blob: bc7cf9c8a08e149cb6e7f0542c808b675c488e14 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
253``extern_weak``
254 The semantics of this linkage follow the ELF object file model: the
255 symbol is weak until linked, if not linked, the symbol becomes null
256 instead of being an undefined reference.
257``linkonce_odr``, ``weak_odr``
258 Some languages allow differing globals to be merged, such as two
259 functions with different semantics. Other languages, such as
260 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000261 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000262 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
263 global will only be merged with equivalent globals. These linkage
264 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000265``external``
266 If none of the above identifiers are used, the global is externally
267 visible, meaning that it participates in linkage and can be used to
268 resolve external symbol references.
269
Sean Silvab084af42012-12-07 10:36:55 +0000270It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000271other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000272
Sean Silvab084af42012-12-07 10:36:55 +0000273.. _callingconv:
274
275Calling Conventions
276-------------------
277
278LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
279:ref:`invokes <i_invoke>` can all have an optional calling convention
280specified for the call. The calling convention of any pair of dynamic
281caller/callee must match, or the behavior of the program is undefined.
282The following calling conventions are supported by LLVM, and more may be
283added in the future:
284
285"``ccc``" - The C calling convention
286 This calling convention (the default if no other calling convention
287 is specified) matches the target C calling conventions. This calling
288 convention supports varargs function calls and tolerates some
289 mismatch in the declared prototype and implemented declaration of
290 the function (as does normal C).
291"``fastcc``" - The fast calling convention
292 This calling convention attempts to make calls as fast as possible
293 (e.g. by passing things in registers). This calling convention
294 allows the target to use whatever tricks it wants to produce fast
295 code for the target, without having to conform to an externally
296 specified ABI (Application Binary Interface). `Tail calls can only
297 be optimized when this, the GHC or the HiPE convention is
298 used. <CodeGenerator.html#id80>`_ This calling convention does not
299 support varargs and requires the prototype of all callees to exactly
300 match the prototype of the function definition.
301"``coldcc``" - The cold calling convention
302 This calling convention attempts to make code in the caller as
303 efficient as possible under the assumption that the call is not
304 commonly executed. As such, these calls often preserve all registers
305 so that the call does not break any live ranges in the caller side.
306 This calling convention does not support varargs and requires the
307 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000308 function definition. Furthermore the inliner doesn't consider such function
309 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000310"``cc 10``" - GHC convention
311 This calling convention has been implemented specifically for use by
312 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
313 It passes everything in registers, going to extremes to achieve this
314 by disabling callee save registers. This calling convention should
315 not be used lightly but only for specific situations such as an
316 alternative to the *register pinning* performance technique often
317 used when implementing functional programming languages. At the
318 moment only X86 supports this convention and it has the following
319 limitations:
320
321 - On *X86-32* only supports up to 4 bit type parameters. No
322 floating point types are supported.
323 - On *X86-64* only supports up to 10 bit type parameters and 6
324 floating point parameters.
325
326 This calling convention supports `tail call
327 optimization <CodeGenerator.html#id80>`_ but requires both the
328 caller and callee are using it.
329"``cc 11``" - The HiPE calling convention
330 This calling convention has been implemented specifically for use by
331 the `High-Performance Erlang
332 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
333 native code compiler of the `Ericsson's Open Source Erlang/OTP
334 system <http://www.erlang.org/download.shtml>`_. It uses more
335 registers for argument passing than the ordinary C calling
336 convention and defines no callee-saved registers. The calling
337 convention properly supports `tail call
338 optimization <CodeGenerator.html#id80>`_ but requires that both the
339 caller and the callee use it. It uses a *register pinning*
340 mechanism, similar to GHC's convention, for keeping frequently
341 accessed runtime components pinned to specific hardware registers.
342 At the moment only X86 supports this convention (both 32 and 64
343 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000344"``webkit_jscc``" - WebKit's JavaScript calling convention
345 This calling convention has been implemented for `WebKit FTL JIT
346 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
347 stack right to left (as cdecl does), and returns a value in the
348 platform's customary return register.
349"``anyregcc``" - Dynamic calling convention for code patching
350 This is a special convention that supports patching an arbitrary code
351 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000352 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000353 allocated. This can currently only be used with calls to
354 llvm.experimental.patchpoint because only this intrinsic records
355 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000356"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 This calling convention attempts to make the code in the caller as
358 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000359 calling convention on how arguments and return values are passed, but it
360 uses a different set of caller/callee-saved registers. This alleviates the
361 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000362 call in the caller. If the arguments are passed in callee-saved registers,
363 then they will be preserved by the callee across the call. This doesn't
364 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000365
366 - On X86-64 the callee preserves all general purpose registers, except for
367 R11. R11 can be used as a scratch register. Floating-point registers
368 (XMMs/YMMs) are not preserved and need to be saved by the caller.
369
370 The idea behind this convention is to support calls to runtime functions
371 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000372 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000373 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000374 registers, which haven't already been saved by the caller. The
375 `PreserveMost` calling convention is very similar to the `cold` calling
376 convention in terms of caller/callee-saved registers, but they are used for
377 different types of function calls. `coldcc` is for function calls that are
378 rarely executed, whereas `preserve_mostcc` function calls are intended to be
379 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
380 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000381
382 This calling convention will be used by a future version of the ObjectiveC
383 runtime and should therefore still be considered experimental at this time.
384 Although this convention was created to optimize certain runtime calls to
385 the ObjectiveC runtime, it is not limited to this runtime and might be used
386 by other runtimes in the future too. The current implementation only
387 supports X86-64, but the intention is to support more architectures in the
388 future.
389"``preserve_allcc``" - The `PreserveAll` calling convention
390 This calling convention attempts to make the code in the caller even less
391 intrusive than the `PreserveMost` calling convention. This calling
392 convention also behaves identical to the `C` calling convention on how
393 arguments and return values are passed, but it uses a different set of
394 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000395 recovering a large register set before and after the call in the caller. If
396 the arguments are passed in callee-saved registers, then they will be
397 preserved by the callee across the call. This doesn't apply for values
398 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000399
400 - On X86-64 the callee preserves all general purpose registers, except for
401 R11. R11 can be used as a scratch register. Furthermore it also preserves
402 all floating-point registers (XMMs/YMMs).
403
404 The idea behind this convention is to support calls to runtime functions
405 that don't need to call out to any other functions.
406
407 This calling convention, like the `PreserveMost` calling convention, will be
408 used by a future version of the ObjectiveC runtime and should be considered
409 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000410"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000411 Clang generates an access function to access C++-style TLS. The access
412 function generally has an entry block, an exit block and an initialization
413 block that is run at the first time. The entry and exit blocks can access
414 a few TLS IR variables, each access will be lowered to a platform-specific
415 sequence.
416
Manman Ren19c7bbe2015-12-04 17:40:13 +0000417 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000418 preserving as many registers as possible (all the registers that are
419 perserved on the fast path, composed of the entry and exit blocks).
420
421 This calling convention behaves identical to the `C` calling convention on
422 how arguments and return values are passed, but it uses a different set of
423 caller/callee-saved registers.
424
425 Given that each platform has its own lowering sequence, hence its own set
426 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000427
428 - On X86-64 the callee preserves all general purpose registers, except for
429 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000430"``swiftcc``" - This calling convention is used for Swift language.
431 - On X86-64 RCX and R8 are available for additional integer returns, and
432 XMM2 and XMM3 are available for additional FP/vector returns.
Sean Silvab084af42012-12-07 10:36:55 +0000433"``cc <n>``" - Numbered convention
434 Any calling convention may be specified by number, allowing
435 target-specific calling conventions to be used. Target specific
436 calling conventions start at 64.
437
438More calling conventions can be added/defined on an as-needed basis, to
439support Pascal conventions or any other well-known target-independent
440convention.
441
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000442.. _visibilitystyles:
443
Sean Silvab084af42012-12-07 10:36:55 +0000444Visibility Styles
445-----------------
446
447All Global Variables and Functions have one of the following visibility
448styles:
449
450"``default``" - Default style
451 On targets that use the ELF object file format, default visibility
452 means that the declaration is visible to other modules and, in
453 shared libraries, means that the declared entity may be overridden.
454 On Darwin, default visibility means that the declaration is visible
455 to other modules. Default visibility corresponds to "external
456 linkage" in the language.
457"``hidden``" - Hidden style
458 Two declarations of an object with hidden visibility refer to the
459 same object if they are in the same shared object. Usually, hidden
460 visibility indicates that the symbol will not be placed into the
461 dynamic symbol table, so no other module (executable or shared
462 library) can reference it directly.
463"``protected``" - Protected style
464 On ELF, protected visibility indicates that the symbol will be
465 placed in the dynamic symbol table, but that references within the
466 defining module will bind to the local symbol. That is, the symbol
467 cannot be overridden by another module.
468
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000469A symbol with ``internal`` or ``private`` linkage must have ``default``
470visibility.
471
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000472.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000473
Nico Rieck7157bb72014-01-14 15:22:47 +0000474DLL Storage Classes
475-------------------
476
477All Global Variables, Functions and Aliases can have one of the following
478DLL storage class:
479
480``dllimport``
481 "``dllimport``" causes the compiler to reference a function or variable via
482 a global pointer to a pointer that is set up by the DLL exporting the
483 symbol. On Microsoft Windows targets, the pointer name is formed by
484 combining ``__imp_`` and the function or variable name.
485``dllexport``
486 "``dllexport``" causes the compiler to provide a global pointer to a pointer
487 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
488 Microsoft Windows targets, the pointer name is formed by combining
489 ``__imp_`` and the function or variable name. Since this storage class
490 exists for defining a dll interface, the compiler, assembler and linker know
491 it is externally referenced and must refrain from deleting the symbol.
492
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000493.. _tls_model:
494
495Thread Local Storage Models
496---------------------------
497
498A variable may be defined as ``thread_local``, which means that it will
499not be shared by threads (each thread will have a separated copy of the
500variable). Not all targets support thread-local variables. Optionally, a
501TLS model may be specified:
502
503``localdynamic``
504 For variables that are only used within the current shared library.
505``initialexec``
506 For variables in modules that will not be loaded dynamically.
507``localexec``
508 For variables defined in the executable and only used within it.
509
510If no explicit model is given, the "general dynamic" model is used.
511
512The models correspond to the ELF TLS models; see `ELF Handling For
513Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
514more information on under which circumstances the different models may
515be used. The target may choose a different TLS model if the specified
516model is not supported, or if a better choice of model can be made.
517
Sean Silva706fba52015-08-06 22:56:24 +0000518A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000519the alias is accessed. It will not have any effect in the aliasee.
520
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000521For platforms without linker support of ELF TLS model, the -femulated-tls
522flag can be used to generate GCC compatible emulated TLS code.
523
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000524.. _namedtypes:
525
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000526Structure Types
527---------------
Sean Silvab084af42012-12-07 10:36:55 +0000528
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000529LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000530types <t_struct>`. Literal types are uniqued structurally, but identified types
531are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000532to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000533
Sean Silva706fba52015-08-06 22:56:24 +0000534An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000535
536.. code-block:: llvm
537
538 %mytype = type { %mytype*, i32 }
539
Sean Silvaa1190322015-08-06 22:56:48 +0000540Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000541literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000542
543.. _globalvars:
544
545Global Variables
546----------------
547
548Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000549instead of run-time.
550
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000551Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000552
553Global variables in other translation units can also be declared, in which
554case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000555
Bob Wilson85b24f22014-06-12 20:40:33 +0000556Either global variable definitions or declarations may have an explicit section
557to be placed in and may have an optional explicit alignment specified.
558
Michael Gottesman006039c2013-01-31 05:48:48 +0000559A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000560the contents of the variable will **never** be modified (enabling better
561optimization, allowing the global data to be placed in the read-only
562section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000563initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000564variable.
565
566LLVM explicitly allows *declarations* of global variables to be marked
567constant, even if the final definition of the global is not. This
568capability can be used to enable slightly better optimization of the
569program, but requires the language definition to guarantee that
570optimizations based on the 'constantness' are valid for the translation
571units that do not include the definition.
572
573As SSA values, global variables define pointer values that are in scope
574(i.e. they dominate) all basic blocks in the program. Global variables
575always define a pointer to their "content" type because they describe a
576region of memory, and all memory objects in LLVM are accessed through
577pointers.
578
579Global variables can be marked with ``unnamed_addr`` which indicates
580that the address is not significant, only the content. Constants marked
581like this can be merged with other constants if they have the same
582initializer. Note that a constant with significant address *can* be
583merged with a ``unnamed_addr`` constant, the result being a constant
584whose address is significant.
585
586A global variable may be declared to reside in a target-specific
587numbered address space. For targets that support them, address spaces
588may affect how optimizations are performed and/or what target
589instructions are used to access the variable. The default address space
590is zero. The address space qualifier must precede any other attributes.
591
592LLVM allows an explicit section to be specified for globals. If the
593target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000594Additionally, the global can placed in a comdat if the target has the necessary
595support.
Sean Silvab084af42012-12-07 10:36:55 +0000596
Michael Gottesmane743a302013-02-04 03:22:00 +0000597By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000598variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000599initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000600true even for variables potentially accessible from outside the
601module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000602``@llvm.used`` or dllexported variables. This assumption may be suppressed
603by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000604
Sean Silvab084af42012-12-07 10:36:55 +0000605An explicit alignment may be specified for a global, which must be a
606power of 2. If not present, or if the alignment is set to zero, the
607alignment of the global is set by the target to whatever it feels
608convenient. If an explicit alignment is specified, the global is forced
609to have exactly that alignment. Targets and optimizers are not allowed
610to over-align the global if the global has an assigned section. In this
611case, the extra alignment could be observable: for example, code could
612assume that the globals are densely packed in their section and try to
613iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000614iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000615
Nico Rieck7157bb72014-01-14 15:22:47 +0000616Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
617
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000618Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000619:ref:`Thread Local Storage Model <tls_model>`.
620
Nico Rieck7157bb72014-01-14 15:22:47 +0000621Syntax::
622
623 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000624 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000625 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000626 [, section "name"] [, comdat [($name)]]
627 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000628
Sean Silvab084af42012-12-07 10:36:55 +0000629For example, the following defines a global in a numbered address space
630with an initializer, section, and alignment:
631
632.. code-block:: llvm
633
634 @G = addrspace(5) constant float 1.0, section "foo", align 4
635
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000636The following example just declares a global variable
637
638.. code-block:: llvm
639
640 @G = external global i32
641
Sean Silvab084af42012-12-07 10:36:55 +0000642The following example defines a thread-local global with the
643``initialexec`` TLS model:
644
645.. code-block:: llvm
646
647 @G = thread_local(initialexec) global i32 0, align 4
648
649.. _functionstructure:
650
651Functions
652---------
653
654LLVM function definitions consist of the "``define``" keyword, an
655optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000656style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
657an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000658an optional ``unnamed_addr`` attribute, a return type, an optional
659:ref:`parameter attribute <paramattrs>` for the return type, a function
660name, a (possibly empty) argument list (each with optional :ref:`parameter
661attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000662an optional section, an optional alignment,
663an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000664an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000665an optional :ref:`prologue <prologuedata>`,
666an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000667an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000668an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000669
670LLVM function declarations consist of the "``declare``" keyword, an
671optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000672style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
673an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000674an optional ``unnamed_addr`` attribute, a return type, an optional
675:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000676name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000677:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
678and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000679
Bill Wendling6822ecb2013-10-27 05:09:12 +0000680A function definition contains a list of basic blocks, forming the CFG (Control
681Flow Graph) for the function. Each basic block may optionally start with a label
682(giving the basic block a symbol table entry), contains a list of instructions,
683and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
684function return). If an explicit label is not provided, a block is assigned an
685implicit numbered label, using the next value from the same counter as used for
686unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
687entry block does not have an explicit label, it will be assigned label "%0",
688then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000689
690The first basic block in a function is special in two ways: it is
691immediately executed on entrance to the function, and it is not allowed
692to have predecessor basic blocks (i.e. there can not be any branches to
693the entry block of a function). Because the block can have no
694predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
695
696LLVM allows an explicit section to be specified for functions. If the
697target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000698Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700An explicit alignment may be specified for a function. If not present,
701or if the alignment is set to zero, the alignment of the function is set
702by the target to whatever it feels convenient. If an explicit alignment
703is specified, the function is forced to have at least that much
704alignment. All alignments must be a power of 2.
705
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000706If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000707be significant and two identical functions can be merged.
708
709Syntax::
710
Nico Rieck7157bb72014-01-14 15:22:47 +0000711 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000712 [cconv] [ret attrs]
713 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000714 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000715 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000716 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000717
Sean Silva706fba52015-08-06 22:56:24 +0000718The argument list is a comma separated sequence of arguments where each
719argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000720
721Syntax::
722
723 <type> [parameter Attrs] [name]
724
725
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000726.. _langref_aliases:
727
Sean Silvab084af42012-12-07 10:36:55 +0000728Aliases
729-------
730
Rafael Espindola64c1e182014-06-03 02:41:57 +0000731Aliases, unlike function or variables, don't create any new data. They
732are just a new symbol and metadata for an existing position.
733
734Aliases have a name and an aliasee that is either a global value or a
735constant expression.
736
Nico Rieck7157bb72014-01-14 15:22:47 +0000737Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000738:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
739<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000740
741Syntax::
742
David Blaikie196582e2015-10-22 01:17:29 +0000743 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000744
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000745The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000746``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000747might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000748
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000749Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000750the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
751to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000752
Rafael Espindola64c1e182014-06-03 02:41:57 +0000753Since aliases are only a second name, some restrictions apply, of which
754some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000755
Rafael Espindola64c1e182014-06-03 02:41:57 +0000756* The expression defining the aliasee must be computable at assembly
757 time. Since it is just a name, no relocations can be used.
758
759* No alias in the expression can be weak as the possibility of the
760 intermediate alias being overridden cannot be represented in an
761 object file.
762
763* No global value in the expression can be a declaration, since that
764 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000765
David Majnemerdad0a642014-06-27 18:19:56 +0000766.. _langref_comdats:
767
768Comdats
769-------
770
771Comdat IR provides access to COFF and ELF object file COMDAT functionality.
772
Sean Silvaa1190322015-08-06 22:56:48 +0000773Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000774specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000775that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000776aliasee computes to, if any.
777
778Comdats have a selection kind to provide input on how the linker should
779choose between keys in two different object files.
780
781Syntax::
782
783 $<Name> = comdat SelectionKind
784
785The selection kind must be one of the following:
786
787``any``
788 The linker may choose any COMDAT key, the choice is arbitrary.
789``exactmatch``
790 The linker may choose any COMDAT key but the sections must contain the
791 same data.
792``largest``
793 The linker will choose the section containing the largest COMDAT key.
794``noduplicates``
795 The linker requires that only section with this COMDAT key exist.
796``samesize``
797 The linker may choose any COMDAT key but the sections must contain the
798 same amount of data.
799
800Note that the Mach-O platform doesn't support COMDATs and ELF only supports
801``any`` as a selection kind.
802
803Here is an example of a COMDAT group where a function will only be selected if
804the COMDAT key's section is the largest:
805
806.. code-block:: llvm
807
808 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000809 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000810
Rafael Espindola83a362c2015-01-06 22:55:16 +0000811 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000812 ret void
813 }
814
Rafael Espindola83a362c2015-01-06 22:55:16 +0000815As a syntactic sugar the ``$name`` can be omitted if the name is the same as
816the global name:
817
818.. code-block:: llvm
819
820 $foo = comdat any
821 @foo = global i32 2, comdat
822
823
David Majnemerdad0a642014-06-27 18:19:56 +0000824In a COFF object file, this will create a COMDAT section with selection kind
825``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
826and another COMDAT section with selection kind
827``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000828section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000829
830There are some restrictions on the properties of the global object.
831It, or an alias to it, must have the same name as the COMDAT group when
832targeting COFF.
833The contents and size of this object may be used during link-time to determine
834which COMDAT groups get selected depending on the selection kind.
835Because the name of the object must match the name of the COMDAT group, the
836linkage of the global object must not be local; local symbols can get renamed
837if a collision occurs in the symbol table.
838
839The combined use of COMDATS and section attributes may yield surprising results.
840For example:
841
842.. code-block:: llvm
843
844 $foo = comdat any
845 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000846 @g1 = global i32 42, section "sec", comdat($foo)
847 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000848
849From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000850with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000851COMDAT groups and COMDATs, at the object file level, are represented by
852sections.
853
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000854Note that certain IR constructs like global variables and functions may
855create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000856COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000857in individual sections (e.g. when `-data-sections` or `-function-sections`
858is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000859
Sean Silvab084af42012-12-07 10:36:55 +0000860.. _namedmetadatastructure:
861
862Named Metadata
863--------------
864
865Named metadata is a collection of metadata. :ref:`Metadata
866nodes <metadata>` (but not metadata strings) are the only valid
867operands for a named metadata.
868
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000869#. Named metadata are represented as a string of characters with the
870 metadata prefix. The rules for metadata names are the same as for
871 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
872 are still valid, which allows any character to be part of a name.
873
Sean Silvab084af42012-12-07 10:36:55 +0000874Syntax::
875
876 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000877 !0 = !{!"zero"}
878 !1 = !{!"one"}
879 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000880 ; A named metadata.
881 !name = !{!0, !1, !2}
882
883.. _paramattrs:
884
885Parameter Attributes
886--------------------
887
888The return type and each parameter of a function type may have a set of
889*parameter attributes* associated with them. Parameter attributes are
890used to communicate additional information about the result or
891parameters of a function. Parameter attributes are considered to be part
892of the function, not of the function type, so functions with different
893parameter attributes can have the same function type.
894
895Parameter attributes are simple keywords that follow the type specified.
896If multiple parameter attributes are needed, they are space separated.
897For example:
898
899.. code-block:: llvm
900
901 declare i32 @printf(i8* noalias nocapture, ...)
902 declare i32 @atoi(i8 zeroext)
903 declare signext i8 @returns_signed_char()
904
905Note that any attributes for the function result (``nounwind``,
906``readonly``) come immediately after the argument list.
907
908Currently, only the following parameter attributes are defined:
909
910``zeroext``
911 This indicates to the code generator that the parameter or return
912 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000913 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000914``signext``
915 This indicates to the code generator that the parameter or return
916 value should be sign-extended to the extent required by the target's
917 ABI (which is usually 32-bits) by the caller (for a parameter) or
918 the callee (for a return value).
919``inreg``
920 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000921 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000922 a function call or return (usually, by putting it in a register as
923 opposed to memory, though some targets use it to distinguish between
924 two different kinds of registers). Use of this attribute is
925 target-specific.
926``byval``
927 This indicates that the pointer parameter should really be passed by
928 value to the function. The attribute implies that a hidden copy of
929 the pointee is made between the caller and the callee, so the callee
930 is unable to modify the value in the caller. This attribute is only
931 valid on LLVM pointer arguments. It is generally used to pass
932 structs and arrays by value, but is also valid on pointers to
933 scalars. The copy is considered to belong to the caller not the
934 callee (for example, ``readonly`` functions should not write to
935 ``byval`` parameters). This is not a valid attribute for return
936 values.
937
938 The byval attribute also supports specifying an alignment with the
939 align attribute. It indicates the alignment of the stack slot to
940 form and the known alignment of the pointer specified to the call
941 site. If the alignment is not specified, then the code generator
942 makes a target-specific assumption.
943
Reid Klecknera534a382013-12-19 02:14:12 +0000944.. _attr_inalloca:
945
946``inalloca``
947
Reid Kleckner60d3a832014-01-16 22:59:24 +0000948 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000949 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000950 be a pointer to stack memory produced by an ``alloca`` instruction.
951 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000952 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000953 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000954
Reid Kleckner436c42e2014-01-17 23:58:17 +0000955 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000956 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000957 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000958 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000959 ``inalloca`` attribute also disables LLVM's implicit lowering of
960 large aggregate return values, which means that frontend authors
961 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000962
Reid Kleckner60d3a832014-01-16 22:59:24 +0000963 When the call site is reached, the argument allocation must have
964 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000965 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000966 space after an argument allocation and before its call site, but it
967 must be cleared off with :ref:`llvm.stackrestore
968 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000969
970 See :doc:`InAlloca` for more information on how to use this
971 attribute.
972
Sean Silvab084af42012-12-07 10:36:55 +0000973``sret``
974 This indicates that the pointer parameter specifies the address of a
975 structure that is the return value of the function in the source
976 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000977 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000978 not to trap and to be properly aligned. This may only be applied to
979 the first parameter. This is not a valid attribute for return
980 values.
Sean Silva1703e702014-04-08 21:06:22 +0000981
Hal Finkelccc70902014-07-22 16:58:55 +0000982``align <n>``
983 This indicates that the pointer value may be assumed by the optimizer to
984 have the specified alignment.
985
986 Note that this attribute has additional semantics when combined with the
987 ``byval`` attribute.
988
Sean Silva1703e702014-04-08 21:06:22 +0000989.. _noalias:
990
Sean Silvab084af42012-12-07 10:36:55 +0000991``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000992 This indicates that objects accessed via pointer values
993 :ref:`based <pointeraliasing>` on the argument or return value are not also
994 accessed, during the execution of the function, via pointer values not
995 *based* on the argument or return value. The attribute on a return value
996 also has additional semantics described below. The caller shares the
997 responsibility with the callee for ensuring that these requirements are met.
998 For further details, please see the discussion of the NoAlias response in
999 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001000
1001 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001002 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001003
1004 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001005 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1006 attribute on return values are stronger than the semantics of the attribute
1007 when used on function arguments. On function return values, the ``noalias``
1008 attribute indicates that the function acts like a system memory allocation
1009 function, returning a pointer to allocated storage disjoint from the
1010 storage for any other object accessible to the caller.
