9836 declare fp128 @llvm.cos.f128(fp128 %Val)
9837 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9838
9839Overview:
9840"""""""""
9841
9842The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9843
9844Arguments:
9845""""""""""
9846
9847The argument and return value are floating point numbers of the same
9848type.
9849
9850Semantics:
9851""""""""""
9852
9853This function returns the cosine of the specified operand, returning the
9854same values as the libm ``cos`` functions would, and handles error
9855conditions in the same way.
9856
9857'``llvm.pow.*``' Intrinsic
9858^^^^^^^^^^^^^^^^^^^^^^^^^^
9859
9860Syntax:
9861"""""""
9862
9863This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9864floating point or vector of floating point type. Not all targets support
9865all types however.
9866
9867::
9868
9869 declare float @llvm.pow.f32(float %Val, float %Power)
9870 declare double @llvm.pow.f64(double %Val, double %Power)
9871 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9872 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9873 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9874
9875Overview:
9876"""""""""
9877
9878The '``llvm.pow.*``' intrinsics return the first operand raised to the
9879specified (positive or negative) power.
9880
9881Arguments:
9882""""""""""
9883
9884The second argument is a floating point power, and the first is a value
9885to raise to that power.
9886
9887Semantics:
9888""""""""""
9889
9890This function returns the first value raised to the second power,
9891returning the same values as the libm ``pow`` functions would, and
9892handles error conditions in the same way.
9893
9894'``llvm.exp.*``' Intrinsic
9895^^^^^^^^^^^^^^^^^^^^^^^^^^
9896
9897Syntax:
9898"""""""
9899
9900This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9901floating point or vector of floating point type. Not all targets support
9902all types however.
9903
9904::
9905
9906 declare float @llvm.exp.f32(float %Val)
9907 declare double @llvm.exp.f64(double %Val)
9908 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9909 declare fp128 @llvm.exp.f128(fp128 %Val)
9910 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9911
9912Overview:
9913"""""""""
9914
9915The '``llvm.exp.*``' intrinsics perform the exp function.
9916
9917Arguments:
9918""""""""""
9919
9920The argument and return value are floating point numbers of the same
9921type.
9922
9923Semantics:
9924""""""""""
9925
9926This function returns the same values as the libm ``exp`` functions
9927would, and handles error conditions in the same way.
9928
9929'``llvm.exp2.*``' Intrinsic
9930^^^^^^^^^^^^^^^^^^^^^^^^^^^
9931
9932Syntax:
9933"""""""
9934
9935This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9936floating point or vector of floating point type. Not all targets support
9937all types however.
9938
9939::
9940
9941 declare float @llvm.exp2.f32(float %Val)
9942 declare double @llvm.exp2.f64(double %Val)
9943 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9944 declare fp128 @llvm.exp2.f128(fp128 %Val)
9945 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9946
9947Overview:
9948"""""""""
9949
9950The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9951
9952Arguments:
9953""""""""""
9954
9955The argument and return value are floating point numbers of the same
9956type.
9957
9958Semantics:
9959""""""""""
9960
9961This function returns the same values as the libm ``exp2`` functions
9962would, and handles error conditions in the same way.
9963
9964'``llvm.log.*``' Intrinsic
9965^^^^^^^^^^^^^^^^^^^^^^^^^^
9966
9967Syntax:
9968"""""""
9969
9970This is an overloaded intrinsic. You can use ``llvm.log`` on any
9971floating point or vector of floating point type. Not all targets support
9972all types however.
9973
9974::
9975
9976 declare float @llvm.log.f32(float %Val)
9977 declare double @llvm.log.f64(double %Val)
9978 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9979 declare fp128 @llvm.log.f128(fp128 %Val)
9980 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9981
9982Overview:
9983"""""""""
9984
9985The '``llvm.log.*``' intrinsics perform the log function.
9986
9987Arguments:
9988""""""""""
9989
9990The argument and return value are floating point numbers of the same
9991type.
9992
9993Semantics:
9994""""""""""
9995
9996This function returns the same values as the libm ``log`` functions
9997would, and handles error conditions in the same way.
9998
9999'``llvm.log10.*``' Intrinsic
10000^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10001
10002Syntax:
10003"""""""
10004
10005This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10006floating point or vector of floating point type. Not all targets support
10007all types however.
10008
10009::
10010
10011 declare float @llvm.log10.f32(float %Val)
10012 declare double @llvm.log10.f64(double %Val)
10013 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10014 declare fp128 @llvm.log10.f128(fp128 %Val)
10015 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10016
10017Overview:
10018"""""""""
10019
10020The '``llvm.log10.*``' intrinsics perform the log10 function.
10021
10022Arguments:
10023""""""""""
10024
10025The argument and return value are floating point numbers of the same
10026type.
10027
10028Semantics:
10029""""""""""
10030
10031This function returns the same values as the libm ``log10`` functions
10032would, and handles error conditions in the same way.
10033
10034'``llvm.log2.*``' Intrinsic
10035^^^^^^^^^^^^^^^^^^^^^^^^^^^
10036
10037Syntax:
10038"""""""
10039
10040This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10041floating point or vector of floating point type. Not all targets support
10042all types however.
10043
10044::
10045
10046 declare float @llvm.log2.f32(float %Val)
10047 declare double @llvm.log2.f64(double %Val)
10048 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10049 declare fp128 @llvm.log2.f128(fp128 %Val)
10050 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10051
10052Overview:
10053"""""""""
10054
10055The '``llvm.log2.*``' intrinsics perform the log2 function.
10056
10057Arguments:
10058""""""""""
10059
10060The argument and return value are floating point numbers of the same
10061type.
10062
10063Semantics:
10064""""""""""
10065
10066This function returns the same values as the libm ``log2`` functions
10067would, and handles error conditions in the same way.
10068
10069'``llvm.fma.*``' Intrinsic
10070^^^^^^^^^^^^^^^^^^^^^^^^^^
10071
10072Syntax:
10073"""""""
10074
10075This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10076floating point or vector of floating point type. Not all targets support
10077all types however.
10078
10079::
10080
10081 declare float @llvm.fma.f32(float %a, float %b, float %c)
10082 declare double @llvm.fma.f64(double %a, double %b, double %c)
10083 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10084 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10085 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10086
10087Overview:
10088"""""""""
10089
10090The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10091operation.
10092
10093Arguments:
10094""""""""""
10095
10096The argument and return value are floating point numbers of the same
10097type.
10098
10099Semantics:
10100""""""""""
10101
10102This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010103would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010104
10105'``llvm.fabs.*``' Intrinsic
10106^^^^^^^^^^^^^^^^^^^^^^^^^^^
10107
10108Syntax:
10109"""""""
10110
10111This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10112floating point or vector of floating point type. Not all targets support
10113all types however.
