blob: 01c255d2459364ac37e1d2aa3408d7db662720c9 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
253``extern_weak``
254 The semantics of this linkage follow the ELF object file model: the
255 symbol is weak until linked, if not linked, the symbol becomes null
256 instead of being an undefined reference.
257``linkonce_odr``, ``weak_odr``
258 Some languages allow differing globals to be merged, such as two
259 functions with different semantics. Other languages, such as
260 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000261 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000262 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
263 global will only be merged with equivalent globals. These linkage
264 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000265``external``
266 If none of the above identifiers are used, the global is externally
267 visible, meaning that it participates in linkage and can be used to
268 resolve external symbol references.
269
Sean Silvab084af42012-12-07 10:36:55 +0000270It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000271other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000272
Sean Silvab084af42012-12-07 10:36:55 +0000273.. _callingconv:
274
275Calling Conventions
276-------------------
277
278LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
279:ref:`invokes <i_invoke>` can all have an optional calling convention
280specified for the call. The calling convention of any pair of dynamic
281caller/callee must match, or the behavior of the program is undefined.
282The following calling conventions are supported by LLVM, and more may be
283added in the future:
284
285"``ccc``" - The C calling convention
286 This calling convention (the default if no other calling convention
287 is specified) matches the target C calling conventions. This calling
288 convention supports varargs function calls and tolerates some
289 mismatch in the declared prototype and implemented declaration of
290 the function (as does normal C).
291"``fastcc``" - The fast calling convention
292 This calling convention attempts to make calls as fast as possible
293 (e.g. by passing things in registers). This calling convention
294 allows the target to use whatever tricks it wants to produce fast
295 code for the target, without having to conform to an externally
296 specified ABI (Application Binary Interface). `Tail calls can only
297 be optimized when this, the GHC or the HiPE convention is
298 used. <CodeGenerator.html#id80>`_ This calling convention does not
299 support varargs and requires the prototype of all callees to exactly
300 match the prototype of the function definition.
301"``coldcc``" - The cold calling convention
302 This calling convention attempts to make code in the caller as
303 efficient as possible under the assumption that the call is not
304 commonly executed. As such, these calls often preserve all registers
305 so that the call does not break any live ranges in the caller side.
306 This calling convention does not support varargs and requires the
307 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000308 function definition. Furthermore the inliner doesn't consider such function
309 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000310"``cc 10``" - GHC convention
311 This calling convention has been implemented specifically for use by
312 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
313 It passes everything in registers, going to extremes to achieve this
314 by disabling callee save registers. This calling convention should
315 not be used lightly but only for specific situations such as an
316 alternative to the *register pinning* performance technique often
317 used when implementing functional programming languages. At the
318 moment only X86 supports this convention and it has the following
319 limitations:
320
321 - On *X86-32* only supports up to 4 bit type parameters. No
322 floating point types are supported.
323 - On *X86-64* only supports up to 10 bit type parameters and 6
324 floating point parameters.
325
326 This calling convention supports `tail call
327 optimization <CodeGenerator.html#id80>`_ but requires both the
328 caller and callee are using it.
329"``cc 11``" - The HiPE calling convention
330 This calling convention has been implemented specifically for use by
331 the `High-Performance Erlang
332 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
333 native code compiler of the `Ericsson's Open Source Erlang/OTP
334 system <http://www.erlang.org/download.shtml>`_. It uses more
335 registers for argument passing than the ordinary C calling
336 convention and defines no callee-saved registers. The calling
337 convention properly supports `tail call
338 optimization <CodeGenerator.html#id80>`_ but requires that both the
339 caller and the callee use it. It uses a *register pinning*
340 mechanism, similar to GHC's convention, for keeping frequently
341 accessed runtime components pinned to specific hardware registers.
342 At the moment only X86 supports this convention (both 32 and 64
343 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000344"``webkit_jscc``" - WebKit's JavaScript calling convention
345 This calling convention has been implemented for `WebKit FTL JIT
346 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
347 stack right to left (as cdecl does), and returns a value in the
348 platform's customary return register.
349"``anyregcc``" - Dynamic calling convention for code patching
350 This is a special convention that supports patching an arbitrary code
351 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000352 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000353 allocated. This can currently only be used with calls to
354 llvm.experimental.patchpoint because only this intrinsic records
355 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000356"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 This calling convention attempts to make the code in the caller as
358 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000359 calling convention on how arguments and return values are passed, but it
360 uses a different set of caller/callee-saved registers. This alleviates the
361 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000362 call in the caller. If the arguments are passed in callee-saved registers,
363 then they will be preserved by the callee across the call. This doesn't
364 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000365
366 - On X86-64 the callee preserves all general purpose registers, except for
367 R11. R11 can be used as a scratch register. Floating-point registers
368 (XMMs/YMMs) are not preserved and need to be saved by the caller.
369
370 The idea behind this convention is to support calls to runtime functions
371 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000372 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000373 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000374 registers, which haven't already been saved by the caller. The
375 `PreserveMost` calling convention is very similar to the `cold` calling
376 convention in terms of caller/callee-saved registers, but they are used for
377 different types of function calls. `coldcc` is for function calls that are
378 rarely executed, whereas `preserve_mostcc` function calls are intended to be
379 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
380 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000381
382 This calling convention will be used by a future version of the ObjectiveC
383 runtime and should therefore still be considered experimental at this time.
384 Although this convention was created to optimize certain runtime calls to
385 the ObjectiveC runtime, it is not limited to this runtime and might be used
386 by other runtimes in the future too. The current implementation only
387 supports X86-64, but the intention is to support more architectures in the
388 future.
389"``preserve_allcc``" - The `PreserveAll` calling convention
390 This calling convention attempts to make the code in the caller even less
391 intrusive than the `PreserveMost` calling convention. This calling
392 convention also behaves identical to the `C` calling convention on how
393 arguments and return values are passed, but it uses a different set of
394 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000395 recovering a large register set before and after the call in the caller. If
396 the arguments are passed in callee-saved registers, then they will be
397 preserved by the callee across the call. This doesn't apply for values
398 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000399
400 - On X86-64 the callee preserves all general purpose registers, except for
401 R11. R11 can be used as a scratch register. Furthermore it also preserves
402 all floating-point registers (XMMs/YMMs).
403
404 The idea behind this convention is to support calls to runtime functions
405 that don't need to call out to any other functions.
406
407 This calling convention, like the `PreserveMost` calling convention, will be
408 used by a future version of the ObjectiveC runtime and should be considered
409 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000410"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000411 Clang generates an access function to access C++-style TLS. The access
412 function generally has an entry block, an exit block and an initialization
413 block that is run at the first time. The entry and exit blocks can access
414 a few TLS IR variables, each access will be lowered to a platform-specific
415 sequence.
416
Manman Ren19c7bbe2015-12-04 17:40:13 +0000417 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000418 preserving as many registers as possible (all the registers that are
419 perserved on the fast path, composed of the entry and exit blocks).
420
421 This calling convention behaves identical to the `C` calling convention on
422 how arguments and return values are passed, but it uses a different set of
423 caller/callee-saved registers.
424
425 Given that each platform has its own lowering sequence, hence its own set
426 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000427
428 - On X86-64 the callee preserves all general purpose registers, except for
429 RDI and RAX.
Sean Silvab084af42012-12-07 10:36:55 +0000430"``cc <n>``" - Numbered convention
431 Any calling convention may be specified by number, allowing
432 target-specific calling conventions to be used. Target specific
433 calling conventions start at 64.
434
435More calling conventions can be added/defined on an as-needed basis, to
436support Pascal conventions or any other well-known target-independent
437convention.
438
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000439.. _visibilitystyles:
440
Sean Silvab084af42012-12-07 10:36:55 +0000441Visibility Styles
442-----------------
443
444All Global Variables and Functions have one of the following visibility
445styles:
446
447"``default``" - Default style
448 On targets that use the ELF object file format, default visibility
449 means that the declaration is visible to other modules and, in
450 shared libraries, means that the declared entity may be overridden.
451 On Darwin, default visibility means that the declaration is visible
452 to other modules. Default visibility corresponds to "external
453 linkage" in the language.
454"``hidden``" - Hidden style
455 Two declarations of an object with hidden visibility refer to the
456 same object if they are in the same shared object. Usually, hidden
457 visibility indicates that the symbol will not be placed into the
458 dynamic symbol table, so no other module (executable or shared
459 library) can reference it directly.
460"``protected``" - Protected style
461 On ELF, protected visibility indicates that the symbol will be
462 placed in the dynamic symbol table, but that references within the
463 defining module will bind to the local symbol. That is, the symbol
464 cannot be overridden by another module.
465
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000466A symbol with ``internal`` or ``private`` linkage must have ``default``
467visibility.
468
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000469.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000470
Nico Rieck7157bb72014-01-14 15:22:47 +0000471DLL Storage Classes
472-------------------
473
474All Global Variables, Functions and Aliases can have one of the following
475DLL storage class:
476
477``dllimport``
478 "``dllimport``" causes the compiler to reference a function or variable via
479 a global pointer to a pointer that is set up by the DLL exporting the
480 symbol. On Microsoft Windows targets, the pointer name is formed by
481 combining ``__imp_`` and the function or variable name.
482``dllexport``
483 "``dllexport``" causes the compiler to provide a global pointer to a pointer
484 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
485 Microsoft Windows targets, the pointer name is formed by combining
486 ``__imp_`` and the function or variable name. Since this storage class
487 exists for defining a dll interface, the compiler, assembler and linker know
488 it is externally referenced and must refrain from deleting the symbol.
489
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000490.. _tls_model:
491
492Thread Local Storage Models
493---------------------------
494
495A variable may be defined as ``thread_local``, which means that it will
496not be shared by threads (each thread will have a separated copy of the
497variable). Not all targets support thread-local variables. Optionally, a
498TLS model may be specified:
499
500``localdynamic``
501 For variables that are only used within the current shared library.
502``initialexec``
503 For variables in modules that will not be loaded dynamically.
504``localexec``
505 For variables defined in the executable and only used within it.
506
507If no explicit model is given, the "general dynamic" model is used.
508
509The models correspond to the ELF TLS models; see `ELF Handling For
510Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
511more information on under which circumstances the different models may
512be used. The target may choose a different TLS model if the specified
513model is not supported, or if a better choice of model can be made.
514
Sean Silva706fba52015-08-06 22:56:24 +0000515A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000516the alias is accessed. It will not have any effect in the aliasee.
517
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000518For platforms without linker support of ELF TLS model, the -femulated-tls
519flag can be used to generate GCC compatible emulated TLS code.
520
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000521.. _namedtypes:
522
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000523Structure Types
524---------------
Sean Silvab084af42012-12-07 10:36:55 +0000525
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000526LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000527types <t_struct>`. Literal types are uniqued structurally, but identified types
528are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000529to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000530
Sean Silva706fba52015-08-06 22:56:24 +0000531An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000532
533.. code-block:: llvm
534
535 %mytype = type { %mytype*, i32 }
536
Sean Silvaa1190322015-08-06 22:56:48 +0000537Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000538literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000539
540.. _globalvars:
541
542Global Variables
543----------------
544
545Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000546instead of run-time.
547
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000548Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000549
550Global variables in other translation units can also be declared, in which
551case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000552
Bob Wilson85b24f22014-06-12 20:40:33 +0000553Either global variable definitions or declarations may have an explicit section
554to be placed in and may have an optional explicit alignment specified.
555
Michael Gottesman006039c2013-01-31 05:48:48 +0000556A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000557the contents of the variable will **never** be modified (enabling better
558optimization, allowing the global data to be placed in the read-only
559section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000560initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000561variable.
562
563LLVM explicitly allows *declarations* of global variables to be marked
564constant, even if the final definition of the global is not. This
565capability can be used to enable slightly better optimization of the
566program, but requires the language definition to guarantee that
567optimizations based on the 'constantness' are valid for the translation
568units that do not include the definition.
569
570As SSA values, global variables define pointer values that are in scope
571(i.e. they dominate) all basic blocks in the program. Global variables
572always define a pointer to their "content" type because they describe a
573region of memory, and all memory objects in LLVM are accessed through
574pointers.
575
576Global variables can be marked with ``unnamed_addr`` which indicates
577that the address is not significant, only the content. Constants marked
578like this can be merged with other constants if they have the same
579initializer. Note that a constant with significant address *can* be
580merged with a ``unnamed_addr`` constant, the result being a constant
581whose address is significant.
582
583A global variable may be declared to reside in a target-specific
584numbered address space. For targets that support them, address spaces
585may affect how optimizations are performed and/or what target
586instructions are used to access the variable. The default address space
587is zero. The address space qualifier must precede any other attributes.
588
589LLVM allows an explicit section to be specified for globals. If the
590target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000591Additionally, the global can placed in a comdat if the target has the necessary
592support.
Sean Silvab084af42012-12-07 10:36:55 +0000593
Michael Gottesmane743a302013-02-04 03:22:00 +0000594By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000595variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000596initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000597true even for variables potentially accessible from outside the
598module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000599``@llvm.used`` or dllexported variables. This assumption may be suppressed
600by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602An explicit alignment may be specified for a global, which must be a
603power of 2. If not present, or if the alignment is set to zero, the
604alignment of the global is set by the target to whatever it feels
605convenient. If an explicit alignment is specified, the global is forced
606to have exactly that alignment. Targets and optimizers are not allowed
607to over-align the global if the global has an assigned section. In this
608case, the extra alignment could be observable: for example, code could
609assume that the globals are densely packed in their section and try to
610iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000611iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000612
Nico Rieck7157bb72014-01-14 15:22:47 +0000613Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
614
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000615Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000616:ref:`Thread Local Storage Model <tls_model>`.
617
Nico Rieck7157bb72014-01-14 15:22:47 +0000618Syntax::
619
620 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000621 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000622 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000623 [, section "name"] [, comdat [($name)]]
624 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000625
Sean Silvab084af42012-12-07 10:36:55 +0000626For example, the following defines a global in a numbered address space
627with an initializer, section, and alignment:
628
629.. code-block:: llvm
630
631 @G = addrspace(5) constant float 1.0, section "foo", align 4
632
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000633The following example just declares a global variable
634
635.. code-block:: llvm
636
637 @G = external global i32
638
Sean Silvab084af42012-12-07 10:36:55 +0000639The following example defines a thread-local global with the
640``initialexec`` TLS model:
641
642.. code-block:: llvm
643
644 @G = thread_local(initialexec) global i32 0, align 4
645
646.. _functionstructure:
647
648Functions
649---------
650
651LLVM function definitions consist of the "``define``" keyword, an
652optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000653style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
654an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000655an optional ``unnamed_addr`` attribute, a return type, an optional
656:ref:`parameter attribute <paramattrs>` for the return type, a function
657name, a (possibly empty) argument list (each with optional :ref:`parameter
658attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000659an optional section, an optional alignment,
660an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000661an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000662an optional :ref:`prologue <prologuedata>`,
663an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000664an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000665an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000666
667LLVM function declarations consist of the "``declare``" keyword, an
668optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000669style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
670an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000671an optional ``unnamed_addr`` attribute, a return type, an optional
672:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000673name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000674:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
675and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000676
Bill Wendling6822ecb2013-10-27 05:09:12 +0000677A function definition contains a list of basic blocks, forming the CFG (Control
678Flow Graph) for the function. Each basic block may optionally start with a label
679(giving the basic block a symbol table entry), contains a list of instructions,
680and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
681function return). If an explicit label is not provided, a block is assigned an
682implicit numbered label, using the next value from the same counter as used for
683unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
684entry block does not have an explicit label, it will be assigned label "%0",
685then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000686
687The first basic block in a function is special in two ways: it is
688immediately executed on entrance to the function, and it is not allowed
689to have predecessor basic blocks (i.e. there can not be any branches to
690the entry block of a function). Because the block can have no
691predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
692
693LLVM allows an explicit section to be specified for functions. If the
694target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000695Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000696
697An explicit alignment may be specified for a function. If not present,
698or if the alignment is set to zero, the alignment of the function is set
699by the target to whatever it feels convenient. If an explicit alignment
700is specified, the function is forced to have at least that much
701alignment. All alignments must be a power of 2.
702
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000703If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000704be significant and two identical functions can be merged.
705
706Syntax::
707
Nico Rieck7157bb72014-01-14 15:22:47 +0000708 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000709 [cconv] [ret attrs]
710 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000711 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000712 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000713 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000714
Sean Silva706fba52015-08-06 22:56:24 +0000715The argument list is a comma separated sequence of arguments where each
716argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000717
718Syntax::
719
720 <type> [parameter Attrs] [name]
721
722
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000723.. _langref_aliases:
724
Sean Silvab084af42012-12-07 10:36:55 +0000725Aliases
726-------
727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Aliases, unlike function or variables, don't create any new data. They
729are just a new symbol and metadata for an existing position.
730
731Aliases have a name and an aliasee that is either a global value or a
732constant expression.
733
Nico Rieck7157bb72014-01-14 15:22:47 +0000734Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000735:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
736<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000737
738Syntax::
739
David Blaikie196582e2015-10-22 01:17:29 +0000740 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000741
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000742The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000743``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000744might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000745
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000746Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000747the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
748to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000749
Rafael Espindola64c1e182014-06-03 02:41:57 +0000750Since aliases are only a second name, some restrictions apply, of which
751some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000752
Rafael Espindola64c1e182014-06-03 02:41:57 +0000753* The expression defining the aliasee must be computable at assembly
754 time. Since it is just a name, no relocations can be used.
755
756* No alias in the expression can be weak as the possibility of the
757 intermediate alias being overridden cannot be represented in an
758 object file.
759
760* No global value in the expression can be a declaration, since that
761 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000762
David Majnemerdad0a642014-06-27 18:19:56 +0000763.. _langref_comdats:
764
765Comdats
766-------
767
768Comdat IR provides access to COFF and ELF object file COMDAT functionality.
769
Sean Silvaa1190322015-08-06 22:56:48 +0000770Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000771specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000772that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000773aliasee computes to, if any.
774
775Comdats have a selection kind to provide input on how the linker should
776choose between keys in two different object files.
777
778Syntax::
779
780 $<Name> = comdat SelectionKind
781
782The selection kind must be one of the following:
783
784``any``
785 The linker may choose any COMDAT key, the choice is arbitrary.
786``exactmatch``
787 The linker may choose any COMDAT key but the sections must contain the
788 same data.
789``largest``
790 The linker will choose the section containing the largest COMDAT key.
791``noduplicates``
792 The linker requires that only section with this COMDAT key exist.
793``samesize``
794 The linker may choose any COMDAT key but the sections must contain the
795 same amount of data.
796
797Note that the Mach-O platform doesn't support COMDATs and ELF only supports
798``any`` as a selection kind.
799
800Here is an example of a COMDAT group where a function will only be selected if
801the COMDAT key's section is the largest:
802
803.. code-block:: llvm
804
805 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000806 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000807
Rafael Espindola83a362c2015-01-06 22:55:16 +0000808 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000809 ret void
810 }
811
Rafael Espindola83a362c2015-01-06 22:55:16 +0000812As a syntactic sugar the ``$name`` can be omitted if the name is the same as
813the global name:
814
815.. code-block:: llvm
816
817 $foo = comdat any
818 @foo = global i32 2, comdat
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821In a COFF object file, this will create a COMDAT section with selection kind
822``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
823and another COMDAT section with selection kind
824``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000825section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000826
827There are some restrictions on the properties of the global object.
828It, or an alias to it, must have the same name as the COMDAT group when
829targeting COFF.
830The contents and size of this object may be used during link-time to determine
831which COMDAT groups get selected depending on the selection kind.
832Because the name of the object must match the name of the COMDAT group, the
833linkage of the global object must not be local; local symbols can get renamed
834if a collision occurs in the symbol table.
835
836The combined use of COMDATS and section attributes may yield surprising results.
837For example:
838
839.. code-block:: llvm
840
841 $foo = comdat any
842 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000843 @g1 = global i32 42, section "sec", comdat($foo)
844 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000845
846From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000847with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000848COMDAT groups and COMDATs, at the object file level, are represented by
849sections.
850
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000851Note that certain IR constructs like global variables and functions may
852create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000853COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000854in individual sections (e.g. when `-data-sections` or `-function-sections`
855is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000856
Sean Silvab084af42012-12-07 10:36:55 +0000857.. _namedmetadatastructure:
858
859Named Metadata
860--------------
861
862Named metadata is a collection of metadata. :ref:`Metadata
863nodes <metadata>` (but not metadata strings) are the only valid
864operands for a named metadata.
865
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000866#. Named metadata are represented as a string of characters with the
867 metadata prefix. The rules for metadata names are the same as for
868 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
869 are still valid, which allows any character to be part of a name.
870
Sean Silvab084af42012-12-07 10:36:55 +0000871Syntax::
872
873 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000874 !0 = !{!"zero"}
875 !1 = !{!"one"}
876 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000877 ; A named metadata.
878 !name = !{!0, !1, !2}
879
880.. _paramattrs:
881
882Parameter Attributes
883--------------------
884
885The return type and each parameter of a function type may have a set of
886*parameter attributes* associated with them. Parameter attributes are
887used to communicate additional information about the result or
888parameters of a function. Parameter attributes are considered to be part
889of the function, not of the function type, so functions with different
890parameter attributes can have the same function type.
891
892Parameter attributes are simple keywords that follow the type specified.
893If multiple parameter attributes are needed, they are space separated.
894For example:
895
896.. code-block:: llvm
897
898 declare i32 @printf(i8* noalias nocapture, ...)
899 declare i32 @atoi(i8 zeroext)
900 declare signext i8 @returns_signed_char()
901
902Note that any attributes for the function result (``nounwind``,
903``readonly``) come immediately after the argument list.
904
905Currently, only the following parameter attributes are defined:
906
907``zeroext``
908 This indicates to the code generator that the parameter or return
909 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000910 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000911``signext``
912 This indicates to the code generator that the parameter or return
913 value should be sign-extended to the extent required by the target's
914 ABI (which is usually 32-bits) by the caller (for a parameter) or
915 the callee (for a return value).
916``inreg``
917 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000918 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000919 a function call or return (usually, by putting it in a register as
920 opposed to memory, though some targets use it to distinguish between
921 two different kinds of registers). Use of this attribute is
922 target-specific.
923``byval``
924 This indicates that the pointer parameter should really be passed by
925 value to the function. The attribute implies that a hidden copy of
926 the pointee is made between the caller and the callee, so the callee
927 is unable to modify the value in the caller. This attribute is only
928 valid on LLVM pointer arguments. It is generally used to pass
929 structs and arrays by value, but is also valid on pointers to
930 scalars. The copy is considered to belong to the caller not the
931 callee (for example, ``readonly`` functions should not write to
932 ``byval`` parameters). This is not a valid attribute for return
933 values.
934
935 The byval attribute also supports specifying an alignment with the
936 align attribute. It indicates the alignment of the stack slot to
937 form and the known alignment of the pointer specified to the call
938 site. If the alignment is not specified, then the code generator
939 makes a target-specific assumption.
940
Reid Klecknera534a382013-12-19 02:14:12 +0000941.. _attr_inalloca:
942
943``inalloca``
944
Reid Kleckner60d3a832014-01-16 22:59:24 +0000945 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000946 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000947 be a pointer to stack memory produced by an ``alloca`` instruction.
948 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000949 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000950 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000951
Reid Kleckner436c42e2014-01-17 23:58:17 +0000952 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000953 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000954 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000955 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000956 ``inalloca`` attribute also disables LLVM's implicit lowering of
957 large aggregate return values, which means that frontend authors
958 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000959
Reid Kleckner60d3a832014-01-16 22:59:24 +0000960 When the call site is reached, the argument allocation must have
961 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000962 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000963 space after an argument allocation and before its call site, but it
964 must be cleared off with :ref:`llvm.stackrestore
965 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000966
967 See :doc:`InAlloca` for more information on how to use this
968 attribute.
969
Sean Silvab084af42012-12-07 10:36:55 +0000970``sret``
971 This indicates that the pointer parameter specifies the address of a
972 structure that is the return value of the function in the source
973 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000974 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000975 not to trap and to be properly aligned. This may only be applied to
976 the first parameter. This is not a valid attribute for return
977 values.
Sean Silva1703e702014-04-08 21:06:22 +0000978
Hal Finkelccc70902014-07-22 16:58:55 +0000979``align <n>``
980 This indicates that the pointer value may be assumed by the optimizer to
981 have the specified alignment.
982
983 Note that this attribute has additional semantics when combined with the
984 ``byval`` attribute.
985
Sean Silva1703e702014-04-08 21:06:22 +0000986.. _noalias:
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000989 This indicates that objects accessed via pointer values
990 :ref:`based <pointeraliasing>` on the argument or return value are not also
991 accessed, during the execution of the function, via pointer values not
992 *based* on the argument or return value. The attribute on a return value
993 also has additional semantics described below. The caller shares the
994 responsibility with the callee for ensuring that these requirements are met.
995 For further details, please see the discussion of the NoAlias response in
996 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000997
998 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000999 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001000
1001 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001002 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1003 attribute on return values are stronger than the semantics of the attribute
1004 when used on function arguments. On function return values, the ``noalias``
1005 attribute indicates that the function acts like a system memory allocation
1006 function, returning a pointer to allocated storage disjoint from the
1007 storage for any other object accessible to the caller.
1008
Sean Silvab084af42012-12-07 10:36:55 +00001009``nocapture``
1010 This indicates that the callee does not make any copies of the
1011 pointer that outlive the callee itself. This is not a valid
1012 attribute for return values.
1013
1014.. _nest:
1015
1016``nest``
1017 This indicates that the pointer parameter can be excised using the
1018 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001019 attribute for return values and can only be applied to one parameter.
1020
1021``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001022 This indicates that the function always returns the argument as its return
1023 value. This is an optimization hint to the code generator when generating
1024 the caller, allowing tail call optimization and omission of register saves
1025 and restores in some cases; it is not checked or enforced when generating
1026 the callee. The parameter and the function return type must be valid
1027 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1028 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001029
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001030``nonnull``
1031 This indicates that the parameter or return pointer is not null. This
1032 attribute may only be applied to pointer typed parameters. This is not
1033 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001034 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001035 is non-null.
1036
Hal Finkelb0407ba2014-07-18 15:51:28 +00001037``dereferenceable(<n>)``
1038 This indicates that the parameter or return pointer is dereferenceable. This
1039 attribute may only be applied to pointer typed parameters. A pointer that
1040 is dereferenceable can be loaded from speculatively without a risk of
1041 trapping. The number of bytes known to be dereferenceable must be provided
1042 in parentheses. It is legal for the number of bytes to be less than the
1043 size of the pointee type. The ``nonnull`` attribute does not imply
1044 dereferenceability (consider a pointer to one element past the end of an
1045 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1046 ``addrspace(0)`` (which is the default address space).
1047
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001048``dereferenceable_or_null(<n>)``
1049 This indicates that the parameter or return value isn't both
1050 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001051 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001052 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1053 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1054 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1055 and in other address spaces ``dereferenceable_or_null(<n>)``
1056 implies that a pointer is at least one of ``dereferenceable(<n>)``
1057 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001058 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001059 pointer typed parameters.
1060
Sean Silvab084af42012-12-07 10:36:55 +00001061.. _gc:
1062
Philip Reamesf80bbff2015-02-25 23:45:20 +00001063Garbage Collector Strategy Names
1064--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001065
Philip Reamesf80bbff2015-02-25 23:45:20 +00001066Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001067string:
1068
1069.. code-block:: llvm
1070
1071 define void @f() gc "name" { ... }
1072
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001073The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001074<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001075strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001076named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001077garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001078which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001079
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001080.. _prefixdata:
1081
1082Prefix Data
1083-----------
1084
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001085Prefix data is data associated with a function which the code
1086generator will emit immediately before the function's entrypoint.
1087The purpose of this feature is to allow frontends to associate
1088language-specific runtime metadata with specific functions and make it
1089available through the function pointer while still allowing the
1090function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001091
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001092To access the data for a given function, a program may bitcast the
1093function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001094index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001095the prefix data. For instance, take the example of a function annotated
1096with a single ``i32``,
1097
1098.. code-block:: llvm
1099
1100 define void @f() prefix i32 123 { ... }
1101
1102The prefix data can be referenced as,
1103
1104.. code-block:: llvm
1105
David Blaikie16a97eb2015-03-04 22:02:58 +00001106 %0 = bitcast void* () @f to i32*
1107 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001108 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001109
1110Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001111of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001112beginning of the prefix data is aligned. This means that if the size
1113of the prefix data is not a multiple of the alignment size, the
1114function's entrypoint will not be aligned. If alignment of the
1115function's entrypoint is desired, padding must be added to the prefix
1116data.
1117
Sean Silvaa1190322015-08-06 22:56:48 +00001118A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119to the ``available_externally`` linkage in that the data may be used by the
1120optimizers but will not be emitted in the object file.
1121
1122.. _prologuedata:
1123
1124Prologue Data
1125-------------
1126
1127The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1128be inserted prior to the function body. This can be used for enabling
1129function hot-patching and instrumentation.
1130
1131To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001132have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001133bytes which decode to a sequence of machine instructions, valid for the
1134module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001135the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001136the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001137definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001138makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001139
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001140A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001141which encodes the ``nop`` instruction:
1142
1143.. code-block:: llvm
1144
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001145 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001146
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001147Generally prologue data can be formed by encoding a relative branch instruction
1148which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001149x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1150
1151.. code-block:: llvm
1152
1153 %0 = type <{ i8, i8, i8* }>
1154
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001155 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001156
Sean Silvaa1190322015-08-06 22:56:48 +00001157A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001158to the ``available_externally`` linkage in that the data may be used by the
1159optimizers but will not be emitted in the object file.
1160
David Majnemer7fddecc2015-06-17 20:52:32 +00001161.. _personalityfn:
1162
1163Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001164--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001165
1166The ``personality`` attribute permits functions to specify what function
1167to use for exception handling.
1168
Bill Wendling63b88192013-02-06 06:52:58 +00001169.. _attrgrp:
1170
1171Attribute Groups
1172----------------
1173
1174Attribute groups are groups of attributes that are referenced by objects within
1175the IR. They are important for keeping ``.ll`` files readable, because a lot of
1176functions will use the same set of attributes. In the degenerative case of a
1177``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1178group will capture the important command line flags used to build that file.
1179
1180An attribute group is a module-level object. To use an attribute group, an
1181object references the attribute group's ID (e.g. ``#37``). An object may refer
1182to more than one attribute group. In that situation, the attributes from the
1183different groups are merged.
1184
1185Here is an example of attribute groups for a function that should always be
1186inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1187
1188.. code-block:: llvm
1189
1190 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001191 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001192
1193 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001194 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001195
1196 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1197 define void @f() #0 #1 { ... }
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199.. _fnattrs:
1200
1201Function Attributes
1202-------------------
1203
1204Function attributes are set to communicate additional information about
1205a function. Function attributes are considered to be part of the
1206function, not of the function type, so functions with different function
1207attributes can have the same function type.
1208
1209Function attributes are simple keywords that follow the type specified.
1210If multiple attributes are needed, they are space separated. For
1211example:
1212
1213.. code-block:: llvm
1214
1215 define void @f() noinline { ... }
1216 define void @f() alwaysinline { ... }
1217 define void @f() alwaysinline optsize { ... }
1218 define void @f() optsize { ... }
1219
Sean Silvab084af42012-12-07 10:36:55 +00001220``alignstack(<n>)``
1221 This attribute indicates that, when emitting the prologue and
1222 epilogue, the backend should forcibly align the stack pointer.
1223 Specify the desired alignment, which must be a power of two, in
1224 parentheses.
1225``alwaysinline``
1226 This attribute indicates that the inliner should attempt to inline
1227 this function into callers whenever possible, ignoring any active
1228 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001229``builtin``
1230 This indicates that the callee function at a call site should be
1231 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001232 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001233 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001234 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001235``cold``
1236 This attribute indicates that this function is rarely called. When
1237 computing edge weights, basic blocks post-dominated by a cold
1238 function call are also considered to be cold; and, thus, given low
1239 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001240``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001241 In some parallel execution models, there exist operations that cannot be
1242 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001243 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001244
Justin Lebar58535b12016-02-17 17:46:41 +00001245 The ``convergent`` attribute may appear on functions or call/invoke
1246 instructions. When it appears on a function, it indicates that calls to
1247 this function should not be made control-dependent on additional values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001248 For example, the intrinsic ``llvm.cuda.syncthreads`` is ``convergent``, so
1249 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001250 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001251
Justin Lebar58535b12016-02-17 17:46:41 +00001252 When it appears on a call/invoke, the ``convergent`` attribute indicates
1253 that we should treat the call as though we're calling a convergent
1254 function. This is particularly useful on indirect calls; without this we
1255 may treat such calls as though the target is non-convergent.
1256
1257 The optimizer may remove the ``convergent`` attribute on functions when it
1258 can prove that the function does not execute any convergent operations.
1259 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1260 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001261``inaccessiblememonly``
1262 This attribute indicates that the function may only access memory that
1263 is not accessible by the module being compiled. This is a weaker form
1264 of ``readnone``.
1265``inaccessiblemem_or_argmemonly``
1266 This attribute indicates that the function may only access memory that is
1267 either not accessible by the module being compiled, or is pointed to
1268 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001269``inlinehint``
1270 This attribute indicates that the source code contained a hint that
1271 inlining this function is desirable (such as the "inline" keyword in
1272 C/C++). It is just a hint; it imposes no requirements on the
1273 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001274``jumptable``
1275 This attribute indicates that the function should be added to a
1276 jump-instruction table at code-generation time, and that all address-taken
1277 references to this function should be replaced with a reference to the
1278 appropriate jump-instruction-table function pointer. Note that this creates
1279 a new pointer for the original function, which means that code that depends
1280 on function-pointer identity can break. So, any function annotated with
1281 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001282``minsize``
1283 This attribute suggests that optimization passes and code generator
1284 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001285 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001286 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001287``naked``
1288 This attribute disables prologue / epilogue emission for the
1289 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001290``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001291 This indicates that the callee function at a call site is not recognized as
1292 a built-in function. LLVM will retain the original call and not replace it
1293 with equivalent code based on the semantics of the built-in function, unless
1294 the call site uses the ``builtin`` attribute. This is valid at call sites
1295 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001296``noduplicate``
1297 This attribute indicates that calls to the function cannot be
1298 duplicated. A call to a ``noduplicate`` function may be moved
1299 within its parent function, but may not be duplicated within
1300 its parent function.
1301
1302 A function containing a ``noduplicate`` call may still
1303 be an inlining candidate, provided that the call is not
1304 duplicated by inlining. That implies that the function has
1305 internal linkage and only has one call site, so the original
1306 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001307``noimplicitfloat``
1308 This attributes disables implicit floating point instructions.
1309``noinline``
1310 This attribute indicates that the inliner should never inline this
1311 function in any situation. This attribute may not be used together
1312 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001313``nonlazybind``
1314 This attribute suppresses lazy symbol binding for the function. This
1315 may make calls to the function faster, at the cost of extra program
1316 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001317``noredzone``
1318 This attribute indicates that the code generator should not use a
1319 red zone, even if the target-specific ABI normally permits it.
1320``noreturn``
1321 This function attribute indicates that the function never returns
1322 normally. This produces undefined behavior at runtime if the
1323 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001324``norecurse``
1325 This function attribute indicates that the function does not call itself
1326 either directly or indirectly down any possible call path. This produces
1327 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001328``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001329 This function attribute indicates that the function never raises an
1330 exception. If the function does raise an exception, its runtime
1331 behavior is undefined. However, functions marked nounwind may still
1332 trap or generate asynchronous exceptions. Exception handling schemes
1333 that are recognized by LLVM to handle asynchronous exceptions, such
1334 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001335``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001336 This function attribute indicates that most optimization passes will skip
1337 this function, with the exception of interprocedural optimization passes.
1338 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001339 This attribute cannot be used together with the ``alwaysinline``
1340 attribute; this attribute is also incompatible
1341 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001342
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001343 This attribute requires the ``noinline`` attribute to be specified on
1344 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001345 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001346 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001347``optsize``
1348 This attribute suggests that optimization passes and code generator
1349 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001350 and otherwise do optimizations specifically to reduce code size as
1351 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001352``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001353 On a function, this attribute indicates that the function computes its
1354 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001355 without dereferencing any pointer arguments or otherwise accessing
1356 any mutable state (e.g. memory, control registers, etc) visible to
1357 caller functions. It does not write through any pointer arguments
1358 (including ``byval`` arguments) and never changes any state visible
1359 to callers. This means that it cannot unwind exceptions by calling
1360 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001361
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001362 On an argument, this attribute indicates that the function does not
1363 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001364 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001365``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001366 On a function, this attribute indicates that the function does not write
1367 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001368 modify any state (e.g. memory, control registers, etc) visible to
1369 caller functions. It may dereference pointer arguments and read
1370 state that may be set in the caller. A readonly function always
1371 returns the same value (or unwinds an exception identically) when
1372 called with the same set of arguments and global state. It cannot
1373 unwind an exception by calling the ``C++`` exception throwing
1374 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001375
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001376 On an argument, this attribute indicates that the function does not write
1377 through this pointer argument, even though it may write to the memory that
1378 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001379``argmemonly``
1380 This attribute indicates that the only memory accesses inside function are
1381 loads and stores from objects pointed to by its pointer-typed arguments,
1382 with arbitrary offsets. Or in other words, all memory operations in the
1383 function can refer to memory only using pointers based on its function
1384 arguments.
1385 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1386 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001387``returns_twice``
1388 This attribute indicates that this function can return twice. The C
1389 ``setjmp`` is an example of such a function. The compiler disables
1390 some optimizations (like tail calls) in the caller of these
1391 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001392``safestack``
1393 This attribute indicates that
1394 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1395 protection is enabled for this function.
1396
1397 If a function that has a ``safestack`` attribute is inlined into a
1398 function that doesn't have a ``safestack`` attribute or which has an
1399 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1400 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001401``sanitize_address``
1402 This attribute indicates that AddressSanitizer checks
1403 (dynamic address safety analysis) are enabled for this function.
1404``sanitize_memory``
1405 This attribute indicates that MemorySanitizer checks (dynamic detection
1406 of accesses to uninitialized memory) are enabled for this function.
1407``sanitize_thread``
1408 This attribute indicates that ThreadSanitizer checks
1409 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001410``ssp``
1411 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001412 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001413 placed on the stack before the local variables that's checked upon
1414 return from the function to see if it has been overwritten. A
1415 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001416 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001417
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001418 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1419 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1420 - Calls to alloca() with variable sizes or constant sizes greater than
1421 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001422
Josh Magee24c7f062014-02-01 01:36:16 +00001423 Variables that are identified as requiring a protector will be arranged
1424 on the stack such that they are adjacent to the stack protector guard.
1425
Sean Silvab084af42012-12-07 10:36:55 +00001426 If a function that has an ``ssp`` attribute is inlined into a
1427 function that doesn't have an ``ssp`` attribute, then the resulting
1428 function will have an ``ssp`` attribute.
1429``sspreq``
1430 This attribute indicates that the function should *always* emit a
1431 stack smashing protector. This overrides the ``ssp`` function
1432 attribute.
1433
Josh Magee24c7f062014-02-01 01:36:16 +00001434 Variables that are identified as requiring a protector will be arranged
1435 on the stack such that they are adjacent to the stack protector guard.
1436 The specific layout rules are:
1437
1438 #. Large arrays and structures containing large arrays
1439 (``>= ssp-buffer-size``) are closest to the stack protector.
1440 #. Small arrays and structures containing small arrays
1441 (``< ssp-buffer-size``) are 2nd closest to the protector.
1442 #. Variables that have had their address taken are 3rd closest to the
1443 protector.
1444
Sean Silvab084af42012-12-07 10:36:55 +00001445 If a function that has an ``sspreq`` attribute is inlined into a
1446 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001447 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1448 an ``sspreq`` attribute.
1449``sspstrong``
1450 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001451 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001452 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001453 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001454
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001455 - Arrays of any size and type
1456 - Aggregates containing an array of any size and type.
1457 - Calls to alloca().
1458 - Local variables that have had their address taken.
1459
Josh Magee24c7f062014-02-01 01:36:16 +00001460 Variables that are identified as requiring a protector will be arranged
1461 on the stack such that they are adjacent to the stack protector guard.
1462 The specific layout rules are:
1463
1464 #. Large arrays and structures containing large arrays
1465 (``>= ssp-buffer-size``) are closest to the stack protector.
1466 #. Small arrays and structures containing small arrays
1467 (``< ssp-buffer-size``) are 2nd closest to the protector.
1468 #. Variables that have had their address taken are 3rd closest to the
1469 protector.
1470
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001471 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001472
1473 If a function that has an ``sspstrong`` attribute is inlined into a
1474 function that doesn't have an ``sspstrong`` attribute, then the
1475 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001476``"thunk"``
1477 This attribute indicates that the function will delegate to some other
1478 function with a tail call. The prototype of a thunk should not be used for
1479 optimization purposes. The caller is expected to cast the thunk prototype to
1480 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001481``uwtable``
1482 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001483 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001484 show that no exceptions passes by it. This is normally the case for
1485 the ELF x86-64 abi, but it can be disabled for some compilation
1486 units.
Sean Silvab084af42012-12-07 10:36:55 +00001487
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001488
1489.. _opbundles:
1490
1491Operand Bundles
1492---------------
1493
1494Note: operand bundles are a work in progress, and they should be
1495considered experimental at this time.
1496
1497Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001498with certain LLVM instructions (currently only ``call`` s and
1499``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001500incorrect and will change program semantics.
1501
1502Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001503
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001504 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001505 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1506 bundle operand ::= SSA value
1507 tag ::= string constant
1508
1509Operand bundles are **not** part of a function's signature, and a
1510given function may be called from multiple places with different kinds
1511of operand bundles. This reflects the fact that the operand bundles
1512are conceptually a part of the ``call`` (or ``invoke``), not the
1513callee being dispatched to.