1011
Sean Silvab084af42012-12-07 10:36:55 +00001012``nocapture``
1013 This indicates that the callee does not make any copies of the
1014 pointer that outlive the callee itself. This is not a valid
1015 attribute for return values.
1016
1017.. _nest:
1018
1019``nest``
1020 This indicates that the pointer parameter can be excised using the
1021 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001022 attribute for return values and can only be applied to one parameter.
1023
1024``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001025 This indicates that the function always returns the argument as its return
1026 value. This is an optimization hint to the code generator when generating
1027 the caller, allowing tail call optimization and omission of register saves
1028 and restores in some cases; it is not checked or enforced when generating
1029 the callee. The parameter and the function return type must be valid
1030 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1031 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001032
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001033``nonnull``
1034 This indicates that the parameter or return pointer is not null. This
1035 attribute may only be applied to pointer typed parameters. This is not
1036 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001037 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001038 is non-null.
1039
Hal Finkelb0407ba2014-07-18 15:51:28 +00001040``dereferenceable(<n>)``
1041 This indicates that the parameter or return pointer is dereferenceable. This
1042 attribute may only be applied to pointer typed parameters. A pointer that
1043 is dereferenceable can be loaded from speculatively without a risk of
1044 trapping. The number of bytes known to be dereferenceable must be provided
1045 in parentheses. It is legal for the number of bytes to be less than the
1046 size of the pointee type. The ``nonnull`` attribute does not imply
1047 dereferenceability (consider a pointer to one element past the end of an
1048 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1049 ``addrspace(0)`` (which is the default address space).
1050
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001051``dereferenceable_or_null(<n>)``
1052 This indicates that the parameter or return value isn't both
1053 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001054 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001055 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1056 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1057 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1058 and in other address spaces ``dereferenceable_or_null(<n>)``
1059 implies that a pointer is at least one of ``dereferenceable(<n>)``
1060 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001061 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001062 pointer typed parameters.
1063
Manman Renf46262e2016-03-29 17:37:21 +00001064``swiftself``
1065 This indicates that the parameter is the self/context parameter. This is not
1066 a valid attribute for return values and can only be applied to one
1067 parameter.
1068
Manman Ren9bfd0d02016-04-01 21:41:15 +00001069``swifterror``
1070 This attribute is motivated to model and optimize Swift error handling. It
1071 can be applied to a parameter with pointer to pointer type or a
1072 pointer-sized alloca. At the call site, the actual argument that corresponds
1073 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca. A
1074 ``swifterror`` value (either the parameter or the alloca) can only be loaded
1075 and stored from, or used as a ``swifterror`` argument. This is not a valid
1076 attribute for return values and can only be applied to one parameter.
1077
1078 These constraints allow the calling convention to optimize access to
1079 ``swifterror`` variables by associating them with a specific register at
1080 call boundaries rather than placing them in memory. Since this does change
1081 the calling convention, a function which uses the ``swifterror`` attribute
1082 on a parameter is not ABI-compatible with one which does not.
1083
1084 These constraints also allow LLVM to assume that a ``swifterror`` argument
1085 does not alias any other memory visible within a function and that a
1086 ``swifterror`` alloca passed as an argument does not escape.
1087
Sean Silvab084af42012-12-07 10:36:55 +00001088.. _gc:
1089
Philip Reamesf80bbff2015-02-25 23:45:20 +00001090Garbage Collector Strategy Names
1091--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001092
Philip Reamesf80bbff2015-02-25 23:45:20 +00001093Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001094string:
1095
1096.. code-block:: llvm
1097
1098 define void @f() gc "name" { ... }
1099
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001100The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001101<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001102strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001103named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001104garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001105which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001106
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001107.. _prefixdata:
1108
1109Prefix Data
1110-----------
1111
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001112Prefix data is data associated with a function which the code
1113generator will emit immediately before the function's entrypoint.
1114The purpose of this feature is to allow frontends to associate
1115language-specific runtime metadata with specific functions and make it
1116available through the function pointer while still allowing the
1117function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001118
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119To access the data for a given function, a program may bitcast the
1120function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001121index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001122the prefix data. For instance, take the example of a function annotated
1123with a single ``i32``,
1124
1125.. code-block:: llvm
1126
1127 define void @f() prefix i32 123 { ... }
1128
1129The prefix data can be referenced as,
1130
1131.. code-block:: llvm
1132
David Blaikie16a97eb2015-03-04 22:02:58 +00001133 %0 = bitcast void* () @f to i32*
1134 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001135 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001136
1137Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001138of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001139beginning of the prefix data is aligned. This means that if the size
1140of the prefix data is not a multiple of the alignment size, the
1141function's entrypoint will not be aligned. If alignment of the
1142function's entrypoint is desired, padding must be added to the prefix
1143data.
1144
Sean Silvaa1190322015-08-06 22:56:48 +00001145A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001146to the ``available_externally`` linkage in that the data may be used by the
1147optimizers but will not be emitted in the object file.
1148
1149.. _prologuedata:
1150
1151Prologue Data
1152-------------
1153
1154The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1155be inserted prior to the function body. This can be used for enabling
1156function hot-patching and instrumentation.
1157
1158To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001159have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001160bytes which decode to a sequence of machine instructions, valid for the
1161module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001162the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001163the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001164definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001165makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001166
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001167A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001168which encodes the ``nop`` instruction:
1169
1170.. code-block:: llvm
1171
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001172 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001173
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001174Generally prologue data can be formed by encoding a relative branch instruction
1175which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001176x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1177
1178.. code-block:: llvm
1179
1180 %0 = type <{ i8, i8, i8* }>
1181
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001182 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001183
Sean Silvaa1190322015-08-06 22:56:48 +00001184A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001185to the ``available_externally`` linkage in that the data may be used by the
1186optimizers but will not be emitted in the object file.
1187
David Majnemer7fddecc2015-06-17 20:52:32 +00001188.. _personalityfn:
1189
1190Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001191--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001192
1193The ``personality`` attribute permits functions to specify what function
1194to use for exception handling.
1195
Bill Wendling63b88192013-02-06 06:52:58 +00001196.. _attrgrp:
1197
1198Attribute Groups
1199----------------
1200
1201Attribute groups are groups of attributes that are referenced by objects within
1202the IR. They are important for keeping ``.ll`` files readable, because a lot of
1203functions will use the same set of attributes. In the degenerative case of a
1204``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1205group will capture the important command line flags used to build that file.
1206
1207An attribute group is a module-level object. To use an attribute group, an
1208object references the attribute group's ID (e.g. ``#37``). An object may refer
1209to more than one attribute group. In that situation, the attributes from the
1210different groups are merged.
1211
1212Here is an example of attribute groups for a function that should always be
1213inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1214
1215.. code-block:: llvm
1216
1217 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001218 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001219
1220 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001221 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001222
1223 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1224 define void @f() #0 #1 { ... }
1225
Sean Silvab084af42012-12-07 10:36:55 +00001226.. _fnattrs:
1227
1228Function Attributes
1229-------------------
1230
1231Function attributes are set to communicate additional information about
1232a function. Function attributes are considered to be part of the
1233function, not of the function type, so functions with different function
1234attributes can have the same function type.
1235
1236Function attributes are simple keywords that follow the type specified.
1237If multiple attributes are needed, they are space separated. For
1238example:
1239
1240.. code-block:: llvm
1241
1242 define void @f() noinline { ... }
1243 define void @f() alwaysinline { ... }
1244 define void @f() alwaysinline optsize { ... }
1245 define void @f() optsize { ... }
1246
Sean Silvab084af42012-12-07 10:36:55 +00001247``alignstack(<n>)``
1248 This attribute indicates that, when emitting the prologue and
1249 epilogue, the backend should forcibly align the stack pointer.
1250 Specify the desired alignment, which must be a power of two, in
1251 parentheses.
1252``alwaysinline``
1253 This attribute indicates that the inliner should attempt to inline
1254 this function into callers whenever possible, ignoring any active
1255 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001256``builtin``
1257 This indicates that the callee function at a call site should be
1258 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001259 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001260 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001261 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001262``cold``
1263 This attribute indicates that this function is rarely called. When
1264 computing edge weights, basic blocks post-dominated by a cold
1265 function call are also considered to be cold; and, thus, given low
1266 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001267``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001268 In some parallel execution models, there exist operations that cannot be
1269 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001270 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001271
Justin Lebar58535b12016-02-17 17:46:41 +00001272 The ``convergent`` attribute may appear on functions or call/invoke
1273 instructions. When it appears on a function, it indicates that calls to
1274 this function should not be made control-dependent on additional values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001275 For example, the intrinsic ``llvm.cuda.syncthreads`` is ``convergent``, so
1276 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001277 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001278
Justin Lebar58535b12016-02-17 17:46:41 +00001279 When it appears on a call/invoke, the ``convergent`` attribute indicates
1280 that we should treat the call as though we're calling a convergent
1281 function. This is particularly useful on indirect calls; without this we
1282 may treat such calls as though the target is non-convergent.
1283
1284 The optimizer may remove the ``convergent`` attribute on functions when it
1285 can prove that the function does not execute any convergent operations.
1286 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1287 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001288``inaccessiblememonly``
1289 This attribute indicates that the function may only access memory that
1290 is not accessible by the module being compiled. This is a weaker form
1291 of ``readnone``.
1292``inaccessiblemem_or_argmemonly``
1293 This attribute indicates that the function may only access memory that is
1294 either not accessible by the module being compiled, or is pointed to
1295 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001296``inlinehint``
1297 This attribute indicates that the source code contained a hint that
1298 inlining this function is desirable (such as the "inline" keyword in
1299 C/C++). It is just a hint; it imposes no requirements on the
1300 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001301``jumptable``
1302 This attribute indicates that the function should be added to a
1303 jump-instruction table at code-generation time, and that all address-taken
1304 references to this function should be replaced with a reference to the
1305 appropriate jump-instruction-table function pointer. Note that this creates
1306 a new pointer for the original function, which means that code that depends
1307 on function-pointer identity can break. So, any function annotated with
1308 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001309``minsize``
1310 This attribute suggests that optimization passes and code generator
1311 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001312 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001313 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001314``naked``
1315 This attribute disables prologue / epilogue emission for the
1316 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001317``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001318 This indicates that the callee function at a call site is not recognized as
1319 a built-in function. LLVM will retain the original call and not replace it
1320 with equivalent code based on the semantics of the built-in function, unless
1321 the call site uses the ``builtin`` attribute. This is valid at call sites
1322 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001323``noduplicate``
1324 This attribute indicates that calls to the function cannot be
1325 duplicated. A call to a ``noduplicate`` function may be moved
1326 within its parent function, but may not be duplicated within
1327 its parent function.
1328
1329 A function containing a ``noduplicate`` call may still
1330 be an inlining candidate, provided that the call is not
1331 duplicated by inlining. That implies that the function has
1332 internal linkage and only has one call site, so the original
1333 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001334``noimplicitfloat``
1335 This attributes disables implicit floating point instructions.
1336``noinline``
1337 This attribute indicates that the inliner should never inline this
1338 function in any situation. This attribute may not be used together
1339 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001340``nonlazybind``
1341 This attribute suppresses lazy symbol binding for the function. This
1342 may make calls to the function faster, at the cost of extra program
1343 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001344``noredzone``
1345 This attribute indicates that the code generator should not use a
1346 red zone, even if the target-specific ABI normally permits it.
1347``noreturn``
1348 This function attribute indicates that the function never returns
1349 normally. This produces undefined behavior at runtime if the
1350 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001351``norecurse``
1352 This function attribute indicates that the function does not call itself
1353 either directly or indirectly down any possible call path. This produces
1354 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001355``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001356 This function attribute indicates that the function never raises an
1357 exception. If the function does raise an exception, its runtime
1358 behavior is undefined. However, functions marked nounwind may still
1359 trap or generate asynchronous exceptions. Exception handling schemes
1360 that are recognized by LLVM to handle asynchronous exceptions, such
1361 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001362``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001363 This function attribute indicates that most optimization passes will skip
1364 this function, with the exception of interprocedural optimization passes.
1365 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001366 This attribute cannot be used together with the ``alwaysinline``
1367 attribute; this attribute is also incompatible
1368 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001369
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001370 This attribute requires the ``noinline`` attribute to be specified on
1371 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001372 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001373 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001374``optsize``
1375 This attribute suggests that optimization passes and code generator
1376 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001377 and otherwise do optimizations specifically to reduce code size as
1378 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001379``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001380 On a function, this attribute indicates that the function computes its
1381 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001382 without dereferencing any pointer arguments or otherwise accessing
1383 any mutable state (e.g. memory, control registers, etc) visible to
1384 caller functions. It does not write through any pointer arguments
1385 (including ``byval`` arguments) and never changes any state visible
1386 to callers. This means that it cannot unwind exceptions by calling
1387 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001388
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001389 On an argument, this attribute indicates that the function does not
1390 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001391 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001392``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001393 On a function, this attribute indicates that the function does not write
1394 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001395 modify any state (e.g. memory, control registers, etc) visible to
1396 caller functions. It may dereference pointer arguments and read
1397 state that may be set in the caller. A readonly function always
1398 returns the same value (or unwinds an exception identically) when
1399 called with the same set of arguments and global state. It cannot
1400 unwind an exception by calling the ``C++`` exception throwing
1401 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001402
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001403 On an argument, this attribute indicates that the function does not write
1404 through this pointer argument, even though it may write to the memory that
1405 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001406``argmemonly``
1407 This attribute indicates that the only memory accesses inside function are
1408 loads and stores from objects pointed to by its pointer-typed arguments,
1409 with arbitrary offsets. Or in other words, all memory operations in the
1410 function can refer to memory only using pointers based on its function
1411 arguments.
1412 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1413 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001414``returns_twice``
1415 This attribute indicates that this function can return twice. The C
1416 ``setjmp`` is an example of such a function. The compiler disables
1417 some optimizations (like tail calls) in the caller of these
1418 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001419``safestack``
1420 This attribute indicates that
1421 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1422 protection is enabled for this function.
1423
1424 If a function that has a ``safestack`` attribute is inlined into a
1425 function that doesn't have a ``safestack`` attribute or which has an
1426 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1427 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001428``sanitize_address``
1429 This attribute indicates that AddressSanitizer checks
1430 (dynamic address safety analysis) are enabled for this function.
1431``sanitize_memory``
1432 This attribute indicates that MemorySanitizer checks (dynamic detection
1433 of accesses to uninitialized memory) are enabled for this function.
1434``sanitize_thread``
1435 This attribute indicates that ThreadSanitizer checks
1436 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001437``ssp``
1438 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001439 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001440 placed on the stack before the local variables that's checked upon
1441 return from the function to see if it has been overwritten. A
1442 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001443 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001444
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001445 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1446 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1447 - Calls to alloca() with variable sizes or constant sizes greater than
1448 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001449
Josh Magee24c7f062014-02-01 01:36:16 +00001450 Variables that are identified as requiring a protector will be arranged
1451 on the stack such that they are adjacent to the stack protector guard.
1452
Sean Silvab084af42012-12-07 10:36:55 +00001453 If a function that has an ``ssp`` attribute is inlined into a
1454 function that doesn't have an ``ssp`` attribute, then the resulting
1455 function will have an ``ssp`` attribute.
1456``sspreq``
1457 This attribute indicates that the function should *always* emit a
1458 stack smashing protector. This overrides the ``ssp`` function
1459 attribute.
1460
Josh Magee24c7f062014-02-01 01:36:16 +00001461 Variables that are identified as requiring a protector will be arranged
1462 on the stack such that they are adjacent to the stack protector guard.
1463 The specific layout rules are:
1464
1465 #. Large arrays and structures containing large arrays
1466 (``>= ssp-buffer-size``) are closest to the stack protector.
1467 #. Small arrays and structures containing small arrays
1468 (``< ssp-buffer-size``) are 2nd closest to the protector.
1469 #. Variables that have had their address taken are 3rd closest to the
1470 protector.
1471
Sean Silvab084af42012-12-07 10:36:55 +00001472 If a function that has an ``sspreq`` attribute is inlined into a
1473 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001474 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1475 an ``sspreq`` attribute.
1476``sspstrong``
1477 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001478 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001479 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001480 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001481
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001482 - Arrays of any size and type
1483 - Aggregates containing an array of any size and type.
1484 - Calls to alloca().
1485 - Local variables that have had their address taken.
1486
Josh Magee24c7f062014-02-01 01:36:16 +00001487 Variables that are identified as requiring a protector will be arranged
1488 on the stack such that they are adjacent to the stack protector guard.
1489 The specific layout rules are:
1490
1491 #. Large arrays and structures containing large arrays
1492 (``>= ssp-buffer-size``) are closest to the stack protector.
1493 #. Small arrays and structures containing small arrays
1494 (``< ssp-buffer-size``) are 2nd closest to the protector.
1495 #. Variables that have had their address taken are 3rd closest to the
1496 protector.
1497
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001498 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001499
1500 If a function that has an ``sspstrong`` attribute is inlined into a
1501 function that doesn't have an ``sspstrong`` attribute, then the
1502 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001503``"thunk"``
1504 This attribute indicates that the function will delegate to some other
1505 function with a tail call. The prototype of a thunk should not be used for
1506 optimization purposes. The caller is expected to cast the thunk prototype to
1507 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001508``uwtable``
1509 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001510 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001511 show that no exceptions passes by it. This is normally the case for
1512 the ELF x86-64 abi, but it can be disabled for some compilation
1513 units.
Sean Silvab084af42012-12-07 10:36:55 +00001514
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001515
1516.. _opbundles:
1517
1518Operand Bundles
1519---------------
1520
1521Note: operand bundles are a work in progress, and they should be
1522considered experimental at this time.
1523
1524Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001525with certain LLVM instructions (currently only ``call`` s and
1526``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001527incorrect and will change program semantics.
1528
1529Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001530
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001531 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001532 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1533 bundle operand ::= SSA value
1534 tag ::= string constant
1535
1536Operand bundles are **not** part of a function's signature, and a
1537given function may be called from multiple places with different kinds
1538of operand bundles. This reflects the fact that the operand bundles
1539are conceptually a part of the ``call`` (or ``invoke``), not the
1540callee being dispatched to.
1541
1542Operand bundles are a generic mechanism intended to support
1543runtime-introspection-like functionality for managed languages. While
1544the exact semantics of an operand bundle depend on the bundle tag,
1545there are certain limitations to how much the presence of an operand
1546bundle can influence the semantics of a program. These restrictions
1547are described as the semantics of an "unknown" operand bundle. As
1548long as the behavior of an operand bundle is describable within these
1549restrictions, LLVM does not need to have special knowledge of the
1550operand bundle to not miscompile programs containing it.
1551
David Majnemer34cacb42015-10-22 01:46:38 +00001552- The bundle operands for an unknown operand bundle escape in unknown
1553 ways before control is transferred to the callee or invokee.
1554- Calls and invokes with operand bundles have unknown read / write
1555 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001556 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001557 callsite specific attributes.
1558- An operand bundle at a call site cannot change the implementation
1559 of the called function. Inter-procedural optimizations work as
1560 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001561
Sanjoy Dascdafd842015-11-11 21:38:02 +00001562More specific types of operand bundles are described below.
1563
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001564.. _deopt_opbundles:
1565
Sanjoy Dascdafd842015-11-11 21:38:02 +00001566Deoptimization Operand Bundles
1567^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1568
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001569Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001570operand bundle tag. These operand bundles represent an alternate
1571"safe" continuation for the call site they're attached to, and can be
1572used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001573specified call site. There can be at most one ``"deopt"`` operand
1574bundle attached to a call site. Exact details of deoptimization is
1575out of scope for the language reference, but it usually involves
1576rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001577
1578From the compiler's perspective, deoptimization operand bundles make
1579the call sites they're attached to at least ``readonly``. They read
1580through all of their pointer typed operands (even if they're not
1581otherwise escaped) and the entire visible heap. Deoptimization
1582operand bundles do not capture their operands except during
1583deoptimization, in which case control will not be returned to the
1584compiled frame.
1585
Sanjoy Das2d161452015-11-18 06:23:38 +00001586The inliner knows how to inline through calls that have deoptimization
1587operand bundles. Just like inlining through a normal call site
1588involves composing the normal and exceptional continuations, inlining
1589through a call site with a deoptimization operand bundle needs to
1590appropriately compose the "safe" deoptimization continuation. The
1591inliner does this by prepending the parent's deoptimization
1592continuation to every deoptimization continuation in the inlined body.
1593E.g. inlining ``@f`` into ``@g`` in the following example
1594
1595.. code-block:: llvm
1596
1597 define void @f() {
1598 call void @x() ;; no deopt state
1599 call void @y() [ "deopt"(i32 10) ]
1600 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1601 ret void
1602 }
1603
1604 define void @g() {
1605 call void @f() [ "deopt"(i32 20) ]
1606 ret void
1607 }
1608
1609will result in
1610
1611.. code-block:: llvm
1612
1613 define void @g() {
1614 call void @x() ;; still no deopt state
1615 call void @y() [ "deopt"(i32 20, i32 10) ]
1616 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1617 ret void
1618 }
1619
1620It is the frontend's responsibility to structure or encode the
1621deoptimization state in a way that syntactically prepending the
1622caller's deoptimization state to the callee's deoptimization state is
1623semantically equivalent to composing the caller's deoptimization
1624continuation after the callee's deoptimization continuation.
1625
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001626.. _ob_funclet:
1627
David Majnemer3bb88c02015-12-15 21:27:27 +00001628Funclet Operand Bundles
1629^^^^^^^^^^^^^^^^^^^^^^^
1630
1631Funclet operand bundles are characterized by the ``"funclet"``
1632operand bundle tag. These operand bundles indicate that a call site
1633is within a particular funclet. There can be at most one
1634``"funclet"`` operand bundle attached to a call site and it must have
1635exactly one bundle operand.
1636
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001637If any funclet EH pads have been "entered" but not "exited" (per the
1638`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1639it is undefined behavior to execute a ``call`` or ``invoke`` which:
1640
1641* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1642 intrinsic, or
1643* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1644 not-yet-exited funclet EH pad.
1645
1646Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1647executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1648
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001649GC Transition Operand Bundles
1650^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1651
1652GC transition operand bundles are characterized by the
1653``"gc-transition"`` operand bundle tag. These operand bundles mark a
1654call as a transition between a function with one GC strategy to a
1655function with a different GC strategy. If coordinating the transition
1656between GC strategies requires additional code generation at the call
1657site, these bundles may contain any values that are needed by the
1658generated code. For more details, see :ref:`GC Transitions
1659<gc_transition_args>`.
1660
Sean Silvab084af42012-12-07 10:36:55 +00001661.. _moduleasm:
1662
1663Module-Level Inline Assembly
1664----------------------------
1665
1666Modules may contain "module-level inline asm" blocks, which corresponds
1667to the GCC "file scope inline asm" blocks. These blocks are internally
1668concatenated by LLVM and treated as a single unit, but may be separated
1669in the ``.ll`` file if desired. The syntax is very simple:
1670
1671.. code-block:: llvm
1672
1673 module asm "inline asm code goes here"
1674 module asm "more can go here"
1675
1676The strings can contain any character by escaping non-printable
1677characters. The escape sequence used is simply "\\xx" where "xx" is the
1678two digit hex code for the number.
1679
James Y Knightbc832ed2015-07-08 18:08:36 +00001680Note that the assembly string *must* be parseable by LLVM's integrated assembler
1681(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001682
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001683.. _langref_datalayout:
1684
Sean Silvab084af42012-12-07 10:36:55 +00001685Data Layout
1686-----------
1687
1688A module may specify a target specific data layout string that specifies
1689how data is to be laid out in memory. The syntax for the data layout is
1690simply:
1691
1692.. code-block:: llvm
1693
1694 target datalayout = "layout specification"
1695
1696The *layout specification* consists of a list of specifications
1697separated by the minus sign character ('-'). Each specification starts
1698with a letter and may include other information after the letter to
1699define some aspect of the data layout. The specifications accepted are
1700as follows:
1701
1702``E``
1703 Specifies that the target lays out data in big-endian form. That is,
1704 the bits with the most significance have the lowest address
1705 location.
1706``e``
1707 Specifies that the target lays out data in little-endian form. That
1708 is, the bits with the least significance have the lowest address
1709 location.
1710``S<size>``
1711 Specifies the natural alignment of the stack in bits. Alignment
1712 promotion of stack variables is limited to the natural stack
1713 alignment to avoid dynamic stack realignment. The stack alignment
1714 must be a multiple of 8-bits. If omitted, the natural stack
1715 alignment defaults to "unspecified", which does not prevent any
1716 alignment promotions.
1717``p[n]:<size>:<abi>:<pref>``
1718 This specifies the *size* of a pointer and its ``<abi>`` and
1719 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001720 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001721 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001722 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001723``i<size>:<abi>:<pref>``
1724 This specifies the alignment for an integer type of a given bit
1725 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1726``v<size>:<abi>:<pref>``
1727 This specifies the alignment for a vector type of a given bit
1728 ``<size>``.
1729``f<size>:<abi>:<pref>``
1730 This specifies the alignment for a floating point type of a given bit
1731 ``<size>``. Only values of ``<size>`` that are supported by the target
1732 will work. 32 (float) and 64 (double) are supported on all targets; 80
1733 or 128 (different flavors of long double) are also supported on some
1734 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001735``a:<abi>:<pref>``
1736 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001737``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001738 If present, specifies that llvm names are mangled in the output. The
1739 options are
1740
1741 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1742 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1743 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1744 symbols get a ``_`` prefix.
1745 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1746 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001747 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1748 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001749``n<size1>:<size2>:<size3>...``
1750 This specifies a set of native integer widths for the target CPU in
1751 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1752 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1753 this set are considered to support most general arithmetic operations
1754 efficiently.
1755
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001756On every specification that takes a ``<abi>:<pref>``, specifying the
1757``<pref>`` alignment is optional. If omitted, the preceding ``:``
1758should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1759
Sean Silvab084af42012-12-07 10:36:55 +00001760When constructing the data layout for a given target, LLVM starts with a
1761default set of specifications which are then (possibly) overridden by
1762the specifications in the ``datalayout`` keyword. The default
1763specifications are given in this list:
1764
1765- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001766- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1767- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1768 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001769- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001770- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1771- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1772- ``i16:16:16`` - i16 is 16-bit aligned
1773- ``i32:32:32`` - i32 is 32-bit aligned
1774- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1775 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001776- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001777- ``f32:32:32`` - float is 32-bit aligned
1778- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001779- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001780- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1781- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001782- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001783
1784When LLVM is determining the alignment for a given type, it uses the
1785following rules:
1786
1787#. If the type sought is an exact match for one of the specifications,
1788 that specification is used.
1789#. If no match is found, and the type sought is an integer type, then
1790 the smallest integer type that is larger than the bitwidth of the
1791 sought type is used. If none of the specifications are larger than
1792 the bitwidth then the largest integer type is used. For example,
1793 given the default specifications above, the i7 type will use the
1794 alignment of i8 (next largest) while both i65 and i256 will use the
1795 alignment of i64 (largest specified).
1796#. If no match is found, and the type sought is a vector type, then the
1797 largest vector type that is smaller than the sought vector type will
1798 be used as a fall back. This happens because <128 x double> can be
1799 implemented in terms of 64 <2 x double>, for example.
1800
1801The function of the data layout string may not be what you expect.
1802Notably, this is not a specification from the frontend of what alignment
1803the code generator should use.
1804
1805Instead, if specified, the target data layout is required to match what
1806the ultimate *code generator* expects. This string is used by the
1807mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001808what the ultimate code generator uses. There is no way to generate IR
1809that does not embed this target-specific detail into the IR. If you
1810don't specify the string, the default specifications will be used to
1811generate a Data Layout and the optimization phases will operate
1812accordingly and introduce target specificity into the IR with respect to
1813these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001814
Bill Wendling5cc90842013-10-18 23:41:25 +00001815.. _langref_triple:
1816
1817Target Triple
1818-------------
1819
1820A module may specify a target triple string that describes the target
1821host. The syntax for the target triple is simply:
1822
1823.. code-block:: llvm
1824
1825 target triple = "x86_64-apple-macosx10.7.0"
1826
1827The *target triple* string consists of a series of identifiers delimited
1828by the minus sign character ('-'). The canonical forms are:
1829
1830::
1831
1832 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1833 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1834
1835This information is passed along to the backend so that it generates
1836code for the proper architecture. It's possible to override this on the
1837command line with the ``-mtriple`` command line option.
1838
Sean Silvab084af42012-12-07 10:36:55 +00001839.. _pointeraliasing:
1840
1841Pointer Aliasing Rules
1842----------------------
1843
1844Any memory access must be done through a pointer value associated with
1845an address range of the memory access, otherwise the behavior is
1846undefined. Pointer values are associated with address ranges according
1847to the following rules:
1848
1849- A pointer value is associated with the addresses associated with any
1850 value it is *based* on.
1851- An address of a global variable is associated with the address range
1852 of the variable's storage.
1853- The result value of an allocation instruction is associated with the
1854 address range of the allocated storage.
1855- A null pointer in the default address-space is associated with no
1856 address.
1857- An integer constant other than zero or a pointer value returned from
1858 a function not defined within LLVM may be associated with address
1859 ranges allocated through mechanisms other than those provided by
1860 LLVM. Such ranges shall not overlap with any ranges of addresses
1861 allocated by mechanisms provided by LLVM.
1862
1863A pointer value is *based* on another pointer value according to the
1864following rules:
1865
1866- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001867 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001868- The result value of a ``bitcast`` is *based* on the operand of the
1869 ``bitcast``.
1870- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1871 values that contribute (directly or indirectly) to the computation of
1872 the pointer's value.
1873- The "*based* on" relationship is transitive.
1874
1875Note that this definition of *"based"* is intentionally similar to the
1876definition of *"based"* in C99, though it is slightly weaker.
1877
1878LLVM IR does not associate types with memory. The result type of a
1879``load`` merely indicates the size and alignment of the memory from
1880which to load, as well as the interpretation of the value. The first
1881operand type of a ``store`` similarly only indicates the size and
1882alignment of the store.
1883
1884Consequently, type-based alias analysis, aka TBAA, aka
1885``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1886:ref:`Metadata <metadata>` may be used to encode additional information
1887which specialized optimization passes may use to implement type-based
1888alias analysis.
1889
1890.. _volatile:
1891
1892Volatile Memory Accesses
1893------------------------
1894
1895Certain memory accesses, such as :ref:`load <i_load>`'s,
1896:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1897marked ``volatile``. The optimizers must not change the number of
1898volatile operations or change their order of execution relative to other
1899volatile operations. The optimizers *may* change the order of volatile
1900operations relative to non-volatile operations. This is not Java's
1901"volatile" and has no cross-thread synchronization behavior.
1902
Andrew Trick89fc5a62013-01-30 21:19:35 +00001903IR-level volatile loads and stores cannot safely be optimized into
1904llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1905flagged volatile. Likewise, the backend should never split or merge
1906target-legal volatile load/store instructions.
1907
Andrew Trick7e6f9282013-01-31 00:49:39 +00001908.. admonition:: Rationale
1909
1910 Platforms may rely on volatile loads and stores of natively supported
1911 data width to be executed as single instruction. For example, in C
1912 this holds for an l-value of volatile primitive type with native
1913 hardware support, but not necessarily for aggregate types. The
1914 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001915 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001916 do not violate the frontend's contract with the language.
1917
Sean Silvab084af42012-12-07 10:36:55 +00001918.. _memmodel:
1919
1920Memory Model for Concurrent Operations
1921--------------------------------------
1922
1923The LLVM IR does not define any way to start parallel threads of
1924execution or to register signal handlers. Nonetheless, there are
1925platform-specific ways to create them, and we define LLVM IR's behavior
1926in their presence. This model is inspired by the C++0x memory model.
1927
1928For a more informal introduction to this model, see the :doc:`Atomics`.
1929
1930We define a *happens-before* partial order as the least partial order
1931that
1932
1933- Is a superset of single-thread program order, and
1934- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1935 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1936 techniques, like pthread locks, thread creation, thread joining,
1937 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1938 Constraints <ordering>`).
1939
1940Note that program order does not introduce *happens-before* edges
1941between a thread and signals executing inside that thread.
1942
1943Every (defined) read operation (load instructions, memcpy, atomic
1944loads/read-modify-writes, etc.) R reads a series of bytes written by
1945(defined) write operations (store instructions, atomic
1946stores/read-modify-writes, memcpy, etc.). For the purposes of this
1947section, initialized globals are considered to have a write of the
1948initializer which is atomic and happens before any other read or write
1949of the memory in question. For each byte of a read R, R\ :sub:`byte`
1950may see any write to the same byte, except:
1951
1952- If write\ :sub:`1` happens before write\ :sub:`2`, and
1953 write\ :sub:`2` happens before R\ :sub:`byte`, then
1954 R\ :sub:`byte` does not see write\ :sub:`1`.
1955- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1956 R\ :sub:`byte` does not see write\ :sub:`3`.
1957
1958Given that definition, R\ :sub:`byte` is defined as follows:
1959
1960- If R is volatile, the result is target-dependent. (Volatile is
1961 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001962 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001963 like normal memory. It does not generally provide cross-thread
1964 synchronization.)
1965- Otherwise, if there is no write to the same byte that happens before
1966 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1967- Otherwise, if R\ :sub:`byte` may see exactly one write,
1968 R\ :sub:`byte` returns the value written by that write.
1969- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1970 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1971 Memory Ordering Constraints <ordering>` section for additional
1972 constraints on how the choice is made.
1973- Otherwise R\ :sub:`byte` returns ``undef``.
1974
1975R returns the value composed of the series of bytes it read. This
1976implies that some bytes within the value may be ``undef`` **without**
1977the entire value being ``undef``. Note that this only defines the
1978semantics of the operation; it doesn't mean that targets will emit more
1979than one instruction to read the series of bytes.
1980
1981Note that in cases where none of the atomic intrinsics are used, this
1982model places only one restriction on IR transformations on top of what
1983is required for single-threaded execution: introducing a store to a byte
1984which might not otherwise be stored is not allowed in general.
1985(Specifically, in the case where another thread might write to and read
1986from an address, introducing a store can change a load that may see
1987exactly one write into a load that may see multiple writes.)
1988
1989.. _ordering:
1990
1991Atomic Memory Ordering Constraints
1992----------------------------------
1993
1994Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1995:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1996:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001997ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001998the same address they *synchronize with*. These semantics are borrowed
1999from Java and C++0x, but are somewhat more colloquial. If these
2000descriptions aren't precise enough, check those specs (see spec
2001references in the :doc:`atomics guide <Atomics>`).
2002:ref:`fence <i_fence>` instructions treat these orderings somewhat
2003differently since they don't take an address. See that instruction's
2004documentation for details.
2005
2006For a simpler introduction to the ordering constraints, see the
2007:doc:`Atomics`.
2008
2009``unordered``
2010 The set of values that can be read is governed by the happens-before
2011 partial order. A value cannot be read unless some operation wrote
2012 it. This is intended to provide a guarantee strong enough to model
2013 Java's non-volatile shared variables. This ordering cannot be
2014 specified for read-modify-write operations; it is not strong enough
2015 to make them atomic in any interesting way.
2016``monotonic``
2017 In addition to the guarantees of ``unordered``, there is a single
2018 total order for modifications by ``monotonic`` operations on each
2019 address. All modification orders must be compatible with the
2020 happens-before order. There is no guarantee that the modification
2021 orders can be combined to a global total order for the whole program
2022 (and this often will not be possible). The read in an atomic
2023 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2024 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2025 order immediately before the value it writes. If one atomic read
2026 happens before another atomic read of the same address, the later
2027 read must see the same value or a later value in the address's
2028 modification order. This disallows reordering of ``monotonic`` (or
2029 stronger) operations on the same address. If an address is written
2030 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2031 read that address repeatedly, the other threads must eventually see
2032 the write. This corresponds to the C++0x/C1x
2033 ``memory_order_relaxed``.
2034``acquire``
2035 In addition to the guarantees of ``monotonic``, a
2036 *synchronizes-with* edge may be formed with a ``release`` operation.
2037 This is intended to model C++'s ``memory_order_acquire``.
2038``release``
2039 In addition to the guarantees of ``monotonic``, if this operation
2040 writes a value which is subsequently read by an ``acquire``
2041 operation, it *synchronizes-with* that operation. (This isn't a
2042 complete description; see the C++0x definition of a release
2043 sequence.) This corresponds to the C++0x/C1x
2044 ``memory_order_release``.
2045``acq_rel`` (acquire+release)
2046 Acts as both an ``acquire`` and ``release`` operation on its
2047 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2048``seq_cst`` (sequentially consistent)
2049 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002050 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002051 writes), there is a global total order on all
2052 sequentially-consistent operations on all addresses, which is
2053 consistent with the *happens-before* partial order and with the
2054 modification orders of all the affected addresses. Each
2055 sequentially-consistent read sees the last preceding write to the
2056 same address in this global order. This corresponds to the C++0x/C1x
2057 ``memory_order_seq_cst`` and Java volatile.
2058
2059.. _singlethread:
2060
2061If an atomic operation is marked ``singlethread``, it only *synchronizes
2062with* or participates in modification and seq\_cst total orderings with
2063other operations running in the same thread (for example, in signal
2064handlers).
2065
2066.. _fastmath:
2067
2068Fast-Math Flags
2069---------------
2070
2071LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2072:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002073:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2074be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002075
2076``nnan``
2077 No NaNs - Allow optimizations to assume the arguments and result are not
2078 NaN. Such optimizations are required to retain defined behavior over
2079 NaNs, but the value of the result is undefined.
2080
2081``ninf``
2082 No Infs - Allow optimizations to assume the arguments and result are not
2083 +/-Inf. Such optimizations are required to retain defined behavior over
2084 +/-Inf, but the value of the result is undefined.
2085
2086``nsz``
2087 No Signed Zeros - Allow optimizations to treat the sign of a zero
2088 argument or result as insignificant.
2089
2090``arcp``
2091 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2092 argument rather than perform division.
2093
2094``fast``
2095 Fast - Allow algebraically equivalent transformations that may
2096 dramatically change results in floating point (e.g. reassociate). This
2097 flag implies all the others.
2098
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002099.. _uselistorder:
2100
2101Use-list Order Directives
2102-------------------------
2103
2104Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002105order to be recreated. ``<order-indexes>`` is a comma-separated list of
2106indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002107value's use-list is immediately sorted by these indexes.
2108
Sean Silvaa1190322015-08-06 22:56:48 +00002109Use-list directives may appear at function scope or global scope. They are not
2110instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002111function scope, they must appear after the terminator of the final basic block.
2112
2113If basic blocks have their address taken via ``blockaddress()`` expressions,
2114``uselistorder_bb`` can be used to reorder their use-lists from outside their
2115function's scope.
2116
2117:Syntax:
2118
2119::
2120
2121 uselistorder <ty> <value>, { <order-indexes> }
2122 uselistorder_bb @function, %block { <order-indexes> }
2123
2124:Examples:
2125
2126::
2127
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002128 define void @foo(i32 %arg1, i32 %arg2) {
2129 entry:
2130 ; ... instructions ...
2131 bb:
2132 ; ... instructions ...
2133
2134 ; At function scope.
2135 uselistorder i32 %arg1, { 1, 0, 2 }
2136 uselistorder label %bb, { 1, 0 }
2137 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002138
2139 ; At global scope.
2140 uselistorder i32* @global, { 1, 2, 0 }
2141 uselistorder i32 7, { 1, 0 }
2142 uselistorder i32 (i32) @bar, { 1, 0 }
2143 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2144
Sean Silvab084af42012-12-07 10:36:55 +00002145.. _typesystem:
2146
2147Type System
2148===========
2149
2150The LLVM type system is one of the most important features of the
2151intermediate representation. Being typed enables a number of
2152optimizations to be performed on the intermediate representation
2153directly, without having to do extra analyses on the side before the
2154transformation. A strong type system makes it easier to read the
2155generated code and enables novel analyses and transformations that are
2156not feasible to perform on normal three address code representations.
2157
Rafael Espindola08013342013-12-07 19:34:20 +00002158.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002159
Rafael Espindola08013342013-12-07 19:34:20 +00002160Void Type
2161---------
Sean Silvab084af42012-12-07 10:36:55 +00002162
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002163:Overview:
2164
Rafael Espindola08013342013-12-07 19:34:20 +00002165
2166The void type does not represent any value and has no size.
2167
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002168:Syntax:
2169
Rafael Espindola08013342013-12-07 19:34:20 +00002170
2171::
2172
2173 void
Sean Silvab084af42012-12-07 10:36:55 +00002174
2175
Rafael Espindola08013342013-12-07 19:34:20 +00002176.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002177
Rafael Espindola08013342013-12-07 19:34:20 +00002178Function Type
2179-------------
Sean Silvab084af42012-12-07 10:36:55 +00002180
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002181:Overview:
2182
Sean Silvab084af42012-12-07 10:36:55 +00002183
Rafael Espindola08013342013-12-07 19:34:20 +00002184The function type can be thought of as a function signature. It consists of a
2185return type and a list of formal parameter types. The return type of a function
2186type is a void type or first class type --- except for :ref:`label <t_label>`
2187and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002188
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002189:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002190
Rafael Espindola08013342013-12-07 19:34:20 +00002191::
Sean Silvab084af42012-12-07 10:36:55 +00002192
Rafael Espindola08013342013-12-07 19:34:20 +00002193 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002194
Rafael Espindola08013342013-12-07 19:34:20 +00002195...where '``<parameter list>``' is a comma-separated list of type
2196specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002197indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002198argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002199handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002200except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002201
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002202:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002203
Rafael Espindola08013342013-12-07 19:34:20 +00002204+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2205| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2206+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2207| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2208+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2209| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2210+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2211| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2212+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2213
2214.. _t_firstclass:
2215
2216First Class Types
2217-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002218
2219The :ref:`first class <t_firstclass>` types are perhaps the most important.
2220Values of these types are the only ones which can be produced by
2221instructions.
2222
Rafael Espindola08013342013-12-07 19:34:20 +00002223.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002224
Rafael Espindola08013342013-12-07 19:34:20 +00002225Single Value Types
2226^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002227
Rafael Espindola08013342013-12-07 19:34:20 +00002228These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002229
2230.. _t_integer:
2231
2232Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002233""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002234
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002235:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002236
2237The integer type is a very simple type that simply specifies an
2238arbitrary bit width for the integer type desired. Any bit width from 1
2239bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2240
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002241:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002242
2243::
2244
2245 iN
2246
2247The number of bits the integer will occupy is specified by the ``N``
2248value.
2249
2250Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002251*********
Sean Silvab084af42012-12-07 10:36:55 +00002252
2253+----------------+------------------------------------------------+
2254| ``i1`` | a single-bit integer. |
2255+----------------+------------------------------------------------+
2256| ``i32`` | a 32-bit integer. |
2257+----------------+------------------------------------------------+
2258| ``i1942652`` | a really big integer of over 1 million bits. |
2259+----------------+------------------------------------------------+
2260
2261.. _t_floating:
2262
2263Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002264""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002265
2266.. list-table::
2267 :header-rows: 1
2268
2269 * - Type
2270 - Description
2271
2272 * - ``half``
2273 - 16-bit floating point value
2274
2275 * - ``float``
2276 - 32-bit floating point value
2277
2278 * - ``double``
2279 - 64-bit floating point value
2280
2281 * - ``fp128``
2282 - 128-bit floating point value (112-bit mantissa)
2283
2284 * - ``x86_fp80``
2285 - 80-bit floating point value (X87)
2286
2287 * - ``ppc_fp128``
2288 - 128-bit floating point value (two 64-bits)
2289
Reid Kleckner9a16d082014-03-05 02:41:37 +00002290X86_mmx Type
2291""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002292
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002293:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002294
Reid Kleckner9a16d082014-03-05 02:41:37 +00002295The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002296machine. The operations allowed on it are quite limited: parameters and
2297return values, load and store, and bitcast. User-specified MMX
2298instructions are represented as intrinsic or asm calls with arguments
2299and/or results of this type. There are no arrays, vectors or constants
2300of this type.
2301
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002302:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002303
2304::
2305
Reid Kleckner9a16d082014-03-05 02:41:37 +00002306 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002307
Sean Silvab084af42012-12-07 10:36:55 +00002308
Rafael Espindola08013342013-12-07 19:34:20 +00002309.. _t_pointer:
2310
2311Pointer Type
2312""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002313
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002314:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002315
Rafael Espindola08013342013-12-07 19:34:20 +00002316The pointer type is used to specify memory locations. Pointers are
2317commonly used to reference objects in memory.
2318
2319Pointer types may have an optional address space attribute defining the
2320numbered address space where the pointed-to object resides. The default
2321address space is number zero. The semantics of non-zero address spaces
2322are target-specific.
2323
2324Note that LLVM does not permit pointers to void (``void*``) nor does it
2325permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002326
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002327:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002328
2329::
2330
Rafael Espindola08013342013-12-07 19:34:20 +00002331 <type> *
2332
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002333:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002334
2335+-------------------------+--------------------------------------------------------------------------------------------------------------+
2336| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2337+-------------------------+--------------------------------------------------------------------------------------------------------------+
2338| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2339+-------------------------+--------------------------------------------------------------------------------------------------------------+
2340| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2341+-------------------------+--------------------------------------------------------------------------------------------------------------+
2342
2343.. _t_vector:
2344
2345Vector Type
2346"""""""""""
2347
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002348:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002349
2350A vector type is a simple derived type that represents a vector of
2351elements. Vector types are used when multiple primitive data are
2352operated in parallel using a single instruction (SIMD). A vector type
2353requires a size (number of elements) and an underlying primitive data
2354type. Vector types are considered :ref:`first class <t_firstclass>`.
2355
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002356:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002357
2358::
2359
2360 < <# elements> x <elementtype> >
2361
2362The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002363elementtype may be any integer, floating point or pointer type. Vectors
2364of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002365
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002366:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002367
2368+-------------------+--------------------------------------------------+
2369| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2370+-------------------+--------------------------------------------------+
2371| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2372+-------------------+--------------------------------------------------+
2373| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2374+-------------------+--------------------------------------------------+
2375| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2376+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002377
2378.. _t_label:
2379
2380Label Type
2381^^^^^^^^^^
2382
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002383:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002384
2385The label type represents code labels.
2386
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002387:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002388
2389::
2390
2391 label
2392
David Majnemerb611e3f2015-08-14 05:09:07 +00002393.. _t_token:
2394
2395Token Type
2396^^^^^^^^^^
2397
2398:Overview:
2399
2400The token type is used when a value is associated with an instruction
2401but all uses of the value must not attempt to introspect or obscure it.
2402As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2403:ref:`select <i_select>` of type token.
2404
2405:Syntax:
2406
2407::
2408
2409 token
2410
2411
2412
Sean Silvab084af42012-12-07 10:36:55 +00002413.. _t_metadata:
2414
2415Metadata Type
2416^^^^^^^^^^^^^
2417
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002418:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002419
2420The metadata type represents embedded metadata. No derived types may be
2421created from metadata except for :ref:`function <t_function>` arguments.
2422
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002423:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002424
2425::
2426
2427 metadata
2428
Sean Silvab084af42012-12-07 10:36:55 +00002429.. _t_aggregate:
2430
2431Aggregate Types
2432^^^^^^^^^^^^^^^
2433
2434Aggregate Types are a subset of derived types that can contain multiple
2435member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2436aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2437aggregate types.
2438
2439.. _t_array:
2440
2441Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002442""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002443
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002444:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002445
2446The array type is a very simple derived type that arranges elements
2447sequentially in memory. The array type requires a size (number of
2448elements) and an underlying data type.
2449
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002450:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002451
2452::
2453
2454 [<# elements> x <elementtype>]
2455
2456The number of elements is a constant integer value; ``elementtype`` may
2457be any type with a size.
2458
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002459:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002460
2461+------------------+--------------------------------------+
2462| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2463+------------------+--------------------------------------+
2464| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2465+------------------+--------------------------------------+
2466| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2467+------------------+--------------------------------------+
2468
2469Here are some examples of multidimensional arrays:
2470
2471+-----------------------------+----------------------------------------------------------+
2472| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2473+-----------------------------+----------------------------------------------------------+
2474| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2475+-----------------------------+----------------------------------------------------------+
2476| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2477+-----------------------------+----------------------------------------------------------+
2478
2479There is no restriction on indexing beyond the end of the array implied
2480by a static type (though there are restrictions on indexing beyond the
2481bounds of an allocated object in some cases). This means that
2482single-dimension 'variable sized array' addressing can be implemented in
2483LLVM with a zero length array type. An implementation of 'pascal style
2484arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2485example.
2486
Sean Silvab084af42012-12-07 10:36:55 +00002487.. _t_struct:
2488
2489Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002490""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002491
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002492:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002493
2494The structure type is used to represent a collection of data members
2495together in memory. The elements of a structure may be any type that has
2496a size.
2497
2498Structures in memory are accessed using '``load``' and '``store``' by
2499getting a pointer to a field with the '``getelementptr``' instruction.
2500Structures in registers are accessed using the '``extractvalue``' and
2501'``insertvalue``' instructions.
2502
2503Structures may optionally be "packed" structures, which indicate that
2504the alignment of the struct is one byte, and that there is no padding
2505between the elements. In non-packed structs, padding between field types
2506is inserted as defined by the DataLayout string in the module, which is
2507required to match what the underlying code generator expects.
2508
2509Structures can either be "literal" or "identified". A literal structure
2510is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2511identified types are always defined at the top level with a name.
2512Literal types are uniqued by their contents and can never be recursive
2513or opaque since there is no way to write one. Identified types can be
2514recursive, can be opaqued, and are never uniqued.
2515
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002516:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002517
2518::
2519
2520 %T1 = type { <type list> } ; Identified normal struct type
2521 %T2 = type <{ <type list> }> ; Identified packed struct type
2522
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002523:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002524
2525+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2526| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2527+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002528| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002529+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2530| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2531+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2532
2533.. _t_opaque:
2534
2535Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002536""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002537
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002538:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002539
2540Opaque structure types are used to represent named structure types that
2541do not have a body specified. This corresponds (for example) to the C
2542notion of a forward declared structure.
2543
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002544:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002545
2546::
2547
2548 %X = type opaque
2549 %52 = type opaque
2550
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002551:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002552
2553+--------------+-------------------+
2554| ``opaque`` | An opaque type. |
2555+--------------+-------------------+
2556
Sean Silva1703e702014-04-08 21:06:22 +00002557.. _constants:
2558
Sean Silvab084af42012-12-07 10:36:55 +00002559Constants
2560=========
2561
2562LLVM has several different basic types of constants. This section
2563describes them all and their syntax.
2564
2565Simple Constants
2566----------------
2567
2568**Boolean constants**
2569 The two strings '``true``' and '``false``' are both valid constants
2570 of the ``i1`` type.
2571**Integer constants**
2572 Standard integers (such as '4') are constants of the
2573 :ref:`integer <t_integer>` type. Negative numbers may be used with
2574 integer types.
2575**Floating point constants**
2576 Floating point constants use standard decimal notation (e.g.
2577 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2578 hexadecimal notation (see below). The assembler requires the exact
2579 decimal value of a floating-point constant. For example, the
2580 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2581 decimal in binary. Floating point constants must have a :ref:`floating
2582 point <t_floating>` type.
2583**Null pointer constants**
2584 The identifier '``null``' is recognized as a null pointer constant
2585 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002586**Token constants**
2587 The identifier '``none``' is recognized as an empty token constant
2588 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002589
2590The one non-intuitive notation for constants is the hexadecimal form of
2591floating point constants. For example, the form
2592'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2593than) '``double 4.5e+15``'. The only time hexadecimal floating point
2594constants are required (and the only time that they are generated by the
2595disassembler) is when a floating point constant must be emitted but it
2596cannot be represented as a decimal floating point number in a reasonable
2597number of digits. For example, NaN's, infinities, and other special
2598values are represented in their IEEE hexadecimal format so that assembly
2599and disassembly do not cause any bits to change in the constants.
2600
2601When using the hexadecimal form, constants of types half, float, and
2602double are represented using the 16-digit form shown above (which
2603matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002604must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002605precision, respectively. Hexadecimal format is always used for long
2606double, and there are three forms of long double. The 80-bit format used
2607by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2608128-bit format used by PowerPC (two adjacent doubles) is represented by
2609``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002610represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2611will only work if they match the long double format on your target.
2612The IEEE 16-bit format (half precision) is represented by ``0xH``
2613followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2614(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002615
Reid Kleckner9a16d082014-03-05 02:41:37 +00002616There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002617
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002618.. _complexconstants:
2619
Sean Silvab084af42012-12-07 10:36:55 +00002620Complex Constants
2621-----------------
2622
2623Complex constants are a (potentially recursive) combination of simple
2624constants and smaller complex constants.
2625
2626**Structure constants**
2627 Structure constants are represented with notation similar to
2628 structure type definitions (a comma separated list of elements,
2629 surrounded by braces (``{}``)). For example:
2630 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2631 "``@G = external global i32``". Structure constants must have
2632 :ref:`structure type <t_struct>`, and the number and types of elements
2633 must match those specified by the type.
2634**Array constants**
2635 Array constants are represented with notation similar to array type
2636 definitions (a comma separated list of elements, surrounded by
2637 square brackets (``[]``)). For example:
2638 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2639 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002640 match those specified by the type. As a special case, character array
2641 constants may also be represented as a double-quoted string using the ``c``
2642 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002643**Vector constants**
2644 Vector constants are represented with notation similar to vector
2645 type definitions (a comma separated list of elements, surrounded by
2646 less-than/greater-than's (``<>``)). For example:
2647 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2648 must have :ref:`vector type <t_vector>`, and the number and types of
2649 elements must match those specified by the type.
2650**Zero initialization**
2651 The string '``zeroinitializer``' can be used to zero initialize a
2652 value to zero of *any* type, including scalar and
2653 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2654 having to print large zero initializers (e.g. for large arrays) and
2655 is always exactly equivalent to using explicit zero initializers.
2656**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002657 A metadata node is a constant tuple without types. For example:
2658 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002659 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2660 Unlike other typed constants that are meant to be interpreted as part of
2661 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002662 information such as debug info.
2663
2664Global Variable and Function Addresses
2665--------------------------------------
2666
2667The addresses of :ref:`global variables <globalvars>` and
2668:ref:`functions <functionstructure>` are always implicitly valid
2669(link-time) constants. These constants are explicitly referenced when
2670the :ref:`identifier for the global <identifiers>` is used and always have
2671:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2672file:
2673
2674.. code-block:: llvm
2675
2676 @X = global i32 17
2677 @Y = global i32 42
2678 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2679
2680.. _undefvalues:
2681
2682Undefined Values
2683----------------
2684
2685The string '``undef``' can be used anywhere a constant is expected, and
2686indicates that the user of the value may receive an unspecified
2687bit-pattern. Undefined values may be of any type (other than '``label``'
2688or '``void``') and be used anywhere a constant is permitted.
2689
2690Undefined values are useful because they indicate to the compiler that
2691the program is well defined no matter what value is used. This gives the
2692compiler more freedom to optimize. Here are some examples of
2693(potentially surprising) transformations that are valid (in pseudo IR):
2694
2695.. code-block:: llvm
2696
2697 %A = add %X, undef
2698 %B = sub %X, undef
2699 %C = xor %X, undef
2700 Safe:
2701 %A = undef
2702 %B = undef
2703 %C = undef
2704
2705This is safe because all of the output bits are affected by the undef
2706bits. Any output bit can have a zero or one depending on the input bits.
2707
2708.. code-block:: llvm
2709
2710 %A = or %X, undef
2711 %B = and %X, undef
2712 Safe:
2713 %A = -1
2714 %B = 0
2715 Unsafe:
2716 %A = undef
2717 %B = undef
2718
2719These logical operations have bits that are not always affected by the
2720input. For example, if ``%X`` has a zero bit, then the output of the
2721'``and``' operation will always be a zero for that bit, no matter what
2722the corresponding bit from the '``undef``' is. As such, it is unsafe to
2723optimize or assume that the result of the '``and``' is '``undef``'.
2724However, it is safe to assume that all bits of the '``undef``' could be
27250, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2726all the bits of the '``undef``' operand to the '``or``' could be set,
2727allowing the '``or``' to be folded to -1.
2728
2729.. code-block:: llvm
2730
2731 %A = select undef, %X, %Y
2732 %B = select undef, 42, %Y
2733 %C = select %X, %Y, undef
2734 Safe:
2735 %A = %X (or %Y)
2736 %B = 42 (or %Y)
2737 %C = %Y
2738 Unsafe:
2739 %A = undef
2740 %B = undef
2741 %C = undef
2742
2743This set of examples shows that undefined '``select``' (and conditional
2744branch) conditions can go *either way*, but they have to come from one
2745of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2746both known to have a clear low bit, then ``%A`` would have to have a
2747cleared low bit. However, in the ``%C`` example, the optimizer is
2748allowed to assume that the '``undef``' operand could be the same as
2749``%Y``, allowing the whole '``select``' to be eliminated.
2750
2751.. code-block:: llvm
2752
2753 %A = xor undef, undef
2754
2755 %B = undef
2756 %C = xor %B, %B
2757
2758 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002759 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002760 %F = icmp gte %D, 4
2761
2762 Safe:
2763 %A = undef
2764 %B = undef
2765 %C = undef
2766 %D = undef
2767 %E = undef
2768 %F = undef
2769
2770This example points out that two '``undef``' operands are not
2771necessarily the same. This can be surprising to people (and also matches
2772C semantics) where they assume that "``X^X``" is always zero, even if
2773``X`` is undefined. This isn't true for a number of reasons, but the
2774short answer is that an '``undef``' "variable" can arbitrarily change
2775its value over its "live range". This is true because the variable
2776doesn't actually *have a live range*. Instead, the value is logically
2777read from arbitrary registers that happen to be around when needed, so
2778the value is not necessarily consistent over time. In fact, ``%A`` and
2779``%C`` need to have the same semantics or the core LLVM "replace all
2780uses with" concept would not hold.
2781
2782.. code-block:: llvm
2783
2784 %A = fdiv undef, %X
2785 %B = fdiv %X, undef
2786 Safe:
2787 %A = undef
2788 b: unreachable
2789
2790These examples show the crucial difference between an *undefined value*
2791and *undefined behavior*. An undefined value (like '``undef``') is
2792allowed to have an arbitrary bit-pattern. This means that the ``%A``
2793operation can be constant folded to '``undef``', because the '``undef``'
2794could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2795However, in the second example, we can make a more aggressive
2796assumption: because the ``undef`` is allowed to be an arbitrary value,
2797we are allowed to assume that it could be zero. Since a divide by zero
2798has *undefined behavior*, we are allowed to assume that the operation
2799does not execute at all. This allows us to delete the divide and all
2800code after it. Because the undefined operation "can't happen", the
2801optimizer can assume that it occurs in dead code.
2802
2803.. code-block:: llvm
2804
2805 a: store undef -> %X
2806 b: store %X -> undef
2807 Safe:
2808 a: <deleted>
2809 b: unreachable
2810
2811These examples reiterate the ``fdiv`` example: a store *of* an undefined
2812value can be assumed to not have any effect; we can assume that the
2813value is overwritten with bits that happen to match what was already
2814there. However, a store *to* an undefined location could clobber
2815arbitrary memory, therefore, it has undefined behavior.
2816
2817.. _poisonvalues:
2818
2819Poison Values
2820-------------
2821
2822Poison values are similar to :ref:`undef values <undefvalues>`, however
2823they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002824that cannot evoke side effects has nevertheless detected a condition
2825that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002826
2827There is currently no way of representing a poison value in the IR; they
2828only exist when produced by operations such as :ref:`add <i_add>` with
2829the ``nsw`` flag.
2830
2831Poison value behavior is defined in terms of value *dependence*:
2832
2833- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2834- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2835 their dynamic predecessor basic block.
2836- Function arguments depend on the corresponding actual argument values
2837 in the dynamic callers of their functions.
2838- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2839 instructions that dynamically transfer control back to them.
2840- :ref:`Invoke <i_invoke>` instructions depend on the
2841 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2842 call instructions that dynamically transfer control back to them.
2843- Non-volatile loads and stores depend on the most recent stores to all
2844 of the referenced memory addresses, following the order in the IR
2845 (including loads and stores implied by intrinsics such as
2846 :ref:`@llvm.memcpy <int_memcpy>`.)
2847- An instruction with externally visible side effects depends on the
2848 most recent preceding instruction with externally visible side
2849 effects, following the order in the IR. (This includes :ref:`volatile
2850 operations <volatile>`.)
2851- An instruction *control-depends* on a :ref:`terminator
2852 instruction <terminators>` if the terminator instruction has
2853 multiple successors and the instruction is always executed when
2854 control transfers to one of the successors, and may not be executed
2855 when control is transferred to another.
2856- Additionally, an instruction also *control-depends* on a terminator
2857 instruction if the set of instructions it otherwise depends on would
2858 be different if the terminator had transferred control to a different
2859 successor.
2860- Dependence is transitive.
2861
Richard Smith32dbdf62014-07-31 04:25:36 +00002862Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2863with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002864on a poison value has undefined behavior.
2865
2866Here are some examples:
2867
2868.. code-block:: llvm
2869
2870 entry:
2871 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2872 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002873 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002874 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2875
2876 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002877 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002878
2879 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2880
2881 %narrowaddr = bitcast i32* @g to i16*
2882 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002883 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2884 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002885
2886 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2887 br i1 %cmp, label %true, label %end ; Branch to either destination.
2888
2889 true:
2890 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2891 ; it has undefined behavior.
2892 br label %end
2893
2894 end:
2895 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2896 ; Both edges into this PHI are
2897 ; control-dependent on %cmp, so this
2898 ; always results in a poison value.
2899
2900 store volatile i32 0, i32* @g ; This would depend on the store in %true
2901 ; if %cmp is true, or the store in %entry
2902 ; otherwise, so this is undefined behavior.
2903
2904 br i1 %cmp, label %second_true, label %second_end
2905 ; The same branch again, but this time the
2906 ; true block doesn't have side effects.
2907
2908 second_true:
2909 ; No side effects!
2910 ret void
2911
2912 second_end:
2913 store volatile i32 0, i32* @g ; This time, the instruction always depends
2914 ; on the store in %end. Also, it is
2915 ; control-equivalent to %end, so this is
2916 ; well-defined (ignoring earlier undefined
2917 ; behavior in this example).
2918
2919.. _blockaddress:
2920
2921Addresses of Basic Blocks
2922-------------------------
2923
2924``blockaddress(@function, %block)``
2925
2926The '``blockaddress``' constant computes the address of the specified
2927basic block in the specified function, and always has an ``i8*`` type.
2928Taking the address of the entry block is illegal.
2929
2930This value only has defined behavior when used as an operand to the
2931':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2932against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002933undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002934no label is equal to the null pointer. This may be passed around as an
2935opaque pointer sized value as long as the bits are not inspected. This
2936allows ``ptrtoint`` and arithmetic to be performed on these values so
2937long as the original value is reconstituted before the ``indirectbr``
2938instruction.
2939
2940Finally, some targets may provide defined semantics when using the value
2941as the operand to an inline assembly, but that is target specific.
2942
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002943.. _constantexprs:
2944
Sean Silvab084af42012-12-07 10:36:55 +00002945Constant Expressions
2946--------------------
2947
2948Constant expressions are used to allow expressions involving other
2949constants to be used as constants. Constant expressions may be of any
2950:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2951that does not have side effects (e.g. load and call are not supported).
2952The following is the syntax for constant expressions:
2953
2954``trunc (CST to TYPE)``
2955 Truncate a constant to another type. The bit size of CST must be
2956 larger than the bit size of TYPE. Both types must be integers.
2957``zext (CST to TYPE)``
2958 Zero extend a constant to another type. The bit size of CST must be
2959 smaller than the bit size of TYPE. Both types must be integers.
2960``sext (CST to TYPE)``
2961 Sign extend a constant to another type. The bit size of CST must be
2962 smaller than the bit size of TYPE. Both types must be integers.
2963``fptrunc (CST to TYPE)``
2964 Truncate a floating point constant to another floating point type.
2965 The size of CST must be larger than the size of TYPE. Both types
2966 must be floating point.
2967``fpext (CST to TYPE)``
2968 Floating point extend a constant to another type. The size of CST
2969 must be smaller or equal to the size of TYPE. Both types must be
2970 floating point.
2971``fptoui (CST to TYPE)``
2972 Convert a floating point constant to the corresponding unsigned
2973 integer constant. TYPE must be a scalar or vector integer type. CST
2974 must be of scalar or vector floating point type. Both CST and TYPE
2975 must be scalars, or vectors of the same number of elements. If the
2976 value won't fit in the integer type, the results are undefined.
2977``fptosi (CST to TYPE)``
2978 Convert a floating point constant to the corresponding signed
2979 integer constant. TYPE must be a scalar or vector integer type. CST
2980 must be of scalar or vector floating point type. Both CST and TYPE
2981 must be scalars, or vectors of the same number of elements. If the
2982 value won't fit in the integer type, the results are undefined.
2983``uitofp (CST to TYPE)``
2984 Convert an unsigned integer constant to the corresponding floating
2985 point constant. TYPE must be a scalar or vector floating point type.
2986 CST must be of scalar or vector integer type. Both CST and TYPE must
2987 be scalars, or vectors of the same number of elements. If the value
2988 won't fit in the floating point type, the results are undefined.
2989``sitofp (CST to TYPE)``
2990 Convert a signed integer constant to the corresponding floating
2991 point constant. TYPE must be a scalar or vector floating point type.
2992 CST must be of scalar or vector integer type. Both CST and TYPE must
2993 be scalars, or vectors of the same number of elements. If the value
2994 won't fit in the floating point type, the results are undefined.
2995``ptrtoint (CST to TYPE)``
2996 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002997 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002998 pointer type. The ``CST`` value is zero extended, truncated, or
2999 unchanged to make it fit in ``TYPE``.
3000``inttoptr (CST to TYPE)``
3001 Convert an integer constant to a pointer constant. TYPE must be a
3002 pointer type. CST must be of integer type. The CST value is zero
3003 extended, truncated, or unchanged to make it fit in a pointer size.
3004 This one is *really* dangerous!
3005``bitcast (CST to TYPE)``
3006 Convert a constant, CST, to another TYPE. The constraints of the
3007 operands are the same as those for the :ref:`bitcast
3008 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003009``addrspacecast (CST to TYPE)``
3010 Convert a constant pointer or constant vector of pointer, CST, to another
3011 TYPE in a different address space. The constraints of the operands are the
3012 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003013``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003014 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3015 constants. As with the :ref:`getelementptr <i_getelementptr>`
3016 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003017 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003018``select (COND, VAL1, VAL2)``
3019 Perform the :ref:`select operation <i_select>` on constants.
3020``icmp COND (VAL1, VAL2)``
3021 Performs the :ref:`icmp operation <i_icmp>` on constants.
3022``fcmp COND (VAL1, VAL2)``
3023 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3024``extractelement (VAL, IDX)``
3025 Perform the :ref:`extractelement operation <i_extractelement>` on
3026 constants.
3027``insertelement (VAL, ELT, IDX)``
3028 Perform the :ref:`insertelement operation <i_insertelement>` on
3029 constants.
3030``shufflevector (VEC1, VEC2, IDXMASK)``
3031 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3032 constants.
3033``extractvalue (VAL, IDX0, IDX1, ...)``
3034 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3035 constants. The index list is interpreted in a similar manner as
3036 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3037 least one index value must be specified.
3038``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3039 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3040 The index list is interpreted in a similar manner as indices in a
3041 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3042 value must be specified.
3043``OPCODE (LHS, RHS)``
3044 Perform the specified operation of the LHS and RHS constants. OPCODE
3045 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3046 binary <bitwiseops>` operations. The constraints on operands are
3047 the same as those for the corresponding instruction (e.g. no bitwise
3048 operations on floating point values are allowed).
3049
3050Other Values
3051============
3052
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003053.. _inlineasmexprs:
3054
Sean Silvab084af42012-12-07 10:36:55 +00003055Inline Assembler Expressions
3056----------------------------
3057
3058LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003059Inline Assembly <moduleasm>`) through the use of a special value. This value
3060represents the inline assembler as a template string (containing the
3061instructions to emit), a list of operand constraints (stored as a string), a
3062flag that indicates whether or not the inline asm expression has side effects,
3063and a flag indicating whether the function containing the asm needs to align its
3064stack conservatively.
3065
3066The template string supports argument substitution of the operands using "``$``"
3067followed by a number, to indicate substitution of the given register/memory
3068location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3069be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3070operand (See :ref:`inline-asm-modifiers`).
3071
3072A literal "``$``" may be included by using "``$$``" in the template. To include
3073other special characters into the output, the usual "``\XX``" escapes may be
3074used, just as in other strings. Note that after template substitution, the
3075resulting assembly string is parsed by LLVM's integrated assembler unless it is
3076disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3077syntax known to LLVM.
3078
3079LLVM's support for inline asm is modeled closely on the requirements of Clang's
3080GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3081modifier codes listed here are similar or identical to those in GCC's inline asm
3082support. However, to be clear, the syntax of the template and constraint strings
3083described here is *not* the same as the syntax accepted by GCC and Clang, and,
3084while most constraint letters are passed through as-is by Clang, some get
3085translated to other codes when converting from the C source to the LLVM
3086assembly.
3087
3088An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003089
3090.. code-block:: llvm
3091
3092 i32 (i32) asm "bswap $0", "=r,r"
3093
3094Inline assembler expressions may **only** be used as the callee operand
3095of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3096Thus, typically we have:
3097
3098.. code-block:: llvm
3099
3100 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3101
3102Inline asms with side effects not visible in the constraint list must be
3103marked as having side effects. This is done through the use of the
3104'``sideeffect``' keyword, like so:
3105
3106.. code-block:: llvm
3107
3108 call void asm sideeffect "eieio", ""()
3109
3110In some cases inline asms will contain code that will not work unless
3111the stack is aligned in some way, such as calls or SSE instructions on
3112x86, yet will not contain code that does that alignment within the asm.
3113The compiler should make conservative assumptions about what the asm
3114might contain and should generate its usual stack alignment code in the
3115prologue if the '``alignstack``' keyword is present:
3116
3117.. code-block:: llvm
3118
3119 call void asm alignstack "eieio", ""()
3120
3121Inline asms also support using non-standard assembly dialects. The
3122assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3123the inline asm is using the Intel dialect. Currently, ATT and Intel are
3124the only supported dialects. An example is:
3125
3126.. code-block:: llvm
3127
3128 call void asm inteldialect "eieio", ""()
3129
3130If multiple keywords appear the '``sideeffect``' keyword must come
3131first, the '``alignstack``' keyword second and the '``inteldialect``'
3132keyword last.
3133
James Y Knightbc832ed2015-07-08 18:08:36 +00003134Inline Asm Constraint String
3135^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3136
3137The constraint list is a comma-separated string, each element containing one or
3138more constraint codes.
3139
3140For each element in the constraint list an appropriate register or memory
3141operand will be chosen, and it will be made available to assembly template
3142string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3143second, etc.
3144
3145There are three different types of constraints, which are distinguished by a
3146prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3147constraints must always be given in that order: outputs first, then inputs, then
3148clobbers. They cannot be intermingled.
3149
3150There are also three different categories of constraint codes:
3151
3152- Register constraint. This is either a register class, or a fixed physical
3153 register. This kind of constraint will allocate a register, and if necessary,
3154 bitcast the argument or result to the appropriate type.
3155- Memory constraint. This kind of constraint is for use with an instruction
3156 taking a memory operand. Different constraints allow for different addressing
3157 modes used by the target.
3158- Immediate value constraint. This kind of constraint is for an integer or other
3159 immediate value which can be rendered directly into an instruction. The
3160 various target-specific constraints allow the selection of a value in the
3161 proper range for the instruction you wish to use it with.
3162
3163Output constraints
3164""""""""""""""""""
3165
3166Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3167indicates that the assembly will write to this operand, and the operand will
3168then be made available as a return value of the ``asm`` expression. Output
3169constraints do not consume an argument from the call instruction. (Except, see
3170below about indirect outputs).
3171
3172Normally, it is expected that no output locations are written to by the assembly
3173expression until *all* of the inputs have been read. As such, LLVM may assign
3174the same register to an output and an input. If this is not safe (e.g. if the
3175assembly contains two instructions, where the first writes to one output, and
3176the second reads an input and writes to a second output), then the "``&``"
3177modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003178"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003179will not use the same register for any inputs (other than an input tied to this
3180output).
3181
3182Input constraints
3183"""""""""""""""""
3184
3185Input constraints do not have a prefix -- just the constraint codes. Each input
3186constraint will consume one argument from the call instruction. It is not
3187permitted for the asm to write to any input register or memory location (unless
3188that input is tied to an output). Note also that multiple inputs may all be
3189assigned to the same register, if LLVM can determine that they necessarily all
3190contain the same value.
3191
3192Instead of providing a Constraint Code, input constraints may also "tie"
3193themselves to an output constraint, by providing an integer as the constraint
3194string. Tied inputs still consume an argument from the call instruction, and
3195take up a position in the asm template numbering as is usual -- they will simply
3196be constrained to always use the same register as the output they've been tied
3197to. For example, a constraint string of "``=r,0``" says to assign a register for
3198output, and use that register as an input as well (it being the 0'th
3199constraint).
3200
3201It is permitted to tie an input to an "early-clobber" output. In that case, no
3202*other* input may share the same register as the input tied to the early-clobber
3203(even when the other input has the same value).
3204
3205You may only tie an input to an output which has a register constraint, not a
3206memory constraint. Only a single input may be tied to an output.
3207
3208There is also an "interesting" feature which deserves a bit of explanation: if a
3209register class constraint allocates a register which is too small for the value
3210type operand provided as input, the input value will be split into multiple
3211registers, and all of them passed to the inline asm.
3212
3213However, this feature is often not as useful as you might think.
3214
3215Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3216architectures that have instructions which operate on multiple consecutive
3217instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3218SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3219hardware then loads into both the named register, and the next register. This
3220feature of inline asm would not be useful to support that.)
3221
3222A few of the targets provide a template string modifier allowing explicit access
3223to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3224``D``). On such an architecture, you can actually access the second allocated
3225register (yet, still, not any subsequent ones). But, in that case, you're still
3226probably better off simply splitting the value into two separate operands, for
3227clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3228despite existing only for use with this feature, is not really a good idea to
3229use)
3230
3231Indirect inputs and outputs
3232"""""""""""""""""""""""""""
3233
3234Indirect output or input constraints can be specified by the "``*``" modifier
3235(which goes after the "``=``" in case of an output). This indicates that the asm
3236will write to or read from the contents of an *address* provided as an input
3237argument. (Note that in this way, indirect outputs act more like an *input* than
3238an output: just like an input, they consume an argument of the call expression,
3239rather than producing a return value. An indirect output constraint is an
3240"output" only in that the asm is expected to write to the contents of the input
3241memory location, instead of just read from it).
3242
3243This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3244address of a variable as a value.
3245
3246It is also possible to use an indirect *register* constraint, but only on output
3247(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3248value normally, and then, separately emit a store to the address provided as
3249input, after the provided inline asm. (It's not clear what value this
3250functionality provides, compared to writing the store explicitly after the asm
3251statement, and it can only produce worse code, since it bypasses many
3252optimization passes. I would recommend not using it.)
3253
3254
3255Clobber constraints
3256"""""""""""""""""""
3257
3258A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3259consume an input operand, nor generate an output. Clobbers cannot use any of the
3260general constraint code letters -- they may use only explicit register
3261constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3262"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3263memory locations -- not only the memory pointed to by a declared indirect
3264output.
3265
3266
3267Constraint Codes
3268""""""""""""""""
3269After a potential prefix comes constraint code, or codes.
3270
3271A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3272followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3273(e.g. "``{eax}``").
3274
3275The one and two letter constraint codes are typically chosen to be the same as
3276GCC's constraint codes.
3277
3278A single constraint may include one or more than constraint code in it, leaving
3279it up to LLVM to choose which one to use. This is included mainly for
3280compatibility with the translation of GCC inline asm coming from clang.
3281
3282There are two ways to specify alternatives, and either or both may be used in an
3283inline asm constraint list:
3284
32851) Append the codes to each other, making a constraint code set. E.g. "``im``"
3286 or "``{eax}m``". This means "choose any of the options in the set". The
3287 choice of constraint is made independently for each constraint in the
3288 constraint list.
3289
32902) Use "``|``" between constraint code sets, creating alternatives. Every
3291 constraint in the constraint list must have the same number of alternative
3292 sets. With this syntax, the same alternative in *all* of the items in the
3293 constraint list will be chosen together.
3294
3295Putting those together, you might have a two operand constraint string like
3296``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3297operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3298may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3299
3300However, the use of either of the alternatives features is *NOT* recommended, as
3301LLVM is not able to make an intelligent choice about which one to use. (At the
3302point it currently needs to choose, not enough information is available to do so
3303in a smart way.) Thus, it simply tries to make a choice that's most likely to
3304compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3305always choose to use memory, not registers). And, if given multiple registers,
3306or multiple register classes, it will simply choose the first one. (In fact, it
3307doesn't currently even ensure explicitly specified physical registers are
3308unique, so specifying multiple physical registers as alternatives, like
3309``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3310intended.)
3311
3312Supported Constraint Code List
3313""""""""""""""""""""""""""""""
3314
3315The constraint codes are, in general, expected to behave the same way they do in
3316GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3317inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3318and GCC likely indicates a bug in LLVM.
3319
3320Some constraint codes are typically supported by all targets:
3321
3322- ``r``: A register in the target's general purpose register class.
3323- ``m``: A memory address operand. It is target-specific what addressing modes
3324 are supported, typical examples are register, or register + register offset,
3325 or register + immediate offset (of some target-specific size).
3326- ``i``: An integer constant (of target-specific width). Allows either a simple
3327 immediate, or a relocatable value.
3328- ``n``: An integer constant -- *not* including relocatable values.
3329- ``s``: An integer constant, but allowing *only* relocatable values.
3330- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3331 useful to pass a label for an asm branch or call.
3332
3333 .. FIXME: but that surely isn't actually okay to jump out of an asm
3334 block without telling llvm about the control transfer???)
3335
3336- ``{register-name}``: Requires exactly the named physical register.
3337
3338Other constraints are target-specific:
3339
3340AArch64:
3341
3342- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3343- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3344 i.e. 0 to 4095 with optional shift by 12.
3345- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3346 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3347- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3348 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3349- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3350 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3351- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3352 32-bit register. This is a superset of ``K``: in addition to the bitmask
3353 immediate, also allows immediate integers which can be loaded with a single
3354 ``MOVZ`` or ``MOVL`` instruction.
3355- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3356 64-bit register. This is a superset of ``L``.
3357- ``Q``: Memory address operand must be in a single register (no
3358 offsets). (However, LLVM currently does this for the ``m`` constraint as
3359 well.)
3360- ``r``: A 32 or 64-bit integer register (W* or X*).
3361- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3362- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3363
3364AMDGPU:
3365
3366- ``r``: A 32 or 64-bit integer register.
3367- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3368- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3369
3370
3371All ARM modes:
3372
3373- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3374 operand. Treated the same as operand ``m``, at the moment.
3375
3376ARM and ARM's Thumb2 mode:
3377
3378- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3379- ``I``: An immediate integer valid for a data-processing instruction.
3380- ``J``: An immediate integer between -4095 and 4095.
3381- ``K``: An immediate integer whose bitwise inverse is valid for a
3382 data-processing instruction. (Can be used with template modifier "``B``" to
3383 print the inverted value).
3384- ``L``: An immediate integer whose negation is valid for a data-processing
3385 instruction. (Can be used with template modifier "``n``" to print the negated
3386 value).
3387- ``M``: A power of two or a integer between 0 and 32.
3388- ``N``: Invalid immediate constraint.
3389- ``O``: Invalid immediate constraint.
3390- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3391- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3392 as ``r``.
3393- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3394 invalid.
3395- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3396 ``d0-d31``, or ``q0-q15``.
3397- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3398 ``d0-d7``, or ``q0-q3``.
3399- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3400 ``s0-s31``.
3401
3402ARM's Thumb1 mode:
3403
3404- ``I``: An immediate integer between 0 and 255.
3405- ``J``: An immediate integer between -255 and -1.
3406- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3407 some amount.
3408- ``L``: An immediate integer between -7 and 7.
3409- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3410- ``N``: An immediate integer between 0 and 31.
3411- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3412- ``r``: A low 32-bit GPR register (``r0-r7``).
3413- ``l``: A low 32-bit GPR register (``r0-r7``).
3414- ``h``: A high GPR register (``r0-r7``).
3415- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3416 ``d0-d31``, or ``q0-q15``.
3417- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3418 ``d0-d7``, or ``q0-q3``.
3419- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3420 ``s0-s31``.
3421
3422
3423Hexagon:
3424
3425- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3426 at the moment.
3427- ``r``: A 32 or 64-bit register.
3428
3429MSP430:
3430
3431- ``r``: An 8 or 16-bit register.
3432
3433MIPS:
3434
3435- ``I``: An immediate signed 16-bit integer.
3436- ``J``: An immediate integer zero.
3437- ``K``: An immediate unsigned 16-bit integer.
3438- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3439- ``N``: An immediate integer between -65535 and -1.
3440- ``O``: An immediate signed 15-bit integer.
3441- ``P``: An immediate integer between 1 and 65535.
3442- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3443 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3444- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3445 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3446 ``m``.
3447- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3448 ``sc`` instruction on the given subtarget (details vary).
3449- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3450- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003451 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3452 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003453- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3454 ``25``).
3455- ``l``: The ``lo`` register, 32 or 64-bit.
3456- ``x``: Invalid.
3457
3458NVPTX:
3459
3460- ``b``: A 1-bit integer register.
3461- ``c`` or ``h``: A 16-bit integer register.
3462- ``r``: A 32-bit integer register.
3463- ``l`` or ``N``: A 64-bit integer register.
3464- ``f``: A 32-bit float register.
3465- ``d``: A 64-bit float register.
3466
3467
3468PowerPC:
3469
3470- ``I``: An immediate signed 16-bit integer.
3471- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3472- ``K``: An immediate unsigned 16-bit integer.
3473- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3474- ``M``: An immediate integer greater than 31.
3475- ``N``: An immediate integer that is an exact power of 2.
3476- ``O``: The immediate integer constant 0.
3477- ``P``: An immediate integer constant whose negation is a signed 16-bit
3478 constant.
3479- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3480 treated the same as ``m``.
3481- ``r``: A 32 or 64-bit integer register.
3482- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3483 ``R1-R31``).
3484- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3485 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3486- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3487 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3488 altivec vector register (``V0-V31``).
3489
3490 .. FIXME: is this a bug that v accepts QPX registers? I think this
3491 is supposed to only use the altivec vector registers?
3492
3493- ``y``: Condition register (``CR0-CR7``).
3494- ``wc``: An individual CR bit in a CR register.
3495- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3496 register set (overlapping both the floating-point and vector register files).
3497- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3498 set.
3499
3500Sparc:
3501
3502- ``I``: An immediate 13-bit signed integer.
3503- ``r``: A 32-bit integer register.
3504
3505SystemZ:
3506
3507- ``I``: An immediate unsigned 8-bit integer.
3508- ``J``: An immediate unsigned 12-bit integer.
3509- ``K``: An immediate signed 16-bit integer.
3510- ``L``: An immediate signed 20-bit integer.
3511- ``M``: An immediate integer 0x7fffffff.
3512- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3513 ``m``, at the moment.
3514- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3515- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3516 address context evaluates as zero).
3517- ``h``: A 32-bit value in the high part of a 64bit data register
3518 (LLVM-specific)
3519- ``f``: A 32, 64, or 128-bit floating point register.
3520
3521X86:
3522
3523- ``I``: An immediate integer between 0 and 31.
3524- ``J``: An immediate integer between 0 and 64.
3525- ``K``: An immediate signed 8-bit integer.
3526- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3527 0xffffffff.
3528- ``M``: An immediate integer between 0 and 3.
3529- ``N``: An immediate unsigned 8-bit integer.
3530- ``O``: An immediate integer between 0 and 127.
3531- ``e``: An immediate 32-bit signed integer.
3532- ``Z``: An immediate 32-bit unsigned integer.
3533- ``o``, ``v``: Treated the same as ``m``, at the moment.
3534- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3535 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3536 registers, and on X86-64, it is all of the integer registers.
3537- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3538 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3539- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3540- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3541 existed since i386, and can be accessed without the REX prefix.
3542- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3543- ``y``: A 64-bit MMX register, if MMX is enabled.
3544- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3545 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3546 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3547 512-bit vector operand in an AVX512 register, Otherwise, an error.
3548- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3549- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3550 32-bit mode, a 64-bit integer operand will get split into two registers). It
3551 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3552 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3553 you're better off splitting it yourself, before passing it to the asm
3554 statement.
3555
3556XCore:
3557
3558- ``r``: A 32-bit integer register.
3559
3560
3561.. _inline-asm-modifiers:
3562
3563Asm template argument modifiers
3564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3565
3566In the asm template string, modifiers can be used on the operand reference, like
3567"``${0:n}``".
3568
3569The modifiers are, in general, expected to behave the same way they do in
3570GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3571inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3572and GCC likely indicates a bug in LLVM.
3573
3574Target-independent:
3575
Sean Silvaa1190322015-08-06 22:56:48 +00003576- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003577 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3578- ``n``: Negate and print immediate integer constant unadorned, without the
3579 target-specific immediate punctuation (e.g. no ``$`` prefix).
3580- ``l``: Print as an unadorned label, without the target-specific label
3581 punctuation (e.g. no ``$`` prefix).
3582
3583AArch64:
3584
3585- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3586 instead of ``x30``, print ``w30``.
3587- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3588- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3589 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3590 ``v*``.
3591
3592AMDGPU:
3593
3594- ``r``: No effect.
3595
3596ARM:
3597
3598- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3599 register).
3600- ``P``: No effect.
3601- ``q``: No effect.
3602- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3603 as ``d4[1]`` instead of ``s9``)
3604- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3605 prefix.
3606- ``L``: Print the low 16-bits of an immediate integer constant.
3607- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3608 register operands subsequent to the specified one (!), so use carefully.
3609- ``Q``: Print the low-order register of a register-pair, or the low-order
3610 register of a two-register operand.
3611- ``R``: Print the high-order register of a register-pair, or the high-order
3612 register of a two-register operand.
3613- ``H``: Print the second register of a register-pair. (On a big-endian system,
3614 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3615 to ``R``.)
3616
3617 .. FIXME: H doesn't currently support printing the second register
3618 of a two-register operand.
3619
3620- ``e``: Print the low doubleword register of a NEON quad register.
3621- ``f``: Print the high doubleword register of a NEON quad register.
3622- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3623 adornment.
3624
3625Hexagon:
3626
3627- ``L``: Print the second register of a two-register operand. Requires that it
3628 has been allocated consecutively to the first.
3629
3630 .. FIXME: why is it restricted to consecutive ones? And there's
3631 nothing that ensures that happens, is there?
3632
3633- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3634 nothing. Used to print 'addi' vs 'add' instructions.
3635
3636MSP430:
3637
3638No additional modifiers.
3639
3640MIPS:
3641
3642- ``X``: Print an immediate integer as hexadecimal
3643- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3644- ``d``: Print an immediate integer as decimal.
3645- ``m``: Subtract one and print an immediate integer as decimal.
3646- ``z``: Print $0 if an immediate zero, otherwise print normally.
3647- ``L``: Print the low-order register of a two-register operand, or prints the
3648 address of the low-order word of a double-word memory operand.
3649
3650 .. FIXME: L seems to be missing memory operand support.
3651
3652- ``M``: Print the high-order register of a two-register operand, or prints the
3653 address of the high-order word of a double-word memory operand.
3654
3655 .. FIXME: M seems to be missing memory operand support.
3656
3657- ``D``: Print the second register of a two-register operand, or prints the
3658 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3659 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3660 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003661- ``w``: No effect. Provided for compatibility with GCC which requires this
3662 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3663 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003664
3665NVPTX:
3666
3667- ``r``: No effect.
3668
3669PowerPC:
3670
3671- ``L``: Print the second register of a two-register operand. Requires that it
3672 has been allocated consecutively to the first.
3673
3674 .. FIXME: why is it restricted to consecutive ones? And there's
3675 nothing that ensures that happens, is there?
3676
3677- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3678 nothing. Used to print 'addi' vs 'add' instructions.
3679- ``y``: For a memory operand, prints formatter for a two-register X-form
3680 instruction. (Currently always prints ``r0,OPERAND``).
3681- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3682 otherwise. (NOTE: LLVM does not support update form, so this will currently
3683 always print nothing)
3684- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3685 not support indexed form, so this will currently always print nothing)
3686
3687Sparc:
3688
3689- ``r``: No effect.
3690
3691SystemZ:
3692
3693SystemZ implements only ``n``, and does *not* support any of the other
3694target-independent modifiers.
3695
3696X86:
3697
3698- ``c``: Print an unadorned integer or symbol name. (The latter is
3699 target-specific behavior for this typically target-independent modifier).
3700- ``A``: Print a register name with a '``*``' before it.
3701- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3702 operand.
3703- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3704 memory operand.
3705- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3706 operand.
3707- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3708 operand.
3709- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3710 available, otherwise the 32-bit register name; do nothing on a memory operand.
3711- ``n``: Negate and print an unadorned integer, or, for operands other than an
3712 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3713 the operand. (The behavior for relocatable symbol expressions is a
3714 target-specific behavior for this typically target-independent modifier)
3715- ``H``: Print a memory reference with additional offset +8.
3716- ``P``: Print a memory reference or operand for use as the argument of a call
3717 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3718
3719XCore:
3720
3721No additional modifiers.
3722
3723
Sean Silvab084af42012-12-07 10:36:55 +00003724Inline Asm Metadata
3725^^^^^^^^^^^^^^^^^^^
3726
3727The call instructions that wrap inline asm nodes may have a
3728"``!srcloc``" MDNode attached to it that contains a list of constant
3729integers. If present, the code generator will use the integer as the
3730location cookie value when report errors through the ``LLVMContext``
3731error reporting mechanisms. This allows a front-end to correlate backend
3732errors that occur with inline asm back to the source code that produced
3733it. For example:
3734
3735.. code-block:: llvm
3736
3737 call void asm sideeffect "something bad", ""(), !srcloc !42
3738 ...
3739 !42 = !{ i32 1234567 }
3740
3741It is up to the front-end to make sense of the magic numbers it places
3742in the IR. If the MDNode contains multiple constants, the code generator
3743will use the one that corresponds to the line of the asm that the error
3744occurs on.
3745
3746.. _metadata:
3747
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003748Metadata
3749========
Sean Silvab084af42012-12-07 10:36:55 +00003750
3751LLVM IR allows metadata to be attached to instructions in the program
3752that can convey extra information about the code to the optimizers and
3753code generator. One example application of metadata is source-level
3754debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003755
Sean Silvaa1190322015-08-06 22:56:48 +00003756Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003757``call`` instruction, it uses the ``metadata`` type.
3758
3759All metadata are identified in syntax by a exclamation point ('``!``').
3760
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003761.. _metadata-string:
3762
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003763Metadata Nodes and Metadata Strings
3764-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003765
3766A metadata string is a string surrounded by double quotes. It can
3767contain any character by escaping non-printable characters with
3768"``\xx``" where "``xx``" is the two digit hex code. For example:
3769"``!"test\00"``".
3770
3771Metadata nodes are represented with notation similar to structure
3772constants (a comma separated list of elements, surrounded by braces and
3773preceded by an exclamation point). Metadata nodes can have any values as
3774their operand. For example:
3775
3776.. code-block:: llvm
3777
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003778 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003779
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003780Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3781
3782.. code-block:: llvm
3783
3784 !0 = distinct !{!"test\00", i32 10}
3785
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003786``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003787content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003788when metadata operands change.
3789
Sean Silvab084af42012-12-07 10:36:55 +00003790A :ref:`named metadata <namedmetadatastructure>` is a collection of
3791metadata nodes, which can be looked up in the module symbol table. For
3792example:
3793
3794.. code-block:: llvm
3795
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003796 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003797
3798Metadata can be used as function arguments. Here ``llvm.dbg.value``
3799function is using two metadata arguments:
3800
3801.. code-block:: llvm
3802
3803 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3804
Peter Collingbourne50108682015-11-06 02:41:02 +00003805Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3806to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003807
3808.. code-block:: llvm
3809
3810 %indvar.next = add i64 %indvar, 1, !dbg !21
3811
Peter Collingbourne50108682015-11-06 02:41:02 +00003812Metadata can also be attached to a function definition. Here metadata ``!22``
3813is attached to the ``foo`` function using the ``!dbg`` identifier:
3814
3815.. code-block:: llvm
3816
3817 define void @foo() !dbg !22 {
3818 ret void
3819 }
3820
Sean Silvab084af42012-12-07 10:36:55 +00003821More information about specific metadata nodes recognized by the
3822optimizers and code generator is found below.
3823
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003824.. _specialized-metadata:
3825
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003826Specialized Metadata Nodes
3827^^^^^^^^^^^^^^^^^^^^^^^^^^
3828
3829Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003830to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003831order.
3832
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003833These aren't inherently debug info centric, but currently all the specialized
3834metadata nodes are related to debug info.
3835
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003836.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003837
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003838DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003839"""""""""""""
3840
Sean Silvaa1190322015-08-06 22:56:48 +00003841``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003842``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3843fields are tuples containing the debug info to be emitted along with the compile
3844unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003845references to them from instructions).
3846
3847.. code-block:: llvm
3848
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003849 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003850 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003851 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003852 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003853 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003854
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003855Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003856specific compilation unit. File descriptors are defined using this scope.
3857These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003858keep track of subprograms, global variables, type information, and imported
3859entities (declarations and namespaces).
3860
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003861.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003862
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003863DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003864""""""
3865
Sean Silvaa1190322015-08-06 22:56:48 +00003866``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003867
3868.. code-block:: llvm
3869
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003870 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003871
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003872Files are sometimes used in ``scope:`` fields, and are the only valid target
3873for ``file:`` fields.
3874
Michael Kuperstein605308a2015-05-14 10:58:59 +00003875.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003876
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003877DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003878"""""""""""
3879
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003880``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003881``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003882
3883.. code-block:: llvm
3884
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003885 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003886 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003887 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003888
Sean Silvaa1190322015-08-06 22:56:48 +00003889The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003890following:
3891
3892.. code-block:: llvm
3893
3894 DW_ATE_address = 1
3895 DW_ATE_boolean = 2
3896 DW_ATE_float = 4
3897 DW_ATE_signed = 5
3898 DW_ATE_signed_char = 6
3899 DW_ATE_unsigned = 7
3900 DW_ATE_unsigned_char = 8
3901
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003902.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003903
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003904DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003905""""""""""""""""
3906
Sean Silvaa1190322015-08-06 22:56:48 +00003907``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003908refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003909types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003910represents a function with no return value (such as ``void foo() {}`` in C++).
3911
3912.. code-block:: llvm
3913
3914 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3915 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003916 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003917
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003918.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003919
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003920DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003921"""""""""""""
3922
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003923``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003924qualified types.
3925
3926.. code-block:: llvm
3927
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003928 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003929 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003930 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003931 align: 32)
3932
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003933The following ``tag:`` values are valid:
3934
3935.. code-block:: llvm
3936
3937 DW_TAG_formal_parameter = 5
3938 DW_TAG_member = 13
3939 DW_TAG_pointer_type = 15
3940 DW_TAG_reference_type = 16
3941 DW_TAG_typedef = 22
3942 DW_TAG_ptr_to_member_type = 31
3943 DW_TAG_const_type = 38
3944 DW_TAG_volatile_type = 53
3945 DW_TAG_restrict_type = 55
3946
3947``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003948<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3949is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003950``DW_TAG_formal_parameter`` is used to define a member which is a formal
3951argument of a subprogram.
3952
3953``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3954
3955``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3956``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3957``baseType:``.
3958
3959Note that the ``void *`` type is expressed as a type derived from NULL.
3960
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003961.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003962
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003963DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003964"""""""""""""""
3965
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003966``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003967structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003968
3969If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003970identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003971can refer to composite types indirectly via a :ref:`metadata string
3972<metadata-string>` that matches their identifier.
3973
3974.. code-block:: llvm
3975
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003976 !0 = !DIEnumerator(name: "SixKind", value: 7)
3977 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3978 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3979 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003980 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3981 elements: !{!0, !1, !2})
3982
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003983The following ``tag:`` values are valid:
3984
3985.. code-block:: llvm
3986
3987 DW_TAG_array_type = 1
3988 DW_TAG_class_type = 2
3989 DW_TAG_enumeration_type = 4
3990 DW_TAG_structure_type = 19
3991 DW_TAG_union_type = 23
3992 DW_TAG_subroutine_type = 21
3993 DW_TAG_inheritance = 28
3994
3995
3996For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003997descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003998level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003999array type is a native packed vector.
4000
4001For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004002descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004003value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004004``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004005
4006For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4007``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004008<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004009
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004010.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004011
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004012DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004013""""""""""
4014
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004015``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004016:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004017
4018.. code-block:: llvm
4019
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004020 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4021 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4022 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004023
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004024.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004025
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004026DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004027""""""""""""
4028
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004029``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4030variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004031
4032.. code-block:: llvm
4033
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004034 !0 = !DIEnumerator(name: "SixKind", value: 7)
4035 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4036 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004037
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004038DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004039"""""""""""""""""""""""
4040
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004041``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004042language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004043:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044
4045.. code-block:: llvm
4046
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004047 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004049DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004050""""""""""""""""""""""""
4051
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004052``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004053language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004054but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004055``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004056:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004057
4058.. code-block:: llvm
4059
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004060 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004061
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004062DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004063"""""""""""
4064
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004065``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004066
4067.. code-block:: llvm
4068
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004069 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004070
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004071DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004072""""""""""""""""
4073
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004074``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004075
4076.. code-block:: llvm
4077
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004078 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004079 file: !2, line: 7, type: !3, isLocal: true,
4080 isDefinition: false, variable: i32* @foo,
4081 declaration: !4)
4082
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004083All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004084:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004085
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004086.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004087
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004088DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004089""""""""""""
4090
Peter Collingbourne50108682015-11-06 02:41:02 +00004091``DISubprogram`` nodes represent functions from the source language. A
4092``DISubprogram`` may be attached to a function definition using ``!dbg``
4093metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4094that must be retained, even if their IR counterparts are optimized out of
4095the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004096
4097.. code-block:: llvm
4098
Peter Collingbourne50108682015-11-06 02:41:02 +00004099 define void @_Z3foov() !dbg !0 {
4100 ...
4101 }
4102
4103 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4104 file: !2, line: 7, type: !3, isLocal: true,
4105 isDefinition: false, scopeLine: 8,
4106 containingType: !4,
4107 virtuality: DW_VIRTUALITY_pure_virtual,
4108 virtualIndex: 10, flags: DIFlagPrototyped,
4109 isOptimized: true, templateParams: !5,
4110 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004111
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004112.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004113
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004114DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004115""""""""""""""
4116
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004117``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004118<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004119two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004120fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004121
4122.. code-block:: llvm
4123
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004124 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004125
4126Usually lexical blocks are ``distinct`` to prevent node merging based on
4127operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004128
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004129.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004130
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004131DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004132""""""""""""""""""
4133
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004134``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004135:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004136indicate textual inclusion, or the ``discriminator:`` field can be used to
4137discriminate between control flow within a single block in the source language.
4138
4139.. code-block:: llvm
4140
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004141 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4142 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4143 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004144
Michael Kuperstein605308a2015-05-14 10:58:59 +00004145.. _DILocation:
4146
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004147DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004148""""""""""
4149
Sean Silvaa1190322015-08-06 22:56:48 +00004150``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004151mandatory, and points at an :ref:`DILexicalBlockFile`, an
4152:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004153
4154.. code-block:: llvm
4155
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004156 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004157
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004158.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004159
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004160DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004161"""""""""""""""
4162
Sean Silvaa1190322015-08-06 22:56:48 +00004163``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004164the ``arg:`` field is set to non-zero, then this variable is a subprogram
4165parameter, and it will be included in the ``variables:`` field of its
4166:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004167
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004168.. code-block:: llvm
4169
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004170 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4171 type: !3, flags: DIFlagArtificial)
4172 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4173 type: !3)
4174 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004175
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004176DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004177""""""""""""
4178
Sean Silvaa1190322015-08-06 22:56:48 +00004179``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004180:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4181describe how the referenced LLVM variable relates to the source language
4182variable.
4183
4184The current supported vocabulary is limited:
4185
4186- ``DW_OP_deref`` dereferences the working expression.
4187- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4188- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4189 here, respectively) of the variable piece from the working expression.
4190
4191.. code-block:: llvm
4192
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004193 !0 = !DIExpression(DW_OP_deref)
4194 !1 = !DIExpression(DW_OP_plus, 3)
4195 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4196 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004197
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004198DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004199""""""""""""""
4200
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004201``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004202
4203.. code-block:: llvm
4204
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004205 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004206 getter: "getFoo", attributes: 7, type: !2)
4207
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004208DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004209""""""""""""""""
4210
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004211``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004212compile unit.
4213
4214.. code-block:: llvm
4215
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004216 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004217 entity: !1, line: 7)
4218
Amjad Abouda9bcf162015-12-10 12:56:35 +00004219DIMacro
4220"""""""
4221
4222``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4223The ``name:`` field is the macro identifier, followed by macro parameters when
4224definining a function-like macro, and the ``value`` field is the token-string
4225used to expand the macro identifier.
4226
4227.. code-block:: llvm
4228
4229 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4230 value: "((x) + 1)")
4231 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4232
4233DIMacroFile
4234"""""""""""
4235
4236``DIMacroFile`` nodes represent inclusion of source files.
4237The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4238appear in the included source file.
4239
4240.. code-block:: llvm
4241
4242 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4243 nodes: !3)
4244
Sean Silvab084af42012-12-07 10:36:55 +00004245'``tbaa``' Metadata
4246^^^^^^^^^^^^^^^^^^^
4247
4248In LLVM IR, memory does not have types, so LLVM's own type system is not
4249suitable for doing TBAA. Instead, metadata is added to the IR to
4250describe a type system of a higher level language. This can be used to
4251implement typical C/C++ TBAA, but it can also be used to implement
4252custom alias analysis behavior for other languages.
4253
4254The current metadata format is very simple. TBAA metadata nodes have up
4255to three fields, e.g.:
4256
4257.. code-block:: llvm
4258
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004259 !0 = !{ !"an example type tree" }
4260 !1 = !{ !"int", !0 }
4261 !2 = !{ !"float", !0 }
4262 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004263
4264The first field is an identity field. It can be any value, usually a
4265metadata string, which uniquely identifies the type. The most important
4266name in the tree is the name of the root node. Two trees with different
4267root node names are entirely disjoint, even if they have leaves with
4268common names.
4269
4270The second field identifies the type's parent node in the tree, or is
4271null or omitted for a root node. A type is considered to alias all of
4272its descendants and all of its ancestors in the tree. Also, a type is
4273considered to alias all types in other trees, so that bitcode produced
4274from multiple front-ends is handled conservatively.
4275
4276If the third field is present, it's an integer which if equal to 1
4277indicates that the type is "constant" (meaning
4278``pointsToConstantMemory`` should return true; see `other useful
4279AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4280
4281'``tbaa.struct``' Metadata
4282^^^^^^^^^^^^^^^^^^^^^^^^^^
4283
4284The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4285aggregate assignment operations in C and similar languages, however it
4286is defined to copy a contiguous region of memory, which is more than
4287strictly necessary for aggregate types which contain holes due to
4288padding. Also, it doesn't contain any TBAA information about the fields
4289of the aggregate.
4290
4291``!tbaa.struct`` metadata can describe which memory subregions in a
4292memcpy are padding and what the TBAA tags of the struct are.
4293
4294The current metadata format is very simple. ``!tbaa.struct`` metadata
4295nodes are a list of operands which are in conceptual groups of three.
4296For each group of three, the first operand gives the byte offset of a
4297field in bytes, the second gives its size in bytes, and the third gives
4298its tbaa tag. e.g.:
4299
4300.. code-block:: llvm
4301
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004302 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004303
4304This describes a struct with two fields. The first is at offset 0 bytes
4305with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4306and has size 4 bytes and has tbaa tag !2.
4307
4308Note that the fields need not be contiguous. In this example, there is a
43094 byte gap between the two fields. This gap represents padding which
4310does not carry useful data and need not be preserved.
4311
Hal Finkel94146652014-07-24 14:25:39 +00004312'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004314
4315``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4316noalias memory-access sets. This means that some collection of memory access
4317instructions (loads, stores, memory-accessing calls, etc.) that carry
4318``noalias`` metadata can specifically be specified not to alias with some other
4319collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004320Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004321a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004322of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004323subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004324instruction's ``noalias`` list, then the two memory accesses are assumed not to
4325alias.
Hal Finkel94146652014-07-24 14:25:39 +00004326
Hal Finkel029cde62014-07-25 15:50:02 +00004327The metadata identifying each domain is itself a list containing one or two
4328entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004329string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004330self-reference can be used to create globally unique domain names. A
4331descriptive string may optionally be provided as a second list entry.
4332
4333The metadata identifying each scope is also itself a list containing two or
4334three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004335is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004336self-reference can be used to create globally unique scope names. A metadata
4337reference to the scope's domain is the second entry. A descriptive string may
4338optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004339
4340For example,
4341
4342.. code-block:: llvm
4343
Hal Finkel029cde62014-07-25 15:50:02 +00004344 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004345 !0 = !{!0}
4346 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004347
Hal Finkel029cde62014-07-25 15:50:02 +00004348 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004349 !2 = !{!2, !0}
4350 !3 = !{!3, !0}
4351 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004352
Hal Finkel029cde62014-07-25 15:50:02 +00004353 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004354 !5 = !{!4} ; A list containing only scope !4
4355 !6 = !{!4, !3, !2}
4356 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004357
4358 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004359 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004360 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004361
Hal Finkel029cde62014-07-25 15:50:02 +00004362 ; These two instructions also don't alias (for domain !1, the set of scopes
4363 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004364 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004365 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004366
Adam Nemet0a8416f2015-05-11 08:30:28 +00004367 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004368 ; the !noalias list is not a superset of, or equal to, the scopes in the
4369 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004370 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004371 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004372
Sean Silvab084af42012-12-07 10:36:55 +00004373'``fpmath``' Metadata
4374^^^^^^^^^^^^^^^^^^^^^
4375
4376``fpmath`` metadata may be attached to any instruction of floating point
4377type. It can be used to express the maximum acceptable error in the
4378result of that instruction, in ULPs, thus potentially allowing the
4379compiler to use a more efficient but less accurate method of computing
4380it. ULP is defined as follows:
4381
4382 If ``x`` is a real number that lies between two finite consecutive
4383 floating-point numbers ``a`` and ``b``, without being equal to one
4384 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4385 distance between the two non-equal finite floating-point numbers
4386 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4387
4388The metadata node shall consist of a single positive floating point
4389number representing the maximum relative error, for example:
4390
4391.. code-block:: llvm
4392
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004393 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004394
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004395.. _range-metadata:
4396
Sean Silvab084af42012-12-07 10:36:55 +00004397'``range``' Metadata
4398^^^^^^^^^^^^^^^^^^^^
4399
Jingyue Wu37fcb592014-06-19 16:50:16 +00004400``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4401integer types. It expresses the possible ranges the loaded value or the value
4402returned by the called function at this call site is in. The ranges are
4403represented with a flattened list of integers. The loaded value or the value
4404returned is known to be in the union of the ranges defined by each consecutive
4405pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004406
4407- The type must match the type loaded by the instruction.
4408- The pair ``a,b`` represents the range ``[a,b)``.
4409- Both ``a`` and ``b`` are constants.
4410- The range is allowed to wrap.
4411- The range should not represent the full or empty set. That is,
4412 ``a!=b``.
4413
4414In addition, the pairs must be in signed order of the lower bound and
4415they must be non-contiguous.
4416
4417Examples:
4418
4419.. code-block:: llvm
4420
David Blaikiec7aabbb2015-03-04 22:06:14 +00004421 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4422 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004423 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4424 %d = invoke i8 @bar() to label %cont
4425 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004426 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004427 !0 = !{ i8 0, i8 2 }
4428 !1 = !{ i8 255, i8 2 }
4429 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4430 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004431
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004432'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004433^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004434
4435``unpredictable`` metadata may be attached to any branch or switch
4436instruction. It can be used to express the unpredictability of control
4437flow. Similar to the llvm.expect intrinsic, it may be used to alter
4438optimizations related to compare and branch instructions. The metadata
4439is treated as a boolean value; if it exists, it signals that the branch
4440or switch that it is attached to is completely unpredictable.
4441
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004442'``llvm.loop``'
4443^^^^^^^^^^^^^^^
4444
4445It is sometimes useful to attach information to loop constructs. Currently,
4446loop metadata is implemented as metadata attached to the branch instruction
4447in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004448guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004449specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004450
4451The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004452itself to avoid merging it with any other identifier metadata, e.g.,
4453during module linkage or function inlining. That is, each loop should refer
4454to their own identification metadata even if they reside in separate functions.
4455The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004456constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004457
4458.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004459
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004460 !0 = !{!0}
4461 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004462
Mark Heffernan893752a2014-07-18 19:24:51 +00004463The loop identifier metadata can be used to specify additional
4464per-loop metadata. Any operands after the first operand can be treated
4465as user-defined metadata. For example the ``llvm.loop.unroll.count``
4466suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004467
Paul Redmond5fdf8362013-05-28 20:00:34 +00004468.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004469
Paul Redmond5fdf8362013-05-28 20:00:34 +00004470 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4471 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004472 !0 = !{!0, !1}
4473 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004474
Mark Heffernan9d20e422014-07-21 23:11:03 +00004475'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4476^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004477
Mark Heffernan9d20e422014-07-21 23:11:03 +00004478Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4479used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004480vectorization width and interleave count. These metadata should be used in
4481conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004482``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4483optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004484it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004485which contains information about loop-carried memory dependencies can be helpful
4486in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004487
Mark Heffernan9d20e422014-07-21 23:11:03 +00004488'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4490
Mark Heffernan9d20e422014-07-21 23:11:03 +00004491This metadata suggests an interleave count to the loop interleaver.
4492The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004493second operand is an integer specifying the interleave count. For
4494example:
4495
4496.. code-block:: llvm
4497
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004498 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004499
Mark Heffernan9d20e422014-07-21 23:11:03 +00004500Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004501multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004502then the interleave count will be determined automatically.
4503
4504'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004506
4507This metadata selectively enables or disables vectorization for the loop. The
4508first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004509is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000045100 disables vectorization:
4511
4512.. code-block:: llvm
4513
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004514 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4515 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004516
4517'``llvm.loop.vectorize.width``' Metadata
4518^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4519
4520This metadata sets the target width of the vectorizer. The first
4521operand is the string ``llvm.loop.vectorize.width`` and the second
4522operand is an integer specifying the width. For example:
4523
4524.. code-block:: llvm
4525
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004526 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004527
4528Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004529vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000045300 or if the loop does not have this metadata the width will be
4531determined automatically.
4532
4533'``llvm.loop.unroll``'
4534^^^^^^^^^^^^^^^^^^^^^^
4535
4536Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4537optimization hints such as the unroll factor. ``llvm.loop.unroll``
4538metadata should be used in conjunction with ``llvm.loop`` loop
4539identification metadata. The ``llvm.loop.unroll`` metadata are only
4540optimization hints and the unrolling will only be performed if the
4541optimizer believes it is safe to do so.
4542
Mark Heffernan893752a2014-07-18 19:24:51 +00004543'``llvm.loop.unroll.count``' Metadata
4544^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4545
4546This metadata suggests an unroll factor to the loop unroller. The
4547first operand is the string ``llvm.loop.unroll.count`` and the second
4548operand is a positive integer specifying the unroll factor. For
4549example:
4550
4551.. code-block:: llvm
4552
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004553 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004554
4555If the trip count of the loop is less than the unroll count the loop
4556will be partially unrolled.
4557
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004558'``llvm.loop.unroll.disable``' Metadata
4559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4560
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004561This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004562which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004563
4564.. code-block:: llvm
4565
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004566 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004567
Kevin Qin715b01e2015-03-09 06:14:18 +00004568'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004569^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004570
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004571This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004572operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004573
4574.. code-block:: llvm
4575
4576 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4577
Mark Heffernan89391542015-08-10 17:28:08 +00004578'``llvm.loop.unroll.enable``' Metadata
4579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4580
4581This metadata suggests that the loop should be fully unrolled if the trip count
4582is known at compile time and partially unrolled if the trip count is not known
4583at compile time. The metadata has a single operand which is the string
4584``llvm.loop.unroll.enable``. For example:
4585
4586.. code-block:: llvm
4587
4588 !0 = !{!"llvm.loop.unroll.enable"}
4589
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004590'``llvm.loop.unroll.full``' Metadata
4591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4592
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004593This metadata suggests that the loop should be unrolled fully. The
4594metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004595For example:
4596
4597.. code-block:: llvm
4598
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004599 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004600
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004601'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004602^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004603
4604This metadata indicates that the loop should not be versioned for the purpose
4605of enabling loop-invariant code motion (LICM). The metadata has a single operand
4606which is the string ``llvm.loop.licm_versioning.disable``. For example:
4607
4608.. code-block:: llvm
4609
4610 !0 = !{!"llvm.loop.licm_versioning.disable"}
4611
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004612'``llvm.mem``'
4613^^^^^^^^^^^^^^^
4614
4615Metadata types used to annotate memory accesses with information helpful
4616for optimizations are prefixed with ``llvm.mem``.
4617
4618'``llvm.mem.parallel_loop_access``' Metadata
4619^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4620
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004621The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4622or metadata containing a list of loop identifiers for nested loops.
4623The metadata is attached to memory accessing instructions and denotes that
4624no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004625with the same loop identifier.
4626
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004627Precisely, given two instructions ``m1`` and ``m2`` that both have the
4628``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4629set of loops associated with that metadata, respectively, then there is no loop
4630carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004631``L2``.
4632
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004633As a special case, if all memory accessing instructions in a loop have
4634``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4635loop has no loop carried memory dependences and is considered to be a parallel
4636loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004637
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004638Note that if not all memory access instructions have such metadata referring to
4639the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004640memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004641safe mechanism, this causes loops that were originally parallel to be considered
4642sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004643insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004644
4645Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004646both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004647metadata types that refer to the same loop identifier metadata.
4648
4649.. code-block:: llvm
4650
4651 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004652 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004653 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004654 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004655 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004656 ...
4657 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004658
4659 for.end:
4660 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004661 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004662
4663It is also possible to have nested parallel loops. In that case the
4664memory accesses refer to a list of loop identifier metadata nodes instead of
4665the loop identifier metadata node directly:
4666
4667.. code-block:: llvm
4668
4669 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004670 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004671 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004672 ...
4673 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004674
4675 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004676 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004677 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004678 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004679 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004680 ...
4681 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004682
4683 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004684 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004685 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004686 ...
4687 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004688
4689 outer.for.end: ; preds = %for.body
4690 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004691 !0 = !{!1, !2} ; a list of loop identifiers
4692 !1 = !{!1} ; an identifier for the inner loop
4693 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004694
Peter Collingbournee6909c82015-02-20 20:30:47 +00004695'``llvm.bitsets``'
4696^^^^^^^^^^^^^^^^^^
4697
4698The ``llvm.bitsets`` global metadata is used to implement
4699:doc:`bitsets <BitSets>`.
4700
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004701'``invariant.group``' Metadata
4702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4703
4704The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4705The existence of the ``invariant.group`` metadata on the instruction tells
4706the optimizer that every ``load`` and ``store`` to the same pointer operand
4707within the same invariant group can be assumed to load or store the same
4708value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4709when two pointers are considered the same).
4710
4711Examples:
4712
4713.. code-block:: llvm
4714
4715 @unknownPtr = external global i8
4716 ...
4717 %ptr = alloca i8
4718 store i8 42, i8* %ptr, !invariant.group !0
4719 call void @foo(i8* %ptr)
4720
4721 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4722 call void @foo(i8* %ptr)
4723 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4724
4725 %newPtr = call i8* @getPointer(i8* %ptr)
4726 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4727
4728 %unknownValue = load i8, i8* @unknownPtr
4729 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4730
4731 call void @foo(i8* %ptr)
4732 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4733 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4734
4735 ...
4736 declare void @foo(i8*)
4737 declare i8* @getPointer(i8*)
4738 declare i8* @llvm.invariant.group.barrier(i8*)
4739
4740 !0 = !{!"magic ptr"}
4741 !1 = !{!"other ptr"}
4742
4743
4744
Sean Silvab084af42012-12-07 10:36:55 +00004745Module Flags Metadata
4746=====================
4747
4748Information about the module as a whole is difficult to convey to LLVM's
4749subsystems. The LLVM IR isn't sufficient to transmit this information.
4750The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004751this. These flags are in the form of key / value pairs --- much like a
4752dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004753look it up.
4754
4755The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4756Each triplet has the following form:
4757
4758- The first element is a *behavior* flag, which specifies the behavior
4759 when two (or more) modules are merged together, and it encounters two
4760 (or more) metadata with the same ID. The supported behaviors are
4761 described below.
4762- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004763 metadata. Each module may only have one flag entry for each unique ID (not
4764 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004765- The third element is the value of the flag.
4766
4767When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004768``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4769each unique metadata ID string, there will be exactly one entry in the merged
4770modules ``llvm.module.flags`` metadata table, and the value for that entry will
4771be determined by the merge behavior flag, as described below. The only exception
4772is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004773
4774The following behaviors are supported:
4775
4776.. list-table::
4777 :header-rows: 1
4778 :widths: 10 90
4779
4780 * - Value
4781 - Behavior
4782
4783 * - 1
4784 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004785 Emits an error if two values disagree, otherwise the resulting value
4786 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004787
4788 * - 2
4789 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004790 Emits a warning if two values disagree. The result value will be the
4791 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004792
4793 * - 3
4794 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004795 Adds a requirement that another module flag be present and have a
4796 specified value after linking is performed. The value must be a
4797 metadata pair, where the first element of the pair is the ID of the
4798 module flag to be restricted, and the second element of the pair is
4799 the value the module flag should be restricted to. This behavior can
4800 be used to restrict the allowable results (via triggering of an
4801 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004802
4803 * - 4
4804 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004805 Uses the specified value, regardless of the behavior or value of the
4806 other module. If both modules specify **Override**, but the values
4807 differ, an error will be emitted.
4808
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004809 * - 5
4810 - **Append**
4811 Appends the two values, which are required to be metadata nodes.
4812
4813 * - 6
4814 - **AppendUnique**
4815 Appends the two values, which are required to be metadata
4816 nodes. However, duplicate entries in the second list are dropped
4817 during the append operation.
4818
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004819It is an error for a particular unique flag ID to have multiple behaviors,
4820except in the case of **Require** (which adds restrictions on another metadata
4821value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004822
4823An example of module flags:
4824
4825.. code-block:: llvm
4826
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004827 !0 = !{ i32 1, !"foo", i32 1 }
4828 !1 = !{ i32 4, !"bar", i32 37 }
4829 !2 = !{ i32 2, !"qux", i32 42 }
4830 !3 = !{ i32 3, !"qux",
4831 !{
4832 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004833 }
4834 }
4835 !llvm.module.flags = !{ !0, !1, !2, !3 }
4836
4837- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4838 if two or more ``!"foo"`` flags are seen is to emit an error if their
4839 values are not equal.
4840
4841- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4842 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004843 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004844
4845- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4846 behavior if two or more ``!"qux"`` flags are seen is to emit a
4847 warning if their values are not equal.
4848
4849- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4850
4851 ::
4852
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004853 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004854
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004855 The behavior is to emit an error if the ``llvm.module.flags`` does not
4856 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4857 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004858
4859Objective-C Garbage Collection Module Flags Metadata
4860----------------------------------------------------
4861
4862On the Mach-O platform, Objective-C stores metadata about garbage
4863collection in a special section called "image info". The metadata
4864consists of a version number and a bitmask specifying what types of
4865garbage collection are supported (if any) by the file. If two or more
4866modules are linked together their garbage collection metadata needs to
4867be merged rather than appended together.
4868
4869The Objective-C garbage collection module flags metadata consists of the
4870following key-value pairs:
4871
4872.. list-table::
4873 :header-rows: 1
4874 :widths: 30 70
4875
4876 * - Key
4877 - Value
4878
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004879 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004880 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004881
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004882 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004883 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004884 always 0.
4885
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004886 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004887 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004888 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4889 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4890 Objective-C ABI version 2.
4891
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004892 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004893 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004894 not. Valid values are 0, for no garbage collection, and 2, for garbage
4895 collection supported.
4896
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004897 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004898 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004899 If present, its value must be 6. This flag requires that the
4900 ``Objective-C Garbage Collection`` flag have the value 2.
4901
4902Some important flag interactions:
4903
4904- If a module with ``Objective-C Garbage Collection`` set to 0 is
4905 merged with a module with ``Objective-C Garbage Collection`` set to
4906 2, then the resulting module has the
4907 ``Objective-C Garbage Collection`` flag set to 0.
4908- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4909 merged with a module with ``Objective-C GC Only`` set to 6.
4910
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004911Automatic Linker Flags Module Flags Metadata
4912--------------------------------------------
4913
4914Some targets support embedding flags to the linker inside individual object
4915files. Typically this is used in conjunction with language extensions which
4916allow source files to explicitly declare the libraries they depend on, and have
4917these automatically be transmitted to the linker via object files.
4918
4919These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004920using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004921to be ``AppendUnique``, and the value for the key is expected to be a metadata
4922node which should be a list of other metadata nodes, each of which should be a
4923list of metadata strings defining linker options.
4924
4925For example, the following metadata section specifies two separate sets of
4926linker options, presumably to link against ``libz`` and the ``Cocoa``
4927framework::
4928
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004929 !0 = !{ i32 6, !"Linker Options",
4930 !{
4931 !{ !"-lz" },
4932 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004933 !llvm.module.flags = !{ !0 }
4934
4935The metadata encoding as lists of lists of options, as opposed to a collapsed
4936list of options, is chosen so that the IR encoding can use multiple option
4937strings to specify e.g., a single library, while still having that specifier be
4938preserved as an atomic element that can be recognized by a target specific
4939assembly writer or object file emitter.
4940
4941Each individual option is required to be either a valid option for the target's
4942linker, or an option that is reserved by the target specific assembly writer or
4943object file emitter. No other aspect of these options is defined by the IR.
4944
Oliver Stannard5dc29342014-06-20 10:08:11 +00004945C type width Module Flags Metadata
4946----------------------------------
4947
4948The ARM backend emits a section into each generated object file describing the
4949options that it was compiled with (in a compiler-independent way) to prevent
4950linking incompatible objects, and to allow automatic library selection. Some
4951of these options are not visible at the IR level, namely wchar_t width and enum
4952width.
4953
4954To pass this information to the backend, these options are encoded in module
4955flags metadata, using the following key-value pairs:
4956
4957.. list-table::
4958 :header-rows: 1
4959 :widths: 30 70
4960
4961 * - Key
4962 - Value
4963
4964 * - short_wchar
4965 - * 0 --- sizeof(wchar_t) == 4
4966 * 1 --- sizeof(wchar_t) == 2
4967
4968 * - short_enum
4969 - * 0 --- Enums are at least as large as an ``int``.
4970 * 1 --- Enums are stored in the smallest integer type which can
4971 represent all of its values.
4972
4973For example, the following metadata section specifies that the module was
4974compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4975enum is the smallest type which can represent all of its values::
4976
4977 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004978 !0 = !{i32 1, !"short_wchar", i32 1}
4979 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004980
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004981.. _intrinsicglobalvariables:
4982
Sean Silvab084af42012-12-07 10:36:55 +00004983Intrinsic Global Variables
4984==========================
4985
4986LLVM has a number of "magic" global variables that contain data that
4987affect code generation or other IR semantics. These are documented here.
4988All globals of this sort should have a section specified as
4989"``llvm.metadata``". This section and all globals that start with
4990"``llvm.``" are reserved for use by LLVM.
4991
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004992.. _gv_llvmused:
4993
Sean Silvab084af42012-12-07 10:36:55 +00004994The '``llvm.used``' Global Variable
4995-----------------------------------
4996
Rafael Espindola74f2e462013-04-22 14:58:02 +00004997The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004998:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004999pointers to named global variables, functions and aliases which may optionally
5000have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005001use of it is:
5002
5003.. code-block:: llvm
5004
5005 @X = global i8 4
5006 @Y = global i32 123
5007
5008 @llvm.used = appending global [2 x i8*] [
5009 i8* @X,
5010 i8* bitcast (i32* @Y to i8*)
5011 ], section "llvm.metadata"
5012
Rafael Espindola74f2e462013-04-22 14:58:02 +00005013If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5014and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005015symbol that it cannot see (which is why they have to be named). For example, if
5016a variable has internal linkage and no references other than that from the
5017``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5018references from inline asms and other things the compiler cannot "see", and
5019corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005020
5021On some targets, the code generator must emit a directive to the
5022assembler or object file to prevent the assembler and linker from
5023molesting the symbol.
5024
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005025.. _gv_llvmcompilerused:
5026
Sean Silvab084af42012-12-07 10:36:55 +00005027The '``llvm.compiler.used``' Global Variable
5028--------------------------------------------
5029
5030The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5031directive, except that it only prevents the compiler from touching the
5032symbol. On targets that support it, this allows an intelligent linker to
5033optimize references to the symbol without being impeded as it would be
5034by ``@llvm.used``.
5035
5036This is a rare construct that should only be used in rare circumstances,
5037and should not be exposed to source languages.
5038
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005039.. _gv_llvmglobalctors:
5040
Sean Silvab084af42012-12-07 10:36:55 +00005041The '``llvm.global_ctors``' Global Variable
5042-------------------------------------------
5043
5044.. code-block:: llvm
5045
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005046 %0 = type { i32, void ()*, i8* }
5047 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005048
5049The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005050functions, priorities, and an optional associated global or function.
5051The functions referenced by this array will be called in ascending order
5052of priority (i.e. lowest first) when the module is loaded. The order of
5053functions with the same priority is not defined.
5054
5055If the third field is present, non-null, and points to a global variable
5056or function, the initializer function will only run if the associated
5057data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005058
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005059.. _llvmglobaldtors:
5060
Sean Silvab084af42012-12-07 10:36:55 +00005061The '``llvm.global_dtors``' Global Variable
5062-------------------------------------------
5063
5064.. code-block:: llvm
5065
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005066 %0 = type { i32, void ()*, i8* }
5067 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005068
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005069The ``@llvm.global_dtors`` array contains a list of destructor
5070functions, priorities, and an optional associated global or function.
5071The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005072order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005073order of functions with the same priority is not defined.
5074
5075If the third field is present, non-null, and points to a global variable
5076or function, the destructor function will only run if the associated
5077data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005078
5079Instruction Reference
5080=====================
5081
5082The LLVM instruction set consists of several different classifications
5083of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5084instructions <binaryops>`, :ref:`bitwise binary
5085instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5086:ref:`other instructions <otherops>`.
5087
5088.. _terminators:
5089
5090Terminator Instructions
5091-----------------------
5092
5093As mentioned :ref:`previously <functionstructure>`, every basic block in a
5094program ends with a "Terminator" instruction, which indicates which
5095block should be executed after the current block is finished. These
5096terminator instructions typically yield a '``void``' value: they produce
5097control flow, not values (the one exception being the
5098':ref:`invoke <i_invoke>`' instruction).
5099
5100The terminator instructions are: ':ref:`ret <i_ret>`',
5101':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5102':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005103':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005104':ref:`catchret <i_catchret>`',
5105':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005106and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005107
5108.. _i_ret:
5109
5110'``ret``' Instruction
5111^^^^^^^^^^^^^^^^^^^^^
5112
5113Syntax:
5114"""""""
5115
5116::
5117
5118 ret <type> <value> ; Return a value from a non-void function
5119 ret void ; Return from void function
5120
5121Overview:
5122"""""""""
5123
5124The '``ret``' instruction is used to return control flow (and optionally
5125a value) from a function back to the caller.
5126
5127There are two forms of the '``ret``' instruction: one that returns a
5128value and then causes control flow, and one that just causes control
5129flow to occur.
5130
5131Arguments:
5132""""""""""
5133
5134The '``ret``' instruction optionally accepts a single argument, the
5135return value. The type of the return value must be a ':ref:`first
5136class <t_firstclass>`' type.
5137
5138A function is not :ref:`well formed <wellformed>` if it it has a non-void
5139return type and contains a '``ret``' instruction with no return value or
5140a return value with a type that does not match its type, or if it has a
5141void return type and contains a '``ret``' instruction with a return
5142value.
5143
5144Semantics:
5145""""""""""
5146
5147When the '``ret``' instruction is executed, control flow returns back to
5148the calling function's context. If the caller is a
5149":ref:`call <i_call>`" instruction, execution continues at the
5150instruction after the call. If the caller was an
5151":ref:`invoke <i_invoke>`" instruction, execution continues at the
5152beginning of the "normal" destination block. If the instruction returns
5153a value, that value shall set the call or invoke instruction's return
5154value.
5155
5156Example:
5157""""""""
5158
5159.. code-block:: llvm
5160
5161 ret i32 5 ; Return an integer value of 5
5162 ret void ; Return from a void function
5163 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5164
5165.. _i_br:
5166
5167'``br``' Instruction
5168^^^^^^^^^^^^^^^^^^^^
5169
5170Syntax:
5171"""""""
5172
5173::
5174
5175 br i1 <cond>, label <iftrue>, label <iffalse>
5176 br label <dest> ; Unconditional branch
5177
5178Overview:
5179"""""""""
5180
5181The '``br``' instruction is used to cause control flow to transfer to a
5182different basic block in the current function. There are two forms of
5183this instruction, corresponding to a conditional branch and an
5184unconditional branch.
5185
5186Arguments:
5187""""""""""
5188
5189The conditional branch form of the '``br``' instruction takes a single
5190'``i1``' value and two '``label``' values. The unconditional form of the
5191'``br``' instruction takes a single '``label``' value as a target.
5192
5193Semantics:
5194""""""""""
5195
5196Upon execution of a conditional '``br``' instruction, the '``i1``'
5197argument is evaluated. If the value is ``true``, control flows to the
5198'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5199to the '``iffalse``' ``label`` argument.
5200
5201Example:
5202""""""""
5203
5204.. code-block:: llvm
5205
5206 Test:
5207 %cond = icmp eq i32 %a, %b
5208 br i1 %cond, label %IfEqual, label %IfUnequal
5209 IfEqual:
5210 ret i32 1
5211 IfUnequal:
5212 ret i32 0
5213
5214.. _i_switch:
5215
5216'``switch``' Instruction
5217^^^^^^^^^^^^^^^^^^^^^^^^
5218
5219Syntax:
5220"""""""
5221
5222::
5223
5224 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5225
5226Overview:
5227"""""""""
5228
5229The '``switch``' instruction is used to transfer control flow to one of
5230several different places. It is a generalization of the '``br``'
5231instruction, allowing a branch to occur to one of many possible
5232destinations.
5233
5234Arguments:
5235""""""""""
5236
5237The '``switch``' instruction uses three parameters: an integer
5238comparison value '``value``', a default '``label``' destination, and an
5239array of pairs of comparison value constants and '``label``'s. The table
5240is not allowed to contain duplicate constant entries.
5241
5242Semantics:
5243""""""""""
5244
5245The ``switch`` instruction specifies a table of values and destinations.
5246When the '``switch``' instruction is executed, this table is searched
5247for the given value. If the value is found, control flow is transferred
5248to the corresponding destination; otherwise, control flow is transferred
5249to the default destination.
5250
5251Implementation:
5252"""""""""""""""
5253
5254Depending on properties of the target machine and the particular
5255``switch`` instruction, this instruction may be code generated in
5256different ways. For example, it could be generated as a series of
5257chained conditional branches or with a lookup table.
5258
5259Example:
5260""""""""
5261
5262.. code-block:: llvm
5263
5264 ; Emulate a conditional br instruction
5265 %Val = zext i1 %value to i32
5266 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5267
5268 ; Emulate an unconditional br instruction
5269 switch i32 0, label %dest [ ]
5270
5271 ; Implement a jump table:
5272 switch i32 %val, label %otherwise [ i32 0, label %onzero
5273 i32 1, label %onone
5274 i32 2, label %ontwo ]
5275
5276.. _i_indirectbr:
5277
5278'``indirectbr``' Instruction
5279^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5280
5281Syntax:
5282"""""""
5283
5284::
5285
5286 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5287
5288Overview:
5289"""""""""
5290
5291The '``indirectbr``' instruction implements an indirect branch to a
5292label within the current function, whose address is specified by
5293"``address``". Address must be derived from a
5294:ref:`blockaddress <blockaddress>` constant.
5295
5296Arguments:
5297""""""""""
5298
5299The '``address``' argument is the address of the label to jump to. The
5300rest of the arguments indicate the full set of possible destinations
5301that the address may point to. Blocks are allowed to occur multiple
5302times in the destination list, though this isn't particularly useful.
5303
5304This destination list is required so that dataflow analysis has an
5305accurate understanding of the CFG.
5306
5307Semantics:
5308""""""""""
5309
5310Control transfers to the block specified in the address argument. All
5311possible destination blocks must be listed in the label list, otherwise
5312this instruction has undefined behavior. This implies that jumps to
5313labels defined in other functions have undefined behavior as well.
5314
5315Implementation:
5316"""""""""""""""
5317
5318This is typically implemented with a jump through a register.
5319
5320Example:
5321""""""""
5322
5323.. code-block:: llvm
5324
5325 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5326
5327.. _i_invoke:
5328
5329'``invoke``' Instruction
5330^^^^^^^^^^^^^^^^^^^^^^^^
5331
5332Syntax:
5333"""""""
5334
5335::
5336
5337 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005338 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005339
5340Overview:
5341"""""""""
5342
5343The '``invoke``' instruction causes control to transfer to a specified
5344function, with the possibility of control flow transfer to either the
5345'``normal``' label or the '``exception``' label. If the callee function
5346returns with the "``ret``" instruction, control flow will return to the
5347"normal" label. If the callee (or any indirect callees) returns via the
5348":ref:`resume <i_resume>`" instruction or other exception handling
5349mechanism, control is interrupted and continued at the dynamically
5350nearest "exception" label.
5351
5352The '``exception``' label is a `landing
5353pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5354'``exception``' label is required to have the
5355":ref:`landingpad <i_landingpad>`" instruction, which contains the
5356information about the behavior of the program after unwinding happens,
5357as its first non-PHI instruction. The restrictions on the
5358"``landingpad``" instruction's tightly couples it to the "``invoke``"
5359instruction, so that the important information contained within the
5360"``landingpad``" instruction can't be lost through normal code motion.
5361
5362Arguments:
5363""""""""""
5364
5365This instruction requires several arguments:
5366
5367#. The optional "cconv" marker indicates which :ref:`calling
5368 convention <callingconv>` the call should use. If none is
5369 specified, the call defaults to using C calling conventions.
5370#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5371 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5372 are valid here.
5373#. '``ptr to function ty``': shall be the signature of the pointer to
5374 function value being invoked. In most cases, this is a direct
5375 function invocation, but indirect ``invoke``'s are just as possible,
5376 branching off an arbitrary pointer to function value.
5377#. '``function ptr val``': An LLVM value containing a pointer to a
5378 function to be invoked.
5379#. '``function args``': argument list whose types match the function
5380 signature argument types and parameter attributes. All arguments must
5381 be of :ref:`first class <t_firstclass>` type. If the function signature
5382 indicates the function accepts a variable number of arguments, the
5383 extra arguments can be specified.
5384#. '``normal label``': the label reached when the called function
5385 executes a '``ret``' instruction.
5386#. '``exception label``': the label reached when a callee returns via
5387 the :ref:`resume <i_resume>` instruction or other exception handling
5388 mechanism.
5389#. The optional :ref:`function attributes <fnattrs>` list. Only
5390 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5391 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005392#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005393
5394Semantics:
5395""""""""""
5396
5397This instruction is designed to operate as a standard '``call``'
5398instruction in most regards. The primary difference is that it
5399establishes an association with a label, which is used by the runtime
5400library to unwind the stack.
5401
5402This instruction is used in languages with destructors to ensure that
5403proper cleanup is performed in the case of either a ``longjmp`` or a
5404thrown exception. Additionally, this is important for implementation of
5405'``catch``' clauses in high-level languages that support them.
5406
5407For the purposes of the SSA form, the definition of the value returned
5408by the '``invoke``' instruction is deemed to occur on the edge from the
5409current block to the "normal" label. If the callee unwinds then no
5410return value is available.
5411
5412Example:
5413""""""""
5414
5415.. code-block:: llvm
5416
5417 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005418 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005419 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005420 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005421
5422.. _i_resume:
5423
5424'``resume``' Instruction
5425^^^^^^^^^^^^^^^^^^^^^^^^
5426
5427Syntax:
5428"""""""
5429
5430::
5431
5432 resume <type> <value>
5433
5434Overview:
5435"""""""""
5436
5437The '``resume``' instruction is a terminator instruction that has no
5438successors.
5439
5440Arguments:
5441""""""""""
5442
5443The '``resume``' instruction requires one argument, which must have the
5444same type as the result of any '``landingpad``' instruction in the same
5445function.
5446
5447Semantics:
5448""""""""""
5449
5450The '``resume``' instruction resumes propagation of an existing
5451(in-flight) exception whose unwinding was interrupted with a
5452:ref:`landingpad <i_landingpad>` instruction.
5453
5454Example:
5455""""""""
5456
5457.. code-block:: llvm
5458
5459 resume { i8*, i32 } %exn
5460
David Majnemer8a1c45d2015-12-12 05:38:55 +00005461.. _i_catchswitch:
5462
5463'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005465
5466Syntax:
5467"""""""
5468
5469::
5470
5471 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5472 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5473
5474Overview:
5475"""""""""
5476
5477The '``catchswitch``' instruction is used by `LLVM's exception handling system
5478<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5479that may be executed by the :ref:`EH personality routine <personalityfn>`.
5480
5481Arguments:
5482""""""""""
5483
5484The ``parent`` argument is the token of the funclet that contains the
5485``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5486this operand may be the token ``none``.
5487
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005488The ``default`` argument is the label of another basic block beginning with
5489either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5490must be a legal target with respect to the ``parent`` links, as described in
5491the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005492
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005493The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005494:ref:`catchpad <i_catchpad>` instruction.
5495
5496Semantics:
5497""""""""""
5498
5499Executing this instruction transfers control to one of the successors in
5500``handlers``, if appropriate, or continues to unwind via the unwind label if
5501present.
5502
5503The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5504it must be both the first non-phi instruction and last instruction in the basic
5505block. Therefore, it must be the only non-phi instruction in the block.
5506
5507Example:
5508""""""""
5509
5510.. code-block:: llvm
5511
5512 dispatch1:
5513 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5514 dispatch2:
5515 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5516
David Majnemer654e1302015-07-31 17:58:14 +00005517.. _i_catchret:
5518
5519'``catchret``' Instruction
5520^^^^^^^^^^^^^^^^^^^^^^^^^^
5521
5522Syntax:
5523"""""""
5524
5525::
5526
David Majnemer8a1c45d2015-12-12 05:38:55 +00005527 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005528
5529Overview:
5530"""""""""
5531
5532The '``catchret``' instruction is a terminator instruction that has a
5533single successor.
5534
5535
5536Arguments:
5537""""""""""
5538
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005539The first argument to a '``catchret``' indicates which ``catchpad`` it
5540exits. It must be a :ref:`catchpad <i_catchpad>`.
5541The second argument to a '``catchret``' specifies where control will
5542transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005543
5544Semantics:
5545""""""""""
5546
David Majnemer8a1c45d2015-12-12 05:38:55 +00005547The '``catchret``' instruction ends an existing (in-flight) exception whose
5548unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5549:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5550code to, for example, destroy the active exception. Control then transfers to
5551``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005552
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005553The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5554If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5555funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5556the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005557
5558Example:
5559""""""""
5560
5561.. code-block:: llvm
5562
David Majnemer8a1c45d2015-12-12 05:38:55 +00005563 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005564
David Majnemer654e1302015-07-31 17:58:14 +00005565.. _i_cleanupret:
5566
5567'``cleanupret``' Instruction
5568^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5569
5570Syntax:
5571"""""""
5572
5573::
5574
David Majnemer8a1c45d2015-12-12 05:38:55 +00005575 cleanupret from <value> unwind label <continue>
5576 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005577
5578Overview:
5579"""""""""
5580
5581The '``cleanupret``' instruction is a terminator instruction that has
5582an optional successor.
5583
5584
5585Arguments:
5586""""""""""
5587
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005588The '``cleanupret``' instruction requires one argument, which indicates
5589which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005590If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5591funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5592the ``cleanupret``'s behavior is undefined.
5593
5594The '``cleanupret``' instruction also has an optional successor, ``continue``,
5595which must be the label of another basic block beginning with either a
5596``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5597be a legal target with respect to the ``parent`` links, as described in the
5598`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005599
5600Semantics:
5601""""""""""
5602
5603The '``cleanupret``' instruction indicates to the
5604:ref:`personality function <personalityfn>` that one
5605:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5606It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005607
David Majnemer654e1302015-07-31 17:58:14 +00005608Example:
5609""""""""
5610
5611.. code-block:: llvm
5612
David Majnemer8a1c45d2015-12-12 05:38:55 +00005613 cleanupret from %cleanup unwind to caller
5614 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005615
Sean Silvab084af42012-12-07 10:36:55 +00005616.. _i_unreachable:
5617
5618'``unreachable``' Instruction
5619^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5620
5621Syntax:
5622"""""""
5623
5624::
5625
5626 unreachable
5627
5628Overview:
5629"""""""""
5630
5631The '``unreachable``' instruction has no defined semantics. This
5632instruction is used to inform the optimizer that a particular portion of
5633the code is not reachable. This can be used to indicate that the code
5634after a no-return function cannot be reached, and other facts.
5635
5636Semantics:
5637""""""""""
5638
5639The '``unreachable``' instruction has no defined semantics.
5640
5641.. _binaryops:
5642
5643Binary Operations
5644-----------------
5645
5646Binary operators are used to do most of the computation in a program.
5647They require two operands of the same type, execute an operation on
5648them, and produce a single value. The operands might represent multiple
5649data, as is the case with the :ref:`vector <t_vector>` data type. The
5650result value has the same type as its operands.
5651
5652There are several different binary operators:
5653
5654.. _i_add:
5655
5656'``add``' Instruction
5657^^^^^^^^^^^^^^^^^^^^^
5658
5659Syntax:
5660"""""""
5661
5662::
5663
Tim Northover675a0962014-06-13 14:24:23 +00005664 <result> = add <ty> <op1>, <op2> ; yields ty:result
5665 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5666 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5667 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005668
5669Overview:
5670"""""""""
5671
5672The '``add``' instruction returns the sum of its two operands.
5673
5674Arguments:
5675""""""""""
5676
5677The two arguments to the '``add``' instruction must be
5678:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5679arguments must have identical types.
5680
5681Semantics:
5682""""""""""
5683
5684The value produced is the integer sum of the two operands.
5685
5686If the sum has unsigned overflow, the result returned is the
5687mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5688the result.
5689
5690Because LLVM integers use a two's complement representation, this
5691instruction is appropriate for both signed and unsigned integers.
5692
5693``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5694respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5695result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5696unsigned and/or signed overflow, respectively, occurs.
5697
5698Example:
5699""""""""
5700
5701.. code-block:: llvm
5702
Tim Northover675a0962014-06-13 14:24:23 +00005703 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005704
5705.. _i_fadd:
5706
5707'``fadd``' Instruction
5708^^^^^^^^^^^^^^^^^^^^^^
5709
5710Syntax:
5711"""""""
5712
5713::
5714
Tim Northover675a0962014-06-13 14:24:23 +00005715 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005716
5717Overview:
5718"""""""""
5719
5720The '``fadd``' instruction returns the sum of its two operands.
5721
5722Arguments:
5723""""""""""
5724
5725The two arguments to the '``fadd``' instruction must be :ref:`floating
5726point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5727Both arguments must have identical types.
5728
5729Semantics:
5730""""""""""
5731
5732The value produced is the floating point sum of the two operands. This
5733instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5734which are optimization hints to enable otherwise unsafe floating point
5735optimizations:
5736
5737Example:
5738""""""""
5739
5740.. code-block:: llvm
5741
Tim Northover675a0962014-06-13 14:24:23 +00005742 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005743
5744'``sub``' Instruction
5745^^^^^^^^^^^^^^^^^^^^^
5746
5747Syntax:
5748"""""""
5749
5750::
5751
Tim Northover675a0962014-06-13 14:24:23 +00005752 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5753 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5754 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5755 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005756
5757Overview:
5758"""""""""
5759
5760The '``sub``' instruction returns the difference of its two operands.
5761
5762Note that the '``sub``' instruction is used to represent the '``neg``'
5763instruction present in most other intermediate representations.
5764
5765Arguments:
5766""""""""""
5767
5768The two arguments to the '``sub``' instruction must be
5769:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5770arguments must have identical types.
5771
5772Semantics:
5773""""""""""
5774
5775The value produced is the integer difference of the two operands.
5776
5777If the difference has unsigned overflow, the result returned is the
5778mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5779the result.
5780
5781Because LLVM integers use a two's complement representation, this
5782instruction is appropriate for both signed and unsigned integers.
5783
5784``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5785respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5786result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5787unsigned and/or signed overflow, respectively, occurs.
5788
5789Example:
5790""""""""
5791
5792.. code-block:: llvm
5793
Tim Northover675a0962014-06-13 14:24:23 +00005794 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5795 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005796
5797.. _i_fsub:
5798
5799'``fsub``' Instruction
5800^^^^^^^^^^^^^^^^^^^^^^
5801
5802Syntax:
5803"""""""
5804
5805::
5806
Tim Northover675a0962014-06-13 14:24:23 +00005807 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005808
5809Overview:
5810"""""""""
5811
5812The '``fsub``' instruction returns the difference of its two operands.
5813
5814Note that the '``fsub``' instruction is used to represent the '``fneg``'
5815instruction present in most other intermediate representations.
5816
5817Arguments:
5818""""""""""
5819
5820The two arguments to the '``fsub``' instruction must be :ref:`floating
5821point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5822Both arguments must have identical types.
5823
5824Semantics:
5825""""""""""
5826
5827The value produced is the floating point difference of the two operands.
5828This instruction can also take any number of :ref:`fast-math
5829flags <fastmath>`, which are optimization hints to enable otherwise
5830unsafe floating point optimizations:
5831
5832Example:
5833""""""""
5834
5835.. code-block:: llvm
5836
Tim Northover675a0962014-06-13 14:24:23 +00005837 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5838 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005839
5840'``mul``' Instruction
5841^^^^^^^^^^^^^^^^^^^^^
5842
5843Syntax:
5844"""""""
5845
5846::
5847
Tim Northover675a0962014-06-13 14:24:23 +00005848 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5849 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5850 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5851 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005852
5853Overview:
5854"""""""""
5855
5856The '``mul``' instruction returns the product of its two operands.
5857
5858Arguments:
5859""""""""""
5860
5861The two arguments to the '``mul``' instruction must be
5862:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5863arguments must have identical types.
5864
5865Semantics:
5866""""""""""
5867
5868The value produced is the integer product of the two operands.
5869
5870If the result of the multiplication has unsigned overflow, the result
5871returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5872bit width of the result.
5873
5874Because LLVM integers use a two's complement representation, and the
5875result is the same width as the operands, this instruction returns the
5876correct result for both signed and unsigned integers. If a full product
5877(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5878sign-extended or zero-extended as appropriate to the width of the full
5879product.
5880
5881``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5882respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5883result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5884unsigned and/or signed overflow, respectively, occurs.
5885
5886Example:
5887""""""""
5888
5889.. code-block:: llvm
5890
Tim Northover675a0962014-06-13 14:24:23 +00005891 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005892
5893.. _i_fmul:
5894
5895'``fmul``' Instruction
5896^^^^^^^^^^^^^^^^^^^^^^
5897
5898Syntax:
5899"""""""
5900
5901::
5902
Tim Northover675a0962014-06-13 14:24:23 +00005903 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005904
5905Overview:
5906"""""""""
5907
5908The '``fmul``' instruction returns the product of its two operands.
5909
5910Arguments:
5911""""""""""
5912
5913The two arguments to the '``fmul``' instruction must be :ref:`floating
5914point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5915Both arguments must have identical types.
5916
5917Semantics:
5918""""""""""
5919
5920The value produced is the floating point product of the two operands.
5921This instruction can also take any number of :ref:`fast-math
5922flags <fastmath>`, which are optimization hints to enable otherwise
5923unsafe floating point optimizations:
5924
5925Example:
5926""""""""
5927
5928.. code-block:: llvm
5929
Tim Northover675a0962014-06-13 14:24:23 +00005930 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005931
5932'``udiv``' Instruction
5933^^^^^^^^^^^^^^^^^^^^^^
5934
5935Syntax:
5936"""""""
5937
5938::
5939
Tim Northover675a0962014-06-13 14:24:23 +00005940 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5941 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005942
5943Overview:
5944"""""""""
5945
5946The '``udiv``' instruction returns the quotient of its two operands.
5947
5948Arguments:
5949""""""""""
5950
5951The two arguments to the '``udiv``' instruction must be
5952:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5953arguments must have identical types.
5954
5955Semantics:
5956""""""""""
5957
5958The value produced is the unsigned integer quotient of the two operands.
5959
5960Note that unsigned integer division and signed integer division are
5961distinct operations; for signed integer division, use '``sdiv``'.
5962
5963Division by zero leads to undefined behavior.
5964
5965If the ``exact`` keyword is present, the result value of the ``udiv`` is
5966a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5967such, "((a udiv exact b) mul b) == a").
5968
5969Example:
5970""""""""
5971
5972.. code-block:: llvm
5973
Tim Northover675a0962014-06-13 14:24:23 +00005974 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005975
5976'``sdiv``' Instruction
5977^^^^^^^^^^^^^^^^^^^^^^
5978
5979Syntax:
5980"""""""
5981
5982::
5983
Tim Northover675a0962014-06-13 14:24:23 +00005984 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5985 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005986
5987Overview:
5988"""""""""
5989
5990The '``sdiv``' instruction returns the quotient of its two operands.
5991
5992Arguments:
5993""""""""""
5994
5995The two arguments to the '``sdiv``' instruction must be
5996:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5997arguments must have identical types.
5998
5999Semantics:
6000""""""""""
6001
6002The value produced is the signed integer quotient of the two operands
6003rounded towards zero.
6004
6005Note that signed integer division and unsigned integer division are
6006distinct operations; for unsigned integer division, use '``udiv``'.
6007
6008Division by zero leads to undefined behavior. Overflow also leads to
6009undefined behavior; this is a rare case, but can occur, for example, by
6010doing a 32-bit division of -2147483648 by -1.
6011
6012If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6013a :ref:`poison value <poisonvalues>` if the result would be rounded.
6014
6015Example:
6016""""""""
6017
6018.. code-block:: llvm
6019
Tim Northover675a0962014-06-13 14:24:23 +00006020 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006021
6022.. _i_fdiv:
6023
6024'``fdiv``' Instruction
6025^^^^^^^^^^^^^^^^^^^^^^
6026
6027Syntax:
6028"""""""
6029
6030::
6031
Tim Northover675a0962014-06-13 14:24:23 +00006032 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006033
6034Overview:
6035"""""""""
6036
6037The '``fdiv``' instruction returns the quotient of its two operands.
6038
6039Arguments:
6040""""""""""
6041
6042The two arguments to the '``fdiv``' instruction must be :ref:`floating
6043point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6044Both arguments must have identical types.
6045
6046Semantics:
6047""""""""""
6048
6049The value produced is the floating point quotient of the two operands.
6050This instruction can also take any number of :ref:`fast-math
6051flags <fastmath>`, which are optimization hints to enable otherwise
6052unsafe floating point optimizations:
6053
6054Example:
6055""""""""
6056
6057.. code-block:: llvm
6058
Tim Northover675a0962014-06-13 14:24:23 +00006059 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006060
6061'``urem``' Instruction
6062^^^^^^^^^^^^^^^^^^^^^^
6063
6064Syntax:
6065"""""""
6066
6067::
6068
Tim Northover675a0962014-06-13 14:24:23 +00006069 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006070
6071Overview:
6072"""""""""
6073
6074The '``urem``' instruction returns the remainder from the unsigned
6075division of its two arguments.
6076
6077Arguments:
6078""""""""""
6079
6080The two arguments to the '``urem``' instruction must be
6081:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6082arguments must have identical types.
6083
6084Semantics:
6085""""""""""
6086
6087This instruction returns the unsigned integer *remainder* of a division.
6088This instruction always performs an unsigned division to get the
6089remainder.
6090
6091Note that unsigned integer remainder and signed integer remainder are
6092distinct operations; for signed integer remainder, use '``srem``'.
6093
6094Taking the remainder of a division by zero leads to undefined behavior.
6095
6096Example:
6097""""""""
6098
6099.. code-block:: llvm
6100
Tim Northover675a0962014-06-13 14:24:23 +00006101 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006102
6103'``srem``' Instruction
6104^^^^^^^^^^^^^^^^^^^^^^
6105
6106Syntax:
6107"""""""
6108
6109::
6110
Tim Northover675a0962014-06-13 14:24:23 +00006111 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006112
6113Overview:
6114"""""""""
6115
6116The '``srem``' instruction returns the remainder from the signed
6117division of its two operands. This instruction can also take
6118:ref:`vector <t_vector>` versions of the values in which case the elements
6119must be integers.
6120
6121Arguments:
6122""""""""""
6123
6124The two arguments to the '``srem``' instruction must be
6125:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6126arguments must have identical types.
6127
6128Semantics:
6129""""""""""
6130
6131This instruction returns the *remainder* of a division (where the result
6132is either zero or has the same sign as the dividend, ``op1``), not the
6133*modulo* operator (where the result is either zero or has the same sign
6134as the divisor, ``op2``) of a value. For more information about the
6135difference, see `The Math
6136Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6137table of how this is implemented in various languages, please see
6138`Wikipedia: modulo
6139operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6140
6141Note that signed integer remainder and unsigned integer remainder are
6142distinct operations; for unsigned integer remainder, use '``urem``'.
6143
6144Taking the remainder of a division by zero leads to undefined behavior.
6145Overflow also leads to undefined behavior; this is a rare case, but can
6146occur, for example, by taking the remainder of a 32-bit division of
6147-2147483648 by -1. (The remainder doesn't actually overflow, but this
6148rule lets srem be implemented using instructions that return both the
6149result of the division and the remainder.)
6150
6151Example:
6152""""""""
6153
6154.. code-block:: llvm
6155
Tim Northover675a0962014-06-13 14:24:23 +00006156 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006157
6158.. _i_frem:
6159
6160'``frem``' Instruction
6161^^^^^^^^^^^^^^^^^^^^^^
6162
6163Syntax:
6164"""""""
6165
6166::
6167
Tim Northover675a0962014-06-13 14:24:23 +00006168 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006169
6170Overview:
6171"""""""""
6172
6173The '``frem``' instruction returns the remainder from the division of
6174its two operands.
6175
6176Arguments:
6177""""""""""
6178
6179The two arguments to the '``frem``' instruction must be :ref:`floating
6180point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6181Both arguments must have identical types.
6182
6183Semantics:
6184""""""""""
6185
6186This instruction returns the *remainder* of a division. The remainder
6187has the same sign as the dividend. This instruction can also take any
6188number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6189to enable otherwise unsafe floating point optimizations:
6190
6191Example:
6192""""""""
6193
6194.. code-block:: llvm
6195
Tim Northover675a0962014-06-13 14:24:23 +00006196 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006197
6198.. _bitwiseops:
6199
6200Bitwise Binary Operations
6201-------------------------
6202
6203Bitwise binary operators are used to do various forms of bit-twiddling
6204in a program. They are generally very efficient instructions and can
6205commonly be strength reduced from other instructions. They require two
6206operands of the same type, execute an operation on them, and produce a
6207single value. The resulting value is the same type as its operands.
6208
6209'``shl``' Instruction
6210^^^^^^^^^^^^^^^^^^^^^
6211
6212Syntax:
6213"""""""
6214
6215::
6216
Tim Northover675a0962014-06-13 14:24:23 +00006217 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6218 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6219 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6220 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006221
6222Overview:
6223"""""""""
6224
6225The '``shl``' instruction returns the first operand shifted to the left
6226a specified number of bits.
6227
6228Arguments:
6229""""""""""
6230
6231Both arguments to the '``shl``' instruction must be the same
6232:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6233'``op2``' is treated as an unsigned value.
6234
6235Semantics:
6236""""""""""
6237
6238The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6239where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006240dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006241``op1``, the result is undefined. If the arguments are vectors, each
6242vector element of ``op1`` is shifted by the corresponding shift amount
6243in ``op2``.
6244
6245If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6246value <poisonvalues>` if it shifts out any non-zero bits. If the
6247``nsw`` keyword is present, then the shift produces a :ref:`poison
6248value <poisonvalues>` if it shifts out any bits that disagree with the
6249resultant sign bit. As such, NUW/NSW have the same semantics as they
6250would if the shift were expressed as a mul instruction with the same
6251nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6252
6253Example:
6254""""""""
6255
6256.. code-block:: llvm
6257
Tim Northover675a0962014-06-13 14:24:23 +00006258 <result> = shl i32 4, %var ; yields i32: 4 << %var
6259 <result> = shl i32 4, 2 ; yields i32: 16
6260 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006261 <result> = shl i32 1, 32 ; undefined
6262 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6263
6264'``lshr``' Instruction
6265^^^^^^^^^^^^^^^^^^^^^^
6266
6267Syntax:
6268"""""""
6269
6270::
6271
Tim Northover675a0962014-06-13 14:24:23 +00006272 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6273 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006274
6275Overview:
6276"""""""""
6277
6278The '``lshr``' instruction (logical shift right) returns the first
6279operand shifted to the right a specified number of bits with zero fill.
6280
6281Arguments:
6282""""""""""
6283
6284Both arguments to the '``lshr``' instruction must be the same
6285:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6286'``op2``' is treated as an unsigned value.
6287
6288Semantics:
6289""""""""""
6290
6291This instruction always performs a logical shift right operation. The
6292most significant bits of the result will be filled with zero bits after
6293the shift. If ``op2`` is (statically or dynamically) equal to or larger
6294than the number of bits in ``op1``, the result is undefined. If the
6295arguments are vectors, each vector element of ``op1`` is shifted by the
6296corresponding shift amount in ``op2``.
6297
6298If the ``exact`` keyword is present, the result value of the ``lshr`` is
6299a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6300non-zero.
6301
6302Example:
6303""""""""
6304
6305.. code-block:: llvm
6306
Tim Northover675a0962014-06-13 14:24:23 +00006307 <result> = lshr i32 4, 1 ; yields i32:result = 2
6308 <result> = lshr i32 4, 2 ; yields i32:result = 1
6309 <result> = lshr i8 4, 3 ; yields i8:result = 0
6310 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006311 <result> = lshr i32 1, 32 ; undefined
6312 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6313
6314'``ashr``' Instruction
6315^^^^^^^^^^^^^^^^^^^^^^
6316
6317Syntax:
6318"""""""
6319
6320::
6321
Tim Northover675a0962014-06-13 14:24:23 +00006322 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6323 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006324
6325Overview:
6326"""""""""
6327
6328The '``ashr``' instruction (arithmetic shift right) returns the first
6329operand shifted to the right a specified number of bits with sign
6330extension.
6331
6332Arguments:
6333""""""""""
6334
6335Both arguments to the '``ashr``' instruction must be the same
6336:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6337'``op2``' is treated as an unsigned value.
6338
6339Semantics:
6340""""""""""
6341
6342This instruction always performs an arithmetic shift right operation,
6343The most significant bits of the result will be filled with the sign bit
6344of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6345than the number of bits in ``op1``, the result is undefined. If the
6346arguments are vectors, each vector element of ``op1`` is shifted by the
6347corresponding shift amount in ``op2``.
6348
6349If the ``exact`` keyword is present, the result value of the ``ashr`` is
6350a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6351non-zero.
6352
6353Example:
6354""""""""
6355
6356.. code-block:: llvm
6357
Tim Northover675a0962014-06-13 14:24:23 +00006358 <result> = ashr i32 4, 1 ; yields i32:result = 2
6359 <result> = ashr i32 4, 2 ; yields i32:result = 1
6360 <result> = ashr i8 4, 3 ; yields i8:result = 0
6361 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006362 <result> = ashr i32 1, 32 ; undefined
6363 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6364
6365'``and``' Instruction
6366^^^^^^^^^^^^^^^^^^^^^
6367
6368Syntax:
6369"""""""
6370
6371::
6372
Tim Northover675a0962014-06-13 14:24:23 +00006373 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006374
6375Overview:
6376"""""""""
6377
6378The '``and``' instruction returns the bitwise logical and of its two
6379operands.
6380
6381Arguments:
6382""""""""""
6383
6384The two arguments to the '``and``' instruction must be
6385:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6386arguments must have identical types.
6387
6388Semantics:
6389""""""""""
6390
6391The truth table used for the '``and``' instruction is:
6392
6393+-----+-----+-----+
6394| In0 | In1 | Out |
6395+-----+-----+-----+
6396| 0 | 0 | 0 |
6397+-----+-----+-----+
6398| 0 | 1 | 0 |
6399+-----+-----+-----+
6400| 1 | 0 | 0 |
6401+-----+-----+-----+
6402| 1 | 1 | 1 |
6403+-----+-----+-----+
6404
6405Example:
6406""""""""
6407
6408.. code-block:: llvm
6409
Tim Northover675a0962014-06-13 14:24:23 +00006410 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6411 <result> = and i32 15, 40 ; yields i32:result = 8
6412 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006413
6414'``or``' Instruction
6415^^^^^^^^^^^^^^^^^^^^
6416
6417Syntax:
6418"""""""
6419
6420::
6421
Tim Northover675a0962014-06-13 14:24:23 +00006422 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006423
6424Overview:
6425"""""""""
6426
6427The '``or``' instruction returns the bitwise logical inclusive or of its
6428two operands.
6429
6430Arguments:
6431""""""""""
6432
6433The two arguments to the '``or``' instruction must be
6434:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6435arguments must have identical types.
6436
6437Semantics:
6438""""""""""
6439
6440The truth table used for the '``or``' instruction is:
6441
6442+-----+-----+-----+
6443| In0 | In1 | Out |
6444+-----+-----+-----+
6445| 0 | 0 | 0 |
6446+-----+-----+-----+
6447| 0 | 1 | 1 |
6448+-----+-----+-----+
6449| 1 | 0 | 1 |
6450+-----+-----+-----+
6451| 1 | 1 | 1 |
6452+-----+-----+-----+
6453
6454Example:
6455""""""""
6456
6457::
6458
Tim Northover675a0962014-06-13 14:24:23 +00006459 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6460 <result> = or i32 15, 40 ; yields i32:result = 47
6461 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006462
6463'``xor``' Instruction
6464^^^^^^^^^^^^^^^^^^^^^
6465
6466Syntax:
6467"""""""
6468
6469::
6470
Tim Northover675a0962014-06-13 14:24:23 +00006471 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006472
6473Overview:
6474"""""""""
6475
6476The '``xor``' instruction returns the bitwise logical exclusive or of
6477its two operands. The ``xor`` is used to implement the "one's
6478complement" operation, which is the "~" operator in C.
6479
6480Arguments:
6481""""""""""
6482
6483The two arguments to the '``xor``' instruction must be
6484:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6485arguments must have identical types.
6486
6487Semantics:
6488""""""""""
6489
6490The truth table used for the '``xor``' instruction is:
6491
6492+-----+-----+-----+
6493| In0 | In1 | Out |
6494+-----+-----+-----+
6495| 0 | 0 | 0 |
6496+-----+-----+-----+
6497| 0 | 1 | 1 |
6498+-----+-----+-----+
6499| 1 | 0 | 1 |
6500+-----+-----+-----+
6501| 1 | 1 | 0 |
6502+-----+-----+-----+
6503
6504Example:
6505""""""""
6506
6507.. code-block:: llvm
6508
Tim Northover675a0962014-06-13 14:24:23 +00006509 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6510 <result> = xor i32 15, 40 ; yields i32:result = 39
6511 <result> = xor i32 4, 8 ; yields i32:result = 12
6512 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006513
6514Vector Operations
6515-----------------
6516
6517LLVM supports several instructions to represent vector operations in a
6518target-independent manner. These instructions cover the element-access
6519and vector-specific operations needed to process vectors effectively.
6520While LLVM does directly support these vector operations, many
6521sophisticated algorithms will want to use target-specific intrinsics to
6522take full advantage of a specific target.
6523
6524.. _i_extractelement:
6525
6526'``extractelement``' Instruction
6527^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6528
6529Syntax:
6530"""""""
6531
6532::
6533
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006534 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006535
6536Overview:
6537"""""""""
6538
6539The '``extractelement``' instruction extracts a single scalar element
6540from a vector at a specified index.
6541
6542Arguments:
6543""""""""""
6544
6545The first operand of an '``extractelement``' instruction is a value of
6546:ref:`vector <t_vector>` type. The second operand is an index indicating
6547the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006548variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006549
6550Semantics:
6551""""""""""
6552
6553The result is a scalar of the same type as the element type of ``val``.
6554Its value is the value at position ``idx`` of ``val``. If ``idx``
6555exceeds the length of ``val``, the results are undefined.
6556
6557Example:
6558""""""""
6559
6560.. code-block:: llvm
6561
6562 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6563
6564.. _i_insertelement:
6565
6566'``insertelement``' Instruction
6567^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6568
6569Syntax:
6570"""""""
6571
6572::
6573
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006574 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006575
6576Overview:
6577"""""""""
6578
6579The '``insertelement``' instruction inserts a scalar element into a
6580vector at a specified index.
6581
6582Arguments:
6583""""""""""
6584
6585The first operand of an '``insertelement``' instruction is a value of
6586:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6587type must equal the element type of the first operand. The third operand
6588is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006589index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006590
6591Semantics:
6592""""""""""
6593
6594The result is a vector of the same type as ``val``. Its element values
6595are those of ``val`` except at position ``idx``, where it gets the value
6596``elt``. If ``idx`` exceeds the length of ``val``, the results are
6597undefined.
6598
6599Example:
6600""""""""
6601
6602.. code-block:: llvm
6603
6604 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6605
6606.. _i_shufflevector:
6607
6608'``shufflevector``' Instruction
6609^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6610
6611Syntax:
6612"""""""
6613
6614::
6615
6616 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6617
6618Overview:
6619"""""""""
6620
6621The '``shufflevector``' instruction constructs a permutation of elements
6622from two input vectors, returning a vector with the same element type as
6623the input and length that is the same as the shuffle mask.
6624
6625Arguments:
6626""""""""""
6627
6628The first two operands of a '``shufflevector``' instruction are vectors
6629with the same type. The third argument is a shuffle mask whose element
6630type is always 'i32'. The result of the instruction is a vector whose
6631length is the same as the shuffle mask and whose element type is the
6632same as the element type of the first two operands.
6633
6634The shuffle mask operand is required to be a constant vector with either
6635constant integer or undef values.
6636
6637Semantics:
6638""""""""""
6639
6640The elements of the two input vectors are numbered from left to right
6641across both of the vectors. The shuffle mask operand specifies, for each
6642element of the result vector, which element of the two input vectors the
6643result element gets. The element selector may be undef (meaning "don't
6644care") and the second operand may be undef if performing a shuffle from
6645only one vector.
6646
6647Example:
6648""""""""
6649
6650.. code-block:: llvm
6651
6652 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6653 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6654 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6655 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6656 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6657 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6658 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6659 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6660
6661Aggregate Operations
6662--------------------
6663
6664LLVM supports several instructions for working with
6665:ref:`aggregate <t_aggregate>` values.
6666
6667.. _i_extractvalue:
6668
6669'``extractvalue``' Instruction
6670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6671
6672Syntax:
6673"""""""
6674
6675::
6676
6677 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6678
6679Overview:
6680"""""""""
6681
6682The '``extractvalue``' instruction extracts the value of a member field
6683from an :ref:`aggregate <t_aggregate>` value.
6684
6685Arguments:
6686""""""""""
6687
6688The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006689:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006690constant indices to specify which value to extract in a similar manner
6691as indices in a '``getelementptr``' instruction.
6692
6693The major differences to ``getelementptr`` indexing are:
6694
6695- Since the value being indexed is not a pointer, the first index is
6696 omitted and assumed to be zero.
6697- At least one index must be specified.
6698- Not only struct indices but also array indices must be in bounds.
6699
6700Semantics:
6701""""""""""
6702
6703The result is the value at the position in the aggregate specified by
6704the index operands.
6705
6706Example:
6707""""""""
6708
6709.. code-block:: llvm
6710
6711 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6712
6713.. _i_insertvalue:
6714
6715'``insertvalue``' Instruction
6716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6717
6718Syntax:
6719"""""""
6720
6721::
6722
6723 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6724
6725Overview:
6726"""""""""
6727
6728The '``insertvalue``' instruction inserts a value into a member field in
6729an :ref:`aggregate <t_aggregate>` value.
6730
6731Arguments:
6732""""""""""
6733
6734The first operand of an '``insertvalue``' instruction is a value of
6735:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6736a first-class value to insert. The following operands are constant
6737indices indicating the position at which to insert the value in a
6738similar manner as indices in a '``extractvalue``' instruction. The value
6739to insert must have the same type as the value identified by the
6740indices.
6741
6742Semantics:
6743""""""""""
6744
6745The result is an aggregate of the same type as ``val``. Its value is
6746that of ``val`` except that the value at the position specified by the
6747indices is that of ``elt``.
6748
6749Example:
6750""""""""
6751
6752.. code-block:: llvm
6753
6754 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6755 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006756 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006757
6758.. _memoryops:
6759
6760Memory Access and Addressing Operations
6761---------------------------------------
6762
6763A key design point of an SSA-based representation is how it represents
6764memory. In LLVM, no memory locations are in SSA form, which makes things
6765very simple. This section describes how to read, write, and allocate
6766memory in LLVM.
6767
6768.. _i_alloca:
6769
6770'``alloca``' Instruction
6771^^^^^^^^^^^^^^^^^^^^^^^^
6772
6773Syntax:
6774"""""""
6775
6776::
6777
Tim Northover675a0962014-06-13 14:24:23 +00006778 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006779
6780Overview:
6781"""""""""
6782
6783The '``alloca``' instruction allocates memory on the stack frame of the
6784currently executing function, to be automatically released when this
6785function returns to its caller. The object is always allocated in the
6786generic address space (address space zero).
6787
6788Arguments:
6789""""""""""
6790
6791The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6792bytes of memory on the runtime stack, returning a pointer of the
6793appropriate type to the program. If "NumElements" is specified, it is
6794the number of elements allocated, otherwise "NumElements" is defaulted
6795to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006796allocation is guaranteed to be aligned to at least that boundary. The
6797alignment may not be greater than ``1 << 29``. If not specified, or if
6798zero, the target can choose to align the allocation on any convenient
6799boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006800
6801'``type``' may be any sized type.
6802
6803Semantics:
6804""""""""""
6805
6806Memory is allocated; a pointer is returned. The operation is undefined
6807if there is insufficient stack space for the allocation. '``alloca``'d
6808memory is automatically released when the function returns. The
6809'``alloca``' instruction is commonly used to represent automatic
6810variables that must have an address available. When the function returns
6811(either with the ``ret`` or ``resume`` instructions), the memory is
6812reclaimed. Allocating zero bytes is legal, but the result is undefined.
6813The order in which memory is allocated (ie., which way the stack grows)
6814is not specified.
6815
6816Example:
6817""""""""
6818
6819.. code-block:: llvm
6820
Tim Northover675a0962014-06-13 14:24:23 +00006821 %ptr = alloca i32 ; yields i32*:ptr
6822 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6823 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6824 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006825
6826.. _i_load:
6827
6828'``load``' Instruction
6829^^^^^^^^^^^^^^^^^^^^^^
6830
6831Syntax:
6832"""""""
6833
6834::
6835
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006836 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006837 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006838 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006839 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006840 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006841
6842Overview:
6843"""""""""
6844
6845The '``load``' instruction is used to read from memory.
6846
6847Arguments:
6848""""""""""
6849
Eli Bendersky239a78b2013-04-17 20:17:08 +00006850The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006851from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006852class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6853then the optimizer is not allowed to modify the number or order of
6854execution of this ``load`` with other :ref:`volatile
6855operations <volatile>`.
6856
JF Bastiend1fb5852015-12-17 22:09:19 +00006857If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6858<ordering>` and optional ``singlethread`` argument. The ``release`` and
6859``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
6860produce :ref:`defined <memmodel>` results when they may see multiple atomic
6861stores. The type of the pointee must be an integer, pointer, or floating-point
6862type whose bit width is a power of two greater than or equal to eight and less
6863than or equal to a target-specific size limit. ``align`` must be explicitly
6864specified on atomic loads, and the load has undefined behavior if the alignment
6865is not set to a value which is at least the size in bytes of the
6866pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00006867
6868The optional constant ``align`` argument specifies the alignment of the
6869operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006870or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006871alignment for the target. It is the responsibility of the code emitter
6872to ensure that the alignment information is correct. Overestimating the
6873alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006874may produce less efficient code. An alignment of 1 is always safe. The
6875maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006876
6877The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006878metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006879``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006880metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006881that this load is not expected to be reused in the cache. The code
6882generator may select special instructions to save cache bandwidth, such
6883as the ``MOVNT`` instruction on x86.
6884
6885The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006886metadata name ``<index>`` corresponding to a metadata node with no
6887entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006888instruction tells the optimizer and code generator that the address
6889operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006890Being invariant does not imply that a location is dereferenceable,
6891but it does imply that once the location is known dereferenceable
6892its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006893
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006894The optional ``!invariant.group`` metadata must reference a single metadata name
6895 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6896
Philip Reamescdb72f32014-10-20 22:40:55 +00006897The optional ``!nonnull`` metadata must reference a single
6898metadata name ``<index>`` corresponding to a metadata node with no
6899entries. The existence of the ``!nonnull`` metadata on the
6900instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006901never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006902on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006903to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006904
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006905The optional ``!dereferenceable`` metadata must reference a single metadata
6906name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006907entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006908tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006909The number of bytes known to be dereferenceable is specified by the integer
6910value in the metadata node. This is analogous to the ''dereferenceable''
6911attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006912to loads of a pointer type.
6913
6914The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006915metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6916``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006917instruction tells the optimizer that the value loaded is known to be either
6918dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006919The number of bytes known to be dereferenceable is specified by the integer
6920value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6921attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006922to loads of a pointer type.
6923
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006924The optional ``!align`` metadata must reference a single metadata name
6925``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6926The existence of the ``!align`` metadata on the instruction tells the
6927optimizer that the value loaded is known to be aligned to a boundary specified
6928by the integer value in the metadata node. The alignment must be a power of 2.
6929This is analogous to the ''align'' attribute on parameters and return values.
6930This metadata can only be applied to loads of a pointer type.
6931
Sean Silvab084af42012-12-07 10:36:55 +00006932Semantics:
6933""""""""""
6934
6935The location of memory pointed to is loaded. If the value being loaded
6936is of scalar type then the number of bytes read does not exceed the
6937minimum number of bytes needed to hold all bits of the type. For
6938example, loading an ``i24`` reads at most three bytes. When loading a
6939value of a type like ``i20`` with a size that is not an integral number
6940of bytes, the result is undefined if the value was not originally
6941written using a store of the same type.
6942
6943Examples:
6944"""""""""
6945
6946.. code-block:: llvm
6947
Tim Northover675a0962014-06-13 14:24:23 +00006948 %ptr = alloca i32 ; yields i32*:ptr
6949 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006950 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006951
6952.. _i_store:
6953
6954'``store``' Instruction
6955^^^^^^^^^^^^^^^^^^^^^^^
6956
6957Syntax:
6958"""""""
6959
6960::
6961
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006962 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6963 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006964
6965Overview:
6966"""""""""
6967
6968The '``store``' instruction is used to write to memory.
6969
6970Arguments:
6971""""""""""
6972
Eli Benderskyca380842013-04-17 17:17:20 +00006973There are two arguments to the ``store`` instruction: a value to store
6974and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006975operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006976the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006977then the optimizer is not allowed to modify the number or order of
6978execution of this ``store`` with other :ref:`volatile
6979operations <volatile>`.
6980
JF Bastiend1fb5852015-12-17 22:09:19 +00006981If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
6982<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
6983``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
6984produce :ref:`defined <memmodel>` results when they may see multiple atomic
6985stores. The type of the pointee must be an integer, pointer, or floating-point
6986type whose bit width is a power of two greater than or equal to eight and less
6987than or equal to a target-specific size limit. ``align`` must be explicitly
6988specified on atomic stores, and the store has undefined behavior if the
6989alignment is not set to a value which is at least the size in bytes of the
6990pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00006991
Eli Benderskyca380842013-04-17 17:17:20 +00006992The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006993operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006994or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006995alignment for the target. It is the responsibility of the code emitter
6996to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006997alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006998alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006999safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007000
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007001The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007002name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007003value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007004tells the optimizer and code generator that this load is not expected to
7005be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007006instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007007x86.
7008
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007009The optional ``!invariant.group`` metadata must reference a
7010single metadata name ``<index>``. See ``invariant.group`` metadata.
7011
Sean Silvab084af42012-12-07 10:36:55 +00007012Semantics:
7013""""""""""
7014
Eli Benderskyca380842013-04-17 17:17:20 