blob: 6c09a24252c48fd738240e58aae0b74ac0affbcb [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
253``extern_weak``
254 The semantics of this linkage follow the ELF object file model: the
255 symbol is weak until linked, if not linked, the symbol becomes null
256 instead of being an undefined reference.
257``linkonce_odr``, ``weak_odr``
258 Some languages allow differing globals to be merged, such as two
259 functions with different semantics. Other languages, such as
260 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000261 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000262 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
263 global will only be merged with equivalent globals. These linkage
264 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000265``external``
266 If none of the above identifiers are used, the global is externally
267 visible, meaning that it participates in linkage and can be used to
268 resolve external symbol references.
269
Sean Silvab084af42012-12-07 10:36:55 +0000270It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000271other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000272
Sean Silvab084af42012-12-07 10:36:55 +0000273.. _callingconv:
274
275Calling Conventions
276-------------------
277
278LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
279:ref:`invokes <i_invoke>` can all have an optional calling convention
280specified for the call. The calling convention of any pair of dynamic
281caller/callee must match, or the behavior of the program is undefined.
282The following calling conventions are supported by LLVM, and more may be
283added in the future:
284
285"``ccc``" - The C calling convention
286 This calling convention (the default if no other calling convention
287 is specified) matches the target C calling conventions. This calling
288 convention supports varargs function calls and tolerates some
289 mismatch in the declared prototype and implemented declaration of
290 the function (as does normal C).
291"``fastcc``" - The fast calling convention
292 This calling convention attempts to make calls as fast as possible
293 (e.g. by passing things in registers). This calling convention
294 allows the target to use whatever tricks it wants to produce fast
295 code for the target, without having to conform to an externally
296 specified ABI (Application Binary Interface). `Tail calls can only
297 be optimized when this, the GHC or the HiPE convention is
298 used. <CodeGenerator.html#id80>`_ This calling convention does not
299 support varargs and requires the prototype of all callees to exactly
300 match the prototype of the function definition.
301"``coldcc``" - The cold calling convention
302 This calling convention attempts to make code in the caller as
303 efficient as possible under the assumption that the call is not
304 commonly executed. As such, these calls often preserve all registers
305 so that the call does not break any live ranges in the caller side.
306 This calling convention does not support varargs and requires the
307 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000308 function definition. Furthermore the inliner doesn't consider such function
309 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000310"``cc 10``" - GHC convention
311 This calling convention has been implemented specifically for use by
312 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
313 It passes everything in registers, going to extremes to achieve this
314 by disabling callee save registers. This calling convention should
315 not be used lightly but only for specific situations such as an
316 alternative to the *register pinning* performance technique often
317 used when implementing functional programming languages. At the
318 moment only X86 supports this convention and it has the following
319 limitations:
320
321 - On *X86-32* only supports up to 4 bit type parameters. No
322 floating point types are supported.
323 - On *X86-64* only supports up to 10 bit type parameters and 6
324 floating point parameters.
325
326 This calling convention supports `tail call
327 optimization <CodeGenerator.html#id80>`_ but requires both the
328 caller and callee are using it.
329"``cc 11``" - The HiPE calling convention
330 This calling convention has been implemented specifically for use by
331 the `High-Performance Erlang
332 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
333 native code compiler of the `Ericsson's Open Source Erlang/OTP
334 system <http://www.erlang.org/download.shtml>`_. It uses more
335 registers for argument passing than the ordinary C calling
336 convention and defines no callee-saved registers. The calling
337 convention properly supports `tail call
338 optimization <CodeGenerator.html#id80>`_ but requires that both the
339 caller and the callee use it. It uses a *register pinning*
340 mechanism, similar to GHC's convention, for keeping frequently
341 accessed runtime components pinned to specific hardware registers.
342 At the moment only X86 supports this convention (both 32 and 64
343 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000344"``webkit_jscc``" - WebKit's JavaScript calling convention
345 This calling convention has been implemented for `WebKit FTL JIT
346 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
347 stack right to left (as cdecl does), and returns a value in the
348 platform's customary return register.
349"``anyregcc``" - Dynamic calling convention for code patching
350 This is a special convention that supports patching an arbitrary code
351 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000352 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000353 allocated. This can currently only be used with calls to
354 llvm.experimental.patchpoint because only this intrinsic records
355 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000356"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 This calling convention attempts to make the code in the caller as
358 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000359 calling convention on how arguments and return values are passed, but it
360 uses a different set of caller/callee-saved registers. This alleviates the
361 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000362 call in the caller. If the arguments are passed in callee-saved registers,
363 then they will be preserved by the callee across the call. This doesn't
364 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000365
366 - On X86-64 the callee preserves all general purpose registers, except for
367 R11. R11 can be used as a scratch register. Floating-point registers
368 (XMMs/YMMs) are not preserved and need to be saved by the caller.
369
370 The idea behind this convention is to support calls to runtime functions
371 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000372 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000373 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000374 registers, which haven't already been saved by the caller. The
375 `PreserveMost` calling convention is very similar to the `cold` calling
376 convention in terms of caller/callee-saved registers, but they are used for
377 different types of function calls. `coldcc` is for function calls that are
378 rarely executed, whereas `preserve_mostcc` function calls are intended to be
379 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
380 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000381
382 This calling convention will be used by a future version of the ObjectiveC
383 runtime and should therefore still be considered experimental at this time.
384 Although this convention was created to optimize certain runtime calls to
385 the ObjectiveC runtime, it is not limited to this runtime and might be used
386 by other runtimes in the future too. The current implementation only
387 supports X86-64, but the intention is to support more architectures in the
388 future.
389"``preserve_allcc``" - The `PreserveAll` calling convention
390 This calling convention attempts to make the code in the caller even less
391 intrusive than the `PreserveMost` calling convention. This calling
392 convention also behaves identical to the `C` calling convention on how
393 arguments and return values are passed, but it uses a different set of
394 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000395 recovering a large register set before and after the call in the caller. If
396 the arguments are passed in callee-saved registers, then they will be
397 preserved by the callee across the call. This doesn't apply for values
398 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000399
400 - On X86-64 the callee preserves all general purpose registers, except for
401 R11. R11 can be used as a scratch register. Furthermore it also preserves
402 all floating-point registers (XMMs/YMMs).
403
404 The idea behind this convention is to support calls to runtime functions
405 that don't need to call out to any other functions.
406
407 This calling convention, like the `PreserveMost` calling convention, will be
408 used by a future version of the ObjectiveC runtime and should be considered
409 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000410"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000411 Clang generates an access function to access C++-style TLS. The access
412 function generally has an entry block, an exit block and an initialization
413 block that is run at the first time. The entry and exit blocks can access
414 a few TLS IR variables, each access will be lowered to a platform-specific
415 sequence.
416
Manman Ren19c7bbe2015-12-04 17:40:13 +0000417 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000418 preserving as many registers as possible (all the registers that are
419 perserved on the fast path, composed of the entry and exit blocks).
420
421 This calling convention behaves identical to the `C` calling convention on
422 how arguments and return values are passed, but it uses a different set of
423 caller/callee-saved registers.
424
425 Given that each platform has its own lowering sequence, hence its own set
426 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000427
428 - On X86-64 the callee preserves all general purpose registers, except for
429 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000430"``swiftcc``" - This calling convention is used for Swift language.
431 - On X86-64 RCX and R8 are available for additional integer returns, and
432 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000433 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000434"``cc <n>``" - Numbered convention
435 Any calling convention may be specified by number, allowing
436 target-specific calling conventions to be used. Target specific
437 calling conventions start at 64.
438
439More calling conventions can be added/defined on an as-needed basis, to
440support Pascal conventions or any other well-known target-independent
441convention.
442
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000443.. _visibilitystyles:
444
Sean Silvab084af42012-12-07 10:36:55 +0000445Visibility Styles
446-----------------
447
448All Global Variables and Functions have one of the following visibility
449styles:
450
451"``default``" - Default style
452 On targets that use the ELF object file format, default visibility
453 means that the declaration is visible to other modules and, in
454 shared libraries, means that the declared entity may be overridden.
455 On Darwin, default visibility means that the declaration is visible
456 to other modules. Default visibility corresponds to "external
457 linkage" in the language.
458"``hidden``" - Hidden style
459 Two declarations of an object with hidden visibility refer to the
460 same object if they are in the same shared object. Usually, hidden
461 visibility indicates that the symbol will not be placed into the
462 dynamic symbol table, so no other module (executable or shared
463 library) can reference it directly.
464"``protected``" - Protected style
465 On ELF, protected visibility indicates that the symbol will be
466 placed in the dynamic symbol table, but that references within the
467 defining module will bind to the local symbol. That is, the symbol
468 cannot be overridden by another module.
469
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000470A symbol with ``internal`` or ``private`` linkage must have ``default``
471visibility.
472
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000473.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000474
Nico Rieck7157bb72014-01-14 15:22:47 +0000475DLL Storage Classes
476-------------------
477
478All Global Variables, Functions and Aliases can have one of the following
479DLL storage class:
480
481``dllimport``
482 "``dllimport``" causes the compiler to reference a function or variable via
483 a global pointer to a pointer that is set up by the DLL exporting the
484 symbol. On Microsoft Windows targets, the pointer name is formed by
485 combining ``__imp_`` and the function or variable name.
486``dllexport``
487 "``dllexport``" causes the compiler to provide a global pointer to a pointer
488 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
489 Microsoft Windows targets, the pointer name is formed by combining
490 ``__imp_`` and the function or variable name. Since this storage class
491 exists for defining a dll interface, the compiler, assembler and linker know
492 it is externally referenced and must refrain from deleting the symbol.
493
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000494.. _tls_model:
495
496Thread Local Storage Models
497---------------------------
498
499A variable may be defined as ``thread_local``, which means that it will
500not be shared by threads (each thread will have a separated copy of the
501variable). Not all targets support thread-local variables. Optionally, a
502TLS model may be specified:
503
504``localdynamic``
505 For variables that are only used within the current shared library.
506``initialexec``
507 For variables in modules that will not be loaded dynamically.
508``localexec``
509 For variables defined in the executable and only used within it.
510
511If no explicit model is given, the "general dynamic" model is used.
512
513The models correspond to the ELF TLS models; see `ELF Handling For
514Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
515more information on under which circumstances the different models may
516be used. The target may choose a different TLS model if the specified
517model is not supported, or if a better choice of model can be made.
518
Sean Silva706fba52015-08-06 22:56:24 +0000519A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000520the alias is accessed. It will not have any effect in the aliasee.
521
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000522For platforms without linker support of ELF TLS model, the -femulated-tls
523flag can be used to generate GCC compatible emulated TLS code.
524
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000525.. _namedtypes:
526
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000527Structure Types
528---------------
Sean Silvab084af42012-12-07 10:36:55 +0000529
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000530LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000531types <t_struct>`. Literal types are uniqued structurally, but identified types
532are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000533to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000534
Sean Silva706fba52015-08-06 22:56:24 +0000535An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000536
537.. code-block:: llvm
538
539 %mytype = type { %mytype*, i32 }
540
Sean Silvaa1190322015-08-06 22:56:48 +0000541Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000542literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000543
544.. _globalvars:
545
546Global Variables
547----------------
548
549Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000550instead of run-time.
551
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000552Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000553
554Global variables in other translation units can also be declared, in which
555case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000556
Bob Wilson85b24f22014-06-12 20:40:33 +0000557Either global variable definitions or declarations may have an explicit section
558to be placed in and may have an optional explicit alignment specified.
559
Michael Gottesman006039c2013-01-31 05:48:48 +0000560A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000561the contents of the variable will **never** be modified (enabling better
562optimization, allowing the global data to be placed in the read-only
563section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000564initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000565variable.
566
567LLVM explicitly allows *declarations* of global variables to be marked
568constant, even if the final definition of the global is not. This
569capability can be used to enable slightly better optimization of the
570program, but requires the language definition to guarantee that
571optimizations based on the 'constantness' are valid for the translation
572units that do not include the definition.
573
574As SSA values, global variables define pointer values that are in scope
575(i.e. they dominate) all basic blocks in the program. Global variables
576always define a pointer to their "content" type because they describe a
577region of memory, and all memory objects in LLVM are accessed through
578pointers.
579
580Global variables can be marked with ``unnamed_addr`` which indicates
581that the address is not significant, only the content. Constants marked
582like this can be merged with other constants if they have the same
583initializer. Note that a constant with significant address *can* be
584merged with a ``unnamed_addr`` constant, the result being a constant
585whose address is significant.
586
587A global variable may be declared to reside in a target-specific
588numbered address space. For targets that support them, address spaces
589may affect how optimizations are performed and/or what target
590instructions are used to access the variable. The default address space
591is zero. The address space qualifier must precede any other attributes.
592
593LLVM allows an explicit section to be specified for globals. If the
594target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000595Additionally, the global can placed in a comdat if the target has the necessary
596support.
Sean Silvab084af42012-12-07 10:36:55 +0000597
Michael Gottesmane743a302013-02-04 03:22:00 +0000598By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000599variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000600initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000601true even for variables potentially accessible from outside the
602module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000603``@llvm.used`` or dllexported variables. This assumption may be suppressed
604by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000605
Sean Silvab084af42012-12-07 10:36:55 +0000606An explicit alignment may be specified for a global, which must be a
607power of 2. If not present, or if the alignment is set to zero, the
608alignment of the global is set by the target to whatever it feels
609convenient. If an explicit alignment is specified, the global is forced
610to have exactly that alignment. Targets and optimizers are not allowed
611to over-align the global if the global has an assigned section. In this
612case, the extra alignment could be observable: for example, code could
613assume that the globals are densely packed in their section and try to
614iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000615iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000616
Nico Rieck7157bb72014-01-14 15:22:47 +0000617Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
618
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000619Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000620:ref:`Thread Local Storage Model <tls_model>`.
621
Nico Rieck7157bb72014-01-14 15:22:47 +0000622Syntax::
623
624 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000625 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000626 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000627 [, section "name"] [, comdat [($name)]]
628 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000629
Sean Silvab084af42012-12-07 10:36:55 +0000630For example, the following defines a global in a numbered address space
631with an initializer, section, and alignment:
632
633.. code-block:: llvm
634
635 @G = addrspace(5) constant float 1.0, section "foo", align 4
636
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000637The following example just declares a global variable
638
639.. code-block:: llvm
640
641 @G = external global i32
642
Sean Silvab084af42012-12-07 10:36:55 +0000643The following example defines a thread-local global with the
644``initialexec`` TLS model:
645
646.. code-block:: llvm
647
648 @G = thread_local(initialexec) global i32 0, align 4
649
650.. _functionstructure:
651
652Functions
653---------
654
655LLVM function definitions consist of the "``define``" keyword, an
656optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000657style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
658an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000659an optional ``unnamed_addr`` attribute, a return type, an optional
660:ref:`parameter attribute <paramattrs>` for the return type, a function
661name, a (possibly empty) argument list (each with optional :ref:`parameter
662attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000663an optional section, an optional alignment,
664an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000665an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000666an optional :ref:`prologue <prologuedata>`,
667an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000668an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000669an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000670
671LLVM function declarations consist of the "``declare``" keyword, an
672optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000673style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
674an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000675an optional ``unnamed_addr`` attribute, a return type, an optional
676:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000677name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000678:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
679and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000680
Bill Wendling6822ecb2013-10-27 05:09:12 +0000681A function definition contains a list of basic blocks, forming the CFG (Control
682Flow Graph) for the function. Each basic block may optionally start with a label
683(giving the basic block a symbol table entry), contains a list of instructions,
684and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
685function return). If an explicit label is not provided, a block is assigned an
686implicit numbered label, using the next value from the same counter as used for
687unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
688entry block does not have an explicit label, it will be assigned label "%0",
689then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000690
691The first basic block in a function is special in two ways: it is
692immediately executed on entrance to the function, and it is not allowed
693to have predecessor basic blocks (i.e. there can not be any branches to
694the entry block of a function). Because the block can have no
695predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
696
697LLVM allows an explicit section to be specified for functions. If the
698target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000699Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000700
701An explicit alignment may be specified for a function. If not present,
702or if the alignment is set to zero, the alignment of the function is set
703by the target to whatever it feels convenient. If an explicit alignment
704is specified, the function is forced to have at least that much
705alignment. All alignments must be a power of 2.
706
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000707If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000708be significant and two identical functions can be merged.
709
710Syntax::
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000713 [cconv] [ret attrs]
714 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000715 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000716 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000717 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000718
Sean Silva706fba52015-08-06 22:56:24 +0000719The argument list is a comma separated sequence of arguments where each
720argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000721
722Syntax::
723
724 <type> [parameter Attrs] [name]
725
726
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000727.. _langref_aliases:
728
Sean Silvab084af42012-12-07 10:36:55 +0000729Aliases
730-------
731
Rafael Espindola64c1e182014-06-03 02:41:57 +0000732Aliases, unlike function or variables, don't create any new data. They
733are just a new symbol and metadata for an existing position.
734
735Aliases have a name and an aliasee that is either a global value or a
736constant expression.
737
Nico Rieck7157bb72014-01-14 15:22:47 +0000738Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000739:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
740<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000741
742Syntax::
743
David Blaikie196582e2015-10-22 01:17:29 +0000744 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000745
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000746The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000747``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000748might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000749
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000750Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000751the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
752to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000753
Rafael Espindola64c1e182014-06-03 02:41:57 +0000754Since aliases are only a second name, some restrictions apply, of which
755some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000756
Rafael Espindola64c1e182014-06-03 02:41:57 +0000757* The expression defining the aliasee must be computable at assembly
758 time. Since it is just a name, no relocations can be used.
759
760* No alias in the expression can be weak as the possibility of the
761 intermediate alias being overridden cannot be represented in an
762 object file.
763
764* No global value in the expression can be a declaration, since that
765 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000766
David Majnemerdad0a642014-06-27 18:19:56 +0000767.. _langref_comdats:
768
769Comdats
770-------
771
772Comdat IR provides access to COFF and ELF object file COMDAT functionality.
773
Sean Silvaa1190322015-08-06 22:56:48 +0000774Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000775specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000776that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000777aliasee computes to, if any.
778
779Comdats have a selection kind to provide input on how the linker should
780choose between keys in two different object files.
781
782Syntax::
783
784 $<Name> = comdat SelectionKind
785
786The selection kind must be one of the following:
787
788``any``
789 The linker may choose any COMDAT key, the choice is arbitrary.
790``exactmatch``
791 The linker may choose any COMDAT key but the sections must contain the
792 same data.
793``largest``
794 The linker will choose the section containing the largest COMDAT key.
795``noduplicates``
796 The linker requires that only section with this COMDAT key exist.
797``samesize``
798 The linker may choose any COMDAT key but the sections must contain the
799 same amount of data.
800
801Note that the Mach-O platform doesn't support COMDATs and ELF only supports
802``any`` as a selection kind.
803
804Here is an example of a COMDAT group where a function will only be selected if
805the COMDAT key's section is the largest:
806
807.. code-block:: llvm
808
809 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000810 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000811
Rafael Espindola83a362c2015-01-06 22:55:16 +0000812 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000813 ret void
814 }
815
Rafael Espindola83a362c2015-01-06 22:55:16 +0000816As a syntactic sugar the ``$name`` can be omitted if the name is the same as
817the global name:
818
819.. code-block:: llvm
820
821 $foo = comdat any
822 @foo = global i32 2, comdat
823
824
David Majnemerdad0a642014-06-27 18:19:56 +0000825In a COFF object file, this will create a COMDAT section with selection kind
826``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
827and another COMDAT section with selection kind
828``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000829section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000830
831There are some restrictions on the properties of the global object.
832It, or an alias to it, must have the same name as the COMDAT group when
833targeting COFF.
834The contents and size of this object may be used during link-time to determine
835which COMDAT groups get selected depending on the selection kind.
836Because the name of the object must match the name of the COMDAT group, the
837linkage of the global object must not be local; local symbols can get renamed
838if a collision occurs in the symbol table.
839
840The combined use of COMDATS and section attributes may yield surprising results.
841For example:
842
843.. code-block:: llvm
844
845 $foo = comdat any
846 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000847 @g1 = global i32 42, section "sec", comdat($foo)
848 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000849
850From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000851with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000852COMDAT groups and COMDATs, at the object file level, are represented by
853sections.
854
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000855Note that certain IR constructs like global variables and functions may
856create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000857COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000858in individual sections (e.g. when `-data-sections` or `-function-sections`
859is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000860
Sean Silvab084af42012-12-07 10:36:55 +0000861.. _namedmetadatastructure:
862
863Named Metadata
864--------------
865
866Named metadata is a collection of metadata. :ref:`Metadata
867nodes <metadata>` (but not metadata strings) are the only valid
868operands for a named metadata.
869
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000870#. Named metadata are represented as a string of characters with the
871 metadata prefix. The rules for metadata names are the same as for
872 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
873 are still valid, which allows any character to be part of a name.
874
Sean Silvab084af42012-12-07 10:36:55 +0000875Syntax::
876
877 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000878 !0 = !{!"zero"}
879 !1 = !{!"one"}
880 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000881 ; A named metadata.
882 !name = !{!0, !1, !2}
883
884.. _paramattrs:
885
886Parameter Attributes
887--------------------
888
889The return type and each parameter of a function type may have a set of
890*parameter attributes* associated with them. Parameter attributes are
891used to communicate additional information about the result or
892parameters of a function. Parameter attributes are considered to be part
893of the function, not of the function type, so functions with different
894parameter attributes can have the same function type.
895
896Parameter attributes are simple keywords that follow the type specified.
897If multiple parameter attributes are needed, they are space separated.
898For example:
899
900.. code-block:: llvm
901
902 declare i32 @printf(i8* noalias nocapture, ...)
903 declare i32 @atoi(i8 zeroext)
904 declare signext i8 @returns_signed_char()
905
906Note that any attributes for the function result (``nounwind``,
907``readonly``) come immediately after the argument list.
908
909Currently, only the following parameter attributes are defined:
910
911``zeroext``
912 This indicates to the code generator that the parameter or return
913 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000914 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000915``signext``
916 This indicates to the code generator that the parameter or return
917 value should be sign-extended to the extent required by the target's
918 ABI (which is usually 32-bits) by the caller (for a parameter) or
919 the callee (for a return value).
920``inreg``
921 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000922 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000923 a function call or return (usually, by putting it in a register as
924 opposed to memory, though some targets use it to distinguish between
925 two different kinds of registers). Use of this attribute is
926 target-specific.
927``byval``
928 This indicates that the pointer parameter should really be passed by
929 value to the function. The attribute implies that a hidden copy of
930 the pointee is made between the caller and the callee, so the callee
931 is unable to modify the value in the caller. This attribute is only
932 valid on LLVM pointer arguments. It is generally used to pass
933 structs and arrays by value, but is also valid on pointers to
934 scalars. The copy is considered to belong to the caller not the
935 callee (for example, ``readonly`` functions should not write to
936 ``byval`` parameters). This is not a valid attribute for return
937 values.
938
939 The byval attribute also supports specifying an alignment with the
940 align attribute. It indicates the alignment of the stack slot to
941 form and the known alignment of the pointer specified to the call
942 site. If the alignment is not specified, then the code generator
943 makes a target-specific assumption.
944
Reid Klecknera534a382013-12-19 02:14:12 +0000945.. _attr_inalloca:
946
947``inalloca``
948
Reid Kleckner60d3a832014-01-16 22:59:24 +0000949 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000950 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000951 be a pointer to stack memory produced by an ``alloca`` instruction.
952 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000953 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000954 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000955
Reid Kleckner436c42e2014-01-17 23:58:17 +0000956 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000957 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000958 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000959 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000960 ``inalloca`` attribute also disables LLVM's implicit lowering of
961 large aggregate return values, which means that frontend authors
962 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000963
Reid Kleckner60d3a832014-01-16 22:59:24 +0000964 When the call site is reached, the argument allocation must have
965 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000966 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000967 space after an argument allocation and before its call site, but it
968 must be cleared off with :ref:`llvm.stackrestore
969 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000970
971 See :doc:`InAlloca` for more information on how to use this
972 attribute.
973
Sean Silvab084af42012-12-07 10:36:55 +0000974``sret``
975 This indicates that the pointer parameter specifies the address of a
976 structure that is the return value of the function in the source
977 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000978 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000979 not to trap and to be properly aligned. This may only be applied to
980 the first parameter. This is not a valid attribute for return
981 values.
Sean Silva1703e702014-04-08 21:06:22 +0000982
Hal Finkelccc70902014-07-22 16:58:55 +0000983``align <n>``
984 This indicates that the pointer value may be assumed by the optimizer to
985 have the specified alignment.
986
987 Note that this attribute has additional semantics when combined with the
988 ``byval`` attribute.
989
Sean Silva1703e702014-04-08 21:06:22 +0000990.. _noalias:
991
Sean Silvab084af42012-12-07 10:36:55 +0000992``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000993 This indicates that objects accessed via pointer values
994 :ref:`based <pointeraliasing>` on the argument or return value are not also
995 accessed, during the execution of the function, via pointer values not
996 *based* on the argument or return value. The attribute on a return value
997 also has additional semantics described below. The caller shares the
998 responsibility with the callee for ensuring that these requirements are met.
999 For further details, please see the discussion of the NoAlias response in
1000 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001001
1002 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001003 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001004
1005 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001006 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1007 attribute on return values are stronger than the semantics of the attribute
1008 when used on function arguments. On function return values, the ``noalias``
1009 attribute indicates that the function acts like a system memory allocation
1010 function, returning a pointer to allocated storage disjoint from the
1011 storage for any other object accessible to the caller.
1012
Sean Silvab084af42012-12-07 10:36:55 +00001013``nocapture``
1014 This indicates that the callee does not make any copies of the
1015 pointer that outlive the callee itself. This is not a valid
1016 attribute for return values.
1017
1018.. _nest:
1019
1020``nest``
1021 This indicates that the pointer parameter can be excised using the
1022 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001023 attribute for return values and can only be applied to one parameter.
1024
1025``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001026 This indicates that the function always returns the argument as its return
1027 value. This is an optimization hint to the code generator when generating
1028 the caller, allowing tail call optimization and omission of register saves
1029 and restores in some cases; it is not checked or enforced when generating
1030 the callee. The parameter and the function return type must be valid
1031 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1032 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001033
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001034``nonnull``
1035 This indicates that the parameter or return pointer is not null. This
1036 attribute may only be applied to pointer typed parameters. This is not
1037 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001038 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001039 is non-null.
1040
Hal Finkelb0407ba2014-07-18 15:51:28 +00001041``dereferenceable(<n>)``
1042 This indicates that the parameter or return pointer is dereferenceable. This
1043 attribute may only be applied to pointer typed parameters. A pointer that
1044 is dereferenceable can be loaded from speculatively without a risk of
1045 trapping. The number of bytes known to be dereferenceable must be provided
1046 in parentheses. It is legal for the number of bytes to be less than the
1047 size of the pointee type. The ``nonnull`` attribute does not imply
1048 dereferenceability (consider a pointer to one element past the end of an
1049 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1050 ``addrspace(0)`` (which is the default address space).
1051
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001052``dereferenceable_or_null(<n>)``
1053 This indicates that the parameter or return value isn't both
1054 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001055 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001056 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1057 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1058 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1059 and in other address spaces ``dereferenceable_or_null(<n>)``
1060 implies that a pointer is at least one of ``dereferenceable(<n>)``
1061 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001062 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001063 pointer typed parameters.
1064
Manman Renf46262e2016-03-29 17:37:21 +00001065``swiftself``
1066 This indicates that the parameter is the self/context parameter. This is not
1067 a valid attribute for return values and can only be applied to one
1068 parameter.
1069
Manman Ren9bfd0d02016-04-01 21:41:15 +00001070``swifterror``
1071 This attribute is motivated to model and optimize Swift error handling. It
1072 can be applied to a parameter with pointer to pointer type or a
1073 pointer-sized alloca. At the call site, the actual argument that corresponds
1074 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca. A
1075 ``swifterror`` value (either the parameter or the alloca) can only be loaded
1076 and stored from, or used as a ``swifterror`` argument. This is not a valid
1077 attribute for return values and can only be applied to one parameter.
1078
1079 These constraints allow the calling convention to optimize access to
1080 ``swifterror`` variables by associating them with a specific register at
1081 call boundaries rather than placing them in memory. Since this does change
1082 the calling convention, a function which uses the ``swifterror`` attribute
1083 on a parameter is not ABI-compatible with one which does not.
1084
1085 These constraints also allow LLVM to assume that a ``swifterror`` argument
1086 does not alias any other memory visible within a function and that a
1087 ``swifterror`` alloca passed as an argument does not escape.
1088
Sean Silvab084af42012-12-07 10:36:55 +00001089.. _gc:
1090
Philip Reamesf80bbff2015-02-25 23:45:20 +00001091Garbage Collector Strategy Names
1092--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001093
Philip Reamesf80bbff2015-02-25 23:45:20 +00001094Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001095string:
1096
1097.. code-block:: llvm
1098
1099 define void @f() gc "name" { ... }
1100
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001101The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001102<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001103strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001104named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001105garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001106which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001107
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001108.. _prefixdata:
1109
1110Prefix Data
1111-----------
1112
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001113Prefix data is data associated with a function which the code
1114generator will emit immediately before the function's entrypoint.
1115The purpose of this feature is to allow frontends to associate
1116language-specific runtime metadata with specific functions and make it
1117available through the function pointer while still allowing the
1118function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001119
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001120To access the data for a given function, a program may bitcast the
1121function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001122index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001123the prefix data. For instance, take the example of a function annotated
1124with a single ``i32``,
1125
1126.. code-block:: llvm
1127
1128 define void @f() prefix i32 123 { ... }
1129
1130The prefix data can be referenced as,
1131
1132.. code-block:: llvm
1133
David Blaikie16a97eb2015-03-04 22:02:58 +00001134 %0 = bitcast void* () @f to i32*
1135 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001136 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001137
1138Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001139of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001140beginning of the prefix data is aligned. This means that if the size
1141of the prefix data is not a multiple of the alignment size, the
1142function's entrypoint will not be aligned. If alignment of the
1143function's entrypoint is desired, padding must be added to the prefix
1144data.
1145
Sean Silvaa1190322015-08-06 22:56:48 +00001146A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001147to the ``available_externally`` linkage in that the data may be used by the
1148optimizers but will not be emitted in the object file.
1149
1150.. _prologuedata:
1151
1152Prologue Data
1153-------------
1154
1155The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1156be inserted prior to the function body. This can be used for enabling
1157function hot-patching and instrumentation.
1158
1159To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001160have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001161bytes which decode to a sequence of machine instructions, valid for the
1162module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001163the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001164the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001165definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001166makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001167
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001168A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001169which encodes the ``nop`` instruction:
1170
1171.. code-block:: llvm
1172
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001173 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001174
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001175Generally prologue data can be formed by encoding a relative branch instruction
1176which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001177x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1178
1179.. code-block:: llvm
1180
1181 %0 = type <{ i8, i8, i8* }>
1182
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001183 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001184
Sean Silvaa1190322015-08-06 22:56:48 +00001185A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001186to the ``available_externally`` linkage in that the data may be used by the
1187optimizers but will not be emitted in the object file.
1188
David Majnemer7fddecc2015-06-17 20:52:32 +00001189.. _personalityfn:
1190
1191Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001192--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001193
1194The ``personality`` attribute permits functions to specify what function
1195to use for exception handling.
1196
Bill Wendling63b88192013-02-06 06:52:58 +00001197.. _attrgrp:
1198
1199Attribute Groups
1200----------------
1201
1202Attribute groups are groups of attributes that are referenced by objects within
1203the IR. They are important for keeping ``.ll`` files readable, because a lot of
1204functions will use the same set of attributes. In the degenerative case of a
1205``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1206group will capture the important command line flags used to build that file.
1207
1208An attribute group is a module-level object. To use an attribute group, an
1209object references the attribute group's ID (e.g. ``#37``). An object may refer
1210to more than one attribute group. In that situation, the attributes from the
1211different groups are merged.
1212
1213Here is an example of attribute groups for a function that should always be
1214inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1215
1216.. code-block:: llvm
1217
1218 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001219 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001220
1221 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001222 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001223
1224 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1225 define void @f() #0 #1 { ... }
1226
Sean Silvab084af42012-12-07 10:36:55 +00001227.. _fnattrs:
1228
1229Function Attributes
1230-------------------
1231
1232Function attributes are set to communicate additional information about
1233a function. Function attributes are considered to be part of the
1234function, not of the function type, so functions with different function
1235attributes can have the same function type.
1236
1237Function attributes are simple keywords that follow the type specified.
1238If multiple attributes are needed, they are space separated. For
1239example:
1240
1241.. code-block:: llvm
1242
1243 define void @f() noinline { ... }
1244 define void @f() alwaysinline { ... }
1245 define void @f() alwaysinline optsize { ... }
1246 define void @f() optsize { ... }
1247
Sean Silvab084af42012-12-07 10:36:55 +00001248``alignstack(<n>)``
1249 This attribute indicates that, when emitting the prologue and
1250 epilogue, the backend should forcibly align the stack pointer.
1251 Specify the desired alignment, which must be a power of two, in
1252 parentheses.
1253``alwaysinline``
1254 This attribute indicates that the inliner should attempt to inline
1255 this function into callers whenever possible, ignoring any active
1256 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001257``builtin``
1258 This indicates that the callee function at a call site should be
1259 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001260 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001261 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001262 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001263``cold``
1264 This attribute indicates that this function is rarely called. When
1265 computing edge weights, basic blocks post-dominated by a cold
1266 function call are also considered to be cold; and, thus, given low
1267 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001268``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001269 In some parallel execution models, there exist operations that cannot be
1270 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001271 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001272
Justin Lebar58535b12016-02-17 17:46:41 +00001273 The ``convergent`` attribute may appear on functions or call/invoke
1274 instructions. When it appears on a function, it indicates that calls to
1275 this function should not be made control-dependent on additional values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001276 For example, the intrinsic ``llvm.cuda.syncthreads`` is ``convergent``, so
1277 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001278 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001279
Justin Lebar58535b12016-02-17 17:46:41 +00001280 When it appears on a call/invoke, the ``convergent`` attribute indicates
1281 that we should treat the call as though we're calling a convergent
1282 function. This is particularly useful on indirect calls; without this we
1283 may treat such calls as though the target is non-convergent.
1284
1285 The optimizer may remove the ``convergent`` attribute on functions when it
1286 can prove that the function does not execute any convergent operations.
1287 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1288 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001289``inaccessiblememonly``
1290 This attribute indicates that the function may only access memory that
1291 is not accessible by the module being compiled. This is a weaker form
1292 of ``readnone``.
1293``inaccessiblemem_or_argmemonly``
1294 This attribute indicates that the function may only access memory that is
1295 either not accessible by the module being compiled, or is pointed to
1296 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001297``inlinehint``
1298 This attribute indicates that the source code contained a hint that
1299 inlining this function is desirable (such as the "inline" keyword in
1300 C/C++). It is just a hint; it imposes no requirements on the
1301 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001302``jumptable``
1303 This attribute indicates that the function should be added to a
1304 jump-instruction table at code-generation time, and that all address-taken
1305 references to this function should be replaced with a reference to the
1306 appropriate jump-instruction-table function pointer. Note that this creates
1307 a new pointer for the original function, which means that code that depends
1308 on function-pointer identity can break. So, any function annotated with
1309 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001310``minsize``
1311 This attribute suggests that optimization passes and code generator
1312 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001313 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001314 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001315``naked``
1316 This attribute disables prologue / epilogue emission for the
1317 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001318``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001319 This indicates that the callee function at a call site is not recognized as
1320 a built-in function. LLVM will retain the original call and not replace it
1321 with equivalent code based on the semantics of the built-in function, unless
1322 the call site uses the ``builtin`` attribute. This is valid at call sites
1323 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001324``noduplicate``
1325 This attribute indicates that calls to the function cannot be
1326 duplicated. A call to a ``noduplicate`` function may be moved
1327 within its parent function, but may not be duplicated within
1328 its parent function.
1329
1330 A function containing a ``noduplicate`` call may still
1331 be an inlining candidate, provided that the call is not
1332 duplicated by inlining. That implies that the function has
1333 internal linkage and only has one call site, so the original
1334 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001335``noimplicitfloat``
1336 This attributes disables implicit floating point instructions.
1337``noinline``
1338 This attribute indicates that the inliner should never inline this
1339 function in any situation. This attribute may not be used together
1340 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001341``nonlazybind``
1342 This attribute suppresses lazy symbol binding for the function. This
1343 may make calls to the function faster, at the cost of extra program
1344 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001345``noredzone``
1346 This attribute indicates that the code generator should not use a
1347 red zone, even if the target-specific ABI normally permits it.
1348``noreturn``
1349 This function attribute indicates that the function never returns
1350 normally. This produces undefined behavior at runtime if the
1351 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001352``norecurse``
1353 This function attribute indicates that the function does not call itself
1354 either directly or indirectly down any possible call path. This produces
1355 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001356``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001357 This function attribute indicates that the function never raises an
1358 exception. If the function does raise an exception, its runtime
1359 behavior is undefined. However, functions marked nounwind may still
1360 trap or generate asynchronous exceptions. Exception handling schemes
1361 that are recognized by LLVM to handle asynchronous exceptions, such
1362 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001363``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001364 This function attribute indicates that most optimization passes will skip
1365 this function, with the exception of interprocedural optimization passes.
1366 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001367 This attribute cannot be used together with the ``alwaysinline``
1368 attribute; this attribute is also incompatible
1369 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001370
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001371 This attribute requires the ``noinline`` attribute to be specified on
1372 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001373 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001374 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001375``optsize``
1376 This attribute suggests that optimization passes and code generator
1377 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001378 and otherwise do optimizations specifically to reduce code size as
1379 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001380``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001381 On a function, this attribute indicates that the function computes its
1382 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001383 without dereferencing any pointer arguments or otherwise accessing
1384 any mutable state (e.g. memory, control registers, etc) visible to
1385 caller functions. It does not write through any pointer arguments
1386 (including ``byval`` arguments) and never changes any state visible
1387 to callers. This means that it cannot unwind exceptions by calling
1388 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001389
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001390 On an argument, this attribute indicates that the function does not
1391 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001392 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001393``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001394 On a function, this attribute indicates that the function does not write
1395 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001396 modify any state (e.g. memory, control registers, etc) visible to
1397 caller functions. It may dereference pointer arguments and read
1398 state that may be set in the caller. A readonly function always
1399 returns the same value (or unwinds an exception identically) when
1400 called with the same set of arguments and global state. It cannot
1401 unwind an exception by calling the ``C++`` exception throwing
1402 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001403
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001404 On an argument, this attribute indicates that the function does not write
1405 through this pointer argument, even though it may write to the memory that
1406 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001407``argmemonly``
1408 This attribute indicates that the only memory accesses inside function are
1409 loads and stores from objects pointed to by its pointer-typed arguments,
1410 with arbitrary offsets. Or in other words, all memory operations in the
1411 function can refer to memory only using pointers based on its function
1412 arguments.
1413 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1414 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001415``returns_twice``
1416 This attribute indicates that this function can return twice. The C
1417 ``setjmp`` is an example of such a function. The compiler disables
1418 some optimizations (like tail calls) in the caller of these
1419 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001420``safestack``
1421 This attribute indicates that
1422 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1423 protection is enabled for this function.
1424
1425 If a function that has a ``safestack`` attribute is inlined into a
1426 function that doesn't have a ``safestack`` attribute or which has an
1427 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1428 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001429``sanitize_address``
1430 This attribute indicates that AddressSanitizer checks
1431 (dynamic address safety analysis) are enabled for this function.
1432``sanitize_memory``
1433 This attribute indicates that MemorySanitizer checks (dynamic detection
1434 of accesses to uninitialized memory) are enabled for this function.
1435``sanitize_thread``
1436 This attribute indicates that ThreadSanitizer checks
1437 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001438``ssp``
1439 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001440 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001441 placed on the stack before the local variables that's checked upon
1442 return from the function to see if it has been overwritten. A
1443 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001444 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001445
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001446 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1447 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1448 - Calls to alloca() with variable sizes or constant sizes greater than
1449 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001450
Josh Magee24c7f062014-02-01 01:36:16 +00001451 Variables that are identified as requiring a protector will be arranged
1452 on the stack such that they are adjacent to the stack protector guard.
1453
Sean Silvab084af42012-12-07 10:36:55 +00001454 If a function that has an ``ssp`` attribute is inlined into a
1455 function that doesn't have an ``ssp`` attribute, then the resulting
1456 function will have an ``ssp`` attribute.
1457``sspreq``
1458 This attribute indicates that the function should *always* emit a
1459 stack smashing protector. This overrides the ``ssp`` function
1460 attribute.
1461
Josh Magee24c7f062014-02-01 01:36:16 +00001462 Variables that are identified as requiring a protector will be arranged
1463 on the stack such that they are adjacent to the stack protector guard.
1464 The specific layout rules are:
1465
1466 #. Large arrays and structures containing large arrays
1467 (``>= ssp-buffer-size``) are closest to the stack protector.
1468 #. Small arrays and structures containing small arrays
1469 (``< ssp-buffer-size``) are 2nd closest to the protector.
1470 #. Variables that have had their address taken are 3rd closest to the
1471 protector.
1472
Sean Silvab084af42012-12-07 10:36:55 +00001473 If a function that has an ``sspreq`` attribute is inlined into a
1474 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001475 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1476 an ``sspreq`` attribute.
1477``sspstrong``
1478 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001479 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001480 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001481 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001482
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001483 - Arrays of any size and type
1484 - Aggregates containing an array of any size and type.
1485 - Calls to alloca().
1486 - Local variables that have had their address taken.
1487
Josh Magee24c7f062014-02-01 01:36:16 +00001488 Variables that are identified as requiring a protector will be arranged
1489 on the stack such that they are adjacent to the stack protector guard.
1490 The specific layout rules are:
1491
1492 #. Large arrays and structures containing large arrays
1493 (``>= ssp-buffer-size``) are closest to the stack protector.
1494 #. Small arrays and structures containing small arrays
1495 (``< ssp-buffer-size``) are 2nd closest to the protector.
1496 #. Variables that have had their address taken are 3rd closest to the
1497 protector.
1498
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001499 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001500
1501 If a function that has an ``sspstrong`` attribute is inlined into a
1502 function that doesn't have an ``sspstrong`` attribute, then the
1503 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001504``"thunk"``
1505 This attribute indicates that the function will delegate to some other
1506 function with a tail call. The prototype of a thunk should not be used for
1507 optimization purposes. The caller is expected to cast the thunk prototype to
1508 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001509``uwtable``
1510 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001511 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001512 show that no exceptions passes by it. This is normally the case for
1513 the ELF x86-64 abi, but it can be disabled for some compilation
1514 units.
Sean Silvab084af42012-12-07 10:36:55 +00001515
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001516
1517.. _opbundles:
1518
1519Operand Bundles
1520---------------
1521
1522Note: operand bundles are a work in progress, and they should be
1523considered experimental at this time.
1524
1525Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001526with certain LLVM instructions (currently only ``call`` s and
1527``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001528incorrect and will change program semantics.
1529
1530Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001531
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001532 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001533 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1534 bundle operand ::= SSA value
1535 tag ::= string constant
1536
1537Operand bundles are **not** part of a function's signature, and a
1538given function may be called from multiple places with different kinds
1539of operand bundles. This reflects the fact that the operand bundles
1540are conceptually a part of the ``call`` (or ``invoke``), not the
1541callee being dispatched to.
1542
1543Operand bundles are a generic mechanism intended to support
1544runtime-introspection-like functionality for managed languages. While
1545the exact semantics of an operand bundle depend on the bundle tag,
1546there are certain limitations to how much the presence of an operand
1547bundle can influence the semantics of a program. These restrictions
1548are described as the semantics of an "unknown" operand bundle. As
1549long as the behavior of an operand bundle is describable within these
1550restrictions, LLVM does not need to have special knowledge of the
1551operand bundle to not miscompile programs containing it.
1552
David Majnemer34cacb42015-10-22 01:46:38 +00001553- The bundle operands for an unknown operand bundle escape in unknown
1554 ways before control is transferred to the callee or invokee.
1555- Calls and invokes with operand bundles have unknown read / write
1556 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001557 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001558 callsite specific attributes.
1559- An operand bundle at a call site cannot change the implementation
1560 of the called function. Inter-procedural optimizations work as
1561 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001562
Sanjoy Dascdafd842015-11-11 21:38:02 +00001563More specific types of operand bundles are described below.
1564
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001565.. _deopt_opbundles:
1566
Sanjoy Dascdafd842015-11-11 21:38:02 +00001567Deoptimization Operand Bundles
1568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1569
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001570Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001571operand bundle tag. These operand bundles represent an alternate
1572"safe" continuation for the call site they're attached to, and can be
1573used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001574specified call site. There can be at most one ``"deopt"`` operand
1575bundle attached to a call site. Exact details of deoptimization is
1576out of scope for the language reference, but it usually involves
1577rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001578
1579From the compiler's perspective, deoptimization operand bundles make
1580the call sites they're attached to at least ``readonly``. They read
1581through all of their pointer typed operands (even if they're not
1582otherwise escaped) and the entire visible heap. Deoptimization
1583operand bundles do not capture their operands except during
1584deoptimization, in which case control will not be returned to the
1585compiled frame.
1586
Sanjoy Das2d161452015-11-18 06:23:38 +00001587The inliner knows how to inline through calls that have deoptimization
1588operand bundles. Just like inlining through a normal call site
1589involves composing the normal and exceptional continuations, inlining
1590through a call site with a deoptimization operand bundle needs to
1591appropriately compose the "safe" deoptimization continuation. The
1592inliner does this by prepending the parent's deoptimization
1593continuation to every deoptimization continuation in the inlined body.
1594E.g. inlining ``@f`` into ``@g`` in the following example
1595
1596.. code-block:: llvm
1597
1598 define void @f() {
1599 call void @x() ;; no deopt state
1600 call void @y() [ "deopt"(i32 10) ]
1601 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1602 ret void
1603 }
1604
1605 define void @g() {
1606 call void @f() [ "deopt"(i32 20) ]
1607 ret void
1608 }
1609
1610will result in
1611
1612.. code-block:: llvm
1613
1614 define void @g() {
1615 call void @x() ;; still no deopt state
1616 call void @y() [ "deopt"(i32 20, i32 10) ]
1617 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1618 ret void
1619 }
1620
1621It is the frontend's responsibility to structure or encode the
1622deoptimization state in a way that syntactically prepending the
1623caller's deoptimization state to the callee's deoptimization state is
1624semantically equivalent to composing the caller's deoptimization
1625continuation after the callee's deoptimization continuation.
1626
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001627.. _ob_funclet:
1628
David Majnemer3bb88c02015-12-15 21:27:27 +00001629Funclet Operand Bundles
1630^^^^^^^^^^^^^^^^^^^^^^^
1631
1632Funclet operand bundles are characterized by the ``"funclet"``
1633operand bundle tag. These operand bundles indicate that a call site
1634is within a particular funclet. There can be at most one
1635``"funclet"`` operand bundle attached to a call site and it must have
1636exactly one bundle operand.
1637
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001638If any funclet EH pads have been "entered" but not "exited" (per the
1639`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1640it is undefined behavior to execute a ``call`` or ``invoke`` which:
1641
1642* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1643 intrinsic, or
1644* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1645 not-yet-exited funclet EH pad.
1646
1647Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1648executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1649
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001650GC Transition Operand Bundles
1651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1652
1653GC transition operand bundles are characterized by the
1654``"gc-transition"`` operand bundle tag. These operand bundles mark a
1655call as a transition between a function with one GC strategy to a
1656function with a different GC strategy. If coordinating the transition
1657between GC strategies requires additional code generation at the call
1658site, these bundles may contain any values that are needed by the
1659generated code. For more details, see :ref:`GC Transitions
1660<gc_transition_args>`.
1661
Sean Silvab084af42012-12-07 10:36:55 +00001662.. _moduleasm:
1663
1664Module-Level Inline Assembly
1665----------------------------
1666
1667Modules may contain "module-level inline asm" blocks, which corresponds
1668to the GCC "file scope inline asm" blocks. These blocks are internally
1669concatenated by LLVM and treated as a single unit, but may be separated
1670in the ``.ll`` file if desired. The syntax is very simple:
1671
1672.. code-block:: llvm
1673
1674 module asm "inline asm code goes here"
1675 module asm "more can go here"
1676
1677The strings can contain any character by escaping non-printable
1678characters. The escape sequence used is simply "\\xx" where "xx" is the
1679two digit hex code for the number.
1680
James Y Knightbc832ed2015-07-08 18:08:36 +00001681Note that the assembly string *must* be parseable by LLVM's integrated assembler
1682(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001683
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001684.. _langref_datalayout:
1685
Sean Silvab084af42012-12-07 10:36:55 +00001686Data Layout
1687-----------
1688
1689A module may specify a target specific data layout string that specifies
1690how data is to be laid out in memory. The syntax for the data layout is
1691simply:
1692
1693.. code-block:: llvm
1694
1695 target datalayout = "layout specification"
1696
1697The *layout specification* consists of a list of specifications
1698separated by the minus sign character ('-'). Each specification starts
1699with a letter and may include other information after the letter to
1700define some aspect of the data layout. The specifications accepted are
1701as follows:
1702
1703``E``
1704 Specifies that the target lays out data in big-endian form. That is,
1705 the bits with the most significance have the lowest address
1706 location.
1707``e``
1708 Specifies that the target lays out data in little-endian form. That
1709 is, the bits with the least significance have the lowest address
1710 location.
1711``S<size>``
1712 Specifies the natural alignment of the stack in bits. Alignment
1713 promotion of stack variables is limited to the natural stack
1714 alignment to avoid dynamic stack realignment. The stack alignment
1715 must be a multiple of 8-bits. If omitted, the natural stack
1716 alignment defaults to "unspecified", which does not prevent any
1717 alignment promotions.
1718``p[n]:<size>:<abi>:<pref>``
1719 This specifies the *size* of a pointer and its ``<abi>`` and
1720 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001721 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001722 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001723 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001724``i<size>:<abi>:<pref>``
1725 This specifies the alignment for an integer type of a given bit
1726 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1727``v<size>:<abi>:<pref>``
1728 This specifies the alignment for a vector type of a given bit
1729 ``<size>``.
1730``f<size>:<abi>:<pref>``
1731 This specifies the alignment for a floating point type of a given bit
1732 ``<size>``. Only values of ``<size>`` that are supported by the target
1733 will work. 32 (float) and 64 (double) are supported on all targets; 80
1734 or 128 (different flavors of long double) are also supported on some
1735 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001736``a:<abi>:<pref>``
1737 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001738``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001739 If present, specifies that llvm names are mangled in the output. The
1740 options are
1741
1742 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1743 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1744 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1745 symbols get a ``_`` prefix.
1746 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1747 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001748 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1749 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001750``n<size1>:<size2>:<size3>...``
1751 This specifies a set of native integer widths for the target CPU in
1752 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1753 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1754 this set are considered to support most general arithmetic operations
1755 efficiently.
1756
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001757On every specification that takes a ``<abi>:<pref>``, specifying the
1758``<pref>`` alignment is optional. If omitted, the preceding ``:``
1759should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1760
Sean Silvab084af42012-12-07 10:36:55 +00001761When constructing the data layout for a given target, LLVM starts with a
1762default set of specifications which are then (possibly) overridden by
1763the specifications in the ``datalayout`` keyword. The default
1764specifications are given in this list:
1765
1766- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001767- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1768- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1769 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001770- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001771- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1772- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1773- ``i16:16:16`` - i16 is 16-bit aligned
1774- ``i32:32:32`` - i32 is 32-bit aligned
1775- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1776 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001777- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001778- ``f32:32:32`` - float is 32-bit aligned
1779- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001780- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001781- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1782- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001783- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001784
1785When LLVM is determining the alignment for a given type, it uses the
1786following rules:
1787
1788#. If the type sought is an exact match for one of the specifications,
1789 that specification is used.
1790#. If no match is found, and the type sought is an integer type, then
1791 the smallest integer type that is larger than the bitwidth of the
1792 sought type is used. If none of the specifications are larger than
1793 the bitwidth then the largest integer type is used. For example,
1794 given the default specifications above, the i7 type will use the
1795 alignment of i8 (next largest) while both i65 and i256 will use the
1796 alignment of i64 (largest specified).
1797#. If no match is found, and the type sought is a vector type, then the
1798 largest vector type that is smaller than the sought vector type will
1799 be used as a fall back. This happens because <128 x double> can be
1800 implemented in terms of 64 <2 x double>, for example.
1801
1802The function of the data layout string may not be what you expect.
1803Notably, this is not a specification from the frontend of what alignment
1804the code generator should use.
1805
1806Instead, if specified, the target data layout is required to match what
1807the ultimate *code generator* expects. This string is used by the
1808mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001809what the ultimate code generator uses. There is no way to generate IR
1810that does not embed this target-specific detail into the IR. If you
1811don't specify the string, the default specifications will be used to
1812generate a Data Layout and the optimization phases will operate
1813accordingly and introduce target specificity into the IR with respect to
1814these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001815
Bill Wendling5cc90842013-10-18 23:41:25 +00001816.. _langref_triple:
1817
1818Target Triple
1819-------------
1820
1821A module may specify a target triple string that describes the target
1822host. The syntax for the target triple is simply:
1823
1824.. code-block:: llvm
1825
1826 target triple = "x86_64-apple-macosx10.7.0"
1827
1828The *target triple* string consists of a series of identifiers delimited
1829by the minus sign character ('-'). The canonical forms are:
1830
1831::
1832
1833 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1834 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1835
1836This information is passed along to the backend so that it generates
1837code for the proper architecture. It's possible to override this on the
1838command line with the ``-mtriple`` command line option.
1839
Sean Silvab084af42012-12-07 10:36:55 +00001840.. _pointeraliasing:
1841
1842Pointer Aliasing Rules
1843----------------------
1844
1845Any memory access must be done through a pointer value associated with
1846an address range of the memory access, otherwise the behavior is
1847undefined. Pointer values are associated with address ranges according
1848to the following rules:
1849
1850- A pointer value is associated with the addresses associated with any
1851 value it is *based* on.
1852- An address of a global variable is associated with the address range
1853 of the variable's storage.
1854- The result value of an allocation instruction is associated with the
1855 address range of the allocated storage.
1856- A null pointer in the default address-space is associated with no
1857 address.
1858- An integer constant other than zero or a pointer value returned from
1859 a function not defined within LLVM may be associated with address
1860 ranges allocated through mechanisms other than those provided by
1861 LLVM. Such ranges shall not overlap with any ranges of addresses
1862 allocated by mechanisms provided by LLVM.
1863
1864A pointer value is *based* on another pointer value according to the
1865following rules:
1866
1867- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001868 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001869- The result value of a ``bitcast`` is *based* on the operand of the
1870 ``bitcast``.
1871- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1872 values that contribute (directly or indirectly) to the computation of
1873 the pointer's value.
1874- The "*based* on" relationship is transitive.
1875
1876Note that this definition of *"based"* is intentionally similar to the
1877definition of *"based"* in C99, though it is slightly weaker.
1878
1879LLVM IR does not associate types with memory. The result type of a
1880``load`` merely indicates the size and alignment of the memory from
1881which to load, as well as the interpretation of the value. The first
1882operand type of a ``store`` similarly only indicates the size and
1883alignment of the store.
1884
1885Consequently, type-based alias analysis, aka TBAA, aka
1886``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1887:ref:`Metadata <metadata>` may be used to encode additional information
1888which specialized optimization passes may use to implement type-based
1889alias analysis.
1890
1891.. _volatile:
1892
1893Volatile Memory Accesses
1894------------------------
1895
1896Certain memory accesses, such as :ref:`load <i_load>`'s,
1897:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1898marked ``volatile``. The optimizers must not change the number of
1899volatile operations or change their order of execution relative to other
1900volatile operations. The optimizers *may* change the order of volatile
1901operations relative to non-volatile operations. This is not Java's
1902"volatile" and has no cross-thread synchronization behavior.
1903
Andrew Trick89fc5a62013-01-30 21:19:35 +00001904IR-level volatile loads and stores cannot safely be optimized into
1905llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1906flagged volatile. Likewise, the backend should never split or merge
1907target-legal volatile load/store instructions.
1908
Andrew Trick7e6f9282013-01-31 00:49:39 +00001909.. admonition:: Rationale
1910
1911 Platforms may rely on volatile loads and stores of natively supported
1912 data width to be executed as single instruction. For example, in C
1913 this holds for an l-value of volatile primitive type with native
1914 hardware support, but not necessarily for aggregate types. The
1915 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001916 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001917 do not violate the frontend's contract with the language.
1918
Sean Silvab084af42012-12-07 10:36:55 +00001919.. _memmodel:
1920
1921Memory Model for Concurrent Operations
1922--------------------------------------
1923
1924The LLVM IR does not define any way to start parallel threads of
1925execution or to register signal handlers. Nonetheless, there are
1926platform-specific ways to create them, and we define LLVM IR's behavior
1927in their presence. This model is inspired by the C++0x memory model.
1928
1929For a more informal introduction to this model, see the :doc:`Atomics`.
1930
1931We define a *happens-before* partial order as the least partial order
1932that
1933
1934- Is a superset of single-thread program order, and
1935- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1936 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1937 techniques, like pthread locks, thread creation, thread joining,
1938 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1939 Constraints <ordering>`).
1940
1941Note that program order does not introduce *happens-before* edges
1942between a thread and signals executing inside that thread.
1943
1944Every (defined) read operation (load instructions, memcpy, atomic
1945loads/read-modify-writes, etc.) R reads a series of bytes written by
1946(defined) write operations (store instructions, atomic
1947stores/read-modify-writes, memcpy, etc.). For the purposes of this
1948section, initialized globals are considered to have a write of the
1949initializer which is atomic and happens before any other read or write
1950of the memory in question. For each byte of a read R, R\ :sub:`byte`
1951may see any write to the same byte, except:
1952
1953- If write\ :sub:`1` happens before write\ :sub:`2`, and
1954 write\ :sub:`2` happens before R\ :sub:`byte`, then
1955 R\ :sub:`byte` does not see write\ :sub:`1`.
1956- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1957 R\ :sub:`byte` does not see write\ :sub:`3`.
1958
1959Given that definition, R\ :sub:`byte` is defined as follows:
1960
1961- If R is volatile, the result is target-dependent. (Volatile is
1962 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001963 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001964 like normal memory. It does not generally provide cross-thread
1965 synchronization.)
1966- Otherwise, if there is no write to the same byte that happens before
1967 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1968- Otherwise, if R\ :sub:`byte` may see exactly one write,
1969 R\ :sub:`byte` returns the value written by that write.
1970- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1971 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1972 Memory Ordering Constraints <ordering>` section for additional
1973 constraints on how the choice is made.
1974- Otherwise R\ :sub:`byte` returns ``undef``.
1975
1976R returns the value composed of the series of bytes it read. This
1977implies that some bytes within the value may be ``undef`` **without**
1978the entire value being ``undef``. Note that this only defines the
1979semantics of the operation; it doesn't mean that targets will emit more
1980than one instruction to read the series of bytes.
1981
1982Note that in cases where none of the atomic intrinsics are used, this
1983model places only one restriction on IR transformations on top of what
1984is required for single-threaded execution: introducing a store to a byte
1985which might not otherwise be stored is not allowed in general.
1986(Specifically, in the case where another thread might write to and read
1987from an address, introducing a store can change a load that may see
1988exactly one write into a load that may see multiple writes.)
1989
1990.. _ordering:
1991
1992Atomic Memory Ordering Constraints
1993----------------------------------
1994
1995Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1996:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1997:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001998ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001999the same address they *synchronize with*. These semantics are borrowed
2000from Java and C++0x, but are somewhat more colloquial. If these
2001descriptions aren't precise enough, check those specs (see spec
2002references in the :doc:`atomics guide <Atomics>`).
2003:ref:`fence <i_fence>` instructions treat these orderings somewhat
2004differently since they don't take an address. See that instruction's
2005documentation for details.
2006
2007For a simpler introduction to the ordering constraints, see the
2008:doc:`Atomics`.
2009
2010``unordered``
2011 The set of values that can be read is governed by the happens-before
2012 partial order. A value cannot be read unless some operation wrote
2013 it. This is intended to provide a guarantee strong enough to model
2014 Java's non-volatile shared variables. This ordering cannot be
2015 specified for read-modify-write operations; it is not strong enough
2016 to make them atomic in any interesting way.
2017``monotonic``
2018 In addition to the guarantees of ``unordered``, there is a single
2019 total order for modifications by ``monotonic`` operations on each
2020 address. All modification orders must be compatible with the
2021 happens-before order. There is no guarantee that the modification
2022 orders can be combined to a global total order for the whole program
2023 (and this often will not be possible). The read in an atomic
2024 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2025 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2026 order immediately before the value it writes. If one atomic read
2027 happens before another atomic read of the same address, the later
2028 read must see the same value or a later value in the address's
2029 modification order. This disallows reordering of ``monotonic`` (or
2030 stronger) operations on the same address. If an address is written
2031 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2032 read that address repeatedly, the other threads must eventually see
2033 the write. This corresponds to the C++0x/C1x
2034 ``memory_order_relaxed``.
2035``acquire``
2036 In addition to the guarantees of ``monotonic``, a
2037 *synchronizes-with* edge may be formed with a ``release`` operation.
2038 This is intended to model C++'s ``memory_order_acquire``.
2039``release``
2040 In addition to the guarantees of ``monotonic``, if this operation
2041 writes a value which is subsequently read by an ``acquire``
2042 operation, it *synchronizes-with* that operation. (This isn't a
2043 complete description; see the C++0x definition of a release
2044 sequence.) This corresponds to the C++0x/C1x
2045 ``memory_order_release``.
2046``acq_rel`` (acquire+release)
2047 Acts as both an ``acquire`` and ``release`` operation on its
2048 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2049``seq_cst`` (sequentially consistent)
2050 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002051 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002052 writes), there is a global total order on all
2053 sequentially-consistent operations on all addresses, which is
2054 consistent with the *happens-before* partial order and with the
2055 modification orders of all the affected addresses. Each
2056 sequentially-consistent read sees the last preceding write to the
2057 same address in this global order. This corresponds to the C++0x/C1x
2058 ``memory_order_seq_cst`` and Java volatile.
2059
2060.. _singlethread:
2061
2062If an atomic operation is marked ``singlethread``, it only *synchronizes
2063with* or participates in modification and seq\_cst total orderings with
2064other operations running in the same thread (for example, in signal
2065handlers).
2066
2067.. _fastmath:
2068
2069Fast-Math Flags
2070---------------
2071
2072LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2073:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002074:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2075be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002076
2077``nnan``
2078 No NaNs - Allow optimizations to assume the arguments and result are not
2079 NaN. Such optimizations are required to retain defined behavior over
2080 NaNs, but the value of the result is undefined.
2081
2082``ninf``
2083 No Infs - Allow optimizations to assume the arguments and result are not
2084 +/-Inf. Such optimizations are required to retain defined behavior over
2085 +/-Inf, but the value of the result is undefined.
2086
2087``nsz``
2088 No Signed Zeros - Allow optimizations to treat the sign of a zero
2089 argument or result as insignificant.
2090
2091``arcp``
2092 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2093 argument rather than perform division.
2094
2095``fast``
2096 Fast - Allow algebraically equivalent transformations that may
2097 dramatically change results in floating point (e.g. reassociate). This
2098 flag implies all the others.
2099
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002100.. _uselistorder:
2101
2102Use-list Order Directives
2103-------------------------
2104
2105Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002106order to be recreated. ``<order-indexes>`` is a comma-separated list of
2107indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002108value's use-list is immediately sorted by these indexes.
2109
Sean Silvaa1190322015-08-06 22:56:48 +00002110Use-list directives may appear at function scope or global scope. They are not
2111instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002112function scope, they must appear after the terminator of the final basic block.
2113
2114If basic blocks have their address taken via ``blockaddress()`` expressions,
2115``uselistorder_bb`` can be used to reorder their use-lists from outside their
2116function's scope.
2117
2118:Syntax:
2119
2120::
2121
2122 uselistorder <ty> <value>, { <order-indexes> }
2123 uselistorder_bb @function, %block { <order-indexes> }
2124
2125:Examples:
2126
2127::
2128
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002129 define void @foo(i32 %arg1, i32 %arg2) {
2130 entry:
2131 ; ... instructions ...
2132 bb:
2133 ; ... instructions ...
2134
2135 ; At function scope.
2136 uselistorder i32 %arg1, { 1, 0, 2 }
2137 uselistorder label %bb, { 1, 0 }
2138 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002139
2140 ; At global scope.
2141 uselistorder i32* @global, { 1, 2, 0 }
2142 uselistorder i32 7, { 1, 0 }
2143 uselistorder i32 (i32) @bar, { 1, 0 }
2144 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2145
Sean Silvab084af42012-12-07 10:36:55 +00002146.. _typesystem:
2147
2148Type System
2149===========
2150
2151The LLVM type system is one of the most important features of the
2152intermediate representation. Being typed enables a number of
2153optimizations to be performed on the intermediate representation
2154directly, without having to do extra analyses on the side before the
2155transformation. A strong type system makes it easier to read the
2156generated code and enables novel analyses and transformations that are
2157not feasible to perform on normal three address code representations.
2158
Rafael Espindola08013342013-12-07 19:34:20 +00002159.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002160
Rafael Espindola08013342013-12-07 19:34:20 +00002161Void Type
2162---------
Sean Silvab084af42012-12-07 10:36:55 +00002163
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002164:Overview:
2165
Rafael Espindola08013342013-12-07 19:34:20 +00002166
2167The void type does not represent any value and has no size.
2168
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002169:Syntax:
2170
Rafael Espindola08013342013-12-07 19:34:20 +00002171
2172::
2173
2174 void
Sean Silvab084af42012-12-07 10:36:55 +00002175
2176
Rafael Espindola08013342013-12-07 19:34:20 +00002177.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002178
Rafael Espindola08013342013-12-07 19:34:20 +00002179Function Type
2180-------------
Sean Silvab084af42012-12-07 10:36:55 +00002181
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002182:Overview:
2183
Sean Silvab084af42012-12-07 10:36:55 +00002184
Rafael Espindola08013342013-12-07 19:34:20 +00002185The function type can be thought of as a function signature. It consists of a
2186return type and a list of formal parameter types. The return type of a function
2187type is a void type or first class type --- except for :ref:`label <t_label>`
2188and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002189
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002190:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002191
Rafael Espindola08013342013-12-07 19:34:20 +00002192::
Sean Silvab084af42012-12-07 10:36:55 +00002193
Rafael Espindola08013342013-12-07 19:34:20 +00002194 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002195
Rafael Espindola08013342013-12-07 19:34:20 +00002196...where '``<parameter list>``' is a comma-separated list of type
2197specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002198indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002199argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002200handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002201except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002202
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002203:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002204
Rafael Espindola08013342013-12-07 19:34:20 +00002205+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2206| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2207+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2208| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2209+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2210| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2211+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2212| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2213+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2214
2215.. _t_firstclass:
2216
2217First Class Types
2218-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002219
2220The :ref:`first class <t_firstclass>` types are perhaps the most important.
2221Values of these types are the only ones which can be produced by
2222instructions.
2223
Rafael Espindola08013342013-12-07 19:34:20 +00002224.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002225
Rafael Espindola08013342013-12-07 19:34:20 +00002226Single Value Types
2227^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002228
Rafael Espindola08013342013-12-07 19:34:20 +00002229These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002230
2231.. _t_integer:
2232
2233Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002234""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002235
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002236:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002237
2238The integer type is a very simple type that simply specifies an
2239arbitrary bit width for the integer type desired. Any bit width from 1
2240bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2241
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002242:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002243
2244::
2245
2246 iN
2247
2248The number of bits the integer will occupy is specified by the ``N``
2249value.
2250
2251Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002252*********
Sean Silvab084af42012-12-07 10:36:55 +00002253
2254+----------------+------------------------------------------------+
2255| ``i1`` | a single-bit integer. |
2256+----------------+------------------------------------------------+
2257| ``i32`` | a 32-bit integer. |
2258+----------------+------------------------------------------------+
2259| ``i1942652`` | a really big integer of over 1 million bits. |
2260+----------------+------------------------------------------------+
2261
2262.. _t_floating:
2263
2264Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002265""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002266
2267.. list-table::
2268 :header-rows: 1
2269
2270 * - Type
2271 - Description
2272
2273 * - ``half``
2274 - 16-bit floating point value
2275
2276 * - ``float``
2277 - 32-bit floating point value
2278
2279 * - ``double``
2280 - 64-bit floating point value
2281
2282 * - ``fp128``
2283 - 128-bit floating point value (112-bit mantissa)
2284
2285 * - ``x86_fp80``
2286 - 80-bit floating point value (X87)
2287
2288 * - ``ppc_fp128``
2289 - 128-bit floating point value (two 64-bits)
2290
Reid Kleckner9a16d082014-03-05 02:41:37 +00002291X86_mmx Type
2292""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002293
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002294:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002295
Reid Kleckner9a16d082014-03-05 02:41:37 +00002296The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002297machine. The operations allowed on it are quite limited: parameters and
2298return values, load and store, and bitcast. User-specified MMX
2299instructions are represented as intrinsic or asm calls with arguments
2300and/or results of this type. There are no arrays, vectors or constants
2301of this type.
2302
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002303:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002304
2305::
2306
Reid Kleckner9a16d082014-03-05 02:41:37 +00002307 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002308
Sean Silvab084af42012-12-07 10:36:55 +00002309
Rafael Espindola08013342013-12-07 19:34:20 +00002310.. _t_pointer:
2311
2312Pointer Type
2313""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002314
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002315:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002316
Rafael Espindola08013342013-12-07 19:34:20 +00002317The pointer type is used to specify memory locations. Pointers are
2318commonly used to reference objects in memory.
2319
2320Pointer types may have an optional address space attribute defining the
2321numbered address space where the pointed-to object resides. The default
2322address space is number zero. The semantics of non-zero address spaces
2323are target-specific.
2324
2325Note that LLVM does not permit pointers to void (``void*``) nor does it
2326permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002327
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002328:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002329
2330::
2331
Rafael Espindola08013342013-12-07 19:34:20 +00002332 <type> *
2333
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002334:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002335
2336+-------------------------+--------------------------------------------------------------------------------------------------------------+
2337| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2338+-------------------------+--------------------------------------------------------------------------------------------------------------+
2339| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2340+-------------------------+--------------------------------------------------------------------------------------------------------------+
2341| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2342+-------------------------+--------------------------------------------------------------------------------------------------------------+
2343
2344.. _t_vector:
2345
2346Vector Type
2347"""""""""""
2348
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002349:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002350
2351A vector type is a simple derived type that represents a vector of
2352elements. Vector types are used when multiple primitive data are
2353operated in parallel using a single instruction (SIMD). A vector type
2354requires a size (number of elements) and an underlying primitive data
2355type. Vector types are considered :ref:`first class <t_firstclass>`.
2356
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002357:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002358
2359::
2360
2361 < <# elements> x <elementtype> >
2362
2363The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002364elementtype may be any integer, floating point or pointer type. Vectors
2365of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002366
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002367:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002368
2369+-------------------+--------------------------------------------------+
2370| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2371+-------------------+--------------------------------------------------+
2372| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2373+-------------------+--------------------------------------------------+
2374| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2375+-------------------+--------------------------------------------------+
2376| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2377+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002378
2379.. _t_label:
2380
2381Label Type
2382^^^^^^^^^^
2383
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002384:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002385
2386The label type represents code labels.
2387
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002388:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002389
2390::
2391
2392 label
2393
David Majnemerb611e3f2015-08-14 05:09:07 +00002394.. _t_token:
2395
2396Token Type
2397^^^^^^^^^^
2398
2399:Overview:
2400
2401The token type is used when a value is associated with an instruction
2402but all uses of the value must not attempt to introspect or obscure it.
2403As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2404:ref:`select <i_select>` of type token.
2405
2406:Syntax:
2407
2408::
2409
2410 token
2411
2412
2413
Sean Silvab084af42012-12-07 10:36:55 +00002414.. _t_metadata:
2415
2416Metadata Type
2417^^^^^^^^^^^^^
2418
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002419:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002420
2421The metadata type represents embedded metadata. No derived types may be
2422created from metadata except for :ref:`function <t_function>` arguments.
2423
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002424:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002425
2426::
2427
2428 metadata
2429
Sean Silvab084af42012-12-07 10:36:55 +00002430.. _t_aggregate:
2431
2432Aggregate Types
2433^^^^^^^^^^^^^^^
2434
2435Aggregate Types are a subset of derived types that can contain multiple
2436member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2437aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2438aggregate types.
2439
2440.. _t_array:
2441
2442Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002443""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002444
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002445:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002446
2447The array type is a very simple derived type that arranges elements
2448sequentially in memory. The array type requires a size (number of
2449elements) and an underlying data type.
2450
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002451:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002452
2453::
2454
2455 [<# elements> x <elementtype>]
2456
2457The number of elements is a constant integer value; ``elementtype`` may
2458be any type with a size.
2459
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002460:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002461
2462+------------------+--------------------------------------+
2463| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2464+------------------+--------------------------------------+
2465| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2466+------------------+--------------------------------------+
2467| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2468+------------------+--------------------------------------+
2469
2470Here are some examples of multidimensional arrays:
2471
2472+-----------------------------+----------------------------------------------------------+
2473| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2474+-----------------------------+----------------------------------------------------------+
2475| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2476+-----------------------------+----------------------------------------------------------+
2477| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2478+-----------------------------+----------------------------------------------------------+
2479
2480There is no restriction on indexing beyond the end of the array implied
2481by a static type (though there are restrictions on indexing beyond the
2482bounds of an allocated object in some cases). This means that
2483single-dimension 'variable sized array' addressing can be implemented in
2484LLVM with a zero length array type. An implementation of 'pascal style
2485arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2486example.
2487
Sean Silvab084af42012-12-07 10:36:55 +00002488.. _t_struct:
2489
2490Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002491""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002492
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002493:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002494
2495The structure type is used to represent a collection of data members
2496together in memory. The elements of a structure may be any type that has
2497a size.
2498
2499Structures in memory are accessed using '``load``' and '``store``' by
2500getting a pointer to a field with the '``getelementptr``' instruction.
2501Structures in registers are accessed using the '``extractvalue``' and
2502'``insertvalue``' instructions.
2503
2504Structures may optionally be "packed" structures, which indicate that
2505the alignment of the struct is one byte, and that there is no padding
2506between the elements. In non-packed structs, padding between field types
2507is inserted as defined by the DataLayout string in the module, which is
2508required to match what the underlying code generator expects.
2509
2510Structures can either be "literal" or "identified". A literal structure
2511is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2512identified types are always defined at the top level with a name.
2513Literal types are uniqued by their contents and can never be recursive
2514or opaque since there is no way to write one. Identified types can be
2515recursive, can be opaqued, and are never uniqued.
2516
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002517:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002518
2519::
2520
2521 %T1 = type { <type list> } ; Identified normal struct type
2522 %T2 = type <{ <type list> }> ; Identified packed struct type
2523
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002524:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002525
2526+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2527| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2528+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002529| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002530+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2531| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2532+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2533
2534.. _t_opaque:
2535
2536Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002537""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002538
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002539:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002540
2541Opaque structure types are used to represent named structure types that
2542do not have a body specified. This corresponds (for example) to the C
2543notion of a forward declared structure.
2544
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002545:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002546
2547::
2548
2549 %X = type opaque
2550 %52 = type opaque
2551
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002552:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002553
2554+--------------+-------------------+
2555| ``opaque`` | An opaque type. |
2556+--------------+-------------------+
2557
Sean Silva1703e702014-04-08 21:06:22 +00002558.. _constants:
2559
Sean Silvab084af42012-12-07 10:36:55 +00002560Constants
2561=========
2562
2563LLVM has several different basic types of constants. This section
2564describes them all and their syntax.
2565
2566Simple Constants
2567----------------
2568
2569**Boolean constants**
2570 The two strings '``true``' and '``false``' are both valid constants
2571 of the ``i1`` type.
2572**Integer constants**
2573 Standard integers (such as '4') are constants of the
2574 :ref:`integer <t_integer>` type. Negative numbers may be used with
2575 integer types.
2576**Floating point constants**
2577 Floating point constants use standard decimal notation (e.g.
2578 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2579 hexadecimal notation (see below). The assembler requires the exact
2580 decimal value of a floating-point constant. For example, the
2581 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2582 decimal in binary. Floating point constants must have a :ref:`floating
2583 point <t_floating>` type.
2584**Null pointer constants**
2585 The identifier '``null``' is recognized as a null pointer constant
2586 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002587**Token constants**
2588 The identifier '``none``' is recognized as an empty token constant
2589 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002590
2591The one non-intuitive notation for constants is the hexadecimal form of
2592floating point constants. For example, the form
2593'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2594than) '``double 4.5e+15``'. The only time hexadecimal floating point
2595constants are required (and the only time that they are generated by the
2596disassembler) is when a floating point constant must be emitted but it
2597cannot be represented as a decimal floating point number in a reasonable
2598number of digits. For example, NaN's, infinities, and other special
2599values are represented in their IEEE hexadecimal format so that assembly
2600and disassembly do not cause any bits to change in the constants.
2601
2602When using the hexadecimal form, constants of types half, float, and
2603double are represented using the 16-digit form shown above (which
2604matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002605must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002606precision, respectively. Hexadecimal format is always used for long
2607double, and there are three forms of long double. The 80-bit format used
2608by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2609128-bit format used by PowerPC (two adjacent doubles) is represented by
2610``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002611represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2612will only work if they match the long double format on your target.
2613The IEEE 16-bit format (half precision) is represented by ``0xH``
2614followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2615(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002616
Reid Kleckner9a16d082014-03-05 02:41:37 +00002617There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002618
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002619.. _complexconstants:
2620
Sean Silvab084af42012-12-07 10:36:55 +00002621Complex Constants
2622-----------------
2623
2624Complex constants are a (potentially recursive) combination of simple
2625constants and smaller complex constants.
2626
2627**Structure constants**
2628 Structure constants are represented with notation similar to
2629 structure type definitions (a comma separated list of elements,
2630 surrounded by braces (``{}``)). For example:
2631 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2632 "``@G = external global i32``". Structure constants must have
2633 :ref:`structure type <t_struct>`, and the number and types of elements
2634 must match those specified by the type.
2635**Array constants**
2636 Array constants are represented with notation similar to array type
2637 definitions (a comma separated list of elements, surrounded by
2638 square brackets (``[]``)). For example:
2639 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2640 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002641 match those specified by the type. As a special case, character array
2642 constants may also be represented as a double-quoted string using the ``c``
2643 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002644**Vector constants**
2645 Vector constants are represented with notation similar to vector
2646 type definitions (a comma separated list of elements, surrounded by
2647 less-than/greater-than's (``<>``)). For example:
2648 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2649 must have :ref:`vector type <t_vector>`, and the number and types of
2650 elements must match those specified by the type.
2651**Zero initialization**
2652 The string '``zeroinitializer``' can be used to zero initialize a
2653 value to zero of *any* type, including scalar and
2654 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2655 having to print large zero initializers (e.g. for large arrays) and
2656 is always exactly equivalent to using explicit zero initializers.
2657**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002658 A metadata node is a constant tuple without types. For example:
2659 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002660 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2661 Unlike other typed constants that are meant to be interpreted as part of
2662 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002663 information such as debug info.
2664
2665Global Variable and Function Addresses
2666--------------------------------------
2667
2668The addresses of :ref:`global variables <globalvars>` and
2669:ref:`functions <functionstructure>` are always implicitly valid
2670(link-time) constants. These constants are explicitly referenced when
2671the :ref:`identifier for the global <identifiers>` is used and always have
2672:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2673file:
2674
2675.. code-block:: llvm
2676
2677 @X = global i32 17
2678 @Y = global i32 42
2679 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2680
2681.. _undefvalues:
2682
2683Undefined Values
2684----------------
2685
2686The string '``undef``' can be used anywhere a constant is expected, and
2687indicates that the user of the value may receive an unspecified
2688bit-pattern. Undefined values may be of any type (other than '``label``'
2689or '``void``') and be used anywhere a constant is permitted.
2690
2691Undefined values are useful because they indicate to the compiler that
2692the program is well defined no matter what value is used. This gives the
2693compiler more freedom to optimize. Here are some examples of
2694(potentially surprising) transformations that are valid (in pseudo IR):
2695
2696.. code-block:: llvm
2697
2698 %A = add %X, undef
2699 %B = sub %X, undef
2700 %C = xor %X, undef
2701 Safe:
2702 %A = undef
2703 %B = undef
2704 %C = undef
2705
2706This is safe because all of the output bits are affected by the undef
2707bits. Any output bit can have a zero or one depending on the input bits.
2708
2709.. code-block:: llvm
2710
2711 %A = or %X, undef
2712 %B = and %X, undef
2713 Safe:
2714 %A = -1
2715 %B = 0
2716 Unsafe:
2717 %A = undef
2718 %B = undef
2719
2720These logical operations have bits that are not always affected by the
2721input. For example, if ``%X`` has a zero bit, then the output of the
2722'``and``' operation will always be a zero for that bit, no matter what
2723the corresponding bit from the '``undef``' is. As such, it is unsafe to
2724optimize or assume that the result of the '``and``' is '``undef``'.
2725However, it is safe to assume that all bits of the '``undef``' could be
27260, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2727all the bits of the '``undef``' operand to the '``or``' could be set,
2728allowing the '``or``' to be folded to -1.
2729
2730.. code-block:: llvm
2731
2732 %A = select undef, %X, %Y
2733 %B = select undef, 42, %Y
2734 %C = select %X, %Y, undef
2735 Safe:
2736 %A = %X (or %Y)
2737 %B = 42 (or %Y)
2738 %C = %Y
2739 Unsafe:
2740 %A = undef
2741 %B = undef
2742 %C = undef
2743
2744This set of examples shows that undefined '``select``' (and conditional
2745branch) conditions can go *either way*, but they have to come from one
2746of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2747both known to have a clear low bit, then ``%A`` would have to have a
2748cleared low bit. However, in the ``%C`` example, the optimizer is
2749allowed to assume that the '``undef``' operand could be the same as
2750``%Y``, allowing the whole '``select``' to be eliminated.
2751
2752.. code-block:: llvm
2753
2754 %A = xor undef, undef
2755
2756 %B = undef
2757 %C = xor %B, %B
2758
2759 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002760 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002761 %F = icmp gte %D, 4
2762
2763 Safe:
2764 %A = undef
2765 %B = undef
2766 %C = undef
2767 %D = undef
2768 %E = undef
2769 %F = undef
2770
2771This example points out that two '``undef``' operands are not
2772necessarily the same. This can be surprising to people (and also matches
2773C semantics) where they assume that "``X^X``" is always zero, even if
2774``X`` is undefined. This isn't true for a number of reasons, but the
2775short answer is that an '``undef``' "variable" can arbitrarily change
2776its value over its "live range". This is true because the variable
2777doesn't actually *have a live range*. Instead, the value is logically
2778read from arbitrary registers that happen to be around when needed, so
2779the value is not necessarily consistent over time. In fact, ``%A`` and
2780``%C`` need to have the same semantics or the core LLVM "replace all
2781uses with" concept would not hold.
2782
2783.. code-block:: llvm
2784
2785 %A = fdiv undef, %X
2786 %B = fdiv %X, undef
2787 Safe:
2788 %A = undef
2789 b: unreachable
2790
2791These examples show the crucial difference between an *undefined value*
2792and *undefined behavior*. An undefined value (like '``undef``') is
2793allowed to have an arbitrary bit-pattern. This means that the ``%A``
2794operation can be constant folded to '``undef``', because the '``undef``'
2795could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2796However, in the second example, we can make a more aggressive
2797assumption: because the ``undef`` is allowed to be an arbitrary value,
2798we are allowed to assume that it could be zero. Since a divide by zero
2799has *undefined behavior*, we are allowed to assume that the operation
2800does not execute at all. This allows us to delete the divide and all
2801code after it. Because the undefined operation "can't happen", the
2802optimizer can assume that it occurs in dead code.
2803
2804.. code-block:: llvm
2805
2806 a: store undef -> %X
2807 b: store %X -> undef
2808 Safe:
2809 a: <deleted>
2810 b: unreachable
2811
2812These examples reiterate the ``fdiv`` example: a store *of* an undefined
2813value can be assumed to not have any effect; we can assume that the
2814value is overwritten with bits that happen to match what was already
2815there. However, a store *to* an undefined location could clobber
2816arbitrary memory, therefore, it has undefined behavior.
2817
2818.. _poisonvalues:
2819
2820Poison Values
2821-------------
2822
2823Poison values are similar to :ref:`undef values <undefvalues>`, however
2824they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002825that cannot evoke side effects has nevertheless detected a condition
2826that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002827
2828There is currently no way of representing a poison value in the IR; they
2829only exist when produced by operations such as :ref:`add <i_add>` with
2830the ``nsw`` flag.
2831
2832Poison value behavior is defined in terms of value *dependence*:
2833
2834- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2835- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2836 their dynamic predecessor basic block.
2837- Function arguments depend on the corresponding actual argument values
2838 in the dynamic callers of their functions.
2839- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2840 instructions that dynamically transfer control back to them.
2841- :ref:`Invoke <i_invoke>` instructions depend on the
2842 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2843 call instructions that dynamically transfer control back to them.
2844- Non-volatile loads and stores depend on the most recent stores to all
2845 of the referenced memory addresses, following the order in the IR
2846 (including loads and stores implied by intrinsics such as
2847 :ref:`@llvm.memcpy <int_memcpy>`.)
2848- An instruction with externally visible side effects depends on the
2849 most recent preceding instruction with externally visible side
2850 effects, following the order in the IR. (This includes :ref:`volatile
2851 operations <volatile>`.)
2852- An instruction *control-depends* on a :ref:`terminator
2853 instruction <terminators>` if the terminator instruction has
2854 multiple successors and the instruction is always executed when
2855 control transfers to one of the successors, and may not be executed
2856 when control is transferred to another.
2857- Additionally, an instruction also *control-depends* on a terminator
2858 instruction if the set of instructions it otherwise depends on would
2859 be different if the terminator had transferred control to a different
2860 successor.
2861- Dependence is transitive.
2862
Richard Smith32dbdf62014-07-31 04:25:36 +00002863Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2864with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002865on a poison value has undefined behavior.
2866
2867Here are some examples:
2868
2869.. code-block:: llvm
2870
2871 entry:
2872 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2873 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002874 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002875 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2876
2877 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002878 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002879
2880 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2881
2882 %narrowaddr = bitcast i32* @g to i16*
2883 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002884 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2885 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002886
2887 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2888 br i1 %cmp, label %true, label %end ; Branch to either destination.
2889
2890 true:
2891 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2892 ; it has undefined behavior.
2893 br label %end
2894
2895 end:
2896 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2897 ; Both edges into this PHI are
2898 ; control-dependent on %cmp, so this
2899 ; always results in a poison value.
2900
2901 store volatile i32 0, i32* @g ; This would depend on the store in %true
2902 ; if %cmp is true, or the store in %entry
2903 ; otherwise, so this is undefined behavior.
2904
2905 br i1 %cmp, label %second_true, label %second_end
2906 ; The same branch again, but this time the
2907 ; true block doesn't have side effects.
2908
2909 second_true:
2910 ; No side effects!
2911 ret void
2912
2913 second_end:
2914 store volatile i32 0, i32* @g ; This time, the instruction always depends
2915 ; on the store in %end. Also, it is
2916 ; control-equivalent to %end, so this is
2917 ; well-defined (ignoring earlier undefined
2918 ; behavior in this example).
2919
2920.. _blockaddress:
2921
2922Addresses of Basic Blocks
2923-------------------------
2924
2925``blockaddress(@function, %block)``
2926
2927The '``blockaddress``' constant computes the address of the specified
2928basic block in the specified function, and always has an ``i8*`` type.
2929Taking the address of the entry block is illegal.
2930
2931This value only has defined behavior when used as an operand to the
2932':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2933against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002934undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002935no label is equal to the null pointer. This may be passed around as an
2936opaque pointer sized value as long as the bits are not inspected. This
2937allows ``ptrtoint`` and arithmetic to be performed on these values so
2938long as the original value is reconstituted before the ``indirectbr``
2939instruction.
2940
2941Finally, some targets may provide defined semantics when using the value
2942as the operand to an inline assembly, but that is target specific.
2943
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002944.. _constantexprs:
2945
Sean Silvab084af42012-12-07 10:36:55 +00002946Constant Expressions
2947--------------------
2948
2949Constant expressions are used to allow expressions involving other
2950constants to be used as constants. Constant expressions may be of any
2951:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2952that does not have side effects (e.g. load and call are not supported).
2953The following is the syntax for constant expressions:
2954
2955``trunc (CST to TYPE)``
2956 Truncate a constant to another type. The bit size of CST must be
2957 larger than the bit size of TYPE. Both types must be integers.
2958``zext (CST to TYPE)``
2959 Zero extend a constant to another type. The bit size of CST must be
2960 smaller than the bit size of TYPE. Both types must be integers.
2961``sext (CST to TYPE)``
2962 Sign extend a constant to another type. The bit size of CST must be
2963 smaller than the bit size of TYPE. Both types must be integers.
2964``fptrunc (CST to TYPE)``
2965 Truncate a floating point constant to another floating point type.
2966 The size of CST must be larger than the size of TYPE. Both types
2967 must be floating point.
2968``fpext (CST to TYPE)``
2969 Floating point extend a constant to another type. The size of CST
2970 must be smaller or equal to the size of TYPE. Both types must be
2971 floating point.
2972``fptoui (CST to TYPE)``
2973 Convert a floating point constant to the corresponding unsigned
2974 integer constant. TYPE must be a scalar or vector integer type. CST
2975 must be of scalar or vector floating point type. Both CST and TYPE
2976 must be scalars, or vectors of the same number of elements. If the
2977 value won't fit in the integer type, the results are undefined.
2978``fptosi (CST to TYPE)``
2979 Convert a floating point constant to the corresponding signed
2980 integer constant. TYPE must be a scalar or vector integer type. CST
2981 must be of scalar or vector floating point type. Both CST and TYPE
2982 must be scalars, or vectors of the same number of elements. If the
2983 value won't fit in the integer type, the results are undefined.
2984``uitofp (CST to TYPE)``
2985 Convert an unsigned integer constant to the corresponding floating
2986 point constant. TYPE must be a scalar or vector floating point type.
2987 CST must be of scalar or vector integer type. Both CST and TYPE must
2988 be scalars, or vectors of the same number of elements. If the value
2989 won't fit in the floating point type, the results are undefined.
2990``sitofp (CST to TYPE)``
2991 Convert a signed integer constant to the corresponding floating
2992 point constant. TYPE must be a scalar or vector floating point type.
2993 CST must be of scalar or vector integer type. Both CST and TYPE must
2994 be scalars, or vectors of the same number of elements. If the value
2995 won't fit in the floating point type, the results are undefined.
2996``ptrtoint (CST to TYPE)``
2997 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002998 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002999 pointer type. The ``CST`` value is zero extended, truncated, or
3000 unchanged to make it fit in ``TYPE``.
3001``inttoptr (CST to TYPE)``
3002 Convert an integer constant to a pointer constant. TYPE must be a
3003 pointer type. CST must be of integer type. The CST value is zero
3004 extended, truncated, or unchanged to make it fit in a pointer size.
3005 This one is *really* dangerous!
3006``bitcast (CST to TYPE)``
3007 Convert a constant, CST, to another TYPE. The constraints of the
3008 operands are the same as those for the :ref:`bitcast
3009 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003010``addrspacecast (CST to TYPE)``
3011 Convert a constant pointer or constant vector of pointer, CST, to another
3012 TYPE in a different address space. The constraints of the operands are the
3013 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003014``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003015 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3016 constants. As with the :ref:`getelementptr <i_getelementptr>`
3017 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003018 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003019``select (COND, VAL1, VAL2)``
3020 Perform the :ref:`select operation <i_select>` on constants.
3021``icmp COND (VAL1, VAL2)``
3022 Performs the :ref:`icmp operation <i_icmp>` on constants.
3023``fcmp COND (VAL1, VAL2)``
3024 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3025``extractelement (VAL, IDX)``
3026 Perform the :ref:`extractelement operation <i_extractelement>` on
3027 constants.
3028``insertelement (VAL, ELT, IDX)``
3029 Perform the :ref:`insertelement operation <i_insertelement>` on
3030 constants.
3031``shufflevector (VEC1, VEC2, IDXMASK)``
3032 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3033 constants.
3034``extractvalue (VAL, IDX0, IDX1, ...)``
3035 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3036 constants. The index list is interpreted in a similar manner as
3037 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3038 least one index value must be specified.
3039``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3040 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3041 The index list is interpreted in a similar manner as indices in a
3042 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3043 value must be specified.
3044``OPCODE (LHS, RHS)``
3045 Perform the specified operation of the LHS and RHS constants. OPCODE
3046 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3047 binary <bitwiseops>` operations. The constraints on operands are
3048 the same as those for the corresponding instruction (e.g. no bitwise
3049 operations on floating point values are allowed).
3050
3051Other Values
3052============
3053
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003054.. _inlineasmexprs:
3055
Sean Silvab084af42012-12-07 10:36:55 +00003056Inline Assembler Expressions
3057----------------------------
3058
3059LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003060Inline Assembly <moduleasm>`) through the use of a special value. This value
3061represents the inline assembler as a template string (containing the
3062instructions to emit), a list of operand constraints (stored as a string), a
3063flag that indicates whether or not the inline asm expression has side effects,
3064and a flag indicating whether the function containing the asm needs to align its
3065stack conservatively.
3066
3067The template string supports argument substitution of the operands using "``$``"
3068followed by a number, to indicate substitution of the given register/memory
3069location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3070be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3071operand (See :ref:`inline-asm-modifiers`).
3072
3073A literal "``$``" may be included by using "``$$``" in the template. To include
3074other special characters into the output, the usual "``\XX``" escapes may be
3075used, just as in other strings. Note that after template substitution, the
3076resulting assembly string is parsed by LLVM's integrated assembler unless it is
3077disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3078syntax known to LLVM.
3079
3080LLVM's support for inline asm is modeled closely on the requirements of Clang's
3081GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3082modifier codes listed here are similar or identical to those in GCC's inline asm
3083support. However, to be clear, the syntax of the template and constraint strings
3084described here is *not* the same as the syntax accepted by GCC and Clang, and,
3085while most constraint letters are passed through as-is by Clang, some get
3086translated to other codes when converting from the C source to the LLVM
3087assembly.
3088
3089An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003090
3091.. code-block:: llvm
3092
3093 i32 (i32) asm "bswap $0", "=r,r"
3094
3095Inline assembler expressions may **only** be used as the callee operand
3096of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3097Thus, typically we have:
3098
3099.. code-block:: llvm
3100
3101 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3102
3103Inline asms with side effects not visible in the constraint list must be
3104marked as having side effects. This is done through the use of the
3105'``sideeffect``' keyword, like so:
3106
3107.. code-block:: llvm
3108
3109 call void asm sideeffect "eieio", ""()
3110
3111In some cases inline asms will contain code that will not work unless
3112the stack is aligned in some way, such as calls or SSE instructions on
3113x86, yet will not contain code that does that alignment within the asm.
3114The compiler should make conservative assumptions about what the asm
3115might contain and should generate its usual stack alignment code in the
3116prologue if the '``alignstack``' keyword is present:
3117
3118.. code-block:: llvm
3119
3120 call void asm alignstack "eieio", ""()
3121
3122Inline asms also support using non-standard assembly dialects. The
3123assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3124the inline asm is using the Intel dialect. Currently, ATT and Intel are
3125the only supported dialects. An example is:
3126
3127.. code-block:: llvm
3128
3129 call void asm inteldialect "eieio", ""()
3130
3131If multiple keywords appear the '``sideeffect``' keyword must come
3132first, the '``alignstack``' keyword second and the '``inteldialect``'
3133keyword last.
3134
James Y Knightbc832ed2015-07-08 18:08:36 +00003135Inline Asm Constraint String
3136^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3137
3138The constraint list is a comma-separated string, each element containing one or
3139more constraint codes.
3140
3141For each element in the constraint list an appropriate register or memory
3142operand will be chosen, and it will be made available to assembly template
3143string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3144second, etc.
3145
3146There are three different types of constraints, which are distinguished by a
3147prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3148constraints must always be given in that order: outputs first, then inputs, then
3149clobbers. They cannot be intermingled.
3150
3151There are also three different categories of constraint codes:
3152
3153- Register constraint. This is either a register class, or a fixed physical
3154 register. This kind of constraint will allocate a register, and if necessary,
3155 bitcast the argument or result to the appropriate type.
3156- Memory constraint. This kind of constraint is for use with an instruction
3157 taking a memory operand. Different constraints allow for different addressing
3158 modes used by the target.
3159- Immediate value constraint. This kind of constraint is for an integer or other
3160 immediate value which can be rendered directly into an instruction. The
3161 various target-specific constraints allow the selection of a value in the
3162 proper range for the instruction you wish to use it with.
3163
3164Output constraints
3165""""""""""""""""""
3166
3167Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3168indicates that the assembly will write to this operand, and the operand will
3169then be made available as a return value of the ``asm`` expression. Output
3170constraints do not consume an argument from the call instruction. (Except, see
3171below about indirect outputs).
3172
3173Normally, it is expected that no output locations are written to by the assembly
3174expression until *all* of the inputs have been read. As such, LLVM may assign
3175the same register to an output and an input. If this is not safe (e.g. if the
3176assembly contains two instructions, where the first writes to one output, and
3177the second reads an input and writes to a second output), then the "``&``"
3178modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003179"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003180will not use the same register for any inputs (other than an input tied to this
3181output).
3182
3183Input constraints
3184"""""""""""""""""
3185
3186Input constraints do not have a prefix -- just the constraint codes. Each input
3187constraint will consume one argument from the call instruction. It is not
3188permitted for the asm to write to any input register or memory location (unless
3189that input is tied to an output). Note also that multiple inputs may all be
3190assigned to the same register, if LLVM can determine that they necessarily all
3191contain the same value.
3192
3193Instead of providing a Constraint Code, input constraints may also "tie"
3194themselves to an output constraint, by providing an integer as the constraint
3195string. Tied inputs still consume an argument from the call instruction, and
3196take up a position in the asm template numbering as is usual -- they will simply
3197be constrained to always use the same register as the output they've been tied
3198to. For example, a constraint string of "``=r,0``" says to assign a register for
3199output, and use that register as an input as well (it being the 0'th
3200constraint).
3201
3202It is permitted to tie an input to an "early-clobber" output. In that case, no
3203*other* input may share the same register as the input tied to the early-clobber
3204(even when the other input has the same value).
3205
3206You may only tie an input to an output which has a register constraint, not a
3207memory constraint. Only a single input may be tied to an output.
3208
3209There is also an "interesting" feature which deserves a bit of explanation: if a
3210register class constraint allocates a register which is too small for the value
3211type operand provided as input, the input value will be split into multiple
3212registers, and all of them passed to the inline asm.
3213
3214However, this feature is often not as useful as you might think.
3215
3216Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3217architectures that have instructions which operate on multiple consecutive
3218instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3219SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3220hardware then loads into both the named register, and the next register. This
3221feature of inline asm would not be useful to support that.)
3222
3223A few of the targets provide a template string modifier allowing explicit access
3224to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3225``D``). On such an architecture, you can actually access the second allocated
3226register (yet, still, not any subsequent ones). But, in that case, you're still
3227probably better off simply splitting the value into two separate operands, for
3228clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3229despite existing only for use with this feature, is not really a good idea to
3230use)
3231
3232Indirect inputs and outputs
3233"""""""""""""""""""""""""""
3234
3235Indirect output or input constraints can be specified by the "``*``" modifier
3236(which goes after the "``=``" in case of an output). This indicates that the asm
3237will write to or read from the contents of an *address* provided as an input
3238argument. (Note that in this way, indirect outputs act more like an *input* than
3239an output: just like an input, they consume an argument of the call expression,
3240rather than producing a return value. An indirect output constraint is an
3241"output" only in that the asm is expected to write to the contents of the input
3242memory location, instead of just read from it).
3243
3244This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3245address of a variable as a value.
3246
3247It is also possible to use an indirect *register* constraint, but only on output
3248(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3249value normally, and then, separately emit a store to the address provided as
3250input, after the provided inline asm. (It's not clear what value this
3251functionality provides, compared to writing the store explicitly after the asm
3252statement, and it can only produce worse code, since it bypasses many
3253optimization passes. I would recommend not using it.)
3254
3255
3256Clobber constraints
3257"""""""""""""""""""
3258
3259A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3260consume an input operand, nor generate an output. Clobbers cannot use any of the
3261general constraint code letters -- they may use only explicit register
3262constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3263"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3264memory locations -- not only the memory pointed to by a declared indirect
3265output.
3266
3267
3268Constraint Codes
3269""""""""""""""""
3270After a potential prefix comes constraint code, or codes.
3271
3272A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3273followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3274(e.g. "``{eax}``").
3275
3276The one and two letter constraint codes are typically chosen to be the same as
3277GCC's constraint codes.
3278
3279A single constraint may include one or more than constraint code in it, leaving
3280it up to LLVM to choose which one to use. This is included mainly for
3281compatibility with the translation of GCC inline asm coming from clang.
3282
3283There are two ways to specify alternatives, and either or both may be used in an
3284inline asm constraint list:
3285
32861) Append the codes to each other, making a constraint code set. E.g. "``im``"
3287 or "``{eax}m``". This means "choose any of the options in the set". The
3288 choice of constraint is made independently for each constraint in the
3289 constraint list.
3290
32912) Use "``|``" between constraint code sets, creating alternatives. Every
3292 constraint in the constraint list must have the same number of alternative
3293 sets. With this syntax, the same alternative in *all* of the items in the
3294 constraint list will be chosen together.
3295
3296Putting those together, you might have a two operand constraint string like
3297``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3298operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3299may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3300
3301However, the use of either of the alternatives features is *NOT* recommended, as
3302LLVM is not able to make an intelligent choice about which one to use. (At the
3303point it currently needs to choose, not enough information is available to do so
3304in a smart way.) Thus, it simply tries to make a choice that's most likely to
3305compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3306always choose to use memory, not registers). And, if given multiple registers,
3307or multiple register classes, it will simply choose the first one. (In fact, it
3308doesn't currently even ensure explicitly specified physical registers are
3309unique, so specifying multiple physical registers as alternatives, like
3310``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3311intended.)
3312
3313Supported Constraint Code List
3314""""""""""""""""""""""""""""""
3315
3316The constraint codes are, in general, expected to behave the same way they do in
3317GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3318inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3319and GCC likely indicates a bug in LLVM.
3320
3321Some constraint codes are typically supported by all targets:
3322
3323- ``r``: A register in the target's general purpose register class.
3324- ``m``: A memory address operand. It is target-specific what addressing modes
3325 are supported, typical examples are register, or register + register offset,
3326 or register + immediate offset (of some target-specific size).
3327- ``i``: An integer constant (of target-specific width). Allows either a simple
3328 immediate, or a relocatable value.
3329- ``n``: An integer constant -- *not* including relocatable values.
3330- ``s``: An integer constant, but allowing *only* relocatable values.
3331- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3332 useful to pass a label for an asm branch or call.
3333
3334 .. FIXME: but that surely isn't actually okay to jump out of an asm
3335 block without telling llvm about the control transfer???)
3336
3337- ``{register-name}``: Requires exactly the named physical register.
3338
3339Other constraints are target-specific:
3340
3341AArch64:
3342
3343- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3344- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3345 i.e. 0 to 4095 with optional shift by 12.
3346- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3347 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3348- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3349 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3350- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3351 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3352- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3353 32-bit register. This is a superset of ``K``: in addition to the bitmask
3354 immediate, also allows immediate integers which can be loaded with a single
3355 ``MOVZ`` or ``MOVL`` instruction.
3356- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3357 64-bit register. This is a superset of ``L``.
3358- ``Q``: Memory address operand must be in a single register (no
3359 offsets). (However, LLVM currently does this for the ``m`` constraint as
3360 well.)
3361- ``r``: A 32 or 64-bit integer register (W* or X*).
3362- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3363- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3364
3365AMDGPU:
3366
3367- ``r``: A 32 or 64-bit integer register.
3368- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3369- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3370
3371
3372All ARM modes:
3373
3374- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3375 operand. Treated the same as operand ``m``, at the moment.
3376
3377ARM and ARM's Thumb2 mode:
3378
3379- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3380- ``I``: An immediate integer valid for a data-processing instruction.
3381- ``J``: An immediate integer between -4095 and 4095.
3382- ``K``: An immediate integer whose bitwise inverse is valid for a
3383 data-processing instruction. (Can be used with template modifier "``B``" to
3384 print the inverted value).
3385- ``L``: An immediate integer whose negation is valid for a data-processing
3386 instruction. (Can be used with template modifier "``n``" to print the negated
3387 value).
3388- ``M``: A power of two or a integer between 0 and 32.
3389- ``N``: Invalid immediate constraint.
3390- ``O``: Invalid immediate constraint.
3391- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3392- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3393 as ``r``.
3394- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3395 invalid.
3396- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3397 ``d0-d31``, or ``q0-q15``.
3398- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3399 ``d0-d7``, or ``q0-q3``.
3400- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3401 ``s0-s31``.
3402
3403ARM's Thumb1 mode:
3404
3405- ``I``: An immediate integer between 0 and 255.
3406- ``J``: An immediate integer between -255 and -1.
3407- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3408 some amount.
3409- ``L``: An immediate integer between -7 and 7.
3410- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3411- ``N``: An immediate integer between 0 and 31.
3412- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3413- ``r``: A low 32-bit GPR register (``r0-r7``).
3414- ``l``: A low 32-bit GPR register (``r0-r7``).
3415- ``h``: A high GPR register (``r0-r7``).
3416- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3417 ``d0-d31``, or ``q0-q15``.
3418- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3419 ``d0-d7``, or ``q0-q3``.
3420- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3421 ``s0-s31``.
3422
3423
3424Hexagon:
3425
3426- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3427 at the moment.
3428- ``r``: A 32 or 64-bit register.
3429
3430MSP430:
3431
3432- ``r``: An 8 or 16-bit register.
3433
3434MIPS:
3435
3436- ``I``: An immediate signed 16-bit integer.
3437- ``J``: An immediate integer zero.
3438- ``K``: An immediate unsigned 16-bit integer.
3439- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3440- ``N``: An immediate integer between -65535 and -1.
3441- ``O``: An immediate signed 15-bit integer.
3442- ``P``: An immediate integer between 1 and 65535.
3443- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3444 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3445- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3446 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3447 ``m``.
3448- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3449 ``sc`` instruction on the given subtarget (details vary).
3450- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3451- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003452 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3453 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003454- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3455 ``25``).
3456- ``l``: The ``lo`` register, 32 or 64-bit.
3457- ``x``: Invalid.
3458
3459NVPTX:
3460
3461- ``b``: A 1-bit integer register.
3462- ``c`` or ``h``: A 16-bit integer register.
3463- ``r``: A 32-bit integer register.
3464- ``l`` or ``N``: A 64-bit integer register.
3465- ``f``: A 32-bit float register.
3466- ``d``: A 64-bit float register.
3467
3468
3469PowerPC:
3470
3471- ``I``: An immediate signed 16-bit integer.
3472- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3473- ``K``: An immediate unsigned 16-bit integer.
3474- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3475- ``M``: An immediate integer greater than 31.
3476- ``N``: An immediate integer that is an exact power of 2.
3477- ``O``: The immediate integer constant 0.
3478- ``P``: An immediate integer constant whose negation is a signed 16-bit
3479 constant.
3480- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3481 treated the same as ``m``.
3482- ``r``: A 32 or 64-bit integer register.
3483- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3484 ``R1-R31``).
3485- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3486 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3487- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3488 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3489 altivec vector register (``V0-V31``).
3490
3491 .. FIXME: is this a bug that v accepts QPX registers? I think this
3492 is supposed to only use the altivec vector registers?
3493
3494- ``y``: Condition register (``CR0-CR7``).
3495- ``wc``: An individual CR bit in a CR register.
3496- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3497 register set (overlapping both the floating-point and vector register files).
3498- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3499 set.
3500
3501Sparc:
3502
3503- ``I``: An immediate 13-bit signed integer.
3504- ``r``: A 32-bit integer register.
3505
3506SystemZ:
3507
3508- ``I``: An immediate unsigned 8-bit integer.
3509- ``J``: An immediate unsigned 12-bit integer.
3510- ``K``: An immediate signed 16-bit integer.
3511- ``L``: An immediate signed 20-bit integer.
3512- ``M``: An immediate integer 0x7fffffff.
3513- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3514 ``m``, at the moment.
3515- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3516- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3517 address context evaluates as zero).
3518- ``h``: A 32-bit value in the high part of a 64bit data register
3519 (LLVM-specific)
3520- ``f``: A 32, 64, or 128-bit floating point register.
3521
3522X86:
3523
3524- ``I``: An immediate integer between 0 and 31.
3525- ``J``: An immediate integer between 0 and 64.
3526- ``K``: An immediate signed 8-bit integer.
3527- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3528 0xffffffff.
3529- ``M``: An immediate integer between 0 and 3.
3530- ``N``: An immediate unsigned 8-bit integer.
3531- ``O``: An immediate integer between 0 and 127.
3532- ``e``: An immediate 32-bit signed integer.
3533- ``Z``: An immediate 32-bit unsigned integer.
3534- ``o``, ``v``: Treated the same as ``m``, at the moment.
3535- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3536 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3537 registers, and on X86-64, it is all of the integer registers.
3538- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3539 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3540- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3541- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3542 existed since i386, and can be accessed without the REX prefix.
3543- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3544- ``y``: A 64-bit MMX register, if MMX is enabled.
3545- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3546 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3547 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3548 512-bit vector operand in an AVX512 register, Otherwise, an error.
3549- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3550- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3551 32-bit mode, a 64-bit integer operand will get split into two registers). It
3552 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3553 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3554 you're better off splitting it yourself, before passing it to the asm
3555 statement.
3556
3557XCore:
3558
3559- ``r``: A 32-bit integer register.
3560
3561
3562.. _inline-asm-modifiers:
3563
3564Asm template argument modifiers
3565^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3566
3567In the asm template string, modifiers can be used on the operand reference, like
3568"``${0:n}``".
3569
3570The modifiers are, in general, expected to behave the same way they do in
3571GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3572inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3573and GCC likely indicates a bug in LLVM.
3574
3575Target-independent:
3576
Sean Silvaa1190322015-08-06 22:56:48 +00003577- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003578 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3579- ``n``: Negate and print immediate integer constant unadorned, without the
3580 target-specific immediate punctuation (e.g. no ``$`` prefix).
3581- ``l``: Print as an unadorned label, without the target-specific label
3582 punctuation (e.g. no ``$`` prefix).
3583
3584AArch64:
3585
3586- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3587 instead of ``x30``, print ``w30``.
3588- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3589- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3590 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3591 ``v*``.
3592
3593AMDGPU:
3594
3595- ``r``: No effect.
3596
3597ARM:
3598
3599- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3600 register).
3601- ``P``: No effect.
3602- ``q``: No effect.
3603- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3604 as ``d4[1]`` instead of ``s9``)
3605- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3606 prefix.
3607- ``L``: Print the low 16-bits of an immediate integer constant.
3608- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3609 register operands subsequent to the specified one (!), so use carefully.
3610- ``Q``: Print the low-order register of a register-pair, or the low-order
3611 register of a two-register operand.
3612- ``R``: Print the high-order register of a register-pair, or the high-order
3613 register of a two-register operand.
3614- ``H``: Print the second register of a register-pair. (On a big-endian system,
3615 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3616 to ``R``.)
3617
3618 .. FIXME: H doesn't currently support printing the second register
3619 of a two-register operand.
3620
3621- ``e``: Print the low doubleword register of a NEON quad register.
3622- ``f``: Print the high doubleword register of a NEON quad register.
3623- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3624 adornment.
3625
3626Hexagon:
3627
3628- ``L``: Print the second register of a two-register operand. Requires that it
3629 has been allocated consecutively to the first.
3630
3631 .. FIXME: why is it restricted to consecutive ones? And there's
3632 nothing that ensures that happens, is there?
3633
3634- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3635 nothing. Used to print 'addi' vs 'add' instructions.
3636
3637MSP430:
3638
3639No additional modifiers.
3640
3641MIPS:
3642
3643- ``X``: Print an immediate integer as hexadecimal
3644- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3645- ``d``: Print an immediate integer as decimal.
3646- ``m``: Subtract one and print an immediate integer as decimal.
3647- ``z``: Print $0 if an immediate zero, otherwise print normally.
3648- ``L``: Print the low-order register of a two-register operand, or prints the
3649 address of the low-order word of a double-word memory operand.
3650
3651 .. FIXME: L seems to be missing memory operand support.
3652
3653- ``M``: Print the high-order register of a two-register operand, or prints the
3654 address of the high-order word of a double-word memory operand.
3655
3656 .. FIXME: M seems to be missing memory operand support.
3657
3658- ``D``: Print the second register of a two-register operand, or prints the
3659 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3660 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3661 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003662- ``w``: No effect. Provided for compatibility with GCC which requires this
3663 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3664 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003665
3666NVPTX:
3667
3668- ``r``: No effect.
3669
3670PowerPC:
3671
3672- ``L``: Print the second register of a two-register operand. Requires that it
3673 has been allocated consecutively to the first.
3674
3675 .. FIXME: why is it restricted to consecutive ones? And there's
3676 nothing that ensures that happens, is there?
3677
3678- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3679 nothing. Used to print 'addi' vs 'add' instructions.
3680- ``y``: For a memory operand, prints formatter for a two-register X-form
3681 instruction. (Currently always prints ``r0,OPERAND``).
3682- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3683 otherwise. (NOTE: LLVM does not support update form, so this will currently
3684 always print nothing)
3685- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3686 not support indexed form, so this will currently always print nothing)
3687
3688Sparc:
3689
3690- ``r``: No effect.
3691
3692SystemZ:
3693
3694SystemZ implements only ``n``, and does *not* support any of the other
3695target-independent modifiers.
3696
3697X86:
3698
3699- ``c``: Print an unadorned integer or symbol name. (The latter is
3700 target-specific behavior for this typically target-independent modifier).
3701- ``A``: Print a register name with a '``*``' before it.
3702- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3703 operand.
3704- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3705 memory operand.
3706- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3707 operand.
3708- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3709 operand.
3710- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3711 available, otherwise the 32-bit register name; do nothing on a memory operand.
3712- ``n``: Negate and print an unadorned integer, or, for operands other than an
3713 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3714 the operand. (The behavior for relocatable symbol expressions is a
3715 target-specific behavior for this typically target-independent modifier)
3716- ``H``: Print a memory reference with additional offset +8.
3717- ``P``: Print a memory reference or operand for use as the argument of a call
3718 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3719
3720XCore:
3721
3722No additional modifiers.
3723
3724
Sean Silvab084af42012-12-07 10:36:55 +00003725Inline Asm Metadata
3726^^^^^^^^^^^^^^^^^^^
3727
3728The call instructions that wrap inline asm nodes may have a
3729"``!srcloc``" MDNode attached to it that contains a list of constant
3730integers. If present, the code generator will use the integer as the
3731location cookie value when report errors through the ``LLVMContext``
3732error reporting mechanisms. This allows a front-end to correlate backend
3733errors that occur with inline asm back to the source code that produced
3734it. For example:
3735
3736.. code-block:: llvm
3737
3738 call void asm sideeffect "something bad", ""(), !srcloc !42
3739 ...
3740 !42 = !{ i32 1234567 }
3741
3742It is up to the front-end to make sense of the magic numbers it places
3743in the IR. If the MDNode contains multiple constants, the code generator
3744will use the one that corresponds to the line of the asm that the error
3745occurs on.
3746
3747.. _metadata:
3748
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003749Metadata
3750========
Sean Silvab084af42012-12-07 10:36:55 +00003751
3752LLVM IR allows metadata to be attached to instructions in the program
3753that can convey extra information about the code to the optimizers and
3754code generator. One example application of metadata is source-level
3755debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003756
Sean Silvaa1190322015-08-06 22:56:48 +00003757Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003758``call`` instruction, it uses the ``metadata`` type.
3759
3760All metadata are identified in syntax by a exclamation point ('``!``').
3761
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003762.. _metadata-string:
3763
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003764Metadata Nodes and Metadata Strings
3765-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003766
3767A metadata string is a string surrounded by double quotes. It can
3768contain any character by escaping non-printable characters with
3769"``\xx``" where "``xx``" is the two digit hex code. For example:
3770"``!"test\00"``".
3771
3772Metadata nodes are represented with notation similar to structure
3773constants (a comma separated list of elements, surrounded by braces and
3774preceded by an exclamation point). Metadata nodes can have any values as
3775their operand. For example:
3776
3777.. code-block:: llvm
3778
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003779 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003780
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003781Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3782
3783.. code-block:: llvm
3784
3785 !0 = distinct !{!"test\00", i32 10}
3786
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003787``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003788content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003789when metadata operands change.
3790
Sean Silvab084af42012-12-07 10:36:55 +00003791A :ref:`named metadata <namedmetadatastructure>` is a collection of
3792metadata nodes, which can be looked up in the module symbol table. For
3793example:
3794
3795.. code-block:: llvm
3796
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003797 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003798
3799Metadata can be used as function arguments. Here ``llvm.dbg.value``
3800function is using two metadata arguments:
3801
3802.. code-block:: llvm
3803
3804 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3805
Peter Collingbourne50108682015-11-06 02:41:02 +00003806Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3807to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003808
3809.. code-block:: llvm
3810
3811 %indvar.next = add i64 %indvar, 1, !dbg !21
3812
Peter Collingbourne50108682015-11-06 02:41:02 +00003813Metadata can also be attached to a function definition. Here metadata ``!22``
3814is attached to the ``foo`` function using the ``!dbg`` identifier:
3815
3816.. code-block:: llvm
3817
3818 define void @foo() !dbg !22 {
3819 ret void
3820 }
3821
Sean Silvab084af42012-12-07 10:36:55 +00003822More information about specific metadata nodes recognized by the
3823optimizers and code generator is found below.
3824
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003825.. _specialized-metadata:
3826
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003827Specialized Metadata Nodes
3828^^^^^^^^^^^^^^^^^^^^^^^^^^
3829
3830Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003831to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003832order.
3833
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003834These aren't inherently debug info centric, but currently all the specialized
3835metadata nodes are related to debug info.
3836
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003837.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003838
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003839DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003840"""""""""""""
3841
Sean Silvaa1190322015-08-06 22:56:48 +00003842``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003843``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3844fields are tuples containing the debug info to be emitted along with the compile
3845unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003846references to them from instructions).
3847
3848.. code-block:: llvm
3849
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003850 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003851 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003852 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003853 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003854 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003855
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003856Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003857specific compilation unit. File descriptors are defined using this scope.
3858These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003859keep track of subprograms, global variables, type information, and imported
3860entities (declarations and namespaces).
3861
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003862.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003863
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003864DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003865""""""
3866
Sean Silvaa1190322015-08-06 22:56:48 +00003867``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003868
3869.. code-block:: llvm
3870
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003871 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003872
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003873Files are sometimes used in ``scope:`` fields, and are the only valid target
3874for ``file:`` fields.
3875
Michael Kuperstein605308a2015-05-14 10:58:59 +00003876.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003877
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003878DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003879"""""""""""
3880
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003881``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003882``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003883
3884.. code-block:: llvm
3885
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003886 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003887 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003888 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003889
Sean Silvaa1190322015-08-06 22:56:48 +00003890The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003891following:
3892
3893.. code-block:: llvm
3894
3895 DW_ATE_address = 1
3896 DW_ATE_boolean = 2
3897 DW_ATE_float = 4
3898 DW_ATE_signed = 5
3899 DW_ATE_signed_char = 6
3900 DW_ATE_unsigned = 7
3901 DW_ATE_unsigned_char = 8
3902
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003903.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003904
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003905DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003906""""""""""""""""
3907
Sean Silvaa1190322015-08-06 22:56:48 +00003908``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003909refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003910types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003911represents a function with no return value (such as ``void foo() {}`` in C++).
3912
3913.. code-block:: llvm
3914
3915 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3916 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003917 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003918
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003919.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003920
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003921DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003922"""""""""""""
3923
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003924``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003925qualified types.
3926
3927.. code-block:: llvm
3928
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003929 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003930 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003931 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003932 align: 32)
3933
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003934The following ``tag:`` values are valid:
3935
3936.. code-block:: llvm
3937
3938 DW_TAG_formal_parameter = 5
3939 DW_TAG_member = 13
3940 DW_TAG_pointer_type = 15
3941 DW_TAG_reference_type = 16
3942 DW_TAG_typedef = 22
3943 DW_TAG_ptr_to_member_type = 31
3944 DW_TAG_const_type = 38
3945 DW_TAG_volatile_type = 53
3946 DW_TAG_restrict_type = 55
3947
3948``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003949<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3950is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003951``DW_TAG_formal_parameter`` is used to define a member which is a formal
3952argument of a subprogram.
3953
3954``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3955
3956``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3957``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3958``baseType:``.
3959
3960Note that the ``void *`` type is expressed as a type derived from NULL.
3961
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003962.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003963
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003964DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003965"""""""""""""""
3966
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003967``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003968structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003969
3970If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003971identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003972can refer to composite types indirectly via a :ref:`metadata string
3973<metadata-string>` that matches their identifier.
3974
3975.. code-block:: llvm
3976
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003977 !0 = !DIEnumerator(name: "SixKind", value: 7)
3978 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3979 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3980 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003981 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3982 elements: !{!0, !1, !2})
3983
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003984The following ``tag:`` values are valid:
3985
3986.. code-block:: llvm
3987
3988 DW_TAG_array_type = 1
3989 DW_TAG_class_type = 2
3990 DW_TAG_enumeration_type = 4
3991 DW_TAG_structure_type = 19
3992 DW_TAG_union_type = 23
3993 DW_TAG_subroutine_type = 21
3994 DW_TAG_inheritance = 28
3995
3996
3997For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003998descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003999level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004000array type is a native packed vector.
4001
4002For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004003descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004004value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004005``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004006
4007For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4008``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004009<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004010
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004011.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004012
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004013DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004014""""""""""
4015
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004016``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004017:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004018
4019.. code-block:: llvm
4020
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004021 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4022 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4023 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004024
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004025.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004026
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004027DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004028""""""""""""
4029
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004030``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4031variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004032
4033.. code-block:: llvm
4034
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004035 !0 = !DIEnumerator(name: "SixKind", value: 7)
4036 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4037 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004038
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004039DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004040"""""""""""""""""""""""
4041
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004042``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004043language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004044:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004045
4046.. code-block:: llvm
4047
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004048 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004049
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004050DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004051""""""""""""""""""""""""
4052
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004053``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004054language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004055but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004056``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004057:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004058
4059.. code-block:: llvm
4060
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004061 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004062
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004063DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004064"""""""""""
4065
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004066``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004067
4068.. code-block:: llvm
4069
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004070 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004071
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004072DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004073""""""""""""""""
4074
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004075``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004076
4077.. code-block:: llvm
4078
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004079 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004080 file: !2, line: 7, type: !3, isLocal: true,
4081 isDefinition: false, variable: i32* @foo,
4082 declaration: !4)
4083
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004084All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004085:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004086
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004087.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004088
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004089DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004090""""""""""""
4091
Peter Collingbourne50108682015-11-06 02:41:02 +00004092``DISubprogram`` nodes represent functions from the source language. A
4093``DISubprogram`` may be attached to a function definition using ``!dbg``
4094metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4095that must be retained, even if their IR counterparts are optimized out of
4096the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004097
4098.. code-block:: llvm
4099
Peter Collingbourne50108682015-11-06 02:41:02 +00004100 define void @_Z3foov() !dbg !0 {
4101 ...
4102 }
4103
4104 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4105 file: !2, line: 7, type: !3, isLocal: true,
4106 isDefinition: false, scopeLine: 8,
4107 containingType: !4,
4108 virtuality: DW_VIRTUALITY_pure_virtual,
4109 virtualIndex: 10, flags: DIFlagPrototyped,
4110 isOptimized: true, templateParams: !5,
4111 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004112
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004113.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004114
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004115DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004116""""""""""""""
4117
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004118``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004119<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004120two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004121fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004122
4123.. code-block:: llvm
4124
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004125 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004126
4127Usually lexical blocks are ``distinct`` to prevent node merging based on
4128operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004129
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004130.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004131
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004132DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004133""""""""""""""""""
4134
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004135``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004136:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004137indicate textual inclusion, or the ``discriminator:`` field can be used to
4138discriminate between control flow within a single block in the source language.
4139
4140.. code-block:: llvm
4141
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004142 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4143 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4144 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004145
Michael Kuperstein605308a2015-05-14 10:58:59 +00004146.. _DILocation:
4147
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004148DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004149""""""""""
4150
Sean Silvaa1190322015-08-06 22:56:48 +00004151``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004152mandatory, and points at an :ref:`DILexicalBlockFile`, an
4153:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004154
4155.. code-block:: llvm
4156
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004157 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004158
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004159.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004160
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004161DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004162"""""""""""""""
4163
Sean Silvaa1190322015-08-06 22:56:48 +00004164``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004165the ``arg:`` field is set to non-zero, then this variable is a subprogram
4166parameter, and it will be included in the ``variables:`` field of its
4167:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004168
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004169.. code-block:: llvm
4170
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004171 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4172 type: !3, flags: DIFlagArtificial)
4173 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4174 type: !3)
4175 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004176
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004177DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004178""""""""""""
4179
Sean Silvaa1190322015-08-06 22:56:48 +00004180``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004181:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4182describe how the referenced LLVM variable relates to the source language
4183variable.
4184
4185The current supported vocabulary is limited:
4186
4187- ``DW_OP_deref`` dereferences the working expression.
4188- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4189- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4190 here, respectively) of the variable piece from the working expression.
4191
4192.. code-block:: llvm
4193
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004194 !0 = !DIExpression(DW_OP_deref)
4195 !1 = !DIExpression(DW_OP_plus, 3)
4196 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4197 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004198
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004199DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004200""""""""""""""
4201
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004202``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004203
4204.. code-block:: llvm
4205
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004206 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004207 getter: "getFoo", attributes: 7, type: !2)
4208
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004209DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004210""""""""""""""""
4211
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004212``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004213compile unit.
4214
4215.. code-block:: llvm
4216
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004217 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004218 entity: !1, line: 7)
4219
Amjad Abouda9bcf162015-12-10 12:56:35 +00004220DIMacro
4221"""""""
4222
4223``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4224The ``name:`` field is the macro identifier, followed by macro parameters when
4225definining a function-like macro, and the ``value`` field is the token-string
4226used to expand the macro identifier.
4227
4228.. code-block:: llvm
4229
4230 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4231 value: "((x) + 1)")
4232 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4233
4234DIMacroFile
4235"""""""""""
4236
4237``DIMacroFile`` nodes represent inclusion of source files.
4238The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4239appear in the included source file.
4240
4241.. code-block:: llvm
4242
4243 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4244 nodes: !3)
4245
Sean Silvab084af42012-12-07 10:36:55 +00004246'``tbaa``' Metadata
4247^^^^^^^^^^^^^^^^^^^
4248
4249In LLVM IR, memory does not have types, so LLVM's own type system is not
4250suitable for doing TBAA. Instead, metadata is added to the IR to
4251describe a type system of a higher level language. This can be used to
4252implement typical C/C++ TBAA, but it can also be used to implement
4253custom alias analysis behavior for other languages.
4254
4255The current metadata format is very simple. TBAA metadata nodes have up
4256to three fields, e.g.:
4257
4258.. code-block:: llvm
4259
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004260 !0 = !{ !"an example type tree" }
4261 !1 = !{ !"int", !0 }
4262 !2 = !{ !"float", !0 }
4263 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004264
4265The first field is an identity field. It can be any value, usually a
4266metadata string, which uniquely identifies the type. The most important
4267name in the tree is the name of the root node. Two trees with different
4268root node names are entirely disjoint, even if they have leaves with
4269common names.
4270
4271The second field identifies the type's parent node in the tree, or is
4272null or omitted for a root node. A type is considered to alias all of
4273its descendants and all of its ancestors in the tree. Also, a type is
4274considered to alias all types in other trees, so that bitcode produced
4275from multiple front-ends is handled conservatively.
4276
4277If the third field is present, it's an integer which if equal to 1
4278indicates that the type is "constant" (meaning
4279``pointsToConstantMemory`` should return true; see `other useful
4280AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4281
4282'``tbaa.struct``' Metadata
4283^^^^^^^^^^^^^^^^^^^^^^^^^^
4284
4285The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4286aggregate assignment operations in C and similar languages, however it
4287is defined to copy a contiguous region of memory, which is more than
4288strictly necessary for aggregate types which contain holes due to
4289padding. Also, it doesn't contain any TBAA information about the fields
4290of the aggregate.
4291
4292``!tbaa.struct`` metadata can describe which memory subregions in a
4293memcpy are padding and what the TBAA tags of the struct are.
4294
4295The current metadata format is very simple. ``!tbaa.struct`` metadata
4296nodes are a list of operands which are in conceptual groups of three.
4297For each group of three, the first operand gives the byte offset of a
4298field in bytes, the second gives its size in bytes, and the third gives
4299its tbaa tag. e.g.:
4300
4301.. code-block:: llvm
4302
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004303 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004304
4305This describes a struct with two fields. The first is at offset 0 bytes
4306with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4307and has size 4 bytes and has tbaa tag !2.
4308
4309Note that the fields need not be contiguous. In this example, there is a
43104 byte gap between the two fields. This gap represents padding which
4311does not carry useful data and need not be preserved.
4312
Hal Finkel94146652014-07-24 14:25:39 +00004313'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004314^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004315
4316``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4317noalias memory-access sets. This means that some collection of memory access
4318instructions (loads, stores, memory-accessing calls, etc.) that carry
4319``noalias`` metadata can specifically be specified not to alias with some other
4320collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004321Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004322a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004323of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004324subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004325instruction's ``noalias`` list, then the two memory accesses are assumed not to
4326alias.
Hal Finkel94146652014-07-24 14:25:39 +00004327
Hal Finkel029cde62014-07-25 15:50:02 +00004328The metadata identifying each domain is itself a list containing one or two
4329entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004330string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004331self-reference can be used to create globally unique domain names. A
4332descriptive string may optionally be provided as a second list entry.
4333
4334The metadata identifying each scope is also itself a list containing two or
4335three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004336is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004337self-reference can be used to create globally unique scope names. A metadata
4338reference to the scope's domain is the second entry. A descriptive string may
4339optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004340
4341For example,
4342
4343.. code-block:: llvm
4344
Hal Finkel029cde62014-07-25 15:50:02 +00004345 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004346 !0 = !{!0}
4347 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004348
Hal Finkel029cde62014-07-25 15:50:02 +00004349 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004350 !2 = !{!2, !0}
4351 !3 = !{!3, !0}
4352 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004353
Hal Finkel029cde62014-07-25 15:50:02 +00004354 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004355 !5 = !{!4} ; A list containing only scope !4
4356 !6 = !{!4, !3, !2}
4357 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004358
4359 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004360 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004361 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004362
Hal Finkel029cde62014-07-25 15:50:02 +00004363 ; These two instructions also don't alias (for domain !1, the set of scopes
4364 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004365 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004366 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004367
Adam Nemet0a8416f2015-05-11 08:30:28 +00004368 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004369 ; the !noalias list is not a superset of, or equal to, the scopes in the
4370 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004371 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004372 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004373
Sean Silvab084af42012-12-07 10:36:55 +00004374'``fpmath``' Metadata
4375^^^^^^^^^^^^^^^^^^^^^
4376
4377``fpmath`` metadata may be attached to any instruction of floating point
4378type. It can be used to express the maximum acceptable error in the
4379result of that instruction, in ULPs, thus potentially allowing the
4380compiler to use a more efficient but less accurate method of computing
4381it. ULP is defined as follows:
4382
4383 If ``x`` is a real number that lies between two finite consecutive
4384 floating-point numbers ``a`` and ``b``, without being equal to one
4385 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4386 distance between the two non-equal finite floating-point numbers
4387 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4388
4389The metadata node shall consist of a single positive floating point
4390number representing the maximum relative error, for example:
4391
4392.. code-block:: llvm
4393
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004394 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004395
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004396.. _range-metadata:
4397
Sean Silvab084af42012-12-07 10:36:55 +00004398'``range``' Metadata
4399^^^^^^^^^^^^^^^^^^^^
4400
Jingyue Wu37fcb592014-06-19 16:50:16 +00004401``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4402integer types. It expresses the possible ranges the loaded value or the value
4403returned by the called function at this call site is in. The ranges are
4404represented with a flattened list of integers. The loaded value or the value
4405returned is known to be in the union of the ranges defined by each consecutive
4406pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004407
4408- The type must match the type loaded by the instruction.
4409- The pair ``a,b`` represents the range ``[a,b)``.
4410- Both ``a`` and ``b`` are constants.
4411- The range is allowed to wrap.
4412- The range should not represent the full or empty set. That is,
4413 ``a!=b``.
4414
4415In addition, the pairs must be in signed order of the lower bound and
4416they must be non-contiguous.
4417
4418Examples:
4419
4420.. code-block:: llvm
4421
David Blaikiec7aabbb2015-03-04 22:06:14 +00004422 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4423 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004424 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4425 %d = invoke i8 @bar() to label %cont
4426 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004427 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004428 !0 = !{ i8 0, i8 2 }
4429 !1 = !{ i8 255, i8 2 }
4430 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4431 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004432
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004433'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004434^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004435
4436``unpredictable`` metadata may be attached to any branch or switch
4437instruction. It can be used to express the unpredictability of control
4438flow. Similar to the llvm.expect intrinsic, it may be used to alter
4439optimizations related to compare and branch instructions. The metadata
4440is treated as a boolean value; if it exists, it signals that the branch
4441or switch that it is attached to is completely unpredictable.
4442
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004443'``llvm.loop``'
4444^^^^^^^^^^^^^^^
4445
4446It is sometimes useful to attach information to loop constructs. Currently,
4447loop metadata is implemented as metadata attached to the branch instruction
4448in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004449guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004450specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004451
4452The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004453itself to avoid merging it with any other identifier metadata, e.g.,
4454during module linkage or function inlining. That is, each loop should refer
4455to their own identification metadata even if they reside in separate functions.
4456The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004457constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004458
4459.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004460
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004461 !0 = !{!0}
4462 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004463
Mark Heffernan893752a2014-07-18 19:24:51 +00004464The loop identifier metadata can be used to specify additional
4465per-loop metadata. Any operands after the first operand can be treated
4466as user-defined metadata. For example the ``llvm.loop.unroll.count``
4467suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004468
Paul Redmond5fdf8362013-05-28 20:00:34 +00004469.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004470
Paul Redmond5fdf8362013-05-28 20:00:34 +00004471 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4472 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004473 !0 = !{!0, !1}
4474 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004475
Mark Heffernan9d20e422014-07-21 23:11:03 +00004476'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004478
Mark Heffernan9d20e422014-07-21 23:11:03 +00004479Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4480used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004481vectorization width and interleave count. These metadata should be used in
4482conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004483``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4484optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004485it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004486which contains information about loop-carried memory dependencies can be helpful
4487in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004488
Mark Heffernan9d20e422014-07-21 23:11:03 +00004489'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4491
Mark Heffernan9d20e422014-07-21 23:11:03 +00004492This metadata suggests an interleave count to the loop interleaver.
4493The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004494second operand is an integer specifying the interleave count. For
4495example:
4496
4497.. code-block:: llvm
4498
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004499 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004500
Mark Heffernan9d20e422014-07-21 23:11:03 +00004501Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004502multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004503then the interleave count will be determined automatically.
4504
4505'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004507
4508This metadata selectively enables or disables vectorization for the loop. The
4509first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004510is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000045110 disables vectorization:
4512
4513.. code-block:: llvm
4514
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004515 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4516 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004517
4518'``llvm.loop.vectorize.width``' Metadata
4519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4520
4521This metadata sets the target width of the vectorizer. The first
4522operand is the string ``llvm.loop.vectorize.width`` and the second
4523operand is an integer specifying the width. For example:
4524
4525.. code-block:: llvm
4526
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004527 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004528
4529Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004530vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000045310 or if the loop does not have this metadata the width will be
4532determined automatically.
4533
4534'``llvm.loop.unroll``'
4535^^^^^^^^^^^^^^^^^^^^^^
4536
4537Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4538optimization hints such as the unroll factor. ``llvm.loop.unroll``
4539metadata should be used in conjunction with ``llvm.loop`` loop
4540identification metadata. The ``llvm.loop.unroll`` metadata are only
4541optimization hints and the unrolling will only be performed if the
4542optimizer believes it is safe to do so.
4543
Mark Heffernan893752a2014-07-18 19:24:51 +00004544'``llvm.loop.unroll.count``' Metadata
4545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4546
4547This metadata suggests an unroll factor to the loop unroller. The
4548first operand is the string ``llvm.loop.unroll.count`` and the second
4549operand is a positive integer specifying the unroll factor. For
4550example:
4551
4552.. code-block:: llvm
4553
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004554 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004555
4556If the trip count of the loop is less than the unroll count the loop
4557will be partially unrolled.
4558
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004559'``llvm.loop.unroll.disable``' Metadata
4560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4561
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004562This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004563which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004564
4565.. code-block:: llvm
4566
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004567 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004568
Kevin Qin715b01e2015-03-09 06:14:18 +00004569'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004571
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004572This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004573operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004574
4575.. code-block:: llvm
4576
4577 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4578
Mark Heffernan89391542015-08-10 17:28:08 +00004579'``llvm.loop.unroll.enable``' Metadata
4580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4581
4582This metadata suggests that the loop should be fully unrolled if the trip count
4583is known at compile time and partially unrolled if the trip count is not known
4584at compile time. The metadata has a single operand which is the string
4585``llvm.loop.unroll.enable``. For example:
4586
4587.. code-block:: llvm
4588
4589 !0 = !{!"llvm.loop.unroll.enable"}
4590
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004591'``llvm.loop.unroll.full``' Metadata
4592^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4593
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004594This metadata suggests that the loop should be unrolled fully. The
4595metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004596For example:
4597
4598.. code-block:: llvm
4599
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004600 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004601
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004602'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004604
4605This metadata indicates that the loop should not be versioned for the purpose
4606of enabling loop-invariant code motion (LICM). The metadata has a single operand
4607which is the string ``llvm.loop.licm_versioning.disable``. For example:
4608
4609.. code-block:: llvm
4610
4611 !0 = !{!"llvm.loop.licm_versioning.disable"}
4612
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004613'``llvm.mem``'
4614^^^^^^^^^^^^^^^
4615
4616Metadata types used to annotate memory accesses with information helpful
4617for optimizations are prefixed with ``llvm.mem``.
4618
4619'``llvm.mem.parallel_loop_access``' Metadata
4620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4621
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004622The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4623or metadata containing a list of loop identifiers for nested loops.
4624The metadata is attached to memory accessing instructions and denotes that
4625no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004626with the same loop identifier.
4627
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004628Precisely, given two instructions ``m1`` and ``m2`` that both have the
4629``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4630set of loops associated with that metadata, respectively, then there is no loop
4631carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004632``L2``.
4633
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004634As a special case, if all memory accessing instructions in a loop have
4635``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4636loop has no loop carried memory dependences and is considered to be a parallel
4637loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004638
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004639Note that if not all memory access instructions have such metadata referring to
4640the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004641memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004642safe mechanism, this causes loops that were originally parallel to be considered
4643sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004644insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004645
4646Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004647both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004648metadata types that refer to the same loop identifier metadata.
4649
4650.. code-block:: llvm
4651
4652 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004653 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004654 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004655 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004656 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004657 ...
4658 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004659
4660 for.end:
4661 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004662 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004663
4664It is also possible to have nested parallel loops. In that case the
4665memory accesses refer to a list of loop identifier metadata nodes instead of
4666the loop identifier metadata node directly:
4667
4668.. code-block:: llvm
4669
4670 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004671 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004672 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004673 ...
4674 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004675
4676 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004677 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004678 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004679 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004680 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004681 ...
4682 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004683
4684 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004685 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004686 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004687 ...
4688 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004689
4690 outer.for.end: ; preds = %for.body
4691 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004692 !0 = !{!1, !2} ; a list of loop identifiers
4693 !1 = !{!1} ; an identifier for the inner loop
4694 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004695
Peter Collingbournee6909c82015-02-20 20:30:47 +00004696'``llvm.bitsets``'
4697^^^^^^^^^^^^^^^^^^
4698
4699The ``llvm.bitsets`` global metadata is used to implement
4700:doc:`bitsets <BitSets>`.
4701
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004702'``invariant.group``' Metadata
4703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4704
4705The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4706The existence of the ``invariant.group`` metadata on the instruction tells
4707the optimizer that every ``load`` and ``store`` to the same pointer operand
4708within the same invariant group can be assumed to load or store the same
4709value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4710when two pointers are considered the same).
4711
4712Examples:
4713
4714.. code-block:: llvm
4715
4716 @unknownPtr = external global i8
4717 ...
4718 %ptr = alloca i8
4719 store i8 42, i8* %ptr, !invariant.group !0
4720 call void @foo(i8* %ptr)
4721
4722 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4723 call void @foo(i8* %ptr)
4724 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4725
4726 %newPtr = call i8* @getPointer(i8* %ptr)
4727 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4728
4729 %unknownValue = load i8, i8* @unknownPtr
4730 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4731
4732 call void @foo(i8* %ptr)
4733 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4734 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4735
4736 ...
4737 declare void @foo(i8*)
4738 declare i8* @getPointer(i8*)
4739 declare i8* @llvm.invariant.group.barrier(i8*)
4740
4741 !0 = !{!"magic ptr"}
4742 !1 = !{!"other ptr"}
4743
4744
4745
Sean Silvab084af42012-12-07 10:36:55 +00004746Module Flags Metadata
4747=====================
4748
4749Information about the module as a whole is difficult to convey to LLVM's
4750subsystems. The LLVM IR isn't sufficient to transmit this information.
4751The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004752this. These flags are in the form of key / value pairs --- much like a
4753dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004754look it up.
4755
4756The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4757Each triplet has the following form:
4758
4759- The first element is a *behavior* flag, which specifies the behavior
4760 when two (or more) modules are merged together, and it encounters two
4761 (or more) metadata with the same ID. The supported behaviors are
4762 described below.
4763- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004764 metadata. Each module may only have one flag entry for each unique ID (not
4765 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004766- The third element is the value of the flag.
4767
4768When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004769``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4770each unique metadata ID string, there will be exactly one entry in the merged
4771modules ``llvm.module.flags`` metadata table, and the value for that entry will
4772be determined by the merge behavior flag, as described below. The only exception
4773is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004774
4775The following behaviors are supported:
4776
4777.. list-table::
4778 :header-rows: 1
4779 :widths: 10 90
4780
4781 * - Value
4782 - Behavior
4783
4784 * - 1
4785 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004786 Emits an error if two values disagree, otherwise the resulting value
4787 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004788
4789 * - 2
4790 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004791 Emits a warning if two values disagree. The result value will be the
4792 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004793
4794 * - 3
4795 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004796 Adds a requirement that another module flag be present and have a
4797 specified value after linking is performed. The value must be a
4798 metadata pair, where the first element of the pair is the ID of the
4799 module flag to be restricted, and the second element of the pair is
4800 the value the module flag should be restricted to. This behavior can
4801 be used to restrict the allowable results (via triggering of an
4802 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004803
4804 * - 4
4805 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004806 Uses the specified value, regardless of the behavior or value of the
4807 other module. If both modules specify **Override**, but the values
4808 differ, an error will be emitted.
4809
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004810 * - 5
4811 - **Append**
4812 Appends the two values, which are required to be metadata nodes.
4813
4814 * - 6
4815 - **AppendUnique**
4816 Appends the two values, which are required to be metadata
4817 nodes. However, duplicate entries in the second list are dropped
4818 during the append operation.
4819
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004820It is an error for a particular unique flag ID to have multiple behaviors,
4821except in the case of **Require** (which adds restrictions on another metadata
4822value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004823
4824An example of module flags:
4825
4826.. code-block:: llvm
4827
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004828 !0 = !{ i32 1, !"foo", i32 1 }
4829 !1 = !{ i32 4, !"bar", i32 37 }
4830 !2 = !{ i32 2, !"qux", i32 42 }
4831 !3 = !{ i32 3, !"qux",
4832 !{
4833 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004834 }
4835 }
4836 !llvm.module.flags = !{ !0, !1, !2, !3 }
4837
4838- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4839 if two or more ``!"foo"`` flags are seen is to emit an error if their
4840 values are not equal.
4841
4842- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4843 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004844 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004845
4846- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4847 behavior if two or more ``!"qux"`` flags are seen is to emit a
4848 warning if their values are not equal.
4849
4850- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4851
4852 ::
4853
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004854 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004855
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004856 The behavior is to emit an error if the ``llvm.module.flags`` does not
4857 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4858 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004859
4860Objective-C Garbage Collection Module Flags Metadata
4861----------------------------------------------------
4862
4863On the Mach-O platform, Objective-C stores metadata about garbage
4864collection in a special section called "image info". The metadata
4865consists of a version number and a bitmask specifying what types of
4866garbage collection are supported (if any) by the file. If two or more
4867modules are linked together their garbage collection metadata needs to
4868be merged rather than appended together.
4869
4870The Objective-C garbage collection module flags metadata consists of the
4871following key-value pairs:
4872
4873.. list-table::
4874 :header-rows: 1
4875 :widths: 30 70
4876
4877 * - Key
4878 - Value
4879
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004880 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004881 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004882
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004883 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004884 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004885 always 0.
4886
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004887 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004888 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004889 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4890 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4891 Objective-C ABI version 2.
4892
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004893 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004894 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004895 not. Valid values are 0, for no garbage collection, and 2, for garbage
4896 collection supported.
4897
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004898 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004899 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004900 If present, its value must be 6. This flag requires that the
4901 ``Objective-C Garbage Collection`` flag have the value 2.
4902
4903Some important flag interactions:
4904
4905- If a module with ``Objective-C Garbage Collection`` set to 0 is
4906 merged with a module with ``Objective-C Garbage Collection`` set to
4907 2, then the resulting module has the
4908 ``Objective-C Garbage Collection`` flag set to 0.
4909- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4910 merged with a module with ``Objective-C GC Only`` set to 6.
4911
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004912Automatic Linker Flags Module Flags Metadata
4913--------------------------------------------
4914
4915Some targets support embedding flags to the linker inside individual object
4916files. Typically this is used in conjunction with language extensions which
4917allow source files to explicitly declare the libraries they depend on, and have
4918these automatically be transmitted to the linker via object files.
4919
4920These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004921using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004922to be ``AppendUnique``, and the value for the key is expected to be a metadata
4923node which should be a list of other metadata nodes, each of which should be a
4924list of metadata strings defining linker options.
4925
4926For example, the following metadata section specifies two separate sets of
4927linker options, presumably to link against ``libz`` and the ``Cocoa``
4928framework::
4929
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004930 !0 = !{ i32 6, !"Linker Options",
4931 !{
4932 !{ !"-lz" },
4933 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004934 !llvm.module.flags = !{ !0 }
4935
4936The metadata encoding as lists of lists of options, as opposed to a collapsed
4937list of options, is chosen so that the IR encoding can use multiple option
4938strings to specify e.g., a single library, while still having that specifier be
4939preserved as an atomic element that can be recognized by a target specific
4940assembly writer or object file emitter.
4941
4942Each individual option is required to be either a valid option for the target's
4943linker, or an option that is reserved by the target specific assembly writer or
4944object file emitter. No other aspect of these options is defined by the IR.
4945
Oliver Stannard5dc29342014-06-20 10:08:11 +00004946C type width Module Flags Metadata
4947----------------------------------
4948
4949The ARM backend emits a section into each generated object file describing the
4950options that it was compiled with (in a compiler-independent way) to prevent
4951linking incompatible objects, and to allow automatic library selection. Some
4952of these options are not visible at the IR level, namely wchar_t width and enum
4953width.
4954
4955To pass this information to the backend, these options are encoded in module
4956flags metadata, using the following key-value pairs:
4957
4958.. list-table::
4959 :header-rows: 1
4960 :widths: 30 70
4961
4962 * - Key
4963 - Value
4964
4965 * - short_wchar
4966 - * 0 --- sizeof(wchar_t) == 4
4967 * 1 --- sizeof(wchar_t) == 2
4968
4969 * - short_enum
4970 - * 0 --- Enums are at least as large as an ``int``.
4971 * 1 --- Enums are stored in the smallest integer type which can
4972 represent all of its values.
4973
4974For example, the following metadata section specifies that the module was
4975compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4976enum is the smallest type which can represent all of its values::
4977
4978 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004979 !0 = !{i32 1, !"short_wchar", i32 1}
4980 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004981
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004982.. _intrinsicglobalvariables:
4983
Sean Silvab084af42012-12-07 10:36:55 +00004984Intrinsic Global Variables
4985==========================
4986
4987LLVM has a number of "magic" global variables that contain data that
4988affect code generation or other IR semantics. These are documented here.
4989All globals of this sort should have a section specified as
4990"``llvm.metadata``". This section and all globals that start with
4991"``llvm.``" are reserved for use by LLVM.
4992
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004993.. _gv_llvmused:
4994
Sean Silvab084af42012-12-07 10:36:55 +00004995The '``llvm.used``' Global Variable
4996-----------------------------------
4997
Rafael Espindola74f2e462013-04-22 14:58:02 +00004998The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004999:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005000pointers to named global variables, functions and aliases which may optionally
5001have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005002use of it is:
5003
5004.. code-block:: llvm
5005
5006 @X = global i8 4
5007 @Y = global i32 123
5008
5009 @llvm.used = appending global [2 x i8*] [
5010 i8* @X,
5011 i8* bitcast (i32* @Y to i8*)
5012 ], section "llvm.metadata"
5013
Rafael Espindola74f2e462013-04-22 14:58:02 +00005014If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5015and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005016symbol that it cannot see (which is why they have to be named). For example, if
5017a variable has internal linkage and no references other than that from the
5018``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5019references from inline asms and other things the compiler cannot "see", and
5020corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005021
5022On some targets, the code generator must emit a directive to the
5023assembler or object file to prevent the assembler and linker from
5024molesting the symbol.
5025
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005026.. _gv_llvmcompilerused:
5027
Sean Silvab084af42012-12-07 10:36:55 +00005028The '``llvm.compiler.used``' Global Variable
5029--------------------------------------------
5030
5031The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5032directive, except that it only prevents the compiler from touching the
5033symbol. On targets that support it, this allows an intelligent linker to
5034optimize references to the symbol without being impeded as it would be
5035by ``@llvm.used``.
5036
5037This is a rare construct that should only be used in rare circumstances,
5038and should not be exposed to source languages.
5039
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005040.. _gv_llvmglobalctors:
5041
Sean Silvab084af42012-12-07 10:36:55 +00005042The '``llvm.global_ctors``' Global Variable
5043-------------------------------------------
5044
5045.. code-block:: llvm
5046
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005047 %0 = type { i32, void ()*, i8* }
5048 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005049
5050The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005051functions, priorities, and an optional associated global or function.
5052The functions referenced by this array will be called in ascending order
5053of priority (i.e. lowest first) when the module is loaded. The order of
5054functions with the same priority is not defined.
5055
5056If the third field is present, non-null, and points to a global variable
5057or function, the initializer function will only run if the associated
5058data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005059
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005060.. _llvmglobaldtors:
5061
Sean Silvab084af42012-12-07 10:36:55 +00005062The '``llvm.global_dtors``' Global Variable
5063-------------------------------------------
5064
5065.. code-block:: llvm
5066
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005067 %0 = type { i32, void ()*, i8* }
5068 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005069
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005070The ``@llvm.global_dtors`` array contains a list of destructor
5071functions, priorities, and an optional associated global or function.
5072The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005073order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005074order of functions with the same priority is not defined.
5075
5076If the third field is present, non-null, and points to a global variable
5077or function, the destructor function will only run if the associated
5078data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005079
5080Instruction Reference
5081=====================
5082
5083The LLVM instruction set consists of several different classifications
5084of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5085instructions <binaryops>`, :ref:`bitwise binary
5086instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5087:ref:`other instructions <otherops>`.
5088
5089.. _terminators:
5090
5091Terminator Instructions
5092-----------------------
5093
5094As mentioned :ref:`previously <functionstructure>`, every basic block in a
5095program ends with a "Terminator" instruction, which indicates which
5096block should be executed after the current block is finished. These
5097terminator instructions typically yield a '``void``' value: they produce
5098control flow, not values (the one exception being the
5099':ref:`invoke <i_invoke>`' instruction).
5100
5101The terminator instructions are: ':ref:`ret <i_ret>`',
5102':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5103':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005104':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005105':ref:`catchret <i_catchret>`',
5106':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005107and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005108
5109.. _i_ret:
5110
5111'``ret``' Instruction
5112^^^^^^^^^^^^^^^^^^^^^
5113
5114Syntax:
5115"""""""
5116
5117::
5118
5119 ret <type> <value> ; Return a value from a non-void function
5120 ret void ; Return from void function
5121
5122Overview:
5123"""""""""
5124
5125The '``ret``' instruction is used to return control flow (and optionally
5126a value) from a function back to the caller.
5127
5128There are two forms of the '``ret``' instruction: one that returns a
5129value and then causes control flow, and one that just causes control
5130flow to occur.
5131
5132Arguments:
5133""""""""""
5134
5135The '``ret``' instruction optionally accepts a single argument, the
5136return value. The type of the return value must be a ':ref:`first
5137class <t_firstclass>`' type.
5138
5139A function is not :ref:`well formed <wellformed>` if it it has a non-void
5140return type and contains a '``ret``' instruction with no return value or
5141a return value with a type that does not match its type, or if it has a
5142void return type and contains a '``ret``' instruction with a return
5143value.
5144
5145Semantics:
5146""""""""""
5147
5148When the '``ret``' instruction is executed, control flow returns back to
5149the calling function's context. If the caller is a
5150":ref:`call <i_call>`" instruction, execution continues at the
5151instruction after the call. If the caller was an
5152":ref:`invoke <i_invoke>`" instruction, execution continues at the
5153beginning of the "normal" destination block. If the instruction returns
5154a value, that value shall set the call or invoke instruction's return
5155value.
5156
5157Example:
5158""""""""
5159
5160.. code-block:: llvm
5161
5162 ret i32 5 ; Return an integer value of 5
5163 ret void ; Return from a void function
5164 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5165
5166.. _i_br:
5167
5168'``br``' Instruction
5169^^^^^^^^^^^^^^^^^^^^
5170
5171Syntax:
5172"""""""
5173
5174::
5175
5176 br i1 <cond>, label <iftrue>, label <iffalse>
5177 br label <dest> ; Unconditional branch
5178
5179Overview:
5180"""""""""
5181
5182The '``br``' instruction is used to cause control flow to transfer to a
5183different basic block in the current function. There are two forms of
5184this instruction, corresponding to a conditional branch and an
5185unconditional branch.
5186
5187Arguments:
5188""""""""""
5189
5190The conditional branch form of the '``br``' instruction takes a single
5191'``i1``' value and two '``label``' values. The unconditional form of the
5192'``br``' instruction takes a single '``label``' value as a target.
5193
5194Semantics:
5195""""""""""
5196
5197Upon execution of a conditional '``br``' instruction, the '``i1``'
5198argument is evaluated. If the value is ``true``, control flows to the
5199'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5200to the '``iffalse``' ``label`` argument.
5201
5202Example:
5203""""""""
5204
5205.. code-block:: llvm
5206
5207 Test:
5208 %cond = icmp eq i32 %a, %b
5209 br i1 %cond, label %IfEqual, label %IfUnequal
5210 IfEqual:
5211 ret i32 1
5212 IfUnequal:
5213 ret i32 0
5214
5215.. _i_switch:
5216
5217'``switch``' Instruction
5218^^^^^^^^^^^^^^^^^^^^^^^^
5219
5220Syntax:
5221"""""""
5222
5223::
5224
5225 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5226
5227Overview:
5228"""""""""
5229
5230The '``switch``' instruction is used to transfer control flow to one of
5231several different places. It is a generalization of the '``br``'
5232instruction, allowing a branch to occur to one of many possible
5233destinations.
5234
5235Arguments:
5236""""""""""
5237
5238The '``switch``' instruction uses three parameters: an integer
5239comparison value '``value``', a default '``label``' destination, and an
5240array of pairs of comparison value constants and '``label``'s. The table
5241is not allowed to contain duplicate constant entries.
5242
5243Semantics:
5244""""""""""
5245
5246The ``switch`` instruction specifies a table of values and destinations.
5247When the '``switch``' instruction is executed, this table is searched
5248for the given value. If the value is found, control flow is transferred
5249to the corresponding destination; otherwise, control flow is transferred
5250to the default destination.
5251
5252Implementation:
5253"""""""""""""""
5254
5255Depending on properties of the target machine and the particular
5256``switch`` instruction, this instruction may be code generated in
5257different ways. For example, it could be generated as a series of
5258chained conditional branches or with a lookup table.
5259
5260Example:
5261""""""""
5262
5263.. code-block:: llvm
5264
5265 ; Emulate a conditional br instruction
5266 %Val = zext i1 %value to i32
5267 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5268
5269 ; Emulate an unconditional br instruction
5270 switch i32 0, label %dest [ ]
5271
5272 ; Implement a jump table:
5273 switch i32 %val, label %otherwise [ i32 0, label %onzero
5274 i32 1, label %onone
5275 i32 2, label %ontwo ]
5276
5277.. _i_indirectbr:
5278
5279'``indirectbr``' Instruction
5280^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5281
5282Syntax:
5283"""""""
5284
5285::
5286
5287 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5288
5289Overview:
5290"""""""""
5291
5292The '``indirectbr``' instruction implements an indirect branch to a
5293label within the current function, whose address is specified by
5294"``address``". Address must be derived from a
5295:ref:`blockaddress <blockaddress>` constant.
5296
5297Arguments:
5298""""""""""
5299
5300The '``address``' argument is the address of the label to jump to. The
5301rest of the arguments indicate the full set of possible destinations
5302that the address may point to. Blocks are allowed to occur multiple
5303times in the destination list, though this isn't particularly useful.
5304
5305This destination list is required so that dataflow analysis has an
5306accurate understanding of the CFG.
5307
5308Semantics:
5309""""""""""
5310
5311Control transfers to the block specified in the address argument. All
5312possible destination blocks must be listed in the label list, otherwise
5313this instruction has undefined behavior. This implies that jumps to
5314labels defined in other functions have undefined behavior as well.
5315
5316Implementation:
5317"""""""""""""""
5318
5319This is typically implemented with a jump through a register.
5320
5321Example:
5322""""""""
5323
5324.. code-block:: llvm
5325
5326 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5327
5328.. _i_invoke:
5329
5330'``invoke``' Instruction
5331^^^^^^^^^^^^^^^^^^^^^^^^
5332
5333Syntax:
5334"""""""
5335
5336::
5337
5338 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005339 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005340
5341Overview:
5342"""""""""
5343
5344The '``invoke``' instruction causes control to transfer to a specified
5345function, with the possibility of control flow transfer to either the
5346'``normal``' label or the '``exception``' label. If the callee function
5347returns with the "``ret``" instruction, control flow will return to the
5348"normal" label. If the callee (or any indirect callees) returns via the
5349":ref:`resume <i_resume>`" instruction or other exception handling
5350mechanism, control is interrupted and continued at the dynamically
5351nearest "exception" label.
5352
5353The '``exception``' label is a `landing
5354pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5355'``exception``' label is required to have the
5356":ref:`landingpad <i_landingpad>`" instruction, which contains the
5357information about the behavior of the program after unwinding happens,
5358as its first non-PHI instruction. The restrictions on the
5359"``landingpad``" instruction's tightly couples it to the "``invoke``"
5360instruction, so that the important information contained within the
5361"``landingpad``" instruction can't be lost through normal code motion.
5362
5363Arguments:
5364""""""""""
5365
5366This instruction requires several arguments:
5367
5368#. The optional "cconv" marker indicates which :ref:`calling
5369 convention <callingconv>` the call should use. If none is
5370 specified, the call defaults to using C calling conventions.
5371#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5372 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5373 are valid here.
5374#. '``ptr to function ty``': shall be the signature of the pointer to
5375 function value being invoked. In most cases, this is a direct
5376 function invocation, but indirect ``invoke``'s are just as possible,
5377 branching off an arbitrary pointer to function value.
5378#. '``function ptr val``': An LLVM value containing a pointer to a
5379 function to be invoked.
5380#. '``function args``': argument list whose types match the function
5381 signature argument types and parameter attributes. All arguments must
5382 be of :ref:`first class <t_firstclass>` type. If the function signature
5383 indicates the function accepts a variable number of arguments, the
5384 extra arguments can be specified.
5385#. '``normal label``': the label reached when the called function
5386 executes a '``ret``' instruction.
5387#. '``exception label``': the label reached when a callee returns via
5388 the :ref:`resume <i_resume>` instruction or other exception handling
5389 mechanism.
5390#. The optional :ref:`function attributes <fnattrs>` list. Only
5391 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5392 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005393#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005394
5395Semantics:
5396""""""""""
5397
5398This instruction is designed to operate as a standard '``call``'
5399instruction in most regards. The primary difference is that it
5400establishes an association with a label, which is used by the runtime
5401library to unwind the stack.
5402
5403This instruction is used in languages with destructors to ensure that
5404proper cleanup is performed in the case of either a ``longjmp`` or a
5405thrown exception. Additionally, this is important for implementation of
5406'``catch``' clauses in high-level languages that support them.
5407
5408For the purposes of the SSA form, the definition of the value returned
5409by the '``invoke``' instruction is deemed to occur on the edge from the
5410current block to the "normal" label. If the callee unwinds then no
5411return value is available.
5412
5413Example:
5414""""""""
5415
5416.. code-block:: llvm
5417
5418 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005419 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005420 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005421 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005422
5423.. _i_resume:
5424
5425'``resume``' Instruction
5426^^^^^^^^^^^^^^^^^^^^^^^^
5427
5428Syntax:
5429"""""""
5430
5431::
5432
5433 resume <type> <value>
5434
5435Overview:
5436"""""""""
5437
5438The '``resume``' instruction is a terminator instruction that has no
5439successors.
5440
5441Arguments:
5442""""""""""
5443
5444The '``resume``' instruction requires one argument, which must have the
5445same type as the result of any '``landingpad``' instruction in the same
5446function.
5447
5448Semantics:
5449""""""""""
5450
5451The '``resume``' instruction resumes propagation of an existing
5452(in-flight) exception whose unwinding was interrupted with a
5453:ref:`landingpad <i_landingpad>` instruction.
5454
5455Example:
5456""""""""
5457
5458.. code-block:: llvm
5459
5460 resume { i8*, i32 } %exn
5461
David Majnemer8a1c45d2015-12-12 05:38:55 +00005462.. _i_catchswitch:
5463
5464'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005466
5467Syntax:
5468"""""""
5469
5470::
5471
5472 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5473 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5474
5475Overview:
5476"""""""""
5477
5478The '``catchswitch``' instruction is used by `LLVM's exception handling system
5479<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5480that may be executed by the :ref:`EH personality routine <personalityfn>`.
5481
5482Arguments:
5483""""""""""
5484
5485The ``parent`` argument is the token of the funclet that contains the
5486``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5487this operand may be the token ``none``.
5488
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005489The ``default`` argument is the label of another basic block beginning with
5490either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5491must be a legal target with respect to the ``parent`` links, as described in
5492the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005493
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005494The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005495:ref:`catchpad <i_catchpad>` instruction.
5496
5497Semantics:
5498""""""""""
5499
5500Executing this instruction transfers control to one of the successors in
5501``handlers``, if appropriate, or continues to unwind via the unwind label if
5502present.
5503
5504The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5505it must be both the first non-phi instruction and last instruction in the basic
5506block. Therefore, it must be the only non-phi instruction in the block.
5507
5508Example:
5509""""""""
5510
5511.. code-block:: llvm
5512
5513 dispatch1:
5514 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5515 dispatch2:
5516 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5517
David Majnemer654e1302015-07-31 17:58:14 +00005518.. _i_catchret:
5519
5520'``catchret``' Instruction
5521^^^^^^^^^^^^^^^^^^^^^^^^^^
5522
5523Syntax:
5524"""""""
5525
5526::
5527
David Majnemer8a1c45d2015-12-12 05:38:55 +00005528 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005529
5530Overview:
5531"""""""""
5532
5533The '``catchret``' instruction is a terminator instruction that has a
5534single successor.
5535
5536
5537Arguments:
5538""""""""""
5539
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005540The first argument to a '``catchret``' indicates which ``catchpad`` it
5541exits. It must be a :ref:`catchpad <i_catchpad>`.
5542The second argument to a '``catchret``' specifies where control will
5543transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005544
5545Semantics:
5546""""""""""
5547
David Majnemer8a1c45d2015-12-12 05:38:55 +00005548The '``catchret``' instruction ends an existing (in-flight) exception whose
5549unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5550:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5551code to, for example, destroy the active exception. Control then transfers to
5552``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005553
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005554The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5555If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5556funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5557the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005558
5559Example:
5560""""""""
5561
5562.. code-block:: llvm
5563
David Majnemer8a1c45d2015-12-12 05:38:55 +00005564 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005565
David Majnemer654e1302015-07-31 17:58:14 +00005566.. _i_cleanupret:
5567
5568'``cleanupret``' Instruction
5569^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5570
5571Syntax:
5572"""""""
5573
5574::
5575
David Majnemer8a1c45d2015-12-12 05:38:55 +00005576 cleanupret from <value> unwind label <continue>
5577 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005578
5579Overview:
5580"""""""""
5581
5582The '``cleanupret``' instruction is a terminator instruction that has
5583an optional successor.
5584
5585
5586Arguments:
5587""""""""""
5588
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005589The '``cleanupret``' instruction requires one argument, which indicates
5590which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005591If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5592funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5593the ``cleanupret``'s behavior is undefined.
5594
5595The '``cleanupret``' instruction also has an optional successor, ``continue``,
5596which must be the label of another basic block beginning with either a
5597``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5598be a legal target with respect to the ``parent`` links, as described in the
5599`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005600
5601Semantics:
5602""""""""""
5603
5604The '``cleanupret``' instruction indicates to the
5605:ref:`personality function <personalityfn>` that one
5606:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5607It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005608
David Majnemer654e1302015-07-31 17:58:14 +00005609Example:
5610""""""""
5611
5612.. code-block:: llvm
5613
David Majnemer8a1c45d2015-12-12 05:38:55 +00005614 cleanupret from %cleanup unwind to caller
5615 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005616
Sean Silvab084af42012-12-07 10:36:55 +00005617.. _i_unreachable:
5618
5619'``unreachable``' Instruction
5620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5621
5622Syntax:
5623"""""""
5624
5625::
5626
5627 unreachable
5628
5629Overview:
5630"""""""""
5631
5632The '``unreachable``' instruction has no defined semantics. This
5633instruction is used to inform the optimizer that a particular portion of
5634the code is not reachable. This can be used to indicate that the code
5635after a no-return function cannot be reached, and other facts.
5636
5637Semantics:
5638""""""""""
5639
5640The '``unreachable``' instruction has no defined semantics.
5641
5642.. _binaryops:
5643
5644Binary Operations
5645-----------------
5646
5647Binary operators are used to do most of the computation in a program.
5648They require two operands of the same type, execute an operation on
5649them, and produce a single value. The operands might represent multiple
5650data, as is the case with the :ref:`vector <t_vector>` data type. The
5651result value has the same type as its operands.
5652
5653There are several different binary operators:
5654
5655.. _i_add:
5656
5657'``add``' Instruction
5658^^^^^^^^^^^^^^^^^^^^^
5659
5660Syntax:
5661"""""""
5662
5663::
5664
Tim Northover675a0962014-06-13 14:24:23 +00005665 <result> = add <ty> <op1>, <op2> ; yields ty:result
5666 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5667 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5668 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005669
5670Overview:
5671"""""""""
5672
5673The '``add``' instruction returns the sum of its two operands.
5674
5675Arguments:
5676""""""""""
5677
5678The two arguments to the '``add``' instruction must be
5679:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5680arguments must have identical types.
5681
5682Semantics:
5683""""""""""
5684
5685The value produced is the integer sum of the two operands.
5686
5687If the sum has unsigned overflow, the result returned is the
5688mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5689the result.
5690
5691Because LLVM integers use a two's complement representation, this
5692instruction is appropriate for both signed and unsigned integers.
5693
5694``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5695respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5696result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5697unsigned and/or signed overflow, respectively, occurs.
5698
5699Example:
5700""""""""
5701
5702.. code-block:: llvm
5703
Tim Northover675a0962014-06-13 14:24:23 +00005704 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005705
5706.. _i_fadd:
5707
5708'``fadd``' Instruction
5709^^^^^^^^^^^^^^^^^^^^^^
5710
5711Syntax:
5712"""""""
5713
5714::
5715
Tim Northover675a0962014-06-13 14:24:23 +00005716 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005717
5718Overview:
5719"""""""""
5720
5721The '``fadd``' instruction returns the sum of its two operands.
5722
5723Arguments:
5724""""""""""
5725
5726The two arguments to the '``fadd``' instruction must be :ref:`floating
5727point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5728Both arguments must have identical types.
5729
5730Semantics:
5731""""""""""
5732
5733The value produced is the floating point sum of the two operands. This
5734instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5735which are optimization hints to enable otherwise unsafe floating point
5736optimizations:
5737
5738Example:
5739""""""""
5740
5741.. code-block:: llvm
5742
Tim Northover675a0962014-06-13 14:24:23 +00005743 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005744
5745'``sub``' Instruction
5746^^^^^^^^^^^^^^^^^^^^^
5747
5748Syntax:
5749"""""""
5750
5751::
5752
Tim Northover675a0962014-06-13 14:24:23 +00005753 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5754 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5755 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5756 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005757
5758Overview:
5759"""""""""
5760
5761The '``sub``' instruction returns the difference of its two operands.
5762
5763Note that the '``sub``' instruction is used to represent the '``neg``'
5764instruction present in most other intermediate representations.
5765
5766Arguments:
5767""""""""""
5768
5769The two arguments to the '``sub``' instruction must be
5770:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5771arguments must have identical types.
5772
5773Semantics:
5774""""""""""
5775
5776The value produced is the integer difference of the two operands.
5777
5778If the difference has unsigned overflow, the result returned is the
5779mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5780the result.
5781
5782Because LLVM integers use a two's complement representation, this
5783instruction is appropriate for both signed and unsigned integers.
5784
5785``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5786respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5787result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5788unsigned and/or signed overflow, respectively, occurs.
5789
5790Example:
5791""""""""
5792
5793.. code-block:: llvm
5794
Tim Northover675a0962014-06-13 14:24:23 +00005795 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5796 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005797
5798.. _i_fsub:
5799
5800'``fsub``' Instruction
5801^^^^^^^^^^^^^^^^^^^^^^
5802
5803Syntax:
5804"""""""
5805
5806::
5807
Tim Northover675a0962014-06-13 14:24:23 +00005808 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005809
5810Overview:
5811"""""""""
5812
5813The '``fsub``' instruction returns the difference of its two operands.
5814
5815Note that the '``fsub``' instruction is used to represent the '``fneg``'
5816instruction present in most other intermediate representations.
5817
5818Arguments:
5819""""""""""
5820
5821The two arguments to the '``fsub``' instruction must be :ref:`floating
5822point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5823Both arguments must have identical types.
5824
5825Semantics:
5826""""""""""
5827
5828The value produced is the floating point difference of the two operands.
5829This instruction can also take any number of :ref:`fast-math
5830flags <fastmath>`, which are optimization hints to enable otherwise
5831unsafe floating point optimizations:
5832
5833Example:
5834""""""""
5835
5836.. code-block:: llvm
5837
Tim Northover675a0962014-06-13 14:24:23 +00005838 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5839 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005840
5841'``mul``' Instruction
5842^^^^^^^^^^^^^^^^^^^^^
5843
5844Syntax:
5845"""""""
5846
5847::
5848
Tim Northover675a0962014-06-13 14:24:23 +00005849 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5850 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5851 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5852 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005853
5854Overview:
5855"""""""""
5856
5857The '``mul``' instruction returns the product of its two operands.
5858
5859Arguments:
5860""""""""""
5861
5862The two arguments to the '``mul``' instruction must be
5863:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5864arguments must have identical types.
5865
5866Semantics:
5867""""""""""
5868
5869The value produced is the integer product of the two operands.
5870
5871If the result of the multiplication has unsigned overflow, the result
5872returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5873bit width of the result.
5874
5875Because LLVM integers use a two's complement representation, and the
5876result is the same width as the operands, this instruction returns the
5877correct result for both signed and unsigned integers. If a full product
5878(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5879sign-extended or zero-extended as appropriate to the width of the full
5880product.
5881
5882``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5883respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5884result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5885unsigned and/or signed overflow, respectively, occurs.
5886
5887Example:
5888""""""""
5889
5890.. code-block:: llvm
5891
Tim Northover675a0962014-06-13 14:24:23 +00005892 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005893
5894.. _i_fmul:
5895
5896'``fmul``' Instruction
5897^^^^^^^^^^^^^^^^^^^^^^
5898
5899Syntax:
5900"""""""
5901
5902::
5903
Tim Northover675a0962014-06-13 14:24:23 +00005904 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005905
5906Overview:
5907"""""""""
5908
5909The '``fmul``' instruction returns the product of its two operands.
5910
5911Arguments:
5912""""""""""
5913
5914The two arguments to the '``fmul``' instruction must be :ref:`floating
5915point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5916Both arguments must have identical types.
5917
5918Semantics:
5919""""""""""
5920
5921The value produced is the floating point product of the two operands.
5922This instruction can also take any number of :ref:`fast-math
5923flags <fastmath>`, which are optimization hints to enable otherwise
5924unsafe floating point optimizations:
5925
5926Example:
5927""""""""
5928
5929.. code-block:: llvm
5930
Tim Northover675a0962014-06-13 14:24:23 +00005931 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005932
5933'``udiv``' Instruction
5934^^^^^^^^^^^^^^^^^^^^^^
5935
5936Syntax:
5937"""""""
5938
5939::
5940
Tim Northover675a0962014-06-13 14:24:23 +00005941 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5942 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005943
5944Overview:
5945"""""""""
5946
5947The '``udiv``' instruction returns the quotient of its two operands.
5948
5949Arguments:
5950""""""""""
5951
5952The two arguments to the '``udiv``' instruction must be
5953:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5954arguments must have identical types.
5955
5956Semantics:
5957""""""""""
5958
5959The value produced is the unsigned integer quotient of the two operands.
5960
5961Note that unsigned integer division and signed integer division are
5962distinct operations; for signed integer division, use '``sdiv``'.
5963
5964Division by zero leads to undefined behavior.
5965
5966If the ``exact`` keyword is present, the result value of the ``udiv`` is
5967a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5968such, "((a udiv exact b) mul b) == a").
5969
5970Example:
5971""""""""
5972
5973.. code-block:: llvm
5974
Tim Northover675a0962014-06-13 14:24:23 +00005975 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005976
5977'``sdiv``' Instruction
5978^^^^^^^^^^^^^^^^^^^^^^
5979
5980Syntax:
5981"""""""
5982
5983::
5984
Tim Northover675a0962014-06-13 14:24:23 +00005985 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5986 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005987
5988Overview:
5989"""""""""
5990
5991The '``sdiv``' instruction returns the quotient of its two operands.
5992
5993Arguments:
5994""""""""""
5995
5996The two arguments to the '``sdiv``' instruction must be
5997:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5998arguments must have identical types.
5999
6000Semantics:
6001""""""""""
6002
6003The value produced is the signed integer quotient of the two operands
6004rounded towards zero.
6005
6006Note that signed integer division and unsigned integer division are
6007distinct operations; for unsigned integer division, use '``udiv``'.
6008
6009Division by zero leads to undefined behavior. Overflow also leads to
6010undefined behavior; this is a rare case, but can occur, for example, by
6011doing a 32-bit division of -2147483648 by -1.
6012
6013If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6014a :ref:`poison value <poisonvalues>` if the result would be rounded.
6015
6016Example:
6017""""""""
6018
6019.. code-block:: llvm
6020
Tim Northover675a0962014-06-13 14:24:23 +00006021 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006022
6023.. _i_fdiv:
6024
6025'``fdiv``' Instruction
6026^^^^^^^^^^^^^^^^^^^^^^
6027
6028Syntax:
6029"""""""
6030
6031::
6032
Tim Northover675a0962014-06-13 14:24:23 +00006033 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006034
6035Overview:
6036"""""""""
6037
6038The '``fdiv``' instruction returns the quotient of its two operands.
6039
6040Arguments:
6041""""""""""
6042
6043The two arguments to the '``fdiv``' instruction must be :ref:`floating
6044point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6045Both arguments must have identical types.
6046
6047Semantics:
6048""""""""""
6049
6050The value produced is the floating point quotient of the two operands.
6051This instruction can also take any number of :ref:`fast-math
6052flags <fastmath>`, which are optimization hints to enable otherwise
6053unsafe floating point optimizations:
6054
6055Example:
6056""""""""
6057
6058.. code-block:: llvm
6059
Tim Northover675a0962014-06-13 14:24:23 +00006060 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006061
6062'``urem``' Instruction
6063^^^^^^^^^^^^^^^^^^^^^^
6064
6065Syntax:
6066"""""""
6067
6068::
6069
Tim Northover675a0962014-06-13 14:24:23 +00006070 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006071
6072Overview:
6073"""""""""
6074
6075The '``urem``' instruction returns the remainder from the unsigned
6076division of its two arguments.
6077
6078Arguments:
6079""""""""""
6080
6081The two arguments to the '``urem``' instruction must be
6082:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6083arguments must have identical types.
6084
6085Semantics:
6086""""""""""
6087
6088This instruction returns the unsigned integer *remainder* of a division.
6089This instruction always performs an unsigned division to get the
6090remainder.
6091
6092Note that unsigned integer remainder and signed integer remainder are
6093distinct operations; for signed integer remainder, use '``srem``'.
6094
6095Taking the remainder of a division by zero leads to undefined behavior.
6096
6097Example:
6098""""""""
6099
6100.. code-block:: llvm
6101
Tim Northover675a0962014-06-13 14:24:23 +00006102 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006103
6104'``srem``' Instruction
6105^^^^^^^^^^^^^^^^^^^^^^
6106
6107Syntax:
6108"""""""
6109
6110::
6111
Tim Northover675a0962014-06-13 14:24:23 +00006112 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006113
6114Overview:
6115"""""""""
6116
6117The '``srem``' instruction returns the remainder from the signed
6118division of its two operands. This instruction can also take
6119:ref:`vector <t_vector>` versions of the values in which case the elements
6120must be integers.
6121
6122Arguments:
6123""""""""""
6124
6125The two arguments to the '``srem``' instruction must be
6126:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6127arguments must have identical types.
6128
6129Semantics:
6130""""""""""
6131
6132This instruction returns the *remainder* of a division (where the result
6133is either zero or has the same sign as the dividend, ``op1``), not the
6134*modulo* operator (where the result is either zero or has the same sign
6135as the divisor, ``op2``) of a value. For more information about the
6136difference, see `The Math
6137Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6138table of how this is implemented in various languages, please see
6139`Wikipedia: modulo
6140operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6141
6142Note that signed integer remainder and unsigned integer remainder are
6143distinct operations; for unsigned integer remainder, use '``urem``'.
6144
6145Taking the remainder of a division by zero leads to undefined behavior.
6146Overflow also leads to undefined behavior; this is a rare case, but can
6147occur, for example, by taking the remainder of a 32-bit division of
6148-2147483648 by -1. (The remainder doesn't actually overflow, but this
6149rule lets srem be implemented using instructions that return both the
6150result of the division and the remainder.)
6151
6152Example:
6153""""""""
6154
6155.. code-block:: llvm
6156
Tim Northover675a0962014-06-13 14:24:23 +00006157 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006158
6159.. _i_frem:
6160
6161'``frem``' Instruction
6162^^^^^^^^^^^^^^^^^^^^^^
6163
6164Syntax:
6165"""""""
6166
6167::
6168
Tim Northover675a0962014-06-13 14:24:23 +00006169 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006170
6171Overview:
6172"""""""""
6173
6174The '``frem``' instruction returns the remainder from the division of
6175its two operands.
6176
6177Arguments:
6178""""""""""
6179
6180The two arguments to the '``frem``' instruction must be :ref:`floating
6181point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6182Both arguments must have identical types.
6183
6184Semantics:
6185""""""""""
6186
6187This instruction returns the *remainder* of a division. The remainder
6188has the same sign as the dividend. This instruction can also take any
6189number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6190to enable otherwise unsafe floating point optimizations:
6191
6192Example:
6193""""""""
6194
6195.. code-block:: llvm
6196
Tim Northover675a0962014-06-13 14:24:23 +00006197 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006198
6199.. _bitwiseops:
6200
6201Bitwise Binary Operations
6202-------------------------
6203
6204Bitwise binary operators are used to do various forms of bit-twiddling
6205in a program. They are generally very efficient instructions and can
6206commonly be strength reduced from other instructions. They require two
6207operands of the same type, execute an operation on them, and produce a
6208single value. The resulting value is the same type as its operands.
6209
6210'``shl``' Instruction
6211^^^^^^^^^^^^^^^^^^^^^
6212
6213Syntax:
6214"""""""
6215
6216::
6217
Tim Northover675a0962014-06-13 14:24:23 +00006218 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6219 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6220 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6221 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006222
6223Overview:
6224"""""""""
6225
6226The '``shl``' instruction returns the first operand shifted to the left
6227a specified number of bits.
6228
6229Arguments:
6230""""""""""
6231
6232Both arguments to the '``shl``' instruction must be the same
6233:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6234'``op2``' is treated as an unsigned value.
6235
6236Semantics:
6237""""""""""
6238
6239The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6240where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006241dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006242``op1``, the result is undefined. If the arguments are vectors, each
6243vector element of ``op1`` is shifted by the corresponding shift amount
6244in ``op2``.
6245
6246If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6247value <poisonvalues>` if it shifts out any non-zero bits. If the
6248``nsw`` keyword is present, then the shift produces a :ref:`poison
6249value <poisonvalues>` if it shifts out any bits that disagree with the
6250resultant sign bit. As such, NUW/NSW have the same semantics as they
6251would if the shift were expressed as a mul instruction with the same
6252nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6253
6254Example:
6255""""""""
6256
6257.. code-block:: llvm
6258
Tim Northover675a0962014-06-13 14:24:23 +00006259 <result> = shl i32 4, %var ; yields i32: 4 << %var
6260 <result> = shl i32 4, 2 ; yields i32: 16
6261 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006262 <result> = shl i32 1, 32 ; undefined
6263 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6264
6265'``lshr``' Instruction
6266^^^^^^^^^^^^^^^^^^^^^^
6267
6268Syntax:
6269"""""""
6270
6271::
6272
Tim Northover675a0962014-06-13 14:24:23 +00006273 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6274 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006275
6276Overview:
6277"""""""""
6278
6279The '``lshr``' instruction (logical shift right) returns the first
6280operand shifted to the right a specified number of bits with zero fill.
6281
6282Arguments:
6283""""""""""
6284
6285Both arguments to the '``lshr``' instruction must be the same
6286:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6287'``op2``' is treated as an unsigned value.
6288
6289Semantics:
6290""""""""""
6291
6292This instruction always performs a logical shift right operation. The
6293most significant bits of the result will be filled with zero bits after
6294the shift. If ``op2`` is (statically or dynamically) equal to or larger
6295than the number of bits in ``op1``, the result is undefined. If the
6296arguments are vectors, each vector element of ``op1`` is shifted by the
6297corresponding shift amount in ``op2``.
6298
6299If the ``exact`` keyword is present, the result value of the ``lshr`` is
6300a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6301non-zero.
6302
6303Example:
6304""""""""
6305
6306.. code-block:: llvm
6307
Tim Northover675a0962014-06-13 14:24:23 +00006308 <result> = lshr i32 4, 1 ; yields i32:result = 2
6309 <result> = lshr i32 4, 2 ; yields i32:result = 1
6310 <result> = lshr i8 4, 3 ; yields i8:result = 0
6311 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006312 <result> = lshr i32 1, 32 ; undefined
6313 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6314
6315'``ashr``' Instruction
6316^^^^^^^^^^^^^^^^^^^^^^
6317
6318Syntax:
6319"""""""
6320
6321::
6322
Tim Northover675a0962014-06-13 14:24:23 +00006323 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6324 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006325
6326Overview:
6327"""""""""
6328
6329The '``ashr``' instruction (arithmetic shift right) returns the first
6330operand shifted to the right a specified number of bits with sign
6331extension.
6332
6333Arguments:
6334""""""""""
6335
6336Both arguments to the '``ashr``' instruction must be the same
6337:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6338'``op2``' is treated as an unsigned value.
6339
6340Semantics:
6341""""""""""
6342
6343This instruction always performs an arithmetic shift right operation,
6344The most significant bits of the result will be filled with the sign bit
6345of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6346than the number of bits in ``op1``, the result is undefined. If the
6347arguments are vectors, each vector element of ``op1`` is shifted by the
6348corresponding shift amount in ``op2``.
6349
6350If the ``exact`` keyword is present, the result value of the ``ashr`` is
6351a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6352non-zero.
6353
6354Example:
6355""""""""
6356
6357.. code-block:: llvm
6358
Tim Northover675a0962014-06-13 14:24:23 +00006359 <result> = ashr i32 4, 1 ; yields i32:result = 2
6360 <result> = ashr i32 4, 2 ; yields i32:result = 1
6361 <result> = ashr i8 4, 3 ; yields i8:result = 0
6362 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006363 <result> = ashr i32 1, 32 ; undefined
6364 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6365
6366'``and``' Instruction
6367^^^^^^^^^^^^^^^^^^^^^
6368
6369Syntax:
6370"""""""
6371
6372::
6373
Tim Northover675a0962014-06-13 14:24:23 +00006374 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006375
6376Overview:
6377"""""""""
6378
6379The '``and``' instruction returns the bitwise logical and of its two
6380operands.
6381
6382Arguments:
6383""""""""""
6384
6385The two arguments to the '``and``' instruction must be
6386:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6387arguments must have identical types.
6388
6389Semantics:
6390""""""""""
6391
6392The truth table used for the '``and``' instruction is:
6393
6394+-----+-----+-----+
6395| In0 | In1 | Out |
6396+-----+-----+-----+
6397| 0 | 0 | 0 |
6398+-----+-----+-----+
6399| 0 | 1 | 0 |
6400+-----+-----+-----+
6401| 1 | 0 | 0 |
6402+-----+-----+-----+
6403| 1 | 1 | 1 |
6404+-----+-----+-----+
6405
6406Example:
6407""""""""
6408
6409.. code-block:: llvm
6410
Tim Northover675a0962014-06-13 14:24:23 +00006411 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6412 <result> = and i32 15, 40 ; yields i32:result = 8
6413 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006414
6415'``or``' Instruction
6416^^^^^^^^^^^^^^^^^^^^
6417
6418Syntax:
6419"""""""
6420
6421::
6422
Tim Northover675a0962014-06-13 14:24:23 +00006423 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006424
6425Overview:
6426"""""""""
6427
6428The '``or``' instruction returns the bitwise logical inclusive or of its
6429two operands.
6430
6431Arguments:
6432""""""""""
6433
6434The two arguments to the '``or``' instruction must be
6435:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6436arguments must have identical types.
6437
6438Semantics:
6439""""""""""
6440
6441The truth table used for the '``or``' instruction is:
6442
6443+-----+-----+-----+
6444| In0 | In1 | Out |
6445+-----+-----+-----+
6446| 0 | 0 | 0 |
6447+-----+-----+-----+
6448| 0 | 1 | 1 |
6449+-----+-----+-----+
6450| 1 | 0 | 1 |
6451+-----+-----+-----+
6452| 1 | 1 | 1 |
6453+-----+-----+-----+
6454
6455Example:
6456""""""""
6457
6458::
6459
Tim Northover675a0962014-06-13 14:24:23 +00006460 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6461 <result> = or i32 15, 40 ; yields i32:result = 47
6462 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006463
6464'``xor``' Instruction
6465^^^^^^^^^^^^^^^^^^^^^
6466
6467Syntax:
6468"""""""
6469
6470::
6471
Tim Northover675a0962014-06-13 14:24:23 +00006472 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006473
6474Overview:
6475"""""""""
6476
6477The '``xor``' instruction returns the bitwise logical exclusive or of
6478its two operands. The ``xor`` is used to implement the "one's
6479complement" operation, which is the "~" operator in C.
6480
6481Arguments:
6482""""""""""
6483
6484The two arguments to the '``xor``' instruction must be
6485:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6486arguments must have identical types.
6487
6488Semantics:
6489""""""""""
6490
6491The truth table used for the '``xor``' instruction is:
6492
6493+-----+-----+-----+
6494| In0 | In1 | Out |
6495+-----+-----+-----+
6496| 0 | 0 | 0 |
6497+-----+-----+-----+
6498| 0 | 1 | 1 |
6499+-----+-----+-----+
6500| 1 | 0 | 1 |
6501+-----+-----+-----+
6502| 1 | 1 | 0 |
6503+-----+-----+-----+
6504
6505Example:
6506""""""""
6507
6508.. code-block:: llvm
6509
Tim Northover675a0962014-06-13 14:24:23 +00006510 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6511 <result> = xor i32 15, 40 ; yields i32:result = 39
6512 <result> = xor i32 4, 8 ; yields i32:result = 12
6513 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006514
6515Vector Operations
6516-----------------
6517
6518LLVM supports several instructions to represent vector operations in a
6519target-independent manner. These instructions cover the element-access
6520and vector-specific operations needed to process vectors effectively.
6521While LLVM does directly support these vector operations, many
6522sophisticated algorithms will want to use target-specific intrinsics to
6523take full advantage of a specific target.
6524
6525.. _i_extractelement:
6526
6527'``extractelement``' Instruction
6528^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6529
6530Syntax:
6531"""""""
6532
6533::
6534
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006535 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006536
6537Overview:
6538"""""""""
6539
6540The '``extractelement``' instruction extracts a single scalar element
6541from a vector at a specified index.
6542
6543Arguments:
6544""""""""""
6545
6546The first operand of an '``extractelement``' instruction is a value of
6547:ref:`vector <t_vector>` type. The second operand is an index indicating
6548the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006549variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006550
6551Semantics:
6552""""""""""
6553
6554The result is a scalar of the same type as the element type of ``val``.
6555Its value is the value at position ``idx`` of ``val``. If ``idx``
6556exceeds the length of ``val``, the results are undefined.
6557
6558Example:
6559""""""""
6560
6561.. code-block:: llvm
6562
6563 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6564
6565.. _i_insertelement:
6566
6567'``insertelement``' Instruction
6568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6569
6570Syntax:
6571"""""""
6572
6573::
6574
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006575 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006576
6577Overview:
6578"""""""""
6579
6580The '``insertelement``' instruction inserts a scalar element into a
6581vector at a specified index.
6582
6583Arguments:
6584""""""""""
6585
6586The first operand of an '``insertelement``' instruction is a value of
6587:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6588type must equal the element type of the first operand. The third operand
6589is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006590index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006591
6592Semantics:
6593""""""""""
6594
6595The result is a vector of the same type as ``val``. Its element values
6596are those of ``val`` except at position ``idx``, where it gets the value
6597``elt``. If ``idx`` exceeds the length of ``val``, the results are
6598undefined.
6599
6600Example:
6601""""""""
6602
6603.. code-block:: llvm
6604
6605 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6606
6607.. _i_shufflevector:
6608
6609'``shufflevector``' Instruction
6610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6611
6612Syntax:
6613"""""""
6614
6615::
6616
6617 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6618
6619Overview:
6620"""""""""
6621
6622The '``shufflevector``' instruction constructs a permutation of elements
6623from two input vectors, returning a vector with the same element type as
6624the input and length that is the same as the shuffle mask.
6625
6626Arguments:
6627""""""""""
6628
6629The first two operands of a '``shufflevector``' instruction are vectors
6630with the same type. The third argument is a shuffle mask whose element
6631type is always 'i32'. The result of the instruction is a vector whose
6632length is the same as the shuffle mask and whose element type is the
6633same as the element type of the first two operands.
6634
6635The shuffle mask operand is required to be a constant vector with either
6636constant integer or undef values.
6637
6638Semantics:
6639""""""""""
6640
6641The elements of the two input vectors are numbered from left to right
6642across both of the vectors. The shuffle mask operand specifies, for each
6643element of the result vector, which element of the two input vectors the
6644result element gets. The element selector may be undef (meaning "don't
6645care") and the second operand may be undef if performing a shuffle from
6646only one vector.
6647
6648Example:
6649""""""""
6650
6651.. code-block:: llvm
6652
6653 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6654 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6655 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6656 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6657 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6658 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6659 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6660 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6661
6662Aggregate Operations
6663--------------------
6664
6665LLVM supports several instructions for working with
6666:ref:`aggregate <t_aggregate>` values.
6667
6668.. _i_extractvalue:
6669
6670'``extractvalue``' Instruction
6671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6672
6673Syntax:
6674"""""""
6675
6676::
6677
6678 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6679
6680Overview:
6681"""""""""
6682
6683The '``extractvalue``' instruction extracts the value of a member field
6684from an :ref:`aggregate <t_aggregate>` value.
6685
6686Arguments:
6687""""""""""
6688
6689The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006690:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006691constant indices to specify which value to extract in a similar manner
6692as indices in a '``getelementptr``' instruction.
6693
6694The major differences to ``getelementptr`` indexing are:
6695
6696- Since the value being indexed is not a pointer, the first index is
6697 omitted and assumed to be zero.
6698- At least one index must be specified.
6699- Not only struct indices but also array indices must be in bounds.
6700
6701Semantics:
6702""""""""""
6703
6704The result is the value at the position in the aggregate specified by
6705the index operands.
6706
6707Example:
6708""""""""
6709
6710.. code-block:: llvm
6711
6712 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6713
6714.. _i_insertvalue:
6715
6716'``insertvalue``' Instruction
6717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6718
6719Syntax:
6720"""""""
6721
6722::
6723
6724 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6725
6726Overview:
6727"""""""""
6728
6729The '``insertvalue``' instruction inserts a value into a member field in
6730an :ref:`aggregate <t_aggregate>` value.
6731
6732Arguments:
6733""""""""""
6734
6735The first operand of an '``insertvalue``' instruction is a value of
6736:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6737a first-class value to insert. The following operands are constant
6738indices indicating the position at which to insert the value in a
6739similar manner as indices in a '``extractvalue``' instruction. The value
6740to insert must have the same type as the value identified by the
6741indices.
6742
6743Semantics:
6744""""""""""
6745
6746The result is an aggregate of the same type as ``val``. Its value is
6747that of ``val`` except that the value at the position specified by the
6748indices is that of ``elt``.
6749
6750Example:
6751""""""""
6752
6753.. code-block:: llvm
6754
6755 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6756 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006757 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006758
6759.. _memoryops:
6760
6761Memory Access and Addressing Operations
6762---------------------------------------
6763
6764A key design point of an SSA-based representation is how it represents
6765memory. In LLVM, no memory locations are in SSA form, which makes things
6766very simple. This section describes how to read, write, and allocate
6767memory in LLVM.
6768
6769.. _i_alloca:
6770
6771'``alloca``' Instruction
6772^^^^^^^^^^^^^^^^^^^^^^^^
6773
6774Syntax:
6775"""""""
6776
6777::
6778
Tim Northover675a0962014-06-13 14:24:23 +00006779 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006780
6781Overview:
6782"""""""""
6783
6784The '``alloca``' instruction allocates memory on the stack frame of the
6785currently executing function, to be automatically released when this
6786function returns to its caller. The object is always allocated in the
6787generic address space (address space zero).
6788
6789Arguments:
6790""""""""""
6791
6792The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6793bytes of memory on the runtime stack, returning a pointer of the
6794appropriate type to the program. If "NumElements" is specified, it is
6795the number of elements allocated, otherwise "NumElements" is defaulted
6796to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006797allocation is guaranteed to be aligned to at least that boundary. The
6798alignment may not be greater than ``1 << 29``. If not specified, or if
6799zero, the target can choose to align the allocation on any convenient
6800boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006801
6802'``type``' may be any sized type.
6803
6804Semantics:
6805""""""""""
6806
6807Memory is allocated; a pointer is returned. The operation is undefined
6808if there is insufficient stack space for the allocation. '``alloca``'d
6809memory is automatically released when the function returns. The
6810'``alloca``' instruction is commonly used to represent automatic
6811variables that must have an address available. When the function returns
6812(either with the ``ret`` or ``resume`` instructions), the memory is
6813reclaimed. Allocating zero bytes is legal, but the result is undefined.
6814The order in which memory is allocated (ie., which way the stack grows)
6815is not specified.
6816
6817Example:
6818""""""""
6819
6820.. code-block:: llvm
6821
Tim Northover675a0962014-06-13 14:24:23 +00006822 %ptr = alloca i32 ; yields i32*:ptr
6823 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6824 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6825 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006826
6827.. _i_load:
6828
6829'``load``' Instruction
6830^^^^^^^^^^^^^^^^^^^^^^
6831
6832Syntax:
6833"""""""
6834
6835::
6836
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006837 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006838 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006839 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006840 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006841 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006842
6843Overview:
6844"""""""""
6845
6846The '``load``' instruction is used to read from memory.
6847
6848Arguments:
6849""""""""""
6850
Eli Bendersky239a78b2013-04-17 20:17:08 +00006851The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006852from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006853class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6854then the optimizer is not allowed to modify the number or order of
6855execution of this ``load`` with other :ref:`volatile
6856operations <volatile>`.
6857
JF Bastiend1fb5852015-12-17 22:09:19 +00006858If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6859<ordering>` and optional ``singlethread`` argument. The ``release`` and
6860``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
6861produce :ref:`defined <memmodel>` results when they may see multiple atomic
6862stores. The type of the pointee must be an integer, pointer, or floating-point
6863type whose bit width is a power of two greater than or equal to eight and less
6864than or equal to a target-specific size limit. ``align`` must be explicitly
6865specified on atomic loads, and the load has undefined behavior if the alignment
6866is not set to a value which is at least the size in bytes of the
6867pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00006868
6869The optional constant ``align`` argument specifies the alignment of the
6870operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006871or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006872alignment for the target. It is the responsibility of the code emitter
6873to ensure that the alignment information is correct. Overestimating the
6874alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006875may produce less efficient code. An alignment of 1 is always safe. The
6876maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006877
6878The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006879metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006880``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006881metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006882that this load is not expected to be reused in the cache. The code
6883generator may select special instructions to save cache bandwidth, such
6884as the ``MOVNT`` instruction on x86.
6885
6886The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006887metadata name ``<index>`` corresponding to a metadata node with no
6888entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006889instruction tells the optimizer and code generator that the address
6890operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006891Being invariant does not imply that a location is dereferenceable,
6892but it does imply that once the location is known dereferenceable
6893its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006894
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006895The optional ``!invariant.group`` metadata must reference a single metadata name
6896 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6897
Philip Reamescdb72f32014-10-20 22:40:55 +00006898The optional ``!nonnull`` metadata must reference a single
6899metadata name ``<index>`` corresponding to a metadata node with no
6900entries. The existence of the ``!nonnull`` metadata on the
6901instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006902never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006903on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006904to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006905
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006906The optional ``!dereferenceable`` metadata must reference a single metadata
6907name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006908entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006909tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006910The number of bytes known to be dereferenceable is specified by the integer
6911value in the metadata node. This is analogous to the ''dereferenceable''
6912attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006913to loads of a pointer type.
6914
6915The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006916metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6917``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006918instruction tells the optimizer that the value loaded is known to be either
6919dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006920The number of bytes known to be dereferenceable is specified by the integer
6921value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6922attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006923to loads of a pointer type.
6924
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006925The optional ``!align`` metadata must reference a single metadata name
6926``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6927The existence of the ``!align`` metadata on the instruction tells the
6928optimizer that the value loaded is known to be aligned to a boundary specified
6929by the integer value in the metadata node. The alignment must be a power of 2.
6930This is analogous to the ''align'' attribute on parameters and return values.
6931This metadata can only be applied to loads of a pointer type.
6932
Sean Silvab084af42012-12-07 10:36:55 +00006933Semantics:
6934""""""""""
6935
6936The location of memory pointed to is loaded. If the value being loaded
6937is of scalar type then the number of bytes read does not exceed the
6938minimum number of bytes needed to hold all bits of the type. For
6939example, loading an ``i24`` reads at most three bytes. When loading a
6940value of a type like ``i20`` with a size that is not an integral number
6941of bytes, the result is undefined if the value was not originally
6942written using a store of the same type.
6943
6944Examples:
6945"""""""""
6946
6947.. code-block:: llvm
6948
Tim Northover675a0962014-06-13 14:24:23 +00006949 %ptr = alloca i32 ; yields i32*:ptr
6950 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006951 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006952
6953.. _i_store:
6954
6955'``store``' Instruction
6956^^^^^^^^^^^^^^^^^^^^^^^
6957
6958Syntax:
6959"""""""
6960
6961::
6962
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006963 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6964 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006965
6966Overview:
6967"""""""""
6968
6969The '``store``' instruction is used to write to memory.
6970
6971Arguments:
6972""""""""""
6973
Eli Benderskyca380842013-04-17 17:17:20 +00006974There are two arguments to the ``store`` instruction: a value to store
6975and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006976operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006977the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006978then the optimizer is not allowed to modify the number or order of
6979execution of this ``store`` with other :ref:`volatile
6980operations <volatile>`.
6981
JF Bastiend1fb5852015-12-17 22:09:19 +00006982If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
6983<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
6984``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
6985produce :ref:`defined <memmodel>` results when they may see multiple atomic
6986stores. The type of the pointee must be an integer, pointer, or floating-point
6987type whose bit width is a power of two greater than or equal to eight and less
6988than or equal to a target-specific size limit. ``align`` must be explicitly
6989specified on atomic stores, and the store has undefined behavior if the
6990alignment is not set to a value which is at least the size in bytes of the
6991pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00006992
Eli Benderskyca380842013-04-17 17:17:20 +00006993The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006994operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006995or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006996alignment for the target. It is the responsibility of the code emitter
6997to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006998alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006999alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007000safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007001
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007002The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007003name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007004value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007005tells the optimizer and code generator that this load is not expected to
7006be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007007instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007008x86.
7009
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007010The optional ``!invariant.group`` metadata must reference a
7011single metadata name ``<index>``. See ``invariant.group`` metadata.
7012
Sean Silvab084af42012-12-07 10:36:55 +00007013Semantics:
7014""""""""""
7015
Eli Benderskyca380842013-04-17 17:17:20 +00007016The contents of memory are updated to contain ``<value>`` at the
7017location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007018of scalar type then the number of bytes written does not exceed the
7019minimum number of bytes needed to hold all bits of the type. For
7020example, storing an ``i24`` writes at most three bytes. When writing a
7021value of a type like ``i20`` with a size that is not an integral number
7022of bytes, it is unspecified what happens to the extra bits that do not
7023belong to the type, but they will typically be overwritten.
7024
7025Example:
7026""""""""
7027
7028.. code-block:: llvm
7029
Tim Northover675a0962014-06-13 14:24:23 +00007030 %ptr = alloca i32 ; yields i32*:ptr
7031 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007032 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007033
7034.. _i_fence:
7035
7036'``fence``' Instruction
7037^^^^^^^^^^^^^^^^^^^^^^^
7038
7039Syntax:
7040"""""""
7041
7042::
7043
Tim Northover675a0962014-06-13 14:24:23 +00007044 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007045
7046Overview:
7047"""""""""
7048
7049The '``fence``' instruction is used to introduce happens-before edges
7050between operations.
7051
7052Arguments:
7053""""""""""
7054
7055'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7056defines what *synchronizes-with* edges they add. They can only be given
7057``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7058
7059Semantics:
7060""""""""""
7061
7062A fence A which has (at least) ``release`` ordering semantics
7063*synchronizes with* a fence B with (at least) ``acquire`` ordering
7064semantics if and only if there exist atomic operations X and Y, both
7065operating on some atomic object M, such that A is sequenced before X, X
7066modifies M (either directly or through some side effect of a sequence
7067headed by X), Y is sequenced before B, and Y observes M. This provides a
7068*happens-before* dependency between A and B. Rather than an explicit
7069``fence``, one (but not both) of the atomic operations X or Y might
7070provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7071still *synchronize-with* the explicit ``fence`` and establish the
7072*happens-before* edge.
7073
7074A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7075``acquire`` and ``release`` semantics specified above, participates in
7076the global program order of other ``seq_cst`` operations and/or fences.
7077
7078The optional ":ref:`singlethread <singlethread>`" argument specifies
7079that the fence only synchronizes with other fences in the same thread.
7080(This is useful for interacting with signal handlers.)
7081
7082Example:
7083""""""""
7084
7085.. code-block:: llvm
7086
Tim Northover675a0962014-06-13 14:24:23 +00007087 fence acquire ; yields void
7088 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007089
7090.. _i_cmpxchg:
7091
7092'``cmpxchg``' Instruction
7093^^^^^^^^^^^^^^^^^^^^^^^^^
7094
7095Syntax:
7096"""""""
7097
7098::
7099
Tim Northover675a0962014-06-13 14:24:23 +00007100 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007101
7102Overview:
7103"""""""""
7104
7105The '``cmpxchg``' instruction is used to atomically modify memory. It
7106loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007107equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007108
7109Arguments:
7110""""""""""
7111
7112There are three arguments to the '``cmpxchg``' instruction: an address
7113to operate on, a value to compare to the value currently be at that
7114address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007115are equal. The type of '<cmp>' must be an integer or pointer type whose
7116bit width is a power of two greater than or equal to eight and less
7117than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7118have the same type, and the type of '<pointer>' must be a pointer to
7119that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7120optimizer is not allowed to modify the number or order of execution of
7121this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007122
Tim Northovere94a5182014-03-11 10:48:52 +00007123The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007124``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7125must be at least ``monotonic``, the ordering constraint on failure must be no
7126stronger than that on success, and the failure ordering cannot be either
7127``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007128
7129The optional "``singlethread``" argument declares that the ``cmpxchg``
7130is only atomic with respect to code (usually signal handlers) running in
7131the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7132respect to all other code in the system.
7133
7134The pointer passed into cmpxchg must have alignment greater than or
7135equal to the size in memory of the operand.
7136
7137Semantics:
7138""""""""""
7139
Tim Northover420a2162014-06-13 14:24:07 +00007140The contents of memory at the location specified by the '``<pointer>``' operand
7141is read and compared to '``<cmp>``'; if the read value is the equal, the
7142'``<new>``' is written. The original value at the location is returned, together
7143with a flag indicating success (true) or failure (false).
7144
7145If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7146permitted: the operation may not write ``<new>`` even if the comparison
7147matched.
7148
7149If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7150if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007151
Tim Northovere94a5182014-03-11 10:48:52 +00007152A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7153identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7154load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007155
7156Example:
7157""""""""
7158
7159.. code-block:: llvm
7160
7161 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007162 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007163 br label %loop
7164
7165 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007166 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007167 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007168 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007169 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7170 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007171 br i1 %success, label %done, label %loop
7172
7173 done:
7174 ...
7175
7176.. _i_atomicrmw:
7177
7178'``atomicrmw``' Instruction
7179^^^^^^^^^^^^^^^^^^^^^^^^^^^
7180
7181Syntax:
7182"""""""
7183
7184::
7185
Tim Northover675a0962014-06-13 14:24:23 +00007186 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007187
7188Overview:
7189"""""""""
7190
7191The '``atomicrmw``' instruction is used to atomically modify memory.
7192
7193Arguments:
7194""""""""""
7195
7196There are three arguments to the '``atomicrmw``' instruction: an
7197operation to apply, an address whose value to modify, an argument to the
7198operation. The operation must be one of the following keywords:
7199
7200- xchg
7201- add
7202- sub
7203- and
7204- nand
7205- or
7206- xor
7207- max
7208- min
7209- umax
7210- umin
7211
7212The type of '<value>' must be an integer type whose bit width is a power
7213of two greater than or equal to eight and less than or equal to a
7214target-specific size limit. The type of the '``<pointer>``' operand must
7215be a pointer to that type. If the ``atomicrmw`` is marked as
7216``volatile``, then the optimizer is not allowed to modify the number or
7217order of execution of this ``atomicrmw`` with other :ref:`volatile
7218operations <volatile>`.
7219
7220Semantics:
7221""""""""""
7222
7223The contents of memory at the location specified by the '``<pointer>``'
7224operand are atomically read, modified, and written back. The original
7225value at the location is returned. The modification is specified by the
7226operation argument:
7227
7228- xchg: ``*ptr = val``
7229- add: ``*ptr = *ptr + val``
7230- sub: ``*ptr = *ptr - val``
7231- and: ``*ptr = *ptr & val``
7232- nand: ``*ptr = ~(*ptr & val)``
7233- or: ``*ptr = *ptr | val``
7234- xor: ``*ptr = *ptr ^ val``
7235- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7236- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7237- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7238 comparison)
7239- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7240 comparison)
7241
7242Example:
7243""""""""
7244
7245.. code-block:: llvm
7246
Tim Northover675a0962014-06-13 14:24:23 +00007247 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007248
7249.. _i_getelementptr:
7250
7251'``getelementptr``' Instruction
7252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7253
7254Syntax:
7255"""""""
7256
7257::
7258
David Blaikie16a97eb2015-03-04 22:02:58 +00007259 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7260 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7261 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007262
7263Overview:
7264"""""""""
7265
7266The '``getelementptr``' instruction is used to get the address of a
7267subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007268address calculation only and does not access memory. The instruction can also
7269be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007270
7271Arguments:
7272""""""""""
7273
David Blaikie16a97eb2015-03-04 22:02:58 +00007274The first argument is always a type used as the basis for the calculations.
7275The second argument is always a pointer or a vector of pointers, and is the
7276base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007277that indicate which of the elements of the aggregate object are indexed.
7278The interpretation of each index is dependent on the type being indexed
7279into. The first index always indexes the pointer value given as the
7280first argument, the second index indexes a value of the type pointed to
7281(not necessarily the value directly pointed to, since the first index
7282can be non-zero), etc. The first type indexed into must be a pointer
7283value, subsequent types can be arrays, vectors, and structs. Note that
7284subsequent types being indexed into can never be pointers, since that
7285would require loading the pointer before continuing calculation.
7286
7287The type of each index argument depends on the type it is indexing into.
7288When indexing into a (optionally packed) structure, only ``i32`` integer
7289**constants** are allowed (when using a vector of indices they must all
7290be the **same** ``i32`` integer constant). When indexing into an array,
7291pointer or vector, integers of any width are allowed, and they are not
7292required to be constant. These integers are treated as signed values
7293where relevant.
7294
7295For example, let's consider a C code fragment and how it gets compiled
7296to LLVM:
7297
7298.. code-block:: c
7299
7300 struct RT {
7301 char A;
7302 int B[10][20];
7303 char C;
7304 };
7305 struct ST {
7306 int X;
7307 double Y;
7308 struct RT Z;
7309 };
7310
7311 int *foo(struct ST *s) {
7312 return &s[1].Z.B[5][13];
7313 }
7314
7315The LLVM code generated by Clang is:
7316
7317.. code-block:: llvm
7318
7319 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7320 %struct.ST = type { i32, double, %struct.RT }
7321
7322 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7323 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007324 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007325 ret i32* %arrayidx
7326 }
7327
7328Semantics:
7329""""""""""
7330
7331In the example above, the first index is indexing into the
7332'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7333= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7334indexes into the third element of the structure, yielding a
7335'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7336structure. The third index indexes into the second element of the
7337structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7338dimensions of the array are subscripted into, yielding an '``i32``'
7339type. The '``getelementptr``' instruction returns a pointer to this
7340element, thus computing a value of '``i32*``' type.
7341
7342Note that it is perfectly legal to index partially through a structure,
7343returning a pointer to an inner element. Because of this, the LLVM code
7344for the given testcase is equivalent to:
7345
7346.. code-block:: llvm
7347
7348 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007349 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7350 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7351 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7352 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7353 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007354 ret i32* %t5
7355 }
7356
7357If the ``inbounds`` keyword is present, the result value of the
7358``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7359pointer is not an *in bounds* address of an allocated object, or if any
7360of the addresses that would be formed by successive addition of the
7361offsets implied by the indices to the base address with infinitely
7362precise signed arithmetic are not an *in bounds* address of that
7363allocated object. The *in bounds* addresses for an allocated object are
7364all the addresses that point into the object, plus the address one byte
7365past the end. In cases where the base is a vector of pointers the
7366``inbounds`` keyword applies to each of the computations element-wise.
7367
7368If the ``inbounds`` keyword is not present, the offsets are added to the
7369base address with silently-wrapping two's complement arithmetic. If the
7370offsets have a different width from the pointer, they are sign-extended
7371or truncated to the width of the pointer. The result value of the
7372``getelementptr`` may be outside the object pointed to by the base
7373pointer. The result value may not necessarily be used to access memory
7374though, even if it happens to point into allocated storage. See the
7375:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7376information.
7377
7378The getelementptr instruction is often confusing. For some more insight
7379into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7380
7381Example:
7382""""""""
7383
7384.. code-block:: llvm
7385
7386 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007387 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007388 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007389 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007390 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007391 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007392 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007393 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007394
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007395Vector of pointers:
7396"""""""""""""""""""
7397
7398The ``getelementptr`` returns a vector of pointers, instead of a single address,
7399when one or more of its arguments is a vector. In such cases, all vector
7400arguments should have the same number of elements, and every scalar argument
7401will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007402
7403.. code-block:: llvm
7404
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007405 ; All arguments are vectors:
7406 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7407 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007408
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007409 ; Add the same scalar offset to each pointer of a vector:
7410 ; A[i] = ptrs[i] + offset*sizeof(i8)
7411 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007412
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007413 ; Add distinct offsets to the same pointer:
7414 ; A[i] = ptr + offsets[i]*sizeof(i8)
7415 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007416
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007417 ; In all cases described above the type of the result is <4 x i8*>
7418
7419The two following instructions are equivalent:
7420
7421.. code-block:: llvm
7422
7423 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7424 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7425 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7426 <4 x i32> %ind4,
7427 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007428
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007429 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7430 i32 2, i32 1, <4 x i32> %ind4, i64 13
7431
7432Let's look at the C code, where the vector version of ``getelementptr``
7433makes sense:
7434
7435.. code-block:: c
7436
7437 // Let's assume that we vectorize the following loop:
7438 double *A, B; int *C;
7439 for (int i = 0; i < size; ++i) {
7440 A[i] = B[C[i]];
7441 }
7442
7443.. code-block:: llvm
7444
7445 ; get pointers for 8 elements from array B
7446 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7447 ; load 8 elements from array B into A
7448 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7449 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007450
7451Conversion Operations
7452---------------------
7453
7454The instructions in this category are the conversion instructions
7455(casting) which all take a single operand and a type. They perform
7456various bit conversions on the operand.
7457
7458'``trunc .. to``' Instruction
7459^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7460
7461Syntax:
7462"""""""
7463
7464::
7465
7466 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7467
7468Overview:
7469"""""""""
7470
7471The '``trunc``' instruction truncates its operand to the type ``ty2``.
7472
7473Arguments:
7474""""""""""
7475
7476The '``trunc``' instruction takes a value to trunc, and a type to trunc
7477it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7478of the same number of integers. The bit size of the ``value`` must be
7479larger than the bit size of the destination type, ``ty2``. Equal sized
7480types are not allowed.
7481
7482Semantics:
7483""""""""""
7484
7485The '``trunc``' instruction truncates the high order bits in ``value``
7486and converts the remaining bits to ``ty2``. Since the source size must
7487be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7488It will always truncate bits.
7489
7490Example:
7491""""""""
7492
7493.. code-block:: llvm
7494
7495 %X = trunc i32 257 to i8 ; yields i8:1
7496 %Y = trunc i32 123 to i1 ; yields i1:true
7497 %Z = trunc i32 122 to i1 ; yields i1:false
7498 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7499
7500'``zext .. to``' Instruction
7501^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7502
7503Syntax:
7504"""""""
7505
7506::
7507
7508 <result> = zext <ty> <value> to <ty2> ; yields ty2
7509
7510Overview:
7511"""""""""
7512
7513The '``zext``' instruction zero extends its operand to type ``ty2``.
7514
7515Arguments:
7516""""""""""
7517
7518The '``zext``' instruction takes a value to cast, and a type to cast it
7519to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7520the same number of integers. The bit size of the ``value`` must be
7521smaller than the bit size of the destination type, ``ty2``.
7522
7523Semantics:
7524""""""""""
7525
7526The ``zext`` fills the high order bits of the ``value`` with zero bits
7527until it reaches the size of the destination type, ``ty2``.
7528
7529When zero extending from i1, the result will always be either 0 or 1.
7530
7531Example:
7532""""""""
7533
7534.. code-block:: llvm
7535
7536 %X = zext i32 257 to i64 ; yields i64:257
7537 %Y = zext i1 true to i32 ; yields i32:1
7538 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7539
7540'``sext .. to``' Instruction
7541^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7542
7543Syntax:
7544"""""""
7545
7546::
7547
7548 <result> = sext <ty> <value> to <ty2> ; yields ty2
7549
7550Overview:
7551"""""""""
7552
7553The '``sext``' sign extends ``value`` to the type ``ty2``.
7554
7555Arguments:
7556""""""""""
7557
7558The '``sext``' instruction takes a value to cast, and a type to cast it
7559to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7560the same number of integers. The bit size of the ``value`` must be
7561smaller than the bit size of the destination type, ``ty2``.
7562
7563Semantics:
7564""""""""""
7565
7566The '``sext``' instruction performs a sign extension by copying the sign
7567bit (highest order bit) of the ``value`` until it reaches the bit size
7568of the type ``ty2``.
7569
7570When sign extending from i1, the extension always results in -1 or 0.
7571
7572Example:
7573""""""""
7574
7575.. code-block:: llvm
7576
7577 %X = sext i8 -1 to i16 ; yields i16 :65535
7578 %Y = sext i1 true to i32 ; yields i32:-1
7579 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7580
7581'``fptrunc .. to``' Instruction
7582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7583
7584Syntax:
7585"""""""
7586
7587::
7588
7589 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7590
7591Overview:
7592"""""""""
7593
7594The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7595
7596Arguments:
7597""""""""""
7598
7599The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7600value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7601The size of ``value`` must be larger than the size of ``ty2``. This
7602implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7603
7604Semantics:
7605""""""""""
7606
Dan Liew50456fb2015-09-03 18:43:56 +00007607The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007608:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007609point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7610destination type, ``ty2``, then the results are undefined. If the cast produces
7611an inexact result, how rounding is performed (e.g. truncation, also known as
7612round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007613
7614Example:
7615""""""""
7616
7617.. code-block:: llvm
7618
7619 %X = fptrunc double 123.0 to float ; yields float:123.0
7620 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7621
7622'``fpext .. to``' Instruction
7623^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7624
7625Syntax:
7626"""""""
7627
7628::
7629
7630 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7631
7632Overview:
7633"""""""""
7634
7635The '``fpext``' extends a floating point ``value`` to a larger floating
7636point value.
7637
7638Arguments:
7639""""""""""
7640
7641The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7642``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7643to. The source type must be smaller than the destination type.
7644
7645Semantics:
7646""""""""""
7647
7648The '``fpext``' instruction extends the ``value`` from a smaller
7649:ref:`floating point <t_floating>` type to a larger :ref:`floating
7650point <t_floating>` type. The ``fpext`` cannot be used to make a
7651*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7652*no-op cast* for a floating point cast.
7653
7654Example:
7655""""""""
7656
7657.. code-block:: llvm
7658
7659 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7660 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7661
7662'``fptoui .. to``' Instruction
7663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7664
7665Syntax:
7666"""""""
7667
7668::
7669
7670 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7671
7672Overview:
7673"""""""""
7674
7675The '``fptoui``' converts a floating point ``value`` to its unsigned
7676integer equivalent of type ``ty2``.
7677
7678Arguments:
7679""""""""""
7680
7681The '``fptoui``' instruction takes a value to cast, which must be a
7682scalar or vector :ref:`floating point <t_floating>` value, and a type to
7683cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7684``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7685type with the same number of elements as ``ty``
7686
7687Semantics:
7688""""""""""
7689
7690The '``fptoui``' instruction converts its :ref:`floating
7691point <t_floating>` operand into the nearest (rounding towards zero)
7692unsigned integer value. If the value cannot fit in ``ty2``, the results
7693are undefined.
7694
7695Example:
7696""""""""
7697
7698.. code-block:: llvm
7699
7700 %X = fptoui double 123.0 to i32 ; yields i32:123
7701 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7702 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7703
7704'``fptosi .. to``' Instruction
7705^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7706
7707Syntax:
7708"""""""
7709
7710::
7711
7712 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7713
7714Overview:
7715"""""""""
7716
7717The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7718``value`` to type ``ty2``.
7719
7720Arguments:
7721""""""""""
7722
7723The '``fptosi``' instruction takes a value to cast, which must be a
7724scalar or vector :ref:`floating point <t_floating>` value, and a type to
7725cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7726``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7727type with the same number of elements as ``ty``
7728
7729Semantics:
7730""""""""""
7731
7732The '``fptosi``' instruction converts its :ref:`floating
7733point <t_floating>` operand into the nearest (rounding towards zero)
7734signed integer value. If the value cannot fit in ``ty2``, the results
7735are undefined.
7736
7737Example:
7738""""""""
7739
7740.. code-block:: llvm
7741
7742 %X = fptosi double -123.0 to i32 ; yields i32:-123
7743 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7744 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7745
7746'``uitofp .. to``' Instruction
7747^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7748
7749Syntax:
7750"""""""
7751
7752::
7753
7754 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7755
7756Overview:
7757"""""""""
7758
7759The '``uitofp``' instruction regards ``value`` as an unsigned integer
7760and converts that value to the ``ty2`` type.
7761
7762Arguments:
7763""""""""""
7764
7765The '``uitofp``' instruction takes a value to cast, which must be a
7766scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7767``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7768``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7769type with the same number of elements as ``ty``
7770
7771Semantics:
7772""""""""""
7773
7774The '``uitofp``' instruction interprets its operand as an unsigned
7775integer quantity and converts it to the corresponding floating point
7776value. If the value cannot fit in the floating point value, the results
7777are undefined.
7778
7779Example:
7780""""""""
7781
7782.. code-block:: llvm
7783
7784 %X = uitofp i32 257 to float ; yields float:257.0
7785 %Y = uitofp i8 -1 to double ; yields double:255.0
7786
7787'``sitofp .. to``' Instruction
7788^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7789
7790Syntax:
7791"""""""
7792
7793::
7794
7795 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7796
7797Overview:
7798"""""""""
7799
7800The '``sitofp``' instruction regards ``value`` as a signed integer and
7801converts that value to the ``ty2`` type.
7802
7803Arguments:
7804""""""""""
7805
7806The '``sitofp``' instruction takes a value to cast, which must be a
7807scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7808``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7809``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7810type with the same number of elements as ``ty``
7811
7812Semantics:
7813""""""""""
7814
7815The '``sitofp``' instruction interprets its operand as a signed integer
7816quantity and converts it to the corresponding floating point value. If
7817the value cannot fit in the floating point value, the results are
7818undefined.
7819
7820Example:
7821""""""""
7822
7823.. code-block:: llvm
7824
7825 %X = sitofp i32 257 to float ; yields float:257.0
7826 %Y = sitofp i8 -1 to double ; yields double:-1.0
7827
7828.. _i_ptrtoint:
7829
7830'``ptrtoint .. to``' Instruction
7831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7832
7833Syntax:
7834"""""""
7835
7836::
7837
7838 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7839
7840Overview:
7841"""""""""
7842
7843The '``ptrtoint``' instruction converts the pointer or a vector of
7844pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7845
7846Arguments:
7847""""""""""
7848
7849The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007850a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007851type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7852a vector of integers type.
7853
7854Semantics:
7855""""""""""
7856
7857The '``ptrtoint``' instruction converts ``value`` to integer type
7858``ty2`` by interpreting the pointer value as an integer and either
7859truncating or zero extending that value to the size of the integer type.
7860If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7861``value`` is larger than ``ty2`` then a truncation is done. If they are
7862the same size, then nothing is done (*no-op cast*) other than a type
7863change.
7864
7865Example:
7866""""""""
7867
7868.. code-block:: llvm
7869
7870 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7871 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7872 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7873
7874.. _i_inttoptr:
7875
7876'``inttoptr .. to``' Instruction
7877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7878
7879Syntax:
7880"""""""
7881
7882::
7883
7884 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7885
7886Overview:
7887"""""""""
7888
7889The '``inttoptr``' instruction converts an integer ``value`` to a
7890pointer type, ``ty2``.
7891
7892Arguments:
7893""""""""""
7894
7895The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7896cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7897type.
7898
7899Semantics:
7900""""""""""
7901
7902The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7903applying either a zero extension or a truncation depending on the size
7904of the integer ``value``. If ``value`` is larger than the size of a
7905pointer then a truncation is done. If ``value`` is smaller than the size
7906of a pointer then a zero extension is done. If they are the same size,
7907nothing is done (*no-op cast*).
7908
7909Example:
7910""""""""
7911
7912.. code-block:: llvm
7913
7914 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7915 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7916 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7917 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7918
7919.. _i_bitcast:
7920
7921'``bitcast .. to``' Instruction
7922^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7923
7924Syntax:
7925"""""""
7926
7927::
7928
7929 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7930
7931Overview:
7932"""""""""
7933
7934The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7935changing any bits.
7936
7937Arguments:
7938""""""""""
7939
7940The '``bitcast``' instruction takes a value to cast, which must be a
7941non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007942also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7943bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007944identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007945also be a pointer of the same size. This instruction supports bitwise
7946conversion of vectors to integers and to vectors of other types (as
7947long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007948
7949Semantics:
7950""""""""""
7951
Matt Arsenault24b49c42013-07-31 17:49:08 +00007952The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7953is always a *no-op cast* because no bits change with this
7954conversion. The conversion is done as if the ``value`` had been stored
7955to memory and read back as type ``ty2``. Pointer (or vector of
7956pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007957pointers) types with the same address space through this instruction.
7958To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7959or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007960
7961Example:
7962""""""""
7963
7964.. code-block:: llvm
7965
7966 %X = bitcast i8 255 to i8 ; yields i8 :-1
7967 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7968 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7969 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7970
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007971.. _i_addrspacecast:
7972
7973'``addrspacecast .. to``' Instruction
7974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7975
7976Syntax:
7977"""""""
7978
7979::
7980
7981 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7982
7983Overview:
7984"""""""""
7985
7986The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7987address space ``n`` to type ``pty2`` in address space ``m``.
7988
7989Arguments:
7990""""""""""
7991
7992The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7993to cast and a pointer type to cast it to, which must have a different
7994address space.
7995
7996Semantics:
7997""""""""""
7998
7999The '``addrspacecast``' instruction converts the pointer value
8000``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008001value modification, depending on the target and the address space
8002pair. Pointer conversions within the same address space must be
8003performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008004conversion is legal then both result and operand refer to the same memory
8005location.
8006
8007Example:
8008""""""""
8009
8010.. code-block:: llvm
8011
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008012 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8013 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8014 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008015
Sean Silvab084af42012-12-07 10:36:55 +00008016.. _otherops:
8017
8018Other Operations
8019----------------
8020
8021The instructions in this category are the "miscellaneous" instructions,
8022which defy better classification.
8023
8024.. _i_icmp:
8025
8026'``icmp``' Instruction
8027^^^^^^^^^^^^^^^^^^^^^^
8028
8029Syntax:
8030"""""""
8031
8032::
8033
Tim Northover675a0962014-06-13 14:24:23 +00008034 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008035
8036Overview:
8037"""""""""
8038
8039The '``icmp``' instruction returns a boolean value or a vector of
8040boolean values based on comparison of its two integer, integer vector,
8041pointer, or pointer vector operands.
8042
8043Arguments:
8044""""""""""
8045
8046The '``icmp``' instruction takes three operands. The first operand is
8047the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008048not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008049
8050#. ``eq``: equal
8051#. ``ne``: not equal
8052#. ``ugt``: unsigned greater than
8053#. ``uge``: unsigned greater or equal
8054#. ``ult``: unsigned less than
8055#. ``ule``: unsigned less or equal
8056#. ``sgt``: signed greater than
8057#. ``sge``: signed greater or equal
8058#. ``slt``: signed less than
8059#. ``sle``: signed less or equal
8060
8061The remaining two arguments must be :ref:`integer <t_integer>` or
8062:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8063must also be identical types.
8064
8065Semantics:
8066""""""""""
8067
8068The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8069code given as ``cond``. The comparison performed always yields either an
8070:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8071
8072#. ``eq``: yields ``true`` if the operands are equal, ``false``
8073 otherwise. No sign interpretation is necessary or performed.
8074#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8075 otherwise. No sign interpretation is necessary or performed.
8076#. ``ugt``: interprets the operands as unsigned values and yields
8077 ``true`` if ``op1`` is greater than ``op2``.
8078#. ``uge``: interprets the operands as unsigned values and yields
8079 ``true`` if ``op1`` is greater than or equal to ``op2``.
8080#. ``ult``: interprets the operands as unsigned values and yields
8081 ``true`` if ``op1`` is less than ``op2``.
8082#. ``ule``: interprets the operands as unsigned values and yields
8083 ``true`` if ``op1`` is less than or equal to ``op2``.
8084#. ``sgt``: interprets the operands as signed values and yields ``true``
8085 if ``op1`` is greater than ``op2``.
8086#. ``sge``: interprets the operands as signed values and yields ``true``
8087 if ``op1`` is greater than or equal to ``op2``.
8088#. ``slt``: interprets the operands as signed values and yields ``true``
8089 if ``op1`` is less than ``op2``.
8090#. ``sle``: interprets the operands as signed values and yields ``true``
8091 if ``op1`` is less than or equal to ``op2``.
8092
8093If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8094are compared as if they were integers.
8095
8096If the operands are integer vectors, then they are compared element by
8097element. The result is an ``i1`` vector with the same number of elements
8098as the values being compared. Otherwise, the result is an ``i1``.
8099
8100Example:
8101""""""""
8102
8103.. code-block:: llvm
8104
8105 <result> = icmp eq i32 4, 5 ; yields: result=false
8106 <result> = icmp ne float* %X, %X ; yields: result=false
8107 <result> = icmp ult i16 4, 5 ; yields: result=true
8108 <result> = icmp sgt i16 4, 5 ; yields: result=false
8109 <result> = icmp ule i16 -4, 5 ; yields: result=false
8110 <result> = icmp sge i16 4, 5 ; yields: result=false
8111
8112Note that the code generator does not yet support vector types with the
8113``icmp`` instruction.
8114
8115.. _i_fcmp:
8116
8117'``fcmp``' Instruction
8118^^^^^^^^^^^^^^^^^^^^^^
8119
8120Syntax:
8121"""""""
8122
8123::
8124
James Molloy88eb5352015-07-10 12:52:00 +00008125 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008126
8127Overview:
8128"""""""""
8129
8130The '``fcmp``' instruction returns a boolean value or vector of boolean
8131values based on comparison of its operands.
8132
8133If the operands are floating point scalars, then the result type is a
8134boolean (:ref:`i1 <t_integer>`).
8135
8136If the operands are floating point vectors, then the result type is a
8137vector of boolean with the same number of elements as the operands being
8138compared.
8139
8140Arguments:
8141""""""""""
8142
8143The '``fcmp``' instruction takes three operands. The first operand is
8144the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008145not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008146
8147#. ``false``: no comparison, always returns false
8148#. ``oeq``: ordered and equal
8149#. ``ogt``: ordered and greater than
8150#. ``oge``: ordered and greater than or equal
8151#. ``olt``: ordered and less than
8152#. ``ole``: ordered and less than or equal
8153#. ``one``: ordered and not equal
8154#. ``ord``: ordered (no nans)
8155#. ``ueq``: unordered or equal
8156#. ``ugt``: unordered or greater than
8157#. ``uge``: unordered or greater than or equal
8158#. ``ult``: unordered or less than
8159#. ``ule``: unordered or less than or equal
8160#. ``une``: unordered or not equal
8161#. ``uno``: unordered (either nans)
8162#. ``true``: no comparison, always returns true
8163
8164*Ordered* means that neither operand is a QNAN while *unordered* means
8165that either operand may be a QNAN.
8166
8167Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8168point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8169type. They must have identical types.
8170
8171Semantics:
8172""""""""""
8173
8174The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8175condition code given as ``cond``. If the operands are vectors, then the
8176vectors are compared element by element. Each comparison performed
8177always yields an :ref:`i1 <t_integer>` result, as follows:
8178
8179#. ``false``: always yields ``false``, regardless of operands.
8180#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8181 is equal to ``op2``.
8182#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8183 is greater than ``op2``.
8184#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8185 is greater than or equal to ``op2``.
8186#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8187 is less than ``op2``.
8188#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8189 is less than or equal to ``op2``.
8190#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8191 is not equal to ``op2``.
8192#. ``ord``: yields ``true`` if both operands are not a QNAN.
8193#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8194 equal to ``op2``.
8195#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8196 greater than ``op2``.
8197#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8198 greater than or equal to ``op2``.
8199#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8200 less than ``op2``.
8201#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8202 less than or equal to ``op2``.
8203#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8204 not equal to ``op2``.
8205#. ``uno``: yields ``true`` if either operand is a QNAN.
8206#. ``true``: always yields ``true``, regardless of operands.
8207
James Molloy88eb5352015-07-10 12:52:00 +00008208The ``fcmp`` instruction can also optionally take any number of
8209:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8210otherwise unsafe floating point optimizations.
8211
8212Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8213only flags that have any effect on its semantics are those that allow
8214assumptions to be made about the values of input arguments; namely
8215``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8216
Sean Silvab084af42012-12-07 10:36:55 +00008217Example:
8218""""""""
8219
8220.. code-block:: llvm
8221
8222 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8223 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8224 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8225 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8226
8227Note that the code generator does not yet support vector types with the
8228``fcmp`` instruction.
8229
8230.. _i_phi:
8231
8232'``phi``' Instruction
8233^^^^^^^^^^^^^^^^^^^^^
8234
8235Syntax:
8236"""""""
8237
8238::
8239
8240 <result> = phi <ty> [ <val0>, <label0>], ...
8241
8242Overview:
8243"""""""""
8244
8245The '``phi``' instruction is used to implement the φ node in the SSA
8246graph representing the function.
8247
8248Arguments:
8249""""""""""
8250
8251The type of the incoming values is specified with the first type field.
8252After this, the '``phi``' instruction takes a list of pairs as
8253arguments, with one pair for each predecessor basic block of the current
8254block. Only values of :ref:`first class <t_firstclass>` type may be used as
8255the value arguments to the PHI node. Only labels may be used as the
8256label arguments.
8257
8258There must be no non-phi instructions between the start of a basic block
8259and the PHI instructions: i.e. PHI instructions must be first in a basic
8260block.
8261
8262For the purposes of the SSA form, the use of each incoming value is
8263deemed to occur on the edge from the corresponding predecessor block to
8264the current block (but after any definition of an '``invoke``'
8265instruction's return value on the same edge).
8266
8267Semantics:
8268""""""""""
8269
8270At runtime, the '``phi``' instruction logically takes on the value
8271specified by the pair corresponding to the predecessor basic block that
8272executed just prior to the current block.
8273
8274Example:
8275""""""""
8276
8277.. code-block:: llvm
8278
8279 Loop: ; Infinite loop that counts from 0 on up...
8280 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8281 %nextindvar = add i32 %indvar, 1
8282 br label %Loop
8283
8284.. _i_select:
8285
8286'``select``' Instruction
8287^^^^^^^^^^^^^^^^^^^^^^^^
8288
8289Syntax:
8290"""""""
8291
8292::
8293
8294 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8295
8296 selty is either i1 or {<N x i1>}
8297
8298Overview:
8299"""""""""
8300
8301The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008302condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008303
8304Arguments:
8305""""""""""
8306
8307The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8308values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008309class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008310
8311Semantics:
8312""""""""""
8313
8314If the condition is an i1 and it evaluates to 1, the instruction returns
8315the first value argument; otherwise, it returns the second value
8316argument.
8317
8318If the condition is a vector of i1, then the value arguments must be
8319vectors of the same size, and the selection is done element by element.
8320
David Majnemer40a0b592015-03-03 22:45:47 +00008321If the condition is an i1 and the value arguments are vectors of the
8322same size, then an entire vector is selected.
8323
Sean Silvab084af42012-12-07 10:36:55 +00008324Example:
8325""""""""
8326
8327.. code-block:: llvm
8328
8329 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8330
8331.. _i_call:
8332
8333'``call``' Instruction
8334^^^^^^^^^^^^^^^^^^^^^^
8335
8336Syntax:
8337"""""""
8338
8339::
8340
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008341 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008342 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008343
8344Overview:
8345"""""""""
8346
8347The '``call``' instruction represents a simple function call.
8348
8349Arguments:
8350""""""""""
8351
8352This instruction requires several arguments:
8353
Reid Kleckner5772b772014-04-24 20:14:34 +00008354#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008355 should perform tail call optimization. The ``tail`` marker is a hint that
8356 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008357 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008358 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008359
8360 #. The call will not cause unbounded stack growth if it is part of a
8361 recursive cycle in the call graph.
8362 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8363 forwarded in place.
8364
8365 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008366 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008367 rules:
8368
8369 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8370 or a pointer bitcast followed by a ret instruction.
8371 - The ret instruction must return the (possibly bitcasted) value
8372 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008373 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008374 parameters or return types may differ in pointee type, but not
8375 in address space.
8376 - The calling conventions of the caller and callee must match.
8377 - All ABI-impacting function attributes, such as sret, byval, inreg,
8378 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008379 - The callee must be varargs iff the caller is varargs. Bitcasting a
8380 non-varargs function to the appropriate varargs type is legal so
8381 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008382
8383 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8384 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008385
8386 - Caller and callee both have the calling convention ``fastcc``.
8387 - The call is in tail position (ret immediately follows call and ret
8388 uses value of call or is void).
8389 - Option ``-tailcallopt`` is enabled, or
8390 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008391 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008392 met. <CodeGenerator.html#tailcallopt>`_
8393
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008394#. The optional ``notail`` marker indicates that the optimizers should not add
8395 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8396 call optimization from being performed on the call.
8397
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008398#. The optional ``fast-math flags`` marker indicates that the call has one or more
8399 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8400 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8401 for calls that return a floating-point scalar or vector type.
8402
Sean Silvab084af42012-12-07 10:36:55 +00008403#. The optional "cconv" marker indicates which :ref:`calling
8404 convention <callingconv>` the call should use. If none is
8405 specified, the call defaults to using C calling conventions. The
8406 calling convention of the call must match the calling convention of
8407 the target function, or else the behavior is undefined.
8408#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8409 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8410 are valid here.
8411#. '``ty``': the type of the call instruction itself which is also the
8412 type of the return value. Functions that return no value are marked
8413 ``void``.
8414#. '``fnty``': shall be the signature of the pointer to function value
8415 being invoked. The argument types must match the types implied by
8416 this signature. This type can be omitted if the function is not
8417 varargs and if the function type does not return a pointer to a
8418 function.
8419#. '``fnptrval``': An LLVM value containing a pointer to a function to
8420 be invoked. In most cases, this is a direct function invocation, but
8421 indirect ``call``'s are just as possible, calling an arbitrary pointer
8422 to function value.
8423#. '``function args``': argument list whose types match the function
8424 signature argument types and parameter attributes. All arguments must
8425 be of :ref:`first class <t_firstclass>` type. If the function signature
8426 indicates the function accepts a variable number of arguments, the
8427 extra arguments can be specified.
8428#. The optional :ref:`function attributes <fnattrs>` list. Only
8429 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8430 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008431#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008432
8433Semantics:
8434""""""""""
8435
8436The '``call``' instruction is used to cause control flow to transfer to
8437a specified function, with its incoming arguments bound to the specified
8438values. Upon a '``ret``' instruction in the called function, control
8439flow continues with the instruction after the function call, and the
8440return value of the function is bound to the result argument.
8441
8442Example:
8443""""""""
8444
8445.. code-block:: llvm
8446
8447 %retval = call i32 @test(i32 %argc)
8448 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8449 %X = tail call i32 @foo() ; yields i32
8450 %Y = tail call fastcc i32 @foo() ; yields i32
8451 call void %foo(i8 97 signext)
8452
8453 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008454 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008455 %gr = extractvalue %struct.A %r, 0 ; yields i32
8456 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8457 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8458 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8459
8460llvm treats calls to some functions with names and arguments that match
8461the standard C99 library as being the C99 library functions, and may
8462perform optimizations or generate code for them under that assumption.
8463This is something we'd like to change in the future to provide better
8464support for freestanding environments and non-C-based languages.
8465
8466.. _i_va_arg:
8467
8468'``va_arg``' Instruction
8469^^^^^^^^^^^^^^^^^^^^^^^^
8470
8471Syntax:
8472"""""""
8473
8474::
8475
8476 <resultval> = va_arg <va_list*> <arglist>, <argty>
8477
8478Overview:
8479"""""""""
8480
8481The '``va_arg``' instruction is used to access arguments passed through
8482the "variable argument" area of a function call. It is used to implement
8483the ``va_arg`` macro in C.
8484
8485Arguments:
8486""""""""""
8487
8488This instruction takes a ``va_list*`` value and the type of the
8489argument. It returns a value of the specified argument type and
8490increments the ``va_list`` to point to the next argument. The actual
8491type of ``va_list`` is target specific.
8492
8493Semantics:
8494""""""""""
8495
8496The '``va_arg``' instruction loads an argument of the specified type
8497from the specified ``va_list`` and causes the ``va_list`` to point to
8498the next argument. For more information, see the variable argument
8499handling :ref:`Intrinsic Functions <int_varargs>`.
8500
8501It is legal for this instruction to be called in a function which does
8502not take a variable number of arguments, for example, the ``vfprintf``
8503function.
8504
8505``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8506function <intrinsics>` because it takes a type as an argument.
8507
8508Example:
8509""""""""
8510
8511See the :ref:`variable argument processing <int_varargs>` section.
8512
8513Note that the code generator does not yet fully support va\_arg on many
8514targets. Also, it does not currently support va\_arg with aggregate
8515types on any target.
8516
8517.. _i_landingpad:
8518
8519'``landingpad``' Instruction
8520^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8521
8522Syntax:
8523"""""""
8524
8525::
8526
David Majnemer7fddecc2015-06-17 20:52:32 +00008527 <resultval> = landingpad <resultty> <clause>+
8528 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008529
8530 <clause> := catch <type> <value>
8531 <clause> := filter <array constant type> <array constant>
8532
8533Overview:
8534"""""""""
8535
8536The '``landingpad``' instruction is used by `LLVM's exception handling
8537system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008538is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008539code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008540defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008541re-entry to the function. The ``resultval`` has the type ``resultty``.
8542
8543Arguments:
8544""""""""""
8545
David Majnemer7fddecc2015-06-17 20:52:32 +00008546The optional
Sean Silvab084af42012-12-07 10:36:55 +00008547``cleanup`` flag indicates that the landing pad block is a cleanup.
8548
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008549A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008550contains the global variable representing the "type" that may be caught
8551or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8552clause takes an array constant as its argument. Use
8553"``[0 x i8**] undef``" for a filter which cannot throw. The
8554'``landingpad``' instruction must contain *at least* one ``clause`` or
8555the ``cleanup`` flag.
8556
8557Semantics:
8558""""""""""
8559
8560The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008561:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008562therefore the "result type" of the ``landingpad`` instruction. As with
8563calling conventions, how the personality function results are
8564represented in LLVM IR is target specific.
8565
8566The clauses are applied in order from top to bottom. If two
8567``landingpad`` instructions are merged together through inlining, the
8568clauses from the calling function are appended to the list of clauses.
8569When the call stack is being unwound due to an exception being thrown,
8570the exception is compared against each ``clause`` in turn. If it doesn't
8571match any of the clauses, and the ``cleanup`` flag is not set, then
8572unwinding continues further up the call stack.
8573
8574The ``landingpad`` instruction has several restrictions:
8575
8576- A landing pad block is a basic block which is the unwind destination
8577 of an '``invoke``' instruction.
8578- A landing pad block must have a '``landingpad``' instruction as its
8579 first non-PHI instruction.
8580- There can be only one '``landingpad``' instruction within the landing
8581 pad block.
8582- A basic block that is not a landing pad block may not include a
8583 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008584
8585Example:
8586""""""""
8587
8588.. code-block:: llvm
8589
8590 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008591 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008592 catch i8** @_ZTIi
8593 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008594 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008595 cleanup
8596 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008597 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008598 catch i8** @_ZTIi
8599 filter [1 x i8**] [@_ZTId]
8600
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008601.. _i_catchpad:
8602
8603'``catchpad``' Instruction
8604^^^^^^^^^^^^^^^^^^^^^^^^^^
8605
8606Syntax:
8607"""""""
8608
8609::
8610
8611 <resultval> = catchpad within <catchswitch> [<args>*]
8612
8613Overview:
8614"""""""""
8615
8616The '``catchpad``' instruction is used by `LLVM's exception handling
8617system <ExceptionHandling.html#overview>`_ to specify that a basic block
8618begins a catch handler --- one where a personality routine attempts to transfer
8619control to catch an exception.
8620
8621Arguments:
8622""""""""""
8623
8624The ``catchswitch`` operand must always be a token produced by a
8625:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8626ensures that each ``catchpad`` has exactly one predecessor block, and it always
8627terminates in a ``catchswitch``.
8628
8629The ``args`` correspond to whatever information the personality routine
8630requires to know if this is an appropriate handler for the exception. Control
8631will transfer to the ``catchpad`` if this is the first appropriate handler for
8632the exception.
8633
8634The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8635``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8636pads.
8637
8638Semantics:
8639""""""""""
8640
8641When the call stack is being unwound due to an exception being thrown, the
8642exception is compared against the ``args``. If it doesn't match, control will
8643not reach the ``catchpad`` instruction. The representation of ``args`` is
8644entirely target and personality function-specific.
8645
8646Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8647instruction must be the first non-phi of its parent basic block.
8648
8649The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8650instructions is described in the
8651`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8652
8653When a ``catchpad`` has been "entered" but not yet "exited" (as
8654described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8655it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8656that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8657
8658Example:
8659""""""""
8660
8661.. code-block:: llvm
8662
8663 dispatch:
8664 %cs = catchswitch within none [label %handler0] unwind to caller
8665 ;; A catch block which can catch an integer.
8666 handler0:
8667 %tok = catchpad within %cs [i8** @_ZTIi]
8668
David Majnemer654e1302015-07-31 17:58:14 +00008669.. _i_cleanuppad:
8670
8671'``cleanuppad``' Instruction
8672^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8673
8674Syntax:
8675"""""""
8676
8677::
8678
David Majnemer8a1c45d2015-12-12 05:38:55 +00008679 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008680
8681Overview:
8682"""""""""
8683
8684The '``cleanuppad``' instruction is used by `LLVM's exception handling
8685system <ExceptionHandling.html#overview>`_ to specify that a basic block
8686is a cleanup block --- one where a personality routine attempts to
8687transfer control to run cleanup actions.
8688The ``args`` correspond to whatever additional
8689information the :ref:`personality function <personalityfn>` requires to
8690execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008691The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008692match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8693The ``parent`` argument is the token of the funclet that contains the
8694``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8695this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008696
8697Arguments:
8698""""""""""
8699
8700The instruction takes a list of arbitrary values which are interpreted
8701by the :ref:`personality function <personalityfn>`.
8702
8703Semantics:
8704""""""""""
8705
David Majnemer654e1302015-07-31 17:58:14 +00008706When the call stack is being unwound due to an exception being thrown,
8707the :ref:`personality function <personalityfn>` transfers control to the
8708``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008709As with calling conventions, how the personality function results are
8710represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008711
8712The ``cleanuppad`` instruction has several restrictions:
8713
8714- A cleanup block is a basic block which is the unwind destination of
8715 an exceptional instruction.
8716- A cleanup block must have a '``cleanuppad``' instruction as its
8717 first non-PHI instruction.
8718- There can be only one '``cleanuppad``' instruction within the
8719 cleanup block.
8720- A basic block that is not a cleanup block may not include a
8721 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008722
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008723When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8724described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8725it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8726that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008727
David Majnemer654e1302015-07-31 17:58:14 +00008728Example:
8729""""""""
8730
8731.. code-block:: llvm
8732
David Majnemer8a1c45d2015-12-12 05:38:55 +00008733 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008734
Sean Silvab084af42012-12-07 10:36:55 +00008735.. _intrinsics:
8736
8737Intrinsic Functions
8738===================
8739
8740LLVM supports the notion of an "intrinsic function". These functions
8741have well known names and semantics and are required to follow certain
8742restrictions. Overall, these intrinsics represent an extension mechanism
8743for the LLVM language that does not require changing all of the
8744transformations in LLVM when adding to the language (or the bitcode
8745reader/writer, the parser, etc...).
8746
8747Intrinsic function names must all start with an "``llvm.``" prefix. This
8748prefix is reserved in LLVM for intrinsic names; thus, function names may
8749not begin with this prefix. Intrinsic functions must always be external
8750functions: you cannot define the body of intrinsic functions. Intrinsic
8751functions may only be used in call or invoke instructions: it is illegal
8752to take the address of an intrinsic function. Additionally, because
8753intrinsic functions are part of the LLVM language, it is required if any
8754are added that they be documented here.
8755
8756Some intrinsic functions can be overloaded, i.e., the intrinsic
8757represents a family of functions that perform the same operation but on
8758different data types. Because LLVM can represent over 8 million
8759different integer types, overloading is used commonly to allow an
8760intrinsic function to operate on any integer type. One or more of the
8761argument types or the result type can be overloaded to accept any
8762integer type. Argument types may also be defined as exactly matching a
8763previous argument's type or the result type. This allows an intrinsic
8764function which accepts multiple arguments, but needs all of them to be
8765of the same type, to only be overloaded with respect to a single
8766argument or the result.
8767
8768Overloaded intrinsics will have the names of its overloaded argument
8769types encoded into its function name, each preceded by a period. Only
8770those types which are overloaded result in a name suffix. Arguments
8771whose type is matched against another type do not. For example, the
8772``llvm.ctpop`` function can take an integer of any width and returns an
8773integer of exactly the same integer width. This leads to a family of
8774functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8775``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8776overloaded, and only one type suffix is required. Because the argument's
8777type is matched against the return type, it does not require its own
8778name suffix.
8779
8780To learn how to add an intrinsic function, please see the `Extending
8781LLVM Guide <ExtendingLLVM.html>`_.
8782
8783.. _int_varargs:
8784
8785Variable Argument Handling Intrinsics
8786-------------------------------------
8787
8788Variable argument support is defined in LLVM with the
8789:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8790functions. These functions are related to the similarly named macros
8791defined in the ``<stdarg.h>`` header file.
8792
8793All of these functions operate on arguments that use a target-specific
8794value type "``va_list``". The LLVM assembly language reference manual
8795does not define what this type is, so all transformations should be
8796prepared to handle these functions regardless of the type used.
8797
8798This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8799variable argument handling intrinsic functions are used.
8800
8801.. code-block:: llvm
8802
Tim Northoverab60bb92014-11-02 01:21:51 +00008803 ; This struct is different for every platform. For most platforms,
8804 ; it is merely an i8*.
8805 %struct.va_list = type { i8* }
8806
8807 ; For Unix x86_64 platforms, va_list is the following struct:
8808 ; %struct.va_list = type { i32, i32, i8*, i8* }
8809
Sean Silvab084af42012-12-07 10:36:55 +00008810 define i32 @test(i32 %X, ...) {
8811 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008812 %ap = alloca %struct.va_list
8813 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008814 call void @llvm.va_start(i8* %ap2)
8815
8816 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008817 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008818
8819 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8820 %aq = alloca i8*
8821 %aq2 = bitcast i8** %aq to i8*
8822 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8823 call void @llvm.va_end(i8* %aq2)
8824
8825 ; Stop processing of arguments.
8826 call void @llvm.va_end(i8* %ap2)
8827 ret i32 %tmp
8828 }
8829
8830 declare void @llvm.va_start(i8*)
8831 declare void @llvm.va_copy(i8*, i8*)
8832 declare void @llvm.va_end(i8*)
8833
8834.. _int_va_start:
8835
8836'``llvm.va_start``' Intrinsic
8837^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8838
8839Syntax:
8840"""""""
8841
8842::
8843
Nick Lewycky04f6de02013-09-11 22:04:52 +00008844 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008845
8846Overview:
8847"""""""""
8848
8849The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8850subsequent use by ``va_arg``.
8851
8852Arguments:
8853""""""""""
8854
8855The argument is a pointer to a ``va_list`` element to initialize.
8856
8857Semantics:
8858""""""""""
8859
8860The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8861available in C. In a target-dependent way, it initializes the
8862``va_list`` element to which the argument points, so that the next call
8863to ``va_arg`` will produce the first variable argument passed to the
8864function. Unlike the C ``va_start`` macro, this intrinsic does not need
8865to know the last argument of the function as the compiler can figure
8866that out.
8867
8868'``llvm.va_end``' Intrinsic
8869^^^^^^^^^^^^^^^^^^^^^^^^^^^
8870
8871Syntax:
8872"""""""
8873
8874::
8875
8876 declare void @llvm.va_end(i8* <arglist>)
8877
8878Overview:
8879"""""""""
8880
8881The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8882initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8883
8884Arguments:
8885""""""""""
8886
8887The argument is a pointer to a ``va_list`` to destroy.
8888
8889Semantics:
8890""""""""""
8891
8892The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8893available in C. In a target-dependent way, it destroys the ``va_list``
8894element to which the argument points. Calls to
8895:ref:`llvm.va_start <int_va_start>` and
8896:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8897``llvm.va_end``.
8898
8899.. _int_va_copy:
8900
8901'``llvm.va_copy``' Intrinsic
8902^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8903
8904Syntax:
8905"""""""
8906
8907::
8908
8909 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8910
8911Overview:
8912"""""""""
8913
8914The '``llvm.va_copy``' intrinsic copies the current argument position
8915from the source argument list to the destination argument list.
8916
8917Arguments:
8918""""""""""
8919
8920The first argument is a pointer to a ``va_list`` element to initialize.
8921The second argument is a pointer to a ``va_list`` element to copy from.
8922
8923Semantics:
8924""""""""""
8925
8926The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8927available in C. In a target-dependent way, it copies the source
8928``va_list`` element into the destination ``va_list`` element. This
8929intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8930arbitrarily complex and require, for example, memory allocation.
8931
8932Accurate Garbage Collection Intrinsics
8933--------------------------------------
8934
Philip Reamesc5b0f562015-02-25 23:52:06 +00008935LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008936(GC) requires the frontend to generate code containing appropriate intrinsic
8937calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008938intrinsics in a manner which is appropriate for the target collector.
8939
Sean Silvab084af42012-12-07 10:36:55 +00008940These intrinsics allow identification of :ref:`GC roots on the
8941stack <int_gcroot>`, as well as garbage collector implementations that
8942require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008943Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008944these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008945details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008946
Philip Reamesf80bbff2015-02-25 23:45:20 +00008947Experimental Statepoint Intrinsics
8948^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8949
8950LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008951collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008952to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008953:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008954differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008955<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008956described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008957
8958.. _int_gcroot:
8959
8960'``llvm.gcroot``' Intrinsic
8961^^^^^^^^^^^^^^^^^^^^^^^^^^^
8962
8963Syntax:
8964"""""""
8965
8966::
8967
8968 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8969
8970Overview:
8971"""""""""
8972
8973The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8974the code generator, and allows some metadata to be associated with it.
8975
8976Arguments:
8977""""""""""
8978
8979The first argument specifies the address of a stack object that contains
8980the root pointer. The second pointer (which must be either a constant or
8981a global value address) contains the meta-data to be associated with the
8982root.
8983
8984Semantics:
8985""""""""""
8986
8987At runtime, a call to this intrinsic stores a null pointer into the
8988"ptrloc" location. At compile-time, the code generator generates
8989information to allow the runtime to find the pointer at GC safe points.
8990The '``llvm.gcroot``' intrinsic may only be used in a function which
8991:ref:`specifies a GC algorithm <gc>`.
8992
8993.. _int_gcread:
8994
8995'``llvm.gcread``' Intrinsic
8996^^^^^^^^^^^^^^^^^^^^^^^^^^^
8997
8998Syntax:
8999"""""""
9000
9001::
9002
9003 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9004
9005Overview:
9006"""""""""
9007
9008The '``llvm.gcread``' intrinsic identifies reads of references from heap
9009locations, allowing garbage collector implementations that require read
9010barriers.
9011
9012Arguments:
9013""""""""""
9014
9015The second argument is the address to read from, which should be an
9016address allocated from the garbage collector. The first object is a
9017pointer to the start of the referenced object, if needed by the language
9018runtime (otherwise null).
9019
9020Semantics:
9021""""""""""
9022
9023The '``llvm.gcread``' intrinsic has the same semantics as a load
9024instruction, but may be replaced with substantially more complex code by
9025the garbage collector runtime, as needed. The '``llvm.gcread``'
9026intrinsic may only be used in a function which :ref:`specifies a GC
9027algorithm <gc>`.
9028
9029.. _int_gcwrite:
9030
9031'``llvm.gcwrite``' Intrinsic
9032^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9033
9034Syntax:
9035"""""""
9036
9037::
9038
9039 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9040
9041Overview:
9042"""""""""
9043
9044The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9045locations, allowing garbage collector implementations that require write
9046barriers (such as generational or reference counting collectors).
9047
9048Arguments:
9049""""""""""
9050
9051The first argument is the reference to store, the second is the start of
9052the object to store it to, and the third is the address of the field of
9053Obj to store to. If the runtime does not require a pointer to the
9054object, Obj may be null.
9055
9056Semantics:
9057""""""""""
9058
9059The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9060instruction, but may be replaced with substantially more complex code by
9061the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9062intrinsic may only be used in a function which :ref:`specifies a GC
9063algorithm <gc>`.
9064
9065Code Generator Intrinsics
9066-------------------------
9067
9068These intrinsics are provided by LLVM to expose special features that
9069may only be implemented with code generator support.
9070
9071'``llvm.returnaddress``' Intrinsic
9072^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9073
9074Syntax:
9075"""""""
9076
9077::
9078
9079 declare i8 *@llvm.returnaddress(i32 <level>)
9080
9081Overview:
9082"""""""""
9083
9084The '``llvm.returnaddress``' intrinsic attempts to compute a
9085target-specific value indicating the return address of the current
9086function or one of its callers.
9087
9088Arguments:
9089""""""""""
9090
9091The argument to this intrinsic indicates which function to return the
9092address for. Zero indicates the calling function, one indicates its
9093caller, etc. The argument is **required** to be a constant integer
9094value.
9095
9096Semantics:
9097""""""""""
9098
9099The '``llvm.returnaddress``' intrinsic either returns a pointer
9100indicating the return address of the specified call frame, or zero if it
9101cannot be identified. The value returned by this intrinsic is likely to
9102be incorrect or 0 for arguments other than zero, so it should only be
9103used for debugging purposes.
9104
9105Note that calling this intrinsic does not prevent function inlining or
9106other aggressive transformations, so the value returned may not be that
9107of the obvious source-language caller.
9108
9109'``llvm.frameaddress``' Intrinsic
9110^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9111
9112Syntax:
9113"""""""
9114
9115::
9116
9117 declare i8* @llvm.frameaddress(i32 <level>)
9118
9119Overview:
9120"""""""""
9121
9122The '``llvm.frameaddress``' intrinsic attempts to return the
9123target-specific frame pointer value for the specified stack frame.
9124
9125Arguments:
9126""""""""""
9127
9128The argument to this intrinsic indicates which function to return the
9129frame pointer for. Zero indicates the calling function, one indicates
9130its caller, etc. The argument is **required** to be a constant integer
9131value.
9132
9133Semantics:
9134""""""""""
9135
9136The '``llvm.frameaddress``' intrinsic either returns a pointer
9137indicating the frame address of the specified call frame, or zero if it
9138cannot be identified. The value returned by this intrinsic is likely to
9139be incorrect or 0 for arguments other than zero, so it should only be
9140used for debugging purposes.
9141
9142Note that calling this intrinsic does not prevent function inlining or
9143other aggressive transformations, so the value returned may not be that
9144of the obvious source-language caller.
9145
Reid Kleckner60381792015-07-07 22:25:32 +00009146'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009147^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9148
9149Syntax:
9150"""""""
9151
9152::
9153
Reid Kleckner60381792015-07-07 22:25:32 +00009154 declare void @llvm.localescape(...)
9155 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009156
9157Overview:
9158"""""""""
9159
Reid Kleckner60381792015-07-07 22:25:32 +00009160The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9161allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009162live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009163computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009164
9165Arguments:
9166""""""""""
9167
Reid Kleckner60381792015-07-07 22:25:32 +00009168All arguments to '``llvm.localescape``' must be pointers to static allocas or
9169casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009170once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009171
Reid Kleckner60381792015-07-07 22:25:32 +00009172The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009173bitcasted pointer to a function defined in the current module. The code
9174generator cannot determine the frame allocation offset of functions defined in
9175other modules.
9176
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009177The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9178call frame that is currently live. The return value of '``llvm.localaddress``'
9179is one way to produce such a value, but various runtimes also expose a suitable
9180pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009181
Reid Kleckner60381792015-07-07 22:25:32 +00009182The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9183'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009184
Reid Klecknere9b89312015-01-13 00:48:10 +00009185Semantics:
9186""""""""""
9187
Reid Kleckner60381792015-07-07 22:25:32 +00009188These intrinsics allow a group of functions to share access to a set of local
9189stack allocations of a one parent function. The parent function may call the
9190'``llvm.localescape``' intrinsic once from the function entry block, and the
9191child functions can use '``llvm.localrecover``' to access the escaped allocas.
9192The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9193the escaped allocas are allocated, which would break attempts to use
9194'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009195
Renato Golinc7aea402014-05-06 16:51:25 +00009196.. _int_read_register:
9197.. _int_write_register:
9198
9199'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9201
9202Syntax:
9203"""""""
9204
9205::
9206
9207 declare i32 @llvm.read_register.i32(metadata)
9208 declare i64 @llvm.read_register.i64(metadata)
9209 declare void @llvm.write_register.i32(metadata, i32 @value)
9210 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009211 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009212
9213Overview:
9214"""""""""
9215
9216The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9217provides access to the named register. The register must be valid on
9218the architecture being compiled to. The type needs to be compatible
9219with the register being read.
9220
9221Semantics:
9222""""""""""
9223
9224The '``llvm.read_register``' intrinsic returns the current value of the
9225register, where possible. The '``llvm.write_register``' intrinsic sets
9226the current value of the register, where possible.
9227
9228This is useful to implement named register global variables that need
9229to always be mapped to a specific register, as is common practice on
9230bare-metal programs including OS kernels.
9231
9232The compiler doesn't check for register availability or use of the used
9233register in surrounding code, including inline assembly. Because of that,
9234allocatable registers are not supported.
9235
9236Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009237architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009238work is needed to support other registers and even more so, allocatable
9239registers.
9240
Sean Silvab084af42012-12-07 10:36:55 +00009241.. _int_stacksave:
9242
9243'``llvm.stacksave``' Intrinsic
9244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9245
9246Syntax:
9247"""""""
9248
9249::
9250
9251 declare i8* @llvm.stacksave()
9252
9253Overview:
9254"""""""""
9255
9256The '``llvm.stacksave``' intrinsic is used to remember the current state
9257of the function stack, for use with
9258:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9259implementing language features like scoped automatic variable sized
9260arrays in C99.
9261
9262Semantics:
9263""""""""""
9264
9265This intrinsic returns a opaque pointer value that can be passed to
9266:ref:`llvm.stackrestore <int_stackrestore>`. When an
9267``llvm.stackrestore`` intrinsic is executed with a value saved from
9268``llvm.stacksave``, it effectively restores the state of the stack to
9269the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9270practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9271were allocated after the ``llvm.stacksave`` was executed.
9272
9273.. _int_stackrestore:
9274
9275'``llvm.stackrestore``' Intrinsic
9276^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9277
9278Syntax:
9279"""""""
9280
9281::
9282
9283 declare void @llvm.stackrestore(i8* %ptr)
9284
9285Overview:
9286"""""""""
9287
9288The '``llvm.stackrestore``' intrinsic is used to restore the state of
9289the function stack to the state it was in when the corresponding
9290:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9291useful for implementing language features like scoped automatic variable
9292sized arrays in C99.
9293
9294Semantics:
9295""""""""""
9296
9297See the description for :ref:`llvm.stacksave <int_stacksave>`.
9298
Yury Gribovd7dbb662015-12-01 11:40:55 +00009299.. _int_get_dynamic_area_offset:
9300
9301'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009302^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009303
9304Syntax:
9305"""""""
9306
9307::
9308
9309 declare i32 @llvm.get.dynamic.area.offset.i32()
9310 declare i64 @llvm.get.dynamic.area.offset.i64()
9311
9312 Overview:
9313 """""""""
9314
9315 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9316 get the offset from native stack pointer to the address of the most
9317 recent dynamic alloca on the caller's stack. These intrinsics are
9318 intendend for use in combination with
9319 :ref:`llvm.stacksave <int_stacksave>` to get a
9320 pointer to the most recent dynamic alloca. This is useful, for example,
9321 for AddressSanitizer's stack unpoisoning routines.
9322
9323Semantics:
9324""""""""""
9325
9326 These intrinsics return a non-negative integer value that can be used to
9327 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9328 on the caller's stack. In particular, for targets where stack grows downwards,
9329 adding this offset to the native stack pointer would get the address of the most
9330 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9331 complicated, because substracting this value from stack pointer would get the address
9332 one past the end of the most recent dynamic alloca.
9333
9334 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9335 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9336 compile-time-known constant value.
9337
9338 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9339 must match the target's generic address space's (address space 0) pointer type.
9340
Sean Silvab084af42012-12-07 10:36:55 +00009341'``llvm.prefetch``' Intrinsic
9342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9343
9344Syntax:
9345"""""""
9346
9347::
9348
9349 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9350
9351Overview:
9352"""""""""
9353
9354The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9355insert a prefetch instruction if supported; otherwise, it is a noop.
9356Prefetches have no effect on the behavior of the program but can change
9357its performance characteristics.
9358
9359Arguments:
9360""""""""""
9361
9362``address`` is the address to be prefetched, ``rw`` is the specifier
9363determining if the fetch should be for a read (0) or write (1), and
9364``locality`` is a temporal locality specifier ranging from (0) - no
9365locality, to (3) - extremely local keep in cache. The ``cache type``
9366specifies whether the prefetch is performed on the data (1) or
9367instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9368arguments must be constant integers.
9369
9370Semantics:
9371""""""""""
9372
9373This intrinsic does not modify the behavior of the program. In
9374particular, prefetches cannot trap and do not produce a value. On
9375targets that support this intrinsic, the prefetch can provide hints to
9376the processor cache for better performance.
9377
9378'``llvm.pcmarker``' Intrinsic
9379^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9380
9381Syntax:
9382"""""""
9383
9384::
9385
9386 declare void @llvm.pcmarker(i32 <id>)
9387
9388Overview:
9389"""""""""
9390
9391The '``llvm.pcmarker``' intrinsic is a method to export a Program
9392Counter (PC) in a region of code to simulators and other tools. The
9393method is target specific, but it is expected that the marker will use
9394exported symbols to transmit the PC of the marker. The marker makes no
9395guarantees that it will remain with any specific instruction after
9396optimizations. It is possible that the presence of a marker will inhibit
9397optimizations. The intended use is to be inserted after optimizations to
9398allow correlations of simulation runs.
9399
9400Arguments:
9401""""""""""
9402
9403``id`` is a numerical id identifying the marker.
9404
9405Semantics:
9406""""""""""
9407
9408This intrinsic does not modify the behavior of the program. Backends
9409that do not support this intrinsic may ignore it.
9410
9411'``llvm.readcyclecounter``' Intrinsic
9412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9413
9414Syntax:
9415"""""""
9416
9417::
9418
9419 declare i64 @llvm.readcyclecounter()
9420
9421Overview:
9422"""""""""
9423
9424The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9425counter register (or similar low latency, high accuracy clocks) on those
9426targets that support it. On X86, it should map to RDTSC. On Alpha, it
9427should map to RPCC. As the backing counters overflow quickly (on the
9428order of 9 seconds on alpha), this should only be used for small
9429timings.
9430
9431Semantics:
9432""""""""""
9433
9434When directly supported, reading the cycle counter should not modify any
9435memory. Implementations are allowed to either return a application
9436specific value or a system wide value. On backends without support, this
9437is lowered to a constant 0.
9438
Tim Northoverbc933082013-05-23 19:11:20 +00009439Note that runtime support may be conditional on the privilege-level code is
9440running at and the host platform.
9441
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009442'``llvm.clear_cache``' Intrinsic
9443^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9444
9445Syntax:
9446"""""""
9447
9448::
9449
9450 declare void @llvm.clear_cache(i8*, i8*)
9451
9452Overview:
9453"""""""""
9454
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009455The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9456in the specified range to the execution unit of the processor. On
9457targets with non-unified instruction and data cache, the implementation
9458flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009459
9460Semantics:
9461""""""""""
9462
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009463On platforms with coherent instruction and data caches (e.g. x86), this
9464intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009465cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009466instructions or a system call, if cache flushing requires special
9467privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009468
Sean Silvad02bf3e2014-04-07 22:29:53 +00009469The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009470time library.
Renato Golin93010e62014-03-26 14:01:32 +00009471
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009472This instrinsic does *not* empty the instruction pipeline. Modifications
9473of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009474
Justin Bogner61ba2e32014-12-08 18:02:35 +00009475'``llvm.instrprof_increment``' Intrinsic
9476^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9477
9478Syntax:
9479"""""""
9480
9481::
9482
9483 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9484 i32 <num-counters>, i32 <index>)
9485
9486Overview:
9487"""""""""
9488
9489The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9490frontend for use with instrumentation based profiling. These will be
9491lowered by the ``-instrprof`` pass to generate execution counts of a
9492program at runtime.
9493
9494Arguments:
9495""""""""""
9496
9497The first argument is a pointer to a global variable containing the
9498name of the entity being instrumented. This should generally be the
9499(mangled) function name for a set of counters.
9500
9501The second argument is a hash value that can be used by the consumer
9502of the profile data to detect changes to the instrumented source, and
9503the third is the number of counters associated with ``name``. It is an
9504error if ``hash`` or ``num-counters`` differ between two instances of
9505``instrprof_increment`` that refer to the same name.
9506
9507The last argument refers to which of the counters for ``name`` should
9508be incremented. It should be a value between 0 and ``num-counters``.
9509
9510Semantics:
9511""""""""""
9512
9513This intrinsic represents an increment of a profiling counter. It will
9514cause the ``-instrprof`` pass to generate the appropriate data
9515structures and the code to increment the appropriate value, in a
9516format that can be written out by a compiler runtime and consumed via
9517the ``llvm-profdata`` tool.
9518
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009519'``llvm.instrprof_value_profile``' Intrinsic
9520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9521
9522Syntax:
9523"""""""
9524
9525::
9526
9527 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9528 i64 <value>, i32 <value_kind>,
9529 i32 <index>)
9530
9531Overview:
9532"""""""""
9533
9534The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9535frontend for use with instrumentation based profiling. This will be
9536lowered by the ``-instrprof`` pass to find out the target values,
9537instrumented expressions take in a program at runtime.
9538
9539Arguments:
9540""""""""""
9541
9542The first argument is a pointer to a global variable containing the
9543name of the entity being instrumented. ``name`` should generally be the
9544(mangled) function name for a set of counters.
9545
9546The second argument is a hash value that can be used by the consumer
9547of the profile data to detect changes to the instrumented source. It
9548is an error if ``hash`` differs between two instances of
9549``llvm.instrprof_*`` that refer to the same name.
9550
9551The third argument is the value of the expression being profiled. The profiled
9552expression's value should be representable as an unsigned 64-bit value. The
9553fourth argument represents the kind of value profiling that is being done. The
9554supported value profiling kinds are enumerated through the
9555``InstrProfValueKind`` type declared in the
9556``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9557index of the instrumented expression within ``name``. It should be >= 0.
9558
9559Semantics:
9560""""""""""
9561
9562This intrinsic represents the point where a call to a runtime routine
9563should be inserted for value profiling of target expressions. ``-instrprof``
9564pass will generate the appropriate data structures and replace the
9565``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9566runtime library with proper arguments.
9567
Sean Silvab084af42012-12-07 10:36:55 +00009568Standard C Library Intrinsics
9569-----------------------------
9570
9571LLVM provides intrinsics for a few important standard C library
9572functions. These intrinsics allow source-language front-ends to pass
9573information about the alignment of the pointer arguments to the code
9574generator, providing opportunity for more efficient code generation.
9575
9576.. _int_memcpy:
9577
9578'``llvm.memcpy``' Intrinsic
9579^^^^^^^^^^^^^^^^^^^^^^^^^^^
9580
9581Syntax:
9582"""""""
9583
9584This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9585integer bit width and for different address spaces. Not all targets
9586support all bit widths however.
9587
9588::
9589
9590 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9591 i32 <len>, i32 <align>, i1 <isvolatile>)
9592 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9593 i64 <len>, i32 <align>, i1 <isvolatile>)
9594
9595Overview:
9596"""""""""
9597
9598The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9599source location to the destination location.
9600
9601Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9602intrinsics do not return a value, takes extra alignment/isvolatile
9603arguments and the pointers can be in specified address spaces.
9604
9605Arguments:
9606""""""""""
9607
9608The first argument is a pointer to the destination, the second is a
9609pointer to the source. The third argument is an integer argument
9610specifying the number of bytes to copy, the fourth argument is the
9611alignment of the source and destination locations, and the fifth is a
9612boolean indicating a volatile access.
9613
9614If the call to this intrinsic has an alignment value that is not 0 or 1,
9615then the caller guarantees that both the source and destination pointers
9616are aligned to that boundary.
9617
9618If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9619a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9620very cleanly specified and it is unwise to depend on it.
9621
9622Semantics:
9623""""""""""
9624
9625The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9626source location to the destination location, which are not allowed to
9627overlap. It copies "len" bytes of memory over. If the argument is known
9628to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009629argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009630
9631'``llvm.memmove``' Intrinsic
9632^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9633
9634Syntax:
9635"""""""
9636
9637This is an overloaded intrinsic. You can use llvm.memmove on any integer
9638bit width and for different address space. Not all targets support all
9639bit widths however.
9640
9641::
9642
9643 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9644 i32 <len>, i32 <align>, i1 <isvolatile>)
9645 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9646 i64 <len>, i32 <align>, i1 <isvolatile>)
9647
9648Overview:
9649"""""""""
9650
9651The '``llvm.memmove.*``' intrinsics move a block of memory from the
9652source location to the destination location. It is similar to the
9653'``llvm.memcpy``' intrinsic but allows the two memory locations to
9654overlap.
9655
9656Note that, unlike the standard libc function, the ``llvm.memmove.*``
9657intrinsics do not return a value, takes extra alignment/isvolatile
9658arguments and the pointers can be in specified address spaces.
9659
9660Arguments:
9661""""""""""
9662
9663The first argument is a pointer to the destination, the second is a
9664pointer to the source. The third argument is an integer argument
9665specifying the number of bytes to copy, the fourth argument is the
9666alignment of the source and destination locations, and the fifth is a
9667boolean indicating a volatile access.
9668
9669If the call to this intrinsic has an alignment value that is not 0 or 1,
9670then the caller guarantees that the source and destination pointers are
9671aligned to that boundary.
9672
9673If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9674is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9675not very cleanly specified and it is unwise to depend on it.
9676
9677Semantics:
9678""""""""""
9679
9680The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9681source location to the destination location, which may overlap. It
9682copies "len" bytes of memory over. If the argument is known to be
9683aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009684otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009685
9686'``llvm.memset.*``' Intrinsics
9687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9688
9689Syntax:
9690"""""""
9691
9692This is an overloaded intrinsic. You can use llvm.memset on any integer
9693bit width and for different address spaces. However, not all targets
9694support all bit widths.
9695
9696::
9697
9698 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9699 i32 <len>, i32 <align>, i1 <isvolatile>)
9700 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9701 i64 <len>, i32 <align>, i1 <isvolatile>)
9702
9703Overview:
9704"""""""""
9705
9706The '``llvm.memset.*``' intrinsics fill a block of memory with a
9707particular byte value.
9708
9709Note that, unlike the standard libc function, the ``llvm.memset``
9710intrinsic does not return a value and takes extra alignment/volatile
9711arguments. Also, the destination can be in an arbitrary address space.
9712
9713Arguments:
9714""""""""""
9715
9716The first argument is a pointer to the destination to fill, the second
9717is the byte value with which to fill it, the third argument is an
9718integer argument specifying the number of bytes to fill, and the fourth
9719argument is the known alignment of the destination location.
9720
9721If the call to this intrinsic has an alignment value that is not 0 or 1,
9722then the caller guarantees that the destination pointer is aligned to
9723that boundary.
9724
9725If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9726a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9727very cleanly specified and it is unwise to depend on it.
9728
9729Semantics:
9730""""""""""
9731
9732The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9733at the destination location. If the argument is known to be aligned to
9734some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009735it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009736
9737'``llvm.sqrt.*``' Intrinsic
9738^^^^^^^^^^^^^^^^^^^^^^^^^^^
9739
9740Syntax:
9741"""""""
9742
9743This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9744floating point or vector of floating point type. Not all targets support
9745all types however.
9746
9747::
9748
9749 declare float @llvm.sqrt.f32(float %Val)
9750 declare double @llvm.sqrt.f64(double %Val)
9751 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9752 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9753 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9754
9755Overview:
9756"""""""""
9757
9758The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9759returning the same value as the libm '``sqrt``' functions would. Unlike
9760``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9761negative numbers other than -0.0 (which allows for better optimization,
9762because there is no need to worry about errno being set).
9763``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9764
9765Arguments:
9766""""""""""
9767
9768The argument and return value are floating point numbers of the same
9769type.
9770
9771Semantics:
9772""""""""""
9773
9774This function returns the sqrt of the specified operand if it is a
9775nonnegative floating point number.
9776
9777'``llvm.powi.*``' Intrinsic
9778^^^^^^^^^^^^^^^^^^^^^^^^^^^
9779
9780Syntax:
9781"""""""
9782
9783This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9784floating point or vector of floating point type. Not all targets support
9785all types however.
9786
9787::
9788
9789 declare float @llvm.powi.f32(float %Val, i32 %power)
9790 declare double @llvm.powi.f64(double %Val, i32 %power)
9791 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9792 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9793 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9794
9795Overview:
9796"""""""""
9797
9798The '``llvm.powi.*``' intrinsics return the first operand raised to the
9799specified (positive or negative) power. The order of evaluation of
9800multiplications is not defined. When a vector of floating point type is
9801used, the second argument remains a scalar integer value.
9802
9803Arguments:
9804""""""""""
9805
9806The second argument is an integer power, and the first is a value to
9807raise to that power.
9808
9809Semantics:
9810""""""""""
9811
9812This function returns the first value raised to the second power with an
9813unspecified sequence of rounding operations.
9814
9815'``llvm.sin.*``' Intrinsic
9816^^^^^^^^^^^^^^^^^^^^^^^^^^
9817
9818Syntax:
9819"""""""
9820
9821This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9822floating point or vector of floating point type. Not all targets support
9823all types however.
9824
9825::
9826
9827 declare float @llvm.sin.f32(float %Val)
9828 declare double @llvm.sin.f64(double %Val)
9829 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9830 declare fp128 @llvm.sin.f128(fp128 %Val)
9831 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9832
9833Overview:
9834"""""""""
9835
9836The '``llvm.sin.*``' intrinsics return the sine of the operand.
9837
9838Arguments:
9839""""""""""
9840
9841The argument and return value are floating point numbers of the same
9842type.
9843
9844Semantics:
9845""""""""""
9846
9847This function returns the sine of the specified operand, returning the
9848same values as the libm ``sin`` functions would, and handles error
9849conditions in the same way.
9850
9851'``llvm.cos.*``' Intrinsic
9852^^^^^^^^^^^^^^^^^^^^^^^^^^
9853
9854Syntax:
9855"""""""
9856
9857This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9858floating point or vector of floating point type. Not all targets support
9859all types however.
9860
9861::
9862
9863 declare float @llvm.cos.f32(float %Val)
9864 declare double @llvm.cos.f64(double %Val)
9865 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9866 declare fp128 @llvm.cos.f128(fp128 %Val)
9867 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9868
9869Overview:
9870"""""""""
9871
9872The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9873
9874Arguments:
9875""""""""""
9876
9877The argument and return value are floating point numbers of the same
9878type.
9879
9880Semantics:
9881""""""""""
9882
9883This function returns the cosine of the specified operand, returning the
9884same values as the libm ``cos`` functions would, and handles error
9885conditions in the same way.
9886
9887'``llvm.pow.*``' Intrinsic
9888^^^^^^^^^^^^^^^^^^^^^^^^^^
9889
9890Syntax:
9891"""""""
9892
9893This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9894floating point or vector of floating point type. Not all targets support
9895all types however.
9896
9897::
9898
9899 declare float @llvm.pow.f32(float %Val, float %Power)
9900 declare double @llvm.pow.f64(double %Val, double %Power)
9901 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9902 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9903 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9904
9905Overview:
9906"""""""""
9907
9908The '``llvm.pow.*``' intrinsics return the first operand raised to the
9909specified (positive or negative) power.
9910
9911Arguments:
9912""""""""""
9913
9914The second argument is a floating point power, and the first is a value
9915to raise to that power.
9916
9917Semantics:
9918""""""""""
9919
9920This function returns the first value raised to the second power,
9921returning the same values as the libm ``pow`` functions would, and
9922handles error conditions in the same way.
9923
9924'``llvm.exp.*``' Intrinsic
9925^^^^^^^^^^^^^^^^^^^^^^^^^^
9926
9927Syntax:
9928"""""""
9929
9930This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9931floating point or vector of floating point type. Not all targets support
9932all types however.
9933
9934::
9935
9936 declare float @llvm.exp.f32(float %Val)
9937 declare double @llvm.exp.f64(double %Val)
9938 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9939 declare fp128 @llvm.exp.f128(fp128 %Val)
9940 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9941
9942Overview:
9943"""""""""
9944
9945The '``llvm.exp.*``' intrinsics perform the exp function.
9946
9947Arguments:
9948""""""""""
9949
9950The argument and return value are floating point numbers of the same
9951type.
9952
9953Semantics:
9954""""""""""
9955
9956This function returns the same values as the libm ``exp`` functions
9957would, and handles error conditions in the same way.
9958
9959'``llvm.exp2.*``' Intrinsic
9960^^^^^^^^^^^^^^^^^^^^^^^^^^^
9961
9962Syntax:
9963"""""""
9964
9965This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9966floating point or vector of floating point type. Not all targets support
9967all types however.
9968
9969::
9970
9971 declare float @llvm.exp2.f32(float %Val)
9972 declare double @llvm.exp2.f64(double %Val)
9973 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9974 declare fp128 @llvm.exp2.f128(fp128 %Val)
9975 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9976
9977Overview:
9978"""""""""
9979
9980The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9981
9982Arguments:
9983""""""""""
9984
9985The argument and return value are floating point numbers of the same
9986type.
9987
9988Semantics:
9989""""""""""
9990
9991This function returns the same values as the libm ``exp2`` functions
9992would, and handles error conditions in the same way.
9993
9994'``llvm.log.*``' Intrinsic
9995^^^^^^^^^^^^^^^^^^^^^^^^^^
9996
9997Syntax:
9998"""""""
9999
10000This is an overloaded intrinsic. You can use ``llvm.log`` on any
10001floating point or vector of floating point type. Not all targets support
10002all types however.
10003
10004::
10005
10006 declare float @llvm.log.f32(float %Val)
10007 declare double @llvm.log.f64(double %Val)
10008 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10009 declare fp128 @llvm.log.f128(fp128 %Val)
10010 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10011
10012Overview:
10013"""""""""
10014
10015The '``llvm.log.*``' intrinsics perform the log function.
10016
10017Arguments:
10018""""""""""
10019
10020The argument and return value are floating point numbers of the same
10021type.
10022
10023Semantics:
10024""""""""""
10025
10026This function returns the same values as the libm ``log`` functions
10027would, and handles error conditions in the same way.
10028
10029'``llvm.log10.*``' Intrinsic
10030^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10031
10032Syntax:
10033"""""""
10034
10035This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10036floating point or vector of floating point type. Not all targets support
10037all types however.
10038
10039::
10040
10041 declare float @llvm.log10.f32(float %Val)
10042 declare double @llvm.log10.f64(double %Val)
10043 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10044 declare fp128 @llvm.log10.f128(fp128 %Val)
10045 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10046
10047Overview:
10048"""""""""
10049
10050The '``llvm.log10.*``' intrinsics perform the log10 function.
10051
10052Arguments:
10053""""""""""
10054
10055The argument and return value are floating point numbers of the same
10056type.
10057
10058Semantics:
10059""""""""""
10060
10061This function returns the same values as the libm ``log10`` functions
10062would, and handles error conditions in the same way.
10063
10064'``llvm.log2.*``' Intrinsic
10065^^^^^^^^^^^^^^^^^^^^^^^^^^^
10066
10067Syntax:
10068"""""""
10069
10070This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10071floating point or vector of floating point type. Not all targets support
10072all types however.
10073
10074::
10075
10076 declare float @llvm.log2.f32(float %Val)
10077 declare double @llvm.log2.f64(double %Val)
10078 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10079 declare fp128 @llvm.log2.f128(fp128 %Val)
10080 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10081
10082Overview:
10083"""""""""
10084
10085The '``llvm.log2.*``' intrinsics perform the log2 function.
10086
10087Arguments:
10088""""""""""
10089
10090The argument and return value are floating point numbers of the same
10091type.
10092
10093Semantics:
10094""""""""""
10095
10096This function returns the same values as the libm ``log2`` functions
10097would, and handles error conditions in the same way.
10098
10099'``llvm.fma.*``' Intrinsic
10100^^^^^^^^^^^^^^^^^^^^^^^^^^
10101
10102Syntax:
10103"""""""
10104
10105This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10106floating point or vector of floating point type. Not all targets support
10107all types however.
10108
10109::
10110
10111 declare float @llvm.fma.f32(float %a, float %b, float %c)
10112 declare double @llvm.fma.f64(double %a, double %b, double %c)
10113 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10114 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10115 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10116
10117Overview:
10118"""""""""
10119
10120The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10121operation.
10122
10123Arguments:
10124""""""""""
10125
10126The argument and return value are floating point numbers of the same
10127type.
10128
10129Semantics:
10130""""""""""
10131
10132This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010133would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010134
10135'``llvm.fabs.*``' Intrinsic
10136^^^^^^^^^^^^^^^^^^^^^^^^^^^
10137
10138Syntax:
10139"""""""
10140
10141This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10142floating point or vector of floating point type. Not all targets support
10143all types however.
10144
10145::
10146
10147 declare float @llvm.fabs.f32(float %Val)
10148 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010149 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010150 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010151 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010152
10153Overview:
10154"""""""""
10155
10156The '``llvm.fabs.*``' intrinsics return the absolute value of the
10157operand.
10158
10159Arguments:
10160""""""""""
10161
10162The argument and return value are floating point numbers of the same
10163type.
10164
10165Semantics:
10166""""""""""
10167
10168This function returns the same values as the libm ``fabs`` functions
10169would, and handles error conditions in the same way.
10170
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010171'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010173
10174Syntax:
10175"""""""
10176
10177This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10178floating point or vector of floating point type. Not all targets support
10179all types however.
10180
10181::
10182
Matt Arsenault64313c92014-10-22 18:25:02 +000010183 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10184 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10185 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10186 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10187 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010188
10189Overview:
10190"""""""""
10191
10192The '``llvm.minnum.*``' intrinsics return the minimum of the two
10193arguments.
10194
10195
10196Arguments:
10197""""""""""
10198
10199The arguments and return value are floating point numbers of the same
10200type.
10201
10202Semantics:
10203""""""""""
10204
10205Follows the IEEE-754 semantics for minNum, which also match for libm's
10206fmin.
10207
10208If either operand is a NaN, returns the other non-NaN operand. Returns
10209NaN only if both operands are NaN. If the operands compare equal,
10210returns a value that compares equal to both operands. This means that
10211fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10212
10213'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010214^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010215
10216Syntax:
10217"""""""
10218
10219This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10220floating point or vector of floating point type. Not all targets support
10221all types however.
10222
10223::
10224
Matt Arsenault64313c92014-10-22 18:25:02 +000010225 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10226 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10227 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10228 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10229 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010230
10231Overview:
10232"""""""""
10233
10234The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10235arguments.
10236
10237
10238Arguments:
10239""""""""""
10240
10241The arguments and return value are floating point numbers of the same
10242type.
10243
10244Semantics:
10245""""""""""
10246Follows the IEEE-754 semantics for maxNum, which also match for libm's
10247fmax.
10248
10249If either operand is a NaN, returns the other non-NaN operand. Returns
10250NaN only if both operands are NaN. If the operands compare equal,
10251returns a value that compares equal to both operands. This means that
10252fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10253
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010254'``llvm.copysign.*``' Intrinsic
10255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10256
10257Syntax:
10258"""""""
10259
10260This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10261floating point or vector of floating point type. Not all targets support
10262all types however.
10263
10264::
10265
10266 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10267 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10268 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10269 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10270 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10271
10272Overview:
10273"""""""""
10274
10275The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10276first operand and the sign of the second operand.
10277
10278Arguments:
10279""""""""""
10280
10281The arguments and return value are floating point numbers of the same
10282type.
10283
10284Semantics:
10285""""""""""
10286
10287This function returns the same values as the libm ``copysign``
10288functions would, and handles error conditions in the same way.
10289
Sean Silvab084af42012-12-07 10:36:55 +000010290'``llvm.floor.*``' Intrinsic
10291^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10292
10293Syntax:
10294"""""""
10295
10296This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10297floating point or vector of floating point type. Not all targets support
10298all types however.
10299
10300::
10301
10302 declare float @llvm.floor.f32(float %Val)
10303 declare double @llvm.floor.f64(double %Val)
10304 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10305 declare fp128 @llvm.floor.f128(fp128 %Val)
10306 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10307
10308Overview:
10309"""""""""
10310
10311The '``llvm.floor.*``' intrinsics return the floor of the operand.
10312
10313Arguments:
10314""""""""""
10315
10316The argument and return value are floating point numbers of the same
10317type.
10318
10319Semantics:
10320""""""""""
10321
10322This function returns the same values as the libm ``floor`` functions
10323would, and handles error conditions in the same way.
10324
10325'``llvm.ceil.*``' Intrinsic
10326^^^^^^^^^^^^^^^^^^^^^^^^^^^
10327
10328Syntax:
10329"""""""
10330
10331This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10332floating point or vector of floating point type. Not all targets support
10333all types however.
10334
10335::
10336
10337 declare float @llvm.ceil.f32(float %Val)
10338 declare double @llvm.ceil.f64(double %Val)
10339 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10340 declare fp128 @llvm.ceil.f128(fp128 %Val)
10341 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10342
10343Overview:
10344"""""""""
10345
10346The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10347
10348Arguments:
10349""""""""""
10350
10351The argument and return value are floating point numbers of the same
10352type.
10353
10354Semantics:
10355""""""""""
10356
10357This function returns the same values as the libm ``ceil`` functions
10358would, and handles error conditions in the same way.
10359
10360'``llvm.trunc.*``' Intrinsic
10361^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10362
10363Syntax:
10364"""""""
10365
10366This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10367floating point or vector of floating point type. Not all targets support
10368all types however.
10369
10370::
10371
10372 declare float @llvm.trunc.f32(float %Val)
10373 declare double @llvm.trunc.f64(double %Val)
10374 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10375 declare fp128 @llvm.trunc.f128(fp128 %Val)
10376 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10377
10378Overview:
10379"""""""""
10380
10381The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10382nearest integer not larger in magnitude than the operand.
10383
10384Arguments:
10385""""""""""
10386
10387The argument and return value are floating point numbers of the same
10388type.
10389
10390Semantics:
10391""""""""""
10392
10393This function returns the same values as the libm ``trunc`` functions
10394would, and handles error conditions in the same way.
10395
10396'``llvm.rint.*``' Intrinsic
10397^^^^^^^^^^^^^^^^^^^^^^^^^^^
10398
10399Syntax:
10400"""""""
10401
10402This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10403floating point or vector of floating point type. Not all targets support
10404all types however.
10405
10406::
10407
10408 declare float @llvm.rint.f32(float %Val)
10409 declare double @llvm.rint.f64(double %Val)
10410 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10411 declare fp128 @llvm.rint.f128(fp128 %Val)
10412 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10413
10414Overview:
10415"""""""""
10416
10417The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10418nearest integer. It may raise an inexact floating-point exception if the
10419operand isn't an integer.
10420
10421Arguments:
10422""""""""""
10423
10424The argument and return value are floating point numbers of the same
10425type.
10426
10427Semantics:
10428""""""""""
10429
10430This function returns the same values as the libm ``rint`` functions
10431would, and handles error conditions in the same way.
10432
10433'``llvm.nearbyint.*``' Intrinsic
10434^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10435
10436Syntax:
10437"""""""
10438
10439This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10440floating point or vector of floating point type. Not all targets support
10441all types however.
10442
10443::
10444
10445 declare float @llvm.nearbyint.f32(float %Val)
10446 declare double @llvm.nearbyint.f64(double %Val)
10447 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10448 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10449 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10450
10451Overview:
10452"""""""""
10453
10454The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10455nearest integer.
10456
10457Arguments:
10458""""""""""
10459
10460The argument and return value are floating point numbers of the same
10461type.
10462
10463Semantics:
10464""""""""""
10465
10466This function returns the same values as the libm ``nearbyint``
10467functions would, and handles error conditions in the same way.
10468
Hal Finkel171817e2013-08-07 22:49:12 +000010469'``llvm.round.*``' Intrinsic
10470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10471
10472Syntax:
10473"""""""
10474
10475This is an overloaded intrinsic. You can use ``llvm.round`` on any
10476floating point or vector of floating point type. Not all targets support
10477all types however.
10478
10479::
10480
10481 declare float @llvm.round.f32(float %Val)
10482 declare double @llvm.round.f64(double %Val)
10483 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10484 declare fp128 @llvm.round.f128(fp128 %Val)
10485 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10486
10487Overview:
10488"""""""""
10489
10490The '``llvm.round.*``' intrinsics returns the operand rounded to the
10491nearest integer.
10492
10493Arguments:
10494""""""""""
10495
10496The argument and return value are floating point numbers of the same
10497type.
10498
10499Semantics:
10500""""""""""
10501
10502This function returns the same values as the libm ``round``
10503functions would, and handles error conditions in the same way.
10504
Sean Silvab084af42012-12-07 10:36:55 +000010505Bit Manipulation Intrinsics
10506---------------------------
10507
10508LLVM provides intrinsics for a few important bit manipulation
10509operations. These allow efficient code generation for some algorithms.
10510
James Molloy90111f72015-11-12 12:29:09 +000010511'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010512^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010513
10514Syntax:
10515"""""""
10516
10517This is an overloaded intrinsic function. You can use bitreverse on any
10518integer type.
10519
10520::
10521
10522 declare i16 @llvm.bitreverse.i16(i16 <id>)
10523 declare i32 @llvm.bitreverse.i32(i32 <id>)
10524 declare i64 @llvm.bitreverse.i64(i64 <id>)
10525
10526Overview:
10527"""""""""
10528
10529The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010530bitpattern of an integer value; for example ``0b10110110`` becomes
10531``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010532
10533Semantics:
10534""""""""""
10535
10536The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10537``M`` in the input moved to bit ``N-M`` in the output.
10538
Sean Silvab084af42012-12-07 10:36:55 +000010539'``llvm.bswap.*``' Intrinsics
10540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10541
10542Syntax:
10543"""""""
10544
10545This is an overloaded intrinsic function. You can use bswap on any
10546integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10547
10548::
10549
10550 declare i16 @llvm.bswap.i16(i16 <id>)
10551 declare i32 @llvm.bswap.i32(i32 <id>)
10552 declare i64 @llvm.bswap.i64(i64 <id>)
10553
10554Overview:
10555"""""""""
10556
10557The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10558values with an even number of bytes (positive multiple of 16 bits).
10559These are useful for performing operations on data that is not in the
10560target's native byte order.
10561
10562Semantics:
10563""""""""""
10564
10565The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10566and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10567intrinsic returns an i32 value that has the four bytes of the input i32
10568swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10569returned i32 will have its bytes in 3, 2, 1, 0 order. The
10570``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10571concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10572respectively).
10573
10574'``llvm.ctpop.*``' Intrinsic
10575^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10576
10577Syntax:
10578"""""""
10579
10580This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10581bit width, or on any vector with integer elements. Not all targets
10582support all bit widths or vector types, however.
10583
10584::
10585
10586 declare i8 @llvm.ctpop.i8(i8 <src>)
10587 declare i16 @llvm.ctpop.i16(i16 <src>)
10588 declare i32 @llvm.ctpop.i32(i32 <src>)
10589 declare i64 @llvm.ctpop.i64(i64 <src>)
10590 declare i256 @llvm.ctpop.i256(i256 <src>)
10591 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10592
10593Overview:
10594"""""""""
10595
10596The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10597in a value.
10598
10599Arguments:
10600""""""""""
10601
10602The only argument is the value to be counted. The argument may be of any
10603integer type, or a vector with integer elements. The return type must
10604match the argument type.
10605
10606Semantics:
10607""""""""""
10608
10609The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10610each element of a vector.
10611
10612'``llvm.ctlz.*``' Intrinsic
10613^^^^^^^^^^^^^^^^^^^^^^^^^^^
10614
10615Syntax:
10616"""""""
10617
10618This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10619integer bit width, or any vector whose elements are integers. Not all
10620targets support all bit widths or vector types, however.
10621
10622::
10623
10624 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10625 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10626 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10627 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10628 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010629 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010630
10631Overview:
10632"""""""""
10633
10634The '``llvm.ctlz``' family of intrinsic functions counts the number of
10635leading zeros in a variable.
10636
10637Arguments:
10638""""""""""
10639
10640The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010641any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010642type must match the first argument type.
10643
10644The second argument must be a constant and is a flag to indicate whether
10645the intrinsic should ensure that a zero as the first argument produces a
10646defined result. Historically some architectures did not provide a
10647defined result for zero values as efficiently, and many algorithms are
10648now predicated on avoiding zero-value inputs.
10649
10650Semantics:
10651""""""""""
10652
10653The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10654zeros in a variable, or within each element of the vector. If
10655``src == 0`` then the result is the size in bits of the type of ``src``
10656if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10657``llvm.ctlz(i32 2) = 30``.
10658
10659'``llvm.cttz.*``' Intrinsic
10660^^^^^^^^^^^^^^^^^^^^^^^^^^^
10661
10662Syntax:
10663"""""""
10664
10665This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10666integer bit width, or any vector of integer elements. Not all targets
10667support all bit widths or vector types, however.
10668
10669::
10670
10671 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10672 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10673 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10674 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10675 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010676 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010677
10678Overview:
10679"""""""""
10680
10681The '``llvm.cttz``' family of intrinsic functions counts the number of
10682trailing zeros.
10683
10684Arguments:
10685""""""""""
10686
10687The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010688any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010689type must match the first argument type.
10690
10691The second argument must be a constant and is a flag to indicate whether
10692the intrinsic should ensure that a zero as the first argument produces a
10693defined result. Historically some architectures did not provide a
10694defined result for zero values as efficiently, and many algorithms are
10695now predicated on avoiding zero-value inputs.
10696
10697Semantics:
10698""""""""""
10699
10700The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10701zeros in a variable, or within each element of a vector. If ``src == 0``
10702then the result is the size in bits of the type of ``src`` if
10703``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10704``llvm.cttz(2) = 1``.
10705
Philip Reames34843ae2015-03-05 05:55:55 +000010706.. _int_overflow:
10707
Sean Silvab084af42012-12-07 10:36:55 +000010708Arithmetic with Overflow Intrinsics
10709-----------------------------------
10710
10711LLVM provides intrinsics for some arithmetic with overflow operations.
10712
10713'``llvm.sadd.with.overflow.*``' Intrinsics
10714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10715
10716Syntax:
10717"""""""
10718
10719This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10720on any integer bit width.
10721
10722::
10723
10724 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10725 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10726 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10727
10728Overview:
10729"""""""""
10730
10731The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10732a signed addition of the two arguments, and indicate whether an overflow
10733occurred during the signed summation.
10734
10735Arguments:
10736""""""""""
10737
10738The arguments (%a and %b) and the first element of the result structure
10739may be of integer types of any bit width, but they must have the same
10740bit width. The second element of the result structure must be of type
10741``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10742addition.
10743
10744Semantics:
10745""""""""""
10746
10747The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010748a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010749first element of which is the signed summation, and the second element
10750of which is a bit specifying if the signed summation resulted in an
10751overflow.
10752
10753Examples:
10754"""""""""
10755
10756.. code-block:: llvm
10757
10758 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10759 %sum = extractvalue {i32, i1} %res, 0
10760 %obit = extractvalue {i32, i1} %res, 1
10761 br i1 %obit, label %overflow, label %normal
10762
10763'``llvm.uadd.with.overflow.*``' Intrinsics
10764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10765
10766Syntax:
10767"""""""
10768
10769This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10770on any integer bit width.
10771
10772::
10773
10774 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10775 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10776 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10777
10778Overview:
10779"""""""""
10780
10781The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10782an unsigned addition of the two arguments, and indicate whether a carry
10783occurred during the unsigned summation.
10784
10785Arguments:
10786""""""""""
10787
10788The arguments (%a and %b) and the first element of the result structure
10789may be of integer types of any bit width, but they must have the same
10790bit width. The second element of the result structure must be of type
10791``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10792addition.
10793
10794Semantics:
10795""""""""""
10796
10797The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010798an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010799first element of which is the sum, and the second element of which is a
10800bit specifying if the unsigned summation resulted in a carry.
10801
10802Examples:
10803"""""""""
10804
10805.. code-block:: llvm
10806
10807 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10808 %sum = extractvalue {i32, i1} %res, 0
10809 %obit = extractvalue {i32, i1} %res, 1
10810 br i1 %obit, label %carry, label %normal
10811
10812'``llvm.ssub.with.overflow.*``' Intrinsics
10813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10814
10815Syntax:
10816"""""""
10817
10818This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10819on any integer bit width.
10820
10821::
10822
10823 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10824 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10825 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10826
10827Overview:
10828"""""""""
10829
10830The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10831a signed subtraction of the two arguments, and indicate whether an
10832overflow occurred during the signed subtraction.
10833
10834Arguments:
10835""""""""""
10836
10837The arguments (%a and %b) and the first element of the result structure
10838may be of integer types of any bit width, but they must have the same
10839bit width. The second element of the result structure must be of type
10840``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10841subtraction.
10842
10843Semantics:
10844""""""""""
10845
10846The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010847a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010848first element of which is the subtraction, and the second element of
10849which is a bit specifying if the signed subtraction resulted in an
10850overflow.
10851
10852Examples:
10853"""""""""
10854
10855.. code-block:: llvm
10856
10857 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10858 %sum = extractvalue {i32, i1} %res, 0
10859 %obit = extractvalue {i32, i1} %res, 1
10860 br i1 %obit, label %overflow, label %normal
10861
10862'``llvm.usub.with.overflow.*``' Intrinsics
10863^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10864
10865Syntax:
10866"""""""
10867
10868This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10869on any integer bit width.
10870
10871::
10872
10873 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10874 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10875 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10876
10877Overview:
10878"""""""""
10879
10880The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10881an unsigned subtraction of the two arguments, and indicate whether an
10882overflow occurred during the unsigned subtraction.
10883
10884Arguments:
10885""""""""""
10886
10887The arguments (%a and %b) and the first element of the result structure
10888may be of integer types of any bit width, but they must have the same
10889bit width. The second element of the result structure must be of type
10890``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10891subtraction.
10892
10893Semantics:
10894""""""""""
10895
10896The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010897an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010898the first element of which is the subtraction, and the second element of
10899which is a bit specifying if the unsigned subtraction resulted in an
10900overflow.
10901
10902Examples:
10903"""""""""
10904
10905.. code-block:: llvm
10906
10907 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10908 %sum = extractvalue {i32, i1} %res, 0
10909 %obit = extractvalue {i32, i1} %res, 1
10910 br i1 %obit, label %overflow, label %normal
10911
10912'``llvm.smul.with.overflow.*``' Intrinsics
10913^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10914
10915Syntax:
10916"""""""
10917
10918This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10919on any integer bit width.
10920
10921::
10922
10923 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10924 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10925 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10926
10927Overview:
10928"""""""""
10929
10930The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10931a signed multiplication of the two arguments, and indicate whether an
10932overflow occurred during the signed multiplication.
10933
10934Arguments:
10935""""""""""
10936
10937The arguments (%a and %b) and the first element of the result structure
10938may be of integer types of any bit width, but they must have the same
10939bit width. The second element of the result structure must be of type
10940``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10941multiplication.
10942
10943Semantics:
10944""""""""""
10945
10946The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010947a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010948the first element of which is the multiplication, and the second element
10949of which is a bit specifying if the signed multiplication resulted in an
10950overflow.
10951
10952Examples:
10953"""""""""
10954
10955.. code-block:: llvm
10956
10957 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10958 %sum = extractvalue {i32, i1} %res, 0
10959 %obit = extractvalue {i32, i1} %res, 1
10960 br i1 %obit, label %overflow, label %normal
10961
10962'``llvm.umul.with.overflow.*``' Intrinsics
10963^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10964
10965Syntax:
10966"""""""
10967
10968This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10969on any integer bit width.
10970
10971::
10972
10973 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10974 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10975 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10976
10977Overview:
10978"""""""""
10979
10980The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10981a unsigned multiplication of the two arguments, and indicate whether an
10982overflow occurred during the unsigned multiplication.
10983
10984Arguments:
10985""""""""""
10986
10987The arguments (%a and %b) and the first element of the result structure
10988may be of integer types of any bit width, but they must have the same
10989bit width. The second element of the result structure must be of type
10990``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10991multiplication.
10992
10993Semantics:
10994""""""""""
10995
10996The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010997an unsigned multiplication of the two arguments. They return a structure ---
10998the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010999element of which is a bit specifying if the unsigned multiplication
11000resulted in an overflow.
11001
11002Examples:
11003"""""""""
11004
11005.. code-block:: llvm
11006
11007 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11008 %sum = extractvalue {i32, i1} %res, 0
11009 %obit = extractvalue {i32, i1} %res, 1
11010 br i1 %obit, label %overflow, label %normal
11011
11012Specialised Arithmetic Intrinsics
11013---------------------------------
11014
Owen Anderson1056a922015-07-11 07:01:27 +000011015'``llvm.canonicalize.*``' Intrinsic
11016^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11017
11018Syntax:
11019"""""""
11020
11021::
11022
11023 declare float @llvm.canonicalize.f32(float %a)
11024 declare double @llvm.canonicalize.f64(double %b)
11025
11026Overview:
11027"""""""""
11028
11029The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011030encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011031implementing certain numeric primitives such as frexp. The canonical encoding is
11032defined by IEEE-754-2008 to be:
11033
11034::
11035
11036 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011037 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011038 numbers, infinities, and NaNs, especially in decimal formats.
11039
11040This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011041conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011042according to section 6.2.
11043
11044Examples of non-canonical encodings:
11045
Sean Silvaa1190322015-08-06 22:56:48 +000011046- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011047 converted to a canonical representation per hardware-specific protocol.
11048- Many normal decimal floating point numbers have non-canonical alternative
11049 encodings.
11050- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011051 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011052 a zero of the same sign by this operation.
11053
11054Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11055default exception handling must signal an invalid exception, and produce a
11056quiet NaN result.
11057
11058This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011059that the compiler does not constant fold the operation. Likewise, division by
110601.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011061-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11062
Sean Silvaa1190322015-08-06 22:56:48 +000011063``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011064
11065- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11066- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11067 to ``(x == y)``
11068
11069Additionally, the sign of zero must be conserved:
11070``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11071
11072The payload bits of a NaN must be conserved, with two exceptions.
11073First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011074must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011075usual methods.
11076
11077The canonicalization operation may be optimized away if:
11078
Sean Silvaa1190322015-08-06 22:56:48 +000011079- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011080 floating-point operation that is required by the standard to be canonical.
11081- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011082 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011083
Sean Silvab084af42012-12-07 10:36:55 +000011084'``llvm.fmuladd.*``' Intrinsic
11085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11086
11087Syntax:
11088"""""""
11089
11090::
11091
11092 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11093 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11094
11095Overview:
11096"""""""""
11097
11098The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011099expressions that can be fused if the code generator determines that (a) the
11100target instruction set has support for a fused operation, and (b) that the
11101fused operation is more efficient than the equivalent, separate pair of mul
11102and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011103
11104Arguments:
11105""""""""""
11106
11107The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11108multiplicands, a and b, and an addend c.
11109
11110Semantics:
11111""""""""""
11112
11113The expression:
11114
11115::
11116
11117 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11118
11119is equivalent to the expression a \* b + c, except that rounding will
11120not be performed between the multiplication and addition steps if the
11121code generator fuses the operations. Fusion is not guaranteed, even if
11122the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011123corresponding llvm.fma.\* intrinsic function should be used
11124instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011125
11126Examples:
11127"""""""""
11128
11129.. code-block:: llvm
11130
Tim Northover675a0962014-06-13 14:24:23 +000011131 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011132
11133Half Precision Floating Point Intrinsics
11134----------------------------------------
11135
11136For most target platforms, half precision floating point is a
11137storage-only format. This means that it is a dense encoding (in memory)
11138but does not support computation in the format.
11139
11140This means that code must first load the half-precision floating point
11141value as an i16, then convert it to float with
11142:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11143then be performed on the float value (including extending to double
11144etc). To store the value back to memory, it is first converted to float
11145if needed, then converted to i16 with
11146:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11147i16 value.
11148
11149.. _int_convert_to_fp16:
11150
11151'``llvm.convert.to.fp16``' Intrinsic
11152^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11153
11154Syntax:
11155"""""""
11156
11157::
11158
Tim Northoverfd7e4242014-07-17 10:51:23 +000011159 declare i16 @llvm.convert.to.fp16.f32(float %a)
11160 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011161
11162Overview:
11163"""""""""
11164
Tim Northoverfd7e4242014-07-17 10:51:23 +000011165The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11166conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011167
11168Arguments:
11169""""""""""
11170
11171The intrinsic function contains single argument - the value to be
11172converted.
11173
11174Semantics:
11175""""""""""
11176
Tim Northoverfd7e4242014-07-17 10:51:23 +000011177The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11178conventional floating point format to half precision floating point format. The
11179return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011180
11181Examples:
11182"""""""""
11183
11184.. code-block:: llvm
11185
Tim Northoverfd7e4242014-07-17 10:51:23 +000011186 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011187 store i16 %res, i16* @x, align 2
11188
11189.. _int_convert_from_fp16:
11190
11191'``llvm.convert.from.fp16``' Intrinsic
11192^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11193
11194Syntax:
11195"""""""
11196
11197::
11198
Tim Northoverfd7e4242014-07-17 10:51:23 +000011199 declare float @llvm.convert.from.fp16.f32(i16 %a)
11200 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011201
11202Overview:
11203"""""""""
11204
11205The '``llvm.convert.from.fp16``' intrinsic function performs a
11206conversion from half precision floating point format to single precision
11207floating point format.
11208
11209Arguments:
11210""""""""""
11211
11212The intrinsic function contains single argument - the value to be
11213converted.
11214
11215Semantics:
11216""""""""""
11217
11218The '``llvm.convert.from.fp16``' intrinsic function performs a
11219conversion from half single precision floating point format to single
11220precision floating point format. The input half-float value is
11221represented by an ``i16`` value.
11222
11223Examples:
11224"""""""""
11225
11226.. code-block:: llvm
11227
David Blaikiec7aabbb2015-03-04 22:06:14 +000011228 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011229 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011230
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011231.. _dbg_intrinsics:
11232
Sean Silvab084af42012-12-07 10:36:55 +000011233Debugger Intrinsics
11234-------------------
11235
11236The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11237prefix), are described in the `LLVM Source Level
11238Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11239document.
11240
11241Exception Handling Intrinsics
11242-----------------------------
11243
11244The LLVM exception handling intrinsics (which all start with
11245``llvm.eh.`` prefix), are described in the `LLVM Exception
11246Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11247
11248.. _int_trampoline:
11249
11250Trampoline Intrinsics
11251---------------------
11252
11253These intrinsics make it possible to excise one parameter, marked with
11254the :ref:`nest <nest>` attribute, from a function. The result is a
11255callable function pointer lacking the nest parameter - the caller does
11256not need to provide a value for it. Instead, the value to use is stored
11257in advance in a "trampoline", a block of memory usually allocated on the
11258stack, which also contains code to splice the nest value into the
11259argument list. This is used to implement the GCC nested function address
11260extension.
11261
11262For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11263then the resulting function pointer has signature ``i32 (i32, i32)*``.
11264It can be created as follows:
11265
11266.. code-block:: llvm
11267
11268 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011269 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011270 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11271 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11272 %fp = bitcast i8* %p to i32 (i32, i32)*
11273
11274The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11275``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11276
11277.. _int_it:
11278
11279'``llvm.init.trampoline``' Intrinsic
11280^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11281
11282Syntax:
11283"""""""
11284
11285::
11286
11287 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11288
11289Overview:
11290"""""""""
11291
11292This fills the memory pointed to by ``tramp`` with executable code,
11293turning it into a trampoline.
11294
11295Arguments:
11296""""""""""
11297
11298The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11299pointers. The ``tramp`` argument must point to a sufficiently large and
11300sufficiently aligned block of memory; this memory is written to by the
11301intrinsic. Note that the size and the alignment are target-specific -
11302LLVM currently provides no portable way of determining them, so a
11303front-end that generates this intrinsic needs to have some
11304target-specific knowledge. The ``func`` argument must hold a function
11305bitcast to an ``i8*``.
11306
11307Semantics:
11308""""""""""
11309
11310The block of memory pointed to by ``tramp`` is filled with target
11311dependent code, turning it into a function. Then ``tramp`` needs to be
11312passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11313be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11314function's signature is the same as that of ``func`` with any arguments
11315marked with the ``nest`` attribute removed. At most one such ``nest``
11316argument is allowed, and it must be of pointer type. Calling the new
11317function is equivalent to calling ``func`` with the same argument list,
11318but with ``nval`` used for the missing ``nest`` argument. If, after
11319calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11320modified, then the effect of any later call to the returned function
11321pointer is undefined.
11322
11323.. _int_at:
11324
11325'``llvm.adjust.trampoline``' Intrinsic
11326^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11327
11328Syntax:
11329"""""""
11330
11331::
11332
11333 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11334
11335Overview:
11336"""""""""
11337
11338This performs any required machine-specific adjustment to the address of
11339a trampoline (passed as ``tramp``).
11340
11341Arguments:
11342""""""""""
11343
11344``tramp`` must point to a block of memory which already has trampoline
11345code filled in by a previous call to
11346:ref:`llvm.init.trampoline <int_it>`.
11347
11348Semantics:
11349""""""""""
11350
11351On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011352different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011353intrinsic returns the executable address corresponding to ``tramp``
11354after performing the required machine specific adjustments. The pointer
11355returned can then be :ref:`bitcast and executed <int_trampoline>`.
11356
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011357.. _int_mload_mstore:
11358
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011359Masked Vector Load and Store Intrinsics
11360---------------------------------------
11361
11362LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11363
11364.. _int_mload:
11365
11366'``llvm.masked.load.*``' Intrinsics
11367^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11368
11369Syntax:
11370"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011371This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011372
11373::
11374
Matthias Braun68bb2932016-03-22 20:24:34 +000011375 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11376 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011377 ;; The data is a vector of pointers to double
Matthias Braun68bb2932016-03-22 20:24:34 +000011378 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011379 ;; The data is a vector of function pointers
Matthias Braun68bb2932016-03-22 20:24:34 +000011380 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011381
11382Overview:
11383"""""""""
11384
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011385Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011386
11387
11388Arguments:
11389""""""""""
11390
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011391The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011392
11393
11394Semantics:
11395""""""""""
11396
11397The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11398The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11399
11400
11401::
11402
Matthias Braun68bb2932016-03-22 20:24:34 +000011403 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011404
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011405 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011406 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011407 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011408
11409.. _int_mstore:
11410
11411'``llvm.masked.store.*``' Intrinsics
11412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11413
11414Syntax:
11415"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011416This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011417
11418::
11419
Matthias Braun68bb2932016-03-22 20:24:34 +000011420 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11421 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011422 ;; The data is a vector of pointers to double
Matthias Braun68bb2932016-03-22 20:24:34 +000011423 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011424 ;; The data is a vector of function pointers
Matthias Braun68bb2932016-03-22 20:24:34 +000011425 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011426
11427Overview:
11428"""""""""
11429
11430Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11431
11432Arguments:
11433""""""""""
11434
11435The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11436
11437
11438Semantics:
11439""""""""""
11440
11441The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11442The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11443
11444::
11445
Matthias Braun68bb2932016-03-22 20:24:34 +000011446 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011447
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011448 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011449 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011450 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11451 store <16 x float> %res, <16 x float>* %ptr, align 4
11452
11453
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011454Masked Vector Gather and Scatter Intrinsics
11455-------------------------------------------
11456
11457LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11458
11459.. _int_mgather:
11460
11461'``llvm.masked.gather.*``' Intrinsics
11462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11463
11464Syntax:
11465"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011466This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011467
11468::
11469
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011470 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11471 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11472 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011473
11474Overview:
11475"""""""""
11476
11477Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11478
11479
11480Arguments:
11481""""""""""
11482
11483The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11484
11485
11486Semantics:
11487""""""""""
11488
11489The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11490The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11491
11492
11493::
11494
11495 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11496
11497 ;; The gather with all-true mask is equivalent to the following instruction sequence
11498 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11499 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11500 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11501 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11502
11503 %val0 = load double, double* %ptr0, align 8
11504 %val1 = load double, double* %ptr1, align 8
11505 %val2 = load double, double* %ptr2, align 8
11506 %val3 = load double, double* %ptr3, align 8
11507
11508 %vec0 = insertelement <4 x double>undef, %val0, 0
11509 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11510 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11511 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11512
11513.. _int_mscatter:
11514
11515'``llvm.masked.scatter.*``' Intrinsics
11516^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11517
11518Syntax:
11519"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011520This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011521
11522::
11523
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011524 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11525 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11526 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011527
11528Overview:
11529"""""""""
11530
11531Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11532
11533Arguments:
11534""""""""""
11535
11536The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11537
11538
11539Semantics:
11540""""""""""
11541
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011542The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011543
11544::
11545
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011546 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011547 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11548
11549 ;; It is equivalent to a list of scalar stores
11550 %val0 = extractelement <8 x i32> %value, i32 0
11551 %val1 = extractelement <8 x i32> %value, i32 1
11552 ..
11553 %val7 = extractelement <8 x i32> %value, i32 7
11554 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11555 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11556 ..
11557 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11558 ;; Note: the order of the following stores is important when they overlap:
11559 store i32 %val0, i32* %ptr0, align 4
11560 store i32 %val1, i32* %ptr1, align 4
11561 ..
11562 store i32 %val7, i32* %ptr7, align 4
11563
11564
Sean Silvab084af42012-12-07 10:36:55 +000011565Memory Use Markers
11566------------------
11567
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011568This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011569memory objects and ranges where variables are immutable.
11570
Reid Klecknera534a382013-12-19 02:14:12 +000011571.. _int_lifestart:
11572
Sean Silvab084af42012-12-07 10:36:55 +000011573'``llvm.lifetime.start``' Intrinsic
11574^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11575
11576Syntax:
11577"""""""
11578
11579::
11580
11581 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11582
11583Overview:
11584"""""""""
11585
11586The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11587object's lifetime.
11588
11589Arguments:
11590""""""""""
11591
11592The first argument is a constant integer representing the size of the
11593object, or -1 if it is variable sized. The second argument is a pointer
11594to the object.
11595
11596Semantics:
11597""""""""""
11598
11599This intrinsic indicates that before this point in the code, the value
11600of the memory pointed to by ``ptr`` is dead. This means that it is known
11601to never be used and has an undefined value. A load from the pointer
11602that precedes this intrinsic can be replaced with ``'undef'``.
11603
Reid Klecknera534a382013-12-19 02:14:12 +000011604.. _int_lifeend:
11605
Sean Silvab084af42012-12-07 10:36:55 +000011606'``llvm.lifetime.end``' Intrinsic
11607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11608
11609Syntax:
11610"""""""
11611
11612::
11613
11614 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11615
11616Overview:
11617"""""""""
11618
11619The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11620object's lifetime.
11621
11622Arguments:
11623""""""""""
11624
11625The first argument is a constant integer representing the size of the
11626object, or -1 if it is variable sized. The second argument is a pointer
11627to the object.
11628
11629Semantics:
11630""""""""""
11631
11632This intrinsic indicates that after this point in the code, the value of
11633the memory pointed to by ``ptr`` is dead. This means that it is known to
11634never be used and has an undefined value. Any stores into the memory
11635object following this intrinsic may be removed as dead.
11636
11637'``llvm.invariant.start``' Intrinsic
11638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11639
11640Syntax:
11641"""""""
11642
11643::
11644
11645 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11646
11647Overview:
11648"""""""""
11649
11650The '``llvm.invariant.start``' intrinsic specifies that the contents of
11651a memory object will not change.
11652
11653Arguments:
11654""""""""""
11655
11656The first argument is a constant integer representing the size of the
11657object, or -1 if it is variable sized. The second argument is a pointer
11658to the object.
11659
11660Semantics:
11661""""""""""
11662
11663This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11664the return value, the referenced memory location is constant and
11665unchanging.
11666
11667'``llvm.invariant.end``' Intrinsic
11668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11669
11670Syntax:
11671"""""""
11672
11673::
11674
11675 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11676
11677Overview:
11678"""""""""
11679
11680The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11681memory object are mutable.
11682
11683Arguments:
11684""""""""""
11685
11686The first argument is the matching ``llvm.invariant.start`` intrinsic.
11687The second argument is a constant integer representing the size of the
11688object, or -1 if it is variable sized and the third argument is a
11689pointer to the object.
11690
11691Semantics:
11692""""""""""
11693
11694This intrinsic indicates that the memory is mutable again.
11695
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011696'``llvm.invariant.group.barrier``' Intrinsic
11697^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11698
11699Syntax:
11700"""""""
11701
11702::
11703
11704 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11705
11706Overview:
11707"""""""""
11708
11709The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11710established by invariant.group metadata no longer holds, to obtain a new pointer
11711value that does not carry the invariant information.
11712
11713
11714Arguments:
11715""""""""""
11716
11717The ``llvm.invariant.group.barrier`` takes only one argument, which is
11718the pointer to the memory for which the ``invariant.group`` no longer holds.
11719
11720Semantics:
11721""""""""""
11722
11723Returns another pointer that aliases its argument but which is considered different
11724for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11725
Sean Silvab084af42012-12-07 10:36:55 +000011726General Intrinsics
11727------------------
11728
11729This class of intrinsics is designed to be generic and has no specific
11730purpose.
11731
11732'``llvm.var.annotation``' Intrinsic
11733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11734
11735Syntax:
11736"""""""
11737
11738::
11739
11740 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11741
11742Overview:
11743"""""""""
11744
11745The '``llvm.var.annotation``' intrinsic.
11746
11747Arguments:
11748""""""""""
11749
11750The first argument is a pointer to a value, the second is a pointer to a
11751global string, the third is a pointer to a global string which is the
11752source file name, and the last argument is the line number.
11753
11754Semantics:
11755""""""""""
11756
11757This intrinsic allows annotation of local variables with arbitrary
11758strings. This can be useful for special purpose optimizations that want
11759to look for these annotations. These have no other defined use; they are
11760ignored by code generation and optimization.
11761
Michael Gottesman88d18832013-03-26 00:34:27 +000011762'``llvm.ptr.annotation.*``' Intrinsic
11763^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11764
11765Syntax:
11766"""""""
11767
11768This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11769pointer to an integer of any width. *NOTE* you must specify an address space for
11770the pointer. The identifier for the default address space is the integer
11771'``0``'.
11772
11773::
11774
11775 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11776 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11777 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11778 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11779 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11780
11781Overview:
11782"""""""""
11783
11784The '``llvm.ptr.annotation``' intrinsic.
11785
11786Arguments:
11787""""""""""
11788
11789The first argument is a pointer to an integer value of arbitrary bitwidth
11790(result of some expression), the second is a pointer to a global string, the
11791third is a pointer to a global string which is the source file name, and the
11792last argument is the line number. It returns the value of the first argument.
11793
11794Semantics:
11795""""""""""
11796
11797This intrinsic allows annotation of a pointer to an integer with arbitrary
11798strings. This can be useful for special purpose optimizations that want to look
11799for these annotations. These have no other defined use; they are ignored by code
11800generation and optimization.
11801
Sean Silvab084af42012-12-07 10:36:55 +000011802'``llvm.annotation.*``' Intrinsic
11803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11804
11805Syntax:
11806"""""""
11807
11808This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11809any integer bit width.
11810
11811::
11812
11813 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11814 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11815 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11816 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11817 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11818
11819Overview:
11820"""""""""
11821
11822The '``llvm.annotation``' intrinsic.
11823
11824Arguments:
11825""""""""""
11826
11827The first argument is an integer value (result of some expression), the
11828second is a pointer to a global string, the third is a pointer to a
11829global string which is the source file name, and the last argument is
11830the line number. It returns the value of the first argument.
11831
11832Semantics:
11833""""""""""
11834
11835This intrinsic allows annotations to be put on arbitrary expressions
11836with arbitrary strings. This can be useful for special purpose
11837optimizations that want to look for these annotations. These have no
11838other defined use; they are ignored by code generation and optimization.
11839
11840'``llvm.trap``' Intrinsic
11841^^^^^^^^^^^^^^^^^^^^^^^^^
11842
11843Syntax:
11844"""""""
11845
11846::
11847
11848 declare void @llvm.trap() noreturn nounwind
11849
11850Overview:
11851"""""""""
11852
11853The '``llvm.trap``' intrinsic.
11854
11855Arguments:
11856""""""""""
11857
11858None.
11859
11860Semantics:
11861""""""""""
11862
11863This intrinsic is lowered to the target dependent trap instruction. If
11864the target does not have a trap instruction, this intrinsic will be
11865lowered to a call of the ``abort()`` function.
11866
11867'``llvm.debugtrap``' Intrinsic
11868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11869
11870Syntax:
11871"""""""
11872
11873::
11874
11875 declare void @llvm.debugtrap() nounwind
11876
11877Overview:
11878"""""""""
11879
11880The '``llvm.debugtrap``' intrinsic.
11881
11882Arguments:
11883""""""""""
11884
11885None.
11886
11887Semantics:
11888""""""""""
11889
11890This intrinsic is lowered to code which is intended to cause an
11891execution trap with the intention of requesting the attention of a
11892debugger.
11893
11894'``llvm.stackprotector``' Intrinsic
11895^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11896
11897Syntax:
11898"""""""
11899
11900::
11901
11902 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11903
11904Overview:
11905"""""""""
11906
11907The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11908onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11909is placed on the stack before local variables.
11910
11911Arguments:
11912""""""""""
11913
11914The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11915The first argument is the value loaded from the stack guard
11916``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11917enough space to hold the value of the guard.
11918
11919Semantics:
11920""""""""""
11921
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011922This intrinsic causes the prologue/epilogue inserter to force the position of
11923the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11924to ensure that if a local variable on the stack is overwritten, it will destroy
11925the value of the guard. When the function exits, the guard on the stack is
11926checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11927different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11928calling the ``__stack_chk_fail()`` function.
11929
11930'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011932
11933Syntax:
11934"""""""
11935
11936::
11937
11938 declare void @llvm.stackprotectorcheck(i8** <guard>)
11939
11940Overview:
11941"""""""""
11942
11943The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011944created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011945``__stack_chk_fail()`` function.
11946
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011947Arguments:
11948""""""""""
11949
11950The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11951the variable ``@__stack_chk_guard``.
11952
11953Semantics:
11954""""""""""
11955
11956This intrinsic is provided to perform the stack protector check by comparing
11957``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11958values do not match call the ``__stack_chk_fail()`` function.
11959
11960The reason to provide this as an IR level intrinsic instead of implementing it
11961via other IR operations is that in order to perform this operation at the IR
11962level without an intrinsic, one would need to create additional basic blocks to
11963handle the success/failure cases. This makes it difficult to stop the stack
11964protector check from disrupting sibling tail calls in Codegen. With this
11965intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011966codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011967
Sean Silvab084af42012-12-07 10:36:55 +000011968'``llvm.objectsize``' Intrinsic
11969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11970
11971Syntax:
11972"""""""
11973
11974::
11975
11976 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11977 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11978
11979Overview:
11980"""""""""
11981
11982The ``llvm.objectsize`` intrinsic is designed to provide information to
11983the optimizers to determine at compile time whether a) an operation
11984(like memcpy) will overflow a buffer that corresponds to an object, or
11985b) that a runtime check for overflow isn't necessary. An object in this
11986context means an allocation of a specific class, structure, array, or
11987other object.
11988
11989Arguments:
11990""""""""""
11991
11992The ``llvm.objectsize`` intrinsic takes two arguments. The first
11993argument is a pointer to or into the ``object``. The second argument is
11994a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11995or -1 (if false) when the object size is unknown. The second argument
11996only accepts constants.
11997
11998Semantics:
11999""""""""""
12000
12001The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12002the size of the object concerned. If the size cannot be determined at
12003compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12004on the ``min`` argument).
12005
12006'``llvm.expect``' Intrinsic
12007^^^^^^^^^^^^^^^^^^^^^^^^^^^
12008
12009Syntax:
12010"""""""
12011
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012012This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12013integer bit width.
12014
Sean Silvab084af42012-12-07 10:36:55 +000012015::
12016
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012017 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012018 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12019 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12020
12021Overview:
12022"""""""""
12023
12024The ``llvm.expect`` intrinsic provides information about expected (the
12025most probable) value of ``val``, which can be used by optimizers.
12026
12027Arguments:
12028""""""""""
12029
12030The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12031a value. The second argument is an expected value, this needs to be a
12032constant value, variables are not allowed.
12033
12034Semantics:
12035""""""""""
12036
12037This intrinsic is lowered to the ``val``.
12038
Philip Reamese0e90832015-04-26 22:23:12 +000012039.. _int_assume:
12040
Hal Finkel93046912014-07-25 21:13:35 +000012041'``llvm.assume``' Intrinsic
12042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12043
12044Syntax:
12045"""""""
12046
12047::
12048
12049 declare void @llvm.assume(i1 %cond)
12050
12051Overview:
12052"""""""""
12053
12054The ``llvm.assume`` allows the optimizer to assume that the provided
12055condition is true. This information can then be used in simplifying other parts
12056of the code.
12057
12058Arguments:
12059""""""""""
12060
12061The condition which the optimizer may assume is always true.
12062
12063Semantics:
12064""""""""""
12065
12066The intrinsic allows the optimizer to assume that the provided condition is
12067always true whenever the control flow reaches the intrinsic call. No code is
12068generated for this intrinsic, and instructions that contribute only to the
12069provided condition are not used for code generation. If the condition is
12070violated during execution, the behavior is undefined.
12071
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012072Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012073used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12074only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012075if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012076sufficient overall improvement in code quality. For this reason,
12077``llvm.assume`` should not be used to document basic mathematical invariants
12078that the optimizer can otherwise deduce or facts that are of little use to the
12079optimizer.
12080
Peter Collingbournee6909c82015-02-20 20:30:47 +000012081.. _bitset.test:
12082
12083'``llvm.bitset.test``' Intrinsic
12084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12085
12086Syntax:
12087"""""""
12088
12089::
12090
12091 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12092
12093
12094Arguments:
12095""""""""""
12096
12097The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012098metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012099
12100Overview:
12101"""""""""
12102
12103The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12104member of the given bitset.
12105
Sean Silvab084af42012-12-07 10:36:55 +000012106'``llvm.donothing``' Intrinsic
12107^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12108
12109Syntax:
12110"""""""
12111
12112::
12113
12114 declare void @llvm.donothing() nounwind readnone
12115
12116Overview:
12117"""""""""
12118
Juergen Ributzkac9161192014-10-23 22:36:13 +000012119The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012120three intrinsics (besides ``llvm.experimental.patchpoint`` and
12121``llvm.experimental.gc.statepoint``) that can be called with an invoke
12122instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012123
12124Arguments:
12125""""""""""
12126
12127None.
12128
12129Semantics:
12130""""""""""
12131
12132This intrinsic does nothing, and it's removed by optimizers and ignored
12133by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012134
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012135'``llvm.experimental.deoptimize``' Intrinsic
12136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12137
12138Syntax:
12139"""""""
12140
12141::
12142
12143 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12144
12145Overview:
12146"""""""""
12147
12148This intrinsic, together with :ref:`deoptimization operand bundles
12149<deopt_opbundles>`, allow frontends to express transfer of control and
12150frame-local state from the currently executing (typically more specialized,
12151hence faster) version of a function into another (typically more generic, hence
12152slower) version.
12153
12154In languages with a fully integrated managed runtime like Java and JavaScript
12155this intrinsic can be used to implement "uncommon trap" or "side exit" like
12156functionality. In unmanaged languages like C and C++, this intrinsic can be
12157used to represent the slow paths of specialized functions.
12158
12159
12160Arguments:
12161""""""""""
12162
12163The intrinsic takes an arbitrary number of arguments, whose meaning is
12164decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12165
12166Semantics:
12167""""""""""
12168
12169The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12170deoptimization continuation (denoted using a :ref:`deoptimization
12171operand bundle <deopt_opbundles>`) and returns the value returned by
12172the deoptimization continuation. Defining the semantic properties of
12173the continuation itself is out of scope of the language reference --
12174as far as LLVM is concerned, the deoptimization continuation can
12175invoke arbitrary side effects, including reading from and writing to
12176the entire heap.
12177
12178Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12179continue execution to the end of the physical frame containing them, so all
12180calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12181
12182 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12183 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12184 - The ``ret`` instruction must return the value produced by the
12185 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12186
12187Note that the above restrictions imply that the return type for a call to
12188``@llvm.experimental.deoptimize`` will match the return type of its immediate
12189caller.
12190
12191The inliner composes the ``"deopt"`` continuations of the caller into the
12192``"deopt"`` continuations present in the inlinee, and also updates calls to this
12193intrinsic to return directly from the frame of the function it inlined into.
12194
12195.. _deoptimize_lowering:
12196
12197Lowering:
12198"""""""""
12199
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012200Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12201symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12202ensure that this symbol is defined). The call arguments to
12203``@llvm.experimental.deoptimize`` are lowered as if they were formal
12204arguments of the specified types, and not as varargs.
12205
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012206
Sanjoy Das021de052016-03-31 00:18:46 +000012207'``llvm.experimental.guard``' Intrinsic
12208^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12209
12210Syntax:
12211"""""""
12212
12213::
12214
12215 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12216
12217Overview:
12218"""""""""
12219
12220This intrinsic, together with :ref:`deoptimization operand bundles
12221<deopt_opbundles>`, allows frontends to express guards or checks on
12222optimistic assumptions made during compilation. The semantics of
12223``@llvm.experimental.guard`` is defined in terms of
12224``@llvm.experimental.deoptimize`` -- its body is defined to be
12225equivalent to:
12226
12227.. code-block:: llvm
12228
12229 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12230 %realPred = and i1 %pred, undef
12231 br i1 %realPred, label %continue, label %leave
12232
12233 leave:
12234 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12235 ret void
12236
12237 continue:
12238 ret void
12239 }
12240
12241In words, ``@llvm.experimental.guard`` executes the attached
12242``"deopt"`` continuation if (but **not** only if) its first argument
12243is ``false``. Since the optimizer is allowed to replace the ``undef``
12244with an arbitrary value, it can optimize guard to fail "spuriously",
12245i.e. without the original condition being false (hence the "not only
12246if"); and this allows for "check widening" type optimizations.
12247
12248``@llvm.experimental.guard`` cannot be invoked.
12249
12250
Andrew Trick5e029ce2013-12-24 02:57:25 +000012251Stack Map Intrinsics
12252--------------------
12253
12254LLVM provides experimental intrinsics to support runtime patching
12255mechanisms commonly desired in dynamic language JITs. These intrinsics
12256are described in :doc:`StackMaps`.