blob: 23bef9028981ecf815e9796a17a48b1a74233840 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
253``extern_weak``
254 The semantics of this linkage follow the ELF object file model: the
255 symbol is weak until linked, if not linked, the symbol becomes null
256 instead of being an undefined reference.
257``linkonce_odr``, ``weak_odr``
258 Some languages allow differing globals to be merged, such as two
259 functions with different semantics. Other languages, such as
260 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000261 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000262 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
263 global will only be merged with equivalent globals. These linkage
264 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000265``external``
266 If none of the above identifiers are used, the global is externally
267 visible, meaning that it participates in linkage and can be used to
268 resolve external symbol references.
269
Sean Silvab084af42012-12-07 10:36:55 +0000270It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000271other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000272
Sean Silvab084af42012-12-07 10:36:55 +0000273.. _callingconv:
274
275Calling Conventions
276-------------------
277
278LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
279:ref:`invokes <i_invoke>` can all have an optional calling convention
280specified for the call. The calling convention of any pair of dynamic
281caller/callee must match, or the behavior of the program is undefined.
282The following calling conventions are supported by LLVM, and more may be
283added in the future:
284
285"``ccc``" - The C calling convention
286 This calling convention (the default if no other calling convention
287 is specified) matches the target C calling conventions. This calling
288 convention supports varargs function calls and tolerates some
289 mismatch in the declared prototype and implemented declaration of
290 the function (as does normal C).
291"``fastcc``" - The fast calling convention
292 This calling convention attempts to make calls as fast as possible
293 (e.g. by passing things in registers). This calling convention
294 allows the target to use whatever tricks it wants to produce fast
295 code for the target, without having to conform to an externally
296 specified ABI (Application Binary Interface). `Tail calls can only
297 be optimized when this, the GHC or the HiPE convention is
298 used. <CodeGenerator.html#id80>`_ This calling convention does not
299 support varargs and requires the prototype of all callees to exactly
300 match the prototype of the function definition.
301"``coldcc``" - The cold calling convention
302 This calling convention attempts to make code in the caller as
303 efficient as possible under the assumption that the call is not
304 commonly executed. As such, these calls often preserve all registers
305 so that the call does not break any live ranges in the caller side.
306 This calling convention does not support varargs and requires the
307 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000308 function definition. Furthermore the inliner doesn't consider such function
309 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000310"``cc 10``" - GHC convention
311 This calling convention has been implemented specifically for use by
312 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
313 It passes everything in registers, going to extremes to achieve this
314 by disabling callee save registers. This calling convention should
315 not be used lightly but only for specific situations such as an
316 alternative to the *register pinning* performance technique often
317 used when implementing functional programming languages. At the
318 moment only X86 supports this convention and it has the following
319 limitations:
320
321 - On *X86-32* only supports up to 4 bit type parameters. No
322 floating point types are supported.
323 - On *X86-64* only supports up to 10 bit type parameters and 6
324 floating point parameters.
325
326 This calling convention supports `tail call
327 optimization <CodeGenerator.html#id80>`_ but requires both the
328 caller and callee are using it.
329"``cc 11``" - The HiPE calling convention
330 This calling convention has been implemented specifically for use by
331 the `High-Performance Erlang
332 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
333 native code compiler of the `Ericsson's Open Source Erlang/OTP
334 system <http://www.erlang.org/download.shtml>`_. It uses more
335 registers for argument passing than the ordinary C calling
336 convention and defines no callee-saved registers. The calling
337 convention properly supports `tail call
338 optimization <CodeGenerator.html#id80>`_ but requires that both the
339 caller and the callee use it. It uses a *register pinning*
340 mechanism, similar to GHC's convention, for keeping frequently
341 accessed runtime components pinned to specific hardware registers.
342 At the moment only X86 supports this convention (both 32 and 64
343 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000344"``webkit_jscc``" - WebKit's JavaScript calling convention
345 This calling convention has been implemented for `WebKit FTL JIT
346 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
347 stack right to left (as cdecl does), and returns a value in the
348 platform's customary return register.
349"``anyregcc``" - Dynamic calling convention for code patching
350 This is a special convention that supports patching an arbitrary code
351 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000352 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000353 allocated. This can currently only be used with calls to
354 llvm.experimental.patchpoint because only this intrinsic records
355 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000356"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 This calling convention attempts to make the code in the caller as
358 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000359 calling convention on how arguments and return values are passed, but it
360 uses a different set of caller/callee-saved registers. This alleviates the
361 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000362 call in the caller. If the arguments are passed in callee-saved registers,
363 then they will be preserved by the callee across the call. This doesn't
364 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000365
366 - On X86-64 the callee preserves all general purpose registers, except for
367 R11. R11 can be used as a scratch register. Floating-point registers
368 (XMMs/YMMs) are not preserved and need to be saved by the caller.
369
370 The idea behind this convention is to support calls to runtime functions
371 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000372 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000373 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000374 registers, which haven't already been saved by the caller. The
375 `PreserveMost` calling convention is very similar to the `cold` calling
376 convention in terms of caller/callee-saved registers, but they are used for
377 different types of function calls. `coldcc` is for function calls that are
378 rarely executed, whereas `preserve_mostcc` function calls are intended to be
379 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
380 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000381
382 This calling convention will be used by a future version of the ObjectiveC
383 runtime and should therefore still be considered experimental at this time.
384 Although this convention was created to optimize certain runtime calls to
385 the ObjectiveC runtime, it is not limited to this runtime and might be used
386 by other runtimes in the future too. The current implementation only
387 supports X86-64, but the intention is to support more architectures in the
388 future.
389"``preserve_allcc``" - The `PreserveAll` calling convention
390 This calling convention attempts to make the code in the caller even less
391 intrusive than the `PreserveMost` calling convention. This calling
392 convention also behaves identical to the `C` calling convention on how
393 arguments and return values are passed, but it uses a different set of
394 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000395 recovering a large register set before and after the call in the caller. If
396 the arguments are passed in callee-saved registers, then they will be
397 preserved by the callee across the call. This doesn't apply for values
398 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000399
400 - On X86-64 the callee preserves all general purpose registers, except for
401 R11. R11 can be used as a scratch register. Furthermore it also preserves
402 all floating-point registers (XMMs/YMMs).
403
404 The idea behind this convention is to support calls to runtime functions
405 that don't need to call out to any other functions.
406
407 This calling convention, like the `PreserveMost` calling convention, will be
408 used by a future version of the ObjectiveC runtime and should be considered
409 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000410"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000411 Clang generates an access function to access C++-style TLS. The access
412 function generally has an entry block, an exit block and an initialization
413 block that is run at the first time. The entry and exit blocks can access
414 a few TLS IR variables, each access will be lowered to a platform-specific
415 sequence.
416
Manman Ren19c7bbe2015-12-04 17:40:13 +0000417 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000418 preserving as many registers as possible (all the registers that are
419 perserved on the fast path, composed of the entry and exit blocks).
420
421 This calling convention behaves identical to the `C` calling convention on
422 how arguments and return values are passed, but it uses a different set of
423 caller/callee-saved registers.
424
425 Given that each platform has its own lowering sequence, hence its own set
426 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000427
428 - On X86-64 the callee preserves all general purpose registers, except for
429 RDI and RAX.
Sean Silvab084af42012-12-07 10:36:55 +0000430"``cc <n>``" - Numbered convention
431 Any calling convention may be specified by number, allowing
432 target-specific calling conventions to be used. Target specific
433 calling conventions start at 64.
434
435More calling conventions can be added/defined on an as-needed basis, to
436support Pascal conventions or any other well-known target-independent
437convention.
438
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000439.. _visibilitystyles:
440
Sean Silvab084af42012-12-07 10:36:55 +0000441Visibility Styles
442-----------------
443
444All Global Variables and Functions have one of the following visibility
445styles:
446
447"``default``" - Default style
448 On targets that use the ELF object file format, default visibility
449 means that the declaration is visible to other modules and, in
450 shared libraries, means that the declared entity may be overridden.
451 On Darwin, default visibility means that the declaration is visible
452 to other modules. Default visibility corresponds to "external
453 linkage" in the language.
454"``hidden``" - Hidden style
455 Two declarations of an object with hidden visibility refer to the
456 same object if they are in the same shared object. Usually, hidden
457 visibility indicates that the symbol will not be placed into the
458 dynamic symbol table, so no other module (executable or shared
459 library) can reference it directly.
460"``protected``" - Protected style
461 On ELF, protected visibility indicates that the symbol will be
462 placed in the dynamic symbol table, but that references within the
463 defining module will bind to the local symbol. That is, the symbol
464 cannot be overridden by another module.
465
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000466A symbol with ``internal`` or ``private`` linkage must have ``default``
467visibility.
468
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000469.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000470
Nico Rieck7157bb72014-01-14 15:22:47 +0000471DLL Storage Classes
472-------------------
473
474All Global Variables, Functions and Aliases can have one of the following
475DLL storage class:
476
477``dllimport``
478 "``dllimport``" causes the compiler to reference a function or variable via
479 a global pointer to a pointer that is set up by the DLL exporting the
480 symbol. On Microsoft Windows targets, the pointer name is formed by
481 combining ``__imp_`` and the function or variable name.
482``dllexport``
483 "``dllexport``" causes the compiler to provide a global pointer to a pointer
484 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
485 Microsoft Windows targets, the pointer name is formed by combining
486 ``__imp_`` and the function or variable name. Since this storage class
487 exists for defining a dll interface, the compiler, assembler and linker know
488 it is externally referenced and must refrain from deleting the symbol.
489
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000490.. _tls_model:
491
492Thread Local Storage Models
493---------------------------
494
495A variable may be defined as ``thread_local``, which means that it will
496not be shared by threads (each thread will have a separated copy of the
497variable). Not all targets support thread-local variables. Optionally, a
498TLS model may be specified:
499
500``localdynamic``
501 For variables that are only used within the current shared library.
502``initialexec``
503 For variables in modules that will not be loaded dynamically.
504``localexec``
505 For variables defined in the executable and only used within it.
506
507If no explicit model is given, the "general dynamic" model is used.
508
509The models correspond to the ELF TLS models; see `ELF Handling For
510Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
511more information on under which circumstances the different models may
512be used. The target may choose a different TLS model if the specified
513model is not supported, or if a better choice of model can be made.
514
Sean Silva706fba52015-08-06 22:56:24 +0000515A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000516the alias is accessed. It will not have any effect in the aliasee.
517
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000518For platforms without linker support of ELF TLS model, the -femulated-tls
519flag can be used to generate GCC compatible emulated TLS code.
520
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000521.. _namedtypes:
522
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000523Structure Types
524---------------
Sean Silvab084af42012-12-07 10:36:55 +0000525
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000526LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000527types <t_struct>`. Literal types are uniqued structurally, but identified types
528are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000529to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000530
Sean Silva706fba52015-08-06 22:56:24 +0000531An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000532
533.. code-block:: llvm
534
535 %mytype = type { %mytype*, i32 }
536
Sean Silvaa1190322015-08-06 22:56:48 +0000537Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000538literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000539
540.. _globalvars:
541
542Global Variables
543----------------
544
545Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000546instead of run-time.
547
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000548Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000549
550Global variables in other translation units can also be declared, in which
551case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000552
Bob Wilson85b24f22014-06-12 20:40:33 +0000553Either global variable definitions or declarations may have an explicit section
554to be placed in and may have an optional explicit alignment specified.
555
Michael Gottesman006039c2013-01-31 05:48:48 +0000556A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000557the contents of the variable will **never** be modified (enabling better
558optimization, allowing the global data to be placed in the read-only
559section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000560initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000561variable.
562
563LLVM explicitly allows *declarations* of global variables to be marked
564constant, even if the final definition of the global is not. This
565capability can be used to enable slightly better optimization of the
566program, but requires the language definition to guarantee that
567optimizations based on the 'constantness' are valid for the translation
568units that do not include the definition.
569
570As SSA values, global variables define pointer values that are in scope
571(i.e. they dominate) all basic blocks in the program. Global variables
572always define a pointer to their "content" type because they describe a
573region of memory, and all memory objects in LLVM are accessed through
574pointers.
575
576Global variables can be marked with ``unnamed_addr`` which indicates
577that the address is not significant, only the content. Constants marked
578like this can be merged with other constants if they have the same
579initializer. Note that a constant with significant address *can* be
580merged with a ``unnamed_addr`` constant, the result being a constant
581whose address is significant.
582
583A global variable may be declared to reside in a target-specific
584numbered address space. For targets that support them, address spaces
585may affect how optimizations are performed and/or what target
586instructions are used to access the variable. The default address space
587is zero. The address space qualifier must precede any other attributes.
588
589LLVM allows an explicit section to be specified for globals. If the
590target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000591Additionally, the global can placed in a comdat if the target has the necessary
592support.
Sean Silvab084af42012-12-07 10:36:55 +0000593
Michael Gottesmane743a302013-02-04 03:22:00 +0000594By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000595variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000596initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000597true even for variables potentially accessible from outside the
598module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000599``@llvm.used`` or dllexported variables. This assumption may be suppressed
600by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602An explicit alignment may be specified for a global, which must be a
603power of 2. If not present, or if the alignment is set to zero, the
604alignment of the global is set by the target to whatever it feels
605convenient. If an explicit alignment is specified, the global is forced
606to have exactly that alignment. Targets and optimizers are not allowed
607to over-align the global if the global has an assigned section. In this
608case, the extra alignment could be observable: for example, code could
609assume that the globals are densely packed in their section and try to
610iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000611iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000612
Nico Rieck7157bb72014-01-14 15:22:47 +0000613Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
614
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000615Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000616:ref:`Thread Local Storage Model <tls_model>`.
617
Nico Rieck7157bb72014-01-14 15:22:47 +0000618Syntax::
619
620 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000621 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000622 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000623 [, section "name"] [, comdat [($name)]]
624 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000625
Sean Silvab084af42012-12-07 10:36:55 +0000626For example, the following defines a global in a numbered address space
627with an initializer, section, and alignment:
628
629.. code-block:: llvm
630
631 @G = addrspace(5) constant float 1.0, section "foo", align 4
632
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000633The following example just declares a global variable
634
635.. code-block:: llvm
636
637 @G = external global i32
638
Sean Silvab084af42012-12-07 10:36:55 +0000639The following example defines a thread-local global with the
640``initialexec`` TLS model:
641
642.. code-block:: llvm
643
644 @G = thread_local(initialexec) global i32 0, align 4
645
646.. _functionstructure:
647
648Functions
649---------
650
651LLVM function definitions consist of the "``define``" keyword, an
652optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000653style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
654an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000655an optional ``unnamed_addr`` attribute, a return type, an optional
656:ref:`parameter attribute <paramattrs>` for the return type, a function
657name, a (possibly empty) argument list (each with optional :ref:`parameter
658attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000659an optional section, an optional alignment,
660an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000661an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000662an optional :ref:`prologue <prologuedata>`,
663an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000664an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000665an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000666
667LLVM function declarations consist of the "``declare``" keyword, an
668optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000669style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
670an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000671an optional ``unnamed_addr`` attribute, a return type, an optional
672:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000673name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000674:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
675and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000676
Bill Wendling6822ecb2013-10-27 05:09:12 +0000677A function definition contains a list of basic blocks, forming the CFG (Control
678Flow Graph) for the function. Each basic block may optionally start with a label
679(giving the basic block a symbol table entry), contains a list of instructions,
680and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
681function return). If an explicit label is not provided, a block is assigned an
682implicit numbered label, using the next value from the same counter as used for
683unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
684entry block does not have an explicit label, it will be assigned label "%0",
685then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000686
687The first basic block in a function is special in two ways: it is
688immediately executed on entrance to the function, and it is not allowed
689to have predecessor basic blocks (i.e. there can not be any branches to
690the entry block of a function). Because the block can have no
691predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
692
693LLVM allows an explicit section to be specified for functions. If the
694target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000695Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000696
697An explicit alignment may be specified for a function. If not present,
698or if the alignment is set to zero, the alignment of the function is set
699by the target to whatever it feels convenient. If an explicit alignment
700is specified, the function is forced to have at least that much
701alignment. All alignments must be a power of 2.
702
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000703If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000704be significant and two identical functions can be merged.
705
706Syntax::
707
Nico Rieck7157bb72014-01-14 15:22:47 +0000708 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000709 [cconv] [ret attrs]
710 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000711 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000712 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000713 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000714
Sean Silva706fba52015-08-06 22:56:24 +0000715The argument list is a comma separated sequence of arguments where each
716argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000717
718Syntax::
719
720 <type> [parameter Attrs] [name]
721
722
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000723.. _langref_aliases:
724
Sean Silvab084af42012-12-07 10:36:55 +0000725Aliases
726-------
727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Aliases, unlike function or variables, don't create any new data. They
729are just a new symbol and metadata for an existing position.
730
731Aliases have a name and an aliasee that is either a global value or a
732constant expression.
733
Nico Rieck7157bb72014-01-14 15:22:47 +0000734Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000735:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
736<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000737
738Syntax::
739
David Blaikie196582e2015-10-22 01:17:29 +0000740 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000741
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000742The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000743``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000744might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000745
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000746Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000747the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
748to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000749
Rafael Espindola64c1e182014-06-03 02:41:57 +0000750Since aliases are only a second name, some restrictions apply, of which
751some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000752
Rafael Espindola64c1e182014-06-03 02:41:57 +0000753* The expression defining the aliasee must be computable at assembly
754 time. Since it is just a name, no relocations can be used.
755
756* No alias in the expression can be weak as the possibility of the
757 intermediate alias being overridden cannot be represented in an
758 object file.
759
760* No global value in the expression can be a declaration, since that
761 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000762
David Majnemerdad0a642014-06-27 18:19:56 +0000763.. _langref_comdats:
764
765Comdats
766-------
767
768Comdat IR provides access to COFF and ELF object file COMDAT functionality.
769
Sean Silvaa1190322015-08-06 22:56:48 +0000770Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000771specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000772that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000773aliasee computes to, if any.
774
775Comdats have a selection kind to provide input on how the linker should
776choose between keys in two different object files.
777
778Syntax::
779
780 $<Name> = comdat SelectionKind
781
782The selection kind must be one of the following:
783
784``any``
785 The linker may choose any COMDAT key, the choice is arbitrary.
786``exactmatch``
787 The linker may choose any COMDAT key but the sections must contain the
788 same data.
789``largest``
790 The linker will choose the section containing the largest COMDAT key.
791``noduplicates``
792 The linker requires that only section with this COMDAT key exist.
793``samesize``
794 The linker may choose any COMDAT key but the sections must contain the
795 same amount of data.
796
797Note that the Mach-O platform doesn't support COMDATs and ELF only supports
798``any`` as a selection kind.
799
800Here is an example of a COMDAT group where a function will only be selected if
801the COMDAT key's section is the largest:
802
803.. code-block:: llvm
804
805 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000806 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000807
Rafael Espindola83a362c2015-01-06 22:55:16 +0000808 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000809 ret void
810 }
811
Rafael Espindola83a362c2015-01-06 22:55:16 +0000812As a syntactic sugar the ``$name`` can be omitted if the name is the same as
813the global name:
814
815.. code-block:: llvm
816
817 $foo = comdat any
818 @foo = global i32 2, comdat
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821In a COFF object file, this will create a COMDAT section with selection kind
822``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
823and another COMDAT section with selection kind
824``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000825section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000826
827There are some restrictions on the properties of the global object.
828It, or an alias to it, must have the same name as the COMDAT group when
829targeting COFF.
830The contents and size of this object may be used during link-time to determine
831which COMDAT groups get selected depending on the selection kind.
832Because the name of the object must match the name of the COMDAT group, the
833linkage of the global object must not be local; local symbols can get renamed
834if a collision occurs in the symbol table.
835
836The combined use of COMDATS and section attributes may yield surprising results.
837For example:
838
839.. code-block:: llvm
840
841 $foo = comdat any
842 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000843 @g1 = global i32 42, section "sec", comdat($foo)
844 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000845
846From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000847with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000848COMDAT groups and COMDATs, at the object file level, are represented by
849sections.
850
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000851Note that certain IR constructs like global variables and functions may
852create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000853COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000854in individual sections (e.g. when `-data-sections` or `-function-sections`
855is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000856
Sean Silvab084af42012-12-07 10:36:55 +0000857.. _namedmetadatastructure:
858
859Named Metadata
860--------------
861
862Named metadata is a collection of metadata. :ref:`Metadata
863nodes <metadata>` (but not metadata strings) are the only valid
864operands for a named metadata.
865
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000866#. Named metadata are represented as a string of characters with the
867 metadata prefix. The rules for metadata names are the same as for
868 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
869 are still valid, which allows any character to be part of a name.
870
Sean Silvab084af42012-12-07 10:36:55 +0000871Syntax::
872
873 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000874 !0 = !{!"zero"}
875 !1 = !{!"one"}
876 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000877 ; A named metadata.
878 !name = !{!0, !1, !2}
879
880.. _paramattrs:
881
882Parameter Attributes
883--------------------
884
885The return type and each parameter of a function type may have a set of
886*parameter attributes* associated with them. Parameter attributes are
887used to communicate additional information about the result or
888parameters of a function. Parameter attributes are considered to be part
889of the function, not of the function type, so functions with different
890parameter attributes can have the same function type.
891
892Parameter attributes are simple keywords that follow the type specified.
893If multiple parameter attributes are needed, they are space separated.
894For example:
895
896.. code-block:: llvm
897
898 declare i32 @printf(i8* noalias nocapture, ...)
899 declare i32 @atoi(i8 zeroext)
900 declare signext i8 @returns_signed_char()
901
902Note that any attributes for the function result (``nounwind``,
903``readonly``) come immediately after the argument list.
904
905Currently, only the following parameter attributes are defined:
906
907``zeroext``
908 This indicates to the code generator that the parameter or return
909 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000910 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000911``signext``
912 This indicates to the code generator that the parameter or return
913 value should be sign-extended to the extent required by the target's
914 ABI (which is usually 32-bits) by the caller (for a parameter) or
915 the callee (for a return value).
916``inreg``
917 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000918 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000919 a function call or return (usually, by putting it in a register as
920 opposed to memory, though some targets use it to distinguish between
921 two different kinds of registers). Use of this attribute is
922 target-specific.
923``byval``
924 This indicates that the pointer parameter should really be passed by
925 value to the function. The attribute implies that a hidden copy of
926 the pointee is made between the caller and the callee, so the callee
927 is unable to modify the value in the caller. This attribute is only
928 valid on LLVM pointer arguments. It is generally used to pass
929 structs and arrays by value, but is also valid on pointers to
930 scalars. The copy is considered to belong to the caller not the
931 callee (for example, ``readonly`` functions should not write to
932 ``byval`` parameters). This is not a valid attribute for return
933 values.
934
935 The byval attribute also supports specifying an alignment with the
936 align attribute. It indicates the alignment of the stack slot to
937 form and the known alignment of the pointer specified to the call
938 site. If the alignment is not specified, then the code generator
939 makes a target-specific assumption.
940
Reid Klecknera534a382013-12-19 02:14:12 +0000941.. _attr_inalloca:
942
943``inalloca``
944
Reid Kleckner60d3a832014-01-16 22:59:24 +0000945 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000946 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000947 be a pointer to stack memory produced by an ``alloca`` instruction.
948 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000949 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000950 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000951
Reid Kleckner436c42e2014-01-17 23:58:17 +0000952 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000953 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000954 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000955 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000956 ``inalloca`` attribute also disables LLVM's implicit lowering of
957 large aggregate return values, which means that frontend authors
958 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000959
Reid Kleckner60d3a832014-01-16 22:59:24 +0000960 When the call site is reached, the argument allocation must have
961 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000962 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000963 space after an argument allocation and before its call site, but it
964 must be cleared off with :ref:`llvm.stackrestore
965 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000966
967 See :doc:`InAlloca` for more information on how to use this
968 attribute.
969
Sean Silvab084af42012-12-07 10:36:55 +0000970``sret``
971 This indicates that the pointer parameter specifies the address of a
972 structure that is the return value of the function in the source
973 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000974 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000975 not to trap and to be properly aligned. This may only be applied to
976 the first parameter. This is not a valid attribute for return
977 values.
Sean Silva1703e702014-04-08 21:06:22 +0000978
Hal Finkelccc70902014-07-22 16:58:55 +0000979``align <n>``
980 This indicates that the pointer value may be assumed by the optimizer to
981 have the specified alignment.
982
983 Note that this attribute has additional semantics when combined with the
984 ``byval`` attribute.
985
Sean Silva1703e702014-04-08 21:06:22 +0000986.. _noalias:
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000989 This indicates that objects accessed via pointer values
990 :ref:`based <pointeraliasing>` on the argument or return value are not also
991 accessed, during the execution of the function, via pointer values not
992 *based* on the argument or return value. The attribute on a return value
993 also has additional semantics described below. The caller shares the
994 responsibility with the callee for ensuring that these requirements are met.
995 For further details, please see the discussion of the NoAlias response in
996 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000997
998 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000999 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001000
1001 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001002 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1003 attribute on return values are stronger than the semantics of the attribute
1004 when used on function arguments. On function return values, the ``noalias``
1005 attribute indicates that the function acts like a system memory allocation
1006 function, returning a pointer to allocated storage disjoint from the
1007 storage for any other object accessible to the caller.
1008
Sean Silvab084af42012-12-07 10:36:55 +00001009``nocapture``
1010 This indicates that the callee does not make any copies of the
1011 pointer that outlive the callee itself. This is not a valid
1012 attribute for return values.
1013
1014.. _nest:
1015
1016``nest``
1017 This indicates that the pointer parameter can be excised using the
1018 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001019 attribute for return values and can only be applied to one parameter.
1020
1021``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001022 This indicates that the function always returns the argument as its return
1023 value. This is an optimization hint to the code generator when generating
1024 the caller, allowing tail call optimization and omission of register saves
1025 and restores in some cases; it is not checked or enforced when generating
1026 the callee. The parameter and the function return type must be valid
1027 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1028 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001029
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001030``nonnull``
1031 This indicates that the parameter or return pointer is not null. This
1032 attribute may only be applied to pointer typed parameters. This is not
1033 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001034 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001035 is non-null.
1036
Hal Finkelb0407ba2014-07-18 15:51:28 +00001037``dereferenceable(<n>)``
1038 This indicates that the parameter or return pointer is dereferenceable. This
1039 attribute may only be applied to pointer typed parameters. A pointer that
1040 is dereferenceable can be loaded from speculatively without a risk of
1041 trapping. The number of bytes known to be dereferenceable must be provided
1042 in parentheses. It is legal for the number of bytes to be less than the
1043 size of the pointee type. The ``nonnull`` attribute does not imply
1044 dereferenceability (consider a pointer to one element past the end of an
1045 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1046 ``addrspace(0)`` (which is the default address space).
1047
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001048``dereferenceable_or_null(<n>)``
1049 This indicates that the parameter or return value isn't both
1050 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001051 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001052 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1053 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1054 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1055 and in other address spaces ``dereferenceable_or_null(<n>)``
1056 implies that a pointer is at least one of ``dereferenceable(<n>)``
1057 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001058 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001059 pointer typed parameters.
1060
Manman Renf46262e2016-03-29 17:37:21 +00001061``swiftself``
1062 This indicates that the parameter is the self/context parameter. This is not
1063 a valid attribute for return values and can only be applied to one
1064 parameter.
1065
Sean Silvab084af42012-12-07 10:36:55 +00001066.. _gc:
1067
Philip Reamesf80bbff2015-02-25 23:45:20 +00001068Garbage Collector Strategy Names
1069--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001070
Philip Reamesf80bbff2015-02-25 23:45:20 +00001071Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001072string:
1073
1074.. code-block:: llvm
1075
1076 define void @f() gc "name" { ... }
1077
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001078The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001079<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001080strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001081named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001082garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001083which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001084
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001085.. _prefixdata:
1086
1087Prefix Data
1088-----------
1089
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001090Prefix data is data associated with a function which the code
1091generator will emit immediately before the function's entrypoint.
1092The purpose of this feature is to allow frontends to associate
1093language-specific runtime metadata with specific functions and make it
1094available through the function pointer while still allowing the
1095function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001096
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001097To access the data for a given function, a program may bitcast the
1098function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001099index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001100the prefix data. For instance, take the example of a function annotated
1101with a single ``i32``,
1102
1103.. code-block:: llvm
1104
1105 define void @f() prefix i32 123 { ... }
1106
1107The prefix data can be referenced as,
1108
1109.. code-block:: llvm
1110
David Blaikie16a97eb2015-03-04 22:02:58 +00001111 %0 = bitcast void* () @f to i32*
1112 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001113 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001114
1115Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001116of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001117beginning of the prefix data is aligned. This means that if the size
1118of the prefix data is not a multiple of the alignment size, the
1119function's entrypoint will not be aligned. If alignment of the
1120function's entrypoint is desired, padding must be added to the prefix
1121data.
1122
Sean Silvaa1190322015-08-06 22:56:48 +00001123A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001124to the ``available_externally`` linkage in that the data may be used by the
1125optimizers but will not be emitted in the object file.
1126
1127.. _prologuedata:
1128
1129Prologue Data
1130-------------
1131
1132The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1133be inserted prior to the function body. This can be used for enabling
1134function hot-patching and instrumentation.
1135
1136To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001137have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001138bytes which decode to a sequence of machine instructions, valid for the
1139module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001140the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001141the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001142definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001143makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001144
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001145A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001146which encodes the ``nop`` instruction:
1147
1148.. code-block:: llvm
1149
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001150 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001151
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001152Generally prologue data can be formed by encoding a relative branch instruction
1153which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001154x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1155
1156.. code-block:: llvm
1157
1158 %0 = type <{ i8, i8, i8* }>
1159
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001160 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001161
Sean Silvaa1190322015-08-06 22:56:48 +00001162A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001163to the ``available_externally`` linkage in that the data may be used by the
1164optimizers but will not be emitted in the object file.
1165
David Majnemer7fddecc2015-06-17 20:52:32 +00001166.. _personalityfn:
1167
1168Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001169--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001170
1171The ``personality`` attribute permits functions to specify what function
1172to use for exception handling.
1173
Bill Wendling63b88192013-02-06 06:52:58 +00001174.. _attrgrp:
1175
1176Attribute Groups
1177----------------
1178
1179Attribute groups are groups of attributes that are referenced by objects within
1180the IR. They are important for keeping ``.ll`` files readable, because a lot of
1181functions will use the same set of attributes. In the degenerative case of a
1182``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1183group will capture the important command line flags used to build that file.
1184
1185An attribute group is a module-level object. To use an attribute group, an
1186object references the attribute group's ID (e.g. ``#37``). An object may refer
1187to more than one attribute group. In that situation, the attributes from the
1188different groups are merged.
1189
1190Here is an example of attribute groups for a function that should always be
1191inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1192
1193.. code-block:: llvm
1194
1195 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001196 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001197
1198 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001199 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001200
1201 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1202 define void @f() #0 #1 { ... }
1203
Sean Silvab084af42012-12-07 10:36:55 +00001204.. _fnattrs:
1205
1206Function Attributes
1207-------------------
1208
1209Function attributes are set to communicate additional information about
1210a function. Function attributes are considered to be part of the
1211function, not of the function type, so functions with different function
1212attributes can have the same function type.
1213
1214Function attributes are simple keywords that follow the type specified.
1215If multiple attributes are needed, they are space separated. For
1216example:
1217
1218.. code-block:: llvm
1219
1220 define void @f() noinline { ... }
1221 define void @f() alwaysinline { ... }
1222 define void @f() alwaysinline optsize { ... }
1223 define void @f() optsize { ... }
1224
Sean Silvab084af42012-12-07 10:36:55 +00001225``alignstack(<n>)``
1226 This attribute indicates that, when emitting the prologue and
1227 epilogue, the backend should forcibly align the stack pointer.
1228 Specify the desired alignment, which must be a power of two, in
1229 parentheses.
1230``alwaysinline``
1231 This attribute indicates that the inliner should attempt to inline
1232 this function into callers whenever possible, ignoring any active
1233 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001234``builtin``
1235 This indicates that the callee function at a call site should be
1236 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001237 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001238 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001239 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001240``cold``
1241 This attribute indicates that this function is rarely called. When
1242 computing edge weights, basic blocks post-dominated by a cold
1243 function call are also considered to be cold; and, thus, given low
1244 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001245``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001246 In some parallel execution models, there exist operations that cannot be
1247 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001248 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001249
Justin Lebar58535b12016-02-17 17:46:41 +00001250 The ``convergent`` attribute may appear on functions or call/invoke
1251 instructions. When it appears on a function, it indicates that calls to
1252 this function should not be made control-dependent on additional values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001253 For example, the intrinsic ``llvm.cuda.syncthreads`` is ``convergent``, so
1254 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001255 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001256
Justin Lebar58535b12016-02-17 17:46:41 +00001257 When it appears on a call/invoke, the ``convergent`` attribute indicates
1258 that we should treat the call as though we're calling a convergent
1259 function. This is particularly useful on indirect calls; without this we
1260 may treat such calls as though the target is non-convergent.
1261
1262 The optimizer may remove the ``convergent`` attribute on functions when it
1263 can prove that the function does not execute any convergent operations.
1264 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1265 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001266``inaccessiblememonly``
1267 This attribute indicates that the function may only access memory that
1268 is not accessible by the module being compiled. This is a weaker form
1269 of ``readnone``.
1270``inaccessiblemem_or_argmemonly``
1271 This attribute indicates that the function may only access memory that is
1272 either not accessible by the module being compiled, or is pointed to
1273 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001274``inlinehint``
1275 This attribute indicates that the source code contained a hint that
1276 inlining this function is desirable (such as the "inline" keyword in
1277 C/C++). It is just a hint; it imposes no requirements on the
1278 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001279``jumptable``
1280 This attribute indicates that the function should be added to a
1281 jump-instruction table at code-generation time, and that all address-taken
1282 references to this function should be replaced with a reference to the
1283 appropriate jump-instruction-table function pointer. Note that this creates
1284 a new pointer for the original function, which means that code that depends
1285 on function-pointer identity can break. So, any function annotated with
1286 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001287``minsize``
1288 This attribute suggests that optimization passes and code generator
1289 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001290 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001291 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001292``naked``
1293 This attribute disables prologue / epilogue emission for the
1294 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001295``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001296 This indicates that the callee function at a call site is not recognized as
1297 a built-in function. LLVM will retain the original call and not replace it
1298 with equivalent code based on the semantics of the built-in function, unless
1299 the call site uses the ``builtin`` attribute. This is valid at call sites
1300 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001301``noduplicate``
1302 This attribute indicates that calls to the function cannot be
1303 duplicated. A call to a ``noduplicate`` function may be moved
1304 within its parent function, but may not be duplicated within
1305 its parent function.
1306
1307 A function containing a ``noduplicate`` call may still
1308 be an inlining candidate, provided that the call is not
1309 duplicated by inlining. That implies that the function has
1310 internal linkage and only has one call site, so the original
1311 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001312``noimplicitfloat``
1313 This attributes disables implicit floating point instructions.
1314``noinline``
1315 This attribute indicates that the inliner should never inline this
1316 function in any situation. This attribute may not be used together
1317 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001318``nonlazybind``
1319 This attribute suppresses lazy symbol binding for the function. This
1320 may make calls to the function faster, at the cost of extra program
1321 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001322``noredzone``
1323 This attribute indicates that the code generator should not use a
1324 red zone, even if the target-specific ABI normally permits it.
1325``noreturn``
1326 This function attribute indicates that the function never returns
1327 normally. This produces undefined behavior at runtime if the
1328 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001329``norecurse``
1330 This function attribute indicates that the function does not call itself
1331 either directly or indirectly down any possible call path. This produces
1332 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001333``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001334 This function attribute indicates that the function never raises an
1335 exception. If the function does raise an exception, its runtime
1336 behavior is undefined. However, functions marked nounwind may still
1337 trap or generate asynchronous exceptions. Exception handling schemes
1338 that are recognized by LLVM to handle asynchronous exceptions, such
1339 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001340``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001341 This function attribute indicates that most optimization passes will skip
1342 this function, with the exception of interprocedural optimization passes.
1343 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001344 This attribute cannot be used together with the ``alwaysinline``
1345 attribute; this attribute is also incompatible
1346 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001347
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001348 This attribute requires the ``noinline`` attribute to be specified on
1349 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001350 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001351 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001352``optsize``
1353 This attribute suggests that optimization passes and code generator
1354 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001355 and otherwise do optimizations specifically to reduce code size as
1356 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001357``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001358 On a function, this attribute indicates that the function computes its
1359 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001360 without dereferencing any pointer arguments or otherwise accessing
1361 any mutable state (e.g. memory, control registers, etc) visible to
1362 caller functions. It does not write through any pointer arguments
1363 (including ``byval`` arguments) and never changes any state visible
1364 to callers. This means that it cannot unwind exceptions by calling
1365 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001366
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001367 On an argument, this attribute indicates that the function does not
1368 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001369 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001370``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001371 On a function, this attribute indicates that the function does not write
1372 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001373 modify any state (e.g. memory, control registers, etc) visible to
1374 caller functions. It may dereference pointer arguments and read
1375 state that may be set in the caller. A readonly function always
1376 returns the same value (or unwinds an exception identically) when
1377 called with the same set of arguments and global state. It cannot
1378 unwind an exception by calling the ``C++`` exception throwing
1379 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001380
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001381 On an argument, this attribute indicates that the function does not write
1382 through this pointer argument, even though it may write to the memory that
1383 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001384``argmemonly``
1385 This attribute indicates that the only memory accesses inside function are
1386 loads and stores from objects pointed to by its pointer-typed arguments,
1387 with arbitrary offsets. Or in other words, all memory operations in the
1388 function can refer to memory only using pointers based on its function
1389 arguments.
1390 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1391 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001392``returns_twice``
1393 This attribute indicates that this function can return twice. The C
1394 ``setjmp`` is an example of such a function. The compiler disables
1395 some optimizations (like tail calls) in the caller of these
1396 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001397``safestack``
1398 This attribute indicates that
1399 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1400 protection is enabled for this function.
1401
1402 If a function that has a ``safestack`` attribute is inlined into a
1403 function that doesn't have a ``safestack`` attribute or which has an
1404 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1405 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001406``sanitize_address``
1407 This attribute indicates that AddressSanitizer checks
1408 (dynamic address safety analysis) are enabled for this function.
1409``sanitize_memory``
1410 This attribute indicates that MemorySanitizer checks (dynamic detection
1411 of accesses to uninitialized memory) are enabled for this function.
1412``sanitize_thread``
1413 This attribute indicates that ThreadSanitizer checks
1414 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001415``ssp``
1416 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001417 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001418 placed on the stack before the local variables that's checked upon
1419 return from the function to see if it has been overwritten. A
1420 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001421 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001422
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001423 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1424 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1425 - Calls to alloca() with variable sizes or constant sizes greater than
1426 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001427
Josh Magee24c7f062014-02-01 01:36:16 +00001428 Variables that are identified as requiring a protector will be arranged
1429 on the stack such that they are adjacent to the stack protector guard.
1430
Sean Silvab084af42012-12-07 10:36:55 +00001431 If a function that has an ``ssp`` attribute is inlined into a
1432 function that doesn't have an ``ssp`` attribute, then the resulting
1433 function will have an ``ssp`` attribute.
1434``sspreq``
1435 This attribute indicates that the function should *always* emit a
1436 stack smashing protector. This overrides the ``ssp`` function
1437 attribute.
1438
Josh Magee24c7f062014-02-01 01:36:16 +00001439 Variables that are identified as requiring a protector will be arranged
1440 on the stack such that they are adjacent to the stack protector guard.
1441 The specific layout rules are:
1442
1443 #. Large arrays and structures containing large arrays
1444 (``>= ssp-buffer-size``) are closest to the stack protector.
1445 #. Small arrays and structures containing small arrays
1446 (``< ssp-buffer-size``) are 2nd closest to the protector.
1447 #. Variables that have had their address taken are 3rd closest to the
1448 protector.
1449
Sean Silvab084af42012-12-07 10:36:55 +00001450 If a function that has an ``sspreq`` attribute is inlined into a
1451 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001452 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1453 an ``sspreq`` attribute.
1454``sspstrong``
1455 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001456 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001457 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001458 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001459
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001460 - Arrays of any size and type
1461 - Aggregates containing an array of any size and type.
1462 - Calls to alloca().
1463 - Local variables that have had their address taken.
1464
Josh Magee24c7f062014-02-01 01:36:16 +00001465 Variables that are identified as requiring a protector will be arranged
1466 on the stack such that they are adjacent to the stack protector guard.
1467 The specific layout rules are:
1468
1469 #. Large arrays and structures containing large arrays
1470 (``>= ssp-buffer-size``) are closest to the stack protector.
1471 #. Small arrays and structures containing small arrays
1472 (``< ssp-buffer-size``) are 2nd closest to the protector.
1473 #. Variables that have had their address taken are 3rd closest to the
1474 protector.
1475
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001476 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001477
1478 If a function that has an ``sspstrong`` attribute is inlined into a
1479 function that doesn't have an ``sspstrong`` attribute, then the
1480 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001481``"thunk"``
1482 This attribute indicates that the function will delegate to some other
1483 function with a tail call. The prototype of a thunk should not be used for
1484 optimization purposes. The caller is expected to cast the thunk prototype to
1485 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001486``uwtable``
1487 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001488 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001489 show that no exceptions passes by it. This is normally the case for
1490 the ELF x86-64 abi, but it can be disabled for some compilation
1491 units.
Sean Silvab084af42012-12-07 10:36:55 +00001492
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001493
1494.. _opbundles:
1495
1496Operand Bundles
1497---------------
1498
1499Note: operand bundles are a work in progress, and they should be
1500considered experimental at this time.
1501
1502Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001503with certain LLVM instructions (currently only ``call`` s and
1504``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001505incorrect and will change program semantics.
1506
1507Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001508
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001509 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001510 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1511 bundle operand ::= SSA value
1512 tag ::= string constant
1513
1514Operand bundles are **not** part of a function's signature, and a
1515given function may be called from multiple places with different kinds
1516of operand bundles. This reflects the fact that the operand bundles
1517are conceptually a part of the ``call`` (or ``invoke``), not the
1518callee being dispatched to.