1514
1515Operand bundles are a generic mechanism intended to support
1516runtime-introspection-like functionality for managed languages. While
1517the exact semantics of an operand bundle depend on the bundle tag,
1518there are certain limitations to how much the presence of an operand
1519bundle can influence the semantics of a program. These restrictions
1520are described as the semantics of an "unknown" operand bundle. As
1521long as the behavior of an operand bundle is describable within these
1522restrictions, LLVM does not need to have special knowledge of the
1523operand bundle to not miscompile programs containing it.
1524
David Majnemer34cacb42015-10-22 01:46:38 +00001525- The bundle operands for an unknown operand bundle escape in unknown
1526 ways before control is transferred to the callee or invokee.
1527- Calls and invokes with operand bundles have unknown read / write
1528 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001529 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001530 callsite specific attributes.
1531- An operand bundle at a call site cannot change the implementation
1532 of the called function. Inter-procedural optimizations work as
1533 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001534
Sanjoy Dascdafd842015-11-11 21:38:02 +00001535More specific types of operand bundles are described below.
1536
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001537.. _deopt_opbundles:
1538
Sanjoy Dascdafd842015-11-11 21:38:02 +00001539Deoptimization Operand Bundles
1540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1541
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001542Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001543operand bundle tag. These operand bundles represent an alternate
1544"safe" continuation for the call site they're attached to, and can be
1545used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001546specified call site. There can be at most one ``"deopt"`` operand
1547bundle attached to a call site. Exact details of deoptimization is
1548out of scope for the language reference, but it usually involves
1549rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001550
1551From the compiler's perspective, deoptimization operand bundles make
1552the call sites they're attached to at least ``readonly``. They read
1553through all of their pointer typed operands (even if they're not
1554otherwise escaped) and the entire visible heap. Deoptimization
1555operand bundles do not capture their operands except during
1556deoptimization, in which case control will not be returned to the
1557compiled frame.
1558
Sanjoy Das2d161452015-11-18 06:23:38 +00001559The inliner knows how to inline through calls that have deoptimization
1560operand bundles. Just like inlining through a normal call site
1561involves composing the normal and exceptional continuations, inlining
1562through a call site with a deoptimization operand bundle needs to
1563appropriately compose the "safe" deoptimization continuation. The
1564inliner does this by prepending the parent's deoptimization
1565continuation to every deoptimization continuation in the inlined body.
1566E.g. inlining ``@f`` into ``@g`` in the following example
1567
1568.. code-block:: llvm
1569
1570 define void @f() {
1571 call void @x() ;; no deopt state
1572 call void @y() [ "deopt"(i32 10) ]
1573 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1574 ret void
1575 }
1576
1577 define void @g() {
1578 call void @f() [ "deopt"(i32 20) ]
1579 ret void
1580 }
1581
1582will result in
1583
1584.. code-block:: llvm
1585
1586 define void @g() {
1587 call void @x() ;; still no deopt state
1588 call void @y() [ "deopt"(i32 20, i32 10) ]
1589 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1590 ret void
1591 }
1592
1593It is the frontend's responsibility to structure or encode the
1594deoptimization state in a way that syntactically prepending the
1595caller's deoptimization state to the callee's deoptimization state is
1596semantically equivalent to composing the caller's deoptimization
1597continuation after the callee's deoptimization continuation.
1598
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001599.. _ob_funclet:
1600
David Majnemer3bb88c02015-12-15 21:27:27 +00001601Funclet Operand Bundles
1602^^^^^^^^^^^^^^^^^^^^^^^
1603
1604Funclet operand bundles are characterized by the ``"funclet"``
1605operand bundle tag. These operand bundles indicate that a call site
1606is within a particular funclet. There can be at most one
1607``"funclet"`` operand bundle attached to a call site and it must have
1608exactly one bundle operand.
1609
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001610If any funclet EH pads have been "entered" but not "exited" (per the
1611`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1612it is undefined behavior to execute a ``call`` or ``invoke`` which:
1613
1614* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1615 intrinsic, or
1616* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1617 not-yet-exited funclet EH pad.
1618
1619Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1620executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1621
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001622GC Transition Operand Bundles
1623^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1624
1625GC transition operand bundles are characterized by the
1626``"gc-transition"`` operand bundle tag. These operand bundles mark a
1627call as a transition between a function with one GC strategy to a
1628function with a different GC strategy. If coordinating the transition
1629between GC strategies requires additional code generation at the call
1630site, these bundles may contain any values that are needed by the
1631generated code. For more details, see :ref:`GC Transitions
1632<gc_transition_args>`.
1633
Sean Silvab084af42012-12-07 10:36:55 +00001634.. _moduleasm:
1635
1636Module-Level Inline Assembly
1637----------------------------
1638
1639Modules may contain "module-level inline asm" blocks, which corresponds
1640to the GCC "file scope inline asm" blocks. These blocks are internally
1641concatenated by LLVM and treated as a single unit, but may be separated
1642in the ``.ll`` file if desired. The syntax is very simple:
1643
1644.. code-block:: llvm
1645
1646 module asm "inline asm code goes here"
1647 module asm "more can go here"
1648
1649The strings can contain any character by escaping non-printable
1650characters. The escape sequence used is simply "\\xx" where "xx" is the
1651two digit hex code for the number.
1652
James Y Knightbc832ed2015-07-08 18:08:36 +00001653Note that the assembly string *must* be parseable by LLVM's integrated assembler
1654(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001655
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001656.. _langref_datalayout:
1657
Sean Silvab084af42012-12-07 10:36:55 +00001658Data Layout
1659-----------
1660
1661A module may specify a target specific data layout string that specifies
1662how data is to be laid out in memory. The syntax for the data layout is
1663simply:
1664
1665.. code-block:: llvm
1666
1667 target datalayout = "layout specification"
1668
1669The *layout specification* consists of a list of specifications
1670separated by the minus sign character ('-'). Each specification starts
1671with a letter and may include other information after the letter to
1672define some aspect of the data layout. The specifications accepted are
1673as follows:
1674
1675``E``
1676 Specifies that the target lays out data in big-endian form. That is,
1677 the bits with the most significance have the lowest address
1678 location.
1679``e``
1680 Specifies that the target lays out data in little-endian form. That
1681 is, the bits with the least significance have the lowest address
1682 location.
1683``S<size>``
1684 Specifies the natural alignment of the stack in bits. Alignment
1685 promotion of stack variables is limited to the natural stack
1686 alignment to avoid dynamic stack realignment. The stack alignment
1687 must be a multiple of 8-bits. If omitted, the natural stack
1688 alignment defaults to "unspecified", which does not prevent any
1689 alignment promotions.
1690``p[n]:<size>:<abi>:<pref>``
1691 This specifies the *size* of a pointer and its ``<abi>`` and
1692 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001693 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001694 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001695 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001696``i<size>:<abi>:<pref>``
1697 This specifies the alignment for an integer type of a given bit
1698 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1699``v<size>:<abi>:<pref>``
1700 This specifies the alignment for a vector type of a given bit
1701 ``<size>``.
1702``f<size>:<abi>:<pref>``
1703 This specifies the alignment for a floating point type of a given bit
1704 ``<size>``. Only values of ``<size>`` that are supported by the target
1705 will work. 32 (float) and 64 (double) are supported on all targets; 80
1706 or 128 (different flavors of long double) are also supported on some
1707 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001708``a:<abi>:<pref>``
1709 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001710``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001711 If present, specifies that llvm names are mangled in the output. The
1712 options are
1713
1714 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1715 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1716 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1717 symbols get a ``_`` prefix.
1718 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1719 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001720 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1721 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001722``n<size1>:<size2>:<size3>...``
1723 This specifies a set of native integer widths for the target CPU in
1724 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1725 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1726 this set are considered to support most general arithmetic operations
1727 efficiently.
1728
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001729On every specification that takes a ``<abi>:<pref>``, specifying the
1730``<pref>`` alignment is optional. If omitted, the preceding ``:``
1731should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1732
Sean Silvab084af42012-12-07 10:36:55 +00001733When constructing the data layout for a given target, LLVM starts with a
1734default set of specifications which are then (possibly) overridden by
1735the specifications in the ``datalayout`` keyword. The default
1736specifications are given in this list:
1737
1738- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001739- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1740- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1741 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001742- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001743- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1744- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1745- ``i16:16:16`` - i16 is 16-bit aligned
1746- ``i32:32:32`` - i32 is 32-bit aligned
1747- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1748 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001749- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001750- ``f32:32:32`` - float is 32-bit aligned
1751- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001752- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001753- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1754- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001755- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001756
1757When LLVM is determining the alignment for a given type, it uses the
1758following rules:
1759
1760#. If the type sought is an exact match for one of the specifications,
1761 that specification is used.
1762#. If no match is found, and the type sought is an integer type, then
1763 the smallest integer type that is larger than the bitwidth of the
1764 sought type is used. If none of the specifications are larger than
1765 the bitwidth then the largest integer type is used. For example,
1766 given the default specifications above, the i7 type will use the
1767 alignment of i8 (next largest) while both i65 and i256 will use the
1768 alignment of i64 (largest specified).
1769#. If no match is found, and the type sought is a vector type, then the
1770 largest vector type that is smaller than the sought vector type will
1771 be used as a fall back. This happens because <128 x double> can be
1772 implemented in terms of 64 <2 x double>, for example.
1773
1774The function of the data layout string may not be what you expect.
1775Notably, this is not a specification from the frontend of what alignment
1776the code generator should use.
1777
1778Instead, if specified, the target data layout is required to match what
1779the ultimate *code generator* expects. This string is used by the
1780mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001781what the ultimate code generator uses. There is no way to generate IR
1782that does not embed this target-specific detail into the IR. If you
1783don't specify the string, the default specifications will be used to
1784generate a Data Layout and the optimization phases will operate
1785accordingly and introduce target specificity into the IR with respect to
1786these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001787
Bill Wendling5cc90842013-10-18 23:41:25 +00001788.. _langref_triple:
1789
1790Target Triple
1791-------------
1792
1793A module may specify a target triple string that describes the target
1794host. The syntax for the target triple is simply:
1795
1796.. code-block:: llvm
1797
1798 target triple = "x86_64-apple-macosx10.7.0"
1799
1800The *target triple* string consists of a series of identifiers delimited
1801by the minus sign character ('-'). The canonical forms are:
1802
1803::
1804
1805 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1806 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1807
1808This information is passed along to the backend so that it generates
1809code for the proper architecture. It's possible to override this on the
1810command line with the ``-mtriple`` command line option.
1811
Sean Silvab084af42012-12-07 10:36:55 +00001812.. _pointeraliasing:
1813
1814Pointer Aliasing Rules
1815----------------------
1816
1817Any memory access must be done through a pointer value associated with
1818an address range of the memory access, otherwise the behavior is
1819undefined. Pointer values are associated with address ranges according
1820to the following rules:
1821
1822- A pointer value is associated with the addresses associated with any
1823 value it is *based* on.
1824- An address of a global variable is associated with the address range
1825 of the variable's storage.
1826- The result value of an allocation instruction is associated with the
1827 address range of the allocated storage.
1828- A null pointer in the default address-space is associated with no
1829 address.
1830- An integer constant other than zero or a pointer value returned from
1831 a function not defined within LLVM may be associated with address
1832 ranges allocated through mechanisms other than those provided by
1833 LLVM. Such ranges shall not overlap with any ranges of addresses
1834 allocated by mechanisms provided by LLVM.
1835
1836A pointer value is *based* on another pointer value according to the
1837following rules:
1838
1839- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001840 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001841- The result value of a ``bitcast`` is *based* on the operand of the
1842 ``bitcast``.
1843- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1844 values that contribute (directly or indirectly) to the computation of
1845 the pointer's value.
1846- The "*based* on" relationship is transitive.
1847
1848Note that this definition of *"based"* is intentionally similar to the
1849definition of *"based"* in C99, though it is slightly weaker.
1850
1851LLVM IR does not associate types with memory. The result type of a
1852``load`` merely indicates the size and alignment of the memory from
1853which to load, as well as the interpretation of the value. The first
1854operand type of a ``store`` similarly only indicates the size and
1855alignment of the store.
1856
1857Consequently, type-based alias analysis, aka TBAA, aka
1858``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1859:ref:`Metadata <metadata>` may be used to encode additional information
1860which specialized optimization passes may use to implement type-based
1861alias analysis.
1862
1863.. _volatile:
1864
1865Volatile Memory Accesses
1866------------------------
1867
1868Certain memory accesses, such as :ref:`load <i_load>`'s,
1869:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1870marked ``volatile``. The optimizers must not change the number of
1871volatile operations or change their order of execution relative to other
1872volatile operations. The optimizers *may* change the order of volatile
1873operations relative to non-volatile operations. This is not Java's
1874"volatile" and has no cross-thread synchronization behavior.
1875
Andrew Trick89fc5a62013-01-30 21:19:35 +00001876IR-level volatile loads and stores cannot safely be optimized into
1877llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1878flagged volatile. Likewise, the backend should never split or merge
1879target-legal volatile load/store instructions.
1880
Andrew Trick7e6f9282013-01-31 00:49:39 +00001881.. admonition:: Rationale
1882
1883 Platforms may rely on volatile loads and stores of natively supported
1884 data width to be executed as single instruction. For example, in C
1885 this holds for an l-value of volatile primitive type with native
1886 hardware support, but not necessarily for aggregate types. The
1887 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001888 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001889 do not violate the frontend's contract with the language.
1890
Sean Silvab084af42012-12-07 10:36:55 +00001891.. _memmodel:
1892
1893Memory Model for Concurrent Operations
1894--------------------------------------
1895
1896The LLVM IR does not define any way to start parallel threads of
1897execution or to register signal handlers. Nonetheless, there are
1898platform-specific ways to create them, and we define LLVM IR's behavior
1899in their presence. This model is inspired by the C++0x memory model.
1900
1901For a more informal introduction to this model, see the :doc:`Atomics`.
1902
1903We define a *happens-before* partial order as the least partial order
1904that
1905
1906- Is a superset of single-thread program order, and
1907- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1908 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1909 techniques, like pthread locks, thread creation, thread joining,
1910 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1911 Constraints <ordering>`).
1912
1913Note that program order does not introduce *happens-before* edges
1914between a thread and signals executing inside that thread.
1915
1916Every (defined) read operation (load instructions, memcpy, atomic
1917loads/read-modify-writes, etc.) R reads a series of bytes written by
1918(defined) write operations (store instructions, atomic
1919stores/read-modify-writes, memcpy, etc.). For the purposes of this
1920section, initialized globals are considered to have a write of the
1921initializer which is atomic and happens before any other read or write
1922of the memory in question. For each byte of a read R, R\ :sub:`byte`
1923may see any write to the same byte, except:
1924
1925- If write\ :sub:`1` happens before write\ :sub:`2`, and
1926 write\ :sub:`2` happens before R\ :sub:`byte`, then
1927 R\ :sub:`byte` does not see write\ :sub:`1`.
1928- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1929 R\ :sub:`byte` does not see write\ :sub:`3`.
1930
1931Given that definition, R\ :sub:`byte` is defined as follows:
1932
1933- If R is volatile, the result is target-dependent. (Volatile is
1934 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001935 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001936 like normal memory. It does not generally provide cross-thread
1937 synchronization.)
1938- Otherwise, if there is no write to the same byte that happens before
1939 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1940- Otherwise, if R\ :sub:`byte` may see exactly one write,
1941 R\ :sub:`byte` returns the value written by that write.
1942- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1943 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1944 Memory Ordering Constraints <ordering>` section for additional
1945 constraints on how the choice is made.
1946- Otherwise R\ :sub:`byte` returns ``undef``.
1947
1948R returns the value composed of the series of bytes it read. This
1949implies that some bytes within the value may be ``undef`` **without**
1950the entire value being ``undef``. Note that this only defines the
1951semantics of the operation; it doesn't mean that targets will emit more
1952than one instruction to read the series of bytes.
1953
1954Note that in cases where none of the atomic intrinsics are used, this
1955model places only one restriction on IR transformations on top of what
1956is required for single-threaded execution: introducing a store to a byte
1957which might not otherwise be stored is not allowed in general.
1958(Specifically, in the case where another thread might write to and read
1959from an address, introducing a store can change a load that may see
1960exactly one write into a load that may see multiple writes.)
1961
1962.. _ordering:
1963
1964Atomic Memory Ordering Constraints
1965----------------------------------
1966
1967Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1968:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1969:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001970ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001971the same address they *synchronize with*. These semantics are borrowed
1972from Java and C++0x, but are somewhat more colloquial. If these
1973descriptions aren't precise enough, check those specs (see spec
1974references in the :doc:`atomics guide <Atomics>`).
1975:ref:`fence <i_fence>` instructions treat these orderings somewhat
1976differently since they don't take an address. See that instruction's
1977documentation for details.
1978
1979For a simpler introduction to the ordering constraints, see the
1980:doc:`Atomics`.
1981
1982``unordered``
1983 The set of values that can be read is governed by the happens-before
1984 partial order. A value cannot be read unless some operation wrote
1985 it. This is intended to provide a guarantee strong enough to model
1986 Java's non-volatile shared variables. This ordering cannot be
1987 specified for read-modify-write operations; it is not strong enough
1988 to make them atomic in any interesting way.
1989``monotonic``
1990 In addition to the guarantees of ``unordered``, there is a single
1991 total order for modifications by ``monotonic`` operations on each
1992 address. All modification orders must be compatible with the
1993 happens-before order. There is no guarantee that the modification
1994 orders can be combined to a global total order for the whole program
1995 (and this often will not be possible). The read in an atomic
1996 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1997 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1998 order immediately before the value it writes. If one atomic read
1999 happens before another atomic read of the same address, the later
2000 read must see the same value or a later value in the address's
2001 modification order. This disallows reordering of ``monotonic`` (or
2002 stronger) operations on the same address. If an address is written
2003 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2004 read that address repeatedly, the other threads must eventually see
2005 the write. This corresponds to the C++0x/C1x
2006 ``memory_order_relaxed``.
2007``acquire``
2008 In addition to the guarantees of ``monotonic``, a
2009 *synchronizes-with* edge may be formed with a ``release`` operation.
2010 This is intended to model C++'s ``memory_order_acquire``.
2011``release``
2012 In addition to the guarantees of ``monotonic``, if this operation
2013 writes a value which is subsequently read by an ``acquire``
2014 operation, it *synchronizes-with* that operation. (This isn't a
2015 complete description; see the C++0x definition of a release
2016 sequence.) This corresponds to the C++0x/C1x
2017 ``memory_order_release``.
2018``acq_rel`` (acquire+release)
2019 Acts as both an ``acquire`` and ``release`` operation on its
2020 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2021``seq_cst`` (sequentially consistent)
2022 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002023 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002024 writes), there is a global total order on all
2025 sequentially-consistent operations on all addresses, which is
2026 consistent with the *happens-before* partial order and with the
2027 modification orders of all the affected addresses. Each
2028 sequentially-consistent read sees the last preceding write to the
2029 same address in this global order. This corresponds to the C++0x/C1x
2030 ``memory_order_seq_cst`` and Java volatile.
2031
2032.. _singlethread:
2033
2034If an atomic operation is marked ``singlethread``, it only *synchronizes
2035with* or participates in modification and seq\_cst total orderings with
2036other operations running in the same thread (for example, in signal
2037handlers).
2038
2039.. _fastmath:
2040
2041Fast-Math Flags
2042---------------
2043
2044LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2045:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002046:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2047be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002048
2049``nnan``
2050 No NaNs - Allow optimizations to assume the arguments and result are not
2051 NaN. Such optimizations are required to retain defined behavior over
2052 NaNs, but the value of the result is undefined.
2053
2054``ninf``
2055 No Infs - Allow optimizations to assume the arguments and result are not
2056 +/-Inf. Such optimizations are required to retain defined behavior over
2057 +/-Inf, but the value of the result is undefined.
2058
2059``nsz``
2060 No Signed Zeros - Allow optimizations to treat the sign of a zero
2061 argument or result as insignificant.
2062
2063``arcp``
2064 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2065 argument rather than perform division.
2066
2067``fast``
2068 Fast - Allow algebraically equivalent transformations that may
2069 dramatically change results in floating point (e.g. reassociate). This
2070 flag implies all the others.
2071
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002072.. _uselistorder:
2073
2074Use-list Order Directives
2075-------------------------
2076
2077Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002078order to be recreated. ``<order-indexes>`` is a comma-separated list of
2079indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002080value's use-list is immediately sorted by these indexes.
2081
Sean Silvaa1190322015-08-06 22:56:48 +00002082Use-list directives may appear at function scope or global scope. They are not
2083instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002084function scope, they must appear after the terminator of the final basic block.
2085
2086If basic blocks have their address taken via ``blockaddress()`` expressions,
2087``uselistorder_bb`` can be used to reorder their use-lists from outside their
2088function's scope.
2089
2090:Syntax:
2091
2092::
2093
2094 uselistorder <ty> <value>, { <order-indexes> }
2095 uselistorder_bb @function, %block { <order-indexes> }
2096
2097:Examples:
2098
2099::
2100
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002101 define void @foo(i32 %arg1, i32 %arg2) {
2102 entry:
2103 ; ... instructions ...
2104 bb:
2105 ; ... instructions ...
2106
2107 ; At function scope.
2108 uselistorder i32 %arg1, { 1, 0, 2 }
2109 uselistorder label %bb, { 1, 0 }
2110 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002111
2112 ; At global scope.
2113 uselistorder i32* @global, { 1, 2, 0 }
2114 uselistorder i32 7, { 1, 0 }
2115 uselistorder i32 (i32) @bar, { 1, 0 }
2116 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2117
Sean Silvab084af42012-12-07 10:36:55 +00002118.. _typesystem:
2119
2120Type System
2121===========
2122
2123The LLVM type system is one of the most important features of the
2124intermediate representation. Being typed enables a number of
2125optimizations to be performed on the intermediate representation
2126directly, without having to do extra analyses on the side before the
2127transformation. A strong type system makes it easier to read the
2128generated code and enables novel analyses and transformations that are
2129not feasible to perform on normal three address code representations.
2130
Rafael Espindola08013342013-12-07 19:34:20 +00002131.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002132
Rafael Espindola08013342013-12-07 19:34:20 +00002133Void Type
2134---------
Sean Silvab084af42012-12-07 10:36:55 +00002135
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002136:Overview:
2137
Rafael Espindola08013342013-12-07 19:34:20 +00002138
2139The void type does not represent any value and has no size.
2140
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002141:Syntax:
2142
Rafael Espindola08013342013-12-07 19:34:20 +00002143
2144::
2145
2146 void
Sean Silvab084af42012-12-07 10:36:55 +00002147
2148
Rafael Espindola08013342013-12-07 19:34:20 +00002149.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002150
Rafael Espindola08013342013-12-07 19:34:20 +00002151Function Type
2152-------------
Sean Silvab084af42012-12-07 10:36:55 +00002153
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002154:Overview:
2155
Sean Silvab084af42012-12-07 10:36:55 +00002156
Rafael Espindola08013342013-12-07 19:34:20 +00002157The function type can be thought of as a function signature. It consists of a
2158return type and a list of formal parameter types. The return type of a function
2159type is a void type or first class type --- except for :ref:`label <t_label>`
2160and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002161
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002162:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002163
Rafael Espindola08013342013-12-07 19:34:20 +00002164::
Sean Silvab084af42012-12-07 10:36:55 +00002165
Rafael Espindola08013342013-12-07 19:34:20 +00002166 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002167
Rafael Espindola08013342013-12-07 19:34:20 +00002168...where '``<parameter list>``' is a comma-separated list of type
2169specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002170indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002171argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002172handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002173except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002174
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002175:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002176
Rafael Espindola08013342013-12-07 19:34:20 +00002177+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2178| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2179+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2180| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2181+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2182| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2183+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2184| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2185+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2186
2187.. _t_firstclass:
2188
2189First Class Types
2190-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002191
2192The :ref:`first class <t_firstclass>` types are perhaps the most important.
2193Values of these types are the only ones which can be produced by
2194instructions.
2195
Rafael Espindola08013342013-12-07 19:34:20 +00002196.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002197
Rafael Espindola08013342013-12-07 19:34:20 +00002198Single Value Types
2199^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002200
Rafael Espindola08013342013-12-07 19:34:20 +00002201These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002202
2203.. _t_integer:
2204
2205Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002206""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002207
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002208:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002209
2210The integer type is a very simple type that simply specifies an
2211arbitrary bit width for the integer type desired. Any bit width from 1
2212bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2213
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002214:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002215
2216::
2217
2218 iN
2219
2220The number of bits the integer will occupy is specified by the ``N``
2221value.
2222
2223Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002224*********
Sean Silvab084af42012-12-07 10:36:55 +00002225
2226+----------------+------------------------------------------------+
2227| ``i1`` | a single-bit integer. |
2228+----------------+------------------------------------------------+
2229| ``i32`` | a 32-bit integer. |
2230+----------------+------------------------------------------------+
2231| ``i1942652`` | a really big integer of over 1 million bits. |
2232+----------------+------------------------------------------------+
2233
2234.. _t_floating:
2235
2236Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002237""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002238
2239.. list-table::
2240 :header-rows: 1
2241
2242 * - Type
2243 - Description
2244
2245 * - ``half``
2246 - 16-bit floating point value
2247
2248 * - ``float``
2249 - 32-bit floating point value
2250
2251 * - ``double``
2252 - 64-bit floating point value
2253
2254 * - ``fp128``
2255 - 128-bit floating point value (112-bit mantissa)
2256
2257 * - ``x86_fp80``
2258 - 80-bit floating point value (X87)
2259
2260 * - ``ppc_fp128``
2261 - 128-bit floating point value (two 64-bits)
2262
Reid Kleckner9a16d082014-03-05 02:41:37 +00002263X86_mmx Type
2264""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002265
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002266:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002267
Reid Kleckner9a16d082014-03-05 02:41:37 +00002268The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002269machine. The operations allowed on it are quite limited: parameters and
2270return values, load and store, and bitcast. User-specified MMX
2271instructions are represented as intrinsic or asm calls with arguments
2272and/or results of this type. There are no arrays, vectors or constants
2273of this type.
2274
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002275:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002276
2277::
2278
Reid Kleckner9a16d082014-03-05 02:41:37 +00002279 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002280
Sean Silvab084af42012-12-07 10:36:55 +00002281
Rafael Espindola08013342013-12-07 19:34:20 +00002282.. _t_pointer:
2283
2284Pointer Type
2285""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002286
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002287:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002288
Rafael Espindola08013342013-12-07 19:34:20 +00002289The pointer type is used to specify memory locations. Pointers are
2290commonly used to reference objects in memory.
2291
2292Pointer types may have an optional address space attribute defining the
2293numbered address space where the pointed-to object resides. The default
2294address space is number zero. The semantics of non-zero address spaces
2295are target-specific.
2296
2297Note that LLVM does not permit pointers to void (``void*``) nor does it
2298permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002299
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002300:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002301
2302::
2303
Rafael Espindola08013342013-12-07 19:34:20 +00002304 <type> *
2305
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002306:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002307
2308+-------------------------+--------------------------------------------------------------------------------------------------------------+
2309| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2310+-------------------------+--------------------------------------------------------------------------------------------------------------+
2311| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2312+-------------------------+--------------------------------------------------------------------------------------------------------------+
2313| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2314+-------------------------+--------------------------------------------------------------------------------------------------------------+
2315
2316.. _t_vector:
2317
2318Vector Type
2319"""""""""""
2320
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002321:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002322
2323A vector type is a simple derived type that represents a vector of
2324elements. Vector types are used when multiple primitive data are
2325operated in parallel using a single instruction (SIMD). A vector type
2326requires a size (number of elements) and an underlying primitive data
2327type. Vector types are considered :ref:`first class <t_firstclass>`.
2328
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002329:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002330
2331::
2332
2333 < <# elements> x <elementtype> >
2334
2335The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002336elementtype may be any integer, floating point or pointer type. Vectors
2337of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002338
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002339:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002340
2341+-------------------+--------------------------------------------------+
2342| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2343+-------------------+--------------------------------------------------+
2344| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2345+-------------------+--------------------------------------------------+
2346| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2347+-------------------+--------------------------------------------------+
2348| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2349+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002350
2351.. _t_label:
2352
2353Label Type
2354^^^^^^^^^^
2355
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002356:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002357
2358The label type represents code labels.
2359
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002360:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002361
2362::
2363
2364 label
2365
David Majnemerb611e3f2015-08-14 05:09:07 +00002366.. _t_token:
2367
2368Token Type
2369^^^^^^^^^^
2370
2371:Overview:
2372
2373The token type is used when a value is associated with an instruction
2374but all uses of the value must not attempt to introspect or obscure it.
2375As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2376:ref:`select <i_select>` of type token.
2377
2378:Syntax:
2379
2380::
2381
2382 token
2383
2384
2385
Sean Silvab084af42012-12-07 10:36:55 +00002386.. _t_metadata:
2387
2388Metadata Type
2389^^^^^^^^^^^^^
2390
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002391:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002392
2393The metadata type represents embedded metadata. No derived types may be
2394created from metadata except for :ref:`function <t_function>` arguments.
2395
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002396:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002397
2398::
2399
2400 metadata
2401
Sean Silvab084af42012-12-07 10:36:55 +00002402.. _t_aggregate:
2403
2404Aggregate Types
2405^^^^^^^^^^^^^^^
2406
2407Aggregate Types are a subset of derived types that can contain multiple
2408member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2409aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2410aggregate types.
2411
2412.. _t_array:
2413
2414Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002415""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002416
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002417:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002418
2419The array type is a very simple derived type that arranges elements
2420sequentially in memory. The array type requires a size (number of
2421elements) and an underlying data type.
2422
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002423:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002424
2425::
2426
2427 [<# elements> x <elementtype>]
2428
2429The number of elements is a constant integer value; ``elementtype`` may
2430be any type with a size.
2431
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002432:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002433
2434+------------------+--------------------------------------+
2435| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2436+------------------+--------------------------------------+
2437| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2438+------------------+--------------------------------------+
2439| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2440+------------------+--------------------------------------+
2441
2442Here are some examples of multidimensional arrays:
2443
2444+-----------------------------+----------------------------------------------------------+
2445| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2446+-----------------------------+----------------------------------------------------------+
2447| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2448+-----------------------------+----------------------------------------------------------+
2449| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2450+-----------------------------+----------------------------------------------------------+
2451
2452There is no restriction on indexing beyond the end of the array implied
2453by a static type (though there are restrictions on indexing beyond the
2454bounds of an allocated object in some cases). This means that
2455single-dimension 'variable sized array' addressing can be implemented in
2456LLVM with a zero length array type. An implementation of 'pascal style
2457arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2458example.
2459
Sean Silvab084af42012-12-07 10:36:55 +00002460.. _t_struct:
2461
2462Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002463""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002464
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002465:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002466
2467The structure type is used to represent a collection of data members
2468together in memory. The elements of a structure may be any type that has
2469a size.
2470
2471Structures in memory are accessed using '``load``' and '``store``' by
2472getting a pointer to a field with the '``getelementptr``' instruction.
2473Structures in registers are accessed using the '``extractvalue``' and
2474'``insertvalue``' instructions.
2475
2476Structures may optionally be "packed" structures, which indicate that
2477the alignment of the struct is one byte, and that there is no padding
2478between the elements. In non-packed structs, padding between field types
2479is inserted as defined by the DataLayout string in the module, which is
2480required to match what the underlying code generator expects.
2481
2482Structures can either be "literal" or "identified". A literal structure
2483is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2484identified types are always defined at the top level with a name.
2485Literal types are uniqued by their contents and can never be recursive
2486or opaque since there is no way to write one. Identified types can be
2487recursive, can be opaqued, and are never uniqued.
2488
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002489:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002490
2491::
2492
2493 %T1 = type { <type list> } ; Identified normal struct type
2494 %T2 = type <{ <type list> }> ; Identified packed struct type
2495
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002496:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002497
2498+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2499| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2500+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002501| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002502+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2503| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2504+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2505
2506.. _t_opaque:
2507
2508Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002509""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002510
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002511:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002512
2513Opaque structure types are used to represent named structure types that
2514do not have a body specified. This corresponds (for example) to the C
2515notion of a forward declared structure.
2516
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002517:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002518
2519::
2520
2521 %X = type opaque
2522 %52 = type opaque
2523
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002524:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002525
2526+--------------+-------------------+
2527| ``opaque`` | An opaque type. |
2528+--------------+-------------------+
2529
Sean Silva1703e702014-04-08 21:06:22 +00002530.. _constants:
2531
Sean Silvab084af42012-12-07 10:36:55 +00002532Constants
2533=========
2534
2535LLVM has several different basic types of constants. This section
2536describes them all and their syntax.
2537
2538Simple Constants
2539----------------
2540
2541**Boolean constants**
2542 The two strings '``true``' and '``false``' are both valid constants
2543 of the ``i1`` type.
2544**Integer constants**
2545 Standard integers (such as '4') are constants of the
2546 :ref:`integer <t_integer>` type. Negative numbers may be used with
2547 integer types.
2548**Floating point constants**
2549 Floating point constants use standard decimal notation (e.g.
2550 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2551 hexadecimal notation (see below). The assembler requires the exact
2552 decimal value of a floating-point constant. For example, the
2553 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2554 decimal in binary. Floating point constants must have a :ref:`floating
2555 point <t_floating>` type.
2556**Null pointer constants**
2557 The identifier '``null``' is recognized as a null pointer constant
2558 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002559**Token constants**
2560 The identifier '``none``' is recognized as an empty token constant
2561 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002562
2563The one non-intuitive notation for constants is the hexadecimal form of
2564floating point constants. For example, the form
2565'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2566than) '``double 4.5e+15``'. The only time hexadecimal floating point
2567constants are required (and the only time that they are generated by the
2568disassembler) is when a floating point constant must be emitted but it
2569cannot be represented as a decimal floating point number in a reasonable
2570number of digits. For example, NaN's, infinities, and other special
2571values are represented in their IEEE hexadecimal format so that assembly
2572and disassembly do not cause any bits to change in the constants.
2573
2574When using the hexadecimal form, constants of types half, float, and
2575double are represented using the 16-digit form shown above (which
2576matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002577must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002578precision, respectively. Hexadecimal format is always used for long
2579double, and there are three forms of long double. The 80-bit format used
2580by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2581128-bit format used by PowerPC (two adjacent doubles) is represented by
2582``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002583represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2584will only work if they match the long double format on your target.
2585The IEEE 16-bit format (half precision) is represented by ``0xH``
2586followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2587(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002588
Reid Kleckner9a16d082014-03-05 02:41:37 +00002589There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002590
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002591.. _complexconstants:
2592
Sean Silvab084af42012-12-07 10:36:55 +00002593Complex Constants
2594-----------------
2595
2596Complex constants are a (potentially recursive) combination of simple
2597constants and smaller complex constants.
2598
2599**Structure constants**
2600 Structure constants are represented with notation similar to
2601 structure type definitions (a comma separated list of elements,
2602 surrounded by braces (``{}``)). For example:
2603 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2604 "``@G = external global i32``". Structure constants must have
2605 :ref:`structure type <t_struct>`, and the number and types of elements
2606 must match those specified by the type.
2607**Array constants**
2608 Array constants are represented with notation similar to array type
2609 definitions (a comma separated list of elements, surrounded by
2610 square brackets (``[]``)). For example:
2611 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2612 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002613 match those specified by the type. As a special case, character array
2614 constants may also be represented as a double-quoted string using the ``c``
2615 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002616**Vector constants**
2617 Vector constants are represented with notation similar to vector
2618 type definitions (a comma separated list of elements, surrounded by
2619 less-than/greater-than's (``<>``)). For example:
2620 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2621 must have :ref:`vector type <t_vector>`, and the number and types of
2622 elements must match those specified by the type.
2623**Zero initialization**
2624 The string '``zeroinitializer``' can be used to zero initialize a
2625 value to zero of *any* type, including scalar and
2626 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2627 having to print large zero initializers (e.g. for large arrays) and
2628 is always exactly equivalent to using explicit zero initializers.
2629**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002630 A metadata node is a constant tuple without types. For example:
2631 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002632 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2633 Unlike other typed constants that are meant to be interpreted as part of
2634 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002635 information such as debug info.
2636
2637Global Variable and Function Addresses
2638--------------------------------------
2639
2640The addresses of :ref:`global variables <globalvars>` and
2641:ref:`functions <functionstructure>` are always implicitly valid
2642(link-time) constants. These constants are explicitly referenced when
2643the :ref:`identifier for the global <identifiers>` is used and always have
2644:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2645file:
2646
2647.. code-block:: llvm
2648
2649 @X = global i32 17
2650 @Y = global i32 42
2651 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2652
2653.. _undefvalues:
2654
2655Undefined Values
2656----------------
2657
2658The string '``undef``' can be used anywhere a constant is expected, and
2659indicates that the user of the value may receive an unspecified
2660bit-pattern. Undefined values may be of any type (other than '``label``'
2661or '``void``') and be used anywhere a constant is permitted.
2662
2663Undefined values are useful because they indicate to the compiler that
2664the program is well defined no matter what value is used. This gives the
2665compiler more freedom to optimize. Here are some examples of
2666(potentially surprising) transformations that are valid (in pseudo IR):
2667
2668.. code-block:: llvm
2669
2670 %A = add %X, undef
2671 %B = sub %X, undef
2672 %C = xor %X, undef
2673 Safe:
2674 %A = undef
2675 %B = undef
2676 %C = undef
2677
2678This is safe because all of the output bits are affected by the undef
2679bits. Any output bit can have a zero or one depending on the input bits.
2680
2681.. code-block:: llvm
2682
2683 %A = or %X, undef
2684 %B = and %X, undef
2685 Safe:
2686 %A = -1
2687 %B = 0
2688 Unsafe:
2689 %A = undef
2690 %B = undef
2691
2692These logical operations have bits that are not always affected by the
2693input. For example, if ``%X`` has a zero bit, then the output of the
2694'``and``' operation will always be a zero for that bit, no matter what
2695the corresponding bit from the '``undef``' is. As such, it is unsafe to
2696optimize or assume that the result of the '``and``' is '``undef``'.
2697However, it is safe to assume that all bits of the '``undef``' could be
26980, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2699all the bits of the '``undef``' operand to the '``or``' could be set,
2700allowing the '``or``' to be folded to -1.
2701
2702.. code-block:: llvm
2703
2704 %A = select undef, %X, %Y
2705 %B = select undef, 42, %Y
2706 %C = select %X, %Y, undef
2707 Safe:
2708 %A = %X (or %Y)
2709 %B = 42 (or %Y)
2710 %C = %Y
2711 Unsafe:
2712 %A = undef
2713 %B = undef
2714 %C = undef
2715
2716This set of examples shows that undefined '``select``' (and conditional
2717branch) conditions can go *either way*, but they have to come from one
2718of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2719both known to have a clear low bit, then ``%A`` would have to have a
2720cleared low bit. However, in the ``%C`` example, the optimizer is
2721allowed to assume that the '``undef``' operand could be the same as
2722``%Y``, allowing the whole '``select``' to be eliminated.
2723
2724.. code-block:: llvm
2725
2726 %A = xor undef, undef
2727
2728 %B = undef
2729 %C = xor %B, %B
2730
2731 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002732 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002733 %F = icmp gte %D, 4
2734
2735 Safe:
2736 %A = undef
2737 %B = undef
2738 %C = undef
2739 %D = undef
2740 %E = undef
2741 %F = undef
2742
2743This example points out that two '``undef``' operands are not
2744necessarily the same. This can be surprising to people (and also matches
2745C semantics) where they assume that "``X^X``" is always zero, even if
2746``X`` is undefined. This isn't true for a number of reasons, but the
2747short answer is that an '``undef``' "variable" can arbitrarily change
2748its value over its "live range". This is true because the variable
2749doesn't actually *have a live range*. Instead, the value is logically
2750read from arbitrary registers that happen to be around when needed, so
2751the value is not necessarily consistent over time. In fact, ``%A`` and
2752``%C`` need to have the same semantics or the core LLVM "replace all
2753uses with" concept would not hold.
2754
2755.. code-block:: llvm
2756
2757 %A = fdiv undef, %X
2758 %B = fdiv %X, undef
2759 Safe:
2760 %A = undef
2761 b: unreachable
2762
2763These examples show the crucial difference between an *undefined value*
2764and *undefined behavior*. An undefined value (like '``undef``') is
2765allowed to have an arbitrary bit-pattern. This means that the ``%A``
2766operation can be constant folded to '``undef``', because the '``undef``'
2767could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2768However, in the second example, we can make a more aggressive
2769assumption: because the ``undef`` is allowed to be an arbitrary value,
2770we are allowed to assume that it could be zero. Since a divide by zero
2771has *undefined behavior*, we are allowed to assume that the operation
2772does not execute at all. This allows us to delete the divide and all
2773code after it. Because the undefined operation "can't happen", the
2774optimizer can assume that it occurs in dead code.
2775
2776.. code-block:: llvm
2777
2778 a: store undef -> %X
2779 b: store %X -> undef
2780 Safe:
2781 a: <deleted>
2782 b: unreachable
2783
2784These examples reiterate the ``fdiv`` example: a store *of* an undefined
2785value can be assumed to not have any effect; we can assume that the
2786value is overwritten with bits that happen to match what was already
2787there. However, a store *to* an undefined location could clobber
2788arbitrary memory, therefore, it has undefined behavior.
2789
2790.. _poisonvalues:
2791
2792Poison Values
2793-------------
2794
2795Poison values are similar to :ref:`undef values <undefvalues>`, however
2796they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002797that cannot evoke side effects has nevertheless detected a condition
2798that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002799
2800There is currently no way of representing a poison value in the IR; they
2801only exist when produced by operations such as :ref:`add <i_add>` with
2802the ``nsw`` flag.
2803
2804Poison value behavior is defined in terms of value *dependence*:
2805
2806- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2807- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2808 their dynamic predecessor basic block.
2809- Function arguments depend on the corresponding actual argument values
2810 in the dynamic callers of their functions.
2811- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2812 instructions that dynamically transfer control back to them.
2813- :ref:`Invoke <i_invoke>` instructions depend on the
2814 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2815 call instructions that dynamically transfer control back to them.