10114
10115::
10116
10117 declare float @llvm.fabs.f32(float %Val)
10118 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010119 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010120 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010121 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010122
10123Overview:
10124"""""""""
10125
10126The '``llvm.fabs.*``' intrinsics return the absolute value of the
10127operand.
10128
10129Arguments:
10130""""""""""
10131
10132The argument and return value are floating point numbers of the same
10133type.
10134
10135Semantics:
10136""""""""""
10137
10138This function returns the same values as the libm ``fabs`` functions
10139would, and handles error conditions in the same way.
10140
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010141'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010142^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010143
10144Syntax:
10145"""""""
10146
10147This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10148floating point or vector of floating point type. Not all targets support
10149all types however.
10150
10151::
10152
Matt Arsenault64313c92014-10-22 18:25:02 +000010153 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10154 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10155 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10156 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10157 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010158
10159Overview:
10160"""""""""
10161
10162The '``llvm.minnum.*``' intrinsics return the minimum of the two
10163arguments.
10164
10165
10166Arguments:
10167""""""""""
10168
10169The arguments and return value are floating point numbers of the same
10170type.
10171
10172Semantics:
10173""""""""""
10174
10175Follows the IEEE-754 semantics for minNum, which also match for libm's
10176fmin.
10177
10178If either operand is a NaN, returns the other non-NaN operand. Returns
10179NaN only if both operands are NaN. If the operands compare equal,
10180returns a value that compares equal to both operands. This means that
10181fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10182
10183'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010184^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010185
10186Syntax:
10187"""""""
10188
10189This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10190floating point or vector of floating point type. Not all targets support
10191all types however.
10192
10193::
10194
Matt Arsenault64313c92014-10-22 18:25:02 +000010195 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10196 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10197 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10198 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10199 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010200
10201Overview:
10202"""""""""
10203
10204The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10205arguments.
10206
10207
10208Arguments:
10209""""""""""
10210
10211The arguments and return value are floating point numbers of the same
10212type.
10213
10214Semantics:
10215""""""""""
10216Follows the IEEE-754 semantics for maxNum, which also match for libm's
10217fmax.
10218
10219If either operand is a NaN, returns the other non-NaN operand. Returns
10220NaN only if both operands are NaN. If the operands compare equal,
10221returns a value that compares equal to both operands. This means that
10222fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10223
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010224'``llvm.copysign.*``' Intrinsic
10225^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10226
10227Syntax:
10228"""""""
10229
10230This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10231floating point or vector of floating point type. Not all targets support
10232all types however.
10233
10234::
10235
10236 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10237 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10238 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10239 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10240 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10241
10242Overview:
10243"""""""""
10244
10245The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10246first operand and the sign of the second operand.
10247
10248Arguments:
10249""""""""""
10250
10251The arguments and return value are floating point numbers of the same
10252type.
10253
10254Semantics:
10255""""""""""
10256
10257This function returns the same values as the libm ``copysign``
10258functions would, and handles error conditions in the same way.
10259
Sean Silvab084af42012-12-07 10:36:55 +000010260'``llvm.floor.*``' Intrinsic
10261^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10262
10263Syntax:
10264"""""""
10265
10266This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10267floating point or vector of floating point type. Not all targets support
10268all types however.
10269
10270::
10271
10272 declare float @llvm.floor.f32(float %Val)
10273 declare double @llvm.floor.f64(double %Val)
10274 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10275 declare fp128 @llvm.floor.f128(fp128 %Val)
10276 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10277
10278Overview:
10279"""""""""
10280
10281The '``llvm.floor.*``' intrinsics return the floor of the operand.
10282
10283Arguments:
10284""""""""""
10285
10286The argument and return value are floating point numbers of the same
10287type.
10288
10289Semantics:
10290""""""""""
10291
10292This function returns the same values as the libm ``floor`` functions
10293would, and handles error conditions in the same way.
10294
10295'``llvm.ceil.*``' Intrinsic
10296^^^^^^^^^^^^^^^^^^^^^^^^^^^
10297
10298Syntax:
10299"""""""
10300
10301This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10302floating point or vector of floating point type. Not all targets support
10303all types however.
10304
10305::
10306
10307 declare float @llvm.ceil.f32(float %Val)
10308 declare double @llvm.ceil.f64(double %Val)
10309 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10310 declare fp128 @llvm.ceil.f128(fp128 %Val)
10311 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10312
10313Overview:
10314"""""""""
10315
10316The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10317
10318Arguments:
10319""""""""""
10320
10321The argument and return value are floating point numbers of the same
10322type.
10323
10324Semantics:
10325""""""""""
10326
10327This function returns the same values as the libm ``ceil`` functions
10328would, and handles error conditions in the same way.
10329
10330'``llvm.trunc.*``' Intrinsic
10331^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10332
10333Syntax:
10334"""""""
10335
10336This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10337floating point or vector of floating point type. Not all targets support
10338all types however.
10339
10340::
10341
10342 declare float @llvm.trunc.f32(float %Val)
10343 declare double @llvm.trunc.f64(double %Val)
10344 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10345 declare fp128 @llvm.trunc.f128(fp128 %Val)
10346 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10347
10348Overview:
10349"""""""""
10350
10351The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10352nearest integer not larger in magnitude than the operand.
10353
10354Arguments:
10355""""""""""
10356
10357The argument and return value are floating point numbers of the same
10358type.
10359
10360Semantics:
10361""""""""""
10362
10363This function returns the same values as the libm ``trunc`` functions
10364would, and handles error conditions in the same way.
10365
10366'``llvm.rint.*``' Intrinsic
10367^^^^^^^^^^^^^^^^^^^^^^^^^^^
10368
10369Syntax:
10370"""""""
10371
10372This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10373floating point or vector of floating point type. Not all targets support
10374all types however.
10375
10376::
10377
10378 declare float @llvm.rint.f32(float %Val)
10379 declare double @llvm.rint.f64(double %Val)
10380 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10381 declare fp128 @llvm.rint.f128(fp128 %Val)
10382 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10383
10384Overview:
10385"""""""""
10386
10387The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10388nearest integer. It may raise an inexact floating-point exception if the
10389operand isn't an integer.
10390
10391Arguments:
10392""""""""""
10393
10394The argument and return value are floating point numbers of the same
10395type.
10396
10397Semantics:
10398""""""""""
10399
10400This function returns the same values as the libm ``rint`` functions
10401would, and handles error conditions in the same way.
10402
10403'``llvm.nearbyint.*``' Intrinsic
10404^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10405
10406Syntax:
10407"""""""
10408
10409This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10410floating point or vector of floating point type. Not all targets support
10411all types however.