1519
1520Operand bundles are a generic mechanism intended to support
1521runtime-introspection-like functionality for managed languages. While
1522the exact semantics of an operand bundle depend on the bundle tag,
1523there are certain limitations to how much the presence of an operand
1524bundle can influence the semantics of a program. These restrictions
1525are described as the semantics of an "unknown" operand bundle. As
1526long as the behavior of an operand bundle is describable within these
1527restrictions, LLVM does not need to have special knowledge of the
1528operand bundle to not miscompile programs containing it.
1529
David Majnemer34cacb42015-10-22 01:46:38 +00001530- The bundle operands for an unknown operand bundle escape in unknown
1531 ways before control is transferred to the callee or invokee.
1532- Calls and invokes with operand bundles have unknown read / write
1533 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001534 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001535 callsite specific attributes.
1536- An operand bundle at a call site cannot change the implementation
1537 of the called function. Inter-procedural optimizations work as
1538 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001539
Sanjoy Dascdafd842015-11-11 21:38:02 +00001540More specific types of operand bundles are described below.
1541
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001542.. _deopt_opbundles:
1543
Sanjoy Dascdafd842015-11-11 21:38:02 +00001544Deoptimization Operand Bundles
1545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1546
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001547Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001548operand bundle tag. These operand bundles represent an alternate
1549"safe" continuation for the call site they're attached to, and can be
1550used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001551specified call site. There can be at most one ``"deopt"`` operand
1552bundle attached to a call site. Exact details of deoptimization is
1553out of scope for the language reference, but it usually involves
1554rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001555
1556From the compiler's perspective, deoptimization operand bundles make
1557the call sites they're attached to at least ``readonly``. They read
1558through all of their pointer typed operands (even if they're not
1559otherwise escaped) and the entire visible heap. Deoptimization
1560operand bundles do not capture their operands except during
1561deoptimization, in which case control will not be returned to the
1562compiled frame.
1563
Sanjoy Das2d161452015-11-18 06:23:38 +00001564The inliner knows how to inline through calls that have deoptimization
1565operand bundles. Just like inlining through a normal call site
1566involves composing the normal and exceptional continuations, inlining
1567through a call site with a deoptimization operand bundle needs to
1568appropriately compose the "safe" deoptimization continuation. The
1569inliner does this by prepending the parent's deoptimization
1570continuation to every deoptimization continuation in the inlined body.
1571E.g. inlining ``@f`` into ``@g`` in the following example
1572
1573.. code-block:: llvm
1574
1575 define void @f() {
1576 call void @x() ;; no deopt state
1577 call void @y() [ "deopt"(i32 10) ]
1578 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1579 ret void
1580 }
1581
1582 define void @g() {
1583 call void @f() [ "deopt"(i32 20) ]
1584 ret void
1585 }
1586
1587will result in
1588
1589.. code-block:: llvm
1590
1591 define void @g() {
1592 call void @x() ;; still no deopt state
1593 call void @y() [ "deopt"(i32 20, i32 10) ]
1594 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1595 ret void
1596 }
1597
1598It is the frontend's responsibility to structure or encode the
1599deoptimization state in a way that syntactically prepending the
1600caller's deoptimization state to the callee's deoptimization state is
1601semantically equivalent to composing the caller's deoptimization
1602continuation after the callee's deoptimization continuation.
1603
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001604.. _ob_funclet:
1605
David Majnemer3bb88c02015-12-15 21:27:27 +00001606Funclet Operand Bundles
1607^^^^^^^^^^^^^^^^^^^^^^^
1608
1609Funclet operand bundles are characterized by the ``"funclet"``
1610operand bundle tag. These operand bundles indicate that a call site
1611is within a particular funclet. There can be at most one
1612``"funclet"`` operand bundle attached to a call site and it must have
1613exactly one bundle operand.
1614
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001615If any funclet EH pads have been "entered" but not "exited" (per the
1616`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1617it is undefined behavior to execute a ``call`` or ``invoke`` which:
1618
1619* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1620 intrinsic, or
1621* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1622 not-yet-exited funclet EH pad.
1623
1624Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1625executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1626
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001627GC Transition Operand Bundles
1628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1629
1630GC transition operand bundles are characterized by the
1631``"gc-transition"`` operand bundle tag. These operand bundles mark a
1632call as a transition between a function with one GC strategy to a
1633function with a different GC strategy. If coordinating the transition
1634between GC strategies requires additional code generation at the call
1635site, these bundles may contain any values that are needed by the
1636generated code. For more details, see :ref:`GC Transitions
1637<gc_transition_args>`.
1638
Sean Silvab084af42012-12-07 10:36:55 +00001639.. _moduleasm:
1640
1641Module-Level Inline Assembly
1642----------------------------
1643
1644Modules may contain "module-level inline asm" blocks, which corresponds
1645to the GCC "file scope inline asm" blocks. These blocks are internally
1646concatenated by LLVM and treated as a single unit, but may be separated
1647in the ``.ll`` file if desired. The syntax is very simple:
1648
1649.. code-block:: llvm
1650
1651 module asm "inline asm code goes here"
1652 module asm "more can go here"
1653
1654The strings can contain any character by escaping non-printable
1655characters. The escape sequence used is simply "\\xx" where "xx" is the
1656two digit hex code for the number.
1657
James Y Knightbc832ed2015-07-08 18:08:36 +00001658Note that the assembly string *must* be parseable by LLVM's integrated assembler
1659(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001660
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001661.. _langref_datalayout:
1662
Sean Silvab084af42012-12-07 10:36:55 +00001663Data Layout
1664-----------
1665
1666A module may specify a target specific data layout string that specifies
1667how data is to be laid out in memory. The syntax for the data layout is
1668simply:
1669
1670.. code-block:: llvm
1671
1672 target datalayout = "layout specification"
1673
1674The *layout specification* consists of a list of specifications
1675separated by the minus sign character ('-'). Each specification starts
1676with a letter and may include other information after the letter to
1677define some aspect of the data layout. The specifications accepted are
1678as follows:
1679
1680``E``
1681 Specifies that the target lays out data in big-endian form. That is,
1682 the bits with the most significance have the lowest address
1683 location.
1684``e``
1685 Specifies that the target lays out data in little-endian form. That
1686 is, the bits with the least significance have the lowest address
1687 location.
1688``S<size>``
1689 Specifies the natural alignment of the stack in bits. Alignment
1690 promotion of stack variables is limited to the natural stack
1691 alignment to avoid dynamic stack realignment. The stack alignment
1692 must be a multiple of 8-bits. If omitted, the natural stack
1693 alignment defaults to "unspecified", which does not prevent any
1694 alignment promotions.
1695``p[n]:<size>:<abi>:<pref>``
1696 This specifies the *size* of a pointer and its ``<abi>`` and
1697 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001698 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001699 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001700 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001701``i<size>:<abi>:<pref>``
1702 This specifies the alignment for an integer type of a given bit
1703 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1704``v<size>:<abi>:<pref>``
1705 This specifies the alignment for a vector type of a given bit
1706 ``<size>``.
1707``f<size>:<abi>:<pref>``
1708 This specifies the alignment for a floating point type of a given bit
1709 ``<size>``. Only values of ``<size>`` that are supported by the target
1710 will work. 32 (float) and 64 (double) are supported on all targets; 80
1711 or 128 (different flavors of long double) are also supported on some
1712 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001713``a:<abi>:<pref>``
1714 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001715``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001716 If present, specifies that llvm names are mangled in the output. The
1717 options are
1718
1719 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1720 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1721 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1722 symbols get a ``_`` prefix.
1723 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1724 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001725 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1726 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001727``n<size1>:<size2>:<size3>...``
1728 This specifies a set of native integer widths for the target CPU in
1729 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1730 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1731 this set are considered to support most general arithmetic operations
1732 efficiently.
1733
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001734On every specification that takes a ``<abi>:<pref>``, specifying the
1735``<pref>`` alignment is optional. If omitted, the preceding ``:``
1736should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1737
Sean Silvab084af42012-12-07 10:36:55 +00001738When constructing the data layout for a given target, LLVM starts with a
1739default set of specifications which are then (possibly) overridden by
1740the specifications in the ``datalayout`` keyword. The default
1741specifications are given in this list:
1742
1743- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001744- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1745- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1746 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001747- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001748- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1749- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1750- ``i16:16:16`` - i16 is 16-bit aligned
1751- ``i32:32:32`` - i32 is 32-bit aligned
1752- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1753 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001754- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001755- ``f32:32:32`` - float is 32-bit aligned
1756- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001757- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001758- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1759- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001760- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001761
1762When LLVM is determining the alignment for a given type, it uses the
1763following rules:
1764
1765#. If the type sought is an exact match for one of the specifications,
1766 that specification is used.
1767#. If no match is found, and the type sought is an integer type, then
1768 the smallest integer type that is larger than the bitwidth of the
1769 sought type is used. If none of the specifications are larger than
1770 the bitwidth then the largest integer type is used. For example,
1771 given the default specifications above, the i7 type will use the
1772 alignment of i8 (next largest) while both i65 and i256 will use the
1773 alignment of i64 (largest specified).
1774#. If no match is found, and the type sought is a vector type, then the
1775 largest vector type that is smaller than the sought vector type will
1776 be used as a fall back. This happens because <128 x double> can be
1777 implemented in terms of 64 <2 x double>, for example.
1778
1779The function of the data layout string may not be what you expect.
1780Notably, this is not a specification from the frontend of what alignment
1781the code generator should use.
1782
1783Instead, if specified, the target data layout is required to match what
1784the ultimate *code generator* expects. This string is used by the
1785mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001786what the ultimate code generator uses. There is no way to generate IR
1787that does not embed this target-specific detail into the IR. If you
1788don't specify the string, the default specifications will be used to
1789generate a Data Layout and the optimization phases will operate
1790accordingly and introduce target specificity into the IR with respect to
1791these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001792
Bill Wendling5cc90842013-10-18 23:41:25 +00001793.. _langref_triple:
1794
1795Target Triple
1796-------------
1797
1798A module may specify a target triple string that describes the target
1799host. The syntax for the target triple is simply:
1800
1801.. code-block:: llvm
1802
1803 target triple = "x86_64-apple-macosx10.7.0"
1804
1805The *target triple* string consists of a series of identifiers delimited
1806by the minus sign character ('-'). The canonical forms are:
1807
1808::
1809
1810 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1811 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1812
1813This information is passed along to the backend so that it generates
1814code for the proper architecture. It's possible to override this on the
1815command line with the ``-mtriple`` command line option.
1816
Sean Silvab084af42012-12-07 10:36:55 +00001817.. _pointeraliasing:
1818
1819Pointer Aliasing Rules
1820----------------------
1821
1822Any memory access must be done through a pointer value associated with
1823an address range of the memory access, otherwise the behavior is
1824undefined. Pointer values are associated with address ranges according
1825to the following rules:
1826
1827- A pointer value is associated with the addresses associated with any
1828 value it is *based* on.
1829- An address of a global variable is associated with the address range
1830 of the variable's storage.
1831- The result value of an allocation instruction is associated with the
1832 address range of the allocated storage.
1833- A null pointer in the default address-space is associated with no
1834 address.
1835- An integer constant other than zero or a pointer value returned from
1836 a function not defined within LLVM may be associated with address
1837 ranges allocated through mechanisms other than those provided by
1838 LLVM. Such ranges shall not overlap with any ranges of addresses
1839 allocated by mechanisms provided by LLVM.
1840
1841A pointer value is *based* on another pointer value according to the
1842following rules:
1843
1844- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001845 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001846- The result value of a ``bitcast`` is *based* on the operand of the
1847 ``bitcast``.
1848- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1849 values that contribute (directly or indirectly) to the computation of
1850 the pointer's value.
1851- The "*based* on" relationship is transitive.
1852
1853Note that this definition of *"based"* is intentionally similar to the
1854definition of *"based"* in C99, though it is slightly weaker.
1855
1856LLVM IR does not associate types with memory. The result type of a
1857``load`` merely indicates the size and alignment of the memory from
1858which to load, as well as the interpretation of the value. The first
1859operand type of a ``store`` similarly only indicates the size and
1860alignment of the store.
1861
1862Consequently, type-based alias analysis, aka TBAA, aka
1863``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1864:ref:`Metadata <metadata>` may be used to encode additional information
1865which specialized optimization passes may use to implement type-based
1866alias analysis.
1867
1868.. _volatile:
1869
1870Volatile Memory Accesses
1871------------------------
1872
1873Certain memory accesses, such as :ref:`load <i_load>`'s,
1874:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1875marked ``volatile``. The optimizers must not change the number of
1876volatile operations or change their order of execution relative to other
1877volatile operations. The optimizers *may* change the order of volatile
1878operations relative to non-volatile operations. This is not Java's
1879"volatile" and has no cross-thread synchronization behavior.
1880
Andrew Trick89fc5a62013-01-30 21:19:35 +00001881IR-level volatile loads and stores cannot safely be optimized into
1882llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1883flagged volatile. Likewise, the backend should never split or merge
1884target-legal volatile load/store instructions.
1885
Andrew Trick7e6f9282013-01-31 00:49:39 +00001886.. admonition:: Rationale
1887
1888 Platforms may rely on volatile loads and stores of natively supported
1889 data width to be executed as single instruction. For example, in C
1890 this holds for an l-value of volatile primitive type with native
1891 hardware support, but not necessarily for aggregate types. The
1892 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001893 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001894 do not violate the frontend's contract with the language.
1895
Sean Silvab084af42012-12-07 10:36:55 +00001896.. _memmodel:
1897
1898Memory Model for Concurrent Operations
1899--------------------------------------
1900
1901The LLVM IR does not define any way to start parallel threads of
1902execution or to register signal handlers. Nonetheless, there are
1903platform-specific ways to create them, and we define LLVM IR's behavior
1904in their presence. This model is inspired by the C++0x memory model.
1905
1906For a more informal introduction to this model, see the :doc:`Atomics`.
1907
1908We define a *happens-before* partial order as the least partial order
1909that
1910
1911- Is a superset of single-thread program order, and
1912- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1913 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1914 techniques, like pthread locks, thread creation, thread joining,
1915 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1916 Constraints <ordering>`).
1917
1918Note that program order does not introduce *happens-before* edges
1919between a thread and signals executing inside that thread.
1920
1921Every (defined) read operation (load instructions, memcpy, atomic
1922loads/read-modify-writes, etc.) R reads a series of bytes written by
1923(defined) write operations (store instructions, atomic
1924stores/read-modify-writes, memcpy, etc.). For the purposes of this
1925section, initialized globals are considered to have a write of the
1926initializer which is atomic and happens before any other read or write
1927of the memory in question. For each byte of a read R, R\ :sub:`byte`
1928may see any write to the same byte, except:
1929
1930- If write\ :sub:`1` happens before write\ :sub:`2`, and
1931 write\ :sub:`2` happens before R\ :sub:`byte`, then
1932 R\ :sub:`byte` does not see write\ :sub:`1`.
1933- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1934 R\ :sub:`byte` does not see write\ :sub:`3`.
1935
1936Given that definition, R\ :sub:`byte` is defined as follows:
1937
1938- If R is volatile, the result is target-dependent. (Volatile is
1939 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001940 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001941 like normal memory. It does not generally provide cross-thread
1942 synchronization.)
1943- Otherwise, if there is no write to the same byte that happens before
1944 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1945- Otherwise, if R\ :sub:`byte` may see exactly one write,
1946 R\ :sub:`byte` returns the value written by that write.
1947- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1948 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1949 Memory Ordering Constraints <ordering>` section for additional
1950 constraints on how the choice is made.
1951- Otherwise R\ :sub:`byte` returns ``undef``.
1952
1953R returns the value composed of the series of bytes it read. This
1954implies that some bytes within the value may be ``undef`` **without**
1955the entire value being ``undef``. Note that this only defines the
1956semantics of the operation; it doesn't mean that targets will emit more
1957than one instruction to read the series of bytes.
1958
1959Note that in cases where none of the atomic intrinsics are used, this
1960model places only one restriction on IR transformations on top of what
1961is required for single-threaded execution: introducing a store to a byte
1962which might not otherwise be stored is not allowed in general.
1963(Specifically, in the case where another thread might write to and read
1964from an address, introducing a store can change a load that may see
1965exactly one write into a load that may see multiple writes.)
1966
1967.. _ordering:
1968
1969Atomic Memory Ordering Constraints
1970----------------------------------
1971
1972Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1973:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1974:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001975ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001976the same address they *synchronize with*. These semantics are borrowed
1977from Java and C++0x, but are somewhat more colloquial. If these
1978descriptions aren't precise enough, check those specs (see spec
1979references in the :doc:`atomics guide <Atomics>`).
1980:ref:`fence <i_fence>` instructions treat these orderings somewhat
1981differently since they don't take an address. See that instruction's
1982documentation for details.
1983
1984For a simpler introduction to the ordering constraints, see the
1985:doc:`Atomics`.
1986
1987``unordered``
1988 The set of values that can be read is governed by the happens-before
1989 partial order. A value cannot be read unless some operation wrote
1990 it. This is intended to provide a guarantee strong enough to model
1991 Java's non-volatile shared variables. This ordering cannot be
1992 specified for read-modify-write operations; it is not strong enough
1993 to make them atomic in any interesting way.
1994``monotonic``
1995 In addition to the guarantees of ``unordered``, there is a single
1996 total order for modifications by ``monotonic`` operations on each
1997 address. All modification orders must be compatible with the
1998 happens-before order. There is no guarantee that the modification
1999 orders can be combined to a global total order for the whole program
2000 (and this often will not be possible). The read in an atomic
2001 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2002 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2003 order immediately before the value it writes. If one atomic read
2004 happens before another atomic read of the same address, the later
2005 read must see the same value or a later value in the address's
2006 modification order. This disallows reordering of ``monotonic`` (or
2007 stronger) operations on the same address. If an address is written
2008 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2009 read that address repeatedly, the other threads must eventually see
2010 the write. This corresponds to the C++0x/C1x
2011 ``memory_order_relaxed``.
2012``acquire``
2013 In addition to the guarantees of ``monotonic``, a
2014 *synchronizes-with* edge may be formed with a ``release`` operation.
2015 This is intended to model C++'s ``memory_order_acquire``.
2016``release``
2017 In addition to the guarantees of ``monotonic``, if this operation
2018 writes a value which is subsequently read by an ``acquire``
2019 operation, it *synchronizes-with* that operation. (This isn't a
2020 complete description; see the C++0x definition of a release
2021 sequence.) This corresponds to the C++0x/C1x
2022 ``memory_order_release``.
2023``acq_rel`` (acquire+release)
2024 Acts as both an ``acquire`` and ``release`` operation on its
2025 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2026``seq_cst`` (sequentially consistent)
2027 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002028 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002029 writes), there is a global total order on all
2030 sequentially-consistent operations on all addresses, which is
2031 consistent with the *happens-before* partial order and with the
2032 modification orders of all the affected addresses. Each
2033 sequentially-consistent read sees the last preceding write to the
2034 same address in this global order. This corresponds to the C++0x/C1x
2035 ``memory_order_seq_cst`` and Java volatile.
2036
2037.. _singlethread:
2038
2039If an atomic operation is marked ``singlethread``, it only *synchronizes
2040with* or participates in modification and seq\_cst total orderings with
2041other operations running in the same thread (for example, in signal
2042handlers).
2043
2044.. _fastmath:
2045
2046Fast-Math Flags
2047---------------
2048
2049LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2050:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002051:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2052be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002053
2054``nnan``
2055 No NaNs - Allow optimizations to assume the arguments and result are not
2056 NaN. Such optimizations are required to retain defined behavior over
2057 NaNs, but the value of the result is undefined.
2058
2059``ninf``
2060 No Infs - Allow optimizations to assume the arguments and result are not
2061 +/-Inf. Such optimizations are required to retain defined behavior over
2062 +/-Inf, but the value of the result is undefined.
2063
2064``nsz``
2065 No Signed Zeros - Allow optimizations to treat the sign of a zero
2066 argument or result as insignificant.
2067
2068``arcp``
2069 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2070 argument rather than perform division.
2071
2072``fast``
2073 Fast - Allow algebraically equivalent transformations that may
2074 dramatically change results in floating point (e.g. reassociate). This
2075 flag implies all the others.
2076
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002077.. _uselistorder:
2078
2079Use-list Order Directives
2080-------------------------
2081
2082Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002083order to be recreated. ``<order-indexes>`` is a comma-separated list of
2084indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002085value's use-list is immediately sorted by these indexes.
2086
Sean Silvaa1190322015-08-06 22:56:48 +00002087Use-list directives may appear at function scope or global scope. They are not
2088instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002089function scope, they must appear after the terminator of the final basic block.
2090
2091If basic blocks have their address taken via ``blockaddress()`` expressions,
2092``uselistorder_bb`` can be used to reorder their use-lists from outside their
2093function's scope.
2094
2095:Syntax:
2096
2097::
2098
2099 uselistorder <ty> <value>, { <order-indexes> }
2100 uselistorder_bb @function, %block { <order-indexes> }
2101
2102:Examples:
2103
2104::
2105
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002106 define void @foo(i32 %arg1, i32 %arg2) {
2107 entry:
2108 ; ... instructions ...
2109 bb:
2110 ; ... instructions ...
2111
2112 ; At function scope.
2113 uselistorder i32 %arg1, { 1, 0, 2 }
2114 uselistorder label %bb, { 1, 0 }
2115 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002116
2117 ; At global scope.
2118 uselistorder i32* @global, { 1, 2, 0 }
2119 uselistorder i32 7, { 1, 0 }
2120 uselistorder i32 (i32) @bar, { 1, 0 }
2121 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2122
Sean Silvab084af42012-12-07 10:36:55 +00002123.. _typesystem:
2124
2125Type System
2126===========
2127
2128The LLVM type system is one of the most important features of the
2129intermediate representation. Being typed enables a number of
2130optimizations to be performed on the intermediate representation
2131directly, without having to do extra analyses on the side before the
2132transformation. A strong type system makes it easier to read the
2133generated code and enables novel analyses and transformations that are
2134not feasible to perform on normal three address code representations.
2135
Rafael Espindola08013342013-12-07 19:34:20 +00002136.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002137
Rafael Espindola08013342013-12-07 19:34:20 +00002138Void Type
2139---------
Sean Silvab084af42012-12-07 10:36:55 +00002140
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002141:Overview:
2142
Rafael Espindola08013342013-12-07 19:34:20 +00002143
2144The void type does not represent any value and has no size.
2145
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002146:Syntax:
2147
Rafael Espindola08013342013-12-07 19:34:20 +00002148
2149::
2150
2151 void
Sean Silvab084af42012-12-07 10:36:55 +00002152
2153
Rafael Espindola08013342013-12-07 19:34:20 +00002154.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002155
Rafael Espindola08013342013-12-07 19:34:20 +00002156Function Type
2157-------------
Sean Silvab084af42012-12-07 10:36:55 +00002158
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002159:Overview:
2160
Sean Silvab084af42012-12-07 10:36:55 +00002161
Rafael Espindola08013342013-12-07 19:34:20 +00002162The function type can be thought of as a function signature. It consists of a
2163return type and a list of formal parameter types. The return type of a function
2164type is a void type or first class type --- except for :ref:`label <t_label>`
2165and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002166
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002167:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002168
Rafael Espindola08013342013-12-07 19:34:20 +00002169::
Sean Silvab084af42012-12-07 10:36:55 +00002170
Rafael Espindola08013342013-12-07 19:34:20 +00002171 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002172
Rafael Espindola08013342013-12-07 19:34:20 +00002173...where '``<parameter list>``' is a comma-separated list of type
2174specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002175indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002176argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002177handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002178except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002179
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002180:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002181
Rafael Espindola08013342013-12-07 19:34:20 +00002182+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2183| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2184+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2185| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2186+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2187| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2188+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2189| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2190+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2191
2192.. _t_firstclass:
2193
2194First Class Types
2195-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002196
2197The :ref:`first class <t_firstclass>` types are perhaps the most important.
2198Values of these types are the only ones which can be produced by
2199instructions.
2200
Rafael Espindola08013342013-12-07 19:34:20 +00002201.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002202
Rafael Espindola08013342013-12-07 19:34:20 +00002203Single Value Types
2204^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002205
Rafael Espindola08013342013-12-07 19:34:20 +00002206These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002207
2208.. _t_integer:
2209
2210Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002211""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002212
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002213:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002214
2215The integer type is a very simple type that simply specifies an
2216arbitrary bit width for the integer type desired. Any bit width from 1
2217bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2218
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002219:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002220
2221::
2222
2223 iN
2224
2225The number of bits the integer will occupy is specified by the ``N``
2226value.
2227
2228Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002229*********
Sean Silvab084af42012-12-07 10:36:55 +00002230
2231+----------------+------------------------------------------------+
2232| ``i1`` | a single-bit integer. |
2233+----------------+------------------------------------------------+
2234| ``i32`` | a 32-bit integer. |
2235+----------------+------------------------------------------------+
2236| ``i1942652`` | a really big integer of over 1 million bits. |
2237+----------------+------------------------------------------------+
2238
2239.. _t_floating:
2240
2241Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002242""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002243
2244.. list-table::
2245 :header-rows: 1
2246
2247 * - Type
2248 - Description
2249
2250 * - ``half``
2251 - 16-bit floating point value
2252
2253 * - ``float``
2254 - 32-bit floating point value
2255
2256 * - ``double``
2257 - 64-bit floating point value
2258
2259 * - ``fp128``
2260 - 128-bit floating point value (112-bit mantissa)
2261
2262 * - ``x86_fp80``
2263 - 80-bit floating point value (X87)
2264
2265 * - ``ppc_fp128``
2266 - 128-bit floating point value (two 64-bits)
2267
Reid Kleckner9a16d082014-03-05 02:41:37 +00002268X86_mmx Type
2269""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002270
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002271:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002272
Reid Kleckner9a16d082014-03-05 02:41:37 +00002273The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002274machine. The operations allowed on it are quite limited: parameters and
2275return values, load and store, and bitcast. User-specified MMX
2276instructions are represented as intrinsic or asm calls with arguments
2277and/or results of this type. There are no arrays, vectors or constants
2278of this type.
2279
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002280:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002281
2282::
2283
Reid Kleckner9a16d082014-03-05 02:41:37 +00002284 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002285
Sean Silvab084af42012-12-07 10:36:55 +00002286
Rafael Espindola08013342013-12-07 19:34:20 +00002287.. _t_pointer:
2288
2289Pointer Type
2290""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002291
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002292:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002293
Rafael Espindola08013342013-12-07 19:34:20 +00002294The pointer type is used to specify memory locations. Pointers are
2295commonly used to reference objects in memory.
2296
2297Pointer types may have an optional address space attribute defining the
2298numbered address space where the pointed-to object resides. The default
2299address space is number zero. The semantics of non-zero address spaces
2300are target-specific.
2301
2302Note that LLVM does not permit pointers to void (``void*``) nor does it
2303permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002304
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002305:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002306
2307::
2308
Rafael Espindola08013342013-12-07 19:34:20 +00002309 <type> *
2310
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002311:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002312
2313+-------------------------+--------------------------------------------------------------------------------------------------------------+
2314| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2315+-------------------------+--------------------------------------------------------------------------------------------------------------+
2316| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2317+-------------------------+--------------------------------------------------------------------------------------------------------------+
2318| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2319+-------------------------+--------------------------------------------------------------------------------------------------------------+
2320
2321.. _t_vector:
2322
2323Vector Type
2324"""""""""""
2325
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002326:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002327
2328A vector type is a simple derived type that represents a vector of
2329elements. Vector types are used when multiple primitive data are
2330operated in parallel using a single instruction (SIMD). A vector type
2331requires a size (number of elements) and an underlying primitive data
2332type. Vector types are considered :ref:`first class <t_firstclass>`.
2333
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002334:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002335
2336::
2337
2338 < <# elements> x <elementtype> >
2339
2340The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002341elementtype may be any integer, floating point or pointer type. Vectors
2342of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002343
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002344:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002345
2346+-------------------+--------------------------------------------------+
2347| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2348+-------------------+--------------------------------------------------+
2349| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2350+-------------------+--------------------------------------------------+
2351| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2352+-------------------+--------------------------------------------------+
2353| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2354+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002355
2356.. _t_label:
2357
2358Label Type
2359^^^^^^^^^^
2360
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002361:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002362
2363The label type represents code labels.
2364
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002365:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002366
2367::
2368
2369 label
2370
David Majnemerb611e3f2015-08-14 05:09:07 +00002371.. _t_token:
2372
2373Token Type
2374^^^^^^^^^^
2375
2376:Overview:
2377
2378The token type is used when a value is associated with an instruction
2379but all uses of the value must not attempt to introspect or obscure it.
2380As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2381:ref:`select <i_select>` of type token.
2382
2383:Syntax:
2384
2385::
2386
2387 token
2388
2389
2390
Sean Silvab084af42012-12-07 10:36:55 +00002391.. _t_metadata:
2392
2393Metadata Type
2394^^^^^^^^^^^^^
2395
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002396:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002397
2398The metadata type represents embedded metadata. No derived types may be
2399created from metadata except for :ref:`function <t_function>` arguments.
2400
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002401:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002402
2403::
2404
2405 metadata
2406
Sean Silvab084af42012-12-07 10:36:55 +00002407.. _t_aggregate:
2408
2409Aggregate Types
2410^^^^^^^^^^^^^^^
2411
2412Aggregate Types are a subset of derived types that can contain multiple
2413member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2414aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2415aggregate types.
2416
2417.. _t_array:
2418
2419Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002420""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002421
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002422:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002423
2424The array type is a very simple derived type that arranges elements
2425sequentially in memory. The array type requires a size (number of
2426elements) and an underlying data type.
2427
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002428:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002429
2430::
2431
2432 [<# elements> x <elementtype>]
2433
2434The number of elements is a constant integer value; ``elementtype`` may
2435be any type with a size.
2436
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002437:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002438
2439+------------------+--------------------------------------+
2440| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2441+------------------+--------------------------------------+
2442| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2443+------------------+--------------------------------------+
2444| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2445+------------------+--------------------------------------+
2446
2447Here are some examples of multidimensional arrays:
2448
2449+-----------------------------+----------------------------------------------------------+
2450| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2451+-----------------------------+----------------------------------------------------------+
2452| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2453+-----------------------------+----------------------------------------------------------+
2454| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2455+-----------------------------+----------------------------------------------------------+
2456
2457There is no restriction on indexing beyond the end of the array implied
2458by a static type (though there are restrictions on indexing beyond the
2459bounds of an allocated object in some cases). This means that
2460single-dimension 'variable sized array' addressing can be implemented in
2461LLVM with a zero length array type. An implementation of 'pascal style
2462arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2463example.
2464
Sean Silvab084af42012-12-07 10:36:55 +00002465.. _t_struct:
2466
2467Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002468""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002469
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002470:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002471
2472The structure type is used to represent a collection of data members
2473together in memory. The elements of a structure may be any type that has
2474a size.
2475
2476Structures in memory are accessed using '``load``' and '``store``' by
2477getting a pointer to a field with the '``getelementptr``' instruction.
2478Structures in registers are accessed using the '``extractvalue``' and
2479'``insertvalue``' instructions.
2480
2481Structures may optionally be "packed" structures, which indicate that
2482the alignment of the struct is one byte, and that there is no padding
2483between the elements. In non-packed structs, padding between field types
2484is inserted as defined by the DataLayout string in the module, which is
2485required to match what the underlying code generator expects.
2486
2487Structures can either be "literal" or "identified". A literal structure
2488is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2489identified types are always defined at the top level with a name.
2490Literal types are uniqued by their contents and can never be recursive
2491or opaque since there is no way to write one. Identified types can be
2492recursive, can be opaqued, and are never uniqued.
2493
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002494:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002495
2496::
2497
2498 %T1 = type { <type list> } ; Identified normal struct type
2499 %T2 = type <{ <type list> }> ; Identified packed struct type
2500
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002501:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002502
2503+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2504| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2505+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002506| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002507+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2508| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2509+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2510
2511.. _t_opaque:
2512
2513Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002514""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002515
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002516:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002517
2518Opaque structure types are used to represent named structure types that
2519do not have a body specified. This corresponds (for example) to the C
2520notion of a forward declared structure.
2521
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002522:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002523
2524::
2525
2526 %X = type opaque
2527 %52 = type opaque
2528
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002529:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002530
2531+--------------+-------------------+
2532| ``opaque`` | An opaque type. |
2533+--------------+-------------------+
2534
Sean Silva1703e702014-04-08 21:06:22 +00002535.. _constants:
2536
Sean Silvab084af42012-12-07 10:36:55 +00002537Constants
2538=========
2539
2540LLVM has several different basic types of constants. This section
2541describes them all and their syntax.
2542
2543Simple Constants
2544----------------
2545
2546**Boolean constants**
2547 The two strings '``true``' and '``false``' are both valid constants
2548 of the ``i1`` type.
2549**Integer constants**
2550 Standard integers (such as '4') are constants of the
2551 :ref:`integer <t_integer>` type. Negative numbers may be used with
2552 integer types.
2553**Floating point constants**
2554 Floating point constants use standard decimal notation (e.g.
2555 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2556 hexadecimal notation (see below). The assembler requires the exact
2557 decimal value of a floating-point constant. For example, the
2558 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2559 decimal in binary. Floating point constants must have a :ref:`floating
2560 point <t_floating>` type.
2561**Null pointer constants**
2562 The identifier '``null``' is recognized as a null pointer constant
2563 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002564**Token constants**
2565 The identifier '``none``' is recognized as an empty token constant
2566 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002567
2568The one non-intuitive notation for constants is the hexadecimal form of
2569floating point constants. For example, the form
2570'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2571than) '``double 4.5e+15``'. The only time hexadecimal floating point
2572constants are required (and the only time that they are generated by the
2573disassembler) is when a floating point constant must be emitted but it
2574cannot be represented as a decimal floating point number in a reasonable
2575number of digits. For example, NaN's, infinities, and other special
2576values are represented in their IEEE hexadecimal format so that assembly
2577and disassembly do not cause any bits to change in the constants.
2578
2579When using the hexadecimal form, constants of types half, float, and
2580double are represented using the 16-digit form shown above (which
2581matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002582must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002583precision, respectively. Hexadecimal format is always used for long
2584double, and there are three forms of long double. The 80-bit format used
2585by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2586128-bit format used by PowerPC (two adjacent doubles) is represented by
2587``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002588represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2589will only work if they match the long double format on your target.
2590The IEEE 16-bit format (half precision) is represented by ``0xH``
2591followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2592(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002593
Reid Kleckner9a16d082014-03-05 02:41:37 +00002594There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002595
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002596.. _complexconstants:
2597
Sean Silvab084af42012-12-07 10:36:55 +00002598Complex Constants
2599-----------------
2600
2601Complex constants are a (potentially recursive) combination of simple
2602constants and smaller complex constants.
2603
2604**Structure constants**
2605 Structure constants are represented with notation similar to
2606 structure type definitions (a comma separated list of elements,
2607 surrounded by braces (``{}``)). For example:
2608 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2609 "``@G = external global i32``". Structure constants must have
2610 :ref:`structure type <t_struct>`, and the number and types of elements
2611 must match those specified by the type.
2612**Array constants**
2613 Array constants are represented with notation similar to array type
2614 definitions (a comma separated list of elements, surrounded by
2615 square brackets (``[]``)). For example:
2616 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2617 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002618 match those specified by the type. As a special case, character array
2619 constants may also be represented as a double-quoted string using the ``c``
2620 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002621**Vector constants**
2622 Vector constants are represented with notation similar to vector
2623 type definitions (a comma separated list of elements, surrounded by
2624 less-than/greater-than's (``<>``)). For example:
2625 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2626 must have :ref:`vector type <t_vector>`, and the number and types of
2627 elements must match those specified by the type.
2628**Zero initialization**
2629 The string '``zeroinitializer``' can be used to zero initialize a
2630 value to zero of *any* type, including scalar and
2631 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2632 having to print large zero initializers (e.g. for large arrays) and
2633 is always exactly equivalent to using explicit zero initializers.
2634**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002635 A metadata node is a constant tuple without types. For example:
2636 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002637 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2638 Unlike other typed constants that are meant to be interpreted as part of
2639 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002640 information such as debug info.
2641
2642Global Variable and Function Addresses
2643--------------------------------------
2644
2645The addresses of :ref:`global variables <globalvars>` and
2646:ref:`functions <functionstructure>` are always implicitly valid
2647(link-time) constants. These constants are explicitly referenced when
2648the :ref:`identifier for the global <identifiers>` is used and always have
2649:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2650file:
2651
2652.. code-block:: llvm
2653
2654 @X = global i32 17
2655 @Y = global i32 42
2656 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2657
2658.. _undefvalues:
2659
2660Undefined Values
2661----------------
2662
2663The string '``undef``' can be used anywhere a constant is expected, and
2664indicates that the user of the value may receive an unspecified
2665bit-pattern. Undefined values may be of any type (other than '``label``'
2666or '``void``') and be used anywhere a constant is permitted.
2667
2668Undefined values are useful because they indicate to the compiler that
2669the program is well defined no matter what value is used. This gives the
2670compiler more freedom to optimize. Here are some examples of
2671(potentially surprising) transformations that are valid (in pseudo IR):
2672
2673.. code-block:: llvm
2674
2675 %A = add %X, undef
2676 %B = sub %X, undef
2677 %C = xor %X, undef
2678 Safe:
2679 %A = undef
2680 %B = undef
2681 %C = undef
2682
2683This is safe because all of the output bits are affected by the undef
2684bits. Any output bit can have a zero or one depending on the input bits.
2685
2686.. code-block:: llvm
2687
2688 %A = or %X, undef
2689 %B = and %X, undef
2690 Safe:
2691 %A = -1
2692 %B = 0
2693 Unsafe:
2694 %A = undef
2695 %B = undef
2696
2697These logical operations have bits that are not always affected by the
2698input. For example, if ``%X`` has a zero bit, then the output of the
2699'``and``' operation will always be a zero for that bit, no matter what
2700the corresponding bit from the '``undef``' is. As such, it is unsafe to
2701optimize or assume that the result of the '``and``' is '``undef``'.
2702However, it is safe to assume that all bits of the '``undef``' could be
27030, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2704all the bits of the '``undef``' operand to the '``or``' could be set,
2705allowing the '``or``' to be folded to -1.
2706
2707.. code-block:: llvm
2708
2709 %A = select undef, %X, %Y
2710 %B = select undef, 42, %Y
2711 %C = select %X, %Y, undef
2712 Safe:
2713 %A = %X (or %Y)
2714 %B = 42 (or %Y)
2715 %C = %Y
2716 Unsafe:
2717 %A = undef
2718 %B = undef
2719 %C = undef
2720
2721This set of examples shows that undefined '``select``' (and conditional
2722branch) conditions can go *either way*, but they have to come from one
2723of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2724both known to have a clear low bit, then ``%A`` would have to have a
2725cleared low bit. However, in the ``%C`` example, the optimizer is
2726allowed to assume that the '``undef``' operand could be the same as
2727``%Y``, allowing the whole '``select``' to be eliminated.
2728
2729.. code-block:: llvm
2730
2731 %A = xor undef, undef
2732
2733 %B = undef
2734 %C = xor %B, %B
2735
2736 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002737 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002738 %F = icmp gte %D, 4
2739
2740 Safe:
2741 %A = undef
2742 %B = undef
2743 %C = undef
2744 %D = undef
2745 %E = undef
2746 %F = undef
2747
2748This example points out that two '``undef``' operands are not
2749necessarily the same. This can be surprising to people (and also matches
2750C semantics) where they assume that "``X^X``" is always zero, even if
2751``X`` is undefined. This isn't true for a number of reasons, but the
2752short answer is that an '``undef``' "variable" can arbitrarily change
2753its value over its "live range". This is true because the variable
2754doesn't actually *have a live range*. Instead, the value is logically
2755read from arbitrary registers that happen to be around when needed, so
2756the value is not necessarily consistent over time. In fact, ``%A`` and
2757``%C`` need to have the same semantics or the core LLVM "replace all
2758uses with" concept would not hold.
2759
2760.. code-block:: llvm
2761
2762 %A = fdiv undef, %X
2763 %B = fdiv %X, undef
2764 Safe:
2765 %A = undef
2766 b: unreachable
2767
2768These examples show the crucial difference between an *undefined value*
2769and *undefined behavior*. An undefined value (like '``undef``') is
2770allowed to have an arbitrary bit-pattern. This means that the ``%A``
2771operation can be constant folded to '``undef``', because the '``undef``'
2772could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2773However, in the second example, we can make a more aggressive
2774assumption: because the ``undef`` is allowed to be an arbitrary value,
2775we are allowed to assume that it could be zero. Since a divide by zero
2776has *undefined behavior*, we are allowed to assume that the operation
2777does not execute at all. This allows us to delete the divide and all
2778code after it. Because the undefined operation "can't happen", the
2779optimizer can assume that it occurs in dead code.
2780
2781.. code-block:: llvm
2782
2783 a: store undef -> %X
2784 b: store %X -> undef
2785 Safe:
2786 a: <deleted>
2787 b: unreachable
2788
2789These examples reiterate the ``fdiv`` example: a store *of* an undefined
2790value can be assumed to not have any effect; we can assume that the
2791value is overwritten with bits that happen to match what was already
2792there. However, a store *to* an undefined location could clobber
2793arbitrary memory, therefore, it has undefined behavior.
2794
2795.. _poisonvalues:
2796
2797Poison Values
2798-------------
2799
2800Poison values are similar to :ref:`undef values <undefvalues>`, however
2801they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002802that cannot evoke side effects has nevertheless detected a condition
2803that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002804
2805There is currently no way of representing a poison value in the IR; they
2806only exist when produced by operations such as :ref:`add <i_add>` with
2807the ``nsw`` flag.
2808
2809Poison value behavior is defined in terms of value *dependence*:
2810
2811- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2812- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2813 their dynamic predecessor basic block.
2814- Function arguments depend on the corresponding actual argument values
2815 in the dynamic callers of their functions.
2816- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2817 instructions that dynamically transfer control back to them.
2818- :ref:`Invoke <i_invoke>` instructions depend on the
2819 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2820 call instructions that dynamically transfer control back to them.