2816- Non-volatile loads and stores depend on the most recent stores to all
2817 of the referenced memory addresses, following the order in the IR
2818 (including loads and stores implied by intrinsics such as
2819 :ref:`@llvm.memcpy <int_memcpy>`.)
2820- An instruction with externally visible side effects depends on the
2821 most recent preceding instruction with externally visible side
2822 effects, following the order in the IR. (This includes :ref:`volatile
2823 operations <volatile>`.)
2824- An instruction *control-depends* on a :ref:`terminator
2825 instruction <terminators>` if the terminator instruction has
2826 multiple successors and the instruction is always executed when
2827 control transfers to one of the successors, and may not be executed
2828 when control is transferred to another.
2829- Additionally, an instruction also *control-depends* on a terminator
2830 instruction if the set of instructions it otherwise depends on would
2831 be different if the terminator had transferred control to a different
2832 successor.
2833- Dependence is transitive.
2834
Richard Smith32dbdf62014-07-31 04:25:36 +00002835Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2836with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002837on a poison value has undefined behavior.
2838
2839Here are some examples:
2840
2841.. code-block:: llvm
2842
2843 entry:
2844 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2845 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002846 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002847 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2848
2849 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002850 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002851
2852 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2853
2854 %narrowaddr = bitcast i32* @g to i16*
2855 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002856 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2857 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002858
2859 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2860 br i1 %cmp, label %true, label %end ; Branch to either destination.
2861
2862 true:
2863 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2864 ; it has undefined behavior.
2865 br label %end
2866
2867 end:
2868 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2869 ; Both edges into this PHI are
2870 ; control-dependent on %cmp, so this
2871 ; always results in a poison value.
2872
2873 store volatile i32 0, i32* @g ; This would depend on the store in %true
2874 ; if %cmp is true, or the store in %entry
2875 ; otherwise, so this is undefined behavior.
2876
2877 br i1 %cmp, label %second_true, label %second_end
2878 ; The same branch again, but this time the
2879 ; true block doesn't have side effects.
2880
2881 second_true:
2882 ; No side effects!
2883 ret void
2884
2885 second_end:
2886 store volatile i32 0, i32* @g ; This time, the instruction always depends
2887 ; on the store in %end. Also, it is
2888 ; control-equivalent to %end, so this is
2889 ; well-defined (ignoring earlier undefined
2890 ; behavior in this example).
2891
2892.. _blockaddress:
2893
2894Addresses of Basic Blocks
2895-------------------------
2896
2897``blockaddress(@function, %block)``
2898
2899The '``blockaddress``' constant computes the address of the specified
2900basic block in the specified function, and always has an ``i8*`` type.
2901Taking the address of the entry block is illegal.
2902
2903This value only has defined behavior when used as an operand to the
2904':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2905against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002906undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002907no label is equal to the null pointer. This may be passed around as an
2908opaque pointer sized value as long as the bits are not inspected. This
2909allows ``ptrtoint`` and arithmetic to be performed on these values so
2910long as the original value is reconstituted before the ``indirectbr``
2911instruction.
2912
2913Finally, some targets may provide defined semantics when using the value
2914as the operand to an inline assembly, but that is target specific.
2915
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002916.. _constantexprs:
2917
Sean Silvab084af42012-12-07 10:36:55 +00002918Constant Expressions
2919--------------------
2920
2921Constant expressions are used to allow expressions involving other
2922constants to be used as constants. Constant expressions may be of any
2923:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2924that does not have side effects (e.g. load and call are not supported).
2925The following is the syntax for constant expressions:
2926
2927``trunc (CST to TYPE)``
2928 Truncate a constant to another type. The bit size of CST must be
2929 larger than the bit size of TYPE. Both types must be integers.
2930``zext (CST to TYPE)``
2931 Zero extend a constant to another type. The bit size of CST must be
2932 smaller than the bit size of TYPE. Both types must be integers.
2933``sext (CST to TYPE)``
2934 Sign extend a constant to another type. The bit size of CST must be
2935 smaller than the bit size of TYPE. Both types must be integers.
2936``fptrunc (CST to TYPE)``
2937 Truncate a floating point constant to another floating point type.
2938 The size of CST must be larger than the size of TYPE. Both types
2939 must be floating point.
2940``fpext (CST to TYPE)``
2941 Floating point extend a constant to another type. The size of CST
2942 must be smaller or equal to the size of TYPE. Both types must be
2943 floating point.
2944``fptoui (CST to TYPE)``
2945 Convert a floating point constant to the corresponding unsigned
2946 integer constant. TYPE must be a scalar or vector integer type. CST
2947 must be of scalar or vector floating point type. Both CST and TYPE
2948 must be scalars, or vectors of the same number of elements. If the
2949 value won't fit in the integer type, the results are undefined.
2950``fptosi (CST to TYPE)``
2951 Convert a floating point constant to the corresponding signed
2952 integer constant. TYPE must be a scalar or vector integer type. CST
2953 must be of scalar or vector floating point type. Both CST and TYPE
2954 must be scalars, or vectors of the same number of elements. If the
2955 value won't fit in the integer type, the results are undefined.
2956``uitofp (CST to TYPE)``
2957 Convert an unsigned integer constant to the corresponding floating
2958 point constant. TYPE must be a scalar or vector floating point type.
2959 CST must be of scalar or vector integer type. Both CST and TYPE must
2960 be scalars, or vectors of the same number of elements. If the value
2961 won't fit in the floating point type, the results are undefined.
2962``sitofp (CST to TYPE)``
2963 Convert a signed integer constant to the corresponding floating
2964 point constant. TYPE must be a scalar or vector floating point type.
2965 CST must be of scalar or vector integer type. Both CST and TYPE must
2966 be scalars, or vectors of the same number of elements. If the value
2967 won't fit in the floating point type, the results are undefined.
2968``ptrtoint (CST to TYPE)``
2969 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002970 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002971 pointer type. The ``CST`` value is zero extended, truncated, or
2972 unchanged to make it fit in ``TYPE``.
2973``inttoptr (CST to TYPE)``
2974 Convert an integer constant to a pointer constant. TYPE must be a
2975 pointer type. CST must be of integer type. The CST value is zero
2976 extended, truncated, or unchanged to make it fit in a pointer size.
2977 This one is *really* dangerous!
2978``bitcast (CST to TYPE)``
2979 Convert a constant, CST, to another TYPE. The constraints of the
2980 operands are the same as those for the :ref:`bitcast
2981 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002982``addrspacecast (CST to TYPE)``
2983 Convert a constant pointer or constant vector of pointer, CST, to another
2984 TYPE in a different address space. The constraints of the operands are the
2985 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002986``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002987 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2988 constants. As with the :ref:`getelementptr <i_getelementptr>`
2989 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002990 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002991``select (COND, VAL1, VAL2)``
2992 Perform the :ref:`select operation <i_select>` on constants.
2993``icmp COND (VAL1, VAL2)``
2994 Performs the :ref:`icmp operation <i_icmp>` on constants.
2995``fcmp COND (VAL1, VAL2)``
2996 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2997``extractelement (VAL, IDX)``
2998 Perform the :ref:`extractelement operation <i_extractelement>` on
2999 constants.
3000``insertelement (VAL, ELT, IDX)``
3001 Perform the :ref:`insertelement operation <i_insertelement>` on
3002 constants.
3003``shufflevector (VEC1, VEC2, IDXMASK)``
3004 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3005 constants.
3006``extractvalue (VAL, IDX0, IDX1, ...)``
3007 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3008 constants. The index list is interpreted in a similar manner as
3009 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3010 least one index value must be specified.
3011``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3012 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3013 The index list is interpreted in a similar manner as indices in a
3014 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3015 value must be specified.
3016``OPCODE (LHS, RHS)``
3017 Perform the specified operation of the LHS and RHS constants. OPCODE
3018 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3019 binary <bitwiseops>` operations. The constraints on operands are
3020 the same as those for the corresponding instruction (e.g. no bitwise
3021 operations on floating point values are allowed).
3022
3023Other Values
3024============
3025
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003026.. _inlineasmexprs:
3027
Sean Silvab084af42012-12-07 10:36:55 +00003028Inline Assembler Expressions
3029----------------------------
3030
3031LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003032Inline Assembly <moduleasm>`) through the use of a special value. This value
3033represents the inline assembler as a template string (containing the
3034instructions to emit), a list of operand constraints (stored as a string), a
3035flag that indicates whether or not the inline asm expression has side effects,
3036and a flag indicating whether the function containing the asm needs to align its
3037stack conservatively.
3038
3039The template string supports argument substitution of the operands using "``$``"
3040followed by a number, to indicate substitution of the given register/memory
3041location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3042be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3043operand (See :ref:`inline-asm-modifiers`).
3044
3045A literal "``$``" may be included by using "``$$``" in the template. To include
3046other special characters into the output, the usual "``\XX``" escapes may be
3047used, just as in other strings. Note that after template substitution, the
3048resulting assembly string is parsed by LLVM's integrated assembler unless it is
3049disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3050syntax known to LLVM.
3051
3052LLVM's support for inline asm is modeled closely on the requirements of Clang's
3053GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3054modifier codes listed here are similar or identical to those in GCC's inline asm
3055support. However, to be clear, the syntax of the template and constraint strings
3056described here is *not* the same as the syntax accepted by GCC and Clang, and,
3057while most constraint letters are passed through as-is by Clang, some get
3058translated to other codes when converting from the C source to the LLVM
3059assembly.
3060
3061An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003062
3063.. code-block:: llvm
3064
3065 i32 (i32) asm "bswap $0", "=r,r"
3066
3067Inline assembler expressions may **only** be used as the callee operand
3068of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3069Thus, typically we have:
3070
3071.. code-block:: llvm
3072
3073 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3074
3075Inline asms with side effects not visible in the constraint list must be
3076marked as having side effects. This is done through the use of the
3077'``sideeffect``' keyword, like so:
3078
3079.. code-block:: llvm
3080
3081 call void asm sideeffect "eieio", ""()
3082
3083In some cases inline asms will contain code that will not work unless
3084the stack is aligned in some way, such as calls or SSE instructions on
3085x86, yet will not contain code that does that alignment within the asm.
3086The compiler should make conservative assumptions about what the asm
3087might contain and should generate its usual stack alignment code in the
3088prologue if the '``alignstack``' keyword is present:
3089
3090.. code-block:: llvm
3091
3092 call void asm alignstack "eieio", ""()
3093
3094Inline asms also support using non-standard assembly dialects. The
3095assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3096the inline asm is using the Intel dialect. Currently, ATT and Intel are
3097the only supported dialects. An example is:
3098
3099.. code-block:: llvm
3100
3101 call void asm inteldialect "eieio", ""()
3102
3103If multiple keywords appear the '``sideeffect``' keyword must come
3104first, the '``alignstack``' keyword second and the '``inteldialect``'
3105keyword last.
3106
James Y Knightbc832ed2015-07-08 18:08:36 +00003107Inline Asm Constraint String
3108^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3109
3110The constraint list is a comma-separated string, each element containing one or
3111more constraint codes.
3112
3113For each element in the constraint list an appropriate register or memory
3114operand will be chosen, and it will be made available to assembly template
3115string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3116second, etc.
3117
3118There are three different types of constraints, which are distinguished by a
3119prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3120constraints must always be given in that order: outputs first, then inputs, then
3121clobbers. They cannot be intermingled.
3122
3123There are also three different categories of constraint codes:
3124
3125- Register constraint. This is either a register class, or a fixed physical
3126 register. This kind of constraint will allocate a register, and if necessary,
3127 bitcast the argument or result to the appropriate type.
3128- Memory constraint. This kind of constraint is for use with an instruction
3129 taking a memory operand. Different constraints allow for different addressing
3130 modes used by the target.
3131- Immediate value constraint. This kind of constraint is for an integer or other
3132 immediate value which can be rendered directly into an instruction. The
3133 various target-specific constraints allow the selection of a value in the
3134 proper range for the instruction you wish to use it with.
3135
3136Output constraints
3137""""""""""""""""""
3138
3139Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3140indicates that the assembly will write to this operand, and the operand will
3141then be made available as a return value of the ``asm`` expression. Output
3142constraints do not consume an argument from the call instruction. (Except, see
3143below about indirect outputs).
3144
3145Normally, it is expected that no output locations are written to by the assembly
3146expression until *all* of the inputs have been read. As such, LLVM may assign
3147the same register to an output and an input. If this is not safe (e.g. if the
3148assembly contains two instructions, where the first writes to one output, and
3149the second reads an input and writes to a second output), then the "``&``"
3150modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003151"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003152will not use the same register for any inputs (other than an input tied to this
3153output).
3154
3155Input constraints
3156"""""""""""""""""
3157
3158Input constraints do not have a prefix -- just the constraint codes. Each input
3159constraint will consume one argument from the call instruction. It is not
3160permitted for the asm to write to any input register or memory location (unless
3161that input is tied to an output). Note also that multiple inputs may all be
3162assigned to the same register, if LLVM can determine that they necessarily all
3163contain the same value.
3164
3165Instead of providing a Constraint Code, input constraints may also "tie"
3166themselves to an output constraint, by providing an integer as the constraint
3167string. Tied inputs still consume an argument from the call instruction, and
3168take up a position in the asm template numbering as is usual -- they will simply
3169be constrained to always use the same register as the output they've been tied
3170to. For example, a constraint string of "``=r,0``" says to assign a register for
3171output, and use that register as an input as well (it being the 0'th
3172constraint).
3173
3174It is permitted to tie an input to an "early-clobber" output. In that case, no
3175*other* input may share the same register as the input tied to the early-clobber
3176(even when the other input has the same value).
3177
3178You may only tie an input to an output which has a register constraint, not a
3179memory constraint. Only a single input may be tied to an output.
3180
3181There is also an "interesting" feature which deserves a bit of explanation: if a
3182register class constraint allocates a register which is too small for the value
3183type operand provided as input, the input value will be split into multiple
3184registers, and all of them passed to the inline asm.
3185
3186However, this feature is often not as useful as you might think.
3187
3188Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3189architectures that have instructions which operate on multiple consecutive
3190instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3191SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3192hardware then loads into both the named register, and the next register. This
3193feature of inline asm would not be useful to support that.)
3194
3195A few of the targets provide a template string modifier allowing explicit access
3196to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3197``D``). On such an architecture, you can actually access the second allocated
3198register (yet, still, not any subsequent ones). But, in that case, you're still
3199probably better off simply splitting the value into two separate operands, for
3200clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3201despite existing only for use with this feature, is not really a good idea to
3202use)
3203
3204Indirect inputs and outputs
3205"""""""""""""""""""""""""""
3206
3207Indirect output or input constraints can be specified by the "``*``" modifier
3208(which goes after the "``=``" in case of an output). This indicates that the asm
3209will write to or read from the contents of an *address* provided as an input
3210argument. (Note that in this way, indirect outputs act more like an *input* than
3211an output: just like an input, they consume an argument of the call expression,
3212rather than producing a return value. An indirect output constraint is an
3213"output" only in that the asm is expected to write to the contents of the input
3214memory location, instead of just read from it).
3215
3216This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3217address of a variable as a value.
3218
3219It is also possible to use an indirect *register* constraint, but only on output
3220(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3221value normally, and then, separately emit a store to the address provided as
3222input, after the provided inline asm. (It's not clear what value this
3223functionality provides, compared to writing the store explicitly after the asm
3224statement, and it can only produce worse code, since it bypasses many
3225optimization passes. I would recommend not using it.)
3226
3227
3228Clobber constraints
3229"""""""""""""""""""
3230
3231A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3232consume an input operand, nor generate an output. Clobbers cannot use any of the
3233general constraint code letters -- they may use only explicit register
3234constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3235"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3236memory locations -- not only the memory pointed to by a declared indirect
3237output.
3238
3239
3240Constraint Codes
3241""""""""""""""""
3242After a potential prefix comes constraint code, or codes.
3243
3244A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3245followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3246(e.g. "``{eax}``").
3247
3248The one and two letter constraint codes are typically chosen to be the same as
3249GCC's constraint codes.
3250
3251A single constraint may include one or more than constraint code in it, leaving
3252it up to LLVM to choose which one to use. This is included mainly for
3253compatibility with the translation of GCC inline asm coming from clang.
3254
3255There are two ways to specify alternatives, and either or both may be used in an
3256inline asm constraint list:
3257
32581) Append the codes to each other, making a constraint code set. E.g. "``im``"
3259 or "``{eax}m``". This means "choose any of the options in the set". The
3260 choice of constraint is made independently for each constraint in the
3261 constraint list.
3262
32632) Use "``|``" between constraint code sets, creating alternatives. Every
3264 constraint in the constraint list must have the same number of alternative
3265 sets. With this syntax, the same alternative in *all* of the items in the
3266 constraint list will be chosen together.
3267
3268Putting those together, you might have a two operand constraint string like
3269``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3270operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3271may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3272
3273However, the use of either of the alternatives features is *NOT* recommended, as
3274LLVM is not able to make an intelligent choice about which one to use. (At the
3275point it currently needs to choose, not enough information is available to do so
3276in a smart way.) Thus, it simply tries to make a choice that's most likely to
3277compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3278always choose to use memory, not registers). And, if given multiple registers,
3279or multiple register classes, it will simply choose the first one. (In fact, it
3280doesn't currently even ensure explicitly specified physical registers are
3281unique, so specifying multiple physical registers as alternatives, like
3282``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3283intended.)
3284
3285Supported Constraint Code List
3286""""""""""""""""""""""""""""""
3287
3288The constraint codes are, in general, expected to behave the same way they do in
3289GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3290inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3291and GCC likely indicates a bug in LLVM.
3292
3293Some constraint codes are typically supported by all targets:
3294
3295- ``r``: A register in the target's general purpose register class.
3296- ``m``: A memory address operand. It is target-specific what addressing modes
3297 are supported, typical examples are register, or register + register offset,
3298 or register + immediate offset (of some target-specific size).
3299- ``i``: An integer constant (of target-specific width). Allows either a simple
3300 immediate, or a relocatable value.
3301- ``n``: An integer constant -- *not* including relocatable values.
3302- ``s``: An integer constant, but allowing *only* relocatable values.
3303- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3304 useful to pass a label for an asm branch or call.
3305
3306 .. FIXME: but that surely isn't actually okay to jump out of an asm
3307 block without telling llvm about the control transfer???)
3308
3309- ``{register-name}``: Requires exactly the named physical register.
3310
3311Other constraints are target-specific:
3312
3313AArch64:
3314
3315- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3316- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3317 i.e. 0 to 4095 with optional shift by 12.
3318- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3319 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3320- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3321 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3322- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3323 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3324- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3325 32-bit register. This is a superset of ``K``: in addition to the bitmask
3326 immediate, also allows immediate integers which can be loaded with a single
3327 ``MOVZ`` or ``MOVL`` instruction.
3328- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3329 64-bit register. This is a superset of ``L``.
3330- ``Q``: Memory address operand must be in a single register (no
3331 offsets). (However, LLVM currently does this for the ``m`` constraint as
3332 well.)
3333- ``r``: A 32 or 64-bit integer register (W* or X*).
3334- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3335- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3336
3337AMDGPU:
3338
3339- ``r``: A 32 or 64-bit integer register.
3340- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3341- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3342
3343
3344All ARM modes:
3345
3346- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3347 operand. Treated the same as operand ``m``, at the moment.
3348
3349ARM and ARM's Thumb2 mode:
3350
3351- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3352- ``I``: An immediate integer valid for a data-processing instruction.
3353- ``J``: An immediate integer between -4095 and 4095.
3354- ``K``: An immediate integer whose bitwise inverse is valid for a
3355 data-processing instruction. (Can be used with template modifier "``B``" to
3356 print the inverted value).
3357- ``L``: An immediate integer whose negation is valid for a data-processing
3358 instruction. (Can be used with template modifier "``n``" to print the negated
3359 value).
3360- ``M``: A power of two or a integer between 0 and 32.
3361- ``N``: Invalid immediate constraint.
3362- ``O``: Invalid immediate constraint.
3363- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3364- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3365 as ``r``.
3366- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3367 invalid.
3368- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3369 ``d0-d31``, or ``q0-q15``.
3370- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3371 ``d0-d7``, or ``q0-q3``.
3372- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3373 ``s0-s31``.
3374
3375ARM's Thumb1 mode:
3376
3377- ``I``: An immediate integer between 0 and 255.
3378- ``J``: An immediate integer between -255 and -1.
3379- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3380 some amount.
3381- ``L``: An immediate integer between -7 and 7.
3382- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3383- ``N``: An immediate integer between 0 and 31.
3384- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3385- ``r``: A low 32-bit GPR register (``r0-r7``).
3386- ``l``: A low 32-bit GPR register (``r0-r7``).
3387- ``h``: A high GPR register (``r0-r7``).
3388- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3389 ``d0-d31``, or ``q0-q15``.
3390- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3391 ``d0-d7``, or ``q0-q3``.
3392- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3393 ``s0-s31``.
3394
3395
3396Hexagon:
3397
3398- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3399 at the moment.
3400- ``r``: A 32 or 64-bit register.
3401
3402MSP430:
3403
3404- ``r``: An 8 or 16-bit register.
3405
3406MIPS:
3407
3408- ``I``: An immediate signed 16-bit integer.
3409- ``J``: An immediate integer zero.
3410- ``K``: An immediate unsigned 16-bit integer.
3411- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3412- ``N``: An immediate integer between -65535 and -1.
3413- ``O``: An immediate signed 15-bit integer.
3414- ``P``: An immediate integer between 1 and 65535.
3415- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3416 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3417- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3418 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3419 ``m``.
3420- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3421 ``sc`` instruction on the given subtarget (details vary).
3422- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3423- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003424 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3425 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003426- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3427 ``25``).
3428- ``l``: The ``lo`` register, 32 or 64-bit.
3429- ``x``: Invalid.
3430
3431NVPTX:
3432
3433- ``b``: A 1-bit integer register.
3434- ``c`` or ``h``: A 16-bit integer register.
3435- ``r``: A 32-bit integer register.
3436- ``l`` or ``N``: A 64-bit integer register.
3437- ``f``: A 32-bit float register.
3438- ``d``: A 64-bit float register.
3439
3440
3441PowerPC:
3442
3443- ``I``: An immediate signed 16-bit integer.
3444- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3445- ``K``: An immediate unsigned 16-bit integer.
3446- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3447- ``M``: An immediate integer greater than 31.
3448- ``N``: An immediate integer that is an exact power of 2.
3449- ``O``: The immediate integer constant 0.
3450- ``P``: An immediate integer constant whose negation is a signed 16-bit
3451 constant.
3452- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3453 treated the same as ``m``.
3454- ``r``: A 32 or 64-bit integer register.
3455- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3456 ``R1-R31``).
3457- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3458 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3459- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3460 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3461 altivec vector register (``V0-V31``).
3462
3463 .. FIXME: is this a bug that v accepts QPX registers? I think this
3464 is supposed to only use the altivec vector registers?
3465
3466- ``y``: Condition register (``CR0-CR7``).
3467- ``wc``: An individual CR bit in a CR register.
3468- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3469 register set (overlapping both the floating-point and vector register files).
3470- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3471 set.
3472
3473Sparc:
3474
3475- ``I``: An immediate 13-bit signed integer.
3476- ``r``: A 32-bit integer register.
3477
3478SystemZ:
3479
3480- ``I``: An immediate unsigned 8-bit integer.
3481- ``J``: An immediate unsigned 12-bit integer.
3482- ``K``: An immediate signed 16-bit integer.
3483- ``L``: An immediate signed 20-bit integer.
3484- ``M``: An immediate integer 0x7fffffff.
3485- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3486 ``m``, at the moment.
3487- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3488- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3489 address context evaluates as zero).
3490- ``h``: A 32-bit value in the high part of a 64bit data register
3491 (LLVM-specific)
3492- ``f``: A 32, 64, or 128-bit floating point register.
3493
3494X86:
3495
3496- ``I``: An immediate integer between 0 and 31.
3497- ``J``: An immediate integer between 0 and 64.
3498- ``K``: An immediate signed 8-bit integer.
3499- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3500 0xffffffff.
3501- ``M``: An immediate integer between 0 and 3.
3502- ``N``: An immediate unsigned 8-bit integer.
3503- ``O``: An immediate integer between 0 and 127.
3504- ``e``: An immediate 32-bit signed integer.
3505- ``Z``: An immediate 32-bit unsigned integer.
3506- ``o``, ``v``: Treated the same as ``m``, at the moment.
3507- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3508 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3509 registers, and on X86-64, it is all of the integer registers.
3510- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3511 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3512- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3513- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3514 existed since i386, and can be accessed without the REX prefix.
3515- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3516- ``y``: A 64-bit MMX register, if MMX is enabled.
3517- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3518 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3519 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3520 512-bit vector operand in an AVX512 register, Otherwise, an error.
3521- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3522- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3523 32-bit mode, a 64-bit integer operand will get split into two registers). It
3524 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3525 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3526 you're better off splitting it yourself, before passing it to the asm
3527 statement.
3528
3529XCore:
3530
3531- ``r``: A 32-bit integer register.
3532
3533
3534.. _inline-asm-modifiers:
3535
3536Asm template argument modifiers
3537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3538
3539In the asm template string, modifiers can be used on the operand reference, like
3540"``${0:n}``".
3541
3542The modifiers are, in general, expected to behave the same way they do in
3543GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3544inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3545and GCC likely indicates a bug in LLVM.
3546
3547Target-independent:
3548
Sean Silvaa1190322015-08-06 22:56:48 +00003549- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003550 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3551- ``n``: Negate and print immediate integer constant unadorned, without the
3552 target-specific immediate punctuation (e.g. no ``$`` prefix).
3553- ``l``: Print as an unadorned label, without the target-specific label
3554 punctuation (e.g. no ``$`` prefix).
3555
3556AArch64:
3557
3558- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3559 instead of ``x30``, print ``w30``.
3560- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3561- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3562 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3563 ``v*``.
3564
3565AMDGPU:
3566
3567- ``r``: No effect.
3568
3569ARM:
3570
3571- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3572 register).
3573- ``P``: No effect.
3574- ``q``: No effect.
3575- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3576 as ``d4[1]`` instead of ``s9``)
3577- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3578 prefix.
3579- ``L``: Print the low 16-bits of an immediate integer constant.
3580- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3581 register operands subsequent to the specified one (!), so use carefully.
3582- ``Q``: Print the low-order register of a register-pair, or the low-order
3583 register of a two-register operand.
3584- ``R``: Print the high-order register of a register-pair, or the high-order
3585 register of a two-register operand.
3586- ``H``: Print the second register of a register-pair. (On a big-endian system,
3587 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3588 to ``R``.)
3589
3590 .. FIXME: H doesn't currently support printing the second register
3591 of a two-register operand.
3592
3593- ``e``: Print the low doubleword register of a NEON quad register.
3594- ``f``: Print the high doubleword register of a NEON quad register.
3595- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3596 adornment.
3597
3598Hexagon:
3599
3600- ``L``: Print the second register of a two-register operand. Requires that it
3601 has been allocated consecutively to the first.
3602
3603 .. FIXME: why is it restricted to consecutive ones? And there's
3604 nothing that ensures that happens, is there?
3605
3606- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3607 nothing. Used to print 'addi' vs 'add' instructions.
3608
3609MSP430:
3610
3611No additional modifiers.
3612
3613MIPS:
3614
3615- ``X``: Print an immediate integer as hexadecimal
3616- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3617- ``d``: Print an immediate integer as decimal.
3618- ``m``: Subtract one and print an immediate integer as decimal.
3619- ``z``: Print $0 if an immediate zero, otherwise print normally.
3620- ``L``: Print the low-order register of a two-register operand, or prints the
3621 address of the low-order word of a double-word memory operand.
3622
3623 .. FIXME: L seems to be missing memory operand support.
3624
3625- ``M``: Print the high-order register of a two-register operand, or prints the
3626 address of the high-order word of a double-word memory operand.
3627
3628 .. FIXME: M seems to be missing memory operand support.
3629
3630- ``D``: Print the second register of a two-register operand, or prints the
3631 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3632 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3633 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003634- ``w``: No effect. Provided for compatibility with GCC which requires this
3635 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3636 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003637
3638NVPTX:
3639
3640- ``r``: No effect.
3641
3642PowerPC:
3643
3644- ``L``: Print the second register of a two-register operand. Requires that it
3645 has been allocated consecutively to the first.
3646
3647 .. FIXME: why is it restricted to consecutive ones? And there's
3648 nothing that ensures that happens, is there?
3649
3650- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3651 nothing. Used to print 'addi' vs 'add' instructions.
3652- ``y``: For a memory operand, prints formatter for a two-register X-form
3653 instruction. (Currently always prints ``r0,OPERAND``).
3654- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3655 otherwise. (NOTE: LLVM does not support update form, so this will currently
3656 always print nothing)
3657- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3658 not support indexed form, so this will currently always print nothing)
3659
3660Sparc:
3661
3662- ``r``: No effect.
3663
3664SystemZ:
3665
3666SystemZ implements only ``n``, and does *not* support any of the other
3667target-independent modifiers.
3668
3669X86:
3670
3671- ``c``: Print an unadorned integer or symbol name. (The latter is
3672 target-specific behavior for this typically target-independent modifier).
3673- ``A``: Print a register name with a '``*``' before it.
3674- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3675 operand.
3676- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3677 memory operand.
3678- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3679 operand.
3680- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3681 operand.
3682- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3683 available, otherwise the 32-bit register name; do nothing on a memory operand.
3684- ``n``: Negate and print an unadorned integer, or, for operands other than an
3685 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3686 the operand. (The behavior for relocatable symbol expressions is a
3687 target-specific behavior for this typically target-independent modifier)
3688- ``H``: Print a memory reference with additional offset +8.
3689- ``P``: Print a memory reference or operand for use as the argument of a call
3690 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3691
3692XCore:
3693
3694No additional modifiers.
3695
3696
Sean Silvab084af42012-12-07 10:36:55 +00003697Inline Asm Metadata
3698^^^^^^^^^^^^^^^^^^^
3699
3700The call instructions that wrap inline asm nodes may have a
3701"``!srcloc``" MDNode attached to it that contains a list of constant
3702integers. If present, the code generator will use the integer as the
3703location cookie value when report errors through the ``LLVMContext``
3704error reporting mechanisms. This allows a front-end to correlate backend
3705errors that occur with inline asm back to the source code that produced
3706it. For example:
3707
3708.. code-block:: llvm
3709
3710 call void asm sideeffect "something bad", ""(), !srcloc !42
3711 ...
3712 !42 = !{ i32 1234567 }
3713
3714It is up to the front-end to make sense of the magic numbers it places
3715in the IR. If the MDNode contains multiple constants, the code generator
3716will use the one that corresponds to the line of the asm that the error
3717occurs on.
3718
3719.. _metadata:
3720
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003721Metadata
3722========
Sean Silvab084af42012-12-07 10:36:55 +00003723
3724LLVM IR allows metadata to be attached to instructions in the program
3725that can convey extra information about the code to the optimizers and
3726code generator. One example application of metadata is source-level
3727debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003728
Sean Silvaa1190322015-08-06 22:56:48 +00003729Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003730``call`` instruction, it uses the ``metadata`` type.
3731
3732All metadata are identified in syntax by a exclamation point ('``!``').
3733
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003734.. _metadata-string:
3735
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003736Metadata Nodes and Metadata Strings
3737-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003738
3739A metadata string is a string surrounded by double quotes. It can
3740contain any character by escaping non-printable characters with
3741"``\xx``" where "``xx``" is the two digit hex code. For example:
3742"``!"test\00"``".
3743
3744Metadata nodes are represented with notation similar to structure
3745constants (a comma separated list of elements, surrounded by braces and
3746preceded by an exclamation point). Metadata nodes can have any values as
3747their operand. For example:
3748
3749.. code-block:: llvm
3750
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003751 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003752
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003753Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3754
3755.. code-block:: llvm
3756
3757 !0 = distinct !{!"test\00", i32 10}
3758
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003759``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003760content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003761when metadata operands change.
3762
Sean Silvab084af42012-12-07 10:36:55 +00003763A :ref:`named metadata <namedmetadatastructure>` is a collection of
3764metadata nodes, which can be looked up in the module symbol table. For
3765example:
3766
3767.. code-block:: llvm
3768
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003769 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003770
3771Metadata can be used as function arguments. Here ``llvm.dbg.value``
3772function is using two metadata arguments:
3773
3774.. code-block:: llvm
3775
3776 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3777
Peter Collingbourne50108682015-11-06 02:41:02 +00003778Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3779to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003780
3781.. code-block:: llvm
3782
3783 %indvar.next = add i64 %indvar, 1, !dbg !21
3784
Peter Collingbourne50108682015-11-06 02:41:02 +00003785Metadata can also be attached to a function definition. Here metadata ``!22``
3786is attached to the ``foo`` function using the ``!dbg`` identifier:
3787
3788.. code-block:: llvm
3789
3790 define void @foo() !dbg !22 {
3791 ret void
3792 }
3793
Sean Silvab084af42012-12-07 10:36:55 +00003794More information about specific metadata nodes recognized by the
3795optimizers and code generator is found below.
3796
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003797.. _specialized-metadata:
3798
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003799Specialized Metadata Nodes
3800^^^^^^^^^^^^^^^^^^^^^^^^^^
3801
3802Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003803to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003804order.
3805
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003806These aren't inherently debug info centric, but currently all the specialized
3807metadata nodes are related to debug info.
3808
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003809.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003810
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003811DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003812"""""""""""""
3813
Sean Silvaa1190322015-08-06 22:56:48 +00003814``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003815``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3816fields are tuples containing the debug info to be emitted along with the compile
3817unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003818references to them from instructions).
3819
3820.. code-block:: llvm
3821
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003822 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003823 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3824 splitDebugFilename: "abc.debug", emissionKind: 1,
3825 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003826 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003827
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003828Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003829specific compilation unit. File descriptors are defined using this scope.
3830These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003831keep track of subprograms, global variables, type information, and imported
3832entities (declarations and namespaces).
3833
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003834.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003835
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003836DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003837""""""
3838
Sean Silvaa1190322015-08-06 22:56:48 +00003839``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003840
3841.. code-block:: llvm
3842
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003843 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003844
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003845Files are sometimes used in ``scope:`` fields, and are the only valid target
3846for ``file:`` fields.
3847
Michael Kuperstein605308a2015-05-14 10:58:59 +00003848.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003849
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003850DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003851"""""""""""
3852
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003853``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003854``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003855
3856.. code-block:: llvm
3857
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003858 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003859 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003860 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003861
Sean Silvaa1190322015-08-06 22:56:48 +00003862The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003863following:
3864
3865.. code-block:: llvm
3866
3867 DW_ATE_address = 1
3868 DW_ATE_boolean = 2
3869 DW_ATE_float = 4
3870 DW_ATE_signed = 5
3871 DW_ATE_signed_char = 6
3872 DW_ATE_unsigned = 7
3873 DW_ATE_unsigned_char = 8
3874
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003875.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003876
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003877DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003878""""""""""""""""
3879
Sean Silvaa1190322015-08-06 22:56:48 +00003880``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003881refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003882types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003883represents a function with no return value (such as ``void foo() {}`` in C++).
3884
3885.. code-block:: llvm
3886
3887 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3888 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003889 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003890
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003891.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003892
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003893DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003894"""""""""""""
3895
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003896``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003897qualified types.
3898
3899.. code-block:: llvm
3900
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003901 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003902 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003903 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003904 align: 32)
3905
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003906The following ``tag:`` values are valid:
3907
3908.. code-block:: llvm
3909
3910 DW_TAG_formal_parameter = 5
3911 DW_TAG_member = 13
3912 DW_TAG_pointer_type = 15
3913 DW_TAG_reference_type = 16
3914 DW_TAG_typedef = 22
3915 DW_TAG_ptr_to_member_type = 31
3916 DW_TAG_const_type = 38
3917 DW_TAG_volatile_type = 53
3918 DW_TAG_restrict_type = 55
3919
3920``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003921<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3922is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003923``DW_TAG_formal_parameter`` is used to define a member which is a formal
3924argument of a subprogram.
3925
3926``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3927
3928``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3929``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3930``baseType:``.
3931
3932Note that the ``void *`` type is expressed as a type derived from NULL.
3933
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003934.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003935
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003936DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003937"""""""""""""""
3938
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003939``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003940structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003941
3942If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003943identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003944can refer to composite types indirectly via a :ref:`metadata string
3945<metadata-string>` that matches their identifier.
3946
3947.. code-block:: llvm
3948
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003949 !0 = !DIEnumerator(name: "SixKind", value: 7)
3950 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3951 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3952 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003953 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3954 elements: !{!0, !1, !2})
3955
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003956The following ``tag:`` values are valid:
3957
3958.. code-block:: llvm
3959
3960 DW_TAG_array_type = 1
3961 DW_TAG_class_type = 2
3962 DW_TAG_enumeration_type = 4
3963 DW_TAG_structure_type = 19
3964 DW_TAG_union_type = 23
3965 DW_TAG_subroutine_type = 21
3966 DW_TAG_inheritance = 28
3967
3968
3969For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003970descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003971level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003972array type is a native packed vector.
3973
3974For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003975descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003976value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003977``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003978
3979For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3980``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003981<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003982
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003983.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003984
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003985DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003986""""""""""
3987
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003988``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003989:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003990
3991.. code-block:: llvm
3992
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003993 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3994 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3995 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003996
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003997.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003998
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003999DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004000""""""""""""
4001
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004002``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4003variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004004
4005.. code-block:: llvm
4006
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004007 !0 = !DIEnumerator(name: "SixKind", value: 7)
4008 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4009 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004010
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004011DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004012"""""""""""""""""""""""
4013
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004014``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004015language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004016:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004017
4018.. code-block:: llvm
4019
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004020 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004021
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004022DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004023""""""""""""""""""""""""
4024
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004025``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004026language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004027but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004028``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004029:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004030
4031.. code-block:: llvm
4032
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004033 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004034
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004035DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004036"""""""""""
4037
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004038``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004039
4040.. code-block:: llvm
4041
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004042 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004043
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004044DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004045""""""""""""""""
4046
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004047``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048
4049.. code-block:: llvm
4050
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004051 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004052 file: !2, line: 7, type: !3, isLocal: true,
4053 isDefinition: false, variable: i32* @foo,
4054 declaration: !4)
4055
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004056All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004057:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004058
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004059.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004060
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004061DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004062""""""""""""
4063
Peter Collingbourne50108682015-11-06 02:41:02 +00004064``DISubprogram`` nodes represent functions from the source language. A
4065``DISubprogram`` may be attached to a function definition using ``!dbg``
4066metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4067that must be retained, even if their IR counterparts are optimized out of
4068the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004069
4070.. code-block:: llvm
4071
Peter Collingbourne50108682015-11-06 02:41:02 +00004072 define void @_Z3foov() !dbg !0 {
4073 ...
4074 }
4075
4076 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4077 file: !2, line: 7, type: !3, isLocal: true,
4078 isDefinition: false, scopeLine: 8,
4079 containingType: !4,
4080 virtuality: DW_VIRTUALITY_pure_virtual,
4081 virtualIndex: 10, flags: DIFlagPrototyped,
4082 isOptimized: true, templateParams: !5,
4083 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004084
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004085.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004086
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004087DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004088""""""""""""""
4089
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004090``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004091<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004092two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004093fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004094
4095.. code-block:: llvm
4096
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004097 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004098
4099Usually lexical blocks are ``distinct`` to prevent node merging based on
4100operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004101
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004102.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004103
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004104DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004105""""""""""""""""""
4106
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004107``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004108:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004109indicate textual inclusion, or the ``discriminator:`` field can be used to
4110discriminate between control flow within a single block in the source language.
4111
4112.. code-block:: llvm
4113
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004114 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4115 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4116 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004117
Michael Kuperstein605308a2015-05-14 10:58:59 +00004118.. _DILocation:
4119
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004120DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004121""""""""""
4122
Sean Silvaa1190322015-08-06 22:56:48 +00004123``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004124mandatory, and points at an :ref:`DILexicalBlockFile`, an
4125:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004126
4127.. code-block:: llvm
4128
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004129 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004130
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004131.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004132
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004133DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004134"""""""""""""""
4135
Sean Silvaa1190322015-08-06 22:56:48 +00004136``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004137the ``arg:`` field is set to non-zero, then this variable is a subprogram
4138parameter, and it will be included in the ``variables:`` field of its
4139:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004140
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004141.. code-block:: llvm
4142
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004143 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4144 type: !3, flags: DIFlagArtificial)
4145 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4146 type: !3)
4147 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004148
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004149DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004150""""""""""""
4151
Sean Silvaa1190322015-08-06 22:56:48 +00004152``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004153:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4154describe how the referenced LLVM variable relates to the source language
4155variable.
4156
4157The current supported vocabulary is limited:
4158
4159- ``DW_OP_deref`` dereferences the working expression.
4160- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4161- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4162 here, respectively) of the variable piece from the working expression.
4163
4164.. code-block:: llvm
4165
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004166 !0 = !DIExpression(DW_OP_deref)
4167 !1 = !DIExpression(DW_OP_plus, 3)
4168 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4169 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004170
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004171DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004172""""""""""""""
4173
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004174``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004175
4176.. code-block:: llvm
4177
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004178 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004179 getter: "getFoo", attributes: 7, type: !2)
4180
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004181DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004182""""""""""""""""
4183
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004184``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004185compile unit.
4186
4187.. code-block:: llvm
4188
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004190 entity: !1, line: 7)
4191
Amjad Abouda9bcf162015-12-10 12:56:35 +00004192DIMacro
4193"""""""
4194
4195``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4196The ``name:`` field is the macro identifier, followed by macro parameters when
4197definining a function-like macro, and the ``value`` field is the token-string
4198used to expand the macro identifier.
4199
4200.. code-block:: llvm
4201
4202 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4203 value: "((x) + 1)")
4204 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4205
4206DIMacroFile
4207"""""""""""
4208
4209``DIMacroFile`` nodes represent inclusion of source files.
4210The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4211appear in the included source file.