10412
10413::
10414
10415 declare float @llvm.nearbyint.f32(float %Val)
10416 declare double @llvm.nearbyint.f64(double %Val)
10417 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10418 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10419 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10420
10421Overview:
10422"""""""""
10423
10424The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10425nearest integer.
10426
10427Arguments:
10428""""""""""
10429
10430The argument and return value are floating point numbers of the same
10431type.
10432
10433Semantics:
10434""""""""""
10435
10436This function returns the same values as the libm ``nearbyint``
10437functions would, and handles error conditions in the same way.
10438
Hal Finkel171817e2013-08-07 22:49:12 +000010439'``llvm.round.*``' Intrinsic
10440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10441
10442Syntax:
10443"""""""
10444
10445This is an overloaded intrinsic. You can use ``llvm.round`` on any
10446floating point or vector of floating point type. Not all targets support
10447all types however.
10448
10449::
10450
10451 declare float @llvm.round.f32(float %Val)
10452 declare double @llvm.round.f64(double %Val)
10453 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10454 declare fp128 @llvm.round.f128(fp128 %Val)
10455 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10456
10457Overview:
10458"""""""""
10459
10460The '``llvm.round.*``' intrinsics returns the operand rounded to the
10461nearest integer.
10462
10463Arguments:
10464""""""""""
10465
10466The argument and return value are floating point numbers of the same
10467type.
10468
10469Semantics:
10470""""""""""
10471
10472This function returns the same values as the libm ``round``
10473functions would, and handles error conditions in the same way.
10474
Sean Silvab084af42012-12-07 10:36:55 +000010475Bit Manipulation Intrinsics
10476---------------------------
10477
10478LLVM provides intrinsics for a few important bit manipulation
10479operations. These allow efficient code generation for some algorithms.
10480
James Molloy90111f72015-11-12 12:29:09 +000010481'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010483
10484Syntax:
10485"""""""
10486
10487This is an overloaded intrinsic function. You can use bitreverse on any
10488integer type.
10489
10490::
10491
10492 declare i16 @llvm.bitreverse.i16(i16 <id>)
10493 declare i32 @llvm.bitreverse.i32(i32 <id>)
10494 declare i64 @llvm.bitreverse.i64(i64 <id>)
10495
10496Overview:
10497"""""""""
10498
10499The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010500bitpattern of an integer value; for example ``0b10110110`` becomes
10501``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010502
10503Semantics:
10504""""""""""
10505
10506The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10507``M`` in the input moved to bit ``N-M`` in the output.
10508
Sean Silvab084af42012-12-07 10:36:55 +000010509'``llvm.bswap.*``' Intrinsics
10510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10511
10512Syntax:
10513"""""""
10514
10515This is an overloaded intrinsic function. You can use bswap on any
10516integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10517
10518::
10519
10520 declare i16 @llvm.bswap.i16(i16 <id>)
10521 declare i32 @llvm.bswap.i32(i32 <id>)
10522 declare i64 @llvm.bswap.i64(i64 <id>)
10523
10524Overview:
10525"""""""""
10526
10527The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10528values with an even number of bytes (positive multiple of 16 bits).
10529These are useful for performing operations on data that is not in the
10530target's native byte order.
10531
10532Semantics:
10533""""""""""
10534
10535The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10536and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10537intrinsic returns an i32 value that has the four bytes of the input i32
10538swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10539returned i32 will have its bytes in 3, 2, 1, 0 order. The
10540``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10541concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10542respectively).
10543
10544'``llvm.ctpop.*``' Intrinsic
10545^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10546
10547Syntax:
10548"""""""
10549
10550This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10551bit width, or on any vector with integer elements. Not all targets
10552support all bit widths or vector types, however.
10553
10554::
10555
10556 declare i8 @llvm.ctpop.i8(i8 <src>)
10557 declare i16 @llvm.ctpop.i16(i16 <src>)
10558 declare i32 @llvm.ctpop.i32(i32 <src>)
10559 declare i64 @llvm.ctpop.i64(i64 <src>)
10560 declare i256 @llvm.ctpop.i256(i256 <src>)
10561 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10562
10563Overview:
10564"""""""""
10565
10566The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10567in a value.
10568
10569Arguments:
10570""""""""""
10571
10572The only argument is the value to be counted. The argument may be of any
10573integer type, or a vector with integer elements. The return type must
10574match the argument type.
10575
10576Semantics:
10577""""""""""
10578
10579The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10580each element of a vector.
10581
10582'``llvm.ctlz.*``' Intrinsic
10583^^^^^^^^^^^^^^^^^^^^^^^^^^^
10584
10585Syntax:
10586"""""""
10587
10588This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10589integer bit width, or any vector whose elements are integers. Not all
10590targets support all bit widths or vector types, however.
10591
10592::
10593
10594 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10595 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10596 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10597 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10598 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10599 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10600
10601Overview:
10602"""""""""
10603
10604The '``llvm.ctlz``' family of intrinsic functions counts the number of
10605leading zeros in a variable.
10606
10607Arguments:
10608""""""""""
10609
10610The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010611any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010612type must match the first argument type.
10613
10614The second argument must be a constant and is a flag to indicate whether
10615the intrinsic should ensure that a zero as the first argument produces a
10616defined result. Historically some architectures did not provide a
10617defined result for zero values as efficiently, and many algorithms are
10618now predicated on avoiding zero-value inputs.
10619
10620Semantics:
10621""""""""""
10622
10623The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10624zeros in a variable, or within each element of the vector. If
10625``src == 0`` then the result is the size in bits of the type of ``src``
10626if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10627``llvm.ctlz(i32 2) = 30``.
10628
10629'``llvm.cttz.*``' Intrinsic
10630^^^^^^^^^^^^^^^^^^^^^^^^^^^
10631
10632Syntax:
10633"""""""
10634
10635This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10636integer bit width, or any vector of integer elements. Not all targets
10637support all bit widths or vector types, however.
10638
10639::
10640
10641 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10642 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10643 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10644 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10645 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10646 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10647
10648Overview:
10649"""""""""
10650
10651The '``llvm.cttz``' family of intrinsic functions counts the number of
10652trailing zeros.
10653
10654Arguments:
10655""""""""""
10656
10657The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010658any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010659type must match the first argument type.
10660
10661The second argument must be a constant and is a flag to indicate whether
10662the intrinsic should ensure that a zero as the first argument produces a
10663defined result. Historically some architectures did not provide a
10664defined result for zero values as efficiently, and many algorithms are
10665now predicated on avoiding zero-value inputs.
10666
10667Semantics:
10668""""""""""
10669
10670The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10671zeros in a variable, or within each element of a vector. If ``src == 0``
10672then the result is the size in bits of the type of ``src`` if
10673``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10674``llvm.cttz(2) = 1``.