2821- Non-volatile loads and stores depend on the most recent stores to all
2822 of the referenced memory addresses, following the order in the IR
2823 (including loads and stores implied by intrinsics such as
2824 :ref:`@llvm.memcpy <int_memcpy>`.)
2825- An instruction with externally visible side effects depends on the
2826 most recent preceding instruction with externally visible side
2827 effects, following the order in the IR. (This includes :ref:`volatile
2828 operations <volatile>`.)
2829- An instruction *control-depends* on a :ref:`terminator
2830 instruction <terminators>` if the terminator instruction has
2831 multiple successors and the instruction is always executed when
2832 control transfers to one of the successors, and may not be executed
2833 when control is transferred to another.
2834- Additionally, an instruction also *control-depends* on a terminator
2835 instruction if the set of instructions it otherwise depends on would
2836 be different if the terminator had transferred control to a different
2837 successor.
2838- Dependence is transitive.
2839
Richard Smith32dbdf62014-07-31 04:25:36 +00002840Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2841with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002842on a poison value has undefined behavior.
2843
2844Here are some examples:
2845
2846.. code-block:: llvm
2847
2848 entry:
2849 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2850 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002851 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002852 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2853
2854 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002855 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002856
2857 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2858
2859 %narrowaddr = bitcast i32* @g to i16*
2860 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002861 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2862 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002863
2864 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2865 br i1 %cmp, label %true, label %end ; Branch to either destination.
2866
2867 true:
2868 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2869 ; it has undefined behavior.
2870 br label %end
2871
2872 end:
2873 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2874 ; Both edges into this PHI are
2875 ; control-dependent on %cmp, so this
2876 ; always results in a poison value.
2877
2878 store volatile i32 0, i32* @g ; This would depend on the store in %true
2879 ; if %cmp is true, or the store in %entry
2880 ; otherwise, so this is undefined behavior.
2881
2882 br i1 %cmp, label %second_true, label %second_end
2883 ; The same branch again, but this time the
2884 ; true block doesn't have side effects.
2885
2886 second_true:
2887 ; No side effects!
2888 ret void
2889
2890 second_end:
2891 store volatile i32 0, i32* @g ; This time, the instruction always depends
2892 ; on the store in %end. Also, it is
2893 ; control-equivalent to %end, so this is
2894 ; well-defined (ignoring earlier undefined
2895 ; behavior in this example).
2896
2897.. _blockaddress:
2898
2899Addresses of Basic Blocks
2900-------------------------
2901
2902``blockaddress(@function, %block)``
2903
2904The '``blockaddress``' constant computes the address of the specified
2905basic block in the specified function, and always has an ``i8*`` type.
2906Taking the address of the entry block is illegal.
2907
2908This value only has defined behavior when used as an operand to the
2909':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2910against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002911undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002912no label is equal to the null pointer. This may be passed around as an
2913opaque pointer sized value as long as the bits are not inspected. This
2914allows ``ptrtoint`` and arithmetic to be performed on these values so
2915long as the original value is reconstituted before the ``indirectbr``
2916instruction.
2917
2918Finally, some targets may provide defined semantics when using the value
2919as the operand to an inline assembly, but that is target specific.
2920
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002921.. _constantexprs:
2922
Sean Silvab084af42012-12-07 10:36:55 +00002923Constant Expressions
2924--------------------
2925
2926Constant expressions are used to allow expressions involving other
2927constants to be used as constants. Constant expressions may be of any
2928:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2929that does not have side effects (e.g. load and call are not supported).
2930The following is the syntax for constant expressions:
2931
2932``trunc (CST to TYPE)``
2933 Truncate a constant to another type. The bit size of CST must be
2934 larger than the bit size of TYPE. Both types must be integers.
2935``zext (CST to TYPE)``
2936 Zero extend a constant to another type. The bit size of CST must be
2937 smaller than the bit size of TYPE. Both types must be integers.
2938``sext (CST to TYPE)``
2939 Sign extend a constant to another type. The bit size of CST must be
2940 smaller than the bit size of TYPE. Both types must be integers.
2941``fptrunc (CST to TYPE)``
2942 Truncate a floating point constant to another floating point type.
2943 The size of CST must be larger than the size of TYPE. Both types
2944 must be floating point.
2945``fpext (CST to TYPE)``
2946 Floating point extend a constant to another type. The size of CST
2947 must be smaller or equal to the size of TYPE. Both types must be
2948 floating point.
2949``fptoui (CST to TYPE)``
2950 Convert a floating point constant to the corresponding unsigned
2951 integer constant. TYPE must be a scalar or vector integer type. CST
2952 must be of scalar or vector floating point type. Both CST and TYPE
2953 must be scalars, or vectors of the same number of elements. If the
2954 value won't fit in the integer type, the results are undefined.
2955``fptosi (CST to TYPE)``
2956 Convert a floating point constant to the corresponding signed
2957 integer constant. TYPE must be a scalar or vector integer type. CST
2958 must be of scalar or vector floating point type. Both CST and TYPE
2959 must be scalars, or vectors of the same number of elements. If the
2960 value won't fit in the integer type, the results are undefined.
2961``uitofp (CST to TYPE)``
2962 Convert an unsigned integer constant to the corresponding floating
2963 point constant. TYPE must be a scalar or vector floating point type.
2964 CST must be of scalar or vector integer type. Both CST and TYPE must
2965 be scalars, or vectors of the same number of elements. If the value
2966 won't fit in the floating point type, the results are undefined.
2967``sitofp (CST to TYPE)``
2968 Convert a signed integer constant to the corresponding floating
2969 point constant. TYPE must be a scalar or vector floating point type.
2970 CST must be of scalar or vector integer type. Both CST and TYPE must
2971 be scalars, or vectors of the same number of elements. If the value
2972 won't fit in the floating point type, the results are undefined.
2973``ptrtoint (CST to TYPE)``
2974 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002975 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002976 pointer type. The ``CST`` value is zero extended, truncated, or
2977 unchanged to make it fit in ``TYPE``.
2978``inttoptr (CST to TYPE)``
2979 Convert an integer constant to a pointer constant. TYPE must be a
2980 pointer type. CST must be of integer type. The CST value is zero
2981 extended, truncated, or unchanged to make it fit in a pointer size.
2982 This one is *really* dangerous!
2983``bitcast (CST to TYPE)``
2984 Convert a constant, CST, to another TYPE. The constraints of the
2985 operands are the same as those for the :ref:`bitcast
2986 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002987``addrspacecast (CST to TYPE)``
2988 Convert a constant pointer or constant vector of pointer, CST, to another
2989 TYPE in a different address space. The constraints of the operands are the
2990 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002991``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002992 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2993 constants. As with the :ref:`getelementptr <i_getelementptr>`
2994 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002995 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002996``select (COND, VAL1, VAL2)``
2997 Perform the :ref:`select operation <i_select>` on constants.
2998``icmp COND (VAL1, VAL2)``
2999 Performs the :ref:`icmp operation <i_icmp>` on constants.
3000``fcmp COND (VAL1, VAL2)``
3001 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3002``extractelement (VAL, IDX)``
3003 Perform the :ref:`extractelement operation <i_extractelement>` on
3004 constants.
3005``insertelement (VAL, ELT, IDX)``
3006 Perform the :ref:`insertelement operation <i_insertelement>` on
3007 constants.
3008``shufflevector (VEC1, VEC2, IDXMASK)``
3009 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3010 constants.
3011``extractvalue (VAL, IDX0, IDX1, ...)``
3012 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3013 constants. The index list is interpreted in a similar manner as
3014 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3015 least one index value must be specified.
3016``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3017 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3018 The index list is interpreted in a similar manner as indices in a
3019 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3020 value must be specified.
3021``OPCODE (LHS, RHS)``
3022 Perform the specified operation of the LHS and RHS constants. OPCODE
3023 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3024 binary <bitwiseops>` operations. The constraints on operands are
3025 the same as those for the corresponding instruction (e.g. no bitwise
3026 operations on floating point values are allowed).
3027
3028Other Values
3029============
3030
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003031.. _inlineasmexprs:
3032
Sean Silvab084af42012-12-07 10:36:55 +00003033Inline Assembler Expressions
3034----------------------------
3035
3036LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003037Inline Assembly <moduleasm>`) through the use of a special value. This value
3038represents the inline assembler as a template string (containing the
3039instructions to emit), a list of operand constraints (stored as a string), a
3040flag that indicates whether or not the inline asm expression has side effects,
3041and a flag indicating whether the function containing the asm needs to align its
3042stack conservatively.
3043
3044The template string supports argument substitution of the operands using "``$``"
3045followed by a number, to indicate substitution of the given register/memory
3046location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3047be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3048operand (See :ref:`inline-asm-modifiers`).
3049
3050A literal "``$``" may be included by using "``$$``" in the template. To include
3051other special characters into the output, the usual "``\XX``" escapes may be
3052used, just as in other strings. Note that after template substitution, the
3053resulting assembly string is parsed by LLVM's integrated assembler unless it is
3054disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3055syntax known to LLVM.
3056
3057LLVM's support for inline asm is modeled closely on the requirements of Clang's
3058GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3059modifier codes listed here are similar or identical to those in GCC's inline asm
3060support. However, to be clear, the syntax of the template and constraint strings
3061described here is *not* the same as the syntax accepted by GCC and Clang, and,
3062while most constraint letters are passed through as-is by Clang, some get
3063translated to other codes when converting from the C source to the LLVM
3064assembly.
3065
3066An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003067
3068.. code-block:: llvm
3069
3070 i32 (i32) asm "bswap $0", "=r,r"
3071
3072Inline assembler expressions may **only** be used as the callee operand
3073of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3074Thus, typically we have:
3075
3076.. code-block:: llvm
3077
3078 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3079
3080Inline asms with side effects not visible in the constraint list must be
3081marked as having side effects. This is done through the use of the
3082'``sideeffect``' keyword, like so:
3083
3084.. code-block:: llvm
3085
3086 call void asm sideeffect "eieio", ""()
3087
3088In some cases inline asms will contain code that will not work unless
3089the stack is aligned in some way, such as calls or SSE instructions on
3090x86, yet will not contain code that does that alignment within the asm.
3091The compiler should make conservative assumptions about what the asm
3092might contain and should generate its usual stack alignment code in the
3093prologue if the '``alignstack``' keyword is present:
3094
3095.. code-block:: llvm
3096
3097 call void asm alignstack "eieio", ""()
3098
3099Inline asms also support using non-standard assembly dialects. The
3100assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3101the inline asm is using the Intel dialect. Currently, ATT and Intel are
3102the only supported dialects. An example is:
3103
3104.. code-block:: llvm
3105
3106 call void asm inteldialect "eieio", ""()
3107
3108If multiple keywords appear the '``sideeffect``' keyword must come
3109first, the '``alignstack``' keyword second and the '``inteldialect``'
3110keyword last.
3111
James Y Knightbc832ed2015-07-08 18:08:36 +00003112Inline Asm Constraint String
3113^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3114
3115The constraint list is a comma-separated string, each element containing one or
3116more constraint codes.
3117
3118For each element in the constraint list an appropriate register or memory
3119operand will be chosen, and it will be made available to assembly template
3120string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3121second, etc.
3122
3123There are three different types of constraints, which are distinguished by a
3124prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3125constraints must always be given in that order: outputs first, then inputs, then
3126clobbers. They cannot be intermingled.
3127
3128There are also three different categories of constraint codes:
3129
3130- Register constraint. This is either a register class, or a fixed physical
3131 register. This kind of constraint will allocate a register, and if necessary,
3132 bitcast the argument or result to the appropriate type.
3133- Memory constraint. This kind of constraint is for use with an instruction
3134 taking a memory operand. Different constraints allow for different addressing
3135 modes used by the target.
3136- Immediate value constraint. This kind of constraint is for an integer or other
3137 immediate value which can be rendered directly into an instruction. The
3138 various target-specific constraints allow the selection of a value in the
3139 proper range for the instruction you wish to use it with.
3140
3141Output constraints
3142""""""""""""""""""
3143
3144Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3145indicates that the assembly will write to this operand, and the operand will
3146then be made available as a return value of the ``asm`` expression. Output
3147constraints do not consume an argument from the call instruction. (Except, see
3148below about indirect outputs).
3149
3150Normally, it is expected that no output locations are written to by the assembly
3151expression until *all* of the inputs have been read. As such, LLVM may assign
3152the same register to an output and an input. If this is not safe (e.g. if the
3153assembly contains two instructions, where the first writes to one output, and
3154the second reads an input and writes to a second output), then the "``&``"
3155modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003156"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003157will not use the same register for any inputs (other than an input tied to this
3158output).
3159
3160Input constraints
3161"""""""""""""""""
3162
3163Input constraints do not have a prefix -- just the constraint codes. Each input
3164constraint will consume one argument from the call instruction. It is not
3165permitted for the asm to write to any input register or memory location (unless
3166that input is tied to an output). Note also that multiple inputs may all be
3167assigned to the same register, if LLVM can determine that they necessarily all
3168contain the same value.
3169
3170Instead of providing a Constraint Code, input constraints may also "tie"
3171themselves to an output constraint, by providing an integer as the constraint
3172string. Tied inputs still consume an argument from the call instruction, and
3173take up a position in the asm template numbering as is usual -- they will simply
3174be constrained to always use the same register as the output they've been tied
3175to. For example, a constraint string of "``=r,0``" says to assign a register for
3176output, and use that register as an input as well (it being the 0'th
3177constraint).
3178
3179It is permitted to tie an input to an "early-clobber" output. In that case, no
3180*other* input may share the same register as the input tied to the early-clobber
3181(even when the other input has the same value).
3182
3183You may only tie an input to an output which has a register constraint, not a
3184memory constraint. Only a single input may be tied to an output.
3185
3186There is also an "interesting" feature which deserves a bit of explanation: if a
3187register class constraint allocates a register which is too small for the value
3188type operand provided as input, the input value will be split into multiple
3189registers, and all of them passed to the inline asm.
3190
3191However, this feature is often not as useful as you might think.
3192
3193Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3194architectures that have instructions which operate on multiple consecutive
3195instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3196SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3197hardware then loads into both the named register, and the next register. This
3198feature of inline asm would not be useful to support that.)
3199
3200A few of the targets provide a template string modifier allowing explicit access
3201to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3202``D``). On such an architecture, you can actually access the second allocated
3203register (yet, still, not any subsequent ones). But, in that case, you're still
3204probably better off simply splitting the value into two separate operands, for
3205clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3206despite existing only for use with this feature, is not really a good idea to
3207use)
3208
3209Indirect inputs and outputs
3210"""""""""""""""""""""""""""
3211
3212Indirect output or input constraints can be specified by the "``*``" modifier
3213(which goes after the "``=``" in case of an output). This indicates that the asm
3214will write to or read from the contents of an *address* provided as an input
3215argument. (Note that in this way, indirect outputs act more like an *input* than
3216an output: just like an input, they consume an argument of the call expression,
3217rather than producing a return value. An indirect output constraint is an
3218"output" only in that the asm is expected to write to the contents of the input
3219memory location, instead of just read from it).
3220
3221This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3222address of a variable as a value.
3223
3224It is also possible to use an indirect *register* constraint, but only on output
3225(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3226value normally, and then, separately emit a store to the address provided as
3227input, after the provided inline asm. (It's not clear what value this
3228functionality provides, compared to writing the store explicitly after the asm
3229statement, and it can only produce worse code, since it bypasses many
3230optimization passes. I would recommend not using it.)
3231
3232
3233Clobber constraints
3234"""""""""""""""""""
3235
3236A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3237consume an input operand, nor generate an output. Clobbers cannot use any of the
3238general constraint code letters -- they may use only explicit register
3239constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3240"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3241memory locations -- not only the memory pointed to by a declared indirect
3242output.
3243
3244
3245Constraint Codes
3246""""""""""""""""
3247After a potential prefix comes constraint code, or codes.
3248
3249A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3250followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3251(e.g. "``{eax}``").
3252
3253The one and two letter constraint codes are typically chosen to be the same as
3254GCC's constraint codes.
3255
3256A single constraint may include one or more than constraint code in it, leaving
3257it up to LLVM to choose which one to use. This is included mainly for
3258compatibility with the translation of GCC inline asm coming from clang.
3259
3260There are two ways to specify alternatives, and either or both may be used in an
3261inline asm constraint list:
3262
32631) Append the codes to each other, making a constraint code set. E.g. "``im``"
3264 or "``{eax}m``". This means "choose any of the options in the set". The
3265 choice of constraint is made independently for each constraint in the
3266 constraint list.
3267
32682) Use "``|``" between constraint code sets, creating alternatives. Every
3269 constraint in the constraint list must have the same number of alternative
3270 sets. With this syntax, the same alternative in *all* of the items in the
3271 constraint list will be chosen together.
3272
3273Putting those together, you might have a two operand constraint string like
3274``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3275operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3276may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3277
3278However, the use of either of the alternatives features is *NOT* recommended, as
3279LLVM is not able to make an intelligent choice about which one to use. (At the
3280point it currently needs to choose, not enough information is available to do so
3281in a smart way.) Thus, it simply tries to make a choice that's most likely to
3282compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3283always choose to use memory, not registers). And, if given multiple registers,
3284or multiple register classes, it will simply choose the first one. (In fact, it
3285doesn't currently even ensure explicitly specified physical registers are
3286unique, so specifying multiple physical registers as alternatives, like
3287``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3288intended.)
3289
3290Supported Constraint Code List
3291""""""""""""""""""""""""""""""
3292
3293The constraint codes are, in general, expected to behave the same way they do in
3294GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3295inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3296and GCC likely indicates a bug in LLVM.
3297
3298Some constraint codes are typically supported by all targets:
3299
3300- ``r``: A register in the target's general purpose register class.
3301- ``m``: A memory address operand. It is target-specific what addressing modes
3302 are supported, typical examples are register, or register + register offset,
3303 or register + immediate offset (of some target-specific size).
3304- ``i``: An integer constant (of target-specific width). Allows either a simple
3305 immediate, or a relocatable value.
3306- ``n``: An integer constant -- *not* including relocatable values.
3307- ``s``: An integer constant, but allowing *only* relocatable values.
3308- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3309 useful to pass a label for an asm branch or call.
3310
3311 .. FIXME: but that surely isn't actually okay to jump out of an asm
3312 block without telling llvm about the control transfer???)
3313
3314- ``{register-name}``: Requires exactly the named physical register.
3315
3316Other constraints are target-specific:
3317
3318AArch64:
3319
3320- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3321- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3322 i.e. 0 to 4095 with optional shift by 12.
3323- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3324 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3325- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3326 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3327- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3328 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3329- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3330 32-bit register. This is a superset of ``K``: in addition to the bitmask
3331 immediate, also allows immediate integers which can be loaded with a single
3332 ``MOVZ`` or ``MOVL`` instruction.
3333- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3334 64-bit register. This is a superset of ``L``.
3335- ``Q``: Memory address operand must be in a single register (no
3336 offsets). (However, LLVM currently does this for the ``m`` constraint as
3337 well.)
3338- ``r``: A 32 or 64-bit integer register (W* or X*).
3339- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3340- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3341
3342AMDGPU:
3343
3344- ``r``: A 32 or 64-bit integer register.
3345- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3346- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3347
3348
3349All ARM modes:
3350
3351- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3352 operand. Treated the same as operand ``m``, at the moment.
3353
3354ARM and ARM's Thumb2 mode:
3355
3356- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3357- ``I``: An immediate integer valid for a data-processing instruction.
3358- ``J``: An immediate integer between -4095 and 4095.
3359- ``K``: An immediate integer whose bitwise inverse is valid for a
3360 data-processing instruction. (Can be used with template modifier "``B``" to
3361 print the inverted value).
3362- ``L``: An immediate integer whose negation is valid for a data-processing
3363 instruction. (Can be used with template modifier "``n``" to print the negated
3364 value).
3365- ``M``: A power of two or a integer between 0 and 32.
3366- ``N``: Invalid immediate constraint.
3367- ``O``: Invalid immediate constraint.
3368- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3369- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3370 as ``r``.
3371- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3372 invalid.
3373- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3374 ``d0-d31``, or ``q0-q15``.
3375- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3376 ``d0-d7``, or ``q0-q3``.
3377- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3378 ``s0-s31``.
3379
3380ARM's Thumb1 mode:
3381
3382- ``I``: An immediate integer between 0 and 255.
3383- ``J``: An immediate integer between -255 and -1.
3384- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3385 some amount.
3386- ``L``: An immediate integer between -7 and 7.
3387- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3388- ``N``: An immediate integer between 0 and 31.
3389- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3390- ``r``: A low 32-bit GPR register (``r0-r7``).
3391- ``l``: A low 32-bit GPR register (``r0-r7``).
3392- ``h``: A high GPR register (``r0-r7``).
3393- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3394 ``d0-d31``, or ``q0-q15``.
3395- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3396 ``d0-d7``, or ``q0-q3``.
3397- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3398 ``s0-s31``.
3399
3400
3401Hexagon:
3402
3403- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3404 at the moment.
3405- ``r``: A 32 or 64-bit register.
3406
3407MSP430:
3408
3409- ``r``: An 8 or 16-bit register.
3410
3411MIPS:
3412
3413- ``I``: An immediate signed 16-bit integer.
3414- ``J``: An immediate integer zero.
3415- ``K``: An immediate unsigned 16-bit integer.
3416- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3417- ``N``: An immediate integer between -65535 and -1.
3418- ``O``: An immediate signed 15-bit integer.
3419- ``P``: An immediate integer between 1 and 65535.
3420- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3421 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3422- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3423 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3424 ``m``.
3425- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3426 ``sc`` instruction on the given subtarget (details vary).
3427- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3428- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003429 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3430 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003431- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3432 ``25``).
3433- ``l``: The ``lo`` register, 32 or 64-bit.
3434- ``x``: Invalid.
3435
3436NVPTX:
3437
3438- ``b``: A 1-bit integer register.
3439- ``c`` or ``h``: A 16-bit integer register.
3440- ``r``: A 32-bit integer register.
3441- ``l`` or ``N``: A 64-bit integer register.
3442- ``f``: A 32-bit float register.
3443- ``d``: A 64-bit float register.
3444
3445
3446PowerPC:
3447
3448- ``I``: An immediate signed 16-bit integer.
3449- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3450- ``K``: An immediate unsigned 16-bit integer.
3451- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3452- ``M``: An immediate integer greater than 31.
3453- ``N``: An immediate integer that is an exact power of 2.
3454- ``O``: The immediate integer constant 0.
3455- ``P``: An immediate integer constant whose negation is a signed 16-bit
3456 constant.
3457- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3458 treated the same as ``m``.
3459- ``r``: A 32 or 64-bit integer register.
3460- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3461 ``R1-R31``).
3462- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3463 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3464- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3465 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3466 altivec vector register (``V0-V31``).
3467
3468 .. FIXME: is this a bug that v accepts QPX registers? I think this
3469 is supposed to only use the altivec vector registers?
3470
3471- ``y``: Condition register (``CR0-CR7``).
3472- ``wc``: An individual CR bit in a CR register.
3473- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3474 register set (overlapping both the floating-point and vector register files).
3475- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3476 set.
3477
3478Sparc:
3479
3480- ``I``: An immediate 13-bit signed integer.
3481- ``r``: A 32-bit integer register.
3482
3483SystemZ:
3484
3485- ``I``: An immediate unsigned 8-bit integer.
3486- ``J``: An immediate unsigned 12-bit integer.
3487- ``K``: An immediate signed 16-bit integer.
3488- ``L``: An immediate signed 20-bit integer.
3489- ``M``: An immediate integer 0x7fffffff.
3490- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3491 ``m``, at the moment.
3492- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3493- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3494 address context evaluates as zero).
3495- ``h``: A 32-bit value in the high part of a 64bit data register
3496 (LLVM-specific)
3497- ``f``: A 32, 64, or 128-bit floating point register.
3498
3499X86:
3500
3501- ``I``: An immediate integer between 0 and 31.
3502- ``J``: An immediate integer between 0 and 64.
3503- ``K``: An immediate signed 8-bit integer.
3504- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3505 0xffffffff.
3506- ``M``: An immediate integer between 0 and 3.
3507- ``N``: An immediate unsigned 8-bit integer.
3508- ``O``: An immediate integer between 0 and 127.
3509- ``e``: An immediate 32-bit signed integer.
3510- ``Z``: An immediate 32-bit unsigned integer.
3511- ``o``, ``v``: Treated the same as ``m``, at the moment.
3512- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3513 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3514 registers, and on X86-64, it is all of the integer registers.
3515- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3516 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3517- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3518- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3519 existed since i386, and can be accessed without the REX prefix.
3520- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3521- ``y``: A 64-bit MMX register, if MMX is enabled.
3522- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3523 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3524 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3525 512-bit vector operand in an AVX512 register, Otherwise, an error.
3526- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3527- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3528 32-bit mode, a 64-bit integer operand will get split into two registers). It
3529 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3530 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3531 you're better off splitting it yourself, before passing it to the asm
3532 statement.
3533
3534XCore:
3535
3536- ``r``: A 32-bit integer register.
3537
3538
3539.. _inline-asm-modifiers:
3540
3541Asm template argument modifiers
3542^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3543
3544In the asm template string, modifiers can be used on the operand reference, like
3545"``${0:n}``".
3546
3547The modifiers are, in general, expected to behave the same way they do in
3548GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3549inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3550and GCC likely indicates a bug in LLVM.
3551
3552Target-independent:
3553
Sean Silvaa1190322015-08-06 22:56:48 +00003554- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003555 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3556- ``n``: Negate and print immediate integer constant unadorned, without the
3557 target-specific immediate punctuation (e.g. no ``$`` prefix).
3558- ``l``: Print as an unadorned label, without the target-specific label
3559 punctuation (e.g. no ``$`` prefix).
3560
3561AArch64:
3562
3563- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3564 instead of ``x30``, print ``w30``.
3565- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3566- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3567 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3568 ``v*``.
3569
3570AMDGPU:
3571
3572- ``r``: No effect.
3573
3574ARM:
3575
3576- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3577 register).
3578- ``P``: No effect.
3579- ``q``: No effect.
3580- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3581 as ``d4[1]`` instead of ``s9``)
3582- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3583 prefix.
3584- ``L``: Print the low 16-bits of an immediate integer constant.
3585- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3586 register operands subsequent to the specified one (!), so use carefully.
3587- ``Q``: Print the low-order register of a register-pair, or the low-order
3588 register of a two-register operand.
3589- ``R``: Print the high-order register of a register-pair, or the high-order
3590 register of a two-register operand.
3591- ``H``: Print the second register of a register-pair. (On a big-endian system,
3592 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3593 to ``R``.)
3594
3595 .. FIXME: H doesn't currently support printing the second register
3596 of a two-register operand.
3597
3598- ``e``: Print the low doubleword register of a NEON quad register.
3599- ``f``: Print the high doubleword register of a NEON quad register.
3600- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3601 adornment.
3602
3603Hexagon:
3604
3605- ``L``: Print the second register of a two-register operand. Requires that it
3606 has been allocated consecutively to the first.
3607
3608 .. FIXME: why is it restricted to consecutive ones? And there's
3609 nothing that ensures that happens, is there?
3610
3611- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3612 nothing. Used to print 'addi' vs 'add' instructions.
3613
3614MSP430:
3615
3616No additional modifiers.
3617
3618MIPS:
3619
3620- ``X``: Print an immediate integer as hexadecimal
3621- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3622- ``d``: Print an immediate integer as decimal.
3623- ``m``: Subtract one and print an immediate integer as decimal.
3624- ``z``: Print $0 if an immediate zero, otherwise print normally.
3625- ``L``: Print the low-order register of a two-register operand, or prints the
3626 address of the low-order word of a double-word memory operand.
3627
3628 .. FIXME: L seems to be missing memory operand support.
3629
3630- ``M``: Print the high-order register of a two-register operand, or prints the
3631 address of the high-order word of a double-word memory operand.
3632
3633 .. FIXME: M seems to be missing memory operand support.
3634
3635- ``D``: Print the second register of a two-register operand, or prints the
3636 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3637 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3638 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003639- ``w``: No effect. Provided for compatibility with GCC which requires this
3640 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3641 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003642
3643NVPTX:
3644
3645- ``r``: No effect.
3646
3647PowerPC:
3648
3649- ``L``: Print the second register of a two-register operand. Requires that it
3650 has been allocated consecutively to the first.
3651
3652 .. FIXME: why is it restricted to consecutive ones? And there's
3653 nothing that ensures that happens, is there?
3654
3655- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3656 nothing. Used to print 'addi' vs 'add' instructions.
3657- ``y``: For a memory operand, prints formatter for a two-register X-form
3658 instruction. (Currently always prints ``r0,OPERAND``).
3659- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3660 otherwise. (NOTE: LLVM does not support update form, so this will currently
3661 always print nothing)
3662- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3663 not support indexed form, so this will currently always print nothing)
3664
3665Sparc:
3666
3667- ``r``: No effect.
3668
3669SystemZ:
3670
3671SystemZ implements only ``n``, and does *not* support any of the other
3672target-independent modifiers.
3673
3674X86:
3675
3676- ``c``: Print an unadorned integer or symbol name. (The latter is
3677 target-specific behavior for this typically target-independent modifier).
3678- ``A``: Print a register name with a '``*``' before it.
3679- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3680 operand.
3681- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3682 memory operand.
3683- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3684 operand.
3685- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3686 operand.
3687- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3688 available, otherwise the 32-bit register name; do nothing on a memory operand.
3689- ``n``: Negate and print an unadorned integer, or, for operands other than an
3690 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3691 the operand. (The behavior for relocatable symbol expressions is a
3692 target-specific behavior for this typically target-independent modifier)
3693- ``H``: Print a memory reference with additional offset +8.
3694- ``P``: Print a memory reference or operand for use as the argument of a call
3695 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3696
3697XCore:
3698
3699No additional modifiers.
3700
3701
Sean Silvab084af42012-12-07 10:36:55 +00003702Inline Asm Metadata
3703^^^^^^^^^^^^^^^^^^^
3704
3705The call instructions that wrap inline asm nodes may have a
3706"``!srcloc``" MDNode attached to it that contains a list of constant
3707integers. If present, the code generator will use the integer as the
3708location cookie value when report errors through the ``LLVMContext``
3709error reporting mechanisms. This allows a front-end to correlate backend
3710errors that occur with inline asm back to the source code that produced
3711it. For example:
3712
3713.. code-block:: llvm
3714
3715 call void asm sideeffect "something bad", ""(), !srcloc !42
3716 ...
3717 !42 = !{ i32 1234567 }
3718
3719It is up to the front-end to make sense of the magic numbers it places
3720in the IR. If the MDNode contains multiple constants, the code generator
3721will use the one that corresponds to the line of the asm that the error
3722occurs on.
3723
3724.. _metadata:
3725
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003726Metadata
3727========
Sean Silvab084af42012-12-07 10:36:55 +00003728
3729LLVM IR allows metadata to be attached to instructions in the program
3730that can convey extra information about the code to the optimizers and
3731code generator. One example application of metadata is source-level
3732debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003733
Sean Silvaa1190322015-08-06 22:56:48 +00003734Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003735``call`` instruction, it uses the ``metadata`` type.
3736
3737All metadata are identified in syntax by a exclamation point ('``!``').
3738
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003739.. _metadata-string:
3740
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003741Metadata Nodes and Metadata Strings
3742-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003743
3744A metadata string is a string surrounded by double quotes. It can
3745contain any character by escaping non-printable characters with
3746"``\xx``" where "``xx``" is the two digit hex code. For example:
3747"``!"test\00"``".
3748
3749Metadata nodes are represented with notation similar to structure
3750constants (a comma separated list of elements, surrounded by braces and
3751preceded by an exclamation point). Metadata nodes can have any values as
3752their operand. For example:
3753
3754.. code-block:: llvm
3755
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003756 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003757
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003758Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3759
3760.. code-block:: llvm
3761
3762 !0 = distinct !{!"test\00", i32 10}
3763
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003764``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003765content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003766when metadata operands change.
3767
Sean Silvab084af42012-12-07 10:36:55 +00003768A :ref:`named metadata <namedmetadatastructure>` is a collection of
3769metadata nodes, which can be looked up in the module symbol table. For
3770example:
3771
3772.. code-block:: llvm
3773
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003774 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003775
3776Metadata can be used as function arguments. Here ``llvm.dbg.value``
3777function is using two metadata arguments:
3778
3779.. code-block:: llvm
3780
3781 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3782
Peter Collingbourne50108682015-11-06 02:41:02 +00003783Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3784to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003785
3786.. code-block:: llvm
3787
3788 %indvar.next = add i64 %indvar, 1, !dbg !21
3789
Peter Collingbourne50108682015-11-06 02:41:02 +00003790Metadata can also be attached to a function definition. Here metadata ``!22``
3791is attached to the ``foo`` function using the ``!dbg`` identifier:
3792
3793.. code-block:: llvm
3794
3795 define void @foo() !dbg !22 {
3796 ret void
3797 }
3798
Sean Silvab084af42012-12-07 10:36:55 +00003799More information about specific metadata nodes recognized by the
3800optimizers and code generator is found below.
3801
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003802.. _specialized-metadata:
3803
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003804Specialized Metadata Nodes
3805^^^^^^^^^^^^^^^^^^^^^^^^^^
3806
3807Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003808to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003809order.
3810
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003811These aren't inherently debug info centric, but currently all the specialized
3812metadata nodes are related to debug info.
3813
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003814.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003815
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003816DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003817"""""""""""""
3818
Sean Silvaa1190322015-08-06 22:56:48 +00003819``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003820``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3821fields are tuples containing the debug info to be emitted along with the compile
3822unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003823references to them from instructions).
3824
3825.. code-block:: llvm
3826
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003827 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003828 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3829 splitDebugFilename: "abc.debug", emissionKind: 1,
3830 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003831 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003832
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003833Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003834specific compilation unit. File descriptors are defined using this scope.
3835These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003836keep track of subprograms, global variables, type information, and imported
3837entities (declarations and namespaces).
3838
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003839.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003840
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003841DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003842""""""
3843
Sean Silvaa1190322015-08-06 22:56:48 +00003844``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003845
3846.. code-block:: llvm
3847
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003848 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003849
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003850Files are sometimes used in ``scope:`` fields, and are the only valid target
3851for ``file:`` fields.
3852
Michael Kuperstein605308a2015-05-14 10:58:59 +00003853.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003854
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003855DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003856"""""""""""
3857
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003858``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003859``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003860
3861.. code-block:: llvm
3862
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003863 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003864 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003865 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003866
Sean Silvaa1190322015-08-06 22:56:48 +00003867The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003868following:
3869
3870.. code-block:: llvm
3871
3872 DW_ATE_address = 1
3873 DW_ATE_boolean = 2
3874 DW_ATE_float = 4
3875 DW_ATE_signed = 5
3876 DW_ATE_signed_char = 6
3877 DW_ATE_unsigned = 7
3878 DW_ATE_unsigned_char = 8
3879
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003880.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003881
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003882DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003883""""""""""""""""
3884
Sean Silvaa1190322015-08-06 22:56:48 +00003885``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003886refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003887types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003888represents a function with no return value (such as ``void foo() {}`` in C++).
3889
3890.. code-block:: llvm
3891
3892 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3893 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003894 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003895
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003896.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003897
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003898DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003899"""""""""""""
3900
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003901``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003902qualified types.
3903
3904.. code-block:: llvm
3905
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003906 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003907 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003908 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003909 align: 32)
3910
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003911The following ``tag:`` values are valid:
3912
3913.. code-block:: llvm
3914
3915 DW_TAG_formal_parameter = 5
3916 DW_TAG_member = 13
3917 DW_TAG_pointer_type = 15
3918 DW_TAG_reference_type = 16
3919 DW_TAG_typedef = 22
3920 DW_TAG_ptr_to_member_type = 31
3921 DW_TAG_const_type = 38
3922 DW_TAG_volatile_type = 53
3923 DW_TAG_restrict_type = 55
3924
3925``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003926<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3927is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003928``DW_TAG_formal_parameter`` is used to define a member which is a formal
3929argument of a subprogram.
3930
3931``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3932
3933``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3934``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3935``baseType:``.
3936
3937Note that the ``void *`` type is expressed as a type derived from NULL.
3938
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003939.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003940
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003941DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003942"""""""""""""""
3943
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003944``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003945structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003946
3947If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003948identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003949can refer to composite types indirectly via a :ref:`metadata string
3950<metadata-string>` that matches their identifier.
3951
3952.. code-block:: llvm
3953
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003954 !0 = !DIEnumerator(name: "SixKind", value: 7)
3955 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3956 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3957 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003958 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3959 elements: !{!0, !1, !2})
3960
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003961The following ``tag:`` values are valid:
3962
3963.. code-block:: llvm
3964
3965 DW_TAG_array_type = 1
3966 DW_TAG_class_type = 2
3967 DW_TAG_enumeration_type = 4
3968 DW_TAG_structure_type = 19
3969 DW_TAG_union_type = 23
3970 DW_TAG_subroutine_type = 21
3971 DW_TAG_inheritance = 28
3972
3973
3974For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003975descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003976level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003977array type is a native packed vector.
3978
3979For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003980descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003981value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003982``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003983
3984For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3985``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003986<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003987
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003988.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003989
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003990DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003991""""""""""
3992
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003993``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003994:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003995
3996.. code-block:: llvm
3997
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003998 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3999 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4000 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004001
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004002.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004003
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004004DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004005""""""""""""
4006
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004007``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4008variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004009
4010.. code-block:: llvm
4011
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004012 !0 = !DIEnumerator(name: "SixKind", value: 7)
4013 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4014 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004015
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004016DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004017"""""""""""""""""""""""
4018
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004019``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004020language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004021:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004022
4023.. code-block:: llvm
4024
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004025 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004026
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004027DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004028""""""""""""""""""""""""
4029
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004030``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004031language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004032but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004033``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004034:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004035
4036.. code-block:: llvm
4037
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004038 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004039
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004040DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004041"""""""""""
4042
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004043``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044
4045.. code-block:: llvm
4046
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004047 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004049DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004050""""""""""""""""
4051
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004052``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004053
4054.. code-block:: llvm
4055
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004056 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004057 file: !2, line: 7, type: !3, isLocal: true,
4058 isDefinition: false, variable: i32* @foo,
4059 declaration: !4)
4060
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004061All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004062:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004063
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004064.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004065
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004066DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004067""""""""""""
4068
Peter Collingbourne50108682015-11-06 02:41:02 +00004069``DISubprogram`` nodes represent functions from the source language. A
4070``DISubprogram`` may be attached to a function definition using ``!dbg``
4071metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4072that must be retained, even if their IR counterparts are optimized out of
4073the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004074
4075.. code-block:: llvm
4076
Peter Collingbourne50108682015-11-06 02:41:02 +00004077 define void @_Z3foov() !dbg !0 {
4078 ...
4079 }
4080
4081 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4082 file: !2, line: 7, type: !3, isLocal: true,
4083 isDefinition: false, scopeLine: 8,
4084 containingType: !4,
4085 virtuality: DW_VIRTUALITY_pure_virtual,
4086 virtualIndex: 10, flags: DIFlagPrototyped,
4087 isOptimized: true, templateParams: !5,
4088 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004089
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004090.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004091
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004092DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004093""""""""""""""
4094
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004095``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004096<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004097two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004098fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004099
4100.. code-block:: llvm
4101
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004102 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004103
4104Usually lexical blocks are ``distinct`` to prevent node merging based on
4105operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004106
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004107.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004108
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004109DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004110""""""""""""""""""
4111
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004112``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004113:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004114indicate textual inclusion, or the ``discriminator:`` field can be used to
4115discriminate between control flow within a single block in the source language.
4116
4117.. code-block:: llvm
4118
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004119 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4120 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4121 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004122
Michael Kuperstein605308a2015-05-14 10:58:59 +00004123.. _DILocation:
4124
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004125DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004126""""""""""
4127
Sean Silvaa1190322015-08-06 22:56:48 +00004128``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004129mandatory, and points at an :ref:`DILexicalBlockFile`, an
4130:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004131
4132.. code-block:: llvm
4133
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004134 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004135
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004136.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004137
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004138DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004139"""""""""""""""
4140
Sean Silvaa1190322015-08-06 22:56:48 +00004141``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004142the ``arg:`` field is set to non-zero, then this variable is a subprogram
4143parameter, and it will be included in the ``variables:`` field of its
4144:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004145
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004146.. code-block:: llvm
4147
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004148 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4149 type: !3, flags: DIFlagArtificial)
4150 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4151 type: !3)
4152 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004153
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004154DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004155""""""""""""
4156
Sean Silvaa1190322015-08-06 22:56:48 +00004157``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004158:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4159describe how the referenced LLVM variable relates to the source language
4160variable.
4161
4162The current supported vocabulary is limited:
4163
4164- ``DW_OP_deref`` dereferences the working expression.
4165- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4166- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4167 here, respectively) of the variable piece from the working expression.
4168
4169.. code-block:: llvm
4170
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004171 !0 = !DIExpression(DW_OP_deref)
4172 !1 = !DIExpression(DW_OP_plus, 3)
4173 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4174 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004175
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004176DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004177""""""""""""""
4178
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004179``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004180
4181.. code-block:: llvm
4182
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004183 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004184 getter: "getFoo", attributes: 7, type: !2)
4185
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004186DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004187""""""""""""""""
4188
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004190compile unit.
4191
4192.. code-block:: llvm
4193
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004194 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004195 entity: !1, line: 7)
4196
Amjad Abouda9bcf162015-12-10 12:56:35 +00004197DIMacro
4198"""""""
4199
4200``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4201The ``name:`` field is the macro identifier, followed by macro parameters when
4202definining a function-like macro, and the ``value`` field is the token-string
4203used to expand the macro identifier.
4204
4205.. code-block:: llvm
4206
4207 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4208 value: "((x) + 1)")
4209 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4210
4211DIMacroFile
4212"""""""""""
4213
4214``DIMacroFile`` nodes represent inclusion of source files.
4215The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4216appear in the included source file.
4217
4218.. code-block:: llvm
4219
4220 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4221 nodes: !3)
4222
Sean Silvab084af42012-12-07 10:36:55 +00004223'``tbaa``' Metadata
4224^^^^^^^^^^^^^^^^^^^
4225
4226In LLVM IR, memory does not have types, so LLVM's own type system is not
4227suitable for doing TBAA. Instead, metadata is added to the IR to
4228describe a type system of a higher level language. This can be used to
4229implement typical C/C++ TBAA, but it can also be used to implement
4230custom alias analysis behavior for other languages.