4212
4213.. code-block:: llvm
4214
4215 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4216 nodes: !3)
4217
Sean Silvab084af42012-12-07 10:36:55 +00004218'``tbaa``' Metadata
4219^^^^^^^^^^^^^^^^^^^
4220
4221In LLVM IR, memory does not have types, so LLVM's own type system is not
4222suitable for doing TBAA. Instead, metadata is added to the IR to
4223describe a type system of a higher level language. This can be used to
4224implement typical C/C++ TBAA, but it can also be used to implement
4225custom alias analysis behavior for other languages.
4226
4227The current metadata format is very simple. TBAA metadata nodes have up
4228to three fields, e.g.:
4229
4230.. code-block:: llvm
4231
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004232 !0 = !{ !"an example type tree" }
4233 !1 = !{ !"int", !0 }
4234 !2 = !{ !"float", !0 }
4235 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004236
4237The first field is an identity field. It can be any value, usually a
4238metadata string, which uniquely identifies the type. The most important
4239name in the tree is the name of the root node. Two trees with different
4240root node names are entirely disjoint, even if they have leaves with
4241common names.
4242
4243The second field identifies the type's parent node in the tree, or is
4244null or omitted for a root node. A type is considered to alias all of
4245its descendants and all of its ancestors in the tree. Also, a type is
4246considered to alias all types in other trees, so that bitcode produced
4247from multiple front-ends is handled conservatively.
4248
4249If the third field is present, it's an integer which if equal to 1
4250indicates that the type is "constant" (meaning
4251``pointsToConstantMemory`` should return true; see `other useful
4252AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4253
4254'``tbaa.struct``' Metadata
4255^^^^^^^^^^^^^^^^^^^^^^^^^^
4256
4257The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4258aggregate assignment operations in C and similar languages, however it
4259is defined to copy a contiguous region of memory, which is more than
4260strictly necessary for aggregate types which contain holes due to
4261padding. Also, it doesn't contain any TBAA information about the fields
4262of the aggregate.
4263
4264``!tbaa.struct`` metadata can describe which memory subregions in a
4265memcpy are padding and what the TBAA tags of the struct are.
4266
4267The current metadata format is very simple. ``!tbaa.struct`` metadata
4268nodes are a list of operands which are in conceptual groups of three.
4269For each group of three, the first operand gives the byte offset of a
4270field in bytes, the second gives its size in bytes, and the third gives
4271its tbaa tag. e.g.:
4272
4273.. code-block:: llvm
4274
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004275 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004276
4277This describes a struct with two fields. The first is at offset 0 bytes
4278with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4279and has size 4 bytes and has tbaa tag !2.
4280
4281Note that the fields need not be contiguous. In this example, there is a
42824 byte gap between the two fields. This gap represents padding which
4283does not carry useful data and need not be preserved.
4284
Hal Finkel94146652014-07-24 14:25:39 +00004285'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004287
4288``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4289noalias memory-access sets. This means that some collection of memory access
4290instructions (loads, stores, memory-accessing calls, etc.) that carry
4291``noalias`` metadata can specifically be specified not to alias with some other
4292collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004293Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004294a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004295of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004296subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004297instruction's ``noalias`` list, then the two memory accesses are assumed not to
4298alias.
Hal Finkel94146652014-07-24 14:25:39 +00004299
Hal Finkel029cde62014-07-25 15:50:02 +00004300The metadata identifying each domain is itself a list containing one or two
4301entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004302string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004303self-reference can be used to create globally unique domain names. A
4304descriptive string may optionally be provided as a second list entry.
4305
4306The metadata identifying each scope is also itself a list containing two or
4307three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004308is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004309self-reference can be used to create globally unique scope names. A metadata
4310reference to the scope's domain is the second entry. A descriptive string may
4311optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004312
4313For example,
4314
4315.. code-block:: llvm
4316
Hal Finkel029cde62014-07-25 15:50:02 +00004317 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004318 !0 = !{!0}
4319 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004320
Hal Finkel029cde62014-07-25 15:50:02 +00004321 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004322 !2 = !{!2, !0}
4323 !3 = !{!3, !0}
4324 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004325
Hal Finkel029cde62014-07-25 15:50:02 +00004326 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004327 !5 = !{!4} ; A list containing only scope !4
4328 !6 = !{!4, !3, !2}
4329 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004330
4331 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004332 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004333 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004334
Hal Finkel029cde62014-07-25 15:50:02 +00004335 ; These two instructions also don't alias (for domain !1, the set of scopes
4336 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004337 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004338 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004339
Adam Nemet0a8416f2015-05-11 08:30:28 +00004340 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004341 ; the !noalias list is not a superset of, or equal to, the scopes in the
4342 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004343 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004344 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004345
Sean Silvab084af42012-12-07 10:36:55 +00004346'``fpmath``' Metadata
4347^^^^^^^^^^^^^^^^^^^^^
4348
4349``fpmath`` metadata may be attached to any instruction of floating point
4350type. It can be used to express the maximum acceptable error in the
4351result of that instruction, in ULPs, thus potentially allowing the
4352compiler to use a more efficient but less accurate method of computing
4353it. ULP is defined as follows:
4354
4355 If ``x`` is a real number that lies between two finite consecutive
4356 floating-point numbers ``a`` and ``b``, without being equal to one
4357 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4358 distance between the two non-equal finite floating-point numbers
4359 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4360
4361The metadata node shall consist of a single positive floating point
4362number representing the maximum relative error, for example:
4363
4364.. code-block:: llvm
4365
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004366 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004367
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004368.. _range-metadata:
4369
Sean Silvab084af42012-12-07 10:36:55 +00004370'``range``' Metadata
4371^^^^^^^^^^^^^^^^^^^^
4372
Jingyue Wu37fcb592014-06-19 16:50:16 +00004373``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4374integer types. It expresses the possible ranges the loaded value or the value
4375returned by the called function at this call site is in. The ranges are
4376represented with a flattened list of integers. The loaded value or the value
4377returned is known to be in the union of the ranges defined by each consecutive
4378pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004379
4380- The type must match the type loaded by the instruction.
4381- The pair ``a,b`` represents the range ``[a,b)``.
4382- Both ``a`` and ``b`` are constants.
4383- The range is allowed to wrap.
4384- The range should not represent the full or empty set. That is,
4385 ``a!=b``.
4386
4387In addition, the pairs must be in signed order of the lower bound and
4388they must be non-contiguous.
4389
4390Examples:
4391
4392.. code-block:: llvm
4393
David Blaikiec7aabbb2015-03-04 22:06:14 +00004394 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4395 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004396 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4397 %d = invoke i8 @bar() to label %cont
4398 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004399 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004400 !0 = !{ i8 0, i8 2 }
4401 !1 = !{ i8 255, i8 2 }
4402 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4403 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004404
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004405'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004406^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004407
4408``unpredictable`` metadata may be attached to any branch or switch
4409instruction. It can be used to express the unpredictability of control
4410flow. Similar to the llvm.expect intrinsic, it may be used to alter
4411optimizations related to compare and branch instructions. The metadata
4412is treated as a boolean value; if it exists, it signals that the branch
4413or switch that it is attached to is completely unpredictable.
4414
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004415'``llvm.loop``'
4416^^^^^^^^^^^^^^^
4417
4418It is sometimes useful to attach information to loop constructs. Currently,
4419loop metadata is implemented as metadata attached to the branch instruction
4420in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004421guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004422specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004423
4424The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004425itself to avoid merging it with any other identifier metadata, e.g.,
4426during module linkage or function inlining. That is, each loop should refer
4427to their own identification metadata even if they reside in separate functions.
4428The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004429constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004430
4431.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004432
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004433 !0 = !{!0}
4434 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004435
Mark Heffernan893752a2014-07-18 19:24:51 +00004436The loop identifier metadata can be used to specify additional
4437per-loop metadata. Any operands after the first operand can be treated
4438as user-defined metadata. For example the ``llvm.loop.unroll.count``
4439suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004440
Paul Redmond5fdf8362013-05-28 20:00:34 +00004441.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004442
Paul Redmond5fdf8362013-05-28 20:00:34 +00004443 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4444 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004445 !0 = !{!0, !1}
4446 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004447
Mark Heffernan9d20e422014-07-21 23:11:03 +00004448'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004450
Mark Heffernan9d20e422014-07-21 23:11:03 +00004451Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4452used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004453vectorization width and interleave count. These metadata should be used in
4454conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004455``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4456optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004457it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004458which contains information about loop-carried memory dependencies can be helpful
4459in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004460
Mark Heffernan9d20e422014-07-21 23:11:03 +00004461'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4463
Mark Heffernan9d20e422014-07-21 23:11:03 +00004464This metadata suggests an interleave count to the loop interleaver.
4465The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004466second operand is an integer specifying the interleave count. For
4467example:
4468
4469.. code-block:: llvm
4470
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004471 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004472
Mark Heffernan9d20e422014-07-21 23:11:03 +00004473Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004474multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004475then the interleave count will be determined automatically.
4476
4477'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004479
4480This metadata selectively enables or disables vectorization for the loop. The
4481first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004482is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000044830 disables vectorization:
4484
4485.. code-block:: llvm
4486
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004487 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4488 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004489
4490'``llvm.loop.vectorize.width``' Metadata
4491^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4492
4493This metadata sets the target width of the vectorizer. The first
4494operand is the string ``llvm.loop.vectorize.width`` and the second
4495operand is an integer specifying the width. For example:
4496
4497.. code-block:: llvm
4498
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004499 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004500
4501Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004502vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000045030 or if the loop does not have this metadata the width will be
4504determined automatically.
4505
4506'``llvm.loop.unroll``'
4507^^^^^^^^^^^^^^^^^^^^^^
4508
4509Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4510optimization hints such as the unroll factor. ``llvm.loop.unroll``
4511metadata should be used in conjunction with ``llvm.loop`` loop
4512identification metadata. The ``llvm.loop.unroll`` metadata are only
4513optimization hints and the unrolling will only be performed if the
4514optimizer believes it is safe to do so.
4515
Mark Heffernan893752a2014-07-18 19:24:51 +00004516'``llvm.loop.unroll.count``' Metadata
4517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4518
4519This metadata suggests an unroll factor to the loop unroller. The
4520first operand is the string ``llvm.loop.unroll.count`` and the second
4521operand is a positive integer specifying the unroll factor. For
4522example:
4523
4524.. code-block:: llvm
4525
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004526 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004527
4528If the trip count of the loop is less than the unroll count the loop
4529will be partially unrolled.
4530
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004531'``llvm.loop.unroll.disable``' Metadata
4532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4533
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004534This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004535which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004536
4537.. code-block:: llvm
4538
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004539 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004540
Kevin Qin715b01e2015-03-09 06:14:18 +00004541'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004542^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004543
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004544This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004545operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004546
4547.. code-block:: llvm
4548
4549 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4550
Mark Heffernan89391542015-08-10 17:28:08 +00004551'``llvm.loop.unroll.enable``' Metadata
4552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4553
4554This metadata suggests that the loop should be fully unrolled if the trip count
4555is known at compile time and partially unrolled if the trip count is not known
4556at compile time. The metadata has a single operand which is the string
4557``llvm.loop.unroll.enable``. For example:
4558
4559.. code-block:: llvm
4560
4561 !0 = !{!"llvm.loop.unroll.enable"}
4562
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004563'``llvm.loop.unroll.full``' Metadata
4564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4565
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004566This metadata suggests that the loop should be unrolled fully. The
4567metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004568For example:
4569
4570.. code-block:: llvm
4571
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004572 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004573
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004574'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004576
4577This metadata indicates that the loop should not be versioned for the purpose
4578of enabling loop-invariant code motion (LICM). The metadata has a single operand
4579which is the string ``llvm.loop.licm_versioning.disable``. For example:
4580
4581.. code-block:: llvm
4582
4583 !0 = !{!"llvm.loop.licm_versioning.disable"}
4584
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004585'``llvm.mem``'
4586^^^^^^^^^^^^^^^
4587
4588Metadata types used to annotate memory accesses with information helpful
4589for optimizations are prefixed with ``llvm.mem``.
4590
4591'``llvm.mem.parallel_loop_access``' Metadata
4592^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4593
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004594The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4595or metadata containing a list of loop identifiers for nested loops.
4596The metadata is attached to memory accessing instructions and denotes that
4597no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004598with the same loop identifier.
4599
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004600Precisely, given two instructions ``m1`` and ``m2`` that both have the
4601``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4602set of loops associated with that metadata, respectively, then there is no loop
4603carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004604``L2``.
4605
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004606As a special case, if all memory accessing instructions in a loop have
4607``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4608loop has no loop carried memory dependences and is considered to be a parallel
4609loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004610
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004611Note that if not all memory access instructions have such metadata referring to
4612the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004613memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004614safe mechanism, this causes loops that were originally parallel to be considered
4615sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004616insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004617
4618Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004619both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004620metadata types that refer to the same loop identifier metadata.
4621
4622.. code-block:: llvm
4623
4624 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004625 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004626 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004627 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004628 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004629 ...
4630 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004631
4632 for.end:
4633 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004634 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004635
4636It is also possible to have nested parallel loops. In that case the
4637memory accesses refer to a list of loop identifier metadata nodes instead of
4638the loop identifier metadata node directly:
4639
4640.. code-block:: llvm
4641
4642 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004643 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004644 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004645 ...
4646 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004647
4648 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004649 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004650 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004651 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004652 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004653 ...
4654 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004655
4656 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004657 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004658 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004659 ...
4660 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004661
4662 outer.for.end: ; preds = %for.body
4663 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004664 !0 = !{!1, !2} ; a list of loop identifiers
4665 !1 = !{!1} ; an identifier for the inner loop
4666 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004667
Peter Collingbournee6909c82015-02-20 20:30:47 +00004668'``llvm.bitsets``'
4669^^^^^^^^^^^^^^^^^^
4670
4671The ``llvm.bitsets`` global metadata is used to implement
4672:doc:`bitsets <BitSets>`.
4673
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004674'``invariant.group``' Metadata
4675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4676
4677The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4678The existence of the ``invariant.group`` metadata on the instruction tells
4679the optimizer that every ``load`` and ``store`` to the same pointer operand
4680within the same invariant group can be assumed to load or store the same
4681value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4682when two pointers are considered the same).
4683
4684Examples:
4685
4686.. code-block:: llvm
4687
4688 @unknownPtr = external global i8
4689 ...
4690 %ptr = alloca i8
4691 store i8 42, i8* %ptr, !invariant.group !0
4692 call void @foo(i8* %ptr)
4693
4694 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4695 call void @foo(i8* %ptr)
4696 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4697
4698 %newPtr = call i8* @getPointer(i8* %ptr)
4699 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4700
4701 %unknownValue = load i8, i8* @unknownPtr
4702 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4703
4704 call void @foo(i8* %ptr)
4705 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4706 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4707
4708 ...
4709 declare void @foo(i8*)
4710 declare i8* @getPointer(i8*)
4711 declare i8* @llvm.invariant.group.barrier(i8*)
4712
4713 !0 = !{!"magic ptr"}
4714 !1 = !{!"other ptr"}
4715
4716
4717
Sean Silvab084af42012-12-07 10:36:55 +00004718Module Flags Metadata
4719=====================
4720
4721Information about the module as a whole is difficult to convey to LLVM's
4722subsystems. The LLVM IR isn't sufficient to transmit this information.
4723The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004724this. These flags are in the form of key / value pairs --- much like a
4725dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004726look it up.
4727
4728The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4729Each triplet has the following form:
4730
4731- The first element is a *behavior* flag, which specifies the behavior
4732 when two (or more) modules are merged together, and it encounters two
4733 (or more) metadata with the same ID. The supported behaviors are
4734 described below.
4735- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004736 metadata. Each module may only have one flag entry for each unique ID (not
4737 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004738- The third element is the value of the flag.
4739
4740When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004741``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4742each unique metadata ID string, there will be exactly one entry in the merged
4743modules ``llvm.module.flags`` metadata table, and the value for that entry will
4744be determined by the merge behavior flag, as described below. The only exception
4745is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004746
4747The following behaviors are supported:
4748
4749.. list-table::
4750 :header-rows: 1
4751 :widths: 10 90
4752
4753 * - Value
4754 - Behavior
4755
4756 * - 1
4757 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004758 Emits an error if two values disagree, otherwise the resulting value
4759 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004760
4761 * - 2
4762 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004763 Emits a warning if two values disagree. The result value will be the
4764 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004765
4766 * - 3
4767 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004768 Adds a requirement that another module flag be present and have a
4769 specified value after linking is performed. The value must be a
4770 metadata pair, where the first element of the pair is the ID of the
4771 module flag to be restricted, and the second element of the pair is
4772 the value the module flag should be restricted to. This behavior can
4773 be used to restrict the allowable results (via triggering of an
4774 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004775
4776 * - 4
4777 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004778 Uses the specified value, regardless of the behavior or value of the
4779 other module. If both modules specify **Override**, but the values
4780 differ, an error will be emitted.
4781
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004782 * - 5
4783 - **Append**
4784 Appends the two values, which are required to be metadata nodes.
4785
4786 * - 6
4787 - **AppendUnique**
4788 Appends the two values, which are required to be metadata
4789 nodes. However, duplicate entries in the second list are dropped
4790 during the append operation.
4791
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004792It is an error for a particular unique flag ID to have multiple behaviors,
4793except in the case of **Require** (which adds restrictions on another metadata
4794value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004795
4796An example of module flags:
4797
4798.. code-block:: llvm
4799
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004800 !0 = !{ i32 1, !"foo", i32 1 }
4801 !1 = !{ i32 4, !"bar", i32 37 }
4802 !2 = !{ i32 2, !"qux", i32 42 }
4803 !3 = !{ i32 3, !"qux",
4804 !{
4805 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004806 }
4807 }
4808 !llvm.module.flags = !{ !0, !1, !2, !3 }
4809
4810- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4811 if two or more ``!"foo"`` flags are seen is to emit an error if their
4812 values are not equal.
4813
4814- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4815 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004816 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004817
4818- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4819 behavior if two or more ``!"qux"`` flags are seen is to emit a
4820 warning if their values are not equal.
4821
4822- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4823
4824 ::
4825
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004826 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004827
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004828 The behavior is to emit an error if the ``llvm.module.flags`` does not
4829 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4830 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004831
4832Objective-C Garbage Collection Module Flags Metadata
4833----------------------------------------------------
4834
4835On the Mach-O platform, Objective-C stores metadata about garbage
4836collection in a special section called "image info". The metadata
4837consists of a version number and a bitmask specifying what types of
4838garbage collection are supported (if any) by the file. If two or more
4839modules are linked together their garbage collection metadata needs to
4840be merged rather than appended together.
4841
4842The Objective-C garbage collection module flags metadata consists of the
4843following key-value pairs:
4844
4845.. list-table::
4846 :header-rows: 1
4847 :widths: 30 70
4848
4849 * - Key
4850 - Value
4851
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004852 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004853 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004854
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004855 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004856 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004857 always 0.
4858
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004859 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004860 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004861 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4862 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4863 Objective-C ABI version 2.
4864
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004865 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004866 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004867 not. Valid values are 0, for no garbage collection, and 2, for garbage
4868 collection supported.
4869
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004870 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004871 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004872 If present, its value must be 6. This flag requires that the
4873 ``Objective-C Garbage Collection`` flag have the value 2.
4874
4875Some important flag interactions:
4876
4877- If a module with ``Objective-C Garbage Collection`` set to 0 is
4878 merged with a module with ``Objective-C Garbage Collection`` set to
4879 2, then the resulting module has the
4880 ``Objective-C Garbage Collection`` flag set to 0.
4881- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4882 merged with a module with ``Objective-C GC Only`` set to 6.
4883
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004884Automatic Linker Flags Module Flags Metadata
4885--------------------------------------------
4886
4887Some targets support embedding flags to the linker inside individual object
4888files. Typically this is used in conjunction with language extensions which
4889allow source files to explicitly declare the libraries they depend on, and have
4890these automatically be transmitted to the linker via object files.
4891
4892These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004893using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004894to be ``AppendUnique``, and the value for the key is expected to be a metadata
4895node which should be a list of other metadata nodes, each of which should be a
4896list of metadata strings defining linker options.
4897
4898For example, the following metadata section specifies two separate sets of
4899linker options, presumably to link against ``libz`` and the ``Cocoa``
4900framework::
4901
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004902 !0 = !{ i32 6, !"Linker Options",
4903 !{
4904 !{ !"-lz" },
4905 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004906 !llvm.module.flags = !{ !0 }
4907
4908The metadata encoding as lists of lists of options, as opposed to a collapsed
4909list of options, is chosen so that the IR encoding can use multiple option
4910strings to specify e.g., a single library, while still having that specifier be
4911preserved as an atomic element that can be recognized by a target specific
4912assembly writer or object file emitter.
4913
4914Each individual option is required to be either a valid option for the target's
4915linker, or an option that is reserved by the target specific assembly writer or
4916object file emitter. No other aspect of these options is defined by the IR.
4917
Oliver Stannard5dc29342014-06-20 10:08:11 +00004918C type width Module Flags Metadata
4919----------------------------------
4920
4921The ARM backend emits a section into each generated object file describing the
4922options that it was compiled with (in a compiler-independent way) to prevent
4923linking incompatible objects, and to allow automatic library selection. Some
4924of these options are not visible at the IR level, namely wchar_t width and enum
4925width.
4926
4927To pass this information to the backend, these options are encoded in module
4928flags metadata, using the following key-value pairs:
4929
4930.. list-table::
4931 :header-rows: 1
4932 :widths: 30 70
4933
4934 * - Key
4935 - Value
4936
4937 * - short_wchar
4938 - * 0 --- sizeof(wchar_t) == 4
4939 * 1 --- sizeof(wchar_t) == 2
4940
4941 * - short_enum
4942 - * 0 --- Enums are at least as large as an ``int``.
4943 * 1 --- Enums are stored in the smallest integer type which can
4944 represent all of its values.
4945
4946For example, the following metadata section specifies that the module was
4947compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4948enum is the smallest type which can represent all of its values::
4949
4950 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004951 !0 = !{i32 1, !"short_wchar", i32 1}
4952 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004953
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004954.. _intrinsicglobalvariables:
4955
Sean Silvab084af42012-12-07 10:36:55 +00004956Intrinsic Global Variables
4957==========================
4958
4959LLVM has a number of "magic" global variables that contain data that
4960affect code generation or other IR semantics. These are documented here.
4961All globals of this sort should have a section specified as
4962"``llvm.metadata``". This section and all globals that start with
4963"``llvm.``" are reserved for use by LLVM.
4964
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004965.. _gv_llvmused:
4966
Sean Silvab084af42012-12-07 10:36:55 +00004967The '``llvm.used``' Global Variable
4968-----------------------------------
4969
Rafael Espindola74f2e462013-04-22 14:58:02 +00004970The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004971:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004972pointers to named global variables, functions and aliases which may optionally
4973have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004974use of it is:
4975
4976.. code-block:: llvm
4977
4978 @X = global i8 4
4979 @Y = global i32 123
4980
4981 @llvm.used = appending global [2 x i8*] [
4982 i8* @X,
4983 i8* bitcast (i32* @Y to i8*)
4984 ], section "llvm.metadata"
4985
Rafael Espindola74f2e462013-04-22 14:58:02 +00004986If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4987and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004988symbol that it cannot see (which is why they have to be named). For example, if
4989a variable has internal linkage and no references other than that from the
4990``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4991references from inline asms and other things the compiler cannot "see", and
4992corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004993
4994On some targets, the code generator must emit a directive to the
4995assembler or object file to prevent the assembler and linker from
4996molesting the symbol.
4997
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004998.. _gv_llvmcompilerused:
4999
Sean Silvab084af42012-12-07 10:36:55 +00005000The '``llvm.compiler.used``' Global Variable
5001--------------------------------------------
5002
5003The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5004directive, except that it only prevents the compiler from touching the
5005symbol. On targets that support it, this allows an intelligent linker to
5006optimize references to the symbol without being impeded as it would be
5007by ``@llvm.used``.
5008
5009This is a rare construct that should only be used in rare circumstances,
5010and should not be exposed to source languages.
5011
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005012.. _gv_llvmglobalctors:
5013
Sean Silvab084af42012-12-07 10:36:55 +00005014The '``llvm.global_ctors``' Global Variable
5015-------------------------------------------
5016
5017.. code-block:: llvm
5018
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005019 %0 = type { i32, void ()*, i8* }
5020 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005021
5022The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005023functions, priorities, and an optional associated global or function.
5024The functions referenced by this array will be called in ascending order
5025of priority (i.e. lowest first) when the module is loaded. The order of
5026functions with the same priority is not defined.
5027
5028If the third field is present, non-null, and points to a global variable
5029or function, the initializer function will only run if the associated
5030data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005031
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005032.. _llvmglobaldtors:
5033
Sean Silvab084af42012-12-07 10:36:55 +00005034The '``llvm.global_dtors``' Global Variable
5035-------------------------------------------
5036
5037.. code-block:: llvm
5038
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005039 %0 = type { i32, void ()*, i8* }
5040 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005041
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005042The ``@llvm.global_dtors`` array contains a list of destructor
5043functions, priorities, and an optional associated global or function.
5044The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005045order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005046order of functions with the same priority is not defined.
5047
5048If the third field is present, non-null, and points to a global variable
5049or function, the destructor function will only run if the associated
5050data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005051
5052Instruction Reference
5053=====================
5054
5055The LLVM instruction set consists of several different classifications
5056of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5057instructions <binaryops>`, :ref:`bitwise binary
5058instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5059:ref:`other instructions <otherops>`.
5060
5061.. _terminators:
5062
5063Terminator Instructions
5064-----------------------
5065
5066As mentioned :ref:`previously <functionstructure>`, every basic block in a
5067program ends with a "Terminator" instruction, which indicates which
5068block should be executed after the current block is finished. These
5069terminator instructions typically yield a '``void``' value: they produce
5070control flow, not values (the one exception being the
5071':ref:`invoke <i_invoke>`' instruction).
5072
5073The terminator instructions are: ':ref:`ret <i_ret>`',
5074':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5075':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005076':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005077':ref:`catchret <i_catchret>`',
5078':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005079and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005080
5081.. _i_ret:
5082
5083'``ret``' Instruction
5084^^^^^^^^^^^^^^^^^^^^^
5085
5086Syntax:
5087"""""""
5088
5089::
5090
5091 ret <type> <value> ; Return a value from a non-void function
5092 ret void ; Return from void function
5093
5094Overview:
5095"""""""""
5096
5097The '``ret``' instruction is used to return control flow (and optionally
5098a value) from a function back to the caller.
5099
5100There are two forms of the '``ret``' instruction: one that returns a
5101value and then causes control flow, and one that just causes control
5102flow to occur.
5103
5104Arguments:
5105""""""""""
5106
5107The '``ret``' instruction optionally accepts a single argument, the
5108return value. The type of the return value must be a ':ref:`first
5109class <t_firstclass>`' type.
5110
5111A function is not :ref:`well formed <wellformed>` if it it has a non-void
5112return type and contains a '``ret``' instruction with no return value or
5113a return value with a type that does not match its type, or if it has a
5114void return type and contains a '``ret``' instruction with a return
5115value.
5116
5117Semantics:
5118""""""""""
5119
5120When the '``ret``' instruction is executed, control flow returns back to
5121the calling function's context. If the caller is a
5122":ref:`call <i_call>`" instruction, execution continues at the
5123instruction after the call. If the caller was an
5124":ref:`invoke <i_invoke>`" instruction, execution continues at the
5125beginning of the "normal" destination block. If the instruction returns
5126a value, that value shall set the call or invoke instruction's return
5127value.
5128
5129Example:
5130""""""""
5131
5132.. code-block:: llvm
5133
5134 ret i32 5 ; Return an integer value of 5
5135 ret void ; Return from a void function
5136 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5137
5138.. _i_br:
5139
5140'``br``' Instruction
5141^^^^^^^^^^^^^^^^^^^^
5142
5143Syntax:
5144"""""""
5145
5146::
5147
5148 br i1 <cond>, label <iftrue>, label <iffalse>
5149 br label <dest> ; Unconditional branch
5150
5151Overview:
5152"""""""""
5153
5154The '``br``' instruction is used to cause control flow to transfer to a
5155different basic block in the current function. There are two forms of
5156this instruction, corresponding to a conditional branch and an
5157unconditional branch.
5158
5159Arguments:
5160""""""""""
5161
5162The conditional branch form of the '``br``' instruction takes a single
5163'``i1``' value and two '``label``' values. The unconditional form of the
5164'``br``' instruction takes a single '``label``' value as a target.
5165
5166Semantics:
5167""""""""""
5168
5169Upon execution of a conditional '``br``' instruction, the '``i1``'
5170argument is evaluated. If the value is ``true``, control flows to the
5171'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5172to the '``iffalse``' ``label`` argument.
5173
5174Example:
5175""""""""
5176
5177.. code-block:: llvm
5178
5179 Test:
5180 %cond = icmp eq i32 %a, %b
5181 br i1 %cond, label %IfEqual, label %IfUnequal
5182 IfEqual:
5183 ret i32 1
5184 IfUnequal:
5185 ret i32 0
5186
5187.. _i_switch:
5188
5189'``switch``' Instruction
5190^^^^^^^^^^^^^^^^^^^^^^^^
5191
5192Syntax:
5193"""""""
5194
5195::
5196
5197 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5198
5199Overview:
5200"""""""""
5201
5202The '``switch``' instruction is used to transfer control flow to one of
5203several different places. It is a generalization of the '``br``'
5204instruction, allowing a branch to occur to one of many possible
5205destinations.
5206
5207Arguments:
5208""""""""""
5209
5210The '``switch``' instruction uses three parameters: an integer
5211comparison value '``value``', a default '``label``' destination, and an
5212array of pairs of comparison value constants and '``label``'s. The table
5213is not allowed to contain duplicate constant entries.
5214
5215Semantics:
5216""""""""""
5217
5218The ``switch`` instruction specifies a table of values and destinations.
5219When the '``switch``' instruction is executed, this table is searched
5220for the given value. If the value is found, control flow is transferred
5221to the corresponding destination; otherwise, control flow is transferred
5222to the default destination.
5223
5224Implementation:
5225"""""""""""""""
5226
5227Depending on properties of the target machine and the particular
5228``switch`` instruction, this instruction may be code generated in
5229different ways. For example, it could be generated as a series of
5230chained conditional branches or with a lookup table.
5231
5232Example:
5233""""""""
5234
5235.. code-block:: llvm
5236
5237 ; Emulate a conditional br instruction
5238 %Val = zext i1 %value to i32
5239 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5240
5241 ; Emulate an unconditional br instruction
5242 switch i32 0, label %dest [ ]
5243
5244 ; Implement a jump table:
5245 switch i32 %val, label %otherwise [ i32 0, label %onzero
5246 i32 1, label %onone
5247 i32 2, label %ontwo ]
5248
5249.. _i_indirectbr:
5250
5251'``indirectbr``' Instruction
5252^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5253
5254Syntax:
5255"""""""
5256
5257::
5258
5259 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5260
5261Overview:
5262"""""""""
5263
5264The '``indirectbr``' instruction implements an indirect branch to a
5265label within the current function, whose address is specified by
5266"``address``". Address must be derived from a
5267:ref:`blockaddress <blockaddress>` constant.
5268
5269Arguments:
5270""""""""""
5271
5272The '``address``' argument is the address of the label to jump to. The
5273rest of the arguments indicate the full set of possible destinations
5274that the address may point to. Blocks are allowed to occur multiple
5275times in the destination list, though this isn't particularly useful.
5276
5277This destination list is required so that dataflow analysis has an
5278accurate understanding of the CFG.
5279
5280Semantics:
5281""""""""""
5282
5283Control transfers to the block specified in the address argument. All
5284possible destination blocks must be listed in the label list, otherwise
5285this instruction has undefined behavior. This implies that jumps to
5286labels defined in other functions have undefined behavior as well.
5287
5288Implementation:
5289"""""""""""""""
5290
5291This is typically implemented with a jump through a register.
5292
5293Example:
5294""""""""
5295
5296.. code-block:: llvm
5297
5298 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5299
5300.. _i_invoke:
5301
5302'``invoke``' Instruction
5303^^^^^^^^^^^^^^^^^^^^^^^^
5304
5305Syntax:
5306"""""""
5307
5308::
5309
5310 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005311 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005312
5313Overview:
5314"""""""""
5315
5316The '``invoke``' instruction causes control to transfer to a specified
5317function, with the possibility of control flow transfer to either the
5318'``normal``' label or the '``exception``' label. If the callee function
5319returns with the "``ret``" instruction, control flow will return to the
5320"normal" label. If the callee (or any indirect callees) returns via the
5321":ref:`resume <i_resume>`" instruction or other exception handling
5322mechanism, control is interrupted and continued at the dynamically
5323nearest "exception" label.
5324
5325The '``exception``' label is a `landing
5326pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5327'``exception``' label is required to have the
5328":ref:`landingpad <i_landingpad>`" instruction, which contains the
5329information about the behavior of the program after unwinding happens,
5330as its first non-PHI instruction. The restrictions on the
5331"``landingpad``" instruction's tightly couples it to the "``invoke``"
5332instruction, so that the important information contained within the
5333"``landingpad``" instruction can't be lost through normal code motion.
5334
5335Arguments:
5336""""""""""
5337
5338This instruction requires several arguments:
5339
5340#. The optional "cconv" marker indicates which :ref:`calling
5341 convention <callingconv>` the call should use. If none is
5342 specified, the call defaults to using C calling conventions.
5343#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5344 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5345 are valid here.
5346#. '``ptr to function ty``': shall be the signature of the pointer to
5347 function value being invoked. In most cases, this is a direct
5348 function invocation, but indirect ``invoke``'s are just as possible,
5349 branching off an arbitrary pointer to function value.
5350#. '``function ptr val``': An LLVM value containing a pointer to a
5351 function to be invoked.
5352#. '``function args``': argument list whose types match the function
5353 signature argument types and parameter attributes. All arguments must
5354 be of :ref:`first class <t_firstclass>` type. If the function signature
5355 indicates the function accepts a variable number of arguments, the
5356 extra arguments can be specified.
5357#. '``normal label``': the label reached when the called function
5358 executes a '``ret``' instruction.
5359#. '``exception label``': the label reached when a callee returns via
5360 the :ref:`resume <i_resume>` instruction or other exception handling
5361 mechanism.
5362#. The optional :ref:`function attributes <fnattrs>` list. Only
5363 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5364 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005365#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005366
5367Semantics:
5368""""""""""
5369
5370This instruction is designed to operate as a standard '``call``'
5371instruction in most regards. The primary difference is that it
5372establishes an association with a label, which is used by the runtime
5373library to unwind the stack.
5374
5375This instruction is used in languages with destructors to ensure that
5376proper cleanup is performed in the case of either a ``longjmp`` or a
5377thrown exception. Additionally, this is important for implementation of
5378'``catch``' clauses in high-level languages that support them.
5379
5380For the purposes of the SSA form, the definition of the value returned
5381by the '``invoke``' instruction is deemed to occur on the edge from the
5382current block to the "normal" label. If the callee unwinds then no
5383return value is available.
5384
5385Example:
5386""""""""
5387
5388.. code-block:: llvm
5389
5390 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005391 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005392 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005393 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005394
5395.. _i_resume:
5396
5397'``resume``' Instruction
5398^^^^^^^^^^^^^^^^^^^^^^^^
5399
5400Syntax:
5401"""""""
5402
5403::
5404
5405 resume <type> <value>
5406
5407Overview:
5408"""""""""
5409
5410The '``resume``' instruction is a terminator instruction that has no
5411successors.
5412
5413Arguments:
5414""""""""""
5415
5416The '``resume``' instruction requires one argument, which must have the
5417same type as the result of any '``landingpad``' instruction in the same
5418function.
5419
5420Semantics:
5421""""""""""
5422
5423The '``resume``' instruction resumes propagation of an existing
5424(in-flight) exception whose unwinding was interrupted with a
5425:ref:`landingpad <i_landingpad>` instruction.
5426
5427Example:
5428""""""""
5429
5430.. code-block:: llvm
5431
5432 resume { i8*, i32 } %exn
5433
David Majnemer8a1c45d2015-12-12 05:38:55 +00005434.. _i_catchswitch:
5435
5436'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005437^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005438
5439Syntax:
5440"""""""
5441
5442::
5443
5444 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5445 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5446
5447Overview:
5448"""""""""
5449
5450The '``catchswitch``' instruction is used by `LLVM's exception handling system
5451<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5452that may be executed by the :ref:`EH personality routine <personalityfn>`.
5453
5454Arguments:
5455""""""""""
5456
5457The ``parent`` argument is the token of the funclet that contains the
5458``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5459this operand may be the token ``none``.
5460
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005461The ``default`` argument is the label of another basic block beginning with
5462either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5463must be a legal target with respect to the ``parent`` links, as described in
5464the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005465
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005466The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005467:ref:`catchpad <i_catchpad>` instruction.
5468
5469Semantics:
5470""""""""""
5471
5472Executing this instruction transfers control to one of the successors in
5473``handlers``, if appropriate, or continues to unwind via the unwind label if
5474present.
5475
5476The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5477it must be both the first non-phi instruction and last instruction in the basic
5478block. Therefore, it must be the only non-phi instruction in the block.
5479
5480Example:
5481""""""""
5482
5483.. code-block:: llvm
5484
5485 dispatch1:
5486 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5487 dispatch2:
5488 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5489
David Majnemer654e1302015-07-31 17:58:14 +00005490.. _i_catchret:
5491
5492'``catchret``' Instruction
5493^^^^^^^^^^^^^^^^^^^^^^^^^^
5494
5495Syntax:
5496"""""""
5497
5498::
5499
David Majnemer8a1c45d2015-12-12 05:38:55 +00005500 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005501
5502Overview:
5503"""""""""
5504
5505The '``catchret``' instruction is a terminator instruction that has a
5506single successor.
5507
5508
5509Arguments:
5510""""""""""
5511
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005512The first argument to a '``catchret``' indicates which ``catchpad`` it
5513exits. It must be a :ref:`catchpad <i_catchpad>`.
5514The second argument to a '``catchret``' specifies where control will
5515transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005516
5517Semantics:
5518""""""""""
5519
David Majnemer8a1c45d2015-12-12 05:38:55 +00005520The '``catchret``' instruction ends an existing (in-flight) exception whose
5521unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5522:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5523code to, for example, destroy the active exception. Control then transfers to
5524``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005525
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005526The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5527If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5528funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5529the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005530
5531Example:
5532""""""""
5533
5534.. code-block:: llvm
5535
David Majnemer8a1c45d2015-12-12 05:38:55 +00005536 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005537
David Majnemer654e1302015-07-31 17:58:14 +00005538.. _i_cleanupret:
5539
5540'``cleanupret``' Instruction
5541^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5542
5543Syntax:
5544"""""""
5545
5546::
5547
David Majnemer8a1c45d2015-12-12 05:38:55 +00005548 cleanupret from <value> unwind label <continue>
5549 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005550
5551Overview:
5552"""""""""
5553
5554The '``cleanupret``' instruction is a terminator instruction that has
5555an optional successor.
5556
5557
5558Arguments:
5559""""""""""
5560
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005561The '``cleanupret``' instruction requires one argument, which indicates
5562which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005563If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5564funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5565the ``cleanupret``'s behavior is undefined.
5566
5567The '``cleanupret``' instruction also has an optional successor, ``continue``,
5568which must be the label of another basic block beginning with either a
5569``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5570be a legal target with respect to the ``parent`` links, as described in the
5571`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005572
5573Semantics:
5574""""""""""
5575
5576The '``cleanupret``' instruction indicates to the
5577:ref:`personality function <personalityfn>` that one
5578:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5579It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005580
David Majnemer654e1302015-07-31 17:58:14 +00005581Example:
5582""""""""
5583
5584.. code-block:: llvm
5585
David Majnemer8a1c45d2015-12-12 05:38:55 +00005586 cleanupret from %cleanup unwind to caller
5587 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005588
Sean Silvab084af42012-12-07 10:36:55 +00005589.. _i_unreachable:
5590
5591'``unreachable``' Instruction
5592^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5593
5594Syntax:
5595"""""""
5596
5597::
5598
5599 unreachable
5600
5601Overview:
5602"""""""""
5603
5604The '``unreachable``' instruction has no defined semantics. This
5605instruction is used to inform the optimizer that a particular portion of
5606the code is not reachable. This can be used to indicate that the code
5607after a no-return function cannot be reached, and other facts.
5608
5609Semantics:
5610""""""""""
5611
5612The '``unreachable``' instruction has no defined semantics.
5613
5614.. _binaryops:
5615
5616Binary Operations
5617-----------------
5618
5619Binary operators are used to do most of the computation in a program.
5620They require two operands of the same type, execute an operation on
5621them, and produce a single value. The operands might represent multiple
5622data, as is the case with the :ref:`vector <t_vector>` data type. The
5623result value has the same type as its operands.
5624
5625There are several different binary operators:
5626
5627.. _i_add:
5628
5629'``add``' Instruction
5630^^^^^^^^^^^^^^^^^^^^^
5631
5632Syntax:
5633"""""""
5634
5635::
5636
Tim Northover675a0962014-06-13 14:24:23 +00005637 <result> = add <ty> <op1>, <op2> ; yields ty:result
5638 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5639 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5640 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005641
5642Overview:
5643"""""""""
5644
5645The '``add``' instruction returns the sum of its two operands.
5646
5647Arguments:
5648""""""""""
5649
5650The two arguments to the '``add``' instruction must be
5651:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5652arguments must have identical types.
5653
5654Semantics:
5655""""""""""
5656
5657The value produced is the integer sum of the two operands.
5658
5659If the sum has unsigned overflow, the result returned is the
5660mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5661the result.
5662
5663Because LLVM integers use a two's complement representation, this
5664instruction is appropriate for both signed and unsigned integers.
5665
5666``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5667respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5668result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5669unsigned and/or signed overflow, respectively, occurs.