10675
Philip Reames34843ae2015-03-05 05:55:55 +000010676.. _int_overflow:
10677
Sean Silvab084af42012-12-07 10:36:55 +000010678Arithmetic with Overflow Intrinsics
10679-----------------------------------
10680
10681LLVM provides intrinsics for some arithmetic with overflow operations.
10682
10683'``llvm.sadd.with.overflow.*``' Intrinsics
10684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10685
10686Syntax:
10687"""""""
10688
10689This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10690on any integer bit width.
10691
10692::
10693
10694 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10695 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10696 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10697
10698Overview:
10699"""""""""
10700
10701The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10702a signed addition of the two arguments, and indicate whether an overflow
10703occurred during the signed summation.
10704
10705Arguments:
10706""""""""""
10707
10708The arguments (%a and %b) and the first element of the result structure
10709may be of integer types of any bit width, but they must have the same
10710bit width. The second element of the result structure must be of type
10711``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10712addition.
10713
10714Semantics:
10715""""""""""
10716
10717The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010718a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010719first element of which is the signed summation, and the second element
10720of which is a bit specifying if the signed summation resulted in an
10721overflow.
10722
10723Examples:
10724"""""""""
10725
10726.. code-block:: llvm
10727
10728 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10729 %sum = extractvalue {i32, i1} %res, 0
10730 %obit = extractvalue {i32, i1} %res, 1
10731 br i1 %obit, label %overflow, label %normal
10732
10733'``llvm.uadd.with.overflow.*``' Intrinsics
10734^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10735
10736Syntax:
10737"""""""
10738
10739This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10740on any integer bit width.
10741
10742::
10743
10744 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10745 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10746 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10747
10748Overview:
10749"""""""""
10750
10751The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10752an unsigned addition of the two arguments, and indicate whether a carry
10753occurred during the unsigned summation.
10754
10755Arguments:
10756""""""""""
10757
10758The arguments (%a and %b) and the first element of the result structure
10759may be of integer types of any bit width, but they must have the same
10760bit width. The second element of the result structure must be of type
10761``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10762addition.
10763
10764Semantics:
10765""""""""""
10766
10767The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010768an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010769first element of which is the sum, and the second element of which is a
10770bit specifying if the unsigned summation resulted in a carry.
10771
10772Examples:
10773"""""""""
10774
10775.. code-block:: llvm
10776
10777 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10778 %sum = extractvalue {i32, i1} %res, 0
10779 %obit = extractvalue {i32, i1} %res, 1
10780 br i1 %obit, label %carry, label %normal
10781
10782'``llvm.ssub.with.overflow.*``' Intrinsics
10783^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10784
10785Syntax:
10786"""""""
10787
10788This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10789on any integer bit width.
10790
10791::
10792
10793 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10794 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10795 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10796
10797Overview:
10798"""""""""
10799
10800The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10801a signed subtraction of the two arguments, and indicate whether an
10802overflow occurred during the signed subtraction.
10803
10804Arguments:
10805""""""""""
10806
10807The arguments (%a and %b) and the first element of the result structure
10808may be of integer types of any bit width, but they must have the same
10809bit width. The second element of the result structure must be of type
10810``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10811subtraction.
10812
10813Semantics:
10814""""""""""
10815
10816The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010817a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010818first element of which is the subtraction, and the second element of
10819which is a bit specifying if the signed subtraction resulted in an
10820overflow.
10821
10822Examples:
10823"""""""""
10824
10825.. code-block:: llvm
10826
10827 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10828 %sum = extractvalue {i32, i1} %res, 0
10829 %obit = extractvalue {i32, i1} %res, 1
10830 br i1 %obit, label %overflow, label %normal
10831
10832'``llvm.usub.with.overflow.*``' Intrinsics
10833^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10834
10835Syntax:
10836"""""""
10837
10838This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10839on any integer bit width.
10840
10841::
10842
10843 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10844 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10845 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10846
10847Overview:
10848"""""""""
10849
10850The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10851an unsigned subtraction of the two arguments, and indicate whether an
10852overflow occurred during the unsigned subtraction.
10853
10854Arguments:
10855""""""""""
10856
10857The arguments (%a and %b) and the first element of the result structure
10858may be of integer types of any bit width, but they must have the same
10859bit width. The second element of the result structure must be of type
10860``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10861subtraction.
10862
10863Semantics:
10864""""""""""
10865
10866The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010867an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010868the first element of which is the subtraction, and the second element of
10869which is a bit specifying if the unsigned subtraction resulted in an
10870overflow.
10871
10872Examples:
10873"""""""""
10874
10875.. code-block:: llvm
10876
10877 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10878 %sum = extractvalue {i32, i1} %res, 0
10879 %obit = extractvalue {i32, i1} %res, 1
10880 br i1 %obit, label %overflow, label %normal
10881
10882'``llvm.smul.with.overflow.*``' Intrinsics
10883^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10884
10885Syntax:
10886"""""""
10887
10888This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10889on any integer bit width.
10890
10891::
10892
10893 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10894 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10895 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10896
10897Overview:
10898"""""""""
10899
10900The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10901a signed multiplication of the two arguments, and indicate whether an
10902overflow occurred during the signed multiplication.
10903
10904Arguments:
10905""""""""""
10906
10907The arguments (%a and %b) and the first element of the result structure
10908may be of integer types of any bit width, but they must have the same
10909bit width. The second element of the result structure must be of type
10910``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10911multiplication.
10912
10913Semantics:
10914""""""""""
10915
10916The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010917a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010918the first element of which is the multiplication, and the second element
10919of which is a bit specifying if the signed multiplication resulted in an
10920overflow.
10921
10922Examples:
10923"""""""""
10924
10925.. code-block:: llvm
10926
10927 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10928 %sum = extractvalue {i32, i1} %res, 0
10929 %obit = extractvalue {i32, i1} %res, 1
10930 br i1 %obit, label %overflow, label %normal
10931
10932'``llvm.umul.with.overflow.*``' Intrinsics
10933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10934
10935Syntax:
10936"""""""
10937
10938This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10939on any integer bit width.
10940
10941::
10942
10943 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10944 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10945 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10946
10947Overview:
10948"""""""""
10949
10950The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10951a unsigned multiplication of the two arguments, and indicate whether an
10952overflow occurred during the unsigned multiplication.
10953
10954Arguments:
10955""""""""""
10956
10957The arguments (%a and %b) and the first element of the result structure
10958may be of integer types of any bit width, but they must have the same
10959bit width. The second element of the result structure must be of type
10960``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10961multiplication.
10962
10963Semantics:
10964""""""""""
10965
10966The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010967an unsigned multiplication of the two arguments. They return a structure ---
10968the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010969element of which is a bit specifying if the unsigned multiplication
10970resulted in an overflow.
10971
10972Examples:
10973"""""""""
10974
10975.. code-block:: llvm
10976
10977 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10978 %sum = extractvalue {i32, i1} %res, 0
10979 %obit = extractvalue {i32, i1} %res, 1
10980 br i1 %obit, label %overflow, label %normal
10981
10982Specialised Arithmetic Intrinsics
10983---------------------------------
10984
Owen Anderson1056a922015-07-11 07:01:27 +000010985'``llvm.canonicalize.*``' Intrinsic
10986^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10987
10988Syntax:
10989"""""""
10990
10991::
10992
10993 declare float @llvm.canonicalize.f32(float %a)
10994 declare double @llvm.canonicalize.f64(double %b)
10995
10996Overview:
10997"""""""""
10998
10999The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011000encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011001implementing certain numeric primitives such as frexp. The canonical encoding is
11002defined by IEEE-754-2008 to be:
11003
11004::
11005
11006 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011007 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011008 numbers, infinities, and NaNs, especially in decimal formats.
11009
11010This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011011conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011012according to section 6.2.
11013
11014Examples of non-canonical encodings:
11015
Sean Silvaa1190322015-08-06 22:56:48 +000011016- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011017 converted to a canonical representation per hardware-specific protocol.
11018- Many normal decimal floating point numbers have non-canonical alternative
11019 encodings.
11020- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011021 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011022 a zero of the same sign by this operation.
11023
11024Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11025default exception handling must signal an invalid exception, and produce a
11026quiet NaN result.
11027
11028This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011029that the compiler does not constant fold the operation. Likewise, division by
110301.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011031-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11032
Sean Silvaa1190322015-08-06 22:56:48 +000011033``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011034
11035- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11036- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11037 to ``(x == y)``
11038
11039Additionally, the sign of zero must be conserved:
11040``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11041
11042The payload bits of a NaN must be conserved, with two exceptions.
11043First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011044must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011045usual methods.
11046
11047The canonicalization operation may be optimized away if:
11048
Sean Silvaa1190322015-08-06 22:56:48 +000011049- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011050 floating-point operation that is required by the standard to be canonical.
11051- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011052 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011053
Sean Silvab084af42012-12-07 10:36:55 +000011054'``llvm.fmuladd.*``' Intrinsic
11055^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11056
11057Syntax:
11058"""""""
11059
11060::
11061
11062 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11063 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11064
11065Overview:
11066"""""""""
11067
11068The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011069expressions that can be fused if the code generator determines that (a) the
11070target instruction set has support for a fused operation, and (b) that the
11071fused operation is more efficient than the equivalent, separate pair of mul
11072and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011073
11074Arguments:
11075""""""""""
11076
11077The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11078multiplicands, a and b, and an addend c.
11079
11080Semantics:
11081""""""""""
11082
11083The expression:
11084
11085::
11086
11087 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11088
11089is equivalent to the expression a \* b + c, except that rounding will
11090not be performed between the multiplication and addition steps if the
11091code generator fuses the operations. Fusion is not guaranteed, even if
11092the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011093corresponding llvm.fma.\* intrinsic function should be used
11094instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011095
11096Examples:
11097"""""""""
11098
11099.. code-block:: llvm
11100
Tim Northover675a0962014-06-13 14:24:23 +000011101 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011102
11103Half Precision Floating Point Intrinsics
11104----------------------------------------
11105
11106For most target platforms, half precision floating point is a
11107storage-only format. This means that it is a dense encoding (in memory)
11108but does not support computation in the format.
11109
11110This means that code must first load the half-precision floating point
11111value as an i16, then convert it to float with
11112:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11113then be performed on the float value (including extending to double
11114etc). To store the value back to memory, it is first converted to float
11115if needed, then converted to i16 with
11116:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11117i16 value.
11118
11119.. _int_convert_to_fp16:
11120
11121'``llvm.convert.to.fp16``' Intrinsic
11122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11123
11124Syntax:
11125"""""""
11126
11127::
11128
Tim Northoverfd7e4242014-07-17 10:51:23 +000011129 declare i16 @llvm.convert.to.fp16.f32(float %a)
11130 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011131
11132Overview:
11133"""""""""
11134
Tim Northoverfd7e4242014-07-17 10:51:23 +000011135The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11136conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011137
11138Arguments:
11139""""""""""
11140
11141The intrinsic function contains single argument - the value to be
11142converted.
11143
11144Semantics:
11145""""""""""
11146
Tim Northoverfd7e4242014-07-17 10:51:23 +000011147The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11148conventional floating point format to half precision floating point format. The
11149return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011150
11151Examples:
11152"""""""""
11153
11154.. code-block:: llvm
11155
Tim Northoverfd7e4242014-07-17 10:51:23 +000011156 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011157 store i16 %res, i16* @x, align 2
11158
11159.. _int_convert_from_fp16:
11160
11161'``llvm.convert.from.fp16``' Intrinsic
11162^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11163
11164Syntax:
11165"""""""
11166
11167::
11168
Tim Northoverfd7e4242014-07-17 10:51:23 +000011169 declare float @llvm.convert.from.fp16.f32(i16 %a)
11170 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011171
11172Overview:
11173"""""""""
11174
11175The '``llvm.convert.from.fp16``' intrinsic function performs a
11176conversion from half precision floating point format to single precision
11177floating point format.
11178
11179Arguments:
11180""""""""""
11181
11182The intrinsic function contains single argument - the value to be
11183converted.
11184
11185Semantics:
11186""""""""""
11187
11188The '``llvm.convert.from.fp16``' intrinsic function performs a
11189conversion from half single precision floating point format to single
11190precision floating point format. The input half-float value is
11191represented by an ``i16`` value.
11192
11193Examples:
11194"""""""""
11195
11196.. code-block:: llvm
11197
David Blaikiec7aabbb2015-03-04 22:06:14 +000011198 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011199 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011200
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011201.. _dbg_intrinsics:
11202
Sean Silvab084af42012-12-07 10:36:55 +000011203Debugger Intrinsics
11204-------------------
11205
11206The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11207prefix), are described in the `LLVM Source Level
11208Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11209document.
11210
11211Exception Handling Intrinsics
11212-----------------------------
11213
11214The LLVM exception handling intrinsics (which all start with
11215``llvm.eh.`` prefix), are described in the `LLVM Exception
11216Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11217
11218.. _int_trampoline:
11219
11220Trampoline Intrinsics
11221---------------------
11222
11223These intrinsics make it possible to excise one parameter, marked with
11224the :ref:`nest <nest>` attribute, from a function. The result is a
11225callable function pointer lacking the nest parameter - the caller does
11226not need to provide a value for it. Instead, the value to use is stored
11227in advance in a "trampoline", a block of memory usually allocated on the
11228stack, which also contains code to splice the nest value into the
11229argument list. This is used to implement the GCC nested function address
11230extension.
11231
11232For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11233then the resulting function pointer has signature ``i32 (i32, i32)*``.
11234It can be created as follows:
11235
11236.. code-block:: llvm
11237
11238 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011239 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011240 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11241 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11242 %fp = bitcast i8* %p to i32 (i32, i32)*
11243
11244The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11245``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11246
11247.. _int_it:
11248
11249'``llvm.init.trampoline``' Intrinsic
11250^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11251
11252Syntax:
11253"""""""
11254
11255::
11256
11257 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11258
11259Overview:
11260"""""""""
11261
11262This fills the memory pointed to by ``tramp`` with executable code,
11263turning it into a trampoline.
11264
11265Arguments:
11266""""""""""
11267
11268The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11269pointers. The ``tramp`` argument must point to a sufficiently large and
11270sufficiently aligned block of memory; this memory is written to by the
11271intrinsic. Note that the size and the alignment are target-specific -
11272LLVM currently provides no portable way of determining them, so a
11273front-end that generates this intrinsic needs to have some
11274target-specific knowledge. The ``func`` argument must hold a function
11275bitcast to an ``i8*``.
11276
11277Semantics:
11278""""""""""
11279
11280The block of memory pointed to by ``tramp`` is filled with target
11281dependent code, turning it into a function. Then ``tramp`` needs to be
11282passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11283be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11284function's signature is the same as that of ``func`` with any arguments
11285marked with the ``nest`` attribute removed. At most one such ``nest``
11286argument is allowed, and it must be of pointer type. Calling the new
11287function is equivalent to calling ``func`` with the same argument list,
11288but with ``nval`` used for the missing ``nest`` argument. If, after
11289calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11290modified, then the effect of any later call to the returned function
11291pointer is undefined.
11292
11293.. _int_at:
11294
11295'``llvm.adjust.trampoline``' Intrinsic
11296^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11297
11298Syntax:
11299"""""""
11300
11301::
11302
11303 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11304
11305Overview:
11306"""""""""
11307
11308This performs any required machine-specific adjustment to the address of
11309a trampoline (passed as ``tramp``).
11310
11311Arguments:
11312""""""""""
11313
11314``tramp`` must point to a block of memory which already has trampoline
11315code filled in by a previous call to
11316:ref:`llvm.init.trampoline <int_it>`.
11317
11318Semantics:
11319""""""""""
11320
11321On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011322different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011323intrinsic returns the executable address corresponding to ``tramp``
11324after performing the required machine specific adjustments. The pointer
11325returned can then be :ref:`bitcast and executed <int_trampoline>`.
11326
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011327.. _int_mload_mstore:
11328
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011329Masked Vector Load and Store Intrinsics
11330---------------------------------------
11331
11332LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11333
11334.. _int_mload:
11335
11336'``llvm.masked.load.*``' Intrinsics
11337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11338
11339Syntax:
11340"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011341This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011342
11343::
11344
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011345 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11346 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11347 ;; The data is a vector of pointers to double
11348 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
11349 ;; The data is a vector of function pointers
11350 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011351
11352Overview:
11353"""""""""
11354
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011355Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011356
11357
11358Arguments:
11359""""""""""
11360
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011361The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011362
11363
11364Semantics:
11365""""""""""
11366
11367The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11368The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11369
11370
11371::
11372
11373 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011374
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011375 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011376 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011377 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011378
11379.. _int_mstore:
11380
11381'``llvm.masked.store.*``' Intrinsics
11382^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11383
11384Syntax:
11385"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011386This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011387
11388::
11389
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011390 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11391 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11392 ;; The data is a vector of pointers to double
11393 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11394 ;; The data is a vector of function pointers
11395 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011396
11397Overview:
11398"""""""""
11399
11400Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11401
11402Arguments:
11403""""""""""
11404
11405The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11406
11407
11408Semantics:
11409""""""""""
11410
11411The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11412The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11413
11414::
11415
11416 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011417
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011418 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011419 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011420 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11421 store <16 x float> %res, <16 x float>* %ptr, align 4
11422
11423
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011424Masked Vector Gather and Scatter Intrinsics
11425-------------------------------------------
11426
11427LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11428
11429.. _int_mgather:
11430
11431'``llvm.masked.gather.*``' Intrinsics
11432^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11433
11434Syntax:
11435"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011436This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011437
11438::
11439
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011440 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11441 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11442 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011443
11444Overview:
11445"""""""""
11446
11447Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11448
11449
11450Arguments:
11451""""""""""
11452
11453The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11454
11455
11456Semantics:
11457""""""""""
11458
11459The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11460The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11461
11462
11463::
11464
11465 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11466
11467 ;; The gather with all-true mask is equivalent to the following instruction sequence
11468 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11469 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11470 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11471 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11472
11473 %val0 = load double, double* %ptr0, align 8
11474 %val1 = load double, double* %ptr1, align 8
11475 %val2 = load double, double* %ptr2, align 8
11476 %val3 = load double, double* %ptr3, align 8
11477
11478 %vec0 = insertelement <4 x double>undef, %val0, 0
11479 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11480 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11481 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11482
11483.. _int_mscatter:
11484
11485'``llvm.masked.scatter.*``' Intrinsics
11486^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11487
11488Syntax:
11489"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011490This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011491
11492::
11493
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011494 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11495 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11496 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011497
11498Overview:
11499"""""""""
11500
11501Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11502
11503Arguments:
11504""""""""""
11505
11506The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11507
11508
11509Semantics:
11510""""""""""
11511
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011512The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011513
11514::
11515
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011516 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011517 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11518
11519 ;; It is equivalent to a list of scalar stores
11520 %val0 = extractelement <8 x i32> %value, i32 0
11521 %val1 = extractelement <8 x i32> %value, i32 1
11522 ..
11523 %val7 = extractelement <8 x i32> %value, i32 7
11524 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11525 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11526 ..
11527 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11528 ;; Note: the order of the following stores is important when they overlap:
11529 store i32 %val0, i32* %ptr0, align 4
11530 store i32 %val1, i32* %ptr1, align 4
11531 ..
11532 store i32 %val7, i32* %ptr7, align 4
11533
11534
Sean Silvab084af42012-12-07 10:36:55 +000011535Memory Use Markers
11536------------------
11537
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011538This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011539memory objects and ranges where variables are immutable.
11540
Reid Klecknera534a382013-12-19 02:14:12 +000011541.. _int_lifestart:
11542
Sean Silvab084af42012-12-07 10:36:55 +000011543'``llvm.lifetime.start``' Intrinsic
11544^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11545
11546Syntax:
11547"""""""
11548
11549::
11550
11551 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11552
11553Overview:
11554"""""""""
11555
11556The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11557object's lifetime.
11558
11559Arguments:
11560""""""""""
11561
11562The first argument is a constant integer representing the size of the
11563object, or -1 if it is variable sized. The second argument is a pointer
11564to the object.
11565
11566Semantics:
11567""""""""""
11568
11569This intrinsic indicates that before this point in the code, the value
11570of the memory pointed to by ``ptr`` is dead. This means that it is known
11571to never be used and has an undefined value. A load from the pointer
11572that precedes this intrinsic can be replaced with ``'undef'``.
11573
Reid Klecknera534a382013-12-19 02:14:12 +000011574.. _int_lifeend:
11575
Sean Silvab084af42012-12-07 10:36:55 +000011576'``llvm.lifetime.end``' Intrinsic
11577^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11578
11579Syntax:
11580"""""""
11581
11582::
11583
11584 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11585
11586Overview:
11587"""""""""
11588
11589The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11590object's lifetime.
11591
11592Arguments:
11593""""""""""
11594
11595The first argument is a constant integer representing the size of the
11596object, or -1 if it is variable sized. The second argument is a pointer
11597to the object.
11598
11599Semantics:
11600""""""""""
11601
11602This intrinsic indicates that after this point in the code, the value of
11603the memory pointed to by ``ptr`` is dead. This means that it is known to
11604never be used and has an undefined value. Any stores into the memory
11605object following this intrinsic may be removed as dead.
11606
11607'``llvm.invariant.start``' Intrinsic
11608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11609
11610Syntax:
11611"""""""
11612
11613::
11614
11615 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11616
11617Overview:
11618"""""""""
11619
11620The '``llvm.invariant.start``' intrinsic specifies that the contents of
11621a memory object will not change.
11622
11623Arguments:
11624""""""""""
11625
11626The first argument is a constant integer representing the size of the
11627object, or -1 if it is variable sized. The second argument is a pointer
11628to the object.
11629
11630Semantics:
11631""""""""""
11632
11633This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11634the return value, the referenced memory location is constant and
11635unchanging.
11636
11637'``llvm.invariant.end``' Intrinsic
11638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11639
11640Syntax:
11641"""""""
11642
11643::
11644
11645 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11646
11647Overview:
11648"""""""""
11649
11650The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11651memory object are mutable.
11652
11653Arguments:
11654""""""""""
11655
11656The first argument is the matching ``llvm.invariant.start`` intrinsic.
11657The second argument is a constant integer representing the size of the
11658object, or -1 if it is variable sized and the third argument is a
11659pointer to the object.
11660
11661Semantics:
11662""""""""""
11663
11664This intrinsic indicates that the memory is mutable again.
11665
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011666'``llvm.invariant.group.barrier``' Intrinsic
11667^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11668
11669Syntax:
11670"""""""
11671
11672::
11673
11674 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11675
11676Overview:
11677"""""""""
11678
11679The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11680established by invariant.group metadata no longer holds, to obtain a new pointer
11681value that does not carry the invariant information.
11682
11683
11684Arguments:
11685""""""""""
11686
11687The ``llvm.invariant.group.barrier`` takes only one argument, which is
11688the pointer to the memory for which the ``invariant.group`` no longer holds.
11689
11690Semantics:
11691""""""""""
11692
11693Returns another pointer that aliases its argument but which is considered different
11694for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11695
Sean Silvab084af42012-12-07 10:36:55 +000011696General Intrinsics
11697------------------
11698
11699This class of intrinsics is designed to be generic and has no specific
11700purpose.
11701
11702'``llvm.var.annotation``' Intrinsic
11703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11704
11705Syntax:
11706"""""""
11707
11708::
11709
11710 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11711
11712Overview:
11713"""""""""
11714
11715The '``llvm.var.annotation``' intrinsic.
11716
11717Arguments:
11718""""""""""
11719
11720The first argument is a pointer to a value, the second is a pointer to a
11721global string, the third is a pointer to a global string which is the
11722source file name, and the last argument is the line number.
11723
11724Semantics:
11725""""""""""
11726
11727This intrinsic allows annotation of local variables with arbitrary
11728strings. This can be useful for special purpose optimizations that want
11729to look for these annotations. These have no other defined use; they are
11730ignored by code generation and optimization.
11731
Michael Gottesman88d18832013-03-26 00:34:27 +000011732'``llvm.ptr.annotation.*``' Intrinsic
11733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11734
11735Syntax:
11736"""""""
11737
11738This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11739pointer to an integer of any width. *NOTE* you must specify an address space for
11740the pointer. The identifier for the default address space is the integer
11741'``0``'.
11742
11743::
11744
11745 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11746 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11747 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11748 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11749 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11750
11751Overview:
11752"""""""""
11753
11754The '``llvm.ptr.annotation``' intrinsic.
11755
11756Arguments:
11757""""""""""
11758
11759The first argument is a pointer to an integer value of arbitrary bitwidth
11760(result of some expression), the second is a pointer to a global string, the
11761third is a pointer to a global string which is the source file name, and the
11762last argument is the line number. It returns the value of the first argument.
11763
11764Semantics:
11765""""""""""
11766
11767This intrinsic allows annotation of a pointer to an integer with arbitrary
11768strings. This can be useful for special purpose optimizations that want to look
11769for these annotations. These have no other defined use; they are ignored by code
11770generation and optimization.
11771
Sean Silvab084af42012-12-07 10:36:55 +000011772'``llvm.annotation.*``' Intrinsic
11773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11774
11775Syntax:
11776"""""""
11777
11778This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11779any integer bit width.
11780
11781::
11782
11783 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11784 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11785 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11786 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11787 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11788
11789Overview:
11790"""""""""
11791
11792The '``llvm.annotation``' intrinsic.
11793
11794Arguments:
11795""""""""""
11796
11797The first argument is an integer value (result of some expression), the
11798second is a pointer to a global string, the third is a pointer to a
11799global string which is the source file name, and the last argument is
11800the line number. It returns the value of the first argument.
11801
11802Semantics:
11803""""""""""
11804
11805This intrinsic allows annotations to be put on arbitrary expressions
11806with arbitrary strings. This can be useful for special purpose
11807optimizations that want to look for these annotations. These have no
11808other defined use; they are ignored by code generation and optimization.
11809
11810'``llvm.trap``' Intrinsic
11811^^^^^^^^^^^^^^^^^^^^^^^^^
11812
11813Syntax:
11814"""""""
11815
11816::
11817
11818 declare void @llvm.trap() noreturn nounwind
11819
11820Overview:
11821"""""""""
11822
11823The '``llvm.trap``' intrinsic.
11824
11825Arguments:
11826""""""""""
11827
11828None.
11829
11830Semantics:
11831""""""""""
11832
11833This intrinsic is lowered to the target dependent trap instruction. If
11834the target does not have a trap instruction, this intrinsic will be
11835lowered to a call of the ``abort()`` function.
11836
11837'``llvm.debugtrap``' Intrinsic
11838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11839
11840Syntax:
11841"""""""
11842
11843::
11844
11845 declare void @llvm.debugtrap() nounwind
11846
11847Overview:
11848"""""""""
11849
11850The '``llvm.debugtrap``' intrinsic.
11851
11852Arguments:
11853""""""""""
11854
11855None.
11856
11857Semantics:
11858""""""""""
11859
11860This intrinsic is lowered to code which is intended to cause an
11861execution trap with the intention of requesting the attention of a
11862debugger.
11863
11864'``llvm.stackprotector``' Intrinsic
11865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11866
11867Syntax:
11868"""""""
11869
11870::
11871
11872 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11873
11874Overview:
11875"""""""""
11876
11877The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11878onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11879is placed on the stack before local variables.
11880
11881Arguments:
11882""""""""""
11883
11884The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11885The first argument is the value loaded from the stack guard
11886``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11887enough space to hold the value of the guard.
11888
11889Semantics:
11890""""""""""
11891
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011892This intrinsic causes the prologue/epilogue inserter to force the position of
11893the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11894to ensure that if a local variable on the stack is overwritten, it will destroy
11895the value of the guard. When the function exits, the guard on the stack is
11896checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11897different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11898calling the ``__stack_chk_fail()`` function.
11899
11900'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011902
11903Syntax:
11904"""""""
11905
11906::
11907
11908 declare void @llvm.stackprotectorcheck(i8** <guard>)
11909
11910Overview:
11911"""""""""
11912
11913The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011914created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011915``__stack_chk_fail()`` function.
11916
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011917Arguments:
11918""""""""""
11919
11920The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11921the variable ``@__stack_chk_guard``.
11922
11923Semantics:
11924""""""""""
11925
11926This intrinsic is provided to perform the stack protector check by comparing
11927``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11928values do not match call the ``__stack_chk_fail()`` function.
11929
11930The reason to provide this as an IR level intrinsic instead of implementing it
11931via other IR operations is that in order to perform this operation at the IR
11932level without an intrinsic, one would need to create additional basic blocks to
11933handle the success/failure cases. This makes it difficult to stop the stack
11934protector check from disrupting sibling tail calls in Codegen. With this
11935intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011936codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011937
Sean Silvab084af42012-12-07 10:36:55 +000011938'``llvm.objectsize``' Intrinsic
11939^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11940
11941Syntax:
11942"""""""
11943
11944::
11945
11946 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11947 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11948
11949Overview:
11950"""""""""
11951
11952The ``llvm.objectsize`` intrinsic is designed to provide information to
11953the optimizers to determine at compile time whether a) an operation
11954(like memcpy) will overflow a buffer that corresponds to an object, or
11955b) that a runtime check for overflow isn't necessary. An object in this
11956context means an allocation of a specific class, structure, array, or
11957other object.
11958
11959Arguments:
11960""""""""""
11961
11962The ``llvm.objectsize`` intrinsic takes two arguments. The first
11963argument is a pointer to or into the ``object``. The second argument is
11964a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11965or -1 (if false) when the object size is unknown. The second argument
11966only accepts constants.
11967
11968Semantics:
11969""""""""""
11970
11971The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11972the size of the object concerned. If the size cannot be determined at
11973compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11974on the ``min`` argument).
11975
11976'``llvm.expect``' Intrinsic
11977^^^^^^^^^^^^^^^^^^^^^^^^^^^
11978
11979Syntax:
11980"""""""
11981
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011982This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11983integer bit width.
11984
Sean Silvab084af42012-12-07 10:36:55 +000011985::
11986
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011987 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011988 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11989 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11990
11991Overview:
11992"""""""""
11993
11994The ``llvm.expect`` intrinsic provides information about expected (the
11995most probable) value of ``val``, which can be used by optimizers.
11996
11997Arguments:
11998""""""""""
11999
12000The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12001a value. The second argument is an expected value, this needs to be a
12002constant value, variables are not allowed.
12003
12004Semantics:
12005""""""""""
12006
12007This intrinsic is lowered to the ``val``.
12008
Philip Reamese0e90832015-04-26 22:23:12 +000012009.. _int_assume:
12010
Hal Finkel93046912014-07-25 21:13:35 +000012011'``llvm.assume``' Intrinsic
12012^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12013
12014Syntax:
12015"""""""
12016
12017::
12018
12019 declare void @llvm.assume(i1 %cond)
12020
12021Overview:
12022"""""""""
12023
12024The ``llvm.assume`` allows the optimizer to assume that the provided
12025condition is true. This information can then be used in simplifying other parts
12026of the code.
12027
12028Arguments:
12029""""""""""
12030
12031The condition which the optimizer may assume is always true.
12032
12033Semantics:
12034""""""""""
12035
12036The intrinsic allows the optimizer to assume that the provided condition is
12037always true whenever the control flow reaches the intrinsic call. No code is
12038generated for this intrinsic, and instructions that contribute only to the
12039provided condition are not used for code generation. If the condition is
12040violated during execution, the behavior is undefined.
12041
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012042Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012043used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12044only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012045if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012046sufficient overall improvement in code quality. For this reason,
12047``llvm.assume`` should not be used to document basic mathematical invariants
12048that the optimizer can otherwise deduce or facts that are of little use to the
12049optimizer.
12050
Peter Collingbournee6909c82015-02-20 20:30:47 +000012051.. _bitset.test:
12052
12053'``llvm.bitset.test``' Intrinsic
12054^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12055
12056Syntax:
12057"""""""
12058
12059::
12060
12061 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12062
12063
12064Arguments:
12065""""""""""
12066
12067The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012068metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012069
12070Overview:
12071"""""""""
12072
12073The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12074member of the given bitset.
12075
Sean Silvab084af42012-12-07 10:36:55 +000012076'``llvm.donothing``' Intrinsic
12077^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12078
12079Syntax:
12080"""""""
12081
12082::
12083
12084 declare void @llvm.donothing() nounwind readnone
12085
12086Overview:
12087"""""""""
12088
Juergen Ributzkac9161192014-10-23 22:36:13 +000012089The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012090three intrinsics (besides ``llvm.experimental.patchpoint`` and
12091``llvm.experimental.gc.statepoint``) that can be called with an invoke
12092instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012093
12094Arguments:
12095""""""""""
12096
12097None.
12098
12099Semantics:
12100""""""""""
12101
12102This intrinsic does nothing, and it's removed by optimizers and ignored
12103by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012104
12105Stack Map Intrinsics
12106--------------------
12107
12108LLVM provides experimental intrinsics to support runtime patching
12109mechanisms commonly desired in dynamic language JITs. These intrinsics
12110are described in :doc:`StackMaps`.