4231
4232The current metadata format is very simple. TBAA metadata nodes have up
4233to three fields, e.g.:
4234
4235.. code-block:: llvm
4236
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004237 !0 = !{ !"an example type tree" }
4238 !1 = !{ !"int", !0 }
4239 !2 = !{ !"float", !0 }
4240 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004241
4242The first field is an identity field. It can be any value, usually a
4243metadata string, which uniquely identifies the type. The most important
4244name in the tree is the name of the root node. Two trees with different
4245root node names are entirely disjoint, even if they have leaves with
4246common names.
4247
4248The second field identifies the type's parent node in the tree, or is
4249null or omitted for a root node. A type is considered to alias all of
4250its descendants and all of its ancestors in the tree. Also, a type is
4251considered to alias all types in other trees, so that bitcode produced
4252from multiple front-ends is handled conservatively.
4253
4254If the third field is present, it's an integer which if equal to 1
4255indicates that the type is "constant" (meaning
4256``pointsToConstantMemory`` should return true; see `other useful
4257AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4258
4259'``tbaa.struct``' Metadata
4260^^^^^^^^^^^^^^^^^^^^^^^^^^
4261
4262The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4263aggregate assignment operations in C and similar languages, however it
4264is defined to copy a contiguous region of memory, which is more than
4265strictly necessary for aggregate types which contain holes due to
4266padding. Also, it doesn't contain any TBAA information about the fields
4267of the aggregate.
4268
4269``!tbaa.struct`` metadata can describe which memory subregions in a
4270memcpy are padding and what the TBAA tags of the struct are.
4271
4272The current metadata format is very simple. ``!tbaa.struct`` metadata
4273nodes are a list of operands which are in conceptual groups of three.
4274For each group of three, the first operand gives the byte offset of a
4275field in bytes, the second gives its size in bytes, and the third gives
4276its tbaa tag. e.g.:
4277
4278.. code-block:: llvm
4279
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004280 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004281
4282This describes a struct with two fields. The first is at offset 0 bytes
4283with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4284and has size 4 bytes and has tbaa tag !2.
4285
4286Note that the fields need not be contiguous. In this example, there is a
42874 byte gap between the two fields. This gap represents padding which
4288does not carry useful data and need not be preserved.
4289
Hal Finkel94146652014-07-24 14:25:39 +00004290'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004291^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004292
4293``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4294noalias memory-access sets. This means that some collection of memory access
4295instructions (loads, stores, memory-accessing calls, etc.) that carry
4296``noalias`` metadata can specifically be specified not to alias with some other
4297collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004298Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004299a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004300of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004301subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004302instruction's ``noalias`` list, then the two memory accesses are assumed not to
4303alias.
Hal Finkel94146652014-07-24 14:25:39 +00004304
Hal Finkel029cde62014-07-25 15:50:02 +00004305The metadata identifying each domain is itself a list containing one or two
4306entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004307string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004308self-reference can be used to create globally unique domain names. A
4309descriptive string may optionally be provided as a second list entry.
4310
4311The metadata identifying each scope is also itself a list containing two or
4312three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004313is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004314self-reference can be used to create globally unique scope names. A metadata
4315reference to the scope's domain is the second entry. A descriptive string may
4316optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004317
4318For example,
4319
4320.. code-block:: llvm
4321
Hal Finkel029cde62014-07-25 15:50:02 +00004322 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004323 !0 = !{!0}
4324 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004325
Hal Finkel029cde62014-07-25 15:50:02 +00004326 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004327 !2 = !{!2, !0}
4328 !3 = !{!3, !0}
4329 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004330
Hal Finkel029cde62014-07-25 15:50:02 +00004331 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004332 !5 = !{!4} ; A list containing only scope !4
4333 !6 = !{!4, !3, !2}
4334 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004335
4336 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004337 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004338 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004339
Hal Finkel029cde62014-07-25 15:50:02 +00004340 ; These two instructions also don't alias (for domain !1, the set of scopes
4341 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004342 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004343 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004344
Adam Nemet0a8416f2015-05-11 08:30:28 +00004345 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004346 ; the !noalias list is not a superset of, or equal to, the scopes in the
4347 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004348 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004349 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004350
Sean Silvab084af42012-12-07 10:36:55 +00004351'``fpmath``' Metadata
4352^^^^^^^^^^^^^^^^^^^^^
4353
4354``fpmath`` metadata may be attached to any instruction of floating point
4355type. It can be used to express the maximum acceptable error in the
4356result of that instruction, in ULPs, thus potentially allowing the
4357compiler to use a more efficient but less accurate method of computing
4358it. ULP is defined as follows:
4359
4360 If ``x`` is a real number that lies between two finite consecutive
4361 floating-point numbers ``a`` and ``b``, without being equal to one
4362 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4363 distance between the two non-equal finite floating-point numbers
4364 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4365
4366The metadata node shall consist of a single positive floating point
4367number representing the maximum relative error, for example:
4368
4369.. code-block:: llvm
4370
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004371 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004372
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004373.. _range-metadata:
4374
Sean Silvab084af42012-12-07 10:36:55 +00004375'``range``' Metadata
4376^^^^^^^^^^^^^^^^^^^^
4377
Jingyue Wu37fcb592014-06-19 16:50:16 +00004378``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4379integer types. It expresses the possible ranges the loaded value or the value
4380returned by the called function at this call site is in. The ranges are
4381represented with a flattened list of integers. The loaded value or the value
4382returned is known to be in the union of the ranges defined by each consecutive
4383pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004384
4385- The type must match the type loaded by the instruction.
4386- The pair ``a,b`` represents the range ``[a,b)``.
4387- Both ``a`` and ``b`` are constants.
4388- The range is allowed to wrap.
4389- The range should not represent the full or empty set. That is,
4390 ``a!=b``.
4391
4392In addition, the pairs must be in signed order of the lower bound and
4393they must be non-contiguous.
4394
4395Examples:
4396
4397.. code-block:: llvm
4398
David Blaikiec7aabbb2015-03-04 22:06:14 +00004399 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4400 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004401 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4402 %d = invoke i8 @bar() to label %cont
4403 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004404 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004405 !0 = !{ i8 0, i8 2 }
4406 !1 = !{ i8 255, i8 2 }
4407 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4408 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004409
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004410'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004411^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004412
4413``unpredictable`` metadata may be attached to any branch or switch
4414instruction. It can be used to express the unpredictability of control
4415flow. Similar to the llvm.expect intrinsic, it may be used to alter
4416optimizations related to compare and branch instructions. The metadata
4417is treated as a boolean value; if it exists, it signals that the branch
4418or switch that it is attached to is completely unpredictable.
4419
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004420'``llvm.loop``'
4421^^^^^^^^^^^^^^^
4422
4423It is sometimes useful to attach information to loop constructs. Currently,
4424loop metadata is implemented as metadata attached to the branch instruction
4425in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004426guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004427specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004428
4429The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004430itself to avoid merging it with any other identifier metadata, e.g.,
4431during module linkage or function inlining. That is, each loop should refer
4432to their own identification metadata even if they reside in separate functions.
4433The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004434constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004435
4436.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004437
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004438 !0 = !{!0}
4439 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004440
Mark Heffernan893752a2014-07-18 19:24:51 +00004441The loop identifier metadata can be used to specify additional
4442per-loop metadata. Any operands after the first operand can be treated
4443as user-defined metadata. For example the ``llvm.loop.unroll.count``
4444suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004445
Paul Redmond5fdf8362013-05-28 20:00:34 +00004446.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004447
Paul Redmond5fdf8362013-05-28 20:00:34 +00004448 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4449 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004450 !0 = !{!0, !1}
4451 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004452
Mark Heffernan9d20e422014-07-21 23:11:03 +00004453'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004455
Mark Heffernan9d20e422014-07-21 23:11:03 +00004456Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4457used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004458vectorization width and interleave count. These metadata should be used in
4459conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004460``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4461optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004462it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004463which contains information about loop-carried memory dependencies can be helpful
4464in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004465
Mark Heffernan9d20e422014-07-21 23:11:03 +00004466'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4468
Mark Heffernan9d20e422014-07-21 23:11:03 +00004469This metadata suggests an interleave count to the loop interleaver.
4470The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004471second operand is an integer specifying the interleave count. For
4472example:
4473
4474.. code-block:: llvm
4475
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004476 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004477
Mark Heffernan9d20e422014-07-21 23:11:03 +00004478Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004479multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004480then the interleave count will be determined automatically.
4481
4482'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004483^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004484
4485This metadata selectively enables or disables vectorization for the loop. The
4486first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004487is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000044880 disables vectorization:
4489
4490.. code-block:: llvm
4491
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004492 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4493 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004494
4495'``llvm.loop.vectorize.width``' Metadata
4496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4497
4498This metadata sets the target width of the vectorizer. The first
4499operand is the string ``llvm.loop.vectorize.width`` and the second
4500operand is an integer specifying the width. For example:
4501
4502.. code-block:: llvm
4503
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004504 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004505
4506Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004507vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000045080 or if the loop does not have this metadata the width will be
4509determined automatically.
4510
4511'``llvm.loop.unroll``'
4512^^^^^^^^^^^^^^^^^^^^^^
4513
4514Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4515optimization hints such as the unroll factor. ``llvm.loop.unroll``
4516metadata should be used in conjunction with ``llvm.loop`` loop
4517identification metadata. The ``llvm.loop.unroll`` metadata are only
4518optimization hints and the unrolling will only be performed if the
4519optimizer believes it is safe to do so.
4520
Mark Heffernan893752a2014-07-18 19:24:51 +00004521'``llvm.loop.unroll.count``' Metadata
4522^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4523
4524This metadata suggests an unroll factor to the loop unroller. The
4525first operand is the string ``llvm.loop.unroll.count`` and the second
4526operand is a positive integer specifying the unroll factor. For
4527example:
4528
4529.. code-block:: llvm
4530
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004531 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004532
4533If the trip count of the loop is less than the unroll count the loop
4534will be partially unrolled.
4535
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004536'``llvm.loop.unroll.disable``' Metadata
4537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4538
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004539This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004540which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004541
4542.. code-block:: llvm
4543
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004544 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004545
Kevin Qin715b01e2015-03-09 06:14:18 +00004546'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004548
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004549This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004550operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004551
4552.. code-block:: llvm
4553
4554 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4555
Mark Heffernan89391542015-08-10 17:28:08 +00004556'``llvm.loop.unroll.enable``' Metadata
4557^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4558
4559This metadata suggests that the loop should be fully unrolled if the trip count
4560is known at compile time and partially unrolled if the trip count is not known
4561at compile time. The metadata has a single operand which is the string
4562``llvm.loop.unroll.enable``. For example:
4563
4564.. code-block:: llvm
4565
4566 !0 = !{!"llvm.loop.unroll.enable"}
4567
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004568'``llvm.loop.unroll.full``' Metadata
4569^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4570
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004571This metadata suggests that the loop should be unrolled fully. The
4572metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004573For example:
4574
4575.. code-block:: llvm
4576
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004577 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004578
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004579'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004581
4582This metadata indicates that the loop should not be versioned for the purpose
4583of enabling loop-invariant code motion (LICM). The metadata has a single operand
4584which is the string ``llvm.loop.licm_versioning.disable``. For example:
4585
4586.. code-block:: llvm
4587
4588 !0 = !{!"llvm.loop.licm_versioning.disable"}
4589
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004590'``llvm.mem``'
4591^^^^^^^^^^^^^^^
4592
4593Metadata types used to annotate memory accesses with information helpful
4594for optimizations are prefixed with ``llvm.mem``.
4595
4596'``llvm.mem.parallel_loop_access``' Metadata
4597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4598
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004599The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4600or metadata containing a list of loop identifiers for nested loops.
4601The metadata is attached to memory accessing instructions and denotes that
4602no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004603with the same loop identifier.
4604
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004605Precisely, given two instructions ``m1`` and ``m2`` that both have the
4606``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4607set of loops associated with that metadata, respectively, then there is no loop
4608carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004609``L2``.
4610
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004611As a special case, if all memory accessing instructions in a loop have
4612``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4613loop has no loop carried memory dependences and is considered to be a parallel
4614loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004615
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004616Note that if not all memory access instructions have such metadata referring to
4617the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004618memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004619safe mechanism, this causes loops that were originally parallel to be considered
4620sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004621insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004622
4623Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004624both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004625metadata types that refer to the same loop identifier metadata.
4626
4627.. code-block:: llvm
4628
4629 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004630 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004631 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004632 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004633 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004634 ...
4635 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004636
4637 for.end:
4638 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004639 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004640
4641It is also possible to have nested parallel loops. In that case the
4642memory accesses refer to a list of loop identifier metadata nodes instead of
4643the loop identifier metadata node directly:
4644
4645.. code-block:: llvm
4646
4647 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004648 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004649 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004650 ...
4651 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004652
4653 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004654 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004655 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004656 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004657 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004658 ...
4659 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004660
4661 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004662 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004663 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004664 ...
4665 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004666
4667 outer.for.end: ; preds = %for.body
4668 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004669 !0 = !{!1, !2} ; a list of loop identifiers
4670 !1 = !{!1} ; an identifier for the inner loop
4671 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004672
Peter Collingbournee6909c82015-02-20 20:30:47 +00004673'``llvm.bitsets``'
4674^^^^^^^^^^^^^^^^^^
4675
4676The ``llvm.bitsets`` global metadata is used to implement
4677:doc:`bitsets <BitSets>`.
4678
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004679'``invariant.group``' Metadata
4680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4681
4682The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4683The existence of the ``invariant.group`` metadata on the instruction tells
4684the optimizer that every ``load`` and ``store`` to the same pointer operand
4685within the same invariant group can be assumed to load or store the same
4686value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4687when two pointers are considered the same).
4688
4689Examples:
4690
4691.. code-block:: llvm
4692
4693 @unknownPtr = external global i8
4694 ...
4695 %ptr = alloca i8
4696 store i8 42, i8* %ptr, !invariant.group !0
4697 call void @foo(i8* %ptr)
4698
4699 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4700 call void @foo(i8* %ptr)
4701 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4702
4703 %newPtr = call i8* @getPointer(i8* %ptr)
4704 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4705
4706 %unknownValue = load i8, i8* @unknownPtr
4707 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4708
4709 call void @foo(i8* %ptr)
4710 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4711 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4712
4713 ...
4714 declare void @foo(i8*)
4715 declare i8* @getPointer(i8*)
4716 declare i8* @llvm.invariant.group.barrier(i8*)
4717
4718 !0 = !{!"magic ptr"}
4719 !1 = !{!"other ptr"}
4720
4721
4722
Sean Silvab084af42012-12-07 10:36:55 +00004723Module Flags Metadata
4724=====================
4725
4726Information about the module as a whole is difficult to convey to LLVM's
4727subsystems. The LLVM IR isn't sufficient to transmit this information.
4728The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004729this. These flags are in the form of key / value pairs --- much like a
4730dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004731look it up.
4732
4733The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4734Each triplet has the following form:
4735
4736- The first element is a *behavior* flag, which specifies the behavior
4737 when two (or more) modules are merged together, and it encounters two
4738 (or more) metadata with the same ID. The supported behaviors are
4739 described below.
4740- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004741 metadata. Each module may only have one flag entry for each unique ID (not
4742 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004743- The third element is the value of the flag.
4744
4745When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004746``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4747each unique metadata ID string, there will be exactly one entry in the merged
4748modules ``llvm.module.flags`` metadata table, and the value for that entry will
4749be determined by the merge behavior flag, as described below. The only exception
4750is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004751
4752The following behaviors are supported:
4753
4754.. list-table::
4755 :header-rows: 1
4756 :widths: 10 90
4757
4758 * - Value
4759 - Behavior
4760
4761 * - 1
4762 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004763 Emits an error if two values disagree, otherwise the resulting value
4764 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004765
4766 * - 2
4767 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004768 Emits a warning if two values disagree. The result value will be the
4769 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004770
4771 * - 3
4772 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004773 Adds a requirement that another module flag be present and have a
4774 specified value after linking is performed. The value must be a
4775 metadata pair, where the first element of the pair is the ID of the
4776 module flag to be restricted, and the second element of the pair is
4777 the value the module flag should be restricted to. This behavior can
4778 be used to restrict the allowable results (via triggering of an
4779 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004780
4781 * - 4
4782 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004783 Uses the specified value, regardless of the behavior or value of the
4784 other module. If both modules specify **Override**, but the values
4785 differ, an error will be emitted.
4786
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004787 * - 5
4788 - **Append**
4789 Appends the two values, which are required to be metadata nodes.
4790
4791 * - 6
4792 - **AppendUnique**
4793 Appends the two values, which are required to be metadata
4794 nodes. However, duplicate entries in the second list are dropped
4795 during the append operation.
4796
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004797It is an error for a particular unique flag ID to have multiple behaviors,
4798except in the case of **Require** (which adds restrictions on another metadata
4799value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004800
4801An example of module flags:
4802
4803.. code-block:: llvm
4804
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004805 !0 = !{ i32 1, !"foo", i32 1 }
4806 !1 = !{ i32 4, !"bar", i32 37 }
4807 !2 = !{ i32 2, !"qux", i32 42 }
4808 !3 = !{ i32 3, !"qux",
4809 !{
4810 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004811 }
4812 }
4813 !llvm.module.flags = !{ !0, !1, !2, !3 }
4814
4815- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4816 if two or more ``!"foo"`` flags are seen is to emit an error if their
4817 values are not equal.
4818
4819- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4820 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004821 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004822
4823- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4824 behavior if two or more ``!"qux"`` flags are seen is to emit a
4825 warning if their values are not equal.
4826
4827- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4828
4829 ::
4830
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004831 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004832
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004833 The behavior is to emit an error if the ``llvm.module.flags`` does not
4834 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4835 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004836
4837Objective-C Garbage Collection Module Flags Metadata
4838----------------------------------------------------
4839
4840On the Mach-O platform, Objective-C stores metadata about garbage
4841collection in a special section called "image info". The metadata
4842consists of a version number and a bitmask specifying what types of
4843garbage collection are supported (if any) by the file. If two or more
4844modules are linked together their garbage collection metadata needs to
4845be merged rather than appended together.
4846
4847The Objective-C garbage collection module flags metadata consists of the
4848following key-value pairs:
4849
4850.. list-table::
4851 :header-rows: 1
4852 :widths: 30 70
4853
4854 * - Key
4855 - Value
4856
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004857 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004858 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004859
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004860 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004861 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004862 always 0.
4863
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004864 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004865 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004866 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4867 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4868 Objective-C ABI version 2.
4869
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004870 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004871 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004872 not. Valid values are 0, for no garbage collection, and 2, for garbage
4873 collection supported.
4874
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004875 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004876 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004877 If present, its value must be 6. This flag requires that the
4878 ``Objective-C Garbage Collection`` flag have the value 2.
4879
4880Some important flag interactions:
4881
4882- If a module with ``Objective-C Garbage Collection`` set to 0 is
4883 merged with a module with ``Objective-C Garbage Collection`` set to
4884 2, then the resulting module has the
4885 ``Objective-C Garbage Collection`` flag set to 0.
4886- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4887 merged with a module with ``Objective-C GC Only`` set to 6.
4888
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004889Automatic Linker Flags Module Flags Metadata
4890--------------------------------------------
4891
4892Some targets support embedding flags to the linker inside individual object
4893files. Typically this is used in conjunction with language extensions which
4894allow source files to explicitly declare the libraries they depend on, and have
4895these automatically be transmitted to the linker via object files.
4896
4897These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004898using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004899to be ``AppendUnique``, and the value for the key is expected to be a metadata
4900node which should be a list of other metadata nodes, each of which should be a
4901list of metadata strings defining linker options.
4902
4903For example, the following metadata section specifies two separate sets of
4904linker options, presumably to link against ``libz`` and the ``Cocoa``
4905framework::
4906
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004907 !0 = !{ i32 6, !"Linker Options",
4908 !{
4909 !{ !"-lz" },
4910 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004911 !llvm.module.flags = !{ !0 }
4912
4913The metadata encoding as lists of lists of options, as opposed to a collapsed
4914list of options, is chosen so that the IR encoding can use multiple option
4915strings to specify e.g., a single library, while still having that specifier be
4916preserved as an atomic element that can be recognized by a target specific
4917assembly writer or object file emitter.
4918
4919Each individual option is required to be either a valid option for the target's
4920linker, or an option that is reserved by the target specific assembly writer or
4921object file emitter. No other aspect of these options is defined by the IR.
4922
Oliver Stannard5dc29342014-06-20 10:08:11 +00004923C type width Module Flags Metadata
4924----------------------------------
4925
4926The ARM backend emits a section into each generated object file describing the
4927options that it was compiled with (in a compiler-independent way) to prevent
4928linking incompatible objects, and to allow automatic library selection. Some
4929of these options are not visible at the IR level, namely wchar_t width and enum
4930width.
4931
4932To pass this information to the backend, these options are encoded in module
4933flags metadata, using the following key-value pairs:
4934
4935.. list-table::
4936 :header-rows: 1
4937 :widths: 30 70
4938
4939 * - Key
4940 - Value
4941
4942 * - short_wchar
4943 - * 0 --- sizeof(wchar_t) == 4
4944 * 1 --- sizeof(wchar_t) == 2
4945
4946 * - short_enum
4947 - * 0 --- Enums are at least as large as an ``int``.
4948 * 1 --- Enums are stored in the smallest integer type which can
4949 represent all of its values.
4950
4951For example, the following metadata section specifies that the module was
4952compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4953enum is the smallest type which can represent all of its values::
4954
4955 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004956 !0 = !{i32 1, !"short_wchar", i32 1}
4957 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004958
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004959.. _intrinsicglobalvariables:
4960
Sean Silvab084af42012-12-07 10:36:55 +00004961Intrinsic Global Variables
4962==========================
4963
4964LLVM has a number of "magic" global variables that contain data that
4965affect code generation or other IR semantics. These are documented here.
4966All globals of this sort should have a section specified as
4967"``llvm.metadata``". This section and all globals that start with
4968"``llvm.``" are reserved for use by LLVM.
4969
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004970.. _gv_llvmused:
4971
Sean Silvab084af42012-12-07 10:36:55 +00004972The '``llvm.used``' Global Variable
4973-----------------------------------
4974
Rafael Espindola74f2e462013-04-22 14:58:02 +00004975The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004976:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004977pointers to named global variables, functions and aliases which may optionally
4978have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004979use of it is:
4980
4981.. code-block:: llvm
4982
4983 @X = global i8 4
4984 @Y = global i32 123
4985
4986 @llvm.used = appending global [2 x i8*] [
4987 i8* @X,
4988 i8* bitcast (i32* @Y to i8*)
4989 ], section "llvm.metadata"
4990
Rafael Espindola74f2e462013-04-22 14:58:02 +00004991If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4992and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004993symbol that it cannot see (which is why they have to be named). For example, if
4994a variable has internal linkage and no references other than that from the
4995``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4996references from inline asms and other things the compiler cannot "see", and
4997corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004998
4999On some targets, the code generator must emit a directive to the
5000assembler or object file to prevent the assembler and linker from
5001molesting the symbol.
5002
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005003.. _gv_llvmcompilerused:
5004
Sean Silvab084af42012-12-07 10:36:55 +00005005The '``llvm.compiler.used``' Global Variable
5006--------------------------------------------
5007
5008The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5009directive, except that it only prevents the compiler from touching the
5010symbol. On targets that support it, this allows an intelligent linker to
5011optimize references to the symbol without being impeded as it would be
5012by ``@llvm.used``.
5013
5014This is a rare construct that should only be used in rare circumstances,
5015and should not be exposed to source languages.
5016
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005017.. _gv_llvmglobalctors:
5018
Sean Silvab084af42012-12-07 10:36:55 +00005019The '``llvm.global_ctors``' Global Variable
5020-------------------------------------------
5021
5022.. code-block:: llvm
5023
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005024 %0 = type { i32, void ()*, i8* }
5025 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005026
5027The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005028functions, priorities, and an optional associated global or function.
5029The functions referenced by this array will be called in ascending order
5030of priority (i.e. lowest first) when the module is loaded. The order of
5031functions with the same priority is not defined.
5032
5033If the third field is present, non-null, and points to a global variable
5034or function, the initializer function will only run if the associated
5035data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005036
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005037.. _llvmglobaldtors:
5038
Sean Silvab084af42012-12-07 10:36:55 +00005039The '``llvm.global_dtors``' Global Variable
5040-------------------------------------------
5041
5042.. code-block:: llvm
5043
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005044 %0 = type { i32, void ()*, i8* }
5045 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005046
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005047The ``@llvm.global_dtors`` array contains a list of destructor
5048functions, priorities, and an optional associated global or function.
5049The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005050order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005051order of functions with the same priority is not defined.
5052
5053If the third field is present, non-null, and points to a global variable
5054or function, the destructor function will only run if the associated
5055data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005056
5057Instruction Reference
5058=====================
5059
5060The LLVM instruction set consists of several different classifications
5061of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5062instructions <binaryops>`, :ref:`bitwise binary
5063instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5064:ref:`other instructions <otherops>`.
5065
5066.. _terminators:
5067
5068Terminator Instructions
5069-----------------------
5070
5071As mentioned :ref:`previously <functionstructure>`, every basic block in a
5072program ends with a "Terminator" instruction, which indicates which
5073block should be executed after the current block is finished. These
5074terminator instructions typically yield a '``void``' value: they produce
5075control flow, not values (the one exception being the
5076':ref:`invoke <i_invoke>`' instruction).
5077
5078The terminator instructions are: ':ref:`ret <i_ret>`',
5079':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5080':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005081':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005082':ref:`catchret <i_catchret>`',
5083':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005084and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005085
5086.. _i_ret:
5087
5088'``ret``' Instruction
5089^^^^^^^^^^^^^^^^^^^^^
5090
5091Syntax:
5092"""""""
5093
5094::
5095
5096 ret <type> <value> ; Return a value from a non-void function
5097 ret void ; Return from void function
5098
5099Overview:
5100"""""""""
5101
5102The '``ret``' instruction is used to return control flow (and optionally
5103a value) from a function back to the caller.
5104
5105There are two forms of the '``ret``' instruction: one that returns a
5106value and then causes control flow, and one that just causes control
5107flow to occur.
5108
5109Arguments:
5110""""""""""
5111
5112The '``ret``' instruction optionally accepts a single argument, the
5113return value. The type of the return value must be a ':ref:`first
5114class <t_firstclass>`' type.
5115
5116A function is not :ref:`well formed <wellformed>` if it it has a non-void
5117return type and contains a '``ret``' instruction with no return value or
5118a return value with a type that does not match its type, or if it has a
5119void return type and contains a '``ret``' instruction with a return
5120value.
5121
5122Semantics:
5123""""""""""
5124
5125When the '``ret``' instruction is executed, control flow returns back to
5126the calling function's context. If the caller is a
5127":ref:`call <i_call>`" instruction, execution continues at the
5128instruction after the call. If the caller was an
5129":ref:`invoke <i_invoke>`" instruction, execution continues at the
5130beginning of the "normal" destination block. If the instruction returns
5131a value, that value shall set the call or invoke instruction's return
5132value.
5133
5134Example:
5135""""""""
5136
5137.. code-block:: llvm
5138
5139 ret i32 5 ; Return an integer value of 5
5140 ret void ; Return from a void function
5141 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5142
5143.. _i_br:
5144
5145'``br``' Instruction
5146^^^^^^^^^^^^^^^^^^^^
5147
5148Syntax:
5149"""""""
5150
5151::
5152
5153 br i1 <cond>, label <iftrue>, label <iffalse>
5154 br label <dest> ; Unconditional branch
5155
5156Overview:
5157"""""""""
5158
5159The '``br``' instruction is used to cause control flow to transfer to a
5160different basic block in the current function. There are two forms of
5161this instruction, corresponding to a conditional branch and an
5162unconditional branch.
5163
5164Arguments:
5165""""""""""
5166
5167The conditional branch form of the '``br``' instruction takes a single
5168'``i1``' value and two '``label``' values. The unconditional form of the
5169'``br``' instruction takes a single '``label``' value as a target.
5170
5171Semantics:
5172""""""""""
5173
5174Upon execution of a conditional '``br``' instruction, the '``i1``'
5175argument is evaluated. If the value is ``true``, control flows to the
5176'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5177to the '``iffalse``' ``label`` argument.
5178
5179Example:
5180""""""""
5181
5182.. code-block:: llvm
5183
5184 Test:
5185 %cond = icmp eq i32 %a, %b
5186 br i1 %cond, label %IfEqual, label %IfUnequal
5187 IfEqual:
5188 ret i32 1
5189 IfUnequal:
5190 ret i32 0
5191
5192.. _i_switch:
5193
5194'``switch``' Instruction
5195^^^^^^^^^^^^^^^^^^^^^^^^
5196
5197Syntax:
5198"""""""
5199
5200::
5201
5202 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5203
5204Overview:
5205"""""""""
5206
5207The '``switch``' instruction is used to transfer control flow to one of
5208several different places. It is a generalization of the '``br``'
5209instruction, allowing a branch to occur to one of many possible
5210destinations.
5211
5212Arguments:
5213""""""""""
5214
5215The '``switch``' instruction uses three parameters: an integer
5216comparison value '``value``', a default '``label``' destination, and an
5217array of pairs of comparison value constants and '``label``'s. The table
5218is not allowed to contain duplicate constant entries.
5219
5220Semantics:
5221""""""""""
5222
5223The ``switch`` instruction specifies a table of values and destinations.
5224When the '``switch``' instruction is executed, this table is searched
5225for the given value. If the value is found, control flow is transferred
5226to the corresponding destination; otherwise, control flow is transferred
5227to the default destination.
5228
5229Implementation:
5230"""""""""""""""
5231
5232Depending on properties of the target machine and the particular
5233``switch`` instruction, this instruction may be code generated in
5234different ways. For example, it could be generated as a series of
5235chained conditional branches or with a lookup table.
5236
5237Example:
5238""""""""
5239
5240.. code-block:: llvm
5241
5242 ; Emulate a conditional br instruction
5243 %Val = zext i1 %value to i32
5244 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5245
5246 ; Emulate an unconditional br instruction
5247 switch i32 0, label %dest [ ]
5248
5249 ; Implement a jump table:
5250 switch i32 %val, label %otherwise [ i32 0, label %onzero
5251 i32 1, label %onone
5252 i32 2, label %ontwo ]
5253
5254.. _i_indirectbr:
5255
5256'``indirectbr``' Instruction
5257^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5258
5259Syntax:
5260"""""""
5261
5262::
5263
5264 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5265
5266Overview:
5267"""""""""
5268
5269The '``indirectbr``' instruction implements an indirect branch to a
5270label within the current function, whose address is specified by
5271"``address``". Address must be derived from a
5272:ref:`blockaddress <blockaddress>` constant.
5273
5274Arguments:
5275""""""""""
5276
5277The '``address``' argument is the address of the label to jump to. The
5278rest of the arguments indicate the full set of possible destinations
5279that the address may point to. Blocks are allowed to occur multiple
5280times in the destination list, though this isn't particularly useful.
5281
5282This destination list is required so that dataflow analysis has an
5283accurate understanding of the CFG.
5284
5285Semantics:
5286""""""""""
5287
5288Control transfers to the block specified in the address argument. All
5289possible destination blocks must be listed in the label list, otherwise
5290this instruction has undefined behavior. This implies that jumps to
5291labels defined in other functions have undefined behavior as well.
5292
5293Implementation:
5294"""""""""""""""
5295
5296This is typically implemented with a jump through a register.
5297
5298Example:
5299""""""""
5300
5301.. code-block:: llvm
5302
5303 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5304
5305.. _i_invoke:
5306
5307'``invoke``' Instruction
5308^^^^^^^^^^^^^^^^^^^^^^^^
5309
5310Syntax:
5311"""""""
5312
5313::
5314
5315 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005316 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005317
5318Overview:
5319"""""""""
5320
5321The '``invoke``' instruction causes control to transfer to a specified
5322function, with the possibility of control flow transfer to either the
5323'``normal``' label or the '``exception``' label. If the callee function
5324returns with the "``ret``" instruction, control flow will return to the
5325"normal" label. If the callee (or any indirect callees) returns via the
5326":ref:`resume <i_resume>`" instruction or other exception handling
5327mechanism, control is interrupted and continued at the dynamically
5328nearest "exception" label.
5329
5330The '``exception``' label is a `landing
5331pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5332'``exception``' label is required to have the
5333":ref:`landingpad <i_landingpad>`" instruction, which contains the
5334information about the behavior of the program after unwinding happens,
5335as its first non-PHI instruction. The restrictions on the
5336"``landingpad``" instruction's tightly couples it to the "``invoke``"
5337instruction, so that the important information contained within the
5338"``landingpad``" instruction can't be lost through normal code motion.
5339
5340Arguments:
5341""""""""""
5342
5343This instruction requires several arguments:
5344
5345#. The optional "cconv" marker indicates which :ref:`calling
5346 convention <callingconv>` the call should use. If none is
5347 specified, the call defaults to using C calling conventions.
5348#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5349 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5350 are valid here.
5351#. '``ptr to function ty``': shall be the signature of the pointer to
5352 function value being invoked. In most cases, this is a direct
5353 function invocation, but indirect ``invoke``'s are just as possible,
5354 branching off an arbitrary pointer to function value.
5355#. '``function ptr val``': An LLVM value containing a pointer to a
5356 function to be invoked.
5357#. '``function args``': argument list whose types match the function
5358 signature argument types and parameter attributes. All arguments must
5359 be of :ref:`first class <t_firstclass>` type. If the function signature
5360 indicates the function accepts a variable number of arguments, the
5361 extra arguments can be specified.
5362#. '``normal label``': the label reached when the called function
5363 executes a '``ret``' instruction.
5364#. '``exception label``': the label reached when a callee returns via
5365 the :ref:`resume <i_resume>` instruction or other exception handling
5366 mechanism.
5367#. The optional :ref:`function attributes <fnattrs>` list. Only
5368 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5369 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005370#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005371
5372Semantics:
5373""""""""""
5374
5375This instruction is designed to operate as a standard '``call``'
5376instruction in most regards. The primary difference is that it
5377establishes an association with a label, which is used by the runtime
5378library to unwind the stack.
5379
5380This instruction is used in languages with destructors to ensure that
5381proper cleanup is performed in the case of either a ``longjmp`` or a
5382thrown exception. Additionally, this is important for implementation of
5383'``catch``' clauses in high-level languages that support them.
5384
5385For the purposes of the SSA form, the definition of the value returned
5386by the '``invoke``' instruction is deemed to occur on the edge from the
5387current block to the "normal" label. If the callee unwinds then no
5388return value is available.
5389
5390Example:
5391""""""""
5392
5393.. code-block:: llvm
5394
5395 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005396 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005397 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005398 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005399
5400.. _i_resume:
5401
5402'``resume``' Instruction
5403^^^^^^^^^^^^^^^^^^^^^^^^
5404
5405Syntax:
5406"""""""
5407
5408::
5409
5410 resume <type> <value>
5411
5412Overview:
5413"""""""""
5414
5415The '``resume``' instruction is a terminator instruction that has no
5416successors.
5417
5418Arguments:
5419""""""""""
5420
5421The '``resume``' instruction requires one argument, which must have the
5422same type as the result of any '``landingpad``' instruction in the same
5423function.
5424
5425Semantics:
5426""""""""""
5427
5428The '``resume``' instruction resumes propagation of an existing
5429(in-flight) exception whose unwinding was interrupted with a
5430:ref:`landingpad <i_landingpad>` instruction.
5431
5432Example:
5433""""""""
5434
5435.. code-block:: llvm
5436
5437 resume { i8*, i32 } %exn
5438
David Majnemer8a1c45d2015-12-12 05:38:55 +00005439.. _i_catchswitch:
5440
5441'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005443
5444Syntax:
5445"""""""
5446
5447::
5448
5449 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5450 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5451
5452Overview:
5453"""""""""
5454
5455The '``catchswitch``' instruction is used by `LLVM's exception handling system
5456<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5457that may be executed by the :ref:`EH personality routine <personalityfn>`.
5458
5459Arguments:
5460""""""""""
5461
5462The ``parent`` argument is the token of the funclet that contains the
5463``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5464this operand may be the token ``none``.
5465
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005466The ``default`` argument is the label of another basic block beginning with
5467either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5468must be a legal target with respect to the ``parent`` links, as described in
5469the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005470
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005471The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005472:ref:`catchpad <i_catchpad>` instruction.
5473
5474Semantics:
5475""""""""""
5476
5477Executing this instruction transfers control to one of the successors in
5478``handlers``, if appropriate, or continues to unwind via the unwind label if
5479present.
5480
5481The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5482it must be both the first non-phi instruction and last instruction in the basic
5483block. Therefore, it must be the only non-phi instruction in the block.
5484
5485Example:
5486""""""""
5487
5488.. code-block:: llvm
5489
5490 dispatch1:
5491 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5492 dispatch2:
5493 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5494
David Majnemer654e1302015-07-31 17:58:14 +00005495.. _i_catchret:
5496
5497'``catchret``' Instruction
5498^^^^^^^^^^^^^^^^^^^^^^^^^^
5499
5500Syntax:
5501"""""""
5502
5503::
5504
David Majnemer8a1c45d2015-12-12 05:38:55 +00005505 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005506
5507Overview:
5508"""""""""
5509
5510The '``catchret``' instruction is a terminator instruction that has a
5511single successor.
5512
5513
5514Arguments:
5515""""""""""
5516
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005517The first argument to a '``catchret``' indicates which ``catchpad`` it
5518exits. It must be a :ref:`catchpad <i_catchpad>`.
5519The second argument to a '``catchret``' specifies where control will
5520transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005521
5522Semantics:
5523""""""""""
5524
David Majnemer8a1c45d2015-12-12 05:38:55 +00005525The '``catchret``' instruction ends an existing (in-flight) exception whose
5526unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5527:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5528code to, for example, destroy the active exception. Control then transfers to
5529``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005530
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005531The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5532If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5533funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5534the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005535
5536Example:
5537""""""""
5538
5539.. code-block:: llvm
5540
David Majnemer8a1c45d2015-12-12 05:38:55 +00005541 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005542
David Majnemer654e1302015-07-31 17:58:14 +00005543.. _i_cleanupret:
5544
5545'``cleanupret``' Instruction
5546^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5547
5548Syntax:
5549"""""""
5550
5551::
5552
David Majnemer8a1c45d2015-12-12 05:38:55 +00005553 cleanupret from <value> unwind label <continue>
5554 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005555
5556Overview:
5557"""""""""
5558
5559The '``cleanupret``' instruction is a terminator instruction that has
5560an optional successor.
5561
5562
5563Arguments:
5564""""""""""
5565
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005566The '``cleanupret``' instruction requires one argument, which indicates
5567which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005568If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5569funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5570the ``cleanupret``'s behavior is undefined.
5571
5572The '``cleanupret``' instruction also has an optional successor, ``continue``,
5573which must be the label of another basic block beginning with either a
5574``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5575be a legal target with respect to the ``parent`` links, as described in the
5576`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005577
5578Semantics:
5579""""""""""
5580
5581The '``cleanupret``' instruction indicates to the
5582:ref:`personality function <personalityfn>` that one
5583:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5584It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005585
David Majnemer654e1302015-07-31 17:58:14 +00005586Example:
5587""""""""
5588
5589.. code-block:: llvm
5590
David Majnemer8a1c45d2015-12-12 05:38:55 +00005591 cleanupret from %cleanup unwind to caller
5592 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005593
Sean Silvab084af42012-12-07 10:36:55 +00005594.. _i_unreachable:
5595
5596'``unreachable``' Instruction
5597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5598
5599Syntax:
5600"""""""
5601
5602::
5603
5604 unreachable
5605
5606Overview:
5607"""""""""
5608
5609The '``unreachable``' instruction has no defined semantics. This
5610instruction is used to inform the optimizer that a particular portion of
5611the code is not reachable. This can be used to indicate that the code
5612after a no-return function cannot be reached, and other facts.
5613
5614Semantics:
5615""""""""""
5616
5617The '``unreachable``' instruction has no defined semantics.
5618
5619.. _binaryops:
5620
5621Binary Operations
5622-----------------
5623
5624Binary operators are used to do most of the computation in a program.
5625They require two operands of the same type, execute an operation on
5626them, and produce a single value. The operands might represent multiple
5627data, as is the case with the :ref:`vector <t_vector>` data type. The
5628result value has the same type as its operands.
5629
5630There are several different binary operators:
5631
5632.. _i_add:
5633
5634'``add``' Instruction
5635^^^^^^^^^^^^^^^^^^^^^
5636
5637Syntax:
5638"""""""
5639
5640::
5641
Tim Northover675a0962014-06-13 14:24:23 +00005642 <result> = add <ty> <op1>, <op2> ; yields ty:result
5643 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5644 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5645 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005646
5647Overview:
5648"""""""""
5649
5650The '``add``' instruction returns the sum of its two operands.
5651
5652Arguments:
5653""""""""""
5654
5655The two arguments to the '``add``' instruction must be
5656:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5657arguments must have identical types.
5658
5659Semantics:
5660""""""""""
5661
5662The value produced is the integer sum of the two operands.
5663
5664If the sum has unsigned overflow, the result returned is the
5665mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5666the result.
5667
5668Because LLVM integers use a two's complement representation, this
5669instruction is appropriate for both signed and unsigned integers.
5670
5671``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5672respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5673result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5674unsigned and/or signed overflow, respectively, occurs.
5675
5676Example:
5677""""""""
5678
5679.. code-block:: llvm
5680
Tim Northover675a0962014-06-13 14:24:23 +00005681 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005682
5683.. _i_fadd:
5684
5685'``fadd``' Instruction
5686^^^^^^^^^^^^^^^^^^^^^^
5687
5688Syntax:
5689"""""""
5690
5691::
5692
Tim Northover675a0962014-06-13 14:24:23 +00005693 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005694
5695Overview:
5696"""""""""
5697
5698The '``fadd``' instruction returns the sum of its two operands.