5670
5671Example:
5672""""""""
5673
5674.. code-block:: llvm
5675
Tim Northover675a0962014-06-13 14:24:23 +00005676 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005677
5678.. _i_fadd:
5679
5680'``fadd``' Instruction
5681^^^^^^^^^^^^^^^^^^^^^^
5682
5683Syntax:
5684"""""""
5685
5686::
5687
Tim Northover675a0962014-06-13 14:24:23 +00005688 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005689
5690Overview:
5691"""""""""
5692
5693The '``fadd``' instruction returns the sum of its two operands.
5694
5695Arguments:
5696""""""""""
5697
5698The two arguments to the '``fadd``' instruction must be :ref:`floating
5699point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5700Both arguments must have identical types.
5701
5702Semantics:
5703""""""""""
5704
5705The value produced is the floating point sum of the two operands. This
5706instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5707which are optimization hints to enable otherwise unsafe floating point
5708optimizations:
5709
5710Example:
5711""""""""
5712
5713.. code-block:: llvm
5714
Tim Northover675a0962014-06-13 14:24:23 +00005715 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005716
5717'``sub``' Instruction
5718^^^^^^^^^^^^^^^^^^^^^
5719
5720Syntax:
5721"""""""
5722
5723::
5724
Tim Northover675a0962014-06-13 14:24:23 +00005725 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5726 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5727 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5728 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005729
5730Overview:
5731"""""""""
5732
5733The '``sub``' instruction returns the difference of its two operands.
5734
5735Note that the '``sub``' instruction is used to represent the '``neg``'
5736instruction present in most other intermediate representations.
5737
5738Arguments:
5739""""""""""
5740
5741The two arguments to the '``sub``' instruction must be
5742:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5743arguments must have identical types.
5744
5745Semantics:
5746""""""""""
5747
5748The value produced is the integer difference of the two operands.
5749
5750If the difference has unsigned overflow, the result returned is the
5751mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5752the result.
5753
5754Because LLVM integers use a two's complement representation, this
5755instruction is appropriate for both signed and unsigned integers.
5756
5757``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5758respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5759result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5760unsigned and/or signed overflow, respectively, occurs.
5761
5762Example:
5763""""""""
5764
5765.. code-block:: llvm
5766
Tim Northover675a0962014-06-13 14:24:23 +00005767 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5768 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005769
5770.. _i_fsub:
5771
5772'``fsub``' Instruction
5773^^^^^^^^^^^^^^^^^^^^^^
5774
5775Syntax:
5776"""""""
5777
5778::
5779
Tim Northover675a0962014-06-13 14:24:23 +00005780 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005781
5782Overview:
5783"""""""""
5784
5785The '``fsub``' instruction returns the difference of its two operands.
5786
5787Note that the '``fsub``' instruction is used to represent the '``fneg``'
5788instruction present in most other intermediate representations.
5789
5790Arguments:
5791""""""""""
5792
5793The two arguments to the '``fsub``' instruction must be :ref:`floating
5794point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5795Both arguments must have identical types.
5796
5797Semantics:
5798""""""""""
5799
5800The value produced is the floating point difference of the two operands.
5801This instruction can also take any number of :ref:`fast-math
5802flags <fastmath>`, which are optimization hints to enable otherwise
5803unsafe floating point optimizations:
5804
5805Example:
5806""""""""
5807
5808.. code-block:: llvm
5809
Tim Northover675a0962014-06-13 14:24:23 +00005810 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5811 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005812
5813'``mul``' Instruction
5814^^^^^^^^^^^^^^^^^^^^^
5815
5816Syntax:
5817"""""""
5818
5819::
5820
Tim Northover675a0962014-06-13 14:24:23 +00005821 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5822 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5823 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5824 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005825
5826Overview:
5827"""""""""
5828
5829The '``mul``' instruction returns the product of its two operands.
5830
5831Arguments:
5832""""""""""
5833
5834The two arguments to the '``mul``' instruction must be
5835:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5836arguments must have identical types.
5837
5838Semantics:
5839""""""""""
5840
5841The value produced is the integer product of the two operands.
5842
5843If the result of the multiplication has unsigned overflow, the result
5844returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5845bit width of the result.
5846
5847Because LLVM integers use a two's complement representation, and the
5848result is the same width as the operands, this instruction returns the
5849correct result for both signed and unsigned integers. If a full product
5850(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5851sign-extended or zero-extended as appropriate to the width of the full
5852product.
5853
5854``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5855respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5856result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5857unsigned and/or signed overflow, respectively, occurs.
5858
5859Example:
5860""""""""
5861
5862.. code-block:: llvm
5863
Tim Northover675a0962014-06-13 14:24:23 +00005864 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005865
5866.. _i_fmul:
5867
5868'``fmul``' Instruction
5869^^^^^^^^^^^^^^^^^^^^^^
5870
5871Syntax:
5872"""""""
5873
5874::
5875
Tim Northover675a0962014-06-13 14:24:23 +00005876 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005877
5878Overview:
5879"""""""""
5880
5881The '``fmul``' instruction returns the product of its two operands.
5882
5883Arguments:
5884""""""""""
5885
5886The two arguments to the '``fmul``' instruction must be :ref:`floating
5887point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5888Both arguments must have identical types.
5889
5890Semantics:
5891""""""""""
5892
5893The value produced is the floating point product of the two operands.
5894This instruction can also take any number of :ref:`fast-math
5895flags <fastmath>`, which are optimization hints to enable otherwise
5896unsafe floating point optimizations:
5897
5898Example:
5899""""""""
5900
5901.. code-block:: llvm
5902
Tim Northover675a0962014-06-13 14:24:23 +00005903 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005904
5905'``udiv``' Instruction
5906^^^^^^^^^^^^^^^^^^^^^^
5907
5908Syntax:
5909"""""""
5910
5911::
5912
Tim Northover675a0962014-06-13 14:24:23 +00005913 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5914 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005915
5916Overview:
5917"""""""""
5918
5919The '``udiv``' instruction returns the quotient of its two operands.
5920
5921Arguments:
5922""""""""""
5923
5924The two arguments to the '``udiv``' instruction must be
5925:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5926arguments must have identical types.
5927
5928Semantics:
5929""""""""""
5930
5931The value produced is the unsigned integer quotient of the two operands.
5932
5933Note that unsigned integer division and signed integer division are
5934distinct operations; for signed integer division, use '``sdiv``'.
5935
5936Division by zero leads to undefined behavior.
5937
5938If the ``exact`` keyword is present, the result value of the ``udiv`` is
5939a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5940such, "((a udiv exact b) mul b) == a").
5941
5942Example:
5943""""""""
5944
5945.. code-block:: llvm
5946
Tim Northover675a0962014-06-13 14:24:23 +00005947 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005948
5949'``sdiv``' Instruction
5950^^^^^^^^^^^^^^^^^^^^^^
5951
5952Syntax:
5953"""""""
5954
5955::
5956
Tim Northover675a0962014-06-13 14:24:23 +00005957 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5958 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005959
5960Overview:
5961"""""""""
5962
5963The '``sdiv``' instruction returns the quotient of its two operands.
5964
5965Arguments:
5966""""""""""
5967
5968The two arguments to the '``sdiv``' instruction must be
5969:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5970arguments must have identical types.
5971
5972Semantics:
5973""""""""""
5974
5975The value produced is the signed integer quotient of the two operands
5976rounded towards zero.
5977
5978Note that signed integer division and unsigned integer division are
5979distinct operations; for unsigned integer division, use '``udiv``'.
5980
5981Division by zero leads to undefined behavior. Overflow also leads to
5982undefined behavior; this is a rare case, but can occur, for example, by
5983doing a 32-bit division of -2147483648 by -1.
5984
5985If the ``exact`` keyword is present, the result value of the ``sdiv`` is
5986a :ref:`poison value <poisonvalues>` if the result would be rounded.
5987
5988Example:
5989""""""""
5990
5991.. code-block:: llvm
5992
Tim Northover675a0962014-06-13 14:24:23 +00005993 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005994
5995.. _i_fdiv:
5996
5997'``fdiv``' Instruction
5998^^^^^^^^^^^^^^^^^^^^^^
5999
6000Syntax:
6001"""""""
6002
6003::
6004
Tim Northover675a0962014-06-13 14:24:23 +00006005 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006006
6007Overview:
6008"""""""""
6009
6010The '``fdiv``' instruction returns the quotient of its two operands.
6011
6012Arguments:
6013""""""""""
6014
6015The two arguments to the '``fdiv``' instruction must be :ref:`floating
6016point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6017Both arguments must have identical types.
6018
6019Semantics:
6020""""""""""
6021
6022The value produced is the floating point quotient of the two operands.
6023This instruction can also take any number of :ref:`fast-math
6024flags <fastmath>`, which are optimization hints to enable otherwise
6025unsafe floating point optimizations:
6026
6027Example:
6028""""""""
6029
6030.. code-block:: llvm
6031
Tim Northover675a0962014-06-13 14:24:23 +00006032 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006033
6034'``urem``' Instruction
6035^^^^^^^^^^^^^^^^^^^^^^
6036
6037Syntax:
6038"""""""
6039
6040::
6041
Tim Northover675a0962014-06-13 14:24:23 +00006042 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006043
6044Overview:
6045"""""""""
6046
6047The '``urem``' instruction returns the remainder from the unsigned
6048division of its two arguments.
6049
6050Arguments:
6051""""""""""
6052
6053The two arguments to the '``urem``' instruction must be
6054:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6055arguments must have identical types.
6056
6057Semantics:
6058""""""""""
6059
6060This instruction returns the unsigned integer *remainder* of a division.
6061This instruction always performs an unsigned division to get the
6062remainder.
6063
6064Note that unsigned integer remainder and signed integer remainder are
6065distinct operations; for signed integer remainder, use '``srem``'.
6066
6067Taking the remainder of a division by zero leads to undefined behavior.
6068
6069Example:
6070""""""""
6071
6072.. code-block:: llvm
6073
Tim Northover675a0962014-06-13 14:24:23 +00006074 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006075
6076'``srem``' Instruction
6077^^^^^^^^^^^^^^^^^^^^^^
6078
6079Syntax:
6080"""""""
6081
6082::
6083
Tim Northover675a0962014-06-13 14:24:23 +00006084 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006085
6086Overview:
6087"""""""""
6088
6089The '``srem``' instruction returns the remainder from the signed
6090division of its two operands. This instruction can also take
6091:ref:`vector <t_vector>` versions of the values in which case the elements
6092must be integers.
6093
6094Arguments:
6095""""""""""
6096
6097The two arguments to the '``srem``' instruction must be
6098:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6099arguments must have identical types.
6100
6101Semantics:
6102""""""""""
6103
6104This instruction returns the *remainder* of a division (where the result
6105is either zero or has the same sign as the dividend, ``op1``), not the
6106*modulo* operator (where the result is either zero or has the same sign
6107as the divisor, ``op2``) of a value. For more information about the
6108difference, see `The Math
6109Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6110table of how this is implemented in various languages, please see
6111`Wikipedia: modulo
6112operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6113
6114Note that signed integer remainder and unsigned integer remainder are
6115distinct operations; for unsigned integer remainder, use '``urem``'.
6116
6117Taking the remainder of a division by zero leads to undefined behavior.
6118Overflow also leads to undefined behavior; this is a rare case, but can
6119occur, for example, by taking the remainder of a 32-bit division of
6120-2147483648 by -1. (The remainder doesn't actually overflow, but this
6121rule lets srem be implemented using instructions that return both the
6122result of the division and the remainder.)
6123
6124Example:
6125""""""""
6126
6127.. code-block:: llvm
6128
Tim Northover675a0962014-06-13 14:24:23 +00006129 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006130
6131.. _i_frem:
6132
6133'``frem``' Instruction
6134^^^^^^^^^^^^^^^^^^^^^^
6135
6136Syntax:
6137"""""""
6138
6139::
6140
Tim Northover675a0962014-06-13 14:24:23 +00006141 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006142
6143Overview:
6144"""""""""
6145
6146The '``frem``' instruction returns the remainder from the division of
6147its two operands.
6148
6149Arguments:
6150""""""""""
6151
6152The two arguments to the '``frem``' instruction must be :ref:`floating
6153point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6154Both arguments must have identical types.
6155
6156Semantics:
6157""""""""""
6158
6159This instruction returns the *remainder* of a division. The remainder
6160has the same sign as the dividend. This instruction can also take any
6161number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6162to enable otherwise unsafe floating point optimizations:
6163
6164Example:
6165""""""""
6166
6167.. code-block:: llvm
6168
Tim Northover675a0962014-06-13 14:24:23 +00006169 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006170
6171.. _bitwiseops:
6172
6173Bitwise Binary Operations
6174-------------------------
6175
6176Bitwise binary operators are used to do various forms of bit-twiddling
6177in a program. They are generally very efficient instructions and can
6178commonly be strength reduced from other instructions. They require two
6179operands of the same type, execute an operation on them, and produce a
6180single value. The resulting value is the same type as its operands.
6181
6182'``shl``' Instruction
6183^^^^^^^^^^^^^^^^^^^^^
6184
6185Syntax:
6186"""""""
6187
6188::
6189
Tim Northover675a0962014-06-13 14:24:23 +00006190 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6191 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6192 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6193 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006194
6195Overview:
6196"""""""""
6197
6198The '``shl``' instruction returns the first operand shifted to the left
6199a specified number of bits.
6200
6201Arguments:
6202""""""""""
6203
6204Both arguments to the '``shl``' instruction must be the same
6205:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6206'``op2``' is treated as an unsigned value.
6207
6208Semantics:
6209""""""""""
6210
6211The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6212where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006213dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006214``op1``, the result is undefined. If the arguments are vectors, each
6215vector element of ``op1`` is shifted by the corresponding shift amount
6216in ``op2``.
6217
6218If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6219value <poisonvalues>` if it shifts out any non-zero bits. If the
6220``nsw`` keyword is present, then the shift produces a :ref:`poison
6221value <poisonvalues>` if it shifts out any bits that disagree with the
6222resultant sign bit. As such, NUW/NSW have the same semantics as they
6223would if the shift were expressed as a mul instruction with the same
6224nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6225
6226Example:
6227""""""""
6228
6229.. code-block:: llvm
6230
Tim Northover675a0962014-06-13 14:24:23 +00006231 <result> = shl i32 4, %var ; yields i32: 4 << %var
6232 <result> = shl i32 4, 2 ; yields i32: 16
6233 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006234 <result> = shl i32 1, 32 ; undefined
6235 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6236
6237'``lshr``' Instruction
6238^^^^^^^^^^^^^^^^^^^^^^
6239
6240Syntax:
6241"""""""
6242
6243::
6244
Tim Northover675a0962014-06-13 14:24:23 +00006245 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6246 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006247
6248Overview:
6249"""""""""
6250
6251The '``lshr``' instruction (logical shift right) returns the first
6252operand shifted to the right a specified number of bits with zero fill.
6253
6254Arguments:
6255""""""""""
6256
6257Both arguments to the '``lshr``' instruction must be the same
6258:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6259'``op2``' is treated as an unsigned value.
6260
6261Semantics:
6262""""""""""
6263
6264This instruction always performs a logical shift right operation. The
6265most significant bits of the result will be filled with zero bits after
6266the shift. If ``op2`` is (statically or dynamically) equal to or larger
6267than the number of bits in ``op1``, the result is undefined. If the
6268arguments are vectors, each vector element of ``op1`` is shifted by the
6269corresponding shift amount in ``op2``.
6270
6271If the ``exact`` keyword is present, the result value of the ``lshr`` is
6272a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6273non-zero.
6274
6275Example:
6276""""""""
6277
6278.. code-block:: llvm
6279
Tim Northover675a0962014-06-13 14:24:23 +00006280 <result> = lshr i32 4, 1 ; yields i32:result = 2
6281 <result> = lshr i32 4, 2 ; yields i32:result = 1
6282 <result> = lshr i8 4, 3 ; yields i8:result = 0
6283 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006284 <result> = lshr i32 1, 32 ; undefined
6285 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6286
6287'``ashr``' Instruction
6288^^^^^^^^^^^^^^^^^^^^^^
6289
6290Syntax:
6291"""""""
6292
6293::
6294
Tim Northover675a0962014-06-13 14:24:23 +00006295 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6296 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006297
6298Overview:
6299"""""""""
6300
6301The '``ashr``' instruction (arithmetic shift right) returns the first
6302operand shifted to the right a specified number of bits with sign
6303extension.
6304
6305Arguments:
6306""""""""""
6307
6308Both arguments to the '``ashr``' instruction must be the same
6309:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6310'``op2``' is treated as an unsigned value.
6311
6312Semantics:
6313""""""""""
6314
6315This instruction always performs an arithmetic shift right operation,
6316The most significant bits of the result will be filled with the sign bit
6317of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6318than the number of bits in ``op1``, the result is undefined. If the
6319arguments are vectors, each vector element of ``op1`` is shifted by the
6320corresponding shift amount in ``op2``.
6321
6322If the ``exact`` keyword is present, the result value of the ``ashr`` is
6323a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6324non-zero.
6325
6326Example:
6327""""""""
6328
6329.. code-block:: llvm
6330
Tim Northover675a0962014-06-13 14:24:23 +00006331 <result> = ashr i32 4, 1 ; yields i32:result = 2
6332 <result> = ashr i32 4, 2 ; yields i32:result = 1
6333 <result> = ashr i8 4, 3 ; yields i8:result = 0
6334 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006335 <result> = ashr i32 1, 32 ; undefined
6336 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6337
6338'``and``' Instruction
6339^^^^^^^^^^^^^^^^^^^^^
6340
6341Syntax:
6342"""""""
6343
6344::
6345
Tim Northover675a0962014-06-13 14:24:23 +00006346 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006347
6348Overview:
6349"""""""""
6350
6351The '``and``' instruction returns the bitwise logical and of its two
6352operands.
6353
6354Arguments:
6355""""""""""
6356
6357The two arguments to the '``and``' instruction must be
6358:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6359arguments must have identical types.
6360
6361Semantics:
6362""""""""""
6363
6364The truth table used for the '``and``' instruction is:
6365
6366+-----+-----+-----+
6367| In0 | In1 | Out |
6368+-----+-----+-----+
6369| 0 | 0 | 0 |
6370+-----+-----+-----+
6371| 0 | 1 | 0 |
6372+-----+-----+-----+
6373| 1 | 0 | 0 |
6374+-----+-----+-----+
6375| 1 | 1 | 1 |
6376+-----+-----+-----+
6377
6378Example:
6379""""""""
6380
6381.. code-block:: llvm
6382
Tim Northover675a0962014-06-13 14:24:23 +00006383 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6384 <result> = and i32 15, 40 ; yields i32:result = 8
6385 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006386
6387'``or``' Instruction
6388^^^^^^^^^^^^^^^^^^^^
6389
6390Syntax:
6391"""""""
6392
6393::
6394
Tim Northover675a0962014-06-13 14:24:23 +00006395 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006396
6397Overview:
6398"""""""""
6399
6400The '``or``' instruction returns the bitwise logical inclusive or of its
6401two operands.
6402
6403Arguments:
6404""""""""""
6405
6406The two arguments to the '``or``' instruction must be
6407:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6408arguments must have identical types.
6409
6410Semantics:
6411""""""""""
6412
6413The truth table used for the '``or``' instruction is:
6414
6415+-----+-----+-----+
6416| In0 | In1 | Out |
6417+-----+-----+-----+
6418| 0 | 0 | 0 |
6419+-----+-----+-----+
6420| 0 | 1 | 1 |
6421+-----+-----+-----+
6422| 1 | 0 | 1 |
6423+-----+-----+-----+
6424| 1 | 1 | 1 |
6425+-----+-----+-----+
6426
6427Example:
6428""""""""
6429
6430::
6431
Tim Northover675a0962014-06-13 14:24:23 +00006432 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6433 <result> = or i32 15, 40 ; yields i32:result = 47
6434 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006435
6436'``xor``' Instruction
6437^^^^^^^^^^^^^^^^^^^^^
6438
6439Syntax:
6440"""""""
6441
6442::
6443
Tim Northover675a0962014-06-13 14:24:23 +00006444 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006445
6446Overview:
6447"""""""""
6448
6449The '``xor``' instruction returns the bitwise logical exclusive or of
6450its two operands. The ``xor`` is used to implement the "one's
6451complement" operation, which is the "~" operator in C.
6452
6453Arguments:
6454""""""""""
6455
6456The two arguments to the '``xor``' instruction must be
6457:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6458arguments must have identical types.
6459
6460Semantics:
6461""""""""""
6462
6463The truth table used for the '``xor``' instruction is:
6464
6465+-----+-----+-----+
6466| In0 | In1 | Out |
6467+-----+-----+-----+
6468| 0 | 0 | 0 |
6469+-----+-----+-----+
6470| 0 | 1 | 1 |
6471+-----+-----+-----+
6472| 1 | 0 | 1 |
6473+-----+-----+-----+
6474| 1 | 1 | 0 |
6475+-----+-----+-----+
6476
6477Example:
6478""""""""
6479
6480.. code-block:: llvm
6481
Tim Northover675a0962014-06-13 14:24:23 +00006482 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6483 <result> = xor i32 15, 40 ; yields i32:result = 39
6484 <result> = xor i32 4, 8 ; yields i32:result = 12
6485 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006486
6487Vector Operations
6488-----------------
6489
6490LLVM supports several instructions to represent vector operations in a
6491target-independent manner. These instructions cover the element-access
6492and vector-specific operations needed to process vectors effectively.
6493While LLVM does directly support these vector operations, many
6494sophisticated algorithms will want to use target-specific intrinsics to
6495take full advantage of a specific target.
6496
6497.. _i_extractelement:
6498
6499'``extractelement``' Instruction
6500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6501
6502Syntax:
6503"""""""
6504
6505::
6506
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006507 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006508
6509Overview:
6510"""""""""
6511
6512The '``extractelement``' instruction extracts a single scalar element
6513from a vector at a specified index.
6514
6515Arguments:
6516""""""""""
6517
6518The first operand of an '``extractelement``' instruction is a value of
6519:ref:`vector <t_vector>` type. The second operand is an index indicating
6520the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006521variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006522
6523Semantics:
6524""""""""""
6525
6526The result is a scalar of the same type as the element type of ``val``.
6527Its value is the value at position ``idx`` of ``val``. If ``idx``
6528exceeds the length of ``val``, the results are undefined.
6529
6530Example:
6531""""""""
6532
6533.. code-block:: llvm
6534
6535 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6536
6537.. _i_insertelement:
6538
6539'``insertelement``' Instruction
6540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6541
6542Syntax:
6543"""""""
6544
6545::
6546
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006547 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006548
6549Overview:
6550"""""""""
6551
6552The '``insertelement``' instruction inserts a scalar element into a
6553vector at a specified index.
6554
6555Arguments:
6556""""""""""
6557
6558The first operand of an '``insertelement``' instruction is a value of
6559:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6560type must equal the element type of the first operand. The third operand
6561is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006562index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006563
6564Semantics:
6565""""""""""
6566
6567The result is a vector of the same type as ``val``. Its element values
6568are those of ``val`` except at position ``idx``, where it gets the value
6569``elt``. If ``idx`` exceeds the length of ``val``, the results are
6570undefined.
6571
6572Example:
6573""""""""
6574
6575.. code-block:: llvm
6576
6577 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6578
6579.. _i_shufflevector:
6580
6581'``shufflevector``' Instruction
6582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6583
6584Syntax:
6585"""""""
6586
6587::
6588
6589 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6590
6591Overview:
6592"""""""""
6593
6594The '``shufflevector``' instruction constructs a permutation of elements
6595from two input vectors, returning a vector with the same element type as
6596the input and length that is the same as the shuffle mask.
6597
6598Arguments:
6599""""""""""
6600
6601The first two operands of a '``shufflevector``' instruction are vectors
6602with the same type. The third argument is a shuffle mask whose element
6603type is always 'i32'. The result of the instruction is a vector whose
6604length is the same as the shuffle mask and whose element type is the
6605same as the element type of the first two operands.
6606
6607The shuffle mask operand is required to be a constant vector with either
6608constant integer or undef values.
6609
6610Semantics:
6611""""""""""
6612
6613The elements of the two input vectors are numbered from left to right
6614across both of the vectors. The shuffle mask operand specifies, for each
6615element of the result vector, which element of the two input vectors the
6616result element gets. The element selector may be undef (meaning "don't
6617care") and the second operand may be undef if performing a shuffle from
6618only one vector.
6619
6620Example:
6621""""""""
6622
6623.. code-block:: llvm
6624
6625 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6626 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6627 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6628 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6629 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6630 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6631 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6632 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6633
6634Aggregate Operations
6635--------------------
6636
6637LLVM supports several instructions for working with
6638:ref:`aggregate <t_aggregate>` values.
6639
6640.. _i_extractvalue:
6641
6642'``extractvalue``' Instruction
6643^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6644
6645Syntax:
6646"""""""
6647
6648::
6649
6650 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6651
6652Overview:
6653"""""""""
6654
6655The '``extractvalue``' instruction extracts the value of a member field
6656from an :ref:`aggregate <t_aggregate>` value.
6657
6658Arguments:
6659""""""""""
6660
6661The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006662:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006663constant indices to specify which value to extract in a similar manner
6664as indices in a '``getelementptr``' instruction.
6665
6666The major differences to ``getelementptr`` indexing are:
6667
6668- Since the value being indexed is not a pointer, the first index is
6669 omitted and assumed to be zero.
6670- At least one index must be specified.
6671- Not only struct indices but also array indices must be in bounds.
6672
6673Semantics:
6674""""""""""
6675
6676The result is the value at the position in the aggregate specified by
6677the index operands.
6678
6679Example:
6680""""""""
6681
6682.. code-block:: llvm
6683
6684 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6685
6686.. _i_insertvalue:
6687
6688'``insertvalue``' Instruction
6689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6690
6691Syntax:
6692"""""""
6693
6694::
6695
6696 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6697
6698Overview:
6699"""""""""
6700
6701The '``insertvalue``' instruction inserts a value into a member field in
6702an :ref:`aggregate <t_aggregate>` value.
6703
6704Arguments:
6705""""""""""
6706
6707The first operand of an '``insertvalue``' instruction is a value of
6708:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6709a first-class value to insert. The following operands are constant
6710indices indicating the position at which to insert the value in a
6711similar manner as indices in a '``extractvalue``' instruction. The value
6712to insert must have the same type as the value identified by the
6713indices.
6714
6715Semantics:
6716""""""""""
6717
6718The result is an aggregate of the same type as ``val``. Its value is
6719that of ``val`` except that the value at the position specified by the
6720indices is that of ``elt``.
6721
6722Example:
6723""""""""
6724
6725.. code-block:: llvm
6726
6727 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6728 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006729 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006730
6731.. _memoryops:
6732
6733Memory Access and Addressing Operations
6734---------------------------------------
6735
6736A key design point of an SSA-based representation is how it represents
6737memory. In LLVM, no memory locations are in SSA form, which makes things
6738very simple. This section describes how to read, write, and allocate
6739memory in LLVM.
6740
6741.. _i_alloca:
6742
6743'``alloca``' Instruction
6744^^^^^^^^^^^^^^^^^^^^^^^^
6745
6746Syntax:
6747"""""""
6748
6749::
6750
Tim Northover675a0962014-06-13 14:24:23 +00006751 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006752
6753Overview:
6754"""""""""
6755
6756The '``alloca``' instruction allocates memory on the stack frame of the
6757currently executing function, to be automatically released when this
6758function returns to its caller. The object is always allocated in the
6759generic address space (address space zero).
6760
6761Arguments:
6762""""""""""
6763
6764The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6765bytes of memory on the runtime stack, returning a pointer of the
6766appropriate type to the program. If "NumElements" is specified, it is
6767the number of elements allocated, otherwise "NumElements" is defaulted
6768to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006769allocation is guaranteed to be aligned to at least that boundary. The
6770alignment may not be greater than ``1 << 29``. If not specified, or if
6771zero, the target can choose to align the allocation on any convenient
6772boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006773
6774'``type``' may be any sized type.
6775
6776Semantics:
6777""""""""""
6778
6779Memory is allocated; a pointer is returned. The operation is undefined
6780if there is insufficient stack space for the allocation. '``alloca``'d
6781memory is automatically released when the function returns. The
6782'``alloca``' instruction is commonly used to represent automatic
6783variables that must have an address available. When the function returns
6784(either with the ``ret`` or ``resume`` instructions), the memory is
6785reclaimed. Allocating zero bytes is legal, but the result is undefined.
6786The order in which memory is allocated (ie., which way the stack grows)
6787is not specified.
6788
6789Example:
6790""""""""
6791
6792.. code-block:: llvm
6793
Tim Northover675a0962014-06-13 14:24:23 +00006794 %ptr = alloca i32 ; yields i32*:ptr
6795 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6796 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6797 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006798
6799.. _i_load:
6800
6801'``load``' Instruction
6802^^^^^^^^^^^^^^^^^^^^^^
6803
6804Syntax:
6805"""""""
6806
6807::
6808
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006809 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006810 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006811 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006812 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006813 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006814
6815Overview:
6816"""""""""
6817
6818The '``load``' instruction is used to read from memory.
6819
6820Arguments:
6821""""""""""
6822
Eli Bendersky239a78b2013-04-17 20:17:08 +00006823The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006824from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006825class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6826then the optimizer is not allowed to modify the number or order of
6827execution of this ``load`` with other :ref:`volatile
6828operations <volatile>`.
6829
JF Bastiend1fb5852015-12-17 22:09:19 +00006830If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6831<ordering>` and optional ``singlethread`` argument. The ``release`` and
6832``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
6833produce :ref:`defined <memmodel>` results when they may see multiple atomic
6834stores. The type of the pointee must be an integer, pointer, or floating-point
6835type whose bit width is a power of two greater than or equal to eight and less
6836than or equal to a target-specific size limit. ``align`` must be explicitly
6837specified on atomic loads, and the load has undefined behavior if the alignment
6838is not set to a value which is at least the size in bytes of the
6839pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00006840
6841The optional constant ``align`` argument specifies the alignment of the
6842operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006843or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006844alignment for the target. It is the responsibility of the code emitter
6845to ensure that the alignment information is correct. Overestimating the
6846alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006847may produce less efficient code. An alignment of 1 is always safe. The
6848maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006849
6850The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006851metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006852``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006853metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006854that this load is not expected to be reused in the cache. The code
6855generator may select special instructions to save cache bandwidth, such
6856as the ``MOVNT`` instruction on x86.
6857
6858The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006859metadata name ``<index>`` corresponding to a metadata node with no
6860entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006861instruction tells the optimizer and code generator that the address
6862operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006863Being invariant does not imply that a location is dereferenceable,
6864but it does imply that once the location is known dereferenceable
6865its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006866
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006867The optional ``!invariant.group`` metadata must reference a single metadata name
6868 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6869
Philip Reamescdb72f32014-10-20 22:40:55 +00006870The optional ``!nonnull`` metadata must reference a single
6871metadata name ``<index>`` corresponding to a metadata node with no
6872entries. The existence of the ``!nonnull`` metadata on the
6873instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006874never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006875on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006876to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006877
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006878The optional ``!dereferenceable`` metadata must reference a single metadata
6879name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006880entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006881tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006882The number of bytes known to be dereferenceable is specified by the integer
6883value in the metadata node. This is analogous to the ''dereferenceable''
6884attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006885to loads of a pointer type.
6886
6887The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006888metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6889``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006890instruction tells the optimizer that the value loaded is known to be either
6891dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006892The number of bytes known to be dereferenceable is specified by the integer
6893value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6894attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006895to loads of a pointer type.
6896
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006897The optional ``!align`` metadata must reference a single metadata name
6898``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6899The existence of the ``!align`` metadata on the instruction tells the
6900optimizer that the value loaded is known to be aligned to a boundary specified
6901by the integer value in the metadata node. The alignment must be a power of 2.
6902This is analogous to the ''align'' attribute on parameters and return values.
6903This metadata can only be applied to loads of a pointer type.
6904
Sean Silvab084af42012-12-07 10:36:55 +00006905Semantics:
6906""""""""""
6907
6908The location of memory pointed to is loaded. If the value being loaded
6909is of scalar type then the number of bytes read does not exceed the
6910minimum number of bytes needed to hold all bits of the type. For
6911example, loading an ``i24`` reads at most three bytes. When loading a
6912value of a type like ``i20`` with a size that is not an integral number
6913of bytes, the result is undefined if the value was not originally
6914written using a store of the same type.
6915
6916Examples:
6917"""""""""
6918
6919.. code-block:: llvm
6920
Tim Northover675a0962014-06-13 14:24:23 +00006921 %ptr = alloca i32 ; yields i32*:ptr
6922 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006923 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006924
6925.. _i_store:
6926
6927'``store``' Instruction
6928^^^^^^^^^^^^^^^^^^^^^^^
6929
6930Syntax:
6931"""""""
6932
6933::
6934
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006935 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6936 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006937
6938Overview:
6939"""""""""
6940
6941The '``store``' instruction is used to write to memory.
6942
6943Arguments:
6944""""""""""
6945
Eli Benderskyca380842013-04-17 17:17:20 +00006946There are two arguments to the ``store`` instruction: a value to store
6947and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006948operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006949the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006950then the optimizer is not allowed to modify the number or order of
6951execution of this ``store`` with other :ref:`volatile
6952operations <volatile>`.
6953
JF Bastiend1fb5852015-12-17 22:09:19 +00006954If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
6955<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
6956``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
6957produce :ref:`defined <memmodel>` results when they may see multiple atomic
6958stores. The type of the pointee must be an integer, pointer, or floating-point
6959type whose bit width is a power of two greater than or equal to eight and less
6960than or equal to a target-specific size limit. ``align`` must be explicitly
6961specified on atomic stores, and the store has undefined behavior if the
6962alignment is not set to a value which is at least the size in bytes of the
6963pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00006964
Eli Benderskyca380842013-04-17 17:17:20 +00006965The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006966operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006967or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006968alignment for the target. It is the responsibility of the code emitter
6969to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006970alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006971alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006972safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006973
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006974The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00006975name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006976value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00006977tells the optimizer and code generator that this load is not expected to
6978be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00006979instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00006980x86.
6981
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006982The optional ``!invariant.group`` metadata must reference a
6983single metadata name ``<index>``. See ``invariant.group`` metadata.
6984
Sean Silvab084af42012-12-07 10:36:55 +00006985Semantics:
6986""""""""""
6987
Eli Benderskyca380842013-04-17 17:17:20 +00006988The contents of memory are updated to contain ``<value>`` at the
6989location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00006990of scalar type then the number of bytes written does not exceed the
6991minimum number of bytes needed to hold all bits of the type. For
6992example, storing an ``i24`` writes at most three bytes. When writing a
6993value of a type like ``i20`` with a size that is not an integral number
6994of bytes, it is unspecified what happens to the extra bits that do not
6995belong to the type, but they will typically be overwritten.
6996
6997Example:
6998""""""""
6999
7000.. code-block:: llvm
7001
Tim Northover675a0962014-06-13 14:24:23 +00007002 %ptr = alloca i32 ; yields i32*:ptr
7003 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007004 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007005
7006.. _i_fence:
7007
7008'``fence``' Instruction
7009^^^^^^^^^^^^^^^^^^^^^^^
7010
7011Syntax:
7012"""""""
7013
7014::
7015
Tim Northover675a0962014-06-13 14:24:23 +00007016 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007017
7018Overview:
7019"""""""""
7020
7021The '``fence``' instruction is used to introduce happens-before edges
7022between operations.
7023
7024Arguments:
7025""""""""""
7026
7027'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7028defines what *synchronizes-with* edges they add. They can only be given
7029``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7030
7031Semantics:
7032""""""""""
7033
7034A fence A which has (at least) ``release`` ordering semantics
7035*synchronizes with* a fence B with (at least) ``acquire`` ordering
7036semantics if and only if there exist atomic operations X and Y, both
7037operating on some atomic object M, such that A is sequenced before X, X
7038modifies M (either directly or through some side effect of a sequence
7039headed by X), Y is sequenced before B, and Y observes M. This provides a
7040*happens-before* dependency between A and B. Rather than an explicit
7041``fence``, one (but not both) of the atomic operations X or Y might
7042provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7043still *synchronize-with* the explicit ``fence`` and establish the
7044*happens-before* edge.
7045
7046A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7047``acquire`` and ``release`` semantics specified above, participates in
7048the global program order of other ``seq_cst`` operations and/or fences.
7049
7050The optional ":ref:`singlethread <singlethread>`" argument specifies
7051that the fence only synchronizes with other fences in the same thread.
7052(This is useful for interacting with signal handlers.)
7053
7054Example:
7055""""""""
7056
7057.. code-block:: llvm
7058
Tim Northover675a0962014-06-13 14:24:23 +00007059 fence acquire ; yields void
7060 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007061
7062.. _i_cmpxchg:
7063
7064'``cmpxchg``' Instruction
7065^^^^^^^^^^^^^^^^^^^^^^^^^
7066
7067Syntax:
7068"""""""
7069
7070::
7071
Tim Northover675a0962014-06-13 14:24:23 +00007072 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007073
7074Overview:
7075"""""""""
7076
7077The '``cmpxchg``' instruction is used to atomically modify memory. It
7078loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007079equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007080
7081Arguments:
7082""""""""""
7083
7084There are three arguments to the '``cmpxchg``' instruction: an address
7085to operate on, a value to compare to the value currently be at that
7086address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007087are equal. The type of '<cmp>' must be an integer or pointer type whose
7088bit width is a power of two greater than or equal to eight and less
7089than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7090have the same type, and the type of '<pointer>' must be a pointer to
7091that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7092optimizer is not allowed to modify the number or order of execution of
7093this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007094
Tim Northovere94a5182014-03-11 10:48:52 +00007095The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007096``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7097must be at least ``monotonic``, the ordering constraint on failure must be no
7098stronger than that on success, and the failure ordering cannot be either
7099``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007100
7101The optional "``singlethread``" argument declares that the ``cmpxchg``
7102is only atomic with respect to code (usually signal handlers) running in
7103the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7104respect to all other code in the system.
7105
7106The pointer passed into cmpxchg must have alignment greater than or
7107equal to the size in memory of the operand.
7108
7109Semantics:
7110""""""""""
7111
Tim Northover420a2162014-06-13 14:24:07 +00007112The contents of memory at the location specified by the '``<pointer>``' operand
7113is read and compared to '``<cmp>``'; if the read value is the equal, the
7114'``<new>``' is written. The original value at the location is returned, together
7115with a flag indicating success (true) or failure (false).
7116
7117If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7118permitted: the operation may not write ``<new>`` even if the comparison
7119matched.
7120
7121If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7122if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007123
Tim Northovere94a5182014-03-11 10:48:52 +00007124A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7125identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7126load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007127
7128Example:
7129""""""""
7130
7131.. code-block:: llvm
7132
7133 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007134 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007135 br label %loop
7136
7137 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007138 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007139 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007140 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007141 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7142 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007143 br i1 %success, label %done, label %loop
7144
7145 done:
7146 ...
7147
7148.. _i_atomicrmw:
7149
7150'``atomicrmw``' Instruction
7151^^^^^^^^^^^^^^^^^^^^^^^^^^^
7152
7153Syntax:
7154"""""""
7155
7156::
7157
Tim Northover675a0962014-06-13 14:24:23 +00007158 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007159
7160Overview:
7161"""""""""
7162
7163The '``atomicrmw``' instruction is used to atomically modify memory.
7164
7165Arguments:
7166""""""""""
7167
7168There are three arguments to the '``atomicrmw``' instruction: an
7169operation to apply, an address whose value to modify, an argument to the
7170operation. The operation must be one of the following keywords:
7171
7172- xchg
7173- add
7174- sub
7175- and
7176- nand
7177- or
7178- xor
7179- max
7180- min
7181- umax
7182- umin
7183
7184The type of '<value>' must be an integer type whose bit width is a power
7185of two greater than or equal to eight and less than or equal to a
7186target-specific size limit. The type of the '``<pointer>``' operand must
7187be a pointer to that type. If the ``atomicrmw`` is marked as
7188``volatile``, then the optimizer is not allowed to modify the number or
7189order of execution of this ``atomicrmw`` with other :ref:`volatile
7190operations <volatile>`.
7191
7192Semantics:
7193""""""""""
7194
7195The contents of memory at the location specified by the '``<pointer>``'
7196operand are atomically read, modified, and written back. The original
7197value at the location is returned. The modification is specified by the
7198operation argument:
7199
7200- xchg: ``*ptr = val``
7201- add: ``*ptr = *ptr + val``
7202- sub: ``*ptr = *ptr - val``
7203- and: ``*ptr = *ptr & val``
7204- nand: ``*ptr = ~(*ptr & val)``
7205- or: ``*ptr = *ptr | val``
7206- xor: ``*ptr = *ptr ^ val``
7207- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7208- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7209- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7210 comparison)
7211- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7212 comparison)
7213
7214Example:
7215""""""""
7216
7217.. code-block:: llvm
7218
Tim Northover675a0962014-06-13 14:24:23 +00007219 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007220
7221.. _i_getelementptr:
7222
7223'``getelementptr``' Instruction
7224^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7225
7226Syntax:
7227"""""""
7228
7229::
7230
David Blaikie16a97eb2015-03-04 22:02:58 +00007231 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7232 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7233 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007234
7235Overview:
7236"""""""""
7237
7238The '``getelementptr``' instruction is used to get the address of a
7239subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007240address calculation only and does not access memory. The instruction can also
7241be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007242
7243Arguments:
7244""""""""""
7245
David Blaikie16a97eb2015-03-04 22:02:58 +00007246The first argument is always a type used as the basis for the calculations.
7247The second argument is always a pointer or a vector of pointers, and is the
7248base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007249that indicate which of the elements of the aggregate object are indexed.
7250The interpretation of each index is dependent on the type being indexed
7251into. The first index always indexes the pointer value given as the
7252first argument, the second index indexes a value of the type pointed to
7253(not necessarily the value directly pointed to, since the first index
7254can be non-zero), etc. The first type indexed into must be a pointer
7255value, subsequent types can be arrays, vectors, and structs. Note that
7256subsequent types being indexed into can never be pointers, since that
7257would require loading the pointer before continuing calculation.
7258
7259The type of each index argument depends on the type it is indexing into.
7260When indexing into a (optionally packed) structure, only ``i32`` integer
7261**constants** are allowed (when using a vector of indices they must all
7262be the **same** ``i32`` integer constant). When indexing into an array,
7263pointer or vector, integers of any width are allowed, and they are not
7264required to be constant. These integers are treated as signed values
7265where relevant.
7266
7267For example, let's consider a C code fragment and how it gets compiled
7268to LLVM:
7269
7270.. code-block:: c
7271
7272 struct RT {
7273 char A;
7274 int B[10][20];
7275 char C;
7276 };
7277 struct ST {
7278 int X;
7279 double Y;
7280 struct RT Z;
7281 };
7282
7283 int *foo(struct ST *s) {
7284 return &s[1].Z.B[5][13];
7285 }
7286
7287The LLVM code generated by Clang is:
7288
7289.. code-block:: llvm
7290
7291 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7292 %struct.ST = type { i32, double, %struct.RT }
7293
7294 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7295 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007296 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007297 ret i32* %arrayidx
7298 }
7299
7300Semantics:
7301""""""""""
7302
7303In the example above, the first index is indexing into the
7304'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7305= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7306indexes into the third element of the structure, yielding a
7307'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7308structure. The third index indexes into the second element of the
7309structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7310dimensions of the array are subscripted into, yielding an '``i32``'
7311type. The '``getelementptr``' instruction returns a pointer to this
7312element, thus computing a value of '``i32*``' type.
7313
7314Note that it is perfectly legal to index partially through a structure,
7315returning a pointer to an inner element. Because of this, the LLVM code
7316for the given testcase is equivalent to:
7317
7318.. code-block:: llvm
7319
7320 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007321 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7322 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7323 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7324 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7325 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007326 ret i32* %t5
7327 }
7328
7329If the ``inbounds`` keyword is present, the result value of the
7330``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7331pointer is not an *in bounds* address of an allocated object, or if any
7332of the addresses that would be formed by successive addition of the
7333offsets implied by the indices to the base address with infinitely
7334precise signed arithmetic are not an *in bounds* address of that
7335allocated object. The *in bounds* addresses for an allocated object are
7336all the addresses that point into the object, plus the address one byte
7337past the end. In cases where the base is a vector of pointers the
7338``inbounds`` keyword applies to each of the computations element-wise.
7339
7340If the ``inbounds`` keyword is not present, the offsets are added to the
7341base address with silently-wrapping two's complement arithmetic. If the
7342offsets have a different width from the pointer, they are sign-extended
7343or truncated to the width of the pointer. The result value of the
7344``getelementptr`` may be outside the object pointed to by the base
7345pointer. The result value may not necessarily be used to access memory
7346though, even if it happens to point into allocated storage. See the
7347:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7348information.
7349
7350The getelementptr instruction is often confusing. For some more insight
7351into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7352
7353Example:
7354""""""""
7355
7356.. code-block:: llvm
7357
7358 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007359 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007360 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007361 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007362 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007363 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007364 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007365 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007366
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007367Vector of pointers:
7368"""""""""""""""""""
7369
7370The ``getelementptr`` returns a vector of pointers, instead of a single address,
7371when one or more of its arguments is a vector. In such cases, all vector
7372arguments should have the same number of elements, and every scalar argument
7373will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007374
7375.. code-block:: llvm
7376
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007377 ; All arguments are vectors:
7378 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7379 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007380
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007381 ; Add the same scalar offset to each pointer of a vector:
7382 ; A[i] = ptrs[i] + offset*sizeof(i8)
7383 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007384
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007385 ; Add distinct offsets to the same pointer:
7386 ; A[i] = ptr + offsets[i]*sizeof(i8)
7387 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007388
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007389 ; In all cases described above the type of the result is <4 x i8*>
7390
7391The two following instructions are equivalent:
7392
7393.. code-block:: llvm
7394
7395 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7396 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7397 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7398 <4 x i32> %ind4,
7399 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007400
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007401 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7402 i32 2, i32 1, <4 x i32> %ind4, i64 13
7403
7404Let's look at the C code, where the vector version of ``getelementptr``
7405makes sense:
7406
7407.. code-block:: c
7408
7409 // Let's assume that we vectorize the following loop:
7410 double *A, B; int *C;
7411 for (int i = 0; i < size; ++i) {
7412 A[i] = B[C[i]];
7413 }
7414
7415.. code-block:: llvm
7416
7417 ; get pointers for 8 elements from array B
7418 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7419 ; load 8 elements from array B into A
7420 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7421 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007422
7423Conversion Operations
7424---------------------
7425
7426The instructions in this category are the conversion instructions
7427(casting) which all take a single operand and a type. They perform
7428various bit conversions on the operand.
7429
7430'``trunc .. to``' Instruction
7431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7432
7433Syntax:
7434"""""""
7435
7436::
7437
7438 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7439
7440Overview:
7441"""""""""
7442
7443The '``trunc``' instruction truncates its operand to the type ``ty2``.
7444
7445Arguments:
7446""""""""""
7447
7448The '``trunc``' instruction takes a value to trunc, and a type to trunc
7449it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7450of the same number of integers. The bit size of the ``value`` must be
7451larger than the bit size of the destination type, ``ty2``. Equal sized
7452types are not allowed.
7453
7454Semantics:
7455""""""""""
7456
7457The '``trunc``' instruction truncates the high order bits in ``value``
7458and converts the remaining bits to ``ty2``. Since the source size must
7459be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7460It will always truncate bits.
7461
7462Example:
7463""""""""
7464
7465.. code-block:: llvm
7466
7467 %X = trunc i32 257 to i8 ; yields i8:1
7468 %Y = trunc i32 123 to i1 ; yields i1:true
7469 %Z = trunc i32 122 to i1 ; yields i1:false
7470 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7471
7472'``zext .. to``' Instruction
7473^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7474
7475Syntax:
7476"""""""
7477
7478::
7479
7480 <result> = zext <ty> <value> to <ty2> ; yields ty2
7481
7482Overview:
7483"""""""""
7484
7485The '``zext``' instruction zero extends its operand to type ``ty2``.
7486
7487Arguments:
7488""""""""""
7489
7490The '``zext``' instruction takes a value to cast, and a type to cast it
7491to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7492the same number of integers. The bit size of the ``value`` must be
7493smaller than the bit size of the destination type, ``ty2``.
7494
7495Semantics:
7496""""""""""
7497
7498The ``zext`` fills the high order bits of the ``value`` with zero bits
7499until it reaches the size of the destination type, ``ty2``.
7500
7501When zero extending from i1, the result will always be either 0 or 1.
7502
7503Example:
7504""""""""
7505
7506.. code-block:: llvm
7507
7508 %X = zext i32 257 to i64 ; yields i64:257
7509 %Y = zext i1 true to i32 ; yields i32:1
7510 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7511
7512'``sext .. to``' Instruction
7513^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7514
7515Syntax:
7516"""""""
7517
7518::
7519
7520 <result> = sext <ty> <value> to <ty2> ; yields ty2
7521
7522Overview:
7523"""""""""
7524
7525The '``sext``' sign extends ``value`` to the type ``ty2``.
7526
7527Arguments:
7528""""""""""
7529
7530The '``sext``' instruction takes a value to cast, and a type to cast it
7531to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7532the same number of integers. The bit size of the ``value`` must be
7533smaller than the bit size of the destination type, ``ty2``.
7534
7535Semantics:
7536""""""""""
7537
7538The '``sext``' instruction performs a sign extension by copying the sign
7539bit (highest order bit) of the ``value`` until it reaches the bit size
7540of the type ``ty2``.
7541
7542When sign extending from i1, the extension always results in -1 or 0.
7543
7544Example:
7545""""""""
7546
7547.. code-block:: llvm
7548
7549 %X = sext i8 -1 to i16 ; yields i16 :65535
7550 %Y = sext i1 true to i32 ; yields i32:-1
7551 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7552
7553'``fptrunc .. to``' Instruction
7554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7555
7556Syntax:
7557"""""""
7558
7559::
7560
7561 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7562
7563Overview:
7564"""""""""
7565
7566The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7567
7568Arguments:
7569""""""""""
7570
7571The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7572value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7573The size of ``value`` must be larger than the size of ``ty2``. This
7574implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7575
7576Semantics:
7577""""""""""
7578
Dan Liew50456fb2015-09-03 18:43:56 +00007579The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007580:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007581point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7582destination type, ``ty2``, then the results are undefined. If the cast produces
7583an inexact result, how rounding is performed (e.g. truncation, also known as
7584round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007585
7586Example:
7587""""""""
7588
7589.. code-block:: llvm
7590
7591 %X = fptrunc double 123.0 to float ; yields float:123.0
7592 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7593
7594'``fpext .. to``' Instruction
7595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7596
7597Syntax:
7598"""""""
7599
7600::
7601
7602 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7603
7604Overview:
7605"""""""""
7606
7607The '``fpext``' extends a floating point ``value`` to a larger floating
7608point value.
7609
7610Arguments:
7611""""""""""
7612
7613The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7614``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7615to. The source type must be smaller than the destination type.
7616
7617Semantics:
7618""""""""""
7619
7620The '``fpext``' instruction extends the ``value`` from a smaller
7621:ref:`floating point <t_floating>` type to a larger :ref:`floating
7622point <t_floating>` type. The ``fpext`` cannot be used to make a
7623*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7624*no-op cast* for a floating point cast.
7625
7626Example:
7627""""""""
7628
7629.. code-block:: llvm
7630
7631 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7632 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7633
7634'``fptoui .. to``' Instruction
7635^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7636
7637Syntax:
7638"""""""
7639
7640::
7641
7642 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7643
7644Overview:
7645"""""""""
7646
7647The '``fptoui``' converts a floating point ``value`` to its unsigned
7648integer equivalent of type ``ty2``.
7649
7650Arguments:
7651""""""""""
7652
7653The '``fptoui``' instruction takes a value to cast, which must be a
7654scalar or vector :ref:`floating point <t_floating>` value, and a type to
7655cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7656``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7657type with the same number of elements as ``ty``
7658
7659Semantics:
7660""""""""""
7661
7662The '``fptoui``' instruction converts its :ref:`floating
7663point <t_floating>` operand into the nearest (rounding towards zero)
7664unsigned integer value. If the value cannot fit in ``ty2``, the results
7665are undefined.
7666
7667Example:
7668""""""""
7669
7670.. code-block:: llvm
7671
7672 %X = fptoui double 123.0 to i32 ; yields i32:123
7673 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7674 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7675
7676'``fptosi .. to``' Instruction
7677^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7678
7679Syntax:
7680"""""""
7681
7682::
7683
7684 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7685
7686Overview:
7687"""""""""
7688
7689The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7690``value`` to type ``ty2``.
7691
7692Arguments:
7693""""""""""
7694
7695The '``fptosi``' instruction takes a value to cast, which must be a
7696scalar or vector :ref:`floating point <t_floating>` value, and a type to
7697cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7698``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7699type with the same number of elements as ``ty``
7700
7701Semantics:
7702""""""""""
7703
7704The '``fptosi``' instruction converts its :ref:`floating
7705point <t_floating>` operand into the nearest (rounding towards zero)
7706signed integer value. If the value cannot fit in ``ty2``, the results
7707are undefined.
7708
7709Example:
7710""""""""
7711
7712.. code-block:: llvm
7713
7714 %X = fptosi double -123.0 to i32 ; yields i32:-123
7715 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7716 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7717
7718'``uitofp .. to``' Instruction
7719^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7720
7721Syntax:
7722"""""""
7723
7724::
7725
7726 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7727
7728Overview:
7729"""""""""
7730
7731The '``uitofp``' instruction regards ``value`` as an unsigned integer
7732and converts that value to the ``ty2`` type.
7733
7734Arguments:
7735""""""""""
7736
7737The '``uitofp``' instruction takes a value to cast, which must be a
7738scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7739``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7740``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7741type with the same number of elements as ``ty``
7742
7743Semantics:
7744""""""""""
7745
7746The '``uitofp``' instruction interprets its operand as an unsigned
7747integer quantity and converts it to the corresponding floating point
7748value. If the value cannot fit in the floating point value, the results
7749are undefined.
7750
7751Example:
7752""""""""
7753
7754.. code-block:: llvm
7755
7756 %X = uitofp i32 257 to float ; yields float:257.0
7757 %Y = uitofp i8 -1 to double ; yields double:255.0
7758
7759'``sitofp .. to``' Instruction
7760^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7761
7762Syntax:
7763"""""""
7764
7765::
7766
7767 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7768
7769Overview:
7770"""""""""
7771
7772The '``sitofp``' instruction regards ``value`` as a signed integer and
7773converts that value to the ``ty2`` type.
7774
7775Arguments:
7776""""""""""
7777
7778The '``sitofp``' instruction takes a value to cast, which must be a
7779scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7780``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7781``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7782type with the same number of elements as ``ty``
7783
7784Semantics:
7785""""""""""
7786
7787The '``sitofp``' instruction interprets its operand as a signed integer
7788quantity and converts it to the corresponding floating point value. If
7789the value cannot fit in the floating point value, the results are
7790undefined.
7791
7792Example:
7793""""""""
7794
7795.. code-block:: llvm
7796
7797 %X = sitofp i32 257 to float ; yields float:257.0
7798 %Y = sitofp i8 -1 to double ; yields double:-1.0
7799
7800.. _i_ptrtoint:
7801
7802'``ptrtoint .. to``' Instruction
7803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7804
7805Syntax:
7806"""""""
7807
7808::
7809
7810 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7811
7812Overview:
7813"""""""""
7814
7815The '``ptrtoint``' instruction converts the pointer or a vector of
7816pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7817
7818Arguments:
7819""""""""""
7820
7821The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007822a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007823type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7824a vector of integers type.
7825
7826Semantics:
7827""""""""""
7828
7829The '``ptrtoint``' instruction converts ``value`` to integer type
7830``ty2`` by interpreting the pointer value as an integer and either
7831truncating or zero extending that value to the size of the integer type.
7832If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7833``value`` is larger than ``ty2`` then a truncation is done. If they are
7834the same size, then nothing is done (*no-op cast*) other than a type
7835change.
7836
7837Example:
7838""""""""
7839
7840.. code-block:: llvm
7841
7842 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7843 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7844 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7845
7846.. _i_inttoptr:
7847
7848'``inttoptr .. to``' Instruction
7849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7850
7851Syntax:
7852"""""""
7853
7854::
7855
7856 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7857
7858Overview:
7859"""""""""
7860
7861The '``inttoptr``' instruction converts an integer ``value`` to a
7862pointer type, ``ty2``.
7863
7864Arguments:
7865""""""""""
7866
7867The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7868cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7869type.
7870
7871Semantics:
7872""""""""""
7873
7874The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7875applying either a zero extension or a truncation depending on the size
7876of the integer ``value``. If ``value`` is larger than the size of a
7877pointer then a truncation is done. If ``value`` is smaller than the size
7878of a pointer then a zero extension is done. If they are the same size,
7879nothing is done (*no-op cast*).
7880
7881Example:
7882""""""""
7883
7884.. code-block:: llvm
7885
7886 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7887 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7888 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7889 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7890
7891.. _i_bitcast:
7892
7893'``bitcast .. to``' Instruction
7894^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7895
7896Syntax:
7897"""""""
7898
7899::
7900
7901 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7902
7903Overview:
7904"""""""""
7905
7906The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7907changing any bits.
7908
7909Arguments:
7910""""""""""
7911
7912The '``bitcast``' instruction takes a value to cast, which must be a
7913non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007914also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7915bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007916identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007917also be a pointer of the same size. This instruction supports bitwise
7918conversion of vectors to integers and to vectors of other types (as
7919long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007920
7921Semantics:
7922""""""""""
7923
Matt Arsenault24b49c42013-07-31 17:49:08 +00007924The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7925is always a *no-op cast* because no bits change with this
7926conversion. The conversion is done as if the ``value`` had been stored
7927to memory and read back as type ``ty2``. Pointer (or vector of
7928pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007929pointers) types with the same address space through this instruction.
7930To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7931or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007932
7933Example:
7934""""""""
7935
7936.. code-block:: llvm
7937
7938 %X = bitcast i8 255 to i8 ; yields i8 :-1
7939 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7940 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7941 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7942
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007943.. _i_addrspacecast:
7944
7945'``addrspacecast .. to``' Instruction
7946^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7947
7948Syntax:
7949"""""""
7950
7951::
7952
7953 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7954
7955Overview:
7956"""""""""
7957
7958The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7959address space ``n`` to type ``pty2`` in address space ``m``.
7960
7961Arguments:
7962""""""""""
7963
7964The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7965to cast and a pointer type to cast it to, which must have a different
7966address space.
7967
7968Semantics:
7969""""""""""
7970
7971The '``addrspacecast``' instruction converts the pointer value
7972``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00007973value modification, depending on the target and the address space
7974pair. Pointer conversions within the same address space must be
7975performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007976conversion is legal then both result and operand refer to the same memory
7977location.
7978
7979Example:
7980""""""""
7981
7982.. code-block:: llvm
7983
Matt Arsenault9c13dd02013-11-15 22:43:50 +00007984 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
7985 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
7986 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007987
Sean Silvab084af42012-12-07 10:36:55 +00007988.. _otherops:
7989
7990Other Operations
7991----------------
7992
7993The instructions in this category are the "miscellaneous" instructions,
7994which defy better classification.
7995
7996.. _i_icmp:
7997
7998'``icmp``' Instruction
7999^^^^^^^^^^^^^^^^^^^^^^
8000
8001Syntax:
8002"""""""
8003
8004::
8005
Tim Northover675a0962014-06-13 14:24:23 +00008006 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008007
8008Overview:
8009"""""""""
8010
8011The '``icmp``' instruction returns a boolean value or a vector of
8012boolean values based on comparison of its two integer, integer vector,
8013pointer, or pointer vector operands.
8014
8015Arguments:
8016""""""""""
8017
8018The '``icmp``' instruction takes three operands. The first operand is
8019the condition code indicating the kind of comparison to perform. It is
8020not a value, just a keyword. The possible condition code are:
8021
8022#. ``eq``: equal
8023#. ``ne``: not equal
8024#. ``ugt``: unsigned greater than
8025#. ``uge``: unsigned greater or equal
8026#. ``ult``: unsigned less than
8027#. ``ule``: unsigned less or equal
8028#. ``sgt``: signed greater than
8029#. ``sge``: signed greater or equal
8030#. ``slt``: signed less than
8031#. ``sle``: signed less or equal
8032
8033The remaining two arguments must be :ref:`integer <t_integer>` or
8034:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8035must also be identical types.
8036
8037Semantics:
8038""""""""""
8039
8040The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8041code given as ``cond``. The comparison performed always yields either an
8042:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8043
8044#. ``eq``: yields ``true`` if the operands are equal, ``false``
8045 otherwise. No sign interpretation is necessary or performed.
8046#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8047 otherwise. No sign interpretation is necessary or performed.
8048#. ``ugt``: interprets the operands as unsigned values and yields
8049 ``true`` if ``op1`` is greater than ``op2``.
8050#. ``uge``: interprets the operands as unsigned values and yields
8051 ``true`` if ``op1`` is greater than or equal to ``op2``.
8052#. ``ult``: interprets the operands as unsigned values and yields
8053 ``true`` if ``op1`` is less than ``op2``.
8054#. ``ule``: interprets the operands as unsigned values and yields
8055 ``true`` if ``op1`` is less than or equal to ``op2``.
8056#. ``sgt``: interprets the operands as signed values and yields ``true``
8057 if ``op1`` is greater than ``op2``.
8058#. ``sge``: interprets the operands as signed values and yields ``true``
8059 if ``op1`` is greater than or equal to ``op2``.
8060#. ``slt``: interprets the operands as signed values and yields ``true``
8061 if ``op1`` is less than ``op2``.
8062#. ``sle``: interprets the operands as signed values and yields ``true``
8063 if ``op1`` is less than or equal to ``op2``.
8064
8065If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8066are compared as if they were integers.
8067
8068If the operands are integer vectors, then they are compared element by
8069element. The result is an ``i1`` vector with the same number of elements
8070as the values being compared. Otherwise, the result is an ``i1``.
8071
8072Example:
8073""""""""
8074
8075.. code-block:: llvm
8076
8077 <result> = icmp eq i32 4, 5 ; yields: result=false
8078 <result> = icmp ne float* %X, %X ; yields: result=false
8079 <result> = icmp ult i16 4, 5 ; yields: result=true
8080 <result> = icmp sgt i16 4, 5 ; yields: result=false
8081 <result> = icmp ule i16 -4, 5 ; yields: result=false
8082 <result> = icmp sge i16 4, 5 ; yields: result=false
8083
8084Note that the code generator does not yet support vector types with the
8085``icmp`` instruction.
8086
8087.. _i_fcmp:
8088
8089'``fcmp``' Instruction
8090^^^^^^^^^^^^^^^^^^^^^^
8091
8092Syntax:
8093"""""""
8094
8095::
8096
James Molloy88eb5352015-07-10 12:52:00 +00008097 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008098
8099Overview:
8100"""""""""
8101
8102The '``fcmp``' instruction returns a boolean value or vector of boolean
8103values based on comparison of its operands.
8104
8105If the operands are floating point scalars, then the result type is a
8106boolean (:ref:`i1 <t_integer>`).
8107
8108If the operands are floating point vectors, then the result type is a
8109vector of boolean with the same number of elements as the operands being
8110compared.
8111
8112Arguments:
8113""""""""""
8114
8115The '``fcmp``' instruction takes three operands. The first operand is
8116the condition code indicating the kind of comparison to perform. It is
8117not a value, just a keyword. The possible condition code are:
8118
8119#. ``false``: no comparison, always returns false
8120#. ``oeq``: ordered and equal
8121#. ``ogt``: ordered and greater than
8122#. ``oge``: ordered and greater than or equal
8123#. ``olt``: ordered and less than
8124#. ``ole``: ordered and less than or equal
8125#. ``one``: ordered and not equal
8126#. ``ord``: ordered (no nans)
8127#. ``ueq``: unordered or equal
8128#. ``ugt``: unordered or greater than
8129#. ``uge``: unordered or greater than or equal
8130#. ``ult``: unordered or less than
8131#. ``ule``: unordered or less than or equal
8132#. ``une``: unordered or not equal
8133#. ``uno``: unordered (either nans)
8134#. ``true``: no comparison, always returns true
8135
8136*Ordered* means that neither operand is a QNAN while *unordered* means
8137that either operand may be a QNAN.
8138
8139Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8140point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8141type. They must have identical types.
8142
8143Semantics:
8144""""""""""
8145
8146The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8147condition code given as ``cond``. If the operands are vectors, then the
8148vectors are compared element by element. Each comparison performed
8149always yields an :ref:`i1 <t_integer>` result, as follows:
8150
8151#. ``false``: always yields ``false``, regardless of operands.
8152#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8153 is equal to ``op2``.
8154#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8155 is greater than ``op2``.
8156#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8157 is greater than or equal to ``op2``.
8158#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8159 is less than ``op2``.
8160#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8161 is less than or equal to ``op2``.
8162#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8163 is not equal to ``op2``.
8164#. ``ord``: yields ``true`` if both operands are not a QNAN.
8165#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8166 equal to ``op2``.
8167#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8168 greater than ``op2``.
8169#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8170 greater than or equal to ``op2``.
8171#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8172 less than ``op2``.
8173#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8174 less than or equal to ``op2``.
8175#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8176 not equal to ``op2``.
8177#. ``uno``: yields ``true`` if either operand is a QNAN.
8178#. ``true``: always yields ``true``, regardless of operands.
8179
James Molloy88eb5352015-07-10 12:52:00 +00008180The ``fcmp`` instruction can also optionally take any number of
8181:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8182otherwise unsafe floating point optimizations.
8183
8184Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8185only flags that have any effect on its semantics are those that allow
8186assumptions to be made about the values of input arguments; namely
8187``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8188
Sean Silvab084af42012-12-07 10:36:55 +00008189Example:
8190""""""""
8191
8192.. code-block:: llvm
8193
8194 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8195 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8196 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8197 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8198
8199Note that the code generator does not yet support vector types with the
8200``fcmp`` instruction.
8201
8202.. _i_phi:
8203
8204'``phi``' Instruction
8205^^^^^^^^^^^^^^^^^^^^^
8206
8207Syntax:
8208"""""""
8209
8210::
8211
8212 <result> = phi <ty> [ <val0>, <label0>], ...
8213
8214Overview:
8215"""""""""
8216
8217The '``phi``' instruction is used to implement the φ node in the SSA
8218graph representing the function.
8219
8220Arguments:
8221""""""""""
8222
8223The type of the incoming values is specified with the first type field.
8224After this, the '``phi``' instruction takes a list of pairs as
8225arguments, with one pair for each predecessor basic block of the current
8226block. Only values of :ref:`first class <t_firstclass>` type may be used as
8227the value arguments to the PHI node. Only labels may be used as the
8228label arguments.
8229
8230There must be no non-phi instructions between the start of a basic block
8231and the PHI instructions: i.e. PHI instructions must be first in a basic
8232block.
8233
8234For the purposes of the SSA form, the use of each incoming value is
8235deemed to occur on the edge from the corresponding predecessor block to
8236the current block (but after any definition of an '``invoke``'
8237instruction's return value on the same edge).
8238
8239Semantics:
8240""""""""""
8241
8242At runtime, the '``phi``' instruction logically takes on the value
8243specified by the pair corresponding to the predecessor basic block that
8244executed just prior to the current block.
8245
8246Example:
8247""""""""
8248
8249.. code-block:: llvm
8250
8251 Loop: ; Infinite loop that counts from 0 on up...
8252 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8253 %nextindvar = add i32 %indvar, 1
8254 br label %Loop
8255
8256.. _i_select:
8257
8258'``select``' Instruction
8259^^^^^^^^^^^^^^^^^^^^^^^^
8260
8261Syntax:
8262"""""""
8263
8264::
8265
8266 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8267
8268 selty is either i1 or {<N x i1>}
8269
8270Overview:
8271"""""""""
8272
8273The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008274condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008275
8276Arguments:
8277""""""""""
8278
8279The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8280values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008281class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008282
8283Semantics:
8284""""""""""
8285
8286If the condition is an i1 and it evaluates to 1, the instruction returns
8287the first value argument; otherwise, it returns the second value
8288argument.
8289
8290If the condition is a vector of i1, then the value arguments must be
8291vectors of the same size, and the selection is done element by element.
8292
David Majnemer40a0b592015-03-03 22:45:47 +00008293If the condition is an i1 and the value arguments are vectors of the
8294same size, then an entire vector is selected.
8295
Sean Silvab084af42012-12-07 10:36:55 +00008296Example:
8297""""""""
8298
8299.. code-block:: llvm
8300
8301 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8302
8303.. _i_call:
8304
8305'``call``' Instruction
8306^^^^^^^^^^^^^^^^^^^^^^
8307
8308Syntax:
8309"""""""
8310
8311::
8312
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008313 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008314 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008315
8316Overview:
8317"""""""""
8318
8319The '``call``' instruction represents a simple function call.
8320
8321Arguments:
8322""""""""""
8323
8324This instruction requires several arguments:
8325
Reid Kleckner5772b772014-04-24 20:14:34 +00008326#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008327 should perform tail call optimization. The ``tail`` marker is a hint that
8328 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008329 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008330 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008331
8332 #. The call will not cause unbounded stack growth if it is part of a
8333 recursive cycle in the call graph.
8334 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8335 forwarded in place.
8336
8337 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008338 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008339 rules:
8340
8341 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8342 or a pointer bitcast followed by a ret instruction.
8343 - The ret instruction must return the (possibly bitcasted) value
8344 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008345 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008346 parameters or return types may differ in pointee type, but not
8347 in address space.
8348 - The calling conventions of the caller and callee must match.
8349 - All ABI-impacting function attributes, such as sret, byval, inreg,
8350 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008351 - The callee must be varargs iff the caller is varargs. Bitcasting a
8352 non-varargs function to the appropriate varargs type is legal so
8353 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008354
8355 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8356 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008357
8358 - Caller and callee both have the calling convention ``fastcc``.
8359 - The call is in tail position (ret immediately follows call and ret
8360 uses value of call or is void).
8361 - Option ``-tailcallopt`` is enabled, or
8362 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008363 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008364 met. <CodeGenerator.html#tailcallopt>`_
8365
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008366#. The optional ``notail`` marker indicates that the optimizers should not add
8367 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8368 call optimization from being performed on the call.
8369
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008370#. The optional ``fast-math flags`` marker indicates that the call has one or more
8371 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8372 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8373 for calls that return a floating-point scalar or vector type.
8374
Sean Silvab084af42012-12-07 10:36:55 +00008375#. The optional "cconv" marker indicates which :ref:`calling
8376 convention <callingconv>` the call should use. If none is
8377 specified, the call defaults to using C calling conventions. The
8378 calling convention of the call must match the calling convention of
8379 the target function, or else the behavior is undefined.
8380#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8381 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8382 are valid here.
8383#. '``ty``': the type of the call instruction itself which is also the
8384 type of the return value. Functions that return no value are marked
8385 ``void``.
8386#. '``fnty``': shall be the signature of the pointer to function value
8387 being invoked. The argument types must match the types implied by
8388 this signature. This type can be omitted if the function is not
8389 varargs and if the function type does not return a pointer to a
8390 function.
8391#. '``fnptrval``': An LLVM value containing a pointer to a function to
8392 be invoked. In most cases, this is a direct function invocation, but
8393 indirect ``call``'s are just as possible, calling an arbitrary pointer
8394 to function value.
8395#. '``function args``': argument list whose types match the function
8396 signature argument types and parameter attributes. All arguments must
8397 be of :ref:`first class <t_firstclass>` type. If the function signature
8398 indicates the function accepts a variable number of arguments, the
8399 extra arguments can be specified.
8400#. The optional :ref:`function attributes <fnattrs>` list. Only
8401 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8402 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008403#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008404
8405Semantics:
8406""""""""""
8407
8408The '``call``' instruction is used to cause control flow to transfer to
8409a specified function, with its incoming arguments bound to the specified
8410values. Upon a '``ret``' instruction in the called function, control
8411flow continues with the instruction after the function call, and the
8412return value of the function is bound to the result argument.
8413
8414Example:
8415""""""""
8416
8417.. code-block:: llvm
8418
8419 %retval = call i32 @test(i32 %argc)
8420 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8421 %X = tail call i32 @foo() ; yields i32
8422 %Y = tail call fastcc i32 @foo() ; yields i32
8423 call void %foo(i8 97 signext)
8424
8425 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008426 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008427 %gr = extractvalue %struct.A %r, 0 ; yields i32
8428 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8429 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8430 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8431
8432llvm treats calls to some functions with names and arguments that match
8433the standard C99 library as being the C99 library functions, and may
8434perform optimizations or generate code for them under that assumption.
8435This is something we'd like to change in the future to provide better
8436support for freestanding environments and non-C-based languages.
8437
8438.. _i_va_arg:
8439
8440'``va_arg``' Instruction
8441^^^^^^^^^^^^^^^^^^^^^^^^
8442
8443Syntax:
8444"""""""
8445
8446::
8447
8448 <resultval> = va_arg <va_list*> <arglist>, <argty>
8449
8450Overview:
8451"""""""""
8452
8453The '``va_arg``' instruction is used to access arguments passed through
8454the "variable argument" area of a function call. It is used to implement
8455the ``va_arg`` macro in C.
8456
8457Arguments:
8458""""""""""
8459
8460This instruction takes a ``va_list*`` value and the type of the
8461argument. It returns a value of the specified argument type and
8462increments the ``va_list`` to point to the next argument. The actual
8463type of ``va_list`` is target specific.
8464
8465Semantics:
8466""""""""""
8467
8468The '``va_arg``' instruction loads an argument of the specified type
8469from the specified ``va_list`` and causes the ``va_list`` to point to
8470the next argument. For more information, see the variable argument
8471handling :ref:`Intrinsic Functions <int_varargs>`.
8472
8473It is legal for this instruction to be called in a function which does
8474not take a variable number of arguments, for example, the ``vfprintf``
8475function.
8476
8477``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8478function <intrinsics>` because it takes a type as an argument.
8479
8480Example:
8481""""""""
8482
8483See the :ref:`variable argument processing <int_varargs>` section.
8484
8485Note that the code generator does not yet fully support va\_arg on many
8486targets. Also, it does not currently support va\_arg with aggregate
8487types on any target.
8488
8489.. _i_landingpad:
8490
8491'``landingpad``' Instruction
8492^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8493
8494Syntax:
8495"""""""
8496
8497::
8498
David Majnemer7fddecc2015-06-17 20:52:32 +00008499 <resultval> = landingpad <resultty> <clause>+
8500 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008501
8502 <clause> := catch <type> <value>
8503 <clause> := filter <array constant type> <array constant>
8504
8505Overview:
8506"""""""""
8507
8508The '``landingpad``' instruction is used by `LLVM's exception handling
8509system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008510is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008511code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008512defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008513re-entry to the function. The ``resultval`` has the type ``resultty``.
8514
8515Arguments:
8516""""""""""
8517
David Majnemer7fddecc2015-06-17 20:52:32 +00008518The optional
Sean Silvab084af42012-12-07 10:36:55 +00008519``cleanup`` flag indicates that the landing pad block is a cleanup.
8520
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008521A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008522contains the global variable representing the "type" that may be caught
8523or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8524clause takes an array constant as its argument. Use
8525"``[0 x i8**] undef``" for a filter which cannot throw. The
8526'``landingpad``' instruction must contain *at least* one ``clause`` or
8527the ``cleanup`` flag.
8528
8529Semantics:
8530""""""""""
8531
8532The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008533:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008534therefore the "result type" of the ``landingpad`` instruction. As with
8535calling conventions, how the personality function results are
8536represented in LLVM IR is target specific.
8537
8538The clauses are applied in order from top to bottom. If two
8539``landingpad`` instructions are merged together through inlining, the
8540clauses from the calling function are appended to the list of clauses.
8541When the call stack is being unwound due to an exception being thrown,
8542the exception is compared against each ``clause`` in turn. If it doesn't
8543match any of the clauses, and the ``cleanup`` flag is not set, then
8544unwinding continues further up the call stack.
8545
8546The ``landingpad`` instruction has several restrictions:
8547
8548- A landing pad block is a basic block which is the unwind destination
8549 of an '``invoke``' instruction.
8550- A landing pad block must have a '``landingpad``' instruction as its
8551 first non-PHI instruction.
8552- There can be only one '``landingpad``' instruction within the landing
8553 pad block.
8554- A basic block that is not a landing pad block may not include a
8555 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008556
8557Example:
8558""""""""
8559
8560.. code-block:: llvm
8561
8562 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008563 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008564 catch i8** @_ZTIi
8565 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008566 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008567 cleanup
8568 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008569 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008570 catch i8** @_ZTIi
8571 filter [1 x i8**] [@_ZTId]
8572
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008573.. _i_catchpad:
8574
8575'``catchpad``' Instruction
8576^^^^^^^^^^^^^^^^^^^^^^^^^^
8577
8578Syntax:
8579"""""""
8580
8581::
8582
8583 <resultval> = catchpad within <catchswitch> [<args>*]
8584
8585Overview:
8586"""""""""
8587
8588The '``catchpad``' instruction is used by `LLVM's exception handling
8589system <ExceptionHandling.html#overview>`_ to specify that a basic block
8590begins a catch handler --- one where a personality routine attempts to transfer
8591control to catch an exception.
8592
8593Arguments:
8594""""""""""
8595
8596The ``catchswitch`` operand must always be a token produced by a
8597:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8598ensures that each ``catchpad`` has exactly one predecessor block, and it always
8599terminates in a ``catchswitch``.
8600
8601The ``args`` correspond to whatever information the personality routine
8602requires to know if this is an appropriate handler for the exception. Control
8603will transfer to the ``catchpad`` if this is the first appropriate handler for
8604the exception.
8605
8606The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8607``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8608pads.
8609
8610Semantics:
8611""""""""""
8612
8613When the call stack is being unwound due to an exception being thrown, the
8614exception is compared against the ``args``. If it doesn't match, control will
8615not reach the ``catchpad`` instruction. The representation of ``args`` is
8616entirely target and personality function-specific.
8617
8618Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8619instruction must be the first non-phi of its parent basic block.
8620
8621The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8622instructions is described in the
8623`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8624
8625When a ``catchpad`` has been "entered" but not yet "exited" (as
8626described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8627it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8628that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8629
8630Example:
8631""""""""
8632
8633.. code-block:: llvm
8634
8635 dispatch:
8636 %cs = catchswitch within none [label %handler0] unwind to caller
8637 ;; A catch block which can catch an integer.
8638 handler0:
8639 %tok = catchpad within %cs [i8** @_ZTIi]
8640
David Majnemer654e1302015-07-31 17:58:14 +00008641.. _i_cleanuppad:
8642
8643'``cleanuppad``' Instruction
8644^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8645
8646Syntax:
8647"""""""
8648
8649::
8650
David Majnemer8a1c45d2015-12-12 05:38:55 +00008651 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008652
8653Overview:
8654"""""""""
8655
8656The '``cleanuppad``' instruction is used by `LLVM's exception handling
8657system <ExceptionHandling.html#overview>`_ to specify that a basic block
8658is a cleanup block --- one where a personality routine attempts to
8659transfer control to run cleanup actions.
8660The ``args`` correspond to whatever additional
8661information the :ref:`personality function <personalityfn>` requires to
8662execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008663The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008664match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8665The ``parent`` argument is the token of the funclet that contains the
8666``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8667this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008668
8669Arguments:
8670""""""""""
8671
8672The instruction takes a list of arbitrary values which are interpreted
8673by the :ref:`personality function <personalityfn>`.
8674
8675Semantics:
8676""""""""""
8677
David Majnemer654e1302015-07-31 17:58:14 +00008678When the call stack is being unwound due to an exception being thrown,
8679the :ref:`personality function <personalityfn>` transfers control to the
8680``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008681As with calling conventions, how the personality function results are
8682represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008683
8684The ``cleanuppad`` instruction has several restrictions:
8685
8686- A cleanup block is a basic block which is the unwind destination of
8687 an exceptional instruction.
8688- A cleanup block must have a '``cleanuppad``' instruction as its
8689 first non-PHI instruction.
8690- There can be only one '``cleanuppad``' instruction within the
8691 cleanup block.
8692- A basic block that is not a cleanup block may not include a
8693 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008694
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008695When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8696described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8697it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8698that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008699
David Majnemer654e1302015-07-31 17:58:14 +00008700Example:
8701""""""""
8702
8703.. code-block:: llvm
8704
David Majnemer8a1c45d2015-12-12 05:38:55 +00008705 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008706
Sean Silvab084af42012-12-07 10:36:55 +00008707.. _intrinsics:
8708
8709Intrinsic Functions
8710===================
8711
8712LLVM supports the notion of an "intrinsic function". These functions
8713have well known names and semantics and are required to follow certain
8714restrictions. Overall, these intrinsics represent an extension mechanism
8715for the LLVM language that does not require changing all of the
8716transformations in LLVM when adding to the language (or the bitcode
8717reader/writer, the parser, etc...).
8718
8719Intrinsic function names must all start with an "``llvm.``" prefix. This
8720prefix is reserved in LLVM for intrinsic names; thus, function names may
8721not begin with this prefix. Intrinsic functions must always be external
8722functions: you cannot define the body of intrinsic functions. Intrinsic
8723functions may only be used in call or invoke instructions: it is illegal
8724to take the address of an intrinsic function. Additionally, because
8725intrinsic functions are part of the LLVM language, it is required if any
8726are added that they be documented here.
8727
8728Some intrinsic functions can be overloaded, i.e., the intrinsic
8729represents a family of functions that perform the same operation but on
8730different data types. Because LLVM can represent over 8 million
8731different integer types, overloading is used commonly to allow an
8732intrinsic function to operate on any integer type. One or more of the
8733argument types or the result type can be overloaded to accept any
8734integer type. Argument types may also be defined as exactly matching a
8735previous argument's type or the result type. This allows an intrinsic
8736function which accepts multiple arguments, but needs all of them to be
8737of the same type, to only be overloaded with respect to a single
8738argument or the result.
8739
8740Overloaded intrinsics will have the names of its overloaded argument
8741types encoded into its function name, each preceded by a period. Only
8742those types which are overloaded result in a name suffix. Arguments
8743whose type is matched against another type do not. For example, the
8744``llvm.ctpop`` function can take an integer of any width and returns an
8745integer of exactly the same integer width. This leads to a family of
8746functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8747``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8748overloaded, and only one type suffix is required. Because the argument's
8749type is matched against the return type, it does not require its own
8750name suffix.
8751
8752To learn how to add an intrinsic function, please see the `Extending
8753LLVM Guide <ExtendingLLVM.html>`_.
8754
8755.. _int_varargs:
8756
8757Variable Argument Handling Intrinsics
8758-------------------------------------
8759
8760Variable argument support is defined in LLVM with the
8761:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8762functions. These functions are related to the similarly named macros
8763defined in the ``<stdarg.h>`` header file.
8764
8765All of these functions operate on arguments that use a target-specific
8766value type "``va_list``". The LLVM assembly language reference manual
8767does not define what this type is, so all transformations should be
8768prepared to handle these functions regardless of the type used.
8769
8770This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8771variable argument handling intrinsic functions are used.
8772
8773.. code-block:: llvm
8774
Tim Northoverab60bb92014-11-02 01:21:51 +00008775 ; This struct is different for every platform. For most platforms,
8776 ; it is merely an i8*.
8777 %struct.va_list = type { i8* }
8778
8779 ; For Unix x86_64 platforms, va_list is the following struct:
8780 ; %struct.va_list = type { i32, i32, i8*, i8* }
8781
Sean Silvab084af42012-12-07 10:36:55 +00008782 define i32 @test(i32 %X, ...) {
8783 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008784 %ap = alloca %struct.va_list
8785 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008786 call void @llvm.va_start(i8* %ap2)
8787
8788 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008789 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008790
8791 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8792 %aq = alloca i8*
8793 %aq2 = bitcast i8** %aq to i8*
8794 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8795 call void @llvm.va_end(i8* %aq2)
8796
8797 ; Stop processing of arguments.
8798 call void @llvm.va_end(i8* %ap2)
8799 ret i32 %tmp
8800 }
8801
8802 declare void @llvm.va_start(i8*)
8803 declare void @llvm.va_copy(i8*, i8*)
8804 declare void @llvm.va_end(i8*)
8805
8806.. _int_va_start:
8807
8808'``llvm.va_start``' Intrinsic
8809^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8810
8811Syntax:
8812"""""""
8813
8814::
8815
Nick Lewycky04f6de02013-09-11 22:04:52 +00008816 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008817
8818Overview:
8819"""""""""
8820
8821The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8822subsequent use by ``va_arg``.
8823
8824Arguments:
8825""""""""""
8826
8827The argument is a pointer to a ``va_list`` element to initialize.
8828
8829Semantics:
8830""""""""""
8831
8832The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8833available in C. In a target-dependent way, it initializes the
8834``va_list`` element to which the argument points, so that the next call
8835to ``va_arg`` will produce the first variable argument passed to the
8836function. Unlike the C ``va_start`` macro, this intrinsic does not need
8837to know the last argument of the function as the compiler can figure
8838that out.
8839
8840'``llvm.va_end``' Intrinsic
8841^^^^^^^^^^^^^^^^^^^^^^^^^^^
8842
8843Syntax:
8844"""""""
8845
8846::
8847
8848 declare void @llvm.va_end(i8* <arglist>)
8849
8850Overview:
8851"""""""""
8852
8853The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8854initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8855
8856Arguments:
8857""""""""""
8858
8859The argument is a pointer to a ``va_list`` to destroy.
8860
8861Semantics:
8862""""""""""
8863
8864The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8865available in C. In a target-dependent way, it destroys the ``va_list``
8866element to which the argument points. Calls to
8867:ref:`llvm.va_start <int_va_start>` and
8868:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8869``llvm.va_end``.
8870
8871.. _int_va_copy:
8872
8873'``llvm.va_copy``' Intrinsic
8874^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8875
8876Syntax:
8877"""""""
8878
8879::
8880
8881 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8882
8883Overview:
8884"""""""""
8885
8886The '``llvm.va_copy``' intrinsic copies the current argument position
8887from the source argument list to the destination argument list.
8888
8889Arguments:
8890""""""""""
8891
8892The first argument is a pointer to a ``va_list`` element to initialize.
8893The second argument is a pointer to a ``va_list`` element to copy from.
8894
8895Semantics:
8896""""""""""
8897
8898The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8899available in C. In a target-dependent way, it copies the source
8900``va_list`` element into the destination ``va_list`` element. This
8901intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8902arbitrarily complex and require, for example, memory allocation.
8903
8904Accurate Garbage Collection Intrinsics
8905--------------------------------------
8906
Philip Reamesc5b0f562015-02-25 23:52:06 +00008907LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008908(GC) requires the frontend to generate code containing appropriate intrinsic
8909calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008910intrinsics in a manner which is appropriate for the target collector.
8911
Sean Silvab084af42012-12-07 10:36:55 +00008912These intrinsics allow identification of :ref:`GC roots on the
8913stack <int_gcroot>`, as well as garbage collector implementations that
8914require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008915Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008916these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008917details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008918
Philip Reamesf80bbff2015-02-25 23:45:20 +00008919Experimental Statepoint Intrinsics
8920^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8921
8922LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008923collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008924to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008925:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008926differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008927<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008928described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008929
8930.. _int_gcroot:
8931
8932'``llvm.gcroot``' Intrinsic
8933^^^^^^^^^^^^^^^^^^^^^^^^^^^
8934
8935Syntax:
8936"""""""
8937
8938::
8939
8940 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8941
8942Overview:
8943"""""""""
8944
8945The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8946the code generator, and allows some metadata to be associated with it.
8947
8948Arguments:
8949""""""""""
8950
8951The first argument specifies the address of a stack object that contains
8952the root pointer. The second pointer (which must be either a constant or
8953a global value address) contains the meta-data to be associated with the
8954root.
8955
8956Semantics:
8957""""""""""
8958
8959At runtime, a call to this intrinsic stores a null pointer into the
8960"ptrloc" location. At compile-time, the code generator generates
8961information to allow the runtime to find the pointer at GC safe points.
8962The '``llvm.gcroot``' intrinsic may only be used in a function which
8963:ref:`specifies a GC algorithm <gc>`.
8964
8965.. _int_gcread:
8966
8967'``llvm.gcread``' Intrinsic
8968^^^^^^^^^^^^^^^^^^^^^^^^^^^
8969
8970Syntax:
8971"""""""
8972
8973::
8974
8975 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8976
8977Overview:
8978"""""""""
8979
8980The '``llvm.gcread``' intrinsic identifies reads of references from heap
8981locations, allowing garbage collector implementations that require read
8982barriers.
8983
8984Arguments:
8985""""""""""
8986
8987The second argument is the address to read from, which should be an
8988address allocated from the garbage collector. The first object is a
8989pointer to the start of the referenced object, if needed by the language
8990runtime (otherwise null).
8991
8992Semantics:
8993""""""""""
8994
8995The '``llvm.gcread``' intrinsic has the same semantics as a load
8996instruction, but may be replaced with substantially more complex code by
8997the garbage collector runtime, as needed. The '``llvm.gcread``'
8998intrinsic may only be used in a function which :ref:`specifies a GC
8999algorithm <gc>`.
9000
9001.. _int_gcwrite:
9002
9003'``llvm.gcwrite``' Intrinsic
9004^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9005
9006Syntax:
9007"""""""
9008
9009::
9010
9011 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9012
9013Overview:
9014"""""""""
9015
9016The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9017locations, allowing garbage collector implementations that require write
9018barriers (such as generational or reference counting collectors).
9019
9020Arguments:
9021""""""""""
9022
9023The first argument is the reference to store, the second is the start of
9024the object to store it to, and the third is the address of the field of
9025Obj to store to. If the runtime does not require a pointer to the
9026object, Obj may be null.
9027
9028Semantics:
9029""""""""""
9030
9031The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9032instruction, but may be replaced with substantially more complex code by
9033the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9034intrinsic may only be used in a function which :ref:`specifies a GC
9035algorithm <gc>`.
9036
9037Code Generator Intrinsics
9038-------------------------
9039
9040These intrinsics are provided by LLVM to expose special features that
9041may only be implemented with code generator support.
9042
9043'``llvm.returnaddress``' Intrinsic
9044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9045
9046Syntax:
9047"""""""
9048
9049::
9050
9051 declare i8 *@llvm.returnaddress(i32 <level>)
9052
9053Overview:
9054"""""""""
9055
9056The '``llvm.returnaddress``' intrinsic attempts to compute a
9057target-specific value indicating the return address of the current
9058function or one of its callers.
9059
9060Arguments:
9061""""""""""
9062
9063The argument to this intrinsic indicates which function to return the
9064address for. Zero indicates the calling function, one indicates its
9065caller, etc. The argument is **required** to be a constant integer
9066value.
9067
9068Semantics:
9069""""""""""
9070
9071The '``llvm.returnaddress``' intrinsic either returns a pointer
9072indicating the return address of the specified call frame, or zero if it
9073cannot be identified. The value returned by this intrinsic is likely to
9074be incorrect or 0 for arguments other than zero, so it should only be
9075used for debugging purposes.
9076
9077Note that calling this intrinsic does not prevent function inlining or
9078other aggressive transformations, so the value returned may not be that
9079of the obvious source-language caller.
9080
9081'``llvm.frameaddress``' Intrinsic
9082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9083
9084Syntax:
9085"""""""
9086
9087::
9088
9089 declare i8* @llvm.frameaddress(i32 <level>)
9090
9091Overview:
9092"""""""""
9093
9094The '``llvm.frameaddress``' intrinsic attempts to return the
9095target-specific frame pointer value for the specified stack frame.
9096
9097Arguments:
9098""""""""""
9099
9100The argument to this intrinsic indicates which function to return the
9101frame pointer for. Zero indicates the calling function, one indicates
9102its caller, etc. The argument is **required** to be a constant integer
9103value.
9104
9105Semantics:
9106""""""""""
9107
9108The '``llvm.frameaddress``' intrinsic either returns a pointer
9109indicating the frame address of the specified call frame, or zero if it
9110cannot be identified. The value returned by this intrinsic is likely to
9111be incorrect or 0 for arguments other than zero, so it should only be
9112used for debugging purposes.
9113
9114Note that calling this intrinsic does not prevent function inlining or
9115other aggressive transformations, so the value returned may not be that
9116of the obvious source-language caller.
9117
Reid Kleckner60381792015-07-07 22:25:32 +00009118'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009119^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9120
9121Syntax:
9122"""""""
9123
9124::
9125
Reid Kleckner60381792015-07-07 22:25:32 +00009126 declare void @llvm.localescape(...)
9127 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009128
9129Overview:
9130"""""""""
9131
Reid Kleckner60381792015-07-07 22:25:32 +00009132The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9133allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009134live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009135computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009136
9137Arguments:
9138""""""""""
9139
Reid Kleckner60381792015-07-07 22:25:32 +00009140All arguments to '``llvm.localescape``' must be pointers to static allocas or
9141casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009142once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009143
Reid Kleckner60381792015-07-07 22:25:32 +00009144The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009145bitcasted pointer to a function defined in the current module. The code
9146generator cannot determine the frame allocation offset of functions defined in
9147other modules.
9148
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009149The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9150call frame that is currently live. The return value of '``llvm.localaddress``'
9151is one way to produce such a value, but various runtimes also expose a suitable
9152pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009153
Reid Kleckner60381792015-07-07 22:25:32 +00009154The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9155'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009156
Reid Klecknere9b89312015-01-13 00:48:10 +00009157Semantics:
9158""""""""""
9159
Reid Kleckner60381792015-07-07 22:25:32 +00009160These intrinsics allow a group of functions to share access to a set of local
9161stack allocations of a one parent function. The parent function may call the
9162'``llvm.localescape``' intrinsic once from the function entry block, and the
9163child functions can use '``llvm.localrecover``' to access the escaped allocas.
9164The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9165the escaped allocas are allocated, which would break attempts to use
9166'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009167
Renato Golinc7aea402014-05-06 16:51:25 +00009168.. _int_read_register:
9169.. _int_write_register:
9170
9171'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9173
9174Syntax:
9175"""""""
9176
9177::
9178
9179 declare i32 @llvm.read_register.i32(metadata)
9180 declare i64 @llvm.read_register.i64(metadata)
9181 declare void @llvm.write_register.i32(metadata, i32 @value)
9182 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009183 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009184
9185Overview:
9186"""""""""
9187
9188The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9189provides access to the named register. The register must be valid on
9190the architecture being compiled to. The type needs to be compatible
9191with the register being read.
9192
9193Semantics:
9194""""""""""
9195
9196The '``llvm.read_register``' intrinsic returns the current value of the
9197register, where possible. The '``llvm.write_register``' intrinsic sets
9198the current value of the register, where possible.
9199
9200This is useful to implement named register global variables that need
9201to always be mapped to a specific register, as is common practice on
9202bare-metal programs including OS kernels.
9203
9204The compiler doesn't check for register availability or use of the used
9205register in surrounding code, including inline assembly. Because of that,
9206allocatable registers are not supported.
9207
9208Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009209architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009210work is needed to support other registers and even more so, allocatable
9211registers.
9212
Sean Silvab084af42012-12-07 10:36:55 +00009213.. _int_stacksave:
9214
9215'``llvm.stacksave``' Intrinsic
9216^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9217
9218Syntax:
9219"""""""
9220
9221::
9222
9223 declare i8* @llvm.stacksave()
9224
9225Overview:
9226"""""""""
9227
9228The '``llvm.stacksave``' intrinsic is used to remember the current state
9229of the function stack, for use with
9230:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9231implementing language features like scoped automatic variable sized
9232arrays in C99.
9233
9234Semantics:
9235""""""""""
9236
9237This intrinsic returns a opaque pointer value that can be passed to
9238:ref:`llvm.stackrestore <int_stackrestore>`. When an
9239``llvm.stackrestore`` intrinsic is executed with a value saved from
9240``llvm.stacksave``, it effectively restores the state of the stack to
9241the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9242practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9243were allocated after the ``llvm.stacksave`` was executed.
9244
9245.. _int_stackrestore:
9246
9247'``llvm.stackrestore``' Intrinsic
9248^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9249
9250Syntax:
9251"""""""
9252
9253::
9254
9255 declare void @llvm.stackrestore(i8* %ptr)
9256
9257Overview:
9258"""""""""
9259
9260The '``llvm.stackrestore``' intrinsic is used to restore the state of
9261the function stack to the state it was in when the corresponding
9262:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9263useful for implementing language features like scoped automatic variable
9264sized arrays in C99.
9265
9266Semantics:
9267""""""""""
9268
9269See the description for :ref:`llvm.stacksave <int_stacksave>`.
9270
Yury Gribovd7dbb662015-12-01 11:40:55 +00009271.. _int_get_dynamic_area_offset:
9272
9273'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009275
9276Syntax:
9277"""""""
9278
9279::
9280
9281 declare i32 @llvm.get.dynamic.area.offset.i32()
9282 declare i64 @llvm.get.dynamic.area.offset.i64()
9283
9284 Overview:
9285 """""""""
9286
9287 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9288 get the offset from native stack pointer to the address of the most
9289 recent dynamic alloca on the caller's stack. These intrinsics are
9290 intendend for use in combination with
9291 :ref:`llvm.stacksave <int_stacksave>` to get a
9292 pointer to the most recent dynamic alloca. This is useful, for example,
9293 for AddressSanitizer's stack unpoisoning routines.
9294
9295Semantics:
9296""""""""""
9297
9298 These intrinsics return a non-negative integer value that can be used to
9299 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9300 on the caller's stack. In particular, for targets where stack grows downwards,
9301 adding this offset to the native stack pointer would get the address of the most
9302 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9303 complicated, because substracting this value from stack pointer would get the address
9304 one past the end of the most recent dynamic alloca.
9305
9306 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9307 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9308 compile-time-known constant value.
9309
9310 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9311 must match the target's generic address space's (address space 0) pointer type.
9312
Sean Silvab084af42012-12-07 10:36:55 +00009313'``llvm.prefetch``' Intrinsic
9314^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9315
9316Syntax:
9317"""""""
9318
9319::
9320
9321 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9322
9323Overview:
9324"""""""""
9325
9326The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9327insert a prefetch instruction if supported; otherwise, it is a noop.
9328Prefetches have no effect on the behavior of the program but can change
9329its performance characteristics.
9330
9331Arguments:
9332""""""""""
9333
9334``address`` is the address to be prefetched, ``rw`` is the specifier
9335determining if the fetch should be for a read (0) or write (1), and
9336``locality`` is a temporal locality specifier ranging from (0) - no
9337locality, to (3) - extremely local keep in cache. The ``cache type``
9338specifies whether the prefetch is performed on the data (1) or
9339instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9340arguments must be constant integers.
9341
9342Semantics:
9343""""""""""
9344
9345This intrinsic does not modify the behavior of the program. In
9346particular, prefetches cannot trap and do not produce a value. On
9347targets that support this intrinsic, the prefetch can provide hints to
9348the processor cache for better performance.
9349
9350'``llvm.pcmarker``' Intrinsic
9351^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9352
9353Syntax:
9354"""""""
9355
9356::
9357
9358 declare void @llvm.pcmarker(i32 <id>)
9359
9360Overview:
9361"""""""""
9362
9363The '``llvm.pcmarker``' intrinsic is a method to export a Program
9364Counter (PC) in a region of code to simulators and other tools. The
9365method is target specific, but it is expected that the marker will use
9366exported symbols to transmit the PC of the marker. The marker makes no
9367guarantees that it will remain with any specific instruction after
9368optimizations. It is possible that the presence of a marker will inhibit
9369optimizations. The intended use is to be inserted after optimizations to
9370allow correlations of simulation runs.
9371
9372Arguments:
9373""""""""""
9374
9375``id`` is a numerical id identifying the marker.
9376
9377Semantics:
9378""""""""""
9379
9380This intrinsic does not modify the behavior of the program. Backends
9381that do not support this intrinsic may ignore it.
9382
9383'``llvm.readcyclecounter``' Intrinsic
9384^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9385
9386Syntax:
9387"""""""
9388
9389::
9390
9391 declare i64 @llvm.readcyclecounter()
9392
9393Overview:
9394"""""""""
9395
9396The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9397counter register (or similar low latency, high accuracy clocks) on those
9398targets that support it. On X86, it should map to RDTSC. On Alpha, it
9399should map to RPCC. As the backing counters overflow quickly (on the
9400order of 9 seconds on alpha), this should only be used for small
9401timings.
9402
9403Semantics:
9404""""""""""
9405
9406When directly supported, reading the cycle counter should not modify any
9407memory. Implementations are allowed to either return a application
9408specific value or a system wide value. On backends without support, this
9409is lowered to a constant 0.
9410
Tim Northoverbc933082013-05-23 19:11:20 +00009411Note that runtime support may be conditional on the privilege-level code is
9412running at and the host platform.
9413
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009414'``llvm.clear_cache``' Intrinsic
9415^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9416
9417Syntax:
9418"""""""
9419
9420::
9421
9422 declare void @llvm.clear_cache(i8*, i8*)
9423
9424Overview:
9425"""""""""
9426
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009427The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9428in the specified range to the execution unit of the processor. On
9429targets with non-unified instruction and data cache, the implementation
9430flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009431
9432Semantics:
9433""""""""""
9434
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009435On platforms with coherent instruction and data caches (e.g. x86), this
9436intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009437cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009438instructions or a system call, if cache flushing requires special
9439privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009440
Sean Silvad02bf3e2014-04-07 22:29:53 +00009441The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009442time library.
Renato Golin93010e62014-03-26 14:01:32 +00009443
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009444This instrinsic does *not* empty the instruction pipeline. Modifications
9445of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009446
Justin Bogner61ba2e32014-12-08 18:02:35 +00009447'``llvm.instrprof_increment``' Intrinsic
9448^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9449
9450Syntax:
9451"""""""
9452
9453::
9454
9455 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9456 i32 <num-counters>, i32 <index>)
9457
9458Overview:
9459"""""""""
9460
9461The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9462frontend for use with instrumentation based profiling. These will be
9463lowered by the ``-instrprof`` pass to generate execution counts of a
9464program at runtime.
9465
9466Arguments:
9467""""""""""
9468
9469The first argument is a pointer to a global variable containing the
9470name of the entity being instrumented. This should generally be the
9471(mangled) function name for a set of counters.
9472
9473The second argument is a hash value that can be used by the consumer
9474of the profile data to detect changes to the instrumented source, and
9475the third is the number of counters associated with ``name``. It is an
9476error if ``hash`` or ``num-counters`` differ between two instances of
9477``instrprof_increment`` that refer to the same name.
9478
9479The last argument refers to which of the counters for ``name`` should
9480be incremented. It should be a value between 0 and ``num-counters``.
9481
9482Semantics:
9483""""""""""
9484
9485This intrinsic represents an increment of a profiling counter. It will
9486cause the ``-instrprof`` pass to generate the appropriate data
9487structures and the code to increment the appropriate value, in a
9488format that can be written out by a compiler runtime and consumed via
9489the ``llvm-profdata`` tool.
9490
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009491'``llvm.instrprof_value_profile``' Intrinsic
9492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9493
9494Syntax:
9495"""""""
9496
9497::
9498
9499 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9500 i64 <value>, i32 <value_kind>,
9501 i32 <index>)
9502
9503Overview:
9504"""""""""
9505
9506The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9507frontend for use with instrumentation based profiling. This will be
9508lowered by the ``-instrprof`` pass to find out the target values,
9509instrumented expressions take in a program at runtime.
9510
9511Arguments:
9512""""""""""
9513
9514The first argument is a pointer to a global variable containing the
9515name of the entity being instrumented. ``name`` should generally be the
9516(mangled) function name for a set of counters.
9517
9518The second argument is a hash value that can be used by the consumer
9519of the profile data to detect changes to the instrumented source. It
9520is an error if ``hash`` differs between two instances of
9521``llvm.instrprof_*`` that refer to the same name.
9522
9523The third argument is the value of the expression being profiled. The profiled
9524expression's value should be representable as an unsigned 64-bit value. The
9525fourth argument represents the kind of value profiling that is being done. The
9526supported value profiling kinds are enumerated through the
9527``InstrProfValueKind`` type declared in the
9528``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9529index of the instrumented expression within ``name``. It should be >= 0.
9530
9531Semantics:
9532""""""""""
9533
9534This intrinsic represents the point where a call to a runtime routine
9535should be inserted for value profiling of target expressions. ``-instrprof``
9536pass will generate the appropriate data structures and replace the
9537``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9538runtime library with proper arguments.
9539
Sean Silvab084af42012-12-07 10:36:55 +00009540Standard C Library Intrinsics
9541-----------------------------
9542
9543LLVM provides intrinsics for a few important standard C library
9544functions. These intrinsics allow source-language front-ends to pass
9545information about the alignment of the pointer arguments to the code
9546generator, providing opportunity for more efficient code generation.
9547
9548.. _int_memcpy:
9549
9550'``llvm.memcpy``' Intrinsic
9551^^^^^^^^^^^^^^^^^^^^^^^^^^^
9552
9553Syntax:
9554"""""""
9555
9556This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9557integer bit width and for different address spaces. Not all targets
9558support all bit widths however.
9559
9560::
9561
9562 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9563 i32 <len>, i32 <align>, i1 <isvolatile>)
9564 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9565 i64 <len>, i32 <align>, i1 <isvolatile>)
9566
9567Overview:
9568"""""""""
9569
9570The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9571source location to the destination location.
9572
9573Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9574intrinsics do not return a value, takes extra alignment/isvolatile
9575arguments and the pointers can be in specified address spaces.
9576
9577Arguments:
9578""""""""""
9579
9580The first argument is a pointer to the destination, the second is a
9581pointer to the source. The third argument is an integer argument
9582specifying the number of bytes to copy, the fourth argument is the
9583alignment of the source and destination locations, and the fifth is a
9584boolean indicating a volatile access.
9585
9586If the call to this intrinsic has an alignment value that is not 0 or 1,
9587then the caller guarantees that both the source and destination pointers
9588are aligned to that boundary.
9589
9590If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9591a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9592very cleanly specified and it is unwise to depend on it.
9593
9594Semantics:
9595""""""""""
9596
9597The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9598source location to the destination location, which are not allowed to
9599overlap. It copies "len" bytes of memory over. If the argument is known
9600to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009601argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009602
9603'``llvm.memmove``' Intrinsic
9604^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9605
9606Syntax:
9607"""""""
9608
9609This is an overloaded intrinsic. You can use llvm.memmove on any integer
9610bit width and for different address space. Not all targets support all
9611bit widths however.
9612
9613::
9614
9615 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9616 i32 <len>, i32 <align>, i1 <isvolatile>)
9617 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9618 i64 <len>, i32 <align>, i1 <isvolatile>)
9619
9620Overview:
9621"""""""""
9622
9623The '``llvm.memmove.*``' intrinsics move a block of memory from the
9624source location to the destination location. It is similar to the
9625'``llvm.memcpy``' intrinsic but allows the two memory locations to
9626overlap.
9627
9628Note that, unlike the standard libc function, the ``llvm.memmove.*``
9629intrinsics do not return a value, takes extra alignment/isvolatile
9630arguments and the pointers can be in specified address spaces.
9631
9632Arguments:
9633""""""""""
9634
9635The first argument is a pointer to the destination, the second is a
9636pointer to the source. The third argument is an integer argument
9637specifying the number of bytes to copy, the fourth argument is the
9638alignment of the source and destination locations, and the fifth is a
9639boolean indicating a volatile access.
9640
9641If the call to this intrinsic has an alignment value that is not 0 or 1,
9642then the caller guarantees that the source and destination pointers are
9643aligned to that boundary.
9644
9645If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9646is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9647not very cleanly specified and it is unwise to depend on it.
9648
9649Semantics:
9650""""""""""
9651
9652The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9653source location to the destination location, which may overlap. It
9654copies "len" bytes of memory over. If the argument is known to be
9655aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009656otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009657
9658'``llvm.memset.*``' Intrinsics
9659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9660
9661Syntax:
9662"""""""
9663
9664This is an overloaded intrinsic. You can use llvm.memset on any integer
9665bit width and for different address spaces. However, not all targets
9666support all bit widths.
9667
9668::
9669
9670 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9671 i32 <len>, i32 <align>, i1 <isvolatile>)
9672 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9673 i64 <len>, i32 <align>, i1 <isvolatile>)
9674
9675Overview:
9676"""""""""
9677
9678The '``llvm.memset.*``' intrinsics fill a block of memory with a
9679particular byte value.
9680
9681Note that, unlike the standard libc function, the ``llvm.memset``
9682intrinsic does not return a value and takes extra alignment/volatile
9683arguments. Also, the destination can be in an arbitrary address space.
9684
9685Arguments:
9686""""""""""
9687
9688The first argument is a pointer to the destination to fill, the second
9689is the byte value with which to fill it, the third argument is an
9690integer argument specifying the number of bytes to fill, and the fourth
9691argument is the known alignment of the destination location.
9692
9693If the call to this intrinsic has an alignment value that is not 0 or 1,
9694then the caller guarantees that the destination pointer is aligned to
9695that boundary.
9696
9697If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9698a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9699very cleanly specified and it is unwise to depend on it.
9700
9701Semantics:
9702""""""""""
9703
9704The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9705at the destination location. If the argument is known to be aligned to
9706some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009707it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009708
9709'``llvm.sqrt.*``' Intrinsic
9710^^^^^^^^^^^^^^^^^^^^^^^^^^^
9711
9712Syntax:
9713"""""""
9714
9715This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9716floating point or vector of floating point type. Not all targets support
9717all types however.
9718
9719::
9720
9721 declare float @llvm.sqrt.f32(float %Val)
9722 declare double @llvm.sqrt.f64(double %Val)
9723 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9724 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9725 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9726
9727Overview:
9728"""""""""
9729
9730The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9731returning the same value as the libm '``sqrt``' functions would. Unlike
9732``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9733negative numbers other than -0.0 (which allows for better optimization,
9734because there is no need to worry about errno being set).
9735``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9736
9737Arguments:
9738""""""""""
9739
9740The argument and return value are floating point numbers of the same
9741type.
9742
9743Semantics:
9744""""""""""
9745
9746This function returns the sqrt of the specified operand if it is a
9747nonnegative floating point number.
9748
9749'``llvm.powi.*``' Intrinsic
9750^^^^^^^^^^^^^^^^^^^^^^^^^^^
9751
9752Syntax:
9753"""""""
9754
9755This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9756floating point or vector of floating point type. Not all targets support
9757all types however.
9758
9759::
9760
9761 declare float @llvm.powi.f32(float %Val, i32 %power)
9762 declare double @llvm.powi.f64(double %Val, i32 %power)
9763 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9764 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9765 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9766
9767Overview:
9768"""""""""
9769
9770The '``llvm.powi.*``' intrinsics return the first operand raised to the
9771specified (positive or negative) power. The order of evaluation of
9772multiplications is not defined. When a vector of floating point type is
9773used, the second argument remains a scalar integer value.
9774
9775Arguments:
9776""""""""""
9777
9778The second argument is an integer power, and the first is a value to
9779raise to that power.
9780
9781Semantics:
9782""""""""""
9783
9784This function returns the first value raised to the second power with an
9785unspecified sequence of rounding operations.
9786
9787'``llvm.sin.*``' Intrinsic
9788^^^^^^^^^^^^^^^^^^^^^^^^^^
9789
9790Syntax:
9791"""""""
9792
9793This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9794floating point or vector of floating point type. Not all targets support
9795all types however.
9796
9797::
9798
9799 declare float @llvm.sin.f32(float %Val)
9800 declare double @llvm.sin.f64(double %Val)
9801 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9802 declare fp128 @llvm.sin.f128(fp128 %Val)
9803 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9804
9805Overview:
9806"""""""""
9807
9808The '``llvm.sin.*``' intrinsics return the sine of the operand.
9809
9810Arguments:
9811""""""""""
9812
9813The argument and return value are floating point numbers of the same
9814type.
9815
9816Semantics:
9817""""""""""
9818
9819This function returns the sine of the specified operand, returning the
9820same values as the libm ``sin`` functions would, and handles error
9821conditions in the same way.
9822
9823'``llvm.cos.*``' Intrinsic
9824^^^^^^^^^^^^^^^^^^^^^^^^^^
9825
9826Syntax:
9827"""""""
9828
9829This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9830floating point or vector of floating point type. Not all targets support
9831all types however.
9832
9833::
9834
9835 declare float @llvm.cos.f32(float %Val)
9836 declare double @llvm.cos.f64(double %Val)
9837 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9838 declare fp128 @llvm.cos.f128(fp128 %Val)
9839 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9840
9841Overview:
9842"""""""""
9843
9844The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9845
9846Arguments:
9847""""""""""
9848
9849The argument and return value are floating point numbers of the same
9850type.
9851
9852Semantics:
9853""""""""""
9854
9855This function returns the cosine of the specified operand, returning the
9856same values as the libm ``cos`` functions would, and handles error
9857conditions in the same way.
9858
9859'``llvm.pow.*``' Intrinsic
9860^^^^^^^^^^^^^^^^^^^^^^^^^^
9861
9862Syntax:
9863"""""""
9864
9865This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9866floating point or vector of floating point type. Not all targets support
9867all types however.
9868
9869::
9870
9871 declare float @llvm.pow.f32(float %Val, float %Power)
9872 declare double @llvm.pow.f64(double %Val, double %Power)
9873 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9874 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9875 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9876
9877Overview:
9878"""""""""
9879
9880The '``llvm.pow.*``' intrinsics return the first operand raised to the
9881specified (positive or negative) power.
9882
9883Arguments:
9884""""""""""
9885
9886The second argument is a floating point power, and the first is a value
9887to raise to that power.
9888
9889Semantics:
9890""""""""""
9891
9892This function returns the first value raised to the second power,
9893returning the same values as the libm ``pow`` functions would, and
9894handles error conditions in the same way.
9895
9896'``llvm.exp.*``' Intrinsic
9897^^^^^^^^^^^^^^^^^^^^^^^^^^
9898
9899Syntax:
9900"""""""
9901
9902This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9903floating point or vector of floating point type. Not all targets support
9904all types however.
9905
9906::
9907
9908 declare float @llvm.exp.f32(float %Val)
9909 declare double @llvm.exp.f64(double %Val)
9910 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9911 declare fp128 @llvm.exp.f128(fp128 %Val)
9912 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9913
9914Overview:
9915"""""""""
9916
9917The '``llvm.exp.*``' intrinsics perform the exp function.
9918
9919Arguments:
9920""""""""""
9921
9922The argument and return value are floating point numbers of the same
9923type.
9924
9925Semantics:
9926""""""""""
9927
9928This function returns the same values as the libm ``exp`` functions
9929would, and handles error conditions in the same way.
9930
9931'``llvm.exp2.*``' Intrinsic
9932^^^^^^^^^^^^^^^^^^^^^^^^^^^
9933
9934Syntax:
9935"""""""
9936
9937This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9938floating point or vector of floating point type. Not all targets support
9939all types however.
9940
9941::
9942
9943 declare float @llvm.exp2.f32(float %Val)
9944 declare double @llvm.exp2.f64(double %Val)
9945 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9946 declare fp128 @llvm.exp2.f128(fp128 %Val)
9947 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9948
9949Overview:
9950"""""""""
9951
9952The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9953
9954Arguments:
9955""""""""""
9956
9957The argument and return value are floating point numbers of the same
9958type.
9959
9960Semantics:
9961""""""""""
9962
9963This function returns the same values as the libm ``exp2`` functions
9964would, and handles error conditions in the same way.
9965
9966'``llvm.log.*``' Intrinsic
9967^^^^^^^^^^^^^^^^^^^^^^^^^^
9968
9969Syntax:
9970"""""""
9971
9972This is an overloaded intrinsic. You can use ``llvm.log`` on any
9973floating point or vector of floating point type. Not all targets support
9974all types however.
9975
9976::
9977
9978 declare float @llvm.log.f32(float %Val)
9979 declare double @llvm.log.f64(double %Val)
9980 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9981 declare fp128 @llvm.log.f128(fp128 %Val)
9982 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9983
9984Overview:
9985"""""""""
9986
9987The '``llvm.log.*``' intrinsics perform the log function.
9988
9989Arguments:
9990""""""""""
9991
9992The argument and return value are floating point numbers of the same
9993type.
9994
9995Semantics:
9996""""""""""
9997
9998This function returns the same values as the libm ``log`` functions
9999would, and handles error conditions in the same way.
10000
10001'``llvm.log10.*``' Intrinsic
10002^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10003
10004Syntax:
10005"""""""
10006
10007This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10008floating point or vector of floating point type. Not all targets support
10009all types however.
10010
10011::
10012
10013 declare float @llvm.log10.f32(float %Val)
10014 declare double @llvm.log10.f64(double %Val)
10015 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10016 declare fp128 @llvm.log10.f128(fp128 %Val)
10017 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10018
10019Overview:
10020"""""""""
10021
10022The '``llvm.log10.*``' intrinsics perform the log10 function.
10023
10024Arguments:
10025""""""""""
10026
10027The argument and return value are floating point numbers of the same
10028type.
10029
10030Semantics:
10031""""""""""
10032
10033This function returns the same values as the libm ``log10`` functions
10034would, and handles error conditions in the same way.
10035
10036'``llvm.log2.*``' Intrinsic
10037^^^^^^^^^^^^^^^^^^^^^^^^^^^
10038
10039Syntax:
10040"""""""
10041
10042This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10043floating point or vector of floating point type. Not all targets support
10044all types however.
10045
10046::
10047
10048 declare float @llvm.log2.f32(float %Val)
10049 declare double @llvm.log2.f64(double %Val)
10050 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10051 declare fp128 @llvm.log2.f128(fp128 %Val)
10052 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10053
10054Overview:
10055"""""""""
10056
10057The '``llvm.log2.*``' intrinsics perform the log2 function.
10058
10059Arguments:
10060""""""""""
10061
10062The argument and return value are floating point numbers of the same
10063type.
10064
10065Semantics:
10066""""""""""
10067
10068This function returns the same values as the libm ``log2`` functions
10069would, and handles error conditions in the same way.
10070
10071'``llvm.fma.*``' Intrinsic
10072^^^^^^^^^^^^^^^^^^^^^^^^^^
10073
10074Syntax:
10075"""""""
10076
10077This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10078floating point or vector of floating point type. Not all targets support
10079all types however.
10080
10081::
10082
10083 declare float @llvm.fma.f32(float %a, float %b, float %c)
10084 declare double @llvm.fma.f64(double %a, double %b, double %c)
10085 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10086 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10087 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10088
10089Overview:
10090"""""""""
10091
10092The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10093operation.
10094
10095Arguments:
10096""""""""""
10097
10098The argument and return value are floating point numbers of the same
10099type.
10100
10101Semantics:
10102""""""""""
10103
10104This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010105would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010106
10107'``llvm.fabs.*``' Intrinsic
10108^^^^^^^^^^^^^^^^^^^^^^^^^^^
10109
10110Syntax:
10111"""""""
10112
10113This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10114floating point or vector of floating point type. Not all targets support
10115all types however.
10116
10117::
10118
10119 declare float @llvm.fabs.f32(float %Val)
10120 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010121 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010122 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010123 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010124
10125Overview:
10126"""""""""
10127
10128The '``llvm.fabs.*``' intrinsics return the absolute value of the
10129operand.
10130
10131Arguments:
10132""""""""""
10133
10134The argument and return value are floating point numbers of the same
10135type.
10136
10137Semantics:
10138""""""""""
10139
10140This function returns the same values as the libm ``fabs`` functions
10141would, and handles error conditions in the same way.
10142
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010143'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010144^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010145
10146Syntax:
10147"""""""
10148
10149This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10150floating point or vector of floating point type. Not all targets support
10151all types however.
10152
10153::
10154
Matt Arsenault64313c92014-10-22 18:25:02 +000010155 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10156 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10157 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10158 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10159 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010160
10161Overview:
10162"""""""""
10163
10164The '``llvm.minnum.*``' intrinsics return the minimum of the two
10165arguments.
10166
10167
10168Arguments:
10169""""""""""
10170
10171The arguments and return value are floating point numbers of the same
10172type.
10173
10174Semantics:
10175""""""""""
10176
10177Follows the IEEE-754 semantics for minNum, which also match for libm's
10178fmin.
10179
10180If either operand is a NaN, returns the other non-NaN operand. Returns
10181NaN only if both operands are NaN. If the operands compare equal,
10182returns a value that compares equal to both operands. This means that
10183fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10184
10185'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010187
10188Syntax:
10189"""""""
10190
10191This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10192floating point or vector of floating point type. Not all targets support
10193all types however.
10194
10195::
10196
Matt Arsenault64313c92014-10-22 18:25:02 +000010197 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10198 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10199 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10200 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10201 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010202
10203Overview:
10204"""""""""
10205
10206The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10207arguments.
10208
10209
10210Arguments:
10211""""""""""
10212
10213The arguments and return value are floating point numbers of the same
10214type.
10215
10216Semantics:
10217""""""""""
10218Follows the IEEE-754 semantics for maxNum, which also match for libm's
10219fmax.
10220
10221If either operand is a NaN, returns the other non-NaN operand. Returns
10222NaN only if both operands are NaN. If the operands compare equal,
10223returns a value that compares equal to both operands. This means that
10224fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10225
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010226'``llvm.copysign.*``' Intrinsic
10227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10228
10229Syntax:
10230"""""""
10231
10232This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10233floating point or vector of floating point type. Not all targets support
10234all types however.
10235
10236::
10237
10238 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10239 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10240 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10241 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10242 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10243
10244Overview:
10245"""""""""
10246
10247The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10248first operand and the sign of the second operand.
10249
10250Arguments:
10251""""""""""
10252
10253The arguments and return value are floating point numbers of the same
10254type.
10255
10256Semantics:
10257""""""""""
10258
10259This function returns the same values as the libm ``copysign``
10260functions would, and handles error conditions in the same way.
10261
Sean Silvab084af42012-12-07 10:36:55 +000010262'``llvm.floor.*``' Intrinsic
10263^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10264
10265Syntax:
10266"""""""
10267
10268This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10269floating point or vector of floating point type. Not all targets support
10270all types however.
10271
10272::
10273
10274 declare float @llvm.floor.f32(float %Val)
10275 declare double @llvm.floor.f64(double %Val)
10276 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10277 declare fp128 @llvm.floor.f128(fp128 %Val)
10278 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10279
10280Overview:
10281"""""""""
10282
10283The '``llvm.floor.*``' intrinsics return the floor of the operand.
10284
10285Arguments:
10286""""""""""
10287
10288The argument and return value are floating point numbers of the same
10289type.
10290
10291Semantics:
10292""""""""""
10293
10294This function returns the same values as the libm ``floor`` functions
10295would, and handles error conditions in the same way.
10296
10297'``llvm.ceil.*``' Intrinsic
10298^^^^^^^^^^^^^^^^^^^^^^^^^^^
10299
10300Syntax:
10301"""""""
10302
10303This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10304floating point or vector of floating point type. Not all targets support
10305all types however.
10306
10307::
10308
10309 declare float @llvm.ceil.f32(float %Val)
10310 declare double @llvm.ceil.f64(double %Val)
10311 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10312 declare fp128 @llvm.ceil.f128(fp128 %Val)
10313 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10314
10315Overview:
10316"""""""""
10317
10318The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10319
10320Arguments:
10321""""""""""
10322
10323The argument and return value are floating point numbers of the same
10324type.
10325
10326Semantics:
10327""""""""""
10328
10329This function returns the same values as the libm ``ceil`` functions
10330would, and handles error conditions in the same way.
10331
10332'``llvm.trunc.*``' Intrinsic
10333^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10334
10335Syntax:
10336"""""""
10337
10338This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10339floating point or vector of floating point type. Not all targets support
10340all types however.
10341
10342::
10343
10344 declare float @llvm.trunc.f32(float %Val)
10345 declare double @llvm.trunc.f64(double %Val)
10346 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10347 declare fp128 @llvm.trunc.f128(fp128 %Val)
10348 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10349
10350Overview:
10351"""""""""
10352
10353The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10354nearest integer not larger in magnitude than the operand.
10355
10356Arguments:
10357""""""""""
10358
10359The argument and return value are floating point numbers of the same
10360type.
10361
10362Semantics:
10363""""""""""
10364
10365This function returns the same values as the libm ``trunc`` functions
10366would, and handles error conditions in the same way.
10367
10368'``llvm.rint.*``' Intrinsic
10369^^^^^^^^^^^^^^^^^^^^^^^^^^^
10370
10371Syntax:
10372"""""""
10373
10374This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10375floating point or vector of floating point type. Not all targets support
10376all types however.
10377
10378::
10379
10380 declare float @llvm.rint.f32(float %Val)
10381 declare double @llvm.rint.f64(double %Val)
10382 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10383 declare fp128 @llvm.rint.f128(fp128 %Val)
10384 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10385
10386Overview:
10387"""""""""
10388
10389The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10390nearest integer. It may raise an inexact floating-point exception if the
10391operand isn't an integer.
10392
10393Arguments:
10394""""""""""
10395
10396The argument and return value are floating point numbers of the same
10397type.
10398
10399Semantics:
10400""""""""""
10401
10402This function returns the same values as the libm ``rint`` functions
10403would, and handles error conditions in the same way.
10404
10405'``llvm.nearbyint.*``' Intrinsic
10406^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10407
10408Syntax:
10409"""""""
10410
10411This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10412floating point or vector of floating point type. Not all targets support
10413all types however.
10414
10415::
10416
10417 declare float @llvm.nearbyint.f32(float %Val)
10418 declare double @llvm.nearbyint.f64(double %Val)
10419 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10420 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10421 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10422
10423Overview:
10424"""""""""
10425
10426The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10427nearest integer.
10428
10429Arguments:
10430""""""""""
10431
10432The argument and return value are floating point numbers of the same
10433type.
10434
10435Semantics:
10436""""""""""
10437
10438This function returns the same values as the libm ``nearbyint``
10439functions would, and handles error conditions in the same way.
10440
Hal Finkel171817e2013-08-07 22:49:12 +000010441'``llvm.round.*``' Intrinsic
10442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10443
10444Syntax:
10445"""""""
10446
10447This is an overloaded intrinsic. You can use ``llvm.round`` on any
10448floating point or vector of floating point type. Not all targets support
10449all types however.
10450
10451::
10452
10453 declare float @llvm.round.f32(float %Val)
10454 declare double @llvm.round.f64(double %Val)
10455 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10456 declare fp128 @llvm.round.f128(fp128 %Val)
10457 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10458
10459Overview:
10460"""""""""
10461
10462The '``llvm.round.*``' intrinsics returns the operand rounded to the
10463nearest integer.
10464
10465Arguments:
10466""""""""""
10467
10468The argument and return value are floating point numbers of the same
10469type.
10470
10471Semantics:
10472""""""""""
10473
10474This function returns the same values as the libm ``round``
10475functions would, and handles error conditions in the same way.
10476
Sean Silvab084af42012-12-07 10:36:55 +000010477Bit Manipulation Intrinsics
10478---------------------------
10479
10480LLVM provides intrinsics for a few important bit manipulation
10481operations. These allow efficient code generation for some algorithms.
10482
James Molloy90111f72015-11-12 12:29:09 +000010483'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010485
10486Syntax:
10487"""""""
10488
10489This is an overloaded intrinsic function. You can use bitreverse on any
10490integer type.
10491
10492::
10493
10494 declare i16 @llvm.bitreverse.i16(i16 <id>)
10495 declare i32 @llvm.bitreverse.i32(i32 <id>)
10496 declare i64 @llvm.bitreverse.i64(i64 <id>)
10497
10498Overview:
10499"""""""""
10500
10501The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010502bitpattern of an integer value; for example ``0b10110110`` becomes
10503``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010504
10505Semantics:
10506""""""""""
10507
10508The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10509``M`` in the input moved to bit ``N-M`` in the output.
10510
Sean Silvab084af42012-12-07 10:36:55 +000010511'``llvm.bswap.*``' Intrinsics
10512^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10513
10514Syntax:
10515"""""""
10516
10517This is an overloaded intrinsic function. You can use bswap on any
10518integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10519
10520::
10521
10522 declare i16 @llvm.bswap.i16(i16 <id>)
10523 declare i32 @llvm.bswap.i32(i32 <id>)
10524 declare i64 @llvm.bswap.i64(i64 <id>)
10525
10526Overview:
10527"""""""""
10528
10529The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10530values with an even number of bytes (positive multiple of 16 bits).
10531These are useful for performing operations on data that is not in the
10532target's native byte order.
10533
10534Semantics:
10535""""""""""
10536
10537The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10538and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10539intrinsic returns an i32 value that has the four bytes of the input i32
10540swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10541returned i32 will have its bytes in 3, 2, 1, 0 order. The
10542``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10543concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10544respectively).
10545
10546'``llvm.ctpop.*``' Intrinsic
10547^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10548
10549Syntax:
10550"""""""
10551
10552This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10553bit width, or on any vector with integer elements. Not all targets
10554support all bit widths or vector types, however.
10555
10556::
10557
10558 declare i8 @llvm.ctpop.i8(i8 <src>)
10559 declare i16 @llvm.ctpop.i16(i16 <src>)
10560 declare i32 @llvm.ctpop.i32(i32 <src>)
10561 declare i64 @llvm.ctpop.i64(i64 <src>)
10562 declare i256 @llvm.ctpop.i256(i256 <src>)
10563 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10564
10565Overview:
10566"""""""""
10567
10568The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10569in a value.
10570
10571Arguments:
10572""""""""""
10573
10574The only argument is the value to be counted. The argument may be of any
10575integer type, or a vector with integer elements. The return type must
10576match the argument type.
10577
10578Semantics:
10579""""""""""
10580
10581The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10582each element of a vector.
10583
10584'``llvm.ctlz.*``' Intrinsic
10585^^^^^^^^^^^^^^^^^^^^^^^^^^^
10586
10587Syntax:
10588"""""""
10589
10590This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10591integer bit width, or any vector whose elements are integers. Not all
10592targets support all bit widths or vector types, however.
10593
10594::
10595
10596 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10597 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10598 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10599 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10600 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010601 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010602
10603Overview:
10604"""""""""
10605
10606The '``llvm.ctlz``' family of intrinsic functions counts the number of
10607leading zeros in a variable.
10608
10609Arguments:
10610""""""""""
10611
10612The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010613any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010614type must match the first argument type.
10615
10616The second argument must be a constant and is a flag to indicate whether
10617the intrinsic should ensure that a zero as the first argument produces a
10618defined result. Historically some architectures did not provide a
10619defined result for zero values as efficiently, and many algorithms are
10620now predicated on avoiding zero-value inputs.
10621
10622Semantics:
10623""""""""""
10624
10625The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10626zeros in a variable, or within each element of the vector. If
10627``src == 0`` then the result is the size in bits of the type of ``src``
10628if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10629``llvm.ctlz(i32 2) = 30``.
10630
10631'``llvm.cttz.*``' Intrinsic
10632^^^^^^^^^^^^^^^^^^^^^^^^^^^
10633
10634Syntax:
10635"""""""
10636
10637This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10638integer bit width, or any vector of integer elements. Not all targets
10639support all bit widths or vector types, however.
10640
10641::
10642
10643 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10644 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10645 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10646 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10647 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010648 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010649
10650Overview:
10651"""""""""
10652
10653The '``llvm.cttz``' family of intrinsic functions counts the number of
10654trailing zeros.
10655
10656Arguments:
10657""""""""""
10658
10659The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010660any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010661type must match the first argument type.
10662
10663The second argument must be a constant and is a flag to indicate whether
10664the intrinsic should ensure that a zero as the first argument produces a
10665defined result. Historically some architectures did not provide a
10666defined result for zero values as efficiently, and many algorithms are
10667now predicated on avoiding zero-value inputs.
10668
10669Semantics:
10670""""""""""
10671
10672The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10673zeros in a variable, or within each element of a vector. If ``src == 0``
10674then the result is the size in bits of the type of ``src`` if
10675``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10676``llvm.cttz(2) = 1``.
10677
Philip Reames34843ae2015-03-05 05:55:55 +000010678.. _int_overflow:
10679
Sean Silvab084af42012-12-07 10:36:55 +000010680Arithmetic with Overflow Intrinsics
10681-----------------------------------
10682
10683LLVM provides intrinsics for some arithmetic with overflow operations.
10684
10685'``llvm.sadd.with.overflow.*``' Intrinsics
10686^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10687
10688Syntax:
10689"""""""
10690
10691This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10692on any integer bit width.
10693
10694::
10695
10696 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10697 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10698 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10699
10700Overview:
10701"""""""""
10702
10703The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10704a signed addition of the two arguments, and indicate whether an overflow
10705occurred during the signed summation.
10706
10707Arguments:
10708""""""""""
10709
10710The arguments (%a and %b) and the first element of the result structure
10711may be of integer types of any bit width, but they must have the same
10712bit width. The second element of the result structure must be of type
10713``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10714addition.
10715
10716Semantics:
10717""""""""""
10718
10719The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010720a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010721first element of which is the signed summation, and the second element
10722of which is a bit specifying if the signed summation resulted in an
10723overflow.
10724
10725Examples:
10726"""""""""
10727
10728.. code-block:: llvm
10729
10730 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10731 %sum = extractvalue {i32, i1} %res, 0
10732 %obit = extractvalue {i32, i1} %res, 1
10733 br i1 %obit, label %overflow, label %normal
10734
10735'``llvm.uadd.with.overflow.*``' Intrinsics
10736^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10737
10738Syntax:
10739"""""""
10740
10741This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10742on any integer bit width.
10743
10744::
10745
10746 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10747 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10748 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10749
10750Overview:
10751"""""""""
10752
10753The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10754an unsigned addition of the two arguments, and indicate whether a carry
10755occurred during the unsigned summation.
10756
10757Arguments:
10758""""""""""
10759
10760The arguments (%a and %b) and the first element of the result structure
10761may be of integer types of any bit width, but they must have the same
10762bit width. The second element of the result structure must be of type
10763``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10764addition.
10765
10766Semantics:
10767""""""""""
10768
10769The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010770an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010771first element of which is the sum, and the second element of which is a
10772bit specifying if the unsigned summation resulted in a carry.
10773
10774Examples:
10775"""""""""
10776
10777.. code-block:: llvm
10778
10779 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10780 %sum = extractvalue {i32, i1} %res, 0
10781 %obit = extractvalue {i32, i1} %res, 1
10782 br i1 %obit, label %carry, label %normal
10783
10784'``llvm.ssub.with.overflow.*``' Intrinsics
10785^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10786
10787Syntax:
10788"""""""
10789
10790This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10791on any integer bit width.
10792
10793::
10794
10795 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10796 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10797 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10798
10799Overview:
10800"""""""""
10801
10802The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10803a signed subtraction of the two arguments, and indicate whether an
10804overflow occurred during the signed subtraction.
10805
10806Arguments:
10807""""""""""
10808
10809The arguments (%a and %b) and the first element of the result structure
10810may be of integer types of any bit width, but they must have the same
10811bit width. The second element of the result structure must be of type
10812``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10813subtraction.
10814
10815Semantics:
10816""""""""""
10817
10818The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010819a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010820first element of which is the subtraction, and the second element of
10821which is a bit specifying if the signed subtraction resulted in an
10822overflow.
10823
10824Examples:
10825"""""""""
10826
10827.. code-block:: llvm
10828
10829 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10830 %sum = extractvalue {i32, i1} %res, 0
10831 %obit = extractvalue {i32, i1} %res, 1
10832 br i1 %obit, label %overflow, label %normal
10833
10834'``llvm.usub.with.overflow.*``' Intrinsics
10835^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10836
10837Syntax:
10838"""""""
10839
10840This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10841on any integer bit width.
10842
10843::
10844
10845 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10846 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10847 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10848
10849Overview:
10850"""""""""
10851
10852The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10853an unsigned subtraction of the two arguments, and indicate whether an
10854overflow occurred during the unsigned subtraction.
10855
10856Arguments:
10857""""""""""
10858
10859The arguments (%a and %b) and the first element of the result structure
10860may be of integer types of any bit width, but they must have the same
10861bit width. The second element of the result structure must be of type
10862``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10863subtraction.
10864
10865Semantics:
10866""""""""""
10867
10868The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010869an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010870the first element of which is the subtraction, and the second element of
10871which is a bit specifying if the unsigned subtraction resulted in an
10872overflow.
10873
10874Examples:
10875"""""""""
10876
10877.. code-block:: llvm
10878
10879 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10880 %sum = extractvalue {i32, i1} %res, 0
10881 %obit = extractvalue {i32, i1} %res, 1
10882 br i1 %obit, label %overflow, label %normal
10883
10884'``llvm.smul.with.overflow.*``' Intrinsics
10885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10886
10887Syntax:
10888"""""""
10889
10890This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10891on any integer bit width.
10892
10893::
10894
10895 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10896 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10897 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10898
10899Overview:
10900"""""""""
10901
10902The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10903a signed multiplication of the two arguments, and indicate whether an
10904overflow occurred during the signed multiplication.
10905
10906Arguments:
10907""""""""""
10908
10909The arguments (%a and %b) and the first element of the result structure
10910may be of integer types of any bit width, but they must have the same
10911bit width. The second element of the result structure must be of type
10912``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10913multiplication.
10914
10915Semantics:
10916""""""""""
10917
10918The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010919a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010920the first element of which is the multiplication, and the second element
10921of which is a bit specifying if the signed multiplication resulted in an
10922overflow.
10923
10924Examples:
10925"""""""""
10926
10927.. code-block:: llvm
10928
10929 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10930 %sum = extractvalue {i32, i1} %res, 0
10931 %obit = extractvalue {i32, i1} %res, 1
10932 br i1 %obit, label %overflow, label %normal
10933
10934'``llvm.umul.with.overflow.*``' Intrinsics
10935^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10936
10937Syntax:
10938"""""""
10939
10940This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10941on any integer bit width.
10942
10943::
10944
10945 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10946 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10947 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10948
10949Overview:
10950"""""""""
10951
10952The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10953a unsigned multiplication of the two arguments, and indicate whether an
10954overflow occurred during the unsigned multiplication.
10955
10956Arguments:
10957""""""""""
10958
10959The arguments (%a and %b) and the first element of the result structure
10960may be of integer types of any bit width, but they must have the same
10961bit width. The second element of the result structure must be of type
10962``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10963multiplication.
10964
10965Semantics:
10966""""""""""
10967
10968The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010969an unsigned multiplication of the two arguments. They return a structure ---
10970the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010971element of which is a bit specifying if the unsigned multiplication
10972resulted in an overflow.
10973
10974Examples:
10975"""""""""
10976
10977.. code-block:: llvm
10978
10979 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10980 %sum = extractvalue {i32, i1} %res, 0
10981 %obit = extractvalue {i32, i1} %res, 1
10982 br i1 %obit, label %overflow, label %normal
10983
10984Specialised Arithmetic Intrinsics
10985---------------------------------
10986
Owen Anderson1056a922015-07-11 07:01:27 +000010987'``llvm.canonicalize.*``' Intrinsic
10988^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10989
10990Syntax:
10991"""""""
10992
10993::
10994
10995 declare float @llvm.canonicalize.f32(float %a)
10996 declare double @llvm.canonicalize.f64(double %b)
10997
10998Overview:
10999"""""""""
11000
11001The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011002encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011003implementing certain numeric primitives such as frexp. The canonical encoding is
11004defined by IEEE-754-2008 to be:
11005
11006::
11007
11008 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011009 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011010 numbers, infinities, and NaNs, especially in decimal formats.
11011
11012This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011013conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011014according to section 6.2.
11015
11016Examples of non-canonical encodings:
11017
Sean Silvaa1190322015-08-06 22:56:48 +000011018- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011019 converted to a canonical representation per hardware-specific protocol.
11020- Many normal decimal floating point numbers have non-canonical alternative
11021 encodings.
11022- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011023 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011024 a zero of the same sign by this operation.
11025
11026Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11027default exception handling must signal an invalid exception, and produce a
11028quiet NaN result.
11029
11030This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011031that the compiler does not constant fold the operation. Likewise, division by
110321.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011033-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11034
Sean Silvaa1190322015-08-06 22:56:48 +000011035``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011036
11037- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11038- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11039 to ``(x == y)``
11040
11041Additionally, the sign of zero must be conserved:
11042``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11043
11044The payload bits of a NaN must be conserved, with two exceptions.
11045First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011046must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011047usual methods.
11048
11049The canonicalization operation may be optimized away if:
11050
Sean Silvaa1190322015-08-06 22:56:48 +000011051- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011052 floating-point operation that is required by the standard to be canonical.
11053- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011054 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011055
Sean Silvab084af42012-12-07 10:36:55 +000011056'``llvm.fmuladd.*``' Intrinsic
11057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11058
11059Syntax:
11060"""""""
11061
11062::
11063
11064 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11065 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11066
11067Overview:
11068"""""""""
11069
11070The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011071expressions that can be fused if the code generator determines that (a) the
11072target instruction set has support for a fused operation, and (b) that the
11073fused operation is more efficient than the equivalent, separate pair of mul
11074and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011075
11076Arguments:
11077""""""""""
11078
11079The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11080multiplicands, a and b, and an addend c.
11081
11082Semantics:
11083""""""""""
11084
11085The expression:
11086
11087::
11088
11089 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11090
11091is equivalent to the expression a \* b + c, except that rounding will
11092not be performed between the multiplication and addition steps if the
11093code generator fuses the operations. Fusion is not guaranteed, even if
11094the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011095corresponding llvm.fma.\* intrinsic function should be used
11096instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011097
11098Examples:
11099"""""""""
11100
11101.. code-block:: llvm
11102
Tim Northover675a0962014-06-13 14:24:23 +000011103 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011104
11105Half Precision Floating Point Intrinsics
11106----------------------------------------
11107
11108For most target platforms, half precision floating point is a
11109storage-only format. This means that it is a dense encoding (in memory)
11110but does not support computation in the format.
11111
11112This means that code must first load the half-precision floating point
11113value as an i16, then convert it to float with
11114:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11115then be performed on the float value (including extending to double
11116etc). To store the value back to memory, it is first converted to float
11117if needed, then converted to i16 with
11118:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11119i16 value.
11120
11121.. _int_convert_to_fp16:
11122
11123'``llvm.convert.to.fp16``' Intrinsic
11124^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11125
11126Syntax:
11127"""""""
11128
11129::
11130
Tim Northoverfd7e4242014-07-17 10:51:23 +000011131 declare i16 @llvm.convert.to.fp16.f32(float %a)
11132 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011133
11134Overview:
11135"""""""""
11136
Tim Northoverfd7e4242014-07-17 10:51:23 +000011137The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11138conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011139
11140Arguments:
11141""""""""""
11142
11143The intrinsic function contains single argument - the value to be
11144converted.
11145
11146Semantics:
11147""""""""""
11148
Tim Northoverfd7e4242014-07-17 10:51:23 +000011149The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11150conventional floating point format to half precision floating point format. The
11151return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011152
11153Examples:
11154"""""""""
11155
11156.. code-block:: llvm
11157
Tim Northoverfd7e4242014-07-17 10:51:23 +000011158 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011159 store i16 %res, i16* @x, align 2
11160
11161.. _int_convert_from_fp16:
11162
11163'``llvm.convert.from.fp16``' Intrinsic
11164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11165
11166Syntax:
11167"""""""
11168
11169::
11170
Tim Northoverfd7e4242014-07-17 10:51:23 +000011171 declare float @llvm.convert.from.fp16.f32(i16 %a)
11172 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011173
11174Overview:
11175"""""""""
11176
11177The '``llvm.convert.from.fp16``' intrinsic function performs a
11178conversion from half precision floating point format to single precision
11179floating point format.
11180
11181Arguments:
11182""""""""""
11183
11184The intrinsic function contains single argument - the value to be
11185converted.
11186
11187Semantics:
11188""""""""""
11189
11190The '``llvm.convert.from.fp16``' intrinsic function performs a
11191conversion from half single precision floating point format to single
11192precision floating point format. The input half-float value is
11193represented by an ``i16`` value.
11194
11195Examples:
11196"""""""""
11197
11198.. code-block:: llvm
11199
David Blaikiec7aabbb2015-03-04 22:06:14 +000011200 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011201 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011202
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011203.. _dbg_intrinsics:
11204
Sean Silvab084af42012-12-07 10:36:55 +000011205Debugger Intrinsics
11206-------------------
11207
11208The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11209prefix), are described in the `LLVM Source Level
11210Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11211document.
11212
11213Exception Handling Intrinsics
11214-----------------------------
11215
11216The LLVM exception handling intrinsics (which all start with
11217``llvm.eh.`` prefix), are described in the `LLVM Exception
11218Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11219
11220.. _int_trampoline:
11221
11222Trampoline Intrinsics
11223---------------------
11224
11225These intrinsics make it possible to excise one parameter, marked with
11226the :ref:`nest <nest>` attribute, from a function. The result is a
11227callable function pointer lacking the nest parameter - the caller does
11228not need to provide a value for it. Instead, the value to use is stored
11229in advance in a "trampoline", a block of memory usually allocated on the
11230stack, which also contains code to splice the nest value into the
11231argument list. This is used to implement the GCC nested function address
11232extension.
11233
11234For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11235then the resulting function pointer has signature ``i32 (i32, i32)*``.
11236It can be created as follows:
11237
11238.. code-block:: llvm
11239
11240 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011241 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011242 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11243 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11244 %fp = bitcast i8* %p to i32 (i32, i32)*
11245
11246The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11247``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11248
11249.. _int_it:
11250
11251'``llvm.init.trampoline``' Intrinsic
11252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11253
11254Syntax:
11255"""""""
11256
11257::
11258
11259 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11260
11261Overview:
11262"""""""""
11263
11264This fills the memory pointed to by ``tramp`` with executable code,
11265turning it into a trampoline.
11266
11267Arguments:
11268""""""""""
11269
11270The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11271pointers. The ``tramp`` argument must point to a sufficiently large and
11272sufficiently aligned block of memory; this memory is written to by the
11273intrinsic. Note that the size and the alignment are target-specific -
11274LLVM currently provides no portable way of determining them, so a
11275front-end that generates this intrinsic needs to have some
11276target-specific knowledge. The ``func`` argument must hold a function
11277bitcast to an ``i8*``.
11278
11279Semantics:
11280""""""""""
11281
11282The block of memory pointed to by ``tramp`` is filled with target
11283dependent code, turning it into a function. Then ``tramp`` needs to be
11284passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11285be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11286function's signature is the same as that of ``func`` with any arguments
11287marked with the ``nest`` attribute removed. At most one such ``nest``
11288argument is allowed, and it must be of pointer type. Calling the new
11289function is equivalent to calling ``func`` with the same argument list,
11290but with ``nval`` used for the missing ``nest`` argument. If, after
11291calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11292modified, then the effect of any later call to the returned function
11293pointer is undefined.
11294
11295.. _int_at:
11296
11297'``llvm.adjust.trampoline``' Intrinsic
11298^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11299
11300Syntax:
11301"""""""
11302
11303::
11304
11305 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11306
11307Overview:
11308"""""""""
11309
11310This performs any required machine-specific adjustment to the address of
11311a trampoline (passed as ``tramp``).
11312
11313Arguments:
11314""""""""""
11315
11316``tramp`` must point to a block of memory which already has trampoline
11317code filled in by a previous call to
11318:ref:`llvm.init.trampoline <int_it>`.
11319
11320Semantics:
11321""""""""""
11322
11323On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011324different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011325intrinsic returns the executable address corresponding to ``tramp``
11326after performing the required machine specific adjustments. The pointer
11327returned can then be :ref:`bitcast and executed <int_trampoline>`.
11328
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011329.. _int_mload_mstore:
11330
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011331Masked Vector Load and Store Intrinsics
11332---------------------------------------
11333
11334LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11335
11336.. _int_mload:
11337
11338'``llvm.masked.load.*``' Intrinsics
11339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11340
11341Syntax:
11342"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011343This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011344
11345::
11346
Matthias Braun68bb2932016-03-22 20:24:34 +000011347 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11348 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011349 ;; The data is a vector of pointers to double
Matthias Braun68bb2932016-03-22 20:24:34 +000011350 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011351 ;; The data is a vector of function pointers
Matthias Braun68bb2932016-03-22 20:24:34 +000011352 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011353
11354Overview:
11355"""""""""
11356
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011357Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011358
11359
11360Arguments:
11361""""""""""
11362
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011363The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011364
11365
11366Semantics:
11367""""""""""
11368
11369The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11370The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11371
11372
11373::
11374
Matthias Braun68bb2932016-03-22 20:24:34 +000011375 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011376
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011377 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011378 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011379 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011380
11381.. _int_mstore:
11382
11383'``llvm.masked.store.*``' Intrinsics
11384^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11385
11386Syntax:
11387"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011388This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011389
11390::
11391
Matthias Braun68bb2932016-03-22 20:24:34 +000011392 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11393 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011394 ;; The data is a vector of pointers to double
Matthias Braun68bb2932016-03-22 20:24:34 +000011395 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011396 ;; The data is a vector of function pointers
Matthias Braun68bb2932016-03-22 20:24:34 +000011397 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011398
11399Overview:
11400"""""""""
11401
11402Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11403
11404Arguments:
11405""""""""""
11406
11407The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11408
11409
11410Semantics:
11411""""""""""
11412
11413The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11414The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11415
11416::
11417
Matthias Braun68bb2932016-03-22 20:24:34 +000011418 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011419
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011420 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011421 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011422 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11423 store <16 x float> %res, <16 x float>* %ptr, align 4
11424
11425
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011426Masked Vector Gather and Scatter Intrinsics
11427-------------------------------------------
11428
11429LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11430
11431.. _int_mgather:
11432
11433'``llvm.masked.gather.*``' Intrinsics
11434^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11435
11436Syntax:
11437"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011438This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011439
11440::
11441
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011442 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11443 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11444 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011445
11446Overview:
11447"""""""""
11448
11449Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11450
11451
11452Arguments:
11453""""""""""
11454
11455The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11456
11457
11458Semantics:
11459""""""""""
11460
11461The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11462The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11463
11464
11465::
11466
11467 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11468
11469 ;; The gather with all-true mask is equivalent to the following instruction sequence
11470 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11471 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11472 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11473 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11474
11475 %val0 = load double, double* %ptr0, align 8
11476 %val1 = load double, double* %ptr1, align 8
11477 %val2 = load double, double* %ptr2, align 8
11478 %val3 = load double, double* %ptr3, align 8
11479
11480 %vec0 = insertelement <4 x double>undef, %val0, 0
11481 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11482 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11483 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11484
11485.. _int_mscatter:
11486
11487'``llvm.masked.scatter.*``' Intrinsics
11488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11489
11490Syntax:
11491"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011492This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011493
11494::
11495
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011496 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11497 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11498 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011499
11500Overview:
11501"""""""""
11502
11503Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11504
11505Arguments:
11506""""""""""
11507
11508The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11509
11510
11511Semantics:
11512""""""""""
11513
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011514The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011515
11516::
11517
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011518 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011519 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11520
11521 ;; It is equivalent to a list of scalar stores
11522 %val0 = extractelement <8 x i32> %value, i32 0
11523 %val1 = extractelement <8 x i32> %value, i32 1
11524 ..
11525 %val7 = extractelement <8 x i32> %value, i32 7
11526 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11527 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11528 ..
11529 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11530 ;; Note: the order of the following stores is important when they overlap:
11531 store i32 %val0, i32* %ptr0, align 4
11532 store i32 %val1, i32* %ptr1, align 4
11533 ..
11534 store i32 %val7, i32* %ptr7, align 4
11535
11536
Sean Silvab084af42012-12-07 10:36:55 +000011537Memory Use Markers
11538------------------
11539
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011540This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011541memory objects and ranges where variables are immutable.
11542
Reid Klecknera534a382013-12-19 02:14:12 +000011543.. _int_lifestart:
11544
Sean Silvab084af42012-12-07 10:36:55 +000011545'``llvm.lifetime.start``' Intrinsic
11546^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11547
11548Syntax:
11549"""""""
11550
11551::
11552
11553 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11554
11555Overview:
11556"""""""""
11557
11558The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11559object's lifetime.
11560
11561Arguments:
11562""""""""""
11563
11564The first argument is a constant integer representing the size of the
11565object, or -1 if it is variable sized. The second argument is a pointer
11566to the object.
11567
11568Semantics:
11569""""""""""
11570
11571This intrinsic indicates that before this point in the code, the value
11572of the memory pointed to by ``ptr`` is dead. This means that it is known
11573to never be used and has an undefined value. A load from the pointer
11574that precedes this intrinsic can be replaced with ``'undef'``.
11575
Reid Klecknera534a382013-12-19 02:14:12 +000011576.. _int_lifeend:
11577
Sean Silvab084af42012-12-07 10:36:55 +000011578'``llvm.lifetime.end``' Intrinsic
11579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11580
11581Syntax:
11582"""""""
11583
11584::
11585
11586 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11587
11588Overview:
11589"""""""""
11590
11591The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11592object's lifetime.
11593
11594Arguments:
11595""""""""""
11596
11597The first argument is a constant integer representing the size of the
11598object, or -1 if it is variable sized. The second argument is a pointer
11599to the object.
11600
11601Semantics:
11602""""""""""
11603
11604This intrinsic indicates that after this point in the code, the value of
11605the memory pointed to by ``ptr`` is dead. This means that it is known to
11606never be used and has an undefined value. Any stores into the memory
11607object following this intrinsic may be removed as dead.
11608
11609'``llvm.invariant.start``' Intrinsic
11610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11611
11612Syntax:
11613"""""""
11614
11615::
11616
11617 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11618
11619Overview:
11620"""""""""
11621
11622The '``llvm.invariant.start``' intrinsic specifies that the contents of
11623a memory object will not change.
11624
11625Arguments:
11626""""""""""
11627
11628The first argument is a constant integer representing the size of the
11629object, or -1 if it is variable sized. The second argument is a pointer
11630to the object.
11631
11632Semantics:
11633""""""""""
11634
11635This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11636the return value, the referenced memory location is constant and
11637unchanging.
11638
11639'``llvm.invariant.end``' Intrinsic
11640^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11641
11642Syntax:
11643"""""""
11644
11645::
11646
11647 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11648
11649Overview:
11650"""""""""
11651
11652The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11653memory object are mutable.
11654
11655Arguments:
11656""""""""""
11657
11658The first argument is the matching ``llvm.invariant.start`` intrinsic.
11659The second argument is a constant integer representing the size of the
11660object, or -1 if it is variable sized and the third argument is a
11661pointer to the object.
11662
11663Semantics:
11664""""""""""
11665
11666This intrinsic indicates that the memory is mutable again.
11667
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011668'``llvm.invariant.group.barrier``' Intrinsic
11669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11670
11671Syntax:
11672"""""""
11673
11674::
11675
11676 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11677
11678Overview:
11679"""""""""
11680
11681The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11682established by invariant.group metadata no longer holds, to obtain a new pointer
11683value that does not carry the invariant information.
11684
11685
11686Arguments:
11687""""""""""
11688
11689The ``llvm.invariant.group.barrier`` takes only one argument, which is
11690the pointer to the memory for which the ``invariant.group`` no longer holds.
11691
11692Semantics:
11693""""""""""
11694
11695Returns another pointer that aliases its argument but which is considered different
11696for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11697
Sean Silvab084af42012-12-07 10:36:55 +000011698General Intrinsics
11699------------------
11700
11701This class of intrinsics is designed to be generic and has no specific
11702purpose.
11703
11704'``llvm.var.annotation``' Intrinsic
11705^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11706
11707Syntax:
11708"""""""
11709
11710::
11711
11712 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11713
11714Overview:
11715"""""""""
11716
11717The '``llvm.var.annotation``' intrinsic.
11718
11719Arguments:
11720""""""""""
11721
11722The first argument is a pointer to a value, the second is a pointer to a
11723global string, the third is a pointer to a global string which is the
11724source file name, and the last argument is the line number.
11725
11726Semantics:
11727""""""""""
11728
11729This intrinsic allows annotation of local variables with arbitrary
11730strings. This can be useful for special purpose optimizations that want
11731to look for these annotations. These have no other defined use; they are
11732ignored by code generation and optimization.
11733
Michael Gottesman88d18832013-03-26 00:34:27 +000011734'``llvm.ptr.annotation.*``' Intrinsic
11735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11736
11737Syntax:
11738"""""""
11739
11740This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11741pointer to an integer of any width. *NOTE* you must specify an address space for
11742the pointer. The identifier for the default address space is the integer
11743'``0``'.
11744
11745::
11746
11747 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11748 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11749 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11750 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11751 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11752
11753Overview:
11754"""""""""
11755
11756The '``llvm.ptr.annotation``' intrinsic.
11757
11758Arguments:
11759""""""""""
11760
11761The first argument is a pointer to an integer value of arbitrary bitwidth
11762(result of some expression), the second is a pointer to a global string, the
11763third is a pointer to a global string which is the source file name, and the
11764last argument is the line number. It returns the value of the first argument.
11765
11766Semantics:
11767""""""""""
11768
11769This intrinsic allows annotation of a pointer to an integer with arbitrary
11770strings. This can be useful for special purpose optimizations that want to look
11771for these annotations. These have no other defined use; they are ignored by code
11772generation and optimization.
11773
Sean Silvab084af42012-12-07 10:36:55 +000011774'``llvm.annotation.*``' Intrinsic
11775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11776
11777Syntax:
11778"""""""
11779
11780This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11781any integer bit width.
11782
11783::
11784
11785 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11786 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11787 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11788 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11789 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11790
11791Overview:
11792"""""""""
11793
11794The '``llvm.annotation``' intrinsic.
11795
11796Arguments:
11797""""""""""
11798
11799The first argument is an integer value (result of some expression), the
11800second is a pointer to a global string, the third is a pointer to a
11801global string which is the source file name, and the last argument is
11802the line number. It returns the value of the first argument.
11803
11804Semantics:
11805""""""""""
11806
11807This intrinsic allows annotations to be put on arbitrary expressions
11808with arbitrary strings. This can be useful for special purpose
11809optimizations that want to look for these annotations. These have no
11810other defined use; they are ignored by code generation and optimization.
11811
11812'``llvm.trap``' Intrinsic
11813^^^^^^^^^^^^^^^^^^^^^^^^^
11814
11815Syntax:
11816"""""""
11817
11818::
11819
11820 declare void @llvm.trap() noreturn nounwind
11821
11822Overview:
11823"""""""""
11824
11825The '``llvm.trap``' intrinsic.
11826
11827Arguments:
11828""""""""""
11829
11830None.
11831
11832Semantics:
11833""""""""""
11834
11835This intrinsic is lowered to the target dependent trap instruction. If
11836the target does not have a trap instruction, this intrinsic will be
11837lowered to a call of the ``abort()`` function.
11838
11839'``llvm.debugtrap``' Intrinsic
11840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11841
11842Syntax:
11843"""""""
11844
11845::
11846
11847 declare void @llvm.debugtrap() nounwind
11848
11849Overview:
11850"""""""""
11851
11852The '``llvm.debugtrap``' intrinsic.
11853
11854Arguments:
11855""""""""""
11856
11857None.
11858
11859Semantics:
11860""""""""""
11861
11862This intrinsic is lowered to code which is intended to cause an
11863execution trap with the intention of requesting the attention of a
11864debugger.
11865
11866'``llvm.stackprotector``' Intrinsic
11867^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11868
11869Syntax:
11870"""""""
11871
11872::
11873
11874 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11875
11876Overview:
11877"""""""""
11878
11879The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11880onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11881is placed on the stack before local variables.
11882
11883Arguments:
11884""""""""""
11885
11886The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11887The first argument is the value loaded from the stack guard
11888``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11889enough space to hold the value of the guard.
11890
11891Semantics:
11892""""""""""
11893
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011894This intrinsic causes the prologue/epilogue inserter to force the position of
11895the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11896to ensure that if a local variable on the stack is overwritten, it will destroy
11897the value of the guard. When the function exits, the guard on the stack is
11898checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11899different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11900calling the ``__stack_chk_fail()`` function.
11901
11902'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011904
11905Syntax:
11906"""""""
11907
11908::
11909
11910 declare void @llvm.stackprotectorcheck(i8** <guard>)
11911
11912Overview:
11913"""""""""
11914
11915The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011916created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011917``__stack_chk_fail()`` function.
11918
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011919Arguments:
11920""""""""""
11921
11922The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11923the variable ``@__stack_chk_guard``.
11924
11925Semantics:
11926""""""""""
11927
11928This intrinsic is provided to perform the stack protector check by comparing
11929``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11930values do not match call the ``__stack_chk_fail()`` function.
11931
11932The reason to provide this as an IR level intrinsic instead of implementing it
11933via other IR operations is that in order to perform this operation at the IR
11934level without an intrinsic, one would need to create additional basic blocks to
11935handle the success/failure cases. This makes it difficult to stop the stack
11936protector check from disrupting sibling tail calls in Codegen. With this
11937intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011938codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011939
Sean Silvab084af42012-12-07 10:36:55 +000011940'``llvm.objectsize``' Intrinsic
11941^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11942
11943Syntax:
11944"""""""
11945
11946::
11947
11948 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11949 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11950
11951Overview:
11952"""""""""
11953
11954The ``llvm.objectsize`` intrinsic is designed to provide information to
11955the optimizers to determine at compile time whether a) an operation
11956(like memcpy) will overflow a buffer that corresponds to an object, or
11957b) that a runtime check for overflow isn't necessary. An object in this
11958context means an allocation of a specific class, structure, array, or
11959other object.
11960
11961Arguments:
11962""""""""""
11963
11964The ``llvm.objectsize`` intrinsic takes two arguments. The first
11965argument is a pointer to or into the ``object``. The second argument is
11966a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11967or -1 (if false) when the object size is unknown. The second argument
11968only accepts constants.
11969
11970Semantics:
11971""""""""""
11972
11973The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11974the size of the object concerned. If the size cannot be determined at
11975compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11976on the ``min`` argument).
11977
11978'``llvm.expect``' Intrinsic
11979^^^^^^^^^^^^^^^^^^^^^^^^^^^
11980
11981Syntax:
11982"""""""
11983
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011984This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11985integer bit width.
11986
Sean Silvab084af42012-12-07 10:36:55 +000011987::
11988
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011989 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011990 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11991 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11992
11993Overview:
11994"""""""""
11995
11996The ``llvm.expect`` intrinsic provides information about expected (the
11997most probable) value of ``val``, which can be used by optimizers.
11998
11999Arguments:
12000""""""""""
12001
12002The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12003a value. The second argument is an expected value, this needs to be a
12004constant value, variables are not allowed.
12005
12006Semantics:
12007""""""""""
12008
12009This intrinsic is lowered to the ``val``.
12010
Philip Reamese0e90832015-04-26 22:23:12 +000012011.. _int_assume:
12012
Hal Finkel93046912014-07-25 21:13:35 +000012013'``llvm.assume``' Intrinsic
12014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12015
12016Syntax:
12017"""""""
12018
12019::
12020
12021 declare void @llvm.assume(i1 %cond)
12022
12023Overview:
12024"""""""""
12025
12026The ``llvm.assume`` allows the optimizer to assume that the provided
12027condition is true. This information can then be used in simplifying other parts
12028of the code.
12029
12030Arguments:
12031""""""""""
12032
12033The condition which the optimizer may assume is always true.
12034
12035Semantics:
12036""""""""""
12037
12038The intrinsic allows the optimizer to assume that the provided condition is
12039always true whenever the control flow reaches the intrinsic call. No code is
12040generated for this intrinsic, and instructions that contribute only to the
12041provided condition are not used for code generation. If the condition is
12042violated during execution, the behavior is undefined.
12043
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012044Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012045used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12046only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012047if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012048sufficient overall improvement in code quality. For this reason,
12049``llvm.assume`` should not be used to document basic mathematical invariants
12050that the optimizer can otherwise deduce or facts that are of little use to the
12051optimizer.
12052
Peter Collingbournee6909c82015-02-20 20:30:47 +000012053.. _bitset.test:
12054
12055'``llvm.bitset.test``' Intrinsic
12056^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12057
12058Syntax:
12059"""""""
12060
12061::
12062
12063 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12064
12065
12066Arguments:
12067""""""""""
12068
12069The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012070metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012071
12072Overview:
12073"""""""""
12074
12075The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12076member of the given bitset.
12077
Sean Silvab084af42012-12-07 10:36:55 +000012078'``llvm.donothing``' Intrinsic
12079^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12080
12081Syntax:
12082"""""""
12083
12084::
12085
12086 declare void @llvm.donothing() nounwind readnone
12087
12088Overview:
12089"""""""""
12090
Juergen Ributzkac9161192014-10-23 22:36:13 +000012091The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012092three intrinsics (besides ``llvm.experimental.patchpoint`` and
12093``llvm.experimental.gc.statepoint``) that can be called with an invoke
12094instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012095
12096Arguments:
12097""""""""""
12098
12099None.
12100
12101Semantics:
12102""""""""""
12103
12104This intrinsic does nothing, and it's removed by optimizers and ignored
12105by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012106
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012107'``llvm.experimental.deoptimize``' Intrinsic
12108^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12109
12110Syntax:
12111"""""""
12112
12113::
12114
12115 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12116
12117Overview:
12118"""""""""
12119
12120This intrinsic, together with :ref:`deoptimization operand bundles
12121<deopt_opbundles>`, allow frontends to express transfer of control and
12122frame-local state from the currently executing (typically more specialized,
12123hence faster) version of a function into another (typically more generic, hence
12124slower) version.
12125
12126In languages with a fully integrated managed runtime like Java and JavaScript
12127this intrinsic can be used to implement "uncommon trap" or "side exit" like
12128functionality. In unmanaged languages like C and C++, this intrinsic can be
12129used to represent the slow paths of specialized functions.
12130
12131
12132Arguments:
12133""""""""""
12134
12135The intrinsic takes an arbitrary number of arguments, whose meaning is
12136decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12137
12138Semantics:
12139""""""""""
12140
12141The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12142deoptimization continuation (denoted using a :ref:`deoptimization
12143operand bundle <deopt_opbundles>`) and returns the value returned by
12144the deoptimization continuation. Defining the semantic properties of
12145the continuation itself is out of scope of the language reference --
12146as far as LLVM is concerned, the deoptimization continuation can
12147invoke arbitrary side effects, including reading from and writing to
12148the entire heap.
12149
12150Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12151continue execution to the end of the physical frame containing them, so all
12152calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12153
12154 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12155 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12156 - The ``ret`` instruction must return the value produced by the
12157 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12158
12159Note that the above restrictions imply that the return type for a call to
12160``@llvm.experimental.deoptimize`` will match the return type of its immediate
12161caller.
12162
12163The inliner composes the ``"deopt"`` continuations of the caller into the
12164``"deopt"`` continuations present in the inlinee, and also updates calls to this
12165intrinsic to return directly from the frame of the function it inlined into.
12166
12167.. _deoptimize_lowering:
12168
12169Lowering:
12170"""""""""
12171
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012172Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12173symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12174ensure that this symbol is defined). The call arguments to
12175``@llvm.experimental.deoptimize`` are lowered as if they were formal
12176arguments of the specified types, and not as varargs.
12177
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012178
Andrew Trick5e029ce2013-12-24 02:57:25 +000012179Stack Map Intrinsics
12180--------------------
12181
12182LLVM provides experimental intrinsics to support runtime patching
12183mechanisms commonly desired in dynamic language JITs. These intrinsics
12184are described in :doc:`StackMaps`.