5699
5700Arguments:
5701""""""""""
5702
5703The two arguments to the '``fadd``' instruction must be :ref:`floating
5704point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5705Both arguments must have identical types.
5706
5707Semantics:
5708""""""""""
5709
5710The value produced is the floating point sum of the two operands. This
5711instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5712which are optimization hints to enable otherwise unsafe floating point
5713optimizations:
5714
5715Example:
5716""""""""
5717
5718.. code-block:: llvm
5719
Tim Northover675a0962014-06-13 14:24:23 +00005720 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005721
5722'``sub``' Instruction
5723^^^^^^^^^^^^^^^^^^^^^
5724
5725Syntax:
5726"""""""
5727
5728::
5729
Tim Northover675a0962014-06-13 14:24:23 +00005730 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5731 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5732 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5733 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005734
5735Overview:
5736"""""""""
5737
5738The '``sub``' instruction returns the difference of its two operands.
5739
5740Note that the '``sub``' instruction is used to represent the '``neg``'
5741instruction present in most other intermediate representations.
5742
5743Arguments:
5744""""""""""
5745
5746The two arguments to the '``sub``' instruction must be
5747:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5748arguments must have identical types.
5749
5750Semantics:
5751""""""""""
5752
5753The value produced is the integer difference of the two operands.
5754
5755If the difference has unsigned overflow, the result returned is the
5756mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5757the result.
5758
5759Because LLVM integers use a two's complement representation, this
5760instruction is appropriate for both signed and unsigned integers.
5761
5762``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5763respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5764result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5765unsigned and/or signed overflow, respectively, occurs.
5766
5767Example:
5768""""""""
5769
5770.. code-block:: llvm
5771
Tim Northover675a0962014-06-13 14:24:23 +00005772 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5773 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005774
5775.. _i_fsub:
5776
5777'``fsub``' Instruction
5778^^^^^^^^^^^^^^^^^^^^^^
5779
5780Syntax:
5781"""""""
5782
5783::
5784
Tim Northover675a0962014-06-13 14:24:23 +00005785 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005786
5787Overview:
5788"""""""""
5789
5790The '``fsub``' instruction returns the difference of its two operands.
5791
5792Note that the '``fsub``' instruction is used to represent the '``fneg``'
5793instruction present in most other intermediate representations.
5794
5795Arguments:
5796""""""""""
5797
5798The two arguments to the '``fsub``' instruction must be :ref:`floating
5799point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5800Both arguments must have identical types.
5801
5802Semantics:
5803""""""""""
5804
5805The value produced is the floating point difference of the two operands.
5806This instruction can also take any number of :ref:`fast-math
5807flags <fastmath>`, which are optimization hints to enable otherwise
5808unsafe floating point optimizations:
5809
5810Example:
5811""""""""
5812
5813.. code-block:: llvm
5814
Tim Northover675a0962014-06-13 14:24:23 +00005815 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5816 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005817
5818'``mul``' Instruction
5819^^^^^^^^^^^^^^^^^^^^^
5820
5821Syntax:
5822"""""""
5823
5824::
5825
Tim Northover675a0962014-06-13 14:24:23 +00005826 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5827 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5828 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5829 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005830
5831Overview:
5832"""""""""
5833
5834The '``mul``' instruction returns the product of its two operands.
5835
5836Arguments:
5837""""""""""
5838
5839The two arguments to the '``mul``' instruction must be
5840:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5841arguments must have identical types.
5842
5843Semantics:
5844""""""""""
5845
5846The value produced is the integer product of the two operands.
5847
5848If the result of the multiplication has unsigned overflow, the result
5849returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5850bit width of the result.
5851
5852Because LLVM integers use a two's complement representation, and the
5853result is the same width as the operands, this instruction returns the
5854correct result for both signed and unsigned integers. If a full product
5855(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5856sign-extended or zero-extended as appropriate to the width of the full
5857product.
5858
5859``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5860respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5861result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5862unsigned and/or signed overflow, respectively, occurs.
5863
5864Example:
5865""""""""
5866
5867.. code-block:: llvm
5868
Tim Northover675a0962014-06-13 14:24:23 +00005869 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005870
5871.. _i_fmul:
5872
5873'``fmul``' Instruction
5874^^^^^^^^^^^^^^^^^^^^^^
5875
5876Syntax:
5877"""""""
5878
5879::
5880
Tim Northover675a0962014-06-13 14:24:23 +00005881 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005882
5883Overview:
5884"""""""""
5885
5886The '``fmul``' instruction returns the product of its two operands.
5887
5888Arguments:
5889""""""""""
5890
5891The two arguments to the '``fmul``' instruction must be :ref:`floating
5892point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5893Both arguments must have identical types.
5894
5895Semantics:
5896""""""""""
5897
5898The value produced is the floating point product of the two operands.
5899This instruction can also take any number of :ref:`fast-math
5900flags <fastmath>`, which are optimization hints to enable otherwise
5901unsafe floating point optimizations:
5902
5903Example:
5904""""""""
5905
5906.. code-block:: llvm
5907
Tim Northover675a0962014-06-13 14:24:23 +00005908 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005909
5910'``udiv``' Instruction
5911^^^^^^^^^^^^^^^^^^^^^^
5912
5913Syntax:
5914"""""""
5915
5916::
5917
Tim Northover675a0962014-06-13 14:24:23 +00005918 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5919 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005920
5921Overview:
5922"""""""""
5923
5924The '``udiv``' instruction returns the quotient of its two operands.
5925
5926Arguments:
5927""""""""""
5928
5929The two arguments to the '``udiv``' instruction must be
5930:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5931arguments must have identical types.
5932
5933Semantics:
5934""""""""""
5935
5936The value produced is the unsigned integer quotient of the two operands.
5937
5938Note that unsigned integer division and signed integer division are
5939distinct operations; for signed integer division, use '``sdiv``'.
5940
5941Division by zero leads to undefined behavior.
5942
5943If the ``exact`` keyword is present, the result value of the ``udiv`` is
5944a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5945such, "((a udiv exact b) mul b) == a").
5946
5947Example:
5948""""""""
5949
5950.. code-block:: llvm
5951
Tim Northover675a0962014-06-13 14:24:23 +00005952 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005953
5954'``sdiv``' Instruction
5955^^^^^^^^^^^^^^^^^^^^^^
5956
5957Syntax:
5958"""""""
5959
5960::
5961
Tim Northover675a0962014-06-13 14:24:23 +00005962 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5963 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005964
5965Overview:
5966"""""""""
5967
5968The '``sdiv``' instruction returns the quotient of its two operands.
5969
5970Arguments:
5971""""""""""
5972
5973The two arguments to the '``sdiv``' instruction must be
5974:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5975arguments must have identical types.
5976
5977Semantics:
5978""""""""""
5979
5980The value produced is the signed integer quotient of the two operands
5981rounded towards zero.
5982
5983Note that signed integer division and unsigned integer division are
5984distinct operations; for unsigned integer division, use '``udiv``'.
5985
5986Division by zero leads to undefined behavior. Overflow also leads to
5987undefined behavior; this is a rare case, but can occur, for example, by
5988doing a 32-bit division of -2147483648 by -1.
5989
5990If the ``exact`` keyword is present, the result value of the ``sdiv`` is
5991a :ref:`poison value <poisonvalues>` if the result would be rounded.
5992
5993Example:
5994""""""""
5995
5996.. code-block:: llvm
5997
Tim Northover675a0962014-06-13 14:24:23 +00005998 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005999
6000.. _i_fdiv:
6001
6002'``fdiv``' Instruction
6003^^^^^^^^^^^^^^^^^^^^^^
6004
6005Syntax:
6006"""""""
6007
6008::
6009
Tim Northover675a0962014-06-13 14:24:23 +00006010 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006011
6012Overview:
6013"""""""""
6014
6015The '``fdiv``' instruction returns the quotient of its two operands.
6016
6017Arguments:
6018""""""""""
6019
6020The two arguments to the '``fdiv``' instruction must be :ref:`floating
6021point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6022Both arguments must have identical types.
6023
6024Semantics:
6025""""""""""
6026
6027The value produced is the floating point quotient of the two operands.
6028This instruction can also take any number of :ref:`fast-math
6029flags <fastmath>`, which are optimization hints to enable otherwise
6030unsafe floating point optimizations:
6031
6032Example:
6033""""""""
6034
6035.. code-block:: llvm
6036
Tim Northover675a0962014-06-13 14:24:23 +00006037 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006038
6039'``urem``' Instruction
6040^^^^^^^^^^^^^^^^^^^^^^
6041
6042Syntax:
6043"""""""
6044
6045::
6046
Tim Northover675a0962014-06-13 14:24:23 +00006047 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006048
6049Overview:
6050"""""""""
6051
6052The '``urem``' instruction returns the remainder from the unsigned
6053division of its two arguments.
6054
6055Arguments:
6056""""""""""
6057
6058The two arguments to the '``urem``' instruction must be
6059:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6060arguments must have identical types.
6061
6062Semantics:
6063""""""""""
6064
6065This instruction returns the unsigned integer *remainder* of a division.
6066This instruction always performs an unsigned division to get the
6067remainder.
6068
6069Note that unsigned integer remainder and signed integer remainder are
6070distinct operations; for signed integer remainder, use '``srem``'.
6071
6072Taking the remainder of a division by zero leads to undefined behavior.
6073
6074Example:
6075""""""""
6076
6077.. code-block:: llvm
6078
Tim Northover675a0962014-06-13 14:24:23 +00006079 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006080
6081'``srem``' Instruction
6082^^^^^^^^^^^^^^^^^^^^^^
6083
6084Syntax:
6085"""""""
6086
6087::
6088
Tim Northover675a0962014-06-13 14:24:23 +00006089 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006090
6091Overview:
6092"""""""""
6093
6094The '``srem``' instruction returns the remainder from the signed
6095division of its two operands. This instruction can also take
6096:ref:`vector <t_vector>` versions of the values in which case the elements
6097must be integers.
6098
6099Arguments:
6100""""""""""
6101
6102The two arguments to the '``srem``' instruction must be
6103:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6104arguments must have identical types.
6105
6106Semantics:
6107""""""""""
6108
6109This instruction returns the *remainder* of a division (where the result
6110is either zero or has the same sign as the dividend, ``op1``), not the
6111*modulo* operator (where the result is either zero or has the same sign
6112as the divisor, ``op2``) of a value. For more information about the
6113difference, see `The Math
6114Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6115table of how this is implemented in various languages, please see
6116`Wikipedia: modulo
6117operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6118
6119Note that signed integer remainder and unsigned integer remainder are
6120distinct operations; for unsigned integer remainder, use '``urem``'.
6121
6122Taking the remainder of a division by zero leads to undefined behavior.
6123Overflow also leads to undefined behavior; this is a rare case, but can
6124occur, for example, by taking the remainder of a 32-bit division of
6125-2147483648 by -1. (The remainder doesn't actually overflow, but this
6126rule lets srem be implemented using instructions that return both the
6127result of the division and the remainder.)
6128
6129Example:
6130""""""""
6131
6132.. code-block:: llvm
6133
Tim Northover675a0962014-06-13 14:24:23 +00006134 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006135
6136.. _i_frem:
6137
6138'``frem``' Instruction
6139^^^^^^^^^^^^^^^^^^^^^^
6140
6141Syntax:
6142"""""""
6143
6144::
6145
Tim Northover675a0962014-06-13 14:24:23 +00006146 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006147
6148Overview:
6149"""""""""
6150
6151The '``frem``' instruction returns the remainder from the division of
6152its two operands.
6153
6154Arguments:
6155""""""""""
6156
6157The two arguments to the '``frem``' instruction must be :ref:`floating
6158point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6159Both arguments must have identical types.
6160
6161Semantics:
6162""""""""""
6163
6164This instruction returns the *remainder* of a division. The remainder
6165has the same sign as the dividend. This instruction can also take any
6166number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6167to enable otherwise unsafe floating point optimizations:
6168
6169Example:
6170""""""""
6171
6172.. code-block:: llvm
6173
Tim Northover675a0962014-06-13 14:24:23 +00006174 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006175
6176.. _bitwiseops:
6177
6178Bitwise Binary Operations
6179-------------------------
6180
6181Bitwise binary operators are used to do various forms of bit-twiddling
6182in a program. They are generally very efficient instructions and can
6183commonly be strength reduced from other instructions. They require two
6184operands of the same type, execute an operation on them, and produce a
6185single value. The resulting value is the same type as its operands.
6186
6187'``shl``' Instruction
6188^^^^^^^^^^^^^^^^^^^^^
6189
6190Syntax:
6191"""""""
6192
6193::
6194
Tim Northover675a0962014-06-13 14:24:23 +00006195 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6196 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6197 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6198 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006199
6200Overview:
6201"""""""""
6202
6203The '``shl``' instruction returns the first operand shifted to the left
6204a specified number of bits.
6205
6206Arguments:
6207""""""""""
6208
6209Both arguments to the '``shl``' instruction must be the same
6210:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6211'``op2``' is treated as an unsigned value.
6212
6213Semantics:
6214""""""""""
6215
6216The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6217where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006218dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006219``op1``, the result is undefined. If the arguments are vectors, each
6220vector element of ``op1`` is shifted by the corresponding shift amount
6221in ``op2``.
6222
6223If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6224value <poisonvalues>` if it shifts out any non-zero bits. If the
6225``nsw`` keyword is present, then the shift produces a :ref:`poison
6226value <poisonvalues>` if it shifts out any bits that disagree with the
6227resultant sign bit. As such, NUW/NSW have the same semantics as they
6228would if the shift were expressed as a mul instruction with the same
6229nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6230
6231Example:
6232""""""""
6233
6234.. code-block:: llvm
6235
Tim Northover675a0962014-06-13 14:24:23 +00006236 <result> = shl i32 4, %var ; yields i32: 4 << %var
6237 <result> = shl i32 4, 2 ; yields i32: 16
6238 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006239 <result> = shl i32 1, 32 ; undefined
6240 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6241
6242'``lshr``' Instruction
6243^^^^^^^^^^^^^^^^^^^^^^
6244
6245Syntax:
6246"""""""
6247
6248::
6249
Tim Northover675a0962014-06-13 14:24:23 +00006250 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6251 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006252
6253Overview:
6254"""""""""
6255
6256The '``lshr``' instruction (logical shift right) returns the first
6257operand shifted to the right a specified number of bits with zero fill.
6258
6259Arguments:
6260""""""""""
6261
6262Both arguments to the '``lshr``' instruction must be the same
6263:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6264'``op2``' is treated as an unsigned value.
6265
6266Semantics:
6267""""""""""
6268
6269This instruction always performs a logical shift right operation. The
6270most significant bits of the result will be filled with zero bits after
6271the shift. If ``op2`` is (statically or dynamically) equal to or larger
6272than the number of bits in ``op1``, the result is undefined. If the
6273arguments are vectors, each vector element of ``op1`` is shifted by the
6274corresponding shift amount in ``op2``.
6275
6276If the ``exact`` keyword is present, the result value of the ``lshr`` is
6277a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6278non-zero.
6279
6280Example:
6281""""""""
6282
6283.. code-block:: llvm
6284
Tim Northover675a0962014-06-13 14:24:23 +00006285 <result> = lshr i32 4, 1 ; yields i32:result = 2
6286 <result> = lshr i32 4, 2 ; yields i32:result = 1
6287 <result> = lshr i8 4, 3 ; yields i8:result = 0
6288 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006289 <result> = lshr i32 1, 32 ; undefined
6290 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6291
6292'``ashr``' Instruction
6293^^^^^^^^^^^^^^^^^^^^^^
6294
6295Syntax:
6296"""""""
6297
6298::
6299
Tim Northover675a0962014-06-13 14:24:23 +00006300 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6301 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006302
6303Overview:
6304"""""""""
6305
6306The '``ashr``' instruction (arithmetic shift right) returns the first
6307operand shifted to the right a specified number of bits with sign
6308extension.
6309
6310Arguments:
6311""""""""""
6312
6313Both arguments to the '``ashr``' instruction must be the same
6314:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6315'``op2``' is treated as an unsigned value.
6316
6317Semantics:
6318""""""""""
6319
6320This instruction always performs an arithmetic shift right operation,
6321The most significant bits of the result will be filled with the sign bit
6322of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6323than the number of bits in ``op1``, the result is undefined. If the
6324arguments are vectors, each vector element of ``op1`` is shifted by the
6325corresponding shift amount in ``op2``.
6326
6327If the ``exact`` keyword is present, the result value of the ``ashr`` is
6328a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6329non-zero.
6330
6331Example:
6332""""""""
6333
6334.. code-block:: llvm
6335
Tim Northover675a0962014-06-13 14:24:23 +00006336 <result> = ashr i32 4, 1 ; yields i32:result = 2
6337 <result> = ashr i32 4, 2 ; yields i32:result = 1
6338 <result> = ashr i8 4, 3 ; yields i8:result = 0
6339 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006340 <result> = ashr i32 1, 32 ; undefined
6341 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6342
6343'``and``' Instruction
6344^^^^^^^^^^^^^^^^^^^^^
6345
6346Syntax:
6347"""""""
6348
6349::
6350
Tim Northover675a0962014-06-13 14:24:23 +00006351 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006352
6353Overview:
6354"""""""""
6355
6356The '``and``' instruction returns the bitwise logical and of its two
6357operands.
6358
6359Arguments:
6360""""""""""
6361
6362The two arguments to the '``and``' instruction must be
6363:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6364arguments must have identical types.
6365
6366Semantics:
6367""""""""""
6368
6369The truth table used for the '``and``' instruction is:
6370
6371+-----+-----+-----+
6372| In0 | In1 | Out |
6373+-----+-----+-----+
6374| 0 | 0 | 0 |
6375+-----+-----+-----+
6376| 0 | 1 | 0 |
6377+-----+-----+-----+
6378| 1 | 0 | 0 |
6379+-----+-----+-----+
6380| 1 | 1 | 1 |
6381+-----+-----+-----+
6382
6383Example:
6384""""""""
6385
6386.. code-block:: llvm
6387
Tim Northover675a0962014-06-13 14:24:23 +00006388 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6389 <result> = and i32 15, 40 ; yields i32:result = 8
6390 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006391
6392'``or``' Instruction
6393^^^^^^^^^^^^^^^^^^^^
6394
6395Syntax:
6396"""""""
6397
6398::
6399
Tim Northover675a0962014-06-13 14:24:23 +00006400 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006401
6402Overview:
6403"""""""""
6404
6405The '``or``' instruction returns the bitwise logical inclusive or of its
6406two operands.
6407
6408Arguments:
6409""""""""""
6410
6411The two arguments to the '``or``' instruction must be
6412:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6413arguments must have identical types.
6414
6415Semantics:
6416""""""""""
6417
6418The truth table used for the '``or``' instruction is:
6419
6420+-----+-----+-----+
6421| In0 | In1 | Out |
6422+-----+-----+-----+
6423| 0 | 0 | 0 |
6424+-----+-----+-----+
6425| 0 | 1 | 1 |
6426+-----+-----+-----+
6427| 1 | 0 | 1 |
6428+-----+-----+-----+
6429| 1 | 1 | 1 |
6430+-----+-----+-----+
6431
6432Example:
6433""""""""
6434
6435::
6436
Tim Northover675a0962014-06-13 14:24:23 +00006437 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6438 <result> = or i32 15, 40 ; yields i32:result = 47
6439 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006440
6441'``xor``' Instruction
6442^^^^^^^^^^^^^^^^^^^^^
6443
6444Syntax:
6445"""""""
6446
6447::
6448
Tim Northover675a0962014-06-13 14:24:23 +00006449 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006450
6451Overview:
6452"""""""""
6453
6454The '``xor``' instruction returns the bitwise logical exclusive or of
6455its two operands. The ``xor`` is used to implement the "one's
6456complement" operation, which is the "~" operator in C.
6457
6458Arguments:
6459""""""""""
6460
6461The two arguments to the '``xor``' instruction must be
6462:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6463arguments must have identical types.
6464
6465Semantics:
6466""""""""""
6467
6468The truth table used for the '``xor``' instruction is:
6469
6470+-----+-----+-----+
6471| In0 | In1 | Out |
6472+-----+-----+-----+
6473| 0 | 0 | 0 |
6474+-----+-----+-----+
6475| 0 | 1 | 1 |
6476+-----+-----+-----+
6477| 1 | 0 | 1 |
6478+-----+-----+-----+
6479| 1 | 1 | 0 |
6480+-----+-----+-----+
6481
6482Example:
6483""""""""
6484
6485.. code-block:: llvm
6486
Tim Northover675a0962014-06-13 14:24:23 +00006487 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6488 <result> = xor i32 15, 40 ; yields i32:result = 39
6489 <result> = xor i32 4, 8 ; yields i32:result = 12
6490 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006491
6492Vector Operations
6493-----------------
6494
6495LLVM supports several instructions to represent vector operations in a
6496target-independent manner. These instructions cover the element-access
6497and vector-specific operations needed to process vectors effectively.
6498While LLVM does directly support these vector operations, many
6499sophisticated algorithms will want to use target-specific intrinsics to
6500take full advantage of a specific target.
6501
6502.. _i_extractelement:
6503
6504'``extractelement``' Instruction
6505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6506
6507Syntax:
6508"""""""
6509
6510::
6511
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006512 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006513
6514Overview:
6515"""""""""
6516
6517The '``extractelement``' instruction extracts a single scalar element
6518from a vector at a specified index.
6519
6520Arguments:
6521""""""""""
6522
6523The first operand of an '``extractelement``' instruction is a value of
6524:ref:`vector <t_vector>` type. The second operand is an index indicating
6525the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006526variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006527
6528Semantics:
6529""""""""""
6530
6531The result is a scalar of the same type as the element type of ``val``.
6532Its value is the value at position ``idx`` of ``val``. If ``idx``
6533exceeds the length of ``val``, the results are undefined.
6534
6535Example:
6536""""""""
6537
6538.. code-block:: llvm
6539
6540 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6541
6542.. _i_insertelement:
6543
6544'``insertelement``' Instruction
6545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6546
6547Syntax:
6548"""""""
6549
6550::
6551
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006552 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006553
6554Overview:
6555"""""""""
6556
6557The '``insertelement``' instruction inserts a scalar element into a
6558vector at a specified index.
6559
6560Arguments:
6561""""""""""
6562
6563The first operand of an '``insertelement``' instruction is a value of
6564:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6565type must equal the element type of the first operand. The third operand
6566is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006567index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006568
6569Semantics:
6570""""""""""
6571
6572The result is a vector of the same type as ``val``. Its element values
6573are those of ``val`` except at position ``idx``, where it gets the value
6574``elt``. If ``idx`` exceeds the length of ``val``, the results are
6575undefined.
6576
6577Example:
6578""""""""
6579
6580.. code-block:: llvm
6581
6582 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6583
6584.. _i_shufflevector:
6585
6586'``shufflevector``' Instruction
6587^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6588
6589Syntax:
6590"""""""
6591
6592::
6593
6594 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6595
6596Overview:
6597"""""""""
6598
6599The '``shufflevector``' instruction constructs a permutation of elements
6600from two input vectors, returning a vector with the same element type as
6601the input and length that is the same as the shuffle mask.
6602
6603Arguments:
6604""""""""""
6605
6606The first two operands of a '``shufflevector``' instruction are vectors
6607with the same type. The third argument is a shuffle mask whose element
6608type is always 'i32'. The result of the instruction is a vector whose
6609length is the same as the shuffle mask and whose element type is the
6610same as the element type of the first two operands.
6611
6612The shuffle mask operand is required to be a constant vector with either
6613constant integer or undef values.
6614
6615Semantics:
6616""""""""""
6617
6618The elements of the two input vectors are numbered from left to right
6619across both of the vectors. The shuffle mask operand specifies, for each
6620element of the result vector, which element of the two input vectors the
6621result element gets. The element selector may be undef (meaning "don't
6622care") and the second operand may be undef if performing a shuffle from
6623only one vector.
6624
6625Example:
6626""""""""
6627
6628.. code-block:: llvm
6629
6630 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6631 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6632 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6633 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6634 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6635 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6636 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6637 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6638
6639Aggregate Operations
6640--------------------
6641
6642LLVM supports several instructions for working with
6643:ref:`aggregate <t_aggregate>` values.
6644
6645.. _i_extractvalue:
6646
6647'``extractvalue``' Instruction
6648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6649
6650Syntax:
6651"""""""
6652
6653::
6654
6655 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6656
6657Overview:
6658"""""""""
6659
6660The '``extractvalue``' instruction extracts the value of a member field
6661from an :ref:`aggregate <t_aggregate>` value.
6662
6663Arguments:
6664""""""""""
6665
6666The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006667:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006668constant indices to specify which value to extract in a similar manner
6669as indices in a '``getelementptr``' instruction.
6670
6671The major differences to ``getelementptr`` indexing are:
6672
6673- Since the value being indexed is not a pointer, the first index is
6674 omitted and assumed to be zero.
6675- At least one index must be specified.
6676- Not only struct indices but also array indices must be in bounds.
6677
6678Semantics:
6679""""""""""
6680
6681The result is the value at the position in the aggregate specified by
6682the index operands.
6683
6684Example:
6685""""""""
6686
6687.. code-block:: llvm
6688
6689 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6690
6691.. _i_insertvalue:
6692
6693'``insertvalue``' Instruction
6694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6695
6696Syntax:
6697"""""""
6698
6699::
6700
6701 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6702
6703Overview:
6704"""""""""
6705
6706The '``insertvalue``' instruction inserts a value into a member field in
6707an :ref:`aggregate <t_aggregate>` value.
6708
6709Arguments:
6710""""""""""
6711
6712The first operand of an '``insertvalue``' instruction is a value of
6713:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6714a first-class value to insert. The following operands are constant
6715indices indicating the position at which to insert the value in a
6716similar manner as indices in a '``extractvalue``' instruction. The value
6717to insert must have the same type as the value identified by the
6718indices.
6719
6720Semantics:
6721""""""""""
6722
6723The result is an aggregate of the same type as ``val``. Its value is
6724that of ``val`` except that the value at the position specified by the
6725indices is that of ``elt``.
6726
6727Example:
6728""""""""
6729
6730.. code-block:: llvm
6731
6732 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6733 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006734 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006735
6736.. _memoryops:
6737
6738Memory Access and Addressing Operations
6739---------------------------------------
6740
6741A key design point of an SSA-based representation is how it represents
6742memory. In LLVM, no memory locations are in SSA form, which makes things
6743very simple. This section describes how to read, write, and allocate
6744memory in LLVM.
6745
6746.. _i_alloca:
6747
6748'``alloca``' Instruction
6749^^^^^^^^^^^^^^^^^^^^^^^^
6750
6751Syntax:
6752"""""""
6753
6754::
6755
Tim Northover675a0962014-06-13 14:24:23 +00006756 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006757
6758Overview:
6759"""""""""
6760
6761The '``alloca``' instruction allocates memory on the stack frame of the
6762currently executing function, to be automatically released when this
6763function returns to its caller. The object is always allocated in the
6764generic address space (address space zero).
6765
6766Arguments:
6767""""""""""
6768
6769The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6770bytes of memory on the runtime stack, returning a pointer of the
6771appropriate type to the program. If "NumElements" is specified, it is
6772the number of elements allocated, otherwise "NumElements" is defaulted
6773to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006774allocation is guaranteed to be aligned to at least that boundary. The
6775alignment may not be greater than ``1 << 29``. If not specified, or if
6776zero, the target can choose to align the allocation on any convenient
6777boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006778
6779'``type``' may be any sized type.
6780
6781Semantics:
6782""""""""""
6783
6784Memory is allocated; a pointer is returned. The operation is undefined
6785if there is insufficient stack space for the allocation. '``alloca``'d
6786memory is automatically released when the function returns. The
6787'``alloca``' instruction is commonly used to represent automatic
6788variables that must have an address available. When the function returns
6789(either with the ``ret`` or ``resume`` instructions), the memory is
6790reclaimed. Allocating zero bytes is legal, but the result is undefined.
6791The order in which memory is allocated (ie., which way the stack grows)
6792is not specified.
6793
6794Example:
6795""""""""
6796
6797.. code-block:: llvm
6798
Tim Northover675a0962014-06-13 14:24:23 +00006799 %ptr = alloca i32 ; yields i32*:ptr
6800 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6801 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6802 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006803
6804.. _i_load:
6805
6806'``load``' Instruction
6807^^^^^^^^^^^^^^^^^^^^^^
6808
6809Syntax:
6810"""""""
6811
6812::
6813
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006814 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006815 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006816 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006817 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006818 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006819
6820Overview:
6821"""""""""
6822
6823The '``load``' instruction is used to read from memory.
6824
6825Arguments:
6826""""""""""
6827
Eli Bendersky239a78b2013-04-17 20:17:08 +00006828The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006829from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006830class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6831then the optimizer is not allowed to modify the number or order of
6832execution of this ``load`` with other :ref:`volatile
6833operations <volatile>`.
6834
JF Bastiend1fb5852015-12-17 22:09:19 +00006835If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6836<ordering>` and optional ``singlethread`` argument. The ``release`` and
6837``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
6838produce :ref:`defined <memmodel>` results when they may see multiple atomic
6839stores. The type of the pointee must be an integer, pointer, or floating-point
6840type whose bit width is a power of two greater than or equal to eight and less
6841than or equal to a target-specific size limit. ``align`` must be explicitly
6842specified on atomic loads, and the load has undefined behavior if the alignment
6843is not set to a value which is at least the size in bytes of the
6844pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00006845
6846The optional constant ``align`` argument specifies the alignment of the
6847operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006848or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006849alignment for the target. It is the responsibility of the code emitter
6850to ensure that the alignment information is correct. Overestimating the
6851alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006852may produce less efficient code. An alignment of 1 is always safe. The
6853maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006854
6855The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006856metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006857``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006858metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006859that this load is not expected to be reused in the cache. The code
6860generator may select special instructions to save cache bandwidth, such
6861as the ``MOVNT`` instruction on x86.
6862
6863The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006864metadata name ``<index>`` corresponding to a metadata node with no
6865entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006866instruction tells the optimizer and code generator that the address
6867operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006868Being invariant does not imply that a location is dereferenceable,
6869but it does imply that once the location is known dereferenceable
6870its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006871
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006872The optional ``!invariant.group`` metadata must reference a single metadata name
6873 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6874
Philip Reamescdb72f32014-10-20 22:40:55 +00006875The optional ``!nonnull`` metadata must reference a single
6876metadata name ``<index>`` corresponding to a metadata node with no
6877entries. The existence of the ``!nonnull`` metadata on the
6878instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006879never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006880on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006881to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006882
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006883The optional ``!dereferenceable`` metadata must reference a single metadata
6884name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006885entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006886tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006887The number of bytes known to be dereferenceable is specified by the integer
6888value in the metadata node. This is analogous to the ''dereferenceable''
6889attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006890to loads of a pointer type.
6891
6892The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006893metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6894``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006895instruction tells the optimizer that the value loaded is known to be either
6896dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006897The number of bytes known to be dereferenceable is specified by the integer
6898value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6899attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006900to loads of a pointer type.
6901
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006902The optional ``!align`` metadata must reference a single metadata name
6903``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6904The existence of the ``!align`` metadata on the instruction tells the
6905optimizer that the value loaded is known to be aligned to a boundary specified
6906by the integer value in the metadata node. The alignment must be a power of 2.
6907This is analogous to the ''align'' attribute on parameters and return values.
6908This metadata can only be applied to loads of a pointer type.
6909
Sean Silvab084af42012-12-07 10:36:55 +00006910Semantics:
6911""""""""""
6912
6913The location of memory pointed to is loaded. If the value being loaded
6914is of scalar type then the number of bytes read does not exceed the
6915minimum number of bytes needed to hold all bits of the type. For
6916example, loading an ``i24`` reads at most three bytes. When loading a
6917value of a type like ``i20`` with a size that is not an integral number
6918of bytes, the result is undefined if the value was not originally
6919written using a store of the same type.
6920
6921Examples:
6922"""""""""
6923
6924.. code-block:: llvm
6925
Tim Northover675a0962014-06-13 14:24:23 +00006926 %ptr = alloca i32 ; yields i32*:ptr
6927 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006928 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006929
6930.. _i_store:
6931
6932'``store``' Instruction
6933^^^^^^^^^^^^^^^^^^^^^^^
6934
6935Syntax:
6936"""""""
6937
6938::
6939
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006940 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6941 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006942
6943Overview:
6944"""""""""
6945
6946The '``store``' instruction is used to write to memory.
6947
6948Arguments:
6949""""""""""
6950
Eli Benderskyca380842013-04-17 17:17:20 +00006951There are two arguments to the ``store`` instruction: a value to store
6952and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006953operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006954the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006955then the optimizer is not allowed to modify the number or order of
6956execution of this ``store`` with other :ref:`volatile
6957operations <volatile>`.
6958
JF Bastiend1fb5852015-12-17 22:09:19 +00006959If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
6960<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
6961``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
6962produce :ref:`defined <memmodel>` results when they may see multiple atomic
6963stores. The type of the pointee must be an integer, pointer, or floating-point
6964type whose bit width is a power of two greater than or equal to eight and less
6965than or equal to a target-specific size limit. ``align`` must be explicitly
6966specified on atomic stores, and the store has undefined behavior if the
6967alignment is not set to a value which is at least the size in bytes of the
6968pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00006969
Eli Benderskyca380842013-04-17 17:17:20 +00006970The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006971operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006972or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006973alignment for the target. It is the responsibility of the code emitter
6974to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006975alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006976alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006977safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006978
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006979The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00006980name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006981value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00006982tells the optimizer and code generator that this load is not expected to
6983be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00006984instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00006985x86.
6986
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006987The optional ``!invariant.group`` metadata must reference a
6988single metadata name ``<index>``. See ``invariant.group`` metadata.
6989
Sean Silvab084af42012-12-07 10:36:55 +00006990Semantics:
6991""""""""""
6992
Eli Benderskyca380842013-04-17 17:17:20 +00006993The contents of memory are updated to contain ``<value>`` at the
6994location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00006995of scalar type then the number of bytes written does not exceed the
6996minimum number of bytes needed to hold all bits of the type. For
6997example, storing an ``i24`` writes at most three bytes. When writing a
6998value of a type like ``i20`` with a size that is not an integral number
6999of bytes, it is unspecified what happens to the extra bits that do not
7000belong to the type, but they will typically be overwritten.
7001
7002Example:
7003""""""""
7004
7005.. code-block:: llvm
7006
Tim Northover675a0962014-06-13 14:24:23 +00007007 %ptr = alloca i32 ; yields i32*:ptr
7008 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007009 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007010
7011.. _i_fence:
7012
7013'``fence``' Instruction
7014^^^^^^^^^^^^^^^^^^^^^^^
7015
7016Syntax:
7017"""""""
7018
7019::
7020
Tim Northover675a0962014-06-13 14:24:23 +00007021 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007022
7023Overview:
7024"""""""""
7025
7026The '``fence``' instruction is used to introduce happens-before edges
7027between operations.
7028
7029Arguments:
7030""""""""""
7031
7032'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7033defines what *synchronizes-with* edges they add. They can only be given
7034``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7035
7036Semantics:
7037""""""""""
7038
7039A fence A which has (at least) ``release`` ordering semantics
7040*synchronizes with* a fence B with (at least) ``acquire`` ordering
7041semantics if and only if there exist atomic operations X and Y, both
7042operating on some atomic object M, such that A is sequenced before X, X
7043modifies M (either directly or through some side effect of a sequence
7044headed by X), Y is sequenced before B, and Y observes M. This provides a
7045*happens-before* dependency between A and B. Rather than an explicit
7046``fence``, one (but not both) of the atomic operations X or Y might
7047provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7048still *synchronize-with* the explicit ``fence`` and establish the
7049*happens-before* edge.
7050
7051A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7052``acquire`` and ``release`` semantics specified above, participates in
7053the global program order of other ``seq_cst`` operations and/or fences.
7054
7055The optional ":ref:`singlethread <singlethread>`" argument specifies
7056that the fence only synchronizes with other fences in the same thread.
7057(This is useful for interacting with signal handlers.)
7058
7059Example:
7060""""""""
7061
7062.. code-block:: llvm
7063
Tim Northover675a0962014-06-13 14:24:23 +00007064 fence acquire ; yields void
7065 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007066
7067.. _i_cmpxchg:
7068
7069'``cmpxchg``' Instruction
7070^^^^^^^^^^^^^^^^^^^^^^^^^
7071
7072Syntax:
7073"""""""
7074
7075::
7076
Tim Northover675a0962014-06-13 14:24:23 +00007077 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007078
7079Overview:
7080"""""""""
7081
7082The '``cmpxchg``' instruction is used to atomically modify memory. It
7083loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007084equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007085
7086Arguments:
7087""""""""""
7088
7089There are three arguments to the '``cmpxchg``' instruction: an address
7090to operate on, a value to compare to the value currently be at that
7091address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007092are equal. The type of '<cmp>' must be an integer or pointer type whose
7093bit width is a power of two greater than or equal to eight and less
7094than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7095have the same type, and the type of '<pointer>' must be a pointer to
7096that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7097optimizer is not allowed to modify the number or order of execution of
7098this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007099
Tim Northovere94a5182014-03-11 10:48:52 +00007100The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007101``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7102must be at least ``monotonic``, the ordering constraint on failure must be no
7103stronger than that on success, and the failure ordering cannot be either
7104``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007105
7106The optional "``singlethread``" argument declares that the ``cmpxchg``
7107is only atomic with respect to code (usually signal handlers) running in
7108the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7109respect to all other code in the system.
7110
7111The pointer passed into cmpxchg must have alignment greater than or
7112equal to the size in memory of the operand.
7113
7114Semantics:
7115""""""""""
7116
Tim Northover420a2162014-06-13 14:24:07 +00007117The contents of memory at the location specified by the '``<pointer>``' operand
7118is read and compared to '``<cmp>``'; if the read value is the equal, the
7119'``<new>``' is written. The original value at the location is returned, together
7120with a flag indicating success (true) or failure (false).
7121
7122If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7123permitted: the operation may not write ``<new>`` even if the comparison
7124matched.
7125
7126If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7127if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007128
Tim Northovere94a5182014-03-11 10:48:52 +00007129A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7130identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7131load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007132
7133Example:
7134""""""""
7135
7136.. code-block:: llvm
7137
7138 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007139 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007140 br label %loop
7141
7142 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007143 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007144 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007145 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007146 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7147 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007148 br i1 %success, label %done, label %loop
7149
7150 done:
7151 ...
7152
7153.. _i_atomicrmw:
7154
7155'``atomicrmw``' Instruction
7156^^^^^^^^^^^^^^^^^^^^^^^^^^^
7157
7158Syntax:
7159"""""""
7160
7161::
7162
Tim Northover675a0962014-06-13 14:24:23 +00007163 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007164
7165Overview:
7166"""""""""
7167
7168The '``atomicrmw``' instruction is used to atomically modify memory.
7169
7170Arguments:
7171""""""""""
7172
7173There are three arguments to the '``atomicrmw``' instruction: an
7174operation to apply, an address whose value to modify, an argument to the
7175operation. The operation must be one of the following keywords:
7176
7177- xchg
7178- add
7179- sub
7180- and
7181- nand
7182- or
7183- xor
7184- max
7185- min
7186- umax
7187- umin
7188
7189The type of '<value>' must be an integer type whose bit width is a power
7190of two greater than or equal to eight and less than or equal to a
7191target-specific size limit. The type of the '``<pointer>``' operand must
7192be a pointer to that type. If the ``atomicrmw`` is marked as
7193``volatile``, then the optimizer is not allowed to modify the number or
7194order of execution of this ``atomicrmw`` with other :ref:`volatile
7195operations <volatile>`.
7196
7197Semantics:
7198""""""""""
7199
7200The contents of memory at the location specified by the '``<pointer>``'
7201operand are atomically read, modified, and written back. The original
7202value at the location is returned. The modification is specified by the
7203operation argument:
7204
7205- xchg: ``*ptr = val``
7206- add: ``*ptr = *ptr + val``
7207- sub: ``*ptr = *ptr - val``
7208- and: ``*ptr = *ptr & val``
7209- nand: ``*ptr = ~(*ptr & val)``
7210- or: ``*ptr = *ptr | val``
7211- xor: ``*ptr = *ptr ^ val``
7212- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7213- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7214- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7215 comparison)
7216- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7217 comparison)
7218
7219Example:
7220""""""""
7221
7222.. code-block:: llvm
7223
Tim Northover675a0962014-06-13 14:24:23 +00007224 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007225
7226.. _i_getelementptr:
7227
7228'``getelementptr``' Instruction
7229^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7230
7231Syntax:
7232"""""""
7233
7234::
7235
David Blaikie16a97eb2015-03-04 22:02:58 +00007236 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7237 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7238 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007239
7240Overview:
7241"""""""""
7242
7243The '``getelementptr``' instruction is used to get the address of a
7244subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007245address calculation only and does not access memory. The instruction can also
7246be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007247
7248Arguments:
7249""""""""""
7250
David Blaikie16a97eb2015-03-04 22:02:58 +00007251The first argument is always a type used as the basis for the calculations.
7252The second argument is always a pointer or a vector of pointers, and is the
7253base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007254that indicate which of the elements of the aggregate object are indexed.
7255The interpretation of each index is dependent on the type being indexed
7256into. The first index always indexes the pointer value given as the
7257first argument, the second index indexes a value of the type pointed to
7258(not necessarily the value directly pointed to, since the first index
7259can be non-zero), etc. The first type indexed into must be a pointer
7260value, subsequent types can be arrays, vectors, and structs. Note that
7261subsequent types being indexed into can never be pointers, since that
7262would require loading the pointer before continuing calculation.
7263
7264The type of each index argument depends on the type it is indexing into.
7265When indexing into a (optionally packed) structure, only ``i32`` integer
7266**constants** are allowed (when using a vector of indices they must all
7267be the **same** ``i32`` integer constant). When indexing into an array,
7268pointer or vector, integers of any width are allowed, and they are not
7269required to be constant. These integers are treated as signed values
7270where relevant.
7271
7272For example, let's consider a C code fragment and how it gets compiled
7273to LLVM:
7274
7275.. code-block:: c
7276
7277 struct RT {
7278 char A;
7279 int B[10][20];
7280 char C;
7281 };
7282 struct ST {
7283 int X;
7284 double Y;
7285 struct RT Z;
7286 };
7287
7288 int *foo(struct ST *s) {
7289 return &s[1].Z.B[5][13];
7290 }
7291
7292The LLVM code generated by Clang is:
7293
7294.. code-block:: llvm
7295
7296 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7297 %struct.ST = type { i32, double, %struct.RT }
7298
7299 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7300 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007301 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007302 ret i32* %arrayidx
7303 }
7304
7305Semantics:
7306""""""""""
7307
7308In the example above, the first index is indexing into the
7309'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7310= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7311indexes into the third element of the structure, yielding a
7312'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7313structure. The third index indexes into the second element of the
7314structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7315dimensions of the array are subscripted into, yielding an '``i32``'
7316type. The '``getelementptr``' instruction returns a pointer to this
7317element, thus computing a value of '``i32*``' type.
7318
7319Note that it is perfectly legal to index partially through a structure,
7320returning a pointer to an inner element. Because of this, the LLVM code
7321for the given testcase is equivalent to:
7322
7323.. code-block:: llvm
7324
7325 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007326 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7327 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7328 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7329 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7330 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007331 ret i32* %t5
7332 }
7333
7334If the ``inbounds`` keyword is present, the result value of the
7335``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7336pointer is not an *in bounds* address of an allocated object, or if any
7337of the addresses that would be formed by successive addition of the
7338offsets implied by the indices to the base address with infinitely
7339precise signed arithmetic are not an *in bounds* address of that
7340allocated object. The *in bounds* addresses for an allocated object are
7341all the addresses that point into the object, plus the address one byte
7342past the end. In cases where the base is a vector of pointers the
7343``inbounds`` keyword applies to each of the computations element-wise.
7344
7345If the ``inbounds`` keyword is not present, the offsets are added to the
7346base address with silently-wrapping two's complement arithmetic. If the
7347offsets have a different width from the pointer, they are sign-extended
7348or truncated to the width of the pointer. The result value of the
7349``getelementptr`` may be outside the object pointed to by the base
7350pointer. The result value may not necessarily be used to access memory
7351though, even if it happens to point into allocated storage. See the
7352:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7353information.
7354
7355The getelementptr instruction is often confusing. For some more insight
7356into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7357
7358Example:
7359""""""""
7360
7361.. code-block:: llvm
7362
7363 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007364 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007365 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007366 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007367 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007368 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007369 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007370 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007371
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007372Vector of pointers:
7373"""""""""""""""""""
7374
7375The ``getelementptr`` returns a vector of pointers, instead of a single address,
7376when one or more of its arguments is a vector. In such cases, all vector
7377arguments should have the same number of elements, and every scalar argument
7378will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007379
7380.. code-block:: llvm
7381
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007382 ; All arguments are vectors:
7383 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7384 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007385
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007386 ; Add the same scalar offset to each pointer of a vector:
7387 ; A[i] = ptrs[i] + offset*sizeof(i8)
7388 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007389
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007390 ; Add distinct offsets to the same pointer:
7391 ; A[i] = ptr + offsets[i]*sizeof(i8)
7392 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007393
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007394 ; In all cases described above the type of the result is <4 x i8*>
7395
7396The two following instructions are equivalent:
7397
7398.. code-block:: llvm
7399
7400 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7401 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7402 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7403 <4 x i32> %ind4,
7404 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007405
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007406 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7407 i32 2, i32 1, <4 x i32> %ind4, i64 13
7408
7409Let's look at the C code, where the vector version of ``getelementptr``
7410makes sense:
7411
7412.. code-block:: c
7413
7414 // Let's assume that we vectorize the following loop:
7415 double *A, B; int *C;
7416 for (int i = 0; i < size; ++i) {
7417 A[i] = B[C[i]];
7418 }
7419
7420.. code-block:: llvm
7421
7422 ; get pointers for 8 elements from array B
7423 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7424 ; load 8 elements from array B into A
7425 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7426 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007427
7428Conversion Operations
7429---------------------
7430
7431The instructions in this category are the conversion instructions
7432(casting) which all take a single operand and a type. They perform
7433various bit conversions on the operand.
7434
7435'``trunc .. to``' Instruction
7436^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7437
7438Syntax:
7439"""""""
7440
7441::
7442
7443 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7444
7445Overview:
7446"""""""""
7447
7448The '``trunc``' instruction truncates its operand to the type ``ty2``.
7449
7450Arguments:
7451""""""""""
7452
7453The '``trunc``' instruction takes a value to trunc, and a type to trunc
7454it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7455of the same number of integers. The bit size of the ``value`` must be
7456larger than the bit size of the destination type, ``ty2``. Equal sized
7457types are not allowed.
7458
7459Semantics:
7460""""""""""
7461
7462The '``trunc``' instruction truncates the high order bits in ``value``
7463and converts the remaining bits to ``ty2``. Since the source size must
7464be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7465It will always truncate bits.
7466
7467Example:
7468""""""""
7469
7470.. code-block:: llvm
7471
7472 %X = trunc i32 257 to i8 ; yields i8:1
7473 %Y = trunc i32 123 to i1 ; yields i1:true
7474 %Z = trunc i32 122 to i1 ; yields i1:false
7475 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7476
7477'``zext .. to``' Instruction
7478^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7479
7480Syntax:
7481"""""""
7482
7483::
7484
7485 <result> = zext <ty> <value> to <ty2> ; yields ty2
7486
7487Overview:
7488"""""""""
7489
7490The '``zext``' instruction zero extends its operand to type ``ty2``.
7491
7492Arguments:
7493""""""""""
7494
7495The '``zext``' instruction takes a value to cast, and a type to cast it
7496to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7497the same number of integers. The bit size of the ``value`` must be
7498smaller than the bit size of the destination type, ``ty2``.
7499
7500Semantics:
7501""""""""""
7502
7503The ``zext`` fills the high order bits of the ``value`` with zero bits
7504until it reaches the size of the destination type, ``ty2``.
7505
7506When zero extending from i1, the result will always be either 0 or 1.
7507
7508Example:
7509""""""""
7510
7511.. code-block:: llvm
7512
7513 %X = zext i32 257 to i64 ; yields i64:257
7514 %Y = zext i1 true to i32 ; yields i32:1
7515 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7516
7517'``sext .. to``' Instruction
7518^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7519
7520Syntax:
7521"""""""
7522
7523::
7524
7525 <result> = sext <ty> <value> to <ty2> ; yields ty2
7526
7527Overview:
7528"""""""""
7529
7530The '``sext``' sign extends ``value`` to the type ``ty2``.
7531
7532Arguments:
7533""""""""""
7534
7535The '``sext``' instruction takes a value to cast, and a type to cast it
7536to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7537the same number of integers. The bit size of the ``value`` must be
7538smaller than the bit size of the destination type, ``ty2``.
7539
7540Semantics:
7541""""""""""
7542
7543The '``sext``' instruction performs a sign extension by copying the sign
7544bit (highest order bit) of the ``value`` until it reaches the bit size
7545of the type ``ty2``.
7546
7547When sign extending from i1, the extension always results in -1 or 0.
7548
7549Example:
7550""""""""
7551
7552.. code-block:: llvm
7553
7554 %X = sext i8 -1 to i16 ; yields i16 :65535
7555 %Y = sext i1 true to i32 ; yields i32:-1
7556 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7557
7558'``fptrunc .. to``' Instruction
7559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7560
7561Syntax:
7562"""""""
7563
7564::
7565
7566 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7567
7568Overview:
7569"""""""""
7570
7571The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7572
7573Arguments:
7574""""""""""
7575
7576The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7577value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7578The size of ``value`` must be larger than the size of ``ty2``. This
7579implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7580
7581Semantics:
7582""""""""""
7583
Dan Liew50456fb2015-09-03 18:43:56 +00007584The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007585:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007586point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7587destination type, ``ty2``, then the results are undefined. If the cast produces
7588an inexact result, how rounding is performed (e.g. truncation, also known as
7589round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007590
7591Example:
7592""""""""
7593
7594.. code-block:: llvm
7595
7596 %X = fptrunc double 123.0 to float ; yields float:123.0
7597 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7598
7599'``fpext .. to``' Instruction
7600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7601
7602Syntax:
7603"""""""
7604
7605::
7606
7607 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7608
7609Overview:
7610"""""""""
7611
7612The '``fpext``' extends a floating point ``value`` to a larger floating
7613point value.
7614
7615Arguments:
7616""""""""""
7617
7618The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7619``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7620to. The source type must be smaller than the destination type.
7621
7622Semantics:
7623""""""""""
7624
7625The '``fpext``' instruction extends the ``value`` from a smaller
7626:ref:`floating point <t_floating>` type to a larger :ref:`floating
7627point <t_floating>` type. The ``fpext`` cannot be used to make a
7628*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7629*no-op cast* for a floating point cast.
7630
7631Example:
7632""""""""
7633
7634.. code-block:: llvm
7635
7636 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7637 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7638
7639'``fptoui .. to``' Instruction
7640^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7641
7642Syntax:
7643"""""""
7644
7645::
7646
7647 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7648
7649Overview:
7650"""""""""
7651
7652The '``fptoui``' converts a floating point ``value`` to its unsigned
7653integer equivalent of type ``ty2``.
7654
7655Arguments:
7656""""""""""
7657
7658The '``fptoui``' instruction takes a value to cast, which must be a
7659scalar or vector :ref:`floating point <t_floating>` value, and a type to
7660cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7661``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7662type with the same number of elements as ``ty``
7663
7664Semantics:
7665""""""""""
7666
7667The '``fptoui``' instruction converts its :ref:`floating
7668point <t_floating>` operand into the nearest (rounding towards zero)
7669unsigned integer value. If the value cannot fit in ``ty2``, the results
7670are undefined.
7671
7672Example:
7673""""""""
7674
7675.. code-block:: llvm
7676
7677 %X = fptoui double 123.0 to i32 ; yields i32:123
7678 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7679 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7680
7681'``fptosi .. to``' Instruction
7682^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7683
7684Syntax:
7685"""""""
7686
7687::
7688
7689 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7690
7691Overview:
7692"""""""""
7693
7694The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7695``value`` to type ``ty2``.
7696
7697Arguments:
7698""""""""""
7699
7700The '``fptosi``' instruction takes a value to cast, which must be a
7701scalar or vector :ref:`floating point <t_floating>` value, and a type to
7702cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7703``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7704type with the same number of elements as ``ty``
7705
7706Semantics:
7707""""""""""
7708
7709The '``fptosi``' instruction converts its :ref:`floating
7710point <t_floating>` operand into the nearest (rounding towards zero)
7711signed integer value. If the value cannot fit in ``ty2``, the results
7712are undefined.
7713
7714Example:
7715""""""""
7716
7717.. code-block:: llvm
7718
7719 %X = fptosi double -123.0 to i32 ; yields i32:-123
7720 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7721 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7722
7723'``uitofp .. to``' Instruction
7724^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7725
7726Syntax:
7727"""""""
7728
7729::
7730
7731 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7732
7733Overview:
7734"""""""""
7735
7736The '``uitofp``' instruction regards ``value`` as an unsigned integer
7737and converts that value to the ``ty2`` type.
7738
7739Arguments:
7740""""""""""
7741
7742The '``uitofp``' instruction takes a value to cast, which must be a
7743scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7744``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7745``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7746type with the same number of elements as ``ty``
7747
7748Semantics:
7749""""""""""
7750
7751The '``uitofp``' instruction interprets its operand as an unsigned
7752integer quantity and converts it to the corresponding floating point
7753value. If the value cannot fit in the floating point value, the results
7754are undefined.
7755
7756Example:
7757""""""""
7758
7759.. code-block:: llvm
7760
7761 %X = uitofp i32 257 to float ; yields float:257.0
7762 %Y = uitofp i8 -1 to double ; yields double:255.0
7763
7764'``sitofp .. to``' Instruction
7765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7766
7767Syntax:
7768"""""""
7769
7770::
7771
7772 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7773
7774Overview:
7775"""""""""
7776
7777The '``sitofp``' instruction regards ``value`` as a signed integer and
7778converts that value to the ``ty2`` type.
7779
7780Arguments:
7781""""""""""
7782
7783The '``sitofp``' instruction takes a value to cast, which must be a
7784scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7785``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7786``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7787type with the same number of elements as ``ty``
7788
7789Semantics:
7790""""""""""
7791
7792The '``sitofp``' instruction interprets its operand as a signed integer
7793quantity and converts it to the corresponding floating point value. If
7794the value cannot fit in the floating point value, the results are
7795undefined.
7796
7797Example:
7798""""""""
7799
7800.. code-block:: llvm
7801
7802 %X = sitofp i32 257 to float ; yields float:257.0
7803 %Y = sitofp i8 -1 to double ; yields double:-1.0
7804
7805.. _i_ptrtoint:
7806
7807'``ptrtoint .. to``' Instruction
7808^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7809
7810Syntax:
7811"""""""
7812
7813::
7814
7815 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7816
7817Overview:
7818"""""""""
7819
7820The '``ptrtoint``' instruction converts the pointer or a vector of
7821pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7822
7823Arguments:
7824""""""""""
7825
7826The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007827a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007828type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7829a vector of integers type.
7830
7831Semantics:
7832""""""""""
7833
7834The '``ptrtoint``' instruction converts ``value`` to integer type
7835``ty2`` by interpreting the pointer value as an integer and either
7836truncating or zero extending that value to the size of the integer type.
7837If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7838``value`` is larger than ``ty2`` then a truncation is done. If they are
7839the same size, then nothing is done (*no-op cast*) other than a type
7840change.
7841
7842Example:
7843""""""""
7844
7845.. code-block:: llvm
7846
7847 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7848 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7849 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7850
7851.. _i_inttoptr:
7852
7853'``inttoptr .. to``' Instruction
7854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7855
7856Syntax:
7857"""""""
7858
7859::
7860
7861 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7862
7863Overview:
7864"""""""""
7865
7866The '``inttoptr``' instruction converts an integer ``value`` to a
7867pointer type, ``ty2``.
7868
7869Arguments:
7870""""""""""
7871
7872The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7873cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7874type.
7875
7876Semantics:
7877""""""""""
7878
7879The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7880applying either a zero extension or a truncation depending on the size
7881of the integer ``value``. If ``value`` is larger than the size of a
7882pointer then a truncation is done. If ``value`` is smaller than the size
7883of a pointer then a zero extension is done. If they are the same size,
7884nothing is done (*no-op cast*).
7885
7886Example:
7887""""""""
7888
7889.. code-block:: llvm
7890
7891 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7892 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7893 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7894 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7895
7896.. _i_bitcast:
7897
7898'``bitcast .. to``' Instruction
7899^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7900
7901Syntax:
7902"""""""
7903
7904::
7905
7906 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7907
7908Overview:
7909"""""""""
7910
7911The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7912changing any bits.
7913
7914Arguments:
7915""""""""""
7916
7917The '``bitcast``' instruction takes a value to cast, which must be a
7918non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007919also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7920bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007921identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007922also be a pointer of the same size. This instruction supports bitwise
7923conversion of vectors to integers and to vectors of other types (as
7924long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007925
7926Semantics:
7927""""""""""
7928
Matt Arsenault24b49c42013-07-31 17:49:08 +00007929The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7930is always a *no-op cast* because no bits change with this
7931conversion. The conversion is done as if the ``value`` had been stored
7932to memory and read back as type ``ty2``. Pointer (or vector of
7933pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007934pointers) types with the same address space through this instruction.
7935To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7936or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007937
7938Example:
7939""""""""
7940
7941.. code-block:: llvm
7942
7943 %X = bitcast i8 255 to i8 ; yields i8 :-1
7944 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7945 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7946 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7947
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007948.. _i_addrspacecast:
7949
7950'``addrspacecast .. to``' Instruction
7951^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7952
7953Syntax:
7954"""""""
7955
7956::
7957
7958 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7959
7960Overview:
7961"""""""""
7962
7963The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7964address space ``n`` to type ``pty2`` in address space ``m``.
7965
7966Arguments:
7967""""""""""
7968
7969The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7970to cast and a pointer type to cast it to, which must have a different
7971address space.
7972
7973Semantics:
7974""""""""""
7975
7976The '``addrspacecast``' instruction converts the pointer value
7977``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00007978value modification, depending on the target and the address space
7979pair. Pointer conversions within the same address space must be
7980performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007981conversion is legal then both result and operand refer to the same memory
7982location.
7983
7984Example:
7985""""""""
7986
7987.. code-block:: llvm
7988
Matt Arsenault9c13dd02013-11-15 22:43:50 +00007989 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
7990 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
7991 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007992
Sean Silvab084af42012-12-07 10:36:55 +00007993.. _otherops:
7994
7995Other Operations
7996----------------
7997
7998The instructions in this category are the "miscellaneous" instructions,
7999which defy better classification.
8000
8001.. _i_icmp:
8002
8003'``icmp``' Instruction
8004^^^^^^^^^^^^^^^^^^^^^^
8005
8006Syntax:
8007"""""""
8008
8009::
8010
Tim Northover675a0962014-06-13 14:24:23 +00008011 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008012
8013Overview:
8014"""""""""
8015
8016The '``icmp``' instruction returns a boolean value or a vector of
8017boolean values based on comparison of its two integer, integer vector,
8018pointer, or pointer vector operands.
8019
8020Arguments:
8021""""""""""
8022
8023The '``icmp``' instruction takes three operands. The first operand is
8024the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008025not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008026
8027#. ``eq``: equal
8028#. ``ne``: not equal
8029#. ``ugt``: unsigned greater than
8030#. ``uge``: unsigned greater or equal
8031#. ``ult``: unsigned less than
8032#. ``ule``: unsigned less or equal
8033#. ``sgt``: signed greater than
8034#. ``sge``: signed greater or equal
8035#. ``slt``: signed less than
8036#. ``sle``: signed less or equal
8037
8038The remaining two arguments must be :ref:`integer <t_integer>` or
8039:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8040must also be identical types.
8041
8042Semantics:
8043""""""""""
8044
8045The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8046code given as ``cond``. The comparison performed always yields either an
8047:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8048
8049#. ``eq``: yields ``true`` if the operands are equal, ``false``
8050 otherwise. No sign interpretation is necessary or performed.
8051#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8052 otherwise. No sign interpretation is necessary or performed.
8053#. ``ugt``: interprets the operands as unsigned values and yields
8054 ``true`` if ``op1`` is greater than ``op2``.
8055#. ``uge``: interprets the operands as unsigned values and yields
8056 ``true`` if ``op1`` is greater than or equal to ``op2``.
8057#. ``ult``: interprets the operands as unsigned values and yields
8058 ``true`` if ``op1`` is less than ``op2``.
8059#. ``ule``: interprets the operands as unsigned values and yields
8060 ``true`` if ``op1`` is less than or equal to ``op2``.
8061#. ``sgt``: interprets the operands as signed values and yields ``true``
8062 if ``op1`` is greater than ``op2``.
8063#. ``sge``: interprets the operands as signed values and yields ``true``
8064 if ``op1`` is greater than or equal to ``op2``.
8065#. ``slt``: interprets the operands as signed values and yields ``true``
8066 if ``op1`` is less than ``op2``.
8067#. ``sle``: interprets the operands as signed values and yields ``true``
8068 if ``op1`` is less than or equal to ``op2``.
8069
8070If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8071are compared as if they were integers.
8072
8073If the operands are integer vectors, then they are compared element by
8074element. The result is an ``i1`` vector with the same number of elements
8075as the values being compared. Otherwise, the result is an ``i1``.
8076
8077Example:
8078""""""""
8079
8080.. code-block:: llvm
8081
8082 <result> = icmp eq i32 4, 5 ; yields: result=false
8083 <result> = icmp ne float* %X, %X ; yields: result=false
8084 <result> = icmp ult i16 4, 5 ; yields: result=true
8085 <result> = icmp sgt i16 4, 5 ; yields: result=false
8086 <result> = icmp ule i16 -4, 5 ; yields: result=false
8087 <result> = icmp sge i16 4, 5 ; yields: result=false
8088
8089Note that the code generator does not yet support vector types with the
8090``icmp`` instruction.
8091
8092.. _i_fcmp:
8093
8094'``fcmp``' Instruction
8095^^^^^^^^^^^^^^^^^^^^^^
8096
8097Syntax:
8098"""""""
8099
8100::
8101
James Molloy88eb5352015-07-10 12:52:00 +00008102 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008103
8104Overview:
8105"""""""""
8106
8107The '``fcmp``' instruction returns a boolean value or vector of boolean
8108values based on comparison of its operands.
8109
8110If the operands are floating point scalars, then the result type is a
8111boolean (:ref:`i1 <t_integer>`).
8112
8113If the operands are floating point vectors, then the result type is a
8114vector of boolean with the same number of elements as the operands being
8115compared.
8116
8117Arguments:
8118""""""""""
8119
8120The '``fcmp``' instruction takes three operands. The first operand is
8121the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008122not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008123
8124#. ``false``: no comparison, always returns false
8125#. ``oeq``: ordered and equal
8126#. ``ogt``: ordered and greater than
8127#. ``oge``: ordered and greater than or equal
8128#. ``olt``: ordered and less than
8129#. ``ole``: ordered and less than or equal
8130#. ``one``: ordered and not equal
8131#. ``ord``: ordered (no nans)
8132#. ``ueq``: unordered or equal
8133#. ``ugt``: unordered or greater than
8134#. ``uge``: unordered or greater than or equal
8135#. ``ult``: unordered or less than
8136#. ``ule``: unordered or less than or equal
8137#. ``une``: unordered or not equal
8138#. ``uno``: unordered (either nans)
8139#. ``true``: no comparison, always returns true
8140
8141*Ordered* means that neither operand is a QNAN while *unordered* means
8142that either operand may be a QNAN.
8143
8144Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8145point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8146type. They must have identical types.
8147
8148Semantics:
8149""""""""""
8150
8151The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8152condition code given as ``cond``. If the operands are vectors, then the
8153vectors are compared element by element. Each comparison performed
8154always yields an :ref:`i1 <t_integer>` result, as follows:
8155
8156#. ``false``: always yields ``false``, regardless of operands.
8157#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8158 is equal to ``op2``.
8159#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8160 is greater than ``op2``.
8161#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8162 is greater than or equal to ``op2``.
8163#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8164 is less than ``op2``.
8165#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8166 is less than or equal to ``op2``.
8167#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8168 is not equal to ``op2``.
8169#. ``ord``: yields ``true`` if both operands are not a QNAN.
8170#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8171 equal to ``op2``.
8172#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8173 greater than ``op2``.
8174#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8175 greater than or equal to ``op2``.
8176#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8177 less than ``op2``.
8178#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8179 less than or equal to ``op2``.
8180#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8181 not equal to ``op2``.
8182#. ``uno``: yields ``true`` if either operand is a QNAN.
8183#. ``true``: always yields ``true``, regardless of operands.
8184
James Molloy88eb5352015-07-10 12:52:00 +00008185The ``fcmp`` instruction can also optionally take any number of
8186:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8187otherwise unsafe floating point optimizations.
8188
8189Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8190only flags that have any effect on its semantics are those that allow
8191assumptions to be made about the values of input arguments; namely
8192``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8193
Sean Silvab084af42012-12-07 10:36:55 +00008194Example:
8195""""""""
8196
8197.. code-block:: llvm
8198
8199 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8200 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8201 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8202 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8203
8204Note that the code generator does not yet support vector types with the
8205``fcmp`` instruction.
8206
8207.. _i_phi:
8208
8209'``phi``' Instruction
8210^^^^^^^^^^^^^^^^^^^^^
8211
8212Syntax:
8213"""""""
8214
8215::
8216
8217 <result> = phi <ty> [ <val0>, <label0>], ...
8218
8219Overview:
8220"""""""""
8221
8222The '``phi``' instruction is used to implement the φ node in the SSA
8223graph representing the function.
8224
8225Arguments:
8226""""""""""
8227
8228The type of the incoming values is specified with the first type field.
8229After this, the '``phi``' instruction takes a list of pairs as
8230arguments, with one pair for each predecessor basic block of the current
8231block. Only values of :ref:`first class <t_firstclass>` type may be used as
8232the value arguments to the PHI node. Only labels may be used as the
8233label arguments.
8234
8235There must be no non-phi instructions between the start of a basic block
8236and the PHI instructions: i.e. PHI instructions must be first in a basic
8237block.
8238
8239For the purposes of the SSA form, the use of each incoming value is
8240deemed to occur on the edge from the corresponding predecessor block to
8241the current block (but after any definition of an '``invoke``'
8242instruction's return value on the same edge).
8243
8244Semantics:
8245""""""""""
8246
8247At runtime, the '``phi``' instruction logically takes on the value
8248specified by the pair corresponding to the predecessor basic block that
8249executed just prior to the current block.
8250
8251Example:
8252""""""""
8253
8254.. code-block:: llvm
8255
8256 Loop: ; Infinite loop that counts from 0 on up...
8257 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8258 %nextindvar = add i32 %indvar, 1
8259 br label %Loop
8260
8261.. _i_select:
8262
8263'``select``' Instruction
8264^^^^^^^^^^^^^^^^^^^^^^^^
8265
8266Syntax:
8267"""""""
8268
8269::
8270
8271 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8272
8273 selty is either i1 or {<N x i1>}
8274
8275Overview:
8276"""""""""
8277
8278The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008279condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008280
8281Arguments:
8282""""""""""
8283
8284The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8285values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008286class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008287
8288Semantics:
8289""""""""""
8290
8291If the condition is an i1 and it evaluates to 1, the instruction returns
8292the first value argument; otherwise, it returns the second value
8293argument.
8294
8295If the condition is a vector of i1, then the value arguments must be
8296vectors of the same size, and the selection is done element by element.
8297
David Majnemer40a0b592015-03-03 22:45:47 +00008298If the condition is an i1 and the value arguments are vectors of the
8299same size, then an entire vector is selected.
8300
Sean Silvab084af42012-12-07 10:36:55 +00008301Example:
8302""""""""
8303
8304.. code-block:: llvm
8305
8306 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8307
8308.. _i_call:
8309
8310'``call``' Instruction
8311^^^^^^^^^^^^^^^^^^^^^^
8312
8313Syntax:
8314"""""""
8315
8316::
8317
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008318 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008319 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008320
8321Overview:
8322"""""""""
8323
8324The '``call``' instruction represents a simple function call.
8325
8326Arguments:
8327""""""""""
8328
8329This instruction requires several arguments:
8330
Reid Kleckner5772b772014-04-24 20:14:34 +00008331#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008332 should perform tail call optimization. The ``tail`` marker is a hint that
8333 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008334 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008335 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008336
8337 #. The call will not cause unbounded stack growth if it is part of a
8338 recursive cycle in the call graph.
8339 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8340 forwarded in place.
8341
8342 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008343 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008344 rules:
8345
8346 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8347 or a pointer bitcast followed by a ret instruction.
8348 - The ret instruction must return the (possibly bitcasted) value
8349 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008350 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008351 parameters or return types may differ in pointee type, but not
8352 in address space.
8353 - The calling conventions of the caller and callee must match.
8354 - All ABI-impacting function attributes, such as sret, byval, inreg,
8355 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008356 - The callee must be varargs iff the caller is varargs. Bitcasting a
8357 non-varargs function to the appropriate varargs type is legal so
8358 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008359
8360 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8361 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008362
8363 - Caller and callee both have the calling convention ``fastcc``.
8364 - The call is in tail position (ret immediately follows call and ret
8365 uses value of call or is void).
8366 - Option ``-tailcallopt`` is enabled, or
8367 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008368 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008369 met. <CodeGenerator.html#tailcallopt>`_
8370
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008371#. The optional ``notail`` marker indicates that the optimizers should not add
8372 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8373 call optimization from being performed on the call.
8374
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008375#. The optional ``fast-math flags`` marker indicates that the call has one or more
8376 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8377 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8378 for calls that return a floating-point scalar or vector type.
8379
Sean Silvab084af42012-12-07 10:36:55 +00008380#. The optional "cconv" marker indicates which :ref:`calling
8381 convention <callingconv>` the call should use. If none is
8382 specified, the call defaults to using C calling conventions. The
8383 calling convention of the call must match the calling convention of
8384 the target function, or else the behavior is undefined.
8385#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8386 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8387 are valid here.
8388#. '``ty``': the type of the call instruction itself which is also the
8389 type of the return value. Functions that return no value are marked
8390 ``void``.
8391#. '``fnty``': shall be the signature of the pointer to function value
8392 being invoked. The argument types must match the types implied by
8393 this signature. This type can be omitted if the function is not
8394 varargs and if the function type does not return a pointer to a
8395 function.
8396#. '``fnptrval``': An LLVM value containing a pointer to a function to
8397 be invoked. In most cases, this is a direct function invocation, but
8398 indirect ``call``'s are just as possible, calling an arbitrary pointer
8399 to function value.
8400#. '``function args``': argument list whose types match the function
8401 signature argument types and parameter attributes. All arguments must
8402 be of :ref:`first class <t_firstclass>` type. If the function signature
8403 indicates the function accepts a variable number of arguments, the
8404 extra arguments can be specified.
8405#. The optional :ref:`function attributes <fnattrs>` list. Only
8406 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8407 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008408#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008409
8410Semantics:
8411""""""""""
8412
8413The '``call``' instruction is used to cause control flow to transfer to
8414a specified function, with its incoming arguments bound to the specified
8415values. Upon a '``ret``' instruction in the called function, control
8416flow continues with the instruction after the function call, and the
8417return value of the function is bound to the result argument.
8418
8419Example:
8420""""""""
8421
8422.. code-block:: llvm
8423
8424 %retval = call i32 @test(i32 %argc)
8425 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8426 %X = tail call i32 @foo() ; yields i32
8427 %Y = tail call fastcc i32 @foo() ; yields i32
8428 call void %foo(i8 97 signext)
8429
8430 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008431 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008432 %gr = extractvalue %struct.A %r, 0 ; yields i32
8433 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8434 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8435 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8436
8437llvm treats calls to some functions with names and arguments that match
8438the standard C99 library as being the C99 library functions, and may
8439perform optimizations or generate code for them under that assumption.
8440This is something we'd like to change in the future to provide better
8441support for freestanding environments and non-C-based languages.
8442
8443.. _i_va_arg:
8444
8445'``va_arg``' Instruction
8446^^^^^^^^^^^^^^^^^^^^^^^^
8447
8448Syntax:
8449"""""""
8450
8451::
8452
8453 <resultval> = va_arg <va_list*> <arglist>, <argty>
8454
8455Overview:
8456"""""""""
8457
8458The '``va_arg``' instruction is used to access arguments passed through
8459the "variable argument" area of a function call. It is used to implement
8460the ``va_arg`` macro in C.
8461
8462Arguments:
8463""""""""""
8464
8465This instruction takes a ``va_list*`` value and the type of the
8466argument. It returns a value of the specified argument type and
8467increments the ``va_list`` to point to the next argument. The actual
8468type of ``va_list`` is target specific.
8469
8470Semantics:
8471""""""""""
8472
8473The '``va_arg``' instruction loads an argument of the specified type
8474from the specified ``va_list`` and causes the ``va_list`` to point to
8475the next argument. For more information, see the variable argument
8476handling :ref:`Intrinsic Functions <int_varargs>`.
8477
8478It is legal for this instruction to be called in a function which does
8479not take a variable number of arguments, for example, the ``vfprintf``
8480function.
8481
8482``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8483function <intrinsics>` because it takes a type as an argument.
8484
8485Example:
8486""""""""
8487
8488See the :ref:`variable argument processing <int_varargs>` section.
8489
8490Note that the code generator does not yet fully support va\_arg on many
8491targets. Also, it does not currently support va\_arg with aggregate
8492types on any target.
8493
8494.. _i_landingpad:
8495
8496'``landingpad``' Instruction
8497^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8498
8499Syntax:
8500"""""""
8501
8502::
8503
David Majnemer7fddecc2015-06-17 20:52:32 +00008504 <resultval> = landingpad <resultty> <clause>+
8505 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008506
8507 <clause> := catch <type> <value>
8508 <clause> := filter <array constant type> <array constant>
8509
8510Overview:
8511"""""""""
8512
8513The '``landingpad``' instruction is used by `LLVM's exception handling
8514system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008515is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008516code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008517defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008518re-entry to the function. The ``resultval`` has the type ``resultty``.
8519
8520Arguments:
8521""""""""""
8522
David Majnemer7fddecc2015-06-17 20:52:32 +00008523The optional
Sean Silvab084af42012-12-07 10:36:55 +00008524``cleanup`` flag indicates that the landing pad block is a cleanup.
8525
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008526A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008527contains the global variable representing the "type" that may be caught
8528or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8529clause takes an array constant as its argument. Use
8530"``[0 x i8**] undef``" for a filter which cannot throw. The
8531'``landingpad``' instruction must contain *at least* one ``clause`` or
8532the ``cleanup`` flag.
8533
8534Semantics:
8535""""""""""
8536
8537The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008538:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008539therefore the "result type" of the ``landingpad`` instruction. As with
8540calling conventions, how the personality function results are
8541represented in LLVM IR is target specific.
8542
8543The clauses are applied in order from top to bottom. If two
8544``landingpad`` instructions are merged together through inlining, the
8545clauses from the calling function are appended to the list of clauses.
8546When the call stack is being unwound due to an exception being thrown,
8547the exception is compared against each ``clause`` in turn. If it doesn't
8548match any of the clauses, and the ``cleanup`` flag is not set, then
8549unwinding continues further up the call stack.
8550
8551The ``landingpad`` instruction has several restrictions:
8552
8553- A landing pad block is a basic block which is the unwind destination
8554 of an '``invoke``' instruction.
8555- A landing pad block must have a '``landingpad``' instruction as its
8556 first non-PHI instruction.
8557- There can be only one '``landingpad``' instruction within the landing
8558 pad block.
8559- A basic block that is not a landing pad block may not include a
8560 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008561
8562Example:
8563""""""""
8564
8565.. code-block:: llvm
8566
8567 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008568 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008569 catch i8** @_ZTIi
8570 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008571 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008572 cleanup
8573 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008574 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008575 catch i8** @_ZTIi
8576 filter [1 x i8**] [@_ZTId]
8577
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008578.. _i_catchpad:
8579
8580'``catchpad``' Instruction
8581^^^^^^^^^^^^^^^^^^^^^^^^^^
8582
8583Syntax:
8584"""""""
8585
8586::
8587
8588 <resultval> = catchpad within <catchswitch> [<args>*]
8589
8590Overview:
8591"""""""""
8592
8593The '``catchpad``' instruction is used by `LLVM's exception handling
8594system <ExceptionHandling.html#overview>`_ to specify that a basic block
8595begins a catch handler --- one where a personality routine attempts to transfer
8596control to catch an exception.
8597
8598Arguments:
8599""""""""""
8600
8601The ``catchswitch`` operand must always be a token produced by a
8602:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8603ensures that each ``catchpad`` has exactly one predecessor block, and it always
8604terminates in a ``catchswitch``.
8605
8606The ``args`` correspond to whatever information the personality routine
8607requires to know if this is an appropriate handler for the exception. Control
8608will transfer to the ``catchpad`` if this is the first appropriate handler for
8609the exception.
8610
8611The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8612``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8613pads.
8614
8615Semantics:
8616""""""""""
8617
8618When the call stack is being unwound due to an exception being thrown, the
8619exception is compared against the ``args``. If it doesn't match, control will
8620not reach the ``catchpad`` instruction. The representation of ``args`` is
8621entirely target and personality function-specific.
8622
8623Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8624instruction must be the first non-phi of its parent basic block.
8625
8626The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8627instructions is described in the
8628`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8629
8630When a ``catchpad`` has been "entered" but not yet "exited" (as
8631described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8632it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8633that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8634
8635Example:
8636""""""""
8637
8638.. code-block:: llvm
8639
8640 dispatch:
8641 %cs = catchswitch within none [label %handler0] unwind to caller
8642 ;; A catch block which can catch an integer.
8643 handler0:
8644 %tok = catchpad within %cs [i8** @_ZTIi]
8645
David Majnemer654e1302015-07-31 17:58:14 +00008646.. _i_cleanuppad:
8647
8648'``cleanuppad``' Instruction
8649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8650
8651Syntax:
8652"""""""
8653
8654::
8655
David Majnemer8a1c45d2015-12-12 05:38:55 +00008656 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008657
8658Overview:
8659"""""""""
8660
8661The '``cleanuppad``' instruction is used by `LLVM's exception handling
8662system <ExceptionHandling.html#overview>`_ to specify that a basic block
8663is a cleanup block --- one where a personality routine attempts to
8664transfer control to run cleanup actions.
8665The ``args`` correspond to whatever additional
8666information the :ref:`personality function <personalityfn>` requires to
8667execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008668The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008669match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8670The ``parent`` argument is the token of the funclet that contains the
8671``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8672this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008673
8674Arguments:
8675""""""""""
8676
8677The instruction takes a list of arbitrary values which are interpreted
8678by the :ref:`personality function <personalityfn>`.
8679
8680Semantics:
8681""""""""""
8682
David Majnemer654e1302015-07-31 17:58:14 +00008683When the call stack is being unwound due to an exception being thrown,
8684the :ref:`personality function <personalityfn>` transfers control to the
8685``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008686As with calling conventions, how the personality function results are
8687represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008688
8689The ``cleanuppad`` instruction has several restrictions:
8690
8691- A cleanup block is a basic block which is the unwind destination of
8692 an exceptional instruction.
8693- A cleanup block must have a '``cleanuppad``' instruction as its
8694 first non-PHI instruction.
8695- There can be only one '``cleanuppad``' instruction within the
8696 cleanup block.
8697- A basic block that is not a cleanup block may not include a
8698 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008699
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008700When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8701described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8702it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8703that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008704
David Majnemer654e1302015-07-31 17:58:14 +00008705Example:
8706""""""""
8707
8708.. code-block:: llvm
8709
David Majnemer8a1c45d2015-12-12 05:38:55 +00008710 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008711
Sean Silvab084af42012-12-07 10:36:55 +00008712.. _intrinsics:
8713
8714Intrinsic Functions
8715===================
8716
8717LLVM supports the notion of an "intrinsic function". These functions
8718have well known names and semantics and are required to follow certain
8719restrictions. Overall, these intrinsics represent an extension mechanism
8720for the LLVM language that does not require changing all of the
8721transformations in LLVM when adding to the language (or the bitcode
8722reader/writer, the parser, etc...).
8723
8724Intrinsic function names must all start with an "``llvm.``" prefix. This
8725prefix is reserved in LLVM for intrinsic names; thus, function names may
8726not begin with this prefix. Intrinsic functions must always be external
8727functions: you cannot define the body of intrinsic functions. Intrinsic
8728functions may only be used in call or invoke instructions: it is illegal
8729to take the address of an intrinsic function. Additionally, because
8730intrinsic functions are part of the LLVM language, it is required if any
8731are added that they be documented here.
8732
8733Some intrinsic functions can be overloaded, i.e., the intrinsic
8734represents a family of functions that perform the same operation but on
8735different data types. Because LLVM can represent over 8 million
8736different integer types, overloading is used commonly to allow an
8737intrinsic function to operate on any integer type. One or more of the
8738argument types or the result type can be overloaded to accept any
8739integer type. Argument types may also be defined as exactly matching a
8740previous argument's type or the result type. This allows an intrinsic
8741function which accepts multiple arguments, but needs all of them to be
8742of the same type, to only be overloaded with respect to a single
8743argument or the result.
8744
8745Overloaded intrinsics will have the names of its overloaded argument
8746types encoded into its function name, each preceded by a period. Only
8747those types which are overloaded result in a name suffix. Arguments
8748whose type is matched against another type do not. For example, the
8749``llvm.ctpop`` function can take an integer of any width and returns an
8750integer of exactly the same integer width. This leads to a family of
8751functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8752``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8753overloaded, and only one type suffix is required. Because the argument's
8754type is matched against the return type, it does not require its own
8755name suffix.
8756
8757To learn how to add an intrinsic function, please see the `Extending
8758LLVM Guide <ExtendingLLVM.html>`_.
8759
8760.. _int_varargs:
8761
8762Variable Argument Handling Intrinsics
8763-------------------------------------
8764
8765Variable argument support is defined in LLVM with the
8766:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8767functions. These functions are related to the similarly named macros
8768defined in the ``<stdarg.h>`` header file.
8769
8770All of these functions operate on arguments that use a target-specific
8771value type "``va_list``". The LLVM assembly language reference manual
8772does not define what this type is, so all transformations should be
8773prepared to handle these functions regardless of the type used.
8774
8775This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8776variable argument handling intrinsic functions are used.
8777
8778.. code-block:: llvm
8779
Tim Northoverab60bb92014-11-02 01:21:51 +00008780 ; This struct is different for every platform. For most platforms,
8781 ; it is merely an i8*.
8782 %struct.va_list = type { i8* }
8783
8784 ; For Unix x86_64 platforms, va_list is the following struct:
8785 ; %struct.va_list = type { i32, i32, i8*, i8* }
8786
Sean Silvab084af42012-12-07 10:36:55 +00008787 define i32 @test(i32 %X, ...) {
8788 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008789 %ap = alloca %struct.va_list
8790 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008791 call void @llvm.va_start(i8* %ap2)
8792
8793 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008794 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008795
8796 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8797 %aq = alloca i8*
8798 %aq2 = bitcast i8** %aq to i8*
8799 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8800 call void @llvm.va_end(i8* %aq2)
8801
8802 ; Stop processing of arguments.
8803 call void @llvm.va_end(i8* %ap2)
8804 ret i32 %tmp
8805 }
8806
8807 declare void @llvm.va_start(i8*)
8808 declare void @llvm.va_copy(i8*, i8*)
8809 declare void @llvm.va_end(i8*)
8810
8811.. _int_va_start:
8812
8813'``llvm.va_start``' Intrinsic
8814^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8815
8816Syntax:
8817"""""""
8818
8819::
8820
Nick Lewycky04f6de02013-09-11 22:04:52 +00008821 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008822
8823Overview:
8824"""""""""
8825
8826The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8827subsequent use by ``va_arg``.
8828
8829Arguments:
8830""""""""""
8831
8832The argument is a pointer to a ``va_list`` element to initialize.
8833
8834Semantics:
8835""""""""""
8836
8837The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8838available in C. In a target-dependent way, it initializes the
8839``va_list`` element to which the argument points, so that the next call
8840to ``va_arg`` will produce the first variable argument passed to the
8841function. Unlike the C ``va_start`` macro, this intrinsic does not need
8842to know the last argument of the function as the compiler can figure
8843that out.
8844
8845'``llvm.va_end``' Intrinsic
8846^^^^^^^^^^^^^^^^^^^^^^^^^^^
8847
8848Syntax:
8849"""""""
8850
8851::
8852
8853 declare void @llvm.va_end(i8* <arglist>)
8854
8855Overview:
8856"""""""""
8857
8858The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8859initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8860
8861Arguments:
8862""""""""""
8863
8864The argument is a pointer to a ``va_list`` to destroy.
8865
8866Semantics:
8867""""""""""
8868
8869The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8870available in C. In a target-dependent way, it destroys the ``va_list``
8871element to which the argument points. Calls to
8872:ref:`llvm.va_start <int_va_start>` and
8873:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8874``llvm.va_end``.
8875
8876.. _int_va_copy:
8877
8878'``llvm.va_copy``' Intrinsic
8879^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8880
8881Syntax:
8882"""""""
8883
8884::
8885
8886 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8887
8888Overview:
8889"""""""""
8890
8891The '``llvm.va_copy``' intrinsic copies the current argument position
8892from the source argument list to the destination argument list.
8893
8894Arguments:
8895""""""""""
8896
8897The first argument is a pointer to a ``va_list`` element to initialize.
8898The second argument is a pointer to a ``va_list`` element to copy from.
8899
8900Semantics:
8901""""""""""
8902
8903The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8904available in C. In a target-dependent way, it copies the source
8905``va_list`` element into the destination ``va_list`` element. This
8906intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8907arbitrarily complex and require, for example, memory allocation.
8908
8909Accurate Garbage Collection Intrinsics
8910--------------------------------------
8911
Philip Reamesc5b0f562015-02-25 23:52:06 +00008912LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008913(GC) requires the frontend to generate code containing appropriate intrinsic
8914calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008915intrinsics in a manner which is appropriate for the target collector.
8916
Sean Silvab084af42012-12-07 10:36:55 +00008917These intrinsics allow identification of :ref:`GC roots on the
8918stack <int_gcroot>`, as well as garbage collector implementations that
8919require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008920Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008921these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008922details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008923
Philip Reamesf80bbff2015-02-25 23:45:20 +00008924Experimental Statepoint Intrinsics
8925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8926
8927LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008928collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008929to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008930:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008931differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008932<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008933described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008934
8935.. _int_gcroot:
8936
8937'``llvm.gcroot``' Intrinsic
8938^^^^^^^^^^^^^^^^^^^^^^^^^^^
8939
8940Syntax:
8941"""""""
8942
8943::
8944
8945 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8946
8947Overview:
8948"""""""""
8949
8950The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8951the code generator, and allows some metadata to be associated with it.
8952
8953Arguments:
8954""""""""""
8955
8956The first argument specifies the address of a stack object that contains
8957the root pointer. The second pointer (which must be either a constant or
8958a global value address) contains the meta-data to be associated with the
8959root.
8960
8961Semantics:
8962""""""""""
8963
8964At runtime, a call to this intrinsic stores a null pointer into the
8965"ptrloc" location. At compile-time, the code generator generates
8966information to allow the runtime to find the pointer at GC safe points.
8967The '``llvm.gcroot``' intrinsic may only be used in a function which
8968:ref:`specifies a GC algorithm <gc>`.
8969
8970.. _int_gcread:
8971
8972'``llvm.gcread``' Intrinsic
8973^^^^^^^^^^^^^^^^^^^^^^^^^^^
8974
8975Syntax:
8976"""""""
8977
8978::
8979
8980 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8981
8982Overview:
8983"""""""""
8984
8985The '``llvm.gcread``' intrinsic identifies reads of references from heap
8986locations, allowing garbage collector implementations that require read
8987barriers.
8988
8989Arguments:
8990""""""""""
8991
8992The second argument is the address to read from, which should be an
8993address allocated from the garbage collector. The first object is a
8994pointer to the start of the referenced object, if needed by the language
8995runtime (otherwise null).
8996
8997Semantics:
8998""""""""""
8999
9000The '``llvm.gcread``' intrinsic has the same semantics as a load
9001instruction, but may be replaced with substantially more complex code by
9002the garbage collector runtime, as needed. The '``llvm.gcread``'
9003intrinsic may only be used in a function which :ref:`specifies a GC
9004algorithm <gc>`.
9005
9006.. _int_gcwrite:
9007
9008'``llvm.gcwrite``' Intrinsic
9009^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9010
9011Syntax:
9012"""""""
9013
9014::
9015
9016 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9017
9018Overview:
9019"""""""""
9020
9021The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9022locations, allowing garbage collector implementations that require write
9023barriers (such as generational or reference counting collectors).
9024
9025Arguments:
9026""""""""""
9027
9028The first argument is the reference to store, the second is the start of
9029the object to store it to, and the third is the address of the field of
9030Obj to store to. If the runtime does not require a pointer to the
9031object, Obj may be null.
9032
9033Semantics:
9034""""""""""
9035
9036The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9037instruction, but may be replaced with substantially more complex code by
9038the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9039intrinsic may only be used in a function which :ref:`specifies a GC
9040algorithm <gc>`.
9041
9042Code Generator Intrinsics
9043-------------------------
9044
9045These intrinsics are provided by LLVM to expose special features that
9046may only be implemented with code generator support.
9047
9048'``llvm.returnaddress``' Intrinsic
9049^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9050
9051Syntax:
9052"""""""
9053
9054::
9055
9056 declare i8 *@llvm.returnaddress(i32 <level>)
9057
9058Overview:
9059"""""""""
9060
9061The '``llvm.returnaddress``' intrinsic attempts to compute a
9062target-specific value indicating the return address of the current
9063function or one of its callers.
9064
9065Arguments:
9066""""""""""
9067
9068The argument to this intrinsic indicates which function to return the
9069address for. Zero indicates the calling function, one indicates its
9070caller, etc. The argument is **required** to be a constant integer
9071value.
9072
9073Semantics:
9074""""""""""
9075
9076The '``llvm.returnaddress``' intrinsic either returns a pointer
9077indicating the return address of the specified call frame, or zero if it
9078cannot be identified. The value returned by this intrinsic is likely to
9079be incorrect or 0 for arguments other than zero, so it should only be
9080used for debugging purposes.
9081
9082Note that calling this intrinsic does not prevent function inlining or
9083other aggressive transformations, so the value returned may not be that
9084of the obvious source-language caller.
9085
9086'``llvm.frameaddress``' Intrinsic
9087^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9088
9089Syntax:
9090"""""""
9091
9092::
9093
9094 declare i8* @llvm.frameaddress(i32 <level>)
9095
9096Overview:
9097"""""""""
9098
9099The '``llvm.frameaddress``' intrinsic attempts to return the
9100target-specific frame pointer value for the specified stack frame.
9101
9102Arguments:
9103""""""""""
9104
9105The argument to this intrinsic indicates which function to return the
9106frame pointer for. Zero indicates the calling function, one indicates
9107its caller, etc. The argument is **required** to be a constant integer
9108value.
9109
9110Semantics:
9111""""""""""
9112
9113The '``llvm.frameaddress``' intrinsic either returns a pointer
9114indicating the frame address of the specified call frame, or zero if it
9115cannot be identified. The value returned by this intrinsic is likely to
9116be incorrect or 0 for arguments other than zero, so it should only be
9117used for debugging purposes.
9118
9119Note that calling this intrinsic does not prevent function inlining or
9120other aggressive transformations, so the value returned may not be that
9121of the obvious source-language caller.
9122
Reid Kleckner60381792015-07-07 22:25:32 +00009123'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009124^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9125
9126Syntax:
9127"""""""
9128
9129::
9130
Reid Kleckner60381792015-07-07 22:25:32 +00009131 declare void @llvm.localescape(...)
9132 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009133
9134Overview:
9135"""""""""
9136
Reid Kleckner60381792015-07-07 22:25:32 +00009137The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9138allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009139live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009140computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009141
9142Arguments:
9143""""""""""
9144
Reid Kleckner60381792015-07-07 22:25:32 +00009145All arguments to '``llvm.localescape``' must be pointers to static allocas or
9146casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009147once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009148
Reid Kleckner60381792015-07-07 22:25:32 +00009149The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009150bitcasted pointer to a function defined in the current module. The code
9151generator cannot determine the frame allocation offset of functions defined in
9152other modules.
9153
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009154The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9155call frame that is currently live. The return value of '``llvm.localaddress``'
9156is one way to produce such a value, but various runtimes also expose a suitable
9157pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009158
Reid Kleckner60381792015-07-07 22:25:32 +00009159The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9160'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009161
Reid Klecknere9b89312015-01-13 00:48:10 +00009162Semantics:
9163""""""""""
9164
Reid Kleckner60381792015-07-07 22:25:32 +00009165These intrinsics allow a group of functions to share access to a set of local
9166stack allocations of a one parent function. The parent function may call the
9167'``llvm.localescape``' intrinsic once from the function entry block, and the
9168child functions can use '``llvm.localrecover``' to access the escaped allocas.
9169The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9170the escaped allocas are allocated, which would break attempts to use
9171'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009172
Renato Golinc7aea402014-05-06 16:51:25 +00009173.. _int_read_register:
9174.. _int_write_register:
9175
9176'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9177^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9178
9179Syntax:
9180"""""""
9181
9182::
9183
9184 declare i32 @llvm.read_register.i32(metadata)
9185 declare i64 @llvm.read_register.i64(metadata)
9186 declare void @llvm.write_register.i32(metadata, i32 @value)
9187 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009188 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009189
9190Overview:
9191"""""""""
9192
9193The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9194provides access to the named register. The register must be valid on
9195the architecture being compiled to. The type needs to be compatible
9196with the register being read.
9197
9198Semantics:
9199""""""""""
9200
9201The '``llvm.read_register``' intrinsic returns the current value of the
9202register, where possible. The '``llvm.write_register``' intrinsic sets
9203the current value of the register, where possible.
9204
9205This is useful to implement named register global variables that need
9206to always be mapped to a specific register, as is common practice on
9207bare-metal programs including OS kernels.
9208
9209The compiler doesn't check for register availability or use of the used
9210register in surrounding code, including inline assembly. Because of that,
9211allocatable registers are not supported.
9212
9213Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009214architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009215work is needed to support other registers and even more so, allocatable
9216registers.
9217
Sean Silvab084af42012-12-07 10:36:55 +00009218.. _int_stacksave:
9219
9220'``llvm.stacksave``' Intrinsic
9221^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9222
9223Syntax:
9224"""""""
9225
9226::
9227
9228 declare i8* @llvm.stacksave()
9229
9230Overview:
9231"""""""""
9232
9233The '``llvm.stacksave``' intrinsic is used to remember the current state
9234of the function stack, for use with
9235:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9236implementing language features like scoped automatic variable sized
9237arrays in C99.
9238
9239Semantics:
9240""""""""""
9241
9242This intrinsic returns a opaque pointer value that can be passed to
9243:ref:`llvm.stackrestore <int_stackrestore>`. When an
9244``llvm.stackrestore`` intrinsic is executed with a value saved from
9245``llvm.stacksave``, it effectively restores the state of the stack to
9246the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9247practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9248were allocated after the ``llvm.stacksave`` was executed.
9249
9250.. _int_stackrestore:
9251
9252'``llvm.stackrestore``' Intrinsic
9253^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9254
9255Syntax:
9256"""""""
9257
9258::
9259
9260 declare void @llvm.stackrestore(i8* %ptr)
9261
9262Overview:
9263"""""""""
9264
9265The '``llvm.stackrestore``' intrinsic is used to restore the state of
9266the function stack to the state it was in when the corresponding
9267:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9268useful for implementing language features like scoped automatic variable
9269sized arrays in C99.
9270
9271Semantics:
9272""""""""""
9273
9274See the description for :ref:`llvm.stacksave <int_stacksave>`.
9275
Yury Gribovd7dbb662015-12-01 11:40:55 +00009276.. _int_get_dynamic_area_offset:
9277
9278'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009279^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009280
9281Syntax:
9282"""""""
9283
9284::
9285
9286 declare i32 @llvm.get.dynamic.area.offset.i32()
9287 declare i64 @llvm.get.dynamic.area.offset.i64()
9288
9289 Overview:
9290 """""""""
9291
9292 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9293 get the offset from native stack pointer to the address of the most
9294 recent dynamic alloca on the caller's stack. These intrinsics are
9295 intendend for use in combination with
9296 :ref:`llvm.stacksave <int_stacksave>` to get a
9297 pointer to the most recent dynamic alloca. This is useful, for example,
9298 for AddressSanitizer's stack unpoisoning routines.
9299
9300Semantics:
9301""""""""""
9302
9303 These intrinsics return a non-negative integer value that can be used to
9304 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9305 on the caller's stack. In particular, for targets where stack grows downwards,
9306 adding this offset to the native stack pointer would get the address of the most
9307 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9308 complicated, because substracting this value from stack pointer would get the address
9309 one past the end of the most recent dynamic alloca.
9310
9311 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9312 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9313 compile-time-known constant value.
9314
9315 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9316 must match the target's generic address space's (address space 0) pointer type.
9317
Sean Silvab084af42012-12-07 10:36:55 +00009318'``llvm.prefetch``' Intrinsic
9319^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9320
9321Syntax:
9322"""""""
9323
9324::
9325
9326 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9327
9328Overview:
9329"""""""""
9330
9331The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9332insert a prefetch instruction if supported; otherwise, it is a noop.
9333Prefetches have no effect on the behavior of the program but can change
9334its performance characteristics.
9335
9336Arguments:
9337""""""""""
9338
9339``address`` is the address to be prefetched, ``rw`` is the specifier
9340determining if the fetch should be for a read (0) or write (1), and
9341``locality`` is a temporal locality specifier ranging from (0) - no
9342locality, to (3) - extremely local keep in cache. The ``cache type``
9343specifies whether the prefetch is performed on the data (1) or
9344instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9345arguments must be constant integers.
9346
9347Semantics:
9348""""""""""
9349
9350This intrinsic does not modify the behavior of the program. In
9351particular, prefetches cannot trap and do not produce a value. On
9352targets that support this intrinsic, the prefetch can provide hints to
9353the processor cache for better performance.
9354
9355'``llvm.pcmarker``' Intrinsic
9356^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9357
9358Syntax:
9359"""""""
9360
9361::
9362
9363 declare void @llvm.pcmarker(i32 <id>)
9364
9365Overview:
9366"""""""""
9367
9368The '``llvm.pcmarker``' intrinsic is a method to export a Program
9369Counter (PC) in a region of code to simulators and other tools. The
9370method is target specific, but it is expected that the marker will use
9371exported symbols to transmit the PC of the marker. The marker makes no
9372guarantees that it will remain with any specific instruction after
9373optimizations. It is possible that the presence of a marker will inhibit
9374optimizations. The intended use is to be inserted after optimizations to
9375allow correlations of simulation runs.
9376
9377Arguments:
9378""""""""""
9379
9380``id`` is a numerical id identifying the marker.
9381
9382Semantics:
9383""""""""""
9384
9385This intrinsic does not modify the behavior of the program. Backends
9386that do not support this intrinsic may ignore it.
9387
9388'``llvm.readcyclecounter``' Intrinsic
9389^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9390
9391Syntax:
9392"""""""
9393
9394::
9395
9396 declare i64 @llvm.readcyclecounter()
9397
9398Overview:
9399"""""""""
9400
9401The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9402counter register (or similar low latency, high accuracy clocks) on those
9403targets that support it. On X86, it should map to RDTSC. On Alpha, it
9404should map to RPCC. As the backing counters overflow quickly (on the
9405order of 9 seconds on alpha), this should only be used for small
9406timings.
9407
9408Semantics:
9409""""""""""
9410
9411When directly supported, reading the cycle counter should not modify any
9412memory. Implementations are allowed to either return a application
9413specific value or a system wide value. On backends without support, this
9414is lowered to a constant 0.
9415
Tim Northoverbc933082013-05-23 19:11:20 +00009416Note that runtime support may be conditional on the privilege-level code is
9417running at and the host platform.
9418
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009419'``llvm.clear_cache``' Intrinsic
9420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9421
9422Syntax:
9423"""""""
9424
9425::
9426
9427 declare void @llvm.clear_cache(i8*, i8*)
9428
9429Overview:
9430"""""""""
9431
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009432The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9433in the specified range to the execution unit of the processor. On
9434targets with non-unified instruction and data cache, the implementation
9435flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009436
9437Semantics:
9438""""""""""
9439
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009440On platforms with coherent instruction and data caches (e.g. x86), this
9441intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009442cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009443instructions or a system call, if cache flushing requires special
9444privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009445
Sean Silvad02bf3e2014-04-07 22:29:53 +00009446The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009447time library.
Renato Golin93010e62014-03-26 14:01:32 +00009448
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009449This instrinsic does *not* empty the instruction pipeline. Modifications
9450of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009451
Justin Bogner61ba2e32014-12-08 18:02:35 +00009452'``llvm.instrprof_increment``' Intrinsic
9453^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9454
9455Syntax:
9456"""""""
9457
9458::
9459
9460 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9461 i32 <num-counters>, i32 <index>)
9462
9463Overview:
9464"""""""""
9465
9466The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9467frontend for use with instrumentation based profiling. These will be
9468lowered by the ``-instrprof`` pass to generate execution counts of a
9469program at runtime.
9470
9471Arguments:
9472""""""""""
9473
9474The first argument is a pointer to a global variable containing the
9475name of the entity being instrumented. This should generally be the
9476(mangled) function name for a set of counters.
9477
9478The second argument is a hash value that can be used by the consumer
9479of the profile data to detect changes to the instrumented source, and
9480the third is the number of counters associated with ``name``. It is an
9481error if ``hash`` or ``num-counters`` differ between two instances of
9482``instrprof_increment`` that refer to the same name.
9483
9484The last argument refers to which of the counters for ``name`` should
9485be incremented. It should be a value between 0 and ``num-counters``.
9486
9487Semantics:
9488""""""""""
9489
9490This intrinsic represents an increment of a profiling counter. It will
9491cause the ``-instrprof`` pass to generate the appropriate data
9492structures and the code to increment the appropriate value, in a
9493format that can be written out by a compiler runtime and consumed via
9494the ``llvm-profdata`` tool.
9495
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009496'``llvm.instrprof_value_profile``' Intrinsic
9497^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9498
9499Syntax:
9500"""""""
9501
9502::
9503
9504 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9505 i64 <value>, i32 <value_kind>,
9506 i32 <index>)
9507
9508Overview:
9509"""""""""
9510
9511The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9512frontend for use with instrumentation based profiling. This will be
9513lowered by the ``-instrprof`` pass to find out the target values,
9514instrumented expressions take in a program at runtime.
9515
9516Arguments:
9517""""""""""
9518
9519The first argument is a pointer to a global variable containing the
9520name of the entity being instrumented. ``name`` should generally be the
9521(mangled) function name for a set of counters.
9522
9523The second argument is a hash value that can be used by the consumer
9524of the profile data to detect changes to the instrumented source. It
9525is an error if ``hash`` differs between two instances of
9526``llvm.instrprof_*`` that refer to the same name.
9527
9528The third argument is the value of the expression being profiled. The profiled
9529expression's value should be representable as an unsigned 64-bit value. The
9530fourth argument represents the kind of value profiling that is being done. The
9531supported value profiling kinds are enumerated through the
9532``InstrProfValueKind`` type declared in the
9533``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9534index of the instrumented expression within ``name``. It should be >= 0.
9535
9536Semantics:
9537""""""""""
9538
9539This intrinsic represents the point where a call to a runtime routine
9540should be inserted for value profiling of target expressions. ``-instrprof``
9541pass will generate the appropriate data structures and replace the
9542``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9543runtime library with proper arguments.
9544
Sean Silvab084af42012-12-07 10:36:55 +00009545Standard C Library Intrinsics
9546-----------------------------
9547
9548LLVM provides intrinsics for a few important standard C library
9549functions. These intrinsics allow source-language front-ends to pass
9550information about the alignment of the pointer arguments to the code
9551generator, providing opportunity for more efficient code generation.
9552
9553.. _int_memcpy:
9554
9555'``llvm.memcpy``' Intrinsic
9556^^^^^^^^^^^^^^^^^^^^^^^^^^^
9557
9558Syntax:
9559"""""""
9560
9561This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9562integer bit width and for different address spaces. Not all targets
9563support all bit widths however.
9564
9565::
9566
9567 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9568 i32 <len>, i32 <align>, i1 <isvolatile>)
9569 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9570 i64 <len>, i32 <align>, i1 <isvolatile>)
9571
9572Overview:
9573"""""""""
9574
9575The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9576source location to the destination location.
9577
9578Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9579intrinsics do not return a value, takes extra alignment/isvolatile
9580arguments and the pointers can be in specified address spaces.
9581
9582Arguments:
9583""""""""""
9584
9585The first argument is a pointer to the destination, the second is a
9586pointer to the source. The third argument is an integer argument
9587specifying the number of bytes to copy, the fourth argument is the
9588alignment of the source and destination locations, and the fifth is a
9589boolean indicating a volatile access.
9590
9591If the call to this intrinsic has an alignment value that is not 0 or 1,
9592then the caller guarantees that both the source and destination pointers
9593are aligned to that boundary.
9594
9595If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9596a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9597very cleanly specified and it is unwise to depend on it.
9598
9599Semantics:
9600""""""""""
9601
9602The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9603source location to the destination location, which are not allowed to
9604overlap. It copies "len" bytes of memory over. If the argument is known
9605to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009606argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009607
9608'``llvm.memmove``' Intrinsic
9609^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9610
9611Syntax:
9612"""""""
9613
9614This is an overloaded intrinsic. You can use llvm.memmove on any integer
9615bit width and for different address space. Not all targets support all
9616bit widths however.
9617
9618::
9619
9620 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9621 i32 <len>, i32 <align>, i1 <isvolatile>)
9622 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9623 i64 <len>, i32 <align>, i1 <isvolatile>)
9624
9625Overview:
9626"""""""""
9627
9628The '``llvm.memmove.*``' intrinsics move a block of memory from the
9629source location to the destination location. It is similar to the
9630'``llvm.memcpy``' intrinsic but allows the two memory locations to
9631overlap.
9632
9633Note that, unlike the standard libc function, the ``llvm.memmove.*``
9634intrinsics do not return a value, takes extra alignment/isvolatile
9635arguments and the pointers can be in specified address spaces.
9636
9637Arguments:
9638""""""""""
9639
9640The first argument is a pointer to the destination, the second is a
9641pointer to the source. The third argument is an integer argument
9642specifying the number of bytes to copy, the fourth argument is the
9643alignment of the source and destination locations, and the fifth is a
9644boolean indicating a volatile access.
9645
9646If the call to this intrinsic has an alignment value that is not 0 or 1,
9647then the caller guarantees that the source and destination pointers are
9648aligned to that boundary.
9649
9650If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9651is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9652not very cleanly specified and it is unwise to depend on it.
9653
9654Semantics:
9655""""""""""
9656
9657The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9658source location to the destination location, which may overlap. It
9659copies "len" bytes of memory over. If the argument is known to be
9660aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009661otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009662
9663'``llvm.memset.*``' Intrinsics
9664^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9665
9666Syntax:
9667"""""""
9668
9669This is an overloaded intrinsic. You can use llvm.memset on any integer
9670bit width and for different address spaces. However, not all targets
9671support all bit widths.
9672
9673::
9674
9675 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9676 i32 <len>, i32 <align>, i1 <isvolatile>)
9677 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9678 i64 <len>, i32 <align>, i1 <isvolatile>)
9679
9680Overview:
9681"""""""""
9682
9683The '``llvm.memset.*``' intrinsics fill a block of memory with a
9684particular byte value.
9685
9686Note that, unlike the standard libc function, the ``llvm.memset``
9687intrinsic does not return a value and takes extra alignment/volatile
9688arguments. Also, the destination can be in an arbitrary address space.
9689
9690Arguments:
9691""""""""""
9692
9693The first argument is a pointer to the destination to fill, the second
9694is the byte value with which to fill it, the third argument is an
9695integer argument specifying the number of bytes to fill, and the fourth
9696argument is the known alignment of the destination location.
9697
9698If the call to this intrinsic has an alignment value that is not 0 or 1,
9699then the caller guarantees that the destination pointer is aligned to
9700that boundary.
9701
9702If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9703a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9704very cleanly specified and it is unwise to depend on it.
9705
9706Semantics:
9707""""""""""
9708
9709The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9710at the destination location. If the argument is known to be aligned to
9711some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009712it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009713
9714'``llvm.sqrt.*``' Intrinsic
9715^^^^^^^^^^^^^^^^^^^^^^^^^^^
9716
9717Syntax:
9718"""""""
9719
9720This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9721floating point or vector of floating point type. Not all targets support
9722all types however.
9723
9724::
9725
9726 declare float @llvm.sqrt.f32(float %Val)
9727 declare double @llvm.sqrt.f64(double %Val)
9728 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9729 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9730 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9731
9732Overview:
9733"""""""""
9734
9735The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9736returning the same value as the libm '``sqrt``' functions would. Unlike
9737``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9738negative numbers other than -0.0 (which allows for better optimization,
9739because there is no need to worry about errno being set).
9740``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9741
9742Arguments:
9743""""""""""
9744
9745The argument and return value are floating point numbers of the same
9746type.
9747
9748Semantics:
9749""""""""""
9750
9751This function returns the sqrt of the specified operand if it is a
9752nonnegative floating point number.
9753
9754'``llvm.powi.*``' Intrinsic
9755^^^^^^^^^^^^^^^^^^^^^^^^^^^
9756
9757Syntax:
9758"""""""
9759
9760This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9761floating point or vector of floating point type. Not all targets support
9762all types however.
9763
9764::
9765
9766 declare float @llvm.powi.f32(float %Val, i32 %power)
9767 declare double @llvm.powi.f64(double %Val, i32 %power)
9768 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9769 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9770 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9771
9772Overview:
9773"""""""""
9774
9775The '``llvm.powi.*``' intrinsics return the first operand raised to the
9776specified (positive or negative) power. The order of evaluation of
9777multiplications is not defined. When a vector of floating point type is
9778used, the second argument remains a scalar integer value.
9779
9780Arguments:
9781""""""""""
9782
9783The second argument is an integer power, and the first is a value to
9784raise to that power.
9785
9786Semantics:
9787""""""""""
9788
9789This function returns the first value raised to the second power with an
9790unspecified sequence of rounding operations.
9791
9792'``llvm.sin.*``' Intrinsic
9793^^^^^^^^^^^^^^^^^^^^^^^^^^
9794
9795Syntax:
9796"""""""
9797
9798This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9799floating point or vector of floating point type. Not all targets support
9800all types however.
9801
9802::
9803
9804 declare float @llvm.sin.f32(float %Val)
9805 declare double @llvm.sin.f64(double %Val)
9806 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9807 declare fp128 @llvm.sin.f128(fp128 %Val)
9808 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9809
9810Overview:
9811"""""""""
9812
9813The '``llvm.sin.*``' intrinsics return the sine of the operand.
9814
9815Arguments:
9816""""""""""
9817
9818The argument and return value are floating point numbers of the same
9819type.
9820
9821Semantics:
9822""""""""""
9823
9824This function returns the sine of the specified operand, returning the
9825same values as the libm ``sin`` functions would, and handles error
9826conditions in the same way.
9827
9828'``llvm.cos.*``' Intrinsic
9829^^^^^^^^^^^^^^^^^^^^^^^^^^
9830
9831Syntax:
9832"""""""
9833
9834This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9835floating point or vector of floating point type. Not all targets support
9836all types however.
9837
9838::
9839
9840 declare float @llvm.cos.f32(float %Val)
9841 declare double @llvm.cos.f64(double %Val)
9842 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9843 declare fp128 @llvm.cos.f128(fp128 %Val)
9844 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9845
9846Overview:
9847"""""""""
9848
9849The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9850
9851Arguments:
9852""""""""""
9853
9854The argument and return value are floating point numbers of the same
9855type.
9856
9857Semantics:
9858""""""""""
9859
9860This function returns the cosine of the specified operand, returning the
9861same values as the libm ``cos`` functions would, and handles error
9862conditions in the same way.
9863
9864'``llvm.pow.*``' Intrinsic
9865^^^^^^^^^^^^^^^^^^^^^^^^^^
9866
9867Syntax:
9868"""""""
9869
9870This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9871floating point or vector of floating point type. Not all targets support
9872all types however.
9873
9874::
9875
9876 declare float @llvm.pow.f32(float %Val, float %Power)
9877 declare double @llvm.pow.f64(double %Val, double %Power)
9878 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9879 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9880 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9881
9882Overview:
9883"""""""""
9884
9885The '``llvm.pow.*``' intrinsics return the first operand raised to the
9886specified (positive or negative) power.
9887
9888Arguments:
9889""""""""""
9890
9891The second argument is a floating point power, and the first is a value
9892to raise to that power.
9893
9894Semantics:
9895""""""""""
9896
9897This function returns the first value raised to the second power,
9898returning the same values as the libm ``pow`` functions would, and
9899handles error conditions in the same way.
9900
9901'``llvm.exp.*``' Intrinsic
9902^^^^^^^^^^^^^^^^^^^^^^^^^^
9903
9904Syntax:
9905"""""""
9906
9907This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9908floating point or vector of floating point type. Not all targets support
9909all types however.
9910
9911::
9912
9913 declare float @llvm.exp.f32(float %Val)
9914 declare double @llvm.exp.f64(double %Val)
9915 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9916 declare fp128 @llvm.exp.f128(fp128 %Val)
9917 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9918
9919Overview:
9920"""""""""
9921
9922The '``llvm.exp.*``' intrinsics perform the exp function.
9923
9924Arguments:
9925""""""""""
9926
9927The argument and return value are floating point numbers of the same
9928type.
9929
9930Semantics:
9931""""""""""
9932
9933This function returns the same values as the libm ``exp`` functions
9934would, and handles error conditions in the same way.
9935
9936'``llvm.exp2.*``' Intrinsic
9937^^^^^^^^^^^^^^^^^^^^^^^^^^^
9938
9939Syntax:
9940"""""""
9941
9942This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9943floating point or vector of floating point type. Not all targets support
9944all types however.
9945
9946::
9947
9948 declare float @llvm.exp2.f32(float %Val)
9949 declare double @llvm.exp2.f64(double %Val)
9950 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9951 declare fp128 @llvm.exp2.f128(fp128 %Val)
9952 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9953
9954Overview:
9955"""""""""
9956
9957The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9958
9959Arguments:
9960""""""""""
9961
9962The argument and return value are floating point numbers of the same
9963type.
9964
9965Semantics:
9966""""""""""
9967
9968This function returns the same values as the libm ``exp2`` functions
9969would, and handles error conditions in the same way.
9970
9971'``llvm.log.*``' Intrinsic
9972^^^^^^^^^^^^^^^^^^^^^^^^^^
9973
9974Syntax:
9975"""""""
9976
9977This is an overloaded intrinsic. You can use ``llvm.log`` on any
9978floating point or vector of floating point type. Not all targets support
9979all types however.
9980
9981::
9982
9983 declare float @llvm.log.f32(float %Val)
9984 declare double @llvm.log.f64(double %Val)
9985 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9986 declare fp128 @llvm.log.f128(fp128 %Val)
9987 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9988
9989Overview:
9990"""""""""
9991
9992The '``llvm.log.*``' intrinsics perform the log function.
9993
9994Arguments:
9995""""""""""
9996
9997The argument and return value are floating point numbers of the same
9998type.
9999
10000Semantics:
10001""""""""""
10002
10003This function returns the same values as the libm ``log`` functions
10004would, and handles error conditions in the same way.
10005
10006'``llvm.log10.*``' Intrinsic
10007^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10008
10009Syntax:
10010"""""""
10011
10012This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10013floating point or vector of floating point type. Not all targets support
10014all types however.
10015
10016::
10017
10018 declare float @llvm.log10.f32(float %Val)
10019 declare double @llvm.log10.f64(double %Val)
10020 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10021 declare fp128 @llvm.log10.f128(fp128 %Val)
10022 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10023
10024Overview:
10025"""""""""
10026
10027The '``llvm.log10.*``' intrinsics perform the log10 function.
10028
10029Arguments:
10030""""""""""
10031
10032The argument and return value are floating point numbers of the same
10033type.
10034
10035Semantics:
10036""""""""""
10037
10038This function returns the same values as the libm ``log10`` functions
10039would, and handles error conditions in the same way.
10040
10041'``llvm.log2.*``' Intrinsic
10042^^^^^^^^^^^^^^^^^^^^^^^^^^^
10043
10044Syntax:
10045"""""""
10046
10047This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10048floating point or vector of floating point type. Not all targets support
10049all types however.
10050
10051::
10052
10053 declare float @llvm.log2.f32(float %Val)
10054 declare double @llvm.log2.f64(double %Val)
10055 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10056 declare fp128 @llvm.log2.f128(fp128 %Val)
10057 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10058
10059Overview:
10060"""""""""
10061
10062The '``llvm.log2.*``' intrinsics perform the log2 function.
10063
10064Arguments:
10065""""""""""
10066
10067The argument and return value are floating point numbers of the same
10068type.
10069
10070Semantics:
10071""""""""""
10072
10073This function returns the same values as the libm ``log2`` functions
10074would, and handles error conditions in the same way.
10075
10076'``llvm.fma.*``' Intrinsic
10077^^^^^^^^^^^^^^^^^^^^^^^^^^
10078
10079Syntax:
10080"""""""
10081
10082This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10083floating point or vector of floating point type. Not all targets support
10084all types however.
10085
10086::
10087
10088 declare float @llvm.fma.f32(float %a, float %b, float %c)
10089 declare double @llvm.fma.f64(double %a, double %b, double %c)
10090 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10091 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10092 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10093
10094Overview:
10095"""""""""
10096
10097The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10098operation.
10099
10100Arguments:
10101""""""""""
10102
10103The argument and return value are floating point numbers of the same
10104type.
10105
10106Semantics:
10107""""""""""
10108
10109This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010110would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010111
10112'``llvm.fabs.*``' Intrinsic
10113^^^^^^^^^^^^^^^^^^^^^^^^^^^
10114
10115Syntax:
10116"""""""
10117
10118This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10119floating point or vector of floating point type. Not all targets support
10120all types however.
10121
10122::
10123
10124 declare float @llvm.fabs.f32(float %Val)
10125 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010126 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010127 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010128 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010129
10130Overview:
10131"""""""""
10132
10133The '``llvm.fabs.*``' intrinsics return the absolute value of the
10134operand.
10135
10136Arguments:
10137""""""""""
10138
10139The argument and return value are floating point numbers of the same
10140type.
10141
10142Semantics:
10143""""""""""
10144
10145This function returns the same values as the libm ``fabs`` functions
10146would, and handles error conditions in the same way.
10147
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010148'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010150
10151Syntax:
10152"""""""
10153
10154This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10155floating point or vector of floating point type. Not all targets support
10156all types however.
10157
10158::
10159
Matt Arsenault64313c92014-10-22 18:25:02 +000010160 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10161 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10162 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10163 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10164 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010165
10166Overview:
10167"""""""""
10168
10169The '``llvm.minnum.*``' intrinsics return the minimum of the two
10170arguments.
10171
10172
10173Arguments:
10174""""""""""
10175
10176The arguments and return value are floating point numbers of the same
10177type.
10178
10179Semantics:
10180""""""""""
10181
10182Follows the IEEE-754 semantics for minNum, which also match for libm's
10183fmin.
10184
10185If either operand is a NaN, returns the other non-NaN operand. Returns
10186NaN only if both operands are NaN. If the operands compare equal,
10187returns a value that compares equal to both operands. This means that
10188fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10189
10190'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010191^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010192
10193Syntax:
10194"""""""
10195
10196This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10197floating point or vector of floating point type. Not all targets support
10198all types however.
10199
10200::
10201
Matt Arsenault64313c92014-10-22 18:25:02 +000010202 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10203 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10204 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10205 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10206 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010207
10208Overview:
10209"""""""""
10210
10211The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10212arguments.
10213
10214
10215Arguments:
10216""""""""""
10217
10218The arguments and return value are floating point numbers of the same
10219type.
10220
10221Semantics:
10222""""""""""
10223Follows the IEEE-754 semantics for maxNum, which also match for libm's
10224fmax.
10225
10226If either operand is a NaN, returns the other non-NaN operand. Returns
10227NaN only if both operands are NaN. If the operands compare equal,
10228returns a value that compares equal to both operands. This means that
10229fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10230
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010231'``llvm.copysign.*``' Intrinsic
10232^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10233
10234Syntax:
10235"""""""
10236
10237This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10238floating point or vector of floating point type. Not all targets support
10239all types however.
10240
10241::
10242
10243 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10244 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10245 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10246 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10247 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10248
10249Overview:
10250"""""""""
10251
10252The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10253first operand and the sign of the second operand.
10254
10255Arguments:
10256""""""""""
10257
10258The arguments and return value are floating point numbers of the same
10259type.
10260
10261Semantics:
10262""""""""""
10263
10264This function returns the same values as the libm ``copysign``
10265functions would, and handles error conditions in the same way.
10266
Sean Silvab084af42012-12-07 10:36:55 +000010267'``llvm.floor.*``' Intrinsic
10268^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10269
10270Syntax:
10271"""""""
10272
10273This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10274floating point or vector of floating point type. Not all targets support
10275all types however.
10276
10277::
10278
10279 declare float @llvm.floor.f32(float %Val)
10280 declare double @llvm.floor.f64(double %Val)
10281 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10282 declare fp128 @llvm.floor.f128(fp128 %Val)
10283 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10284
10285Overview:
10286"""""""""
10287
10288The '``llvm.floor.*``' intrinsics return the floor of the operand.
10289
10290Arguments:
10291""""""""""
10292
10293The argument and return value are floating point numbers of the same
10294type.
10295
10296Semantics:
10297""""""""""
10298
10299This function returns the same values as the libm ``floor`` functions
10300would, and handles error conditions in the same way.
10301
10302'``llvm.ceil.*``' Intrinsic
10303^^^^^^^^^^^^^^^^^^^^^^^^^^^
10304
10305Syntax:
10306"""""""
10307
10308This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10309floating point or vector of floating point type. Not all targets support
10310all types however.
10311
10312::
10313
10314 declare float @llvm.ceil.f32(float %Val)
10315 declare double @llvm.ceil.f64(double %Val)
10316 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10317 declare fp128 @llvm.ceil.f128(fp128 %Val)
10318 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10319
10320Overview:
10321"""""""""
10322
10323The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10324
10325Arguments:
10326""""""""""
10327
10328The argument and return value are floating point numbers of the same
10329type.
10330
10331Semantics:
10332""""""""""
10333
10334This function returns the same values as the libm ``ceil`` functions
10335would, and handles error conditions in the same way.
10336
10337'``llvm.trunc.*``' Intrinsic
10338^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10339
10340Syntax:
10341"""""""
10342
10343This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10344floating point or vector of floating point type. Not all targets support
10345all types however.
10346
10347::
10348
10349 declare float @llvm.trunc.f32(float %Val)
10350 declare double @llvm.trunc.f64(double %Val)
10351 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10352 declare fp128 @llvm.trunc.f128(fp128 %Val)
10353 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10354
10355Overview:
10356"""""""""
10357
10358The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10359nearest integer not larger in magnitude than the operand.
10360
10361Arguments:
10362""""""""""
10363
10364The argument and return value are floating point numbers of the same
10365type.
10366
10367Semantics:
10368""""""""""
10369
10370This function returns the same values as the libm ``trunc`` functions
10371would, and handles error conditions in the same way.
10372
10373'``llvm.rint.*``' Intrinsic
10374^^^^^^^^^^^^^^^^^^^^^^^^^^^
10375
10376Syntax:
10377"""""""
10378
10379This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10380floating point or vector of floating point type. Not all targets support
10381all types however.
10382
10383::
10384
10385 declare float @llvm.rint.f32(float %Val)
10386 declare double @llvm.rint.f64(double %Val)
10387 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10388 declare fp128 @llvm.rint.f128(fp128 %Val)
10389 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10390
10391Overview:
10392"""""""""
10393
10394The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10395nearest integer. It may raise an inexact floating-point exception if the
10396operand isn't an integer.
10397
10398Arguments:
10399""""""""""
10400
10401The argument and return value are floating point numbers of the same
10402type.
10403
10404Semantics:
10405""""""""""
10406
10407This function returns the same values as the libm ``rint`` functions
10408would, and handles error conditions in the same way.
10409
10410'``llvm.nearbyint.*``' Intrinsic
10411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10412
10413Syntax:
10414"""""""
10415
10416This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10417floating point or vector of floating point type. Not all targets support
10418all types however.
10419
10420::
10421
10422 declare float @llvm.nearbyint.f32(float %Val)
10423 declare double @llvm.nearbyint.f64(double %Val)
10424 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10425 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10426 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10427
10428Overview:
10429"""""""""
10430
10431The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10432nearest integer.
10433
10434Arguments:
10435""""""""""
10436
10437The argument and return value are floating point numbers of the same
10438type.
10439
10440Semantics:
10441""""""""""
10442
10443This function returns the same values as the libm ``nearbyint``
10444functions would, and handles error conditions in the same way.
10445
Hal Finkel171817e2013-08-07 22:49:12 +000010446'``llvm.round.*``' Intrinsic
10447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10448
10449Syntax:
10450"""""""
10451
10452This is an overloaded intrinsic. You can use ``llvm.round`` on any
10453floating point or vector of floating point type. Not all targets support
10454all types however.
10455
10456::
10457
10458 declare float @llvm.round.f32(float %Val)
10459 declare double @llvm.round.f64(double %Val)
10460 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10461 declare fp128 @llvm.round.f128(fp128 %Val)
10462 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10463
10464Overview:
10465"""""""""
10466
10467The '``llvm.round.*``' intrinsics returns the operand rounded to the
10468nearest integer.
10469
10470Arguments:
10471""""""""""
10472
10473The argument and return value are floating point numbers of the same
10474type.
10475
10476Semantics:
10477""""""""""
10478
10479This function returns the same values as the libm ``round``
10480functions would, and handles error conditions in the same way.
10481
Sean Silvab084af42012-12-07 10:36:55 +000010482Bit Manipulation Intrinsics
10483---------------------------
10484
10485LLVM provides intrinsics for a few important bit manipulation
10486operations. These allow efficient code generation for some algorithms.
10487
James Molloy90111f72015-11-12 12:29:09 +000010488'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010490
10491Syntax:
10492"""""""
10493
10494This is an overloaded intrinsic function. You can use bitreverse on any
10495integer type.
10496
10497::
10498
10499 declare i16 @llvm.bitreverse.i16(i16 <id>)
10500 declare i32 @llvm.bitreverse.i32(i32 <id>)
10501 declare i64 @llvm.bitreverse.i64(i64 <id>)
10502
10503Overview:
10504"""""""""
10505
10506The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010507bitpattern of an integer value; for example ``0b10110110`` becomes
10508``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010509
10510Semantics:
10511""""""""""
10512
10513The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10514``M`` in the input moved to bit ``N-M`` in the output.
10515
Sean Silvab084af42012-12-07 10:36:55 +000010516'``llvm.bswap.*``' Intrinsics
10517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10518
10519Syntax:
10520"""""""
10521
10522This is an overloaded intrinsic function. You can use bswap on any
10523integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10524
10525::
10526
10527 declare i16 @llvm.bswap.i16(i16 <id>)
10528 declare i32 @llvm.bswap.i32(i32 <id>)
10529 declare i64 @llvm.bswap.i64(i64 <id>)
10530
10531Overview:
10532"""""""""
10533
10534The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10535values with an even number of bytes (positive multiple of 16 bits).
10536These are useful for performing operations on data that is not in the
10537target's native byte order.
10538
10539Semantics:
10540""""""""""
10541
10542The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10543and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10544intrinsic returns an i32 value that has the four bytes of the input i32
10545swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10546returned i32 will have its bytes in 3, 2, 1, 0 order. The
10547``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10548concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10549respectively).
10550
10551'``llvm.ctpop.*``' Intrinsic
10552^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10553
10554Syntax:
10555"""""""
10556
10557This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10558bit width, or on any vector with integer elements. Not all targets
10559support all bit widths or vector types, however.
10560
10561::
10562
10563 declare i8 @llvm.ctpop.i8(i8 <src>)
10564 declare i16 @llvm.ctpop.i16(i16 <src>)
10565 declare i32 @llvm.ctpop.i32(i32 <src>)
10566 declare i64 @llvm.ctpop.i64(i64 <src>)
10567 declare i256 @llvm.ctpop.i256(i256 <src>)
10568 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10569
10570Overview:
10571"""""""""
10572
10573The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10574in a value.
10575
10576Arguments:
10577""""""""""
10578
10579The only argument is the value to be counted. The argument may be of any
10580integer type, or a vector with integer elements. The return type must
10581match the argument type.
10582
10583Semantics:
10584""""""""""
10585
10586The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10587each element of a vector.
10588
10589'``llvm.ctlz.*``' Intrinsic
10590^^^^^^^^^^^^^^^^^^^^^^^^^^^
10591
10592Syntax:
10593"""""""
10594
10595This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10596integer bit width, or any vector whose elements are integers. Not all
10597targets support all bit widths or vector types, however.
10598
10599::
10600
10601 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10602 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10603 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10604 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10605 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010606 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010607
10608Overview:
10609"""""""""
10610
10611The '``llvm.ctlz``' family of intrinsic functions counts the number of
10612leading zeros in a variable.
10613
10614Arguments:
10615""""""""""
10616
10617The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010618any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010619type must match the first argument type.
10620
10621The second argument must be a constant and is a flag to indicate whether
10622the intrinsic should ensure that a zero as the first argument produces a
10623defined result. Historically some architectures did not provide a
10624defined result for zero values as efficiently, and many algorithms are
10625now predicated on avoiding zero-value inputs.
10626
10627Semantics:
10628""""""""""
10629
10630The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10631zeros in a variable, or within each element of the vector. If
10632``src == 0`` then the result is the size in bits of the type of ``src``
10633if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10634``llvm.ctlz(i32 2) = 30``.
10635
10636'``llvm.cttz.*``' Intrinsic
10637^^^^^^^^^^^^^^^^^^^^^^^^^^^
10638
10639Syntax:
10640"""""""
10641
10642This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10643integer bit width, or any vector of integer elements. Not all targets
10644support all bit widths or vector types, however.
10645
10646::
10647
10648 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10649 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10650 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10651 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10652 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010653 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010654
10655Overview:
10656"""""""""
10657
10658The '``llvm.cttz``' family of intrinsic functions counts the number of
10659trailing zeros.
10660
10661Arguments:
10662""""""""""
10663
10664The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010665any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010666type must match the first argument type.
10667
10668The second argument must be a constant and is a flag to indicate whether
10669the intrinsic should ensure that a zero as the first argument produces a
10670defined result. Historically some architectures did not provide a
10671defined result for zero values as efficiently, and many algorithms are
10672now predicated on avoiding zero-value inputs.
10673
10674Semantics:
10675""""""""""
10676
10677The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10678zeros in a variable, or within each element of a vector. If ``src == 0``
10679then the result is the size in bits of the type of ``src`` if
10680``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10681``llvm.cttz(2) = 1``.
10682
Philip Reames34843ae2015-03-05 05:55:55 +000010683.. _int_overflow:
10684
Sean Silvab084af42012-12-07 10:36:55 +000010685Arithmetic with Overflow Intrinsics
10686-----------------------------------
10687
10688LLVM provides intrinsics for some arithmetic with overflow operations.
10689
10690'``llvm.sadd.with.overflow.*``' Intrinsics
10691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10692
10693Syntax:
10694"""""""
10695
10696This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10697on any integer bit width.
10698
10699::
10700
10701 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10702 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10703 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10704
10705Overview:
10706"""""""""
10707
10708The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10709a signed addition of the two arguments, and indicate whether an overflow
10710occurred during the signed summation.
10711
10712Arguments:
10713""""""""""
10714
10715The arguments (%a and %b) and the first element of the result structure
10716may be of integer types of any bit width, but they must have the same
10717bit width. The second element of the result structure must be of type
10718``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10719addition.
10720
10721Semantics:
10722""""""""""
10723
10724The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010725a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010726first element of which is the signed summation, and the second element
10727of which is a bit specifying if the signed summation resulted in an
10728overflow.
10729
10730Examples:
10731"""""""""
10732
10733.. code-block:: llvm
10734
10735 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10736 %sum = extractvalue {i32, i1} %res, 0
10737 %obit = extractvalue {i32, i1} %res, 1
10738 br i1 %obit, label %overflow, label %normal
10739
10740'``llvm.uadd.with.overflow.*``' Intrinsics
10741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10742
10743Syntax:
10744"""""""
10745
10746This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10747on any integer bit width.
10748
10749::
10750
10751 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10752 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10753 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10754
10755Overview:
10756"""""""""
10757
10758The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10759an unsigned addition of the two arguments, and indicate whether a carry
10760occurred during the unsigned summation.
10761
10762Arguments:
10763""""""""""
10764
10765The arguments (%a and %b) and the first element of the result structure
10766may be of integer types of any bit width, but they must have the same
10767bit width. The second element of the result structure must be of type
10768``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10769addition.
10770
10771Semantics:
10772""""""""""
10773
10774The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010775an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010776first element of which is the sum, and the second element of which is a
10777bit specifying if the unsigned summation resulted in a carry.
10778
10779Examples:
10780"""""""""
10781
10782.. code-block:: llvm
10783
10784 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10785 %sum = extractvalue {i32, i1} %res, 0
10786 %obit = extractvalue {i32, i1} %res, 1
10787 br i1 %obit, label %carry, label %normal
10788
10789'``llvm.ssub.with.overflow.*``' Intrinsics
10790^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10791
10792Syntax:
10793"""""""
10794
10795This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10796on any integer bit width.
10797
10798::
10799
10800 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10801 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10802 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10803
10804Overview:
10805"""""""""
10806
10807The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10808a signed subtraction of the two arguments, and indicate whether an
10809overflow occurred during the signed subtraction.
10810
10811Arguments:
10812""""""""""
10813
10814The arguments (%a and %b) and the first element of the result structure
10815may be of integer types of any bit width, but they must have the same
10816bit width. The second element of the result structure must be of type
10817``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10818subtraction.
10819
10820Semantics:
10821""""""""""
10822
10823The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010824a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010825first element of which is the subtraction, and the second element of
10826which is a bit specifying if the signed subtraction resulted in an
10827overflow.
10828
10829Examples:
10830"""""""""
10831
10832.. code-block:: llvm
10833
10834 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10835 %sum = extractvalue {i32, i1} %res, 0
10836 %obit = extractvalue {i32, i1} %res, 1
10837 br i1 %obit, label %overflow, label %normal
10838
10839'``llvm.usub.with.overflow.*``' Intrinsics
10840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10841
10842Syntax:
10843"""""""
10844
10845This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10846on any integer bit width.
10847
10848::
10849
10850 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10851 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10852 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10853
10854Overview:
10855"""""""""
10856
10857The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10858an unsigned subtraction of the two arguments, and indicate whether an
10859overflow occurred during the unsigned subtraction.
10860
10861Arguments:
10862""""""""""
10863
10864The arguments (%a and %b) and the first element of the result structure
10865may be of integer types of any bit width, but they must have the same
10866bit width. The second element of the result structure must be of type
10867``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10868subtraction.
10869
10870Semantics:
10871""""""""""
10872
10873The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010874an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010875the first element of which is the subtraction, and the second element of
10876which is a bit specifying if the unsigned subtraction resulted in an
10877overflow.
10878
10879Examples:
10880"""""""""
10881
10882.. code-block:: llvm
10883
10884 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10885 %sum = extractvalue {i32, i1} %res, 0
10886 %obit = extractvalue {i32, i1} %res, 1
10887 br i1 %obit, label %overflow, label %normal
10888
10889'``llvm.smul.with.overflow.*``' Intrinsics
10890^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10891
10892Syntax:
10893"""""""
10894
10895This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10896on any integer bit width.
10897
10898::
10899
10900 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10901 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10902 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10903
10904Overview:
10905"""""""""
10906
10907The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10908a signed multiplication of the two arguments, and indicate whether an
10909overflow occurred during the signed multiplication.
10910
10911Arguments:
10912""""""""""
10913
10914The arguments (%a and %b) and the first element of the result structure
10915may be of integer types of any bit width, but they must have the same
10916bit width. The second element of the result structure must be of type
10917``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10918multiplication.
10919
10920Semantics:
10921""""""""""
10922
10923The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010924a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010925the first element of which is the multiplication, and the second element
10926of which is a bit specifying if the signed multiplication resulted in an
10927overflow.
10928
10929Examples:
10930"""""""""
10931
10932.. code-block:: llvm
10933
10934 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10935 %sum = extractvalue {i32, i1} %res, 0
10936 %obit = extractvalue {i32, i1} %res, 1
10937 br i1 %obit, label %overflow, label %normal
10938
10939'``llvm.umul.with.overflow.*``' Intrinsics
10940^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10941
10942Syntax:
10943"""""""
10944
10945This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10946on any integer bit width.
10947
10948::
10949
10950 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10951 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10952 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10953
10954Overview:
10955"""""""""
10956
10957The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10958a unsigned multiplication of the two arguments, and indicate whether an
10959overflow occurred during the unsigned multiplication.
10960
10961Arguments:
10962""""""""""
10963
10964The arguments (%a and %b) and the first element of the result structure
10965may be of integer types of any bit width, but they must have the same
10966bit width. The second element of the result structure must be of type
10967``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10968multiplication.
10969
10970Semantics:
10971""""""""""
10972
10973The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010974an unsigned multiplication of the two arguments. They return a structure ---
10975the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010976element of which is a bit specifying if the unsigned multiplication
10977resulted in an overflow.
10978
10979Examples:
10980"""""""""
10981
10982.. code-block:: llvm
10983
10984 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10985 %sum = extractvalue {i32, i1} %res, 0
10986 %obit = extractvalue {i32, i1} %res, 1
10987 br i1 %obit, label %overflow, label %normal
10988
10989Specialised Arithmetic Intrinsics
10990---------------------------------
10991
Owen Anderson1056a922015-07-11 07:01:27 +000010992'``llvm.canonicalize.*``' Intrinsic
10993^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10994
10995Syntax:
10996"""""""
10997
10998::
10999
11000 declare float @llvm.canonicalize.f32(float %a)
11001 declare double @llvm.canonicalize.f64(double %b)
11002
11003Overview:
11004"""""""""
11005
11006The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011007encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011008implementing certain numeric primitives such as frexp. The canonical encoding is
11009defined by IEEE-754-2008 to be:
11010
11011::
11012
11013 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011014 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011015 numbers, infinities, and NaNs, especially in decimal formats.
11016
11017This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011018conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011019according to section 6.2.
11020
11021Examples of non-canonical encodings:
11022
Sean Silvaa1190322015-08-06 22:56:48 +000011023- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011024 converted to a canonical representation per hardware-specific protocol.
11025- Many normal decimal floating point numbers have non-canonical alternative
11026 encodings.
11027- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011028 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011029 a zero of the same sign by this operation.
11030
11031Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11032default exception handling must signal an invalid exception, and produce a
11033quiet NaN result.
11034
11035This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011036that the compiler does not constant fold the operation. Likewise, division by
110371.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011038-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11039
Sean Silvaa1190322015-08-06 22:56:48 +000011040``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011041
11042- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11043- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11044 to ``(x == y)``
11045
11046Additionally, the sign of zero must be conserved:
11047``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11048
11049The payload bits of a NaN must be conserved, with two exceptions.
11050First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011051must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011052usual methods.
11053
11054The canonicalization operation may be optimized away if:
11055
Sean Silvaa1190322015-08-06 22:56:48 +000011056- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011057 floating-point operation that is required by the standard to be canonical.
11058- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011059 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011060
Sean Silvab084af42012-12-07 10:36:55 +000011061'``llvm.fmuladd.*``' Intrinsic
11062^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11063
11064Syntax:
11065"""""""
11066
11067::
11068
11069 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11070 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11071
11072Overview:
11073"""""""""
11074
11075The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011076expressions that can be fused if the code generator determines that (a) the
11077target instruction set has support for a fused operation, and (b) that the
11078fused operation is more efficient than the equivalent, separate pair of mul
11079and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011080
11081Arguments:
11082""""""""""
11083
11084The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11085multiplicands, a and b, and an addend c.
11086
11087Semantics:
11088""""""""""
11089
11090The expression:
11091
11092::
11093
11094 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11095
11096is equivalent to the expression a \* b + c, except that rounding will
11097not be performed between the multiplication and addition steps if the
11098code generator fuses the operations. Fusion is not guaranteed, even if
11099the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011100corresponding llvm.fma.\* intrinsic function should be used
11101instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011102
11103Examples:
11104"""""""""
11105
11106.. code-block:: llvm
11107
Tim Northover675a0962014-06-13 14:24:23 +000011108 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011109
11110Half Precision Floating Point Intrinsics
11111----------------------------------------
11112
11113For most target platforms, half precision floating point is a
11114storage-only format. This means that it is a dense encoding (in memory)
11115but does not support computation in the format.
11116
11117This means that code must first load the half-precision floating point
11118value as an i16, then convert it to float with
11119:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11120then be performed on the float value (including extending to double
11121etc). To store the value back to memory, it is first converted to float
11122if needed, then converted to i16 with
11123:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11124i16 value.
11125
11126.. _int_convert_to_fp16:
11127
11128'``llvm.convert.to.fp16``' Intrinsic
11129^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11130
11131Syntax:
11132"""""""
11133
11134::
11135
Tim Northoverfd7e4242014-07-17 10:51:23 +000011136 declare i16 @llvm.convert.to.fp16.f32(float %a)
11137 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011138
11139Overview:
11140"""""""""
11141
Tim Northoverfd7e4242014-07-17 10:51:23 +000011142The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11143conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011144
11145Arguments:
11146""""""""""
11147
11148The intrinsic function contains single argument - the value to be
11149converted.
11150
11151Semantics:
11152""""""""""
11153
Tim Northoverfd7e4242014-07-17 10:51:23 +000011154The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11155conventional floating point format to half precision floating point format. The
11156return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011157
11158Examples:
11159"""""""""
11160
11161.. code-block:: llvm
11162
Tim Northoverfd7e4242014-07-17 10:51:23 +000011163 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011164 store i16 %res, i16* @x, align 2
11165
11166.. _int_convert_from_fp16:
11167
11168'``llvm.convert.from.fp16``' Intrinsic
11169^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11170
11171Syntax:
11172"""""""
11173
11174::
11175
Tim Northoverfd7e4242014-07-17 10:51:23 +000011176 declare float @llvm.convert.from.fp16.f32(i16 %a)
11177 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011178
11179Overview:
11180"""""""""
11181
11182The '``llvm.convert.from.fp16``' intrinsic function performs a
11183conversion from half precision floating point format to single precision
11184floating point format.
11185
11186Arguments:
11187""""""""""
11188
11189The intrinsic function contains single argument - the value to be
11190converted.
11191
11192Semantics:
11193""""""""""
11194
11195The '``llvm.convert.from.fp16``' intrinsic function performs a
11196conversion from half single precision floating point format to single
11197precision floating point format. The input half-float value is
11198represented by an ``i16`` value.
11199
11200Examples:
11201"""""""""
11202
11203.. code-block:: llvm
11204
David Blaikiec7aabbb2015-03-04 22:06:14 +000011205 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011206 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011207
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011208.. _dbg_intrinsics:
11209
Sean Silvab084af42012-12-07 10:36:55 +000011210Debugger Intrinsics
11211-------------------
11212
11213The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11214prefix), are described in the `LLVM Source Level
11215Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11216document.
11217
11218Exception Handling Intrinsics
11219-----------------------------
11220
11221The LLVM exception handling intrinsics (which all start with
11222``llvm.eh.`` prefix), are described in the `LLVM Exception
11223Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11224
11225.. _int_trampoline:
11226
11227Trampoline Intrinsics
11228---------------------
11229
11230These intrinsics make it possible to excise one parameter, marked with
11231the :ref:`nest <nest>` attribute, from a function. The result is a
11232callable function pointer lacking the nest parameter - the caller does
11233not need to provide a value for it. Instead, the value to use is stored
11234in advance in a "trampoline", a block of memory usually allocated on the
11235stack, which also contains code to splice the nest value into the
11236argument list. This is used to implement the GCC nested function address
11237extension.
11238
11239For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11240then the resulting function pointer has signature ``i32 (i32, i32)*``.
11241It can be created as follows:
11242
11243.. code-block:: llvm
11244
11245 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011246 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011247 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11248 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11249 %fp = bitcast i8* %p to i32 (i32, i32)*
11250
11251The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11252``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11253
11254.. _int_it:
11255
11256'``llvm.init.trampoline``' Intrinsic
11257^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11258
11259Syntax:
11260"""""""
11261
11262::
11263
11264 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11265
11266Overview:
11267"""""""""
11268
11269This fills the memory pointed to by ``tramp`` with executable code,
11270turning it into a trampoline.
11271
11272Arguments:
11273""""""""""
11274
11275The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11276pointers. The ``tramp`` argument must point to a sufficiently large and
11277sufficiently aligned block of memory; this memory is written to by the
11278intrinsic. Note that the size and the alignment are target-specific -
11279LLVM currently provides no portable way of determining them, so a
11280front-end that generates this intrinsic needs to have some
11281target-specific knowledge. The ``func`` argument must hold a function
11282bitcast to an ``i8*``.
11283
11284Semantics:
11285""""""""""
11286
11287The block of memory pointed to by ``tramp`` is filled with target
11288dependent code, turning it into a function. Then ``tramp`` needs to be
11289passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11290be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11291function's signature is the same as that of ``func`` with any arguments
11292marked with the ``nest`` attribute removed. At most one such ``nest``
11293argument is allowed, and it must be of pointer type. Calling the new
11294function is equivalent to calling ``func`` with the same argument list,
11295but with ``nval`` used for the missing ``nest`` argument. If, after
11296calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11297modified, then the effect of any later call to the returned function
11298pointer is undefined.
11299
11300.. _int_at:
11301
11302'``llvm.adjust.trampoline``' Intrinsic
11303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11304
11305Syntax:
11306"""""""
11307
11308::
11309
11310 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11311
11312Overview:
11313"""""""""
11314
11315This performs any required machine-specific adjustment to the address of
11316a trampoline (passed as ``tramp``).
11317
11318Arguments:
11319""""""""""
11320
11321``tramp`` must point to a block of memory which already has trampoline
11322code filled in by a previous call to
11323:ref:`llvm.init.trampoline <int_it>`.
11324
11325Semantics:
11326""""""""""
11327
11328On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011329different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011330intrinsic returns the executable address corresponding to ``tramp``
11331after performing the required machine specific adjustments. The pointer
11332returned can then be :ref:`bitcast and executed <int_trampoline>`.
11333
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011334.. _int_mload_mstore:
11335
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011336Masked Vector Load and Store Intrinsics
11337---------------------------------------
11338
11339LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11340
11341.. _int_mload:
11342
11343'``llvm.masked.load.*``' Intrinsics
11344^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11345
11346Syntax:
11347"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011348This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011349
11350::
11351
Matthias Braun68bb2932016-03-22 20:24:34 +000011352 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11353 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011354 ;; The data is a vector of pointers to double
Matthias Braun68bb2932016-03-22 20:24:34 +000011355 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011356 ;; The data is a vector of function pointers
Matthias Braun68bb2932016-03-22 20:24:34 +000011357 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011358
11359Overview:
11360"""""""""
11361
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011362Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011363
11364
11365Arguments:
11366""""""""""
11367
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011368The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011369
11370
11371Semantics:
11372""""""""""
11373
11374The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11375The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11376
11377
11378::
11379
Matthias Braun68bb2932016-03-22 20:24:34 +000011380 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011381
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011382 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011383 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011384 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011385
11386.. _int_mstore:
11387
11388'``llvm.masked.store.*``' Intrinsics
11389^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11390
11391Syntax:
11392"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011393This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011394
11395::
11396
Matthias Braun68bb2932016-03-22 20:24:34 +000011397 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11398 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011399 ;; The data is a vector of pointers to double
Matthias Braun68bb2932016-03-22 20:24:34 +000011400 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011401 ;; The data is a vector of function pointers
Matthias Braun68bb2932016-03-22 20:24:34 +000011402 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011403
11404Overview:
11405"""""""""
11406
11407Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11408
11409Arguments:
11410""""""""""
11411
11412The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11413
11414
11415Semantics:
11416""""""""""
11417
11418The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11419The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11420
11421::
11422
Matthias Braun68bb2932016-03-22 20:24:34 +000011423 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011424
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011425 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011426 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011427 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11428 store <16 x float> %res, <16 x float>* %ptr, align 4
11429
11430
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011431Masked Vector Gather and Scatter Intrinsics
11432-------------------------------------------
11433
11434LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11435
11436.. _int_mgather:
11437
11438'``llvm.masked.gather.*``' Intrinsics
11439^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11440
11441Syntax:
11442"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011443This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011444
11445::
11446
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011447 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11448 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11449 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011450
11451Overview:
11452"""""""""
11453
11454Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11455
11456
11457Arguments:
11458""""""""""
11459
11460The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11461
11462
11463Semantics:
11464""""""""""
11465
11466The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11467The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11468
11469
11470::
11471
11472 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11473
11474 ;; The gather with all-true mask is equivalent to the following instruction sequence
11475 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11476 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11477 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11478 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11479
11480 %val0 = load double, double* %ptr0, align 8
11481 %val1 = load double, double* %ptr1, align 8
11482 %val2 = load double, double* %ptr2, align 8
11483 %val3 = load double, double* %ptr3, align 8
11484
11485 %vec0 = insertelement <4 x double>undef, %val0, 0
11486 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11487 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11488 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11489
11490.. _int_mscatter:
11491
11492'``llvm.masked.scatter.*``' Intrinsics
11493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11494
11495Syntax:
11496"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011497This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011498
11499::
11500
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011501 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11502 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11503 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011504
11505Overview:
11506"""""""""
11507
11508Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11509
11510Arguments:
11511""""""""""
11512
11513The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11514
11515
11516Semantics:
11517""""""""""
11518
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011519The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011520
11521::
11522
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011523 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011524 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11525
11526 ;; It is equivalent to a list of scalar stores
11527 %val0 = extractelement <8 x i32> %value, i32 0
11528 %val1 = extractelement <8 x i32> %value, i32 1
11529 ..
11530 %val7 = extractelement <8 x i32> %value, i32 7
11531 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11532 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11533 ..
11534 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11535 ;; Note: the order of the following stores is important when they overlap:
11536 store i32 %val0, i32* %ptr0, align 4
11537 store i32 %val1, i32* %ptr1, align 4
11538 ..
11539 store i32 %val7, i32* %ptr7, align 4
11540
11541
Sean Silvab084af42012-12-07 10:36:55 +000011542Memory Use Markers
11543------------------
11544
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011545This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011546memory objects and ranges where variables are immutable.
11547
Reid Klecknera534a382013-12-19 02:14:12 +000011548.. _int_lifestart:
11549
Sean Silvab084af42012-12-07 10:36:55 +000011550'``llvm.lifetime.start``' Intrinsic
11551^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11552
11553Syntax:
11554"""""""
11555
11556::
11557
11558 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11559
11560Overview:
11561"""""""""
11562
11563The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11564object's lifetime.
11565
11566Arguments:
11567""""""""""
11568
11569The first argument is a constant integer representing the size of the
11570object, or -1 if it is variable sized. The second argument is a pointer
11571to the object.
11572
11573Semantics:
11574""""""""""
11575
11576This intrinsic indicates that before this point in the code, the value
11577of the memory pointed to by ``ptr`` is dead. This means that it is known
11578to never be used and has an undefined value. A load from the pointer
11579that precedes this intrinsic can be replaced with ``'undef'``.
11580
Reid Klecknera534a382013-12-19 02:14:12 +000011581.. _int_lifeend:
11582
Sean Silvab084af42012-12-07 10:36:55 +000011583'``llvm.lifetime.end``' Intrinsic
11584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11585
11586Syntax:
11587"""""""
11588
11589::
11590
11591 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11592
11593Overview:
11594"""""""""
11595
11596The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11597object's lifetime.
11598
11599Arguments:
11600""""""""""
11601
11602The first argument is a constant integer representing the size of the
11603object, or -1 if it is variable sized. The second argument is a pointer
11604to the object.
11605
11606Semantics:
11607""""""""""
11608
11609This intrinsic indicates that after this point in the code, the value of
11610the memory pointed to by ``ptr`` is dead. This means that it is known to
11611never be used and has an undefined value. Any stores into the memory
11612object following this intrinsic may be removed as dead.
11613
11614'``llvm.invariant.start``' Intrinsic
11615^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11616
11617Syntax:
11618"""""""
11619
11620::
11621
11622 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11623
11624Overview:
11625"""""""""
11626
11627The '``llvm.invariant.start``' intrinsic specifies that the contents of
11628a memory object will not change.
11629
11630Arguments:
11631""""""""""
11632
11633The first argument is a constant integer representing the size of the
11634object, or -1 if it is variable sized. The second argument is a pointer
11635to the object.
11636
11637Semantics:
11638""""""""""
11639
11640This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11641the return value, the referenced memory location is constant and
11642unchanging.
11643
11644'``llvm.invariant.end``' Intrinsic
11645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11646
11647Syntax:
11648"""""""
11649
11650::
11651
11652 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11653
11654Overview:
11655"""""""""
11656
11657The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11658memory object are mutable.
11659
11660Arguments:
11661""""""""""
11662
11663The first argument is the matching ``llvm.invariant.start`` intrinsic.
11664The second argument is a constant integer representing the size of the
11665object, or -1 if it is variable sized and the third argument is a
11666pointer to the object.
11667
11668Semantics:
11669""""""""""
11670
11671This intrinsic indicates that the memory is mutable again.
11672
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011673'``llvm.invariant.group.barrier``' Intrinsic
11674^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11675
11676Syntax:
11677"""""""
11678
11679::
11680
11681 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11682
11683Overview:
11684"""""""""
11685
11686The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11687established by invariant.group metadata no longer holds, to obtain a new pointer
11688value that does not carry the invariant information.
11689
11690
11691Arguments:
11692""""""""""
11693
11694The ``llvm.invariant.group.barrier`` takes only one argument, which is
11695the pointer to the memory for which the ``invariant.group`` no longer holds.
11696
11697Semantics:
11698""""""""""
11699
11700Returns another pointer that aliases its argument but which is considered different
11701for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11702
Sean Silvab084af42012-12-07 10:36:55 +000011703General Intrinsics
11704------------------
11705
11706This class of intrinsics is designed to be generic and has no specific
11707purpose.
11708
11709'``llvm.var.annotation``' Intrinsic
11710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11711
11712Syntax:
11713"""""""
11714
11715::
11716
11717 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11718
11719Overview:
11720"""""""""
11721
11722The '``llvm.var.annotation``' intrinsic.
11723
11724Arguments:
11725""""""""""
11726
11727The first argument is a pointer to a value, the second is a pointer to a
11728global string, the third is a pointer to a global string which is the
11729source file name, and the last argument is the line number.
11730
11731Semantics:
11732""""""""""
11733
11734This intrinsic allows annotation of local variables with arbitrary
11735strings. This can be useful for special purpose optimizations that want
11736to look for these annotations. These have no other defined use; they are
11737ignored by code generation and optimization.
11738
Michael Gottesman88d18832013-03-26 00:34:27 +000011739'``llvm.ptr.annotation.*``' Intrinsic
11740^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11741
11742Syntax:
11743"""""""
11744
11745This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11746pointer to an integer of any width. *NOTE* you must specify an address space for
11747the pointer. The identifier for the default address space is the integer
11748'``0``'.
11749
11750::
11751
11752 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11753 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11754 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11755 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11756 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11757
11758Overview:
11759"""""""""
11760
11761The '``llvm.ptr.annotation``' intrinsic.
11762
11763Arguments:
11764""""""""""
11765
11766The first argument is a pointer to an integer value of arbitrary bitwidth
11767(result of some expression), the second is a pointer to a global string, the
11768third is a pointer to a global string which is the source file name, and the
11769last argument is the line number. It returns the value of the first argument.
11770
11771Semantics:
11772""""""""""
11773
11774This intrinsic allows annotation of a pointer to an integer with arbitrary
11775strings. This can be useful for special purpose optimizations that want to look
11776for these annotations. These have no other defined use; they are ignored by code
11777generation and optimization.
11778
Sean Silvab084af42012-12-07 10:36:55 +000011779'``llvm.annotation.*``' Intrinsic
11780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11781
11782Syntax:
11783"""""""
11784
11785This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11786any integer bit width.
11787
11788::
11789
11790 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11791 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11792 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11793 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11794 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11795
11796Overview:
11797"""""""""
11798
11799The '``llvm.annotation``' intrinsic.
11800
11801Arguments:
11802""""""""""
11803
11804The first argument is an integer value (result of some expression), the
11805second is a pointer to a global string, the third is a pointer to a
11806global string which is the source file name, and the last argument is
11807the line number. It returns the value of the first argument.
11808
11809Semantics:
11810""""""""""
11811
11812This intrinsic allows annotations to be put on arbitrary expressions
11813with arbitrary strings. This can be useful for special purpose
11814optimizations that want to look for these annotations. These have no
11815other defined use; they are ignored by code generation and optimization.
11816
11817'``llvm.trap``' Intrinsic
11818^^^^^^^^^^^^^^^^^^^^^^^^^
11819
11820Syntax:
11821"""""""
11822
11823::
11824
11825 declare void @llvm.trap() noreturn nounwind
11826
11827Overview:
11828"""""""""
11829
11830The '``llvm.trap``' intrinsic.
11831
11832Arguments:
11833""""""""""
11834
11835None.
11836
11837Semantics:
11838""""""""""
11839
11840This intrinsic is lowered to the target dependent trap instruction. If
11841the target does not have a trap instruction, this intrinsic will be
11842lowered to a call of the ``abort()`` function.
11843
11844'``llvm.debugtrap``' Intrinsic
11845^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11846
11847Syntax:
11848"""""""
11849
11850::
11851
11852 declare void @llvm.debugtrap() nounwind
11853
11854Overview:
11855"""""""""
11856
11857The '``llvm.debugtrap``' intrinsic.
11858
11859Arguments:
11860""""""""""
11861
11862None.
11863
11864Semantics:
11865""""""""""
11866
11867This intrinsic is lowered to code which is intended to cause an
11868execution trap with the intention of requesting the attention of a
11869debugger.
11870
11871'``llvm.stackprotector``' Intrinsic
11872^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11873
11874Syntax:
11875"""""""
11876
11877::
11878
11879 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11880
11881Overview:
11882"""""""""
11883
11884The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11885onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11886is placed on the stack before local variables.
11887
11888Arguments:
11889""""""""""
11890
11891The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11892The first argument is the value loaded from the stack guard
11893``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11894enough space to hold the value of the guard.
11895
11896Semantics:
11897""""""""""
11898
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011899This intrinsic causes the prologue/epilogue inserter to force the position of
11900the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11901to ensure that if a local variable on the stack is overwritten, it will destroy
11902the value of the guard. When the function exits, the guard on the stack is
11903checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11904different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11905calling the ``__stack_chk_fail()`` function.
11906
11907'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011908^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011909
11910Syntax:
11911"""""""
11912
11913::
11914
11915 declare void @llvm.stackprotectorcheck(i8** <guard>)
11916
11917Overview:
11918"""""""""
11919
11920The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011921created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011922``__stack_chk_fail()`` function.
11923
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011924Arguments:
11925""""""""""
11926
11927The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11928the variable ``@__stack_chk_guard``.
11929
11930Semantics:
11931""""""""""
11932
11933This intrinsic is provided to perform the stack protector check by comparing
11934``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11935values do not match call the ``__stack_chk_fail()`` function.
11936
11937The reason to provide this as an IR level intrinsic instead of implementing it
11938via other IR operations is that in order to perform this operation at the IR
11939level without an intrinsic, one would need to create additional basic blocks to
11940handle the success/failure cases. This makes it difficult to stop the stack
11941protector check from disrupting sibling tail calls in Codegen. With this
11942intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011943codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011944
Sean Silvab084af42012-12-07 10:36:55 +000011945'``llvm.objectsize``' Intrinsic
11946^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11947
11948Syntax:
11949"""""""
11950
11951::
11952
11953 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11954 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11955
11956Overview:
11957"""""""""
11958
11959The ``llvm.objectsize`` intrinsic is designed to provide information to
11960the optimizers to determine at compile time whether a) an operation
11961(like memcpy) will overflow a buffer that corresponds to an object, or
11962b) that a runtime check for overflow isn't necessary. An object in this
11963context means an allocation of a specific class, structure, array, or
11964other object.
11965
11966Arguments:
11967""""""""""
11968
11969The ``llvm.objectsize`` intrinsic takes two arguments. The first
11970argument is a pointer to or into the ``object``. The second argument is
11971a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11972or -1 (if false) when the object size is unknown. The second argument
11973only accepts constants.
11974
11975Semantics:
11976""""""""""
11977
11978The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11979the size of the object concerned. If the size cannot be determined at
11980compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11981on the ``min`` argument).
11982
11983'``llvm.expect``' Intrinsic
11984^^^^^^^^^^^^^^^^^^^^^^^^^^^
11985
11986Syntax:
11987"""""""
11988
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011989This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11990integer bit width.
11991
Sean Silvab084af42012-12-07 10:36:55 +000011992::
11993
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011994 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011995 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11996 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11997
11998Overview:
11999"""""""""
12000
12001The ``llvm.expect`` intrinsic provides information about expected (the
12002most probable) value of ``val``, which can be used by optimizers.
12003
12004Arguments:
12005""""""""""
12006
12007The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12008a value. The second argument is an expected value, this needs to be a
12009constant value, variables are not allowed.
12010
12011Semantics:
12012""""""""""
12013
12014This intrinsic is lowered to the ``val``.
12015
Philip Reamese0e90832015-04-26 22:23:12 +000012016.. _int_assume:
12017
Hal Finkel93046912014-07-25 21:13:35 +000012018'``llvm.assume``' Intrinsic
12019^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12020
12021Syntax:
12022"""""""
12023
12024::
12025
12026 declare void @llvm.assume(i1 %cond)
12027
12028Overview:
12029"""""""""
12030
12031The ``llvm.assume`` allows the optimizer to assume that the provided
12032condition is true. This information can then be used in simplifying other parts
12033of the code.
12034
12035Arguments:
12036""""""""""
12037
12038The condition which the optimizer may assume is always true.
12039
12040Semantics:
12041""""""""""
12042
12043The intrinsic allows the optimizer to assume that the provided condition is
12044always true whenever the control flow reaches the intrinsic call. No code is
12045generated for this intrinsic, and instructions that contribute only to the
12046provided condition are not used for code generation. If the condition is
12047violated during execution, the behavior is undefined.
12048
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012049Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012050used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12051only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012052if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012053sufficient overall improvement in code quality. For this reason,
12054``llvm.assume`` should not be used to document basic mathematical invariants
12055that the optimizer can otherwise deduce or facts that are of little use to the
12056optimizer.
12057
Peter Collingbournee6909c82015-02-20 20:30:47 +000012058.. _bitset.test:
12059
12060'``llvm.bitset.test``' Intrinsic
12061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12062
12063Syntax:
12064"""""""
12065
12066::
12067
12068 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12069
12070
12071Arguments:
12072""""""""""
12073
12074The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012075metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012076
12077Overview:
12078"""""""""
12079
12080The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12081member of the given bitset.
12082
Sean Silvab084af42012-12-07 10:36:55 +000012083'``llvm.donothing``' Intrinsic
12084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12085
12086Syntax:
12087"""""""
12088
12089::
12090
12091 declare void @llvm.donothing() nounwind readnone
12092
12093Overview:
12094"""""""""
12095
Juergen Ributzkac9161192014-10-23 22:36:13 +000012096The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012097three intrinsics (besides ``llvm.experimental.patchpoint`` and
12098``llvm.experimental.gc.statepoint``) that can be called with an invoke
12099instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012100
12101Arguments:
12102""""""""""
12103
12104None.
12105
12106Semantics:
12107""""""""""
12108
12109This intrinsic does nothing, and it's removed by optimizers and ignored
12110by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012111
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012112'``llvm.experimental.deoptimize``' Intrinsic
12113^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12114
12115Syntax:
12116"""""""
12117
12118::
12119
12120 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12121
12122Overview:
12123"""""""""
12124
12125This intrinsic, together with :ref:`deoptimization operand bundles
12126<deopt_opbundles>`, allow frontends to express transfer of control and
12127frame-local state from the currently executing (typically more specialized,
12128hence faster) version of a function into another (typically more generic, hence
12129slower) version.
12130
12131In languages with a fully integrated managed runtime like Java and JavaScript
12132this intrinsic can be used to implement "uncommon trap" or "side exit" like
12133functionality. In unmanaged languages like C and C++, this intrinsic can be
12134used to represent the slow paths of specialized functions.
12135
12136
12137Arguments:
12138""""""""""
12139
12140The intrinsic takes an arbitrary number of arguments, whose meaning is
12141decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12142
12143Semantics:
12144""""""""""
12145
12146The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12147deoptimization continuation (denoted using a :ref:`deoptimization
12148operand bundle <deopt_opbundles>`) and returns the value returned by
12149the deoptimization continuation. Defining the semantic properties of
12150the continuation itself is out of scope of the language reference --
12151as far as LLVM is concerned, the deoptimization continuation can
12152invoke arbitrary side effects, including reading from and writing to
12153the entire heap.
12154
12155Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12156continue execution to the end of the physical frame containing them, so all
12157calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12158
12159 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12160 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12161 - The ``ret`` instruction must return the value produced by the
12162 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12163
12164Note that the above restrictions imply that the return type for a call to
12165``@llvm.experimental.deoptimize`` will match the return type of its immediate
12166caller.
12167
12168The inliner composes the ``"deopt"`` continuations of the caller into the
12169``"deopt"`` continuations present in the inlinee, and also updates calls to this
12170intrinsic to return directly from the frame of the function it inlined into.
12171
12172.. _deoptimize_lowering:
12173
12174Lowering:
12175"""""""""
12176
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012177Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12178symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12179ensure that this symbol is defined). The call arguments to
12180``@llvm.experimental.deoptimize`` are lowered as if they were formal
12181arguments of the specified types, and not as varargs.
12182
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012183
Sanjoy Das021de052016-03-31 00:18:46 +000012184'``llvm.experimental.guard``' Intrinsic
12185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12186
12187Syntax:
12188"""""""
12189
12190::
12191
12192 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12193
12194Overview:
12195"""""""""
12196
12197This intrinsic, together with :ref:`deoptimization operand bundles
12198<deopt_opbundles>`, allows frontends to express guards or checks on
12199optimistic assumptions made during compilation. The semantics of
12200``@llvm.experimental.guard`` is defined in terms of
12201``@llvm.experimental.deoptimize`` -- its body is defined to be
12202equivalent to:
12203
12204.. code-block:: llvm
12205
12206 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12207 %realPred = and i1 %pred, undef
12208 br i1 %realPred, label %continue, label %leave
12209
12210 leave:
12211 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12212 ret void
12213
12214 continue:
12215 ret void
12216 }
12217
12218In words, ``@llvm.experimental.guard`` executes the attached
12219``"deopt"`` continuation if (but **not** only if) its first argument
12220is ``false``. Since the optimizer is allowed to replace the ``undef``
12221with an arbitrary value, it can optimize guard to fail "spuriously",
12222i.e. without the original condition being false (hence the "not only
12223if"); and this allows for "check widening" type optimizations.
12224
12225``@llvm.experimental.guard`` cannot be invoked.
12226
12227
Andrew Trick5e029ce2013-12-24 02:57:25 +000012228Stack Map Intrinsics
12229--------------------
12230
12231LLVM provides experimental intrinsics to support runtime patching
12232mechanisms commonly desired in dynamic language JITs. These intrinsics
12233are described in :doc:`StackMaps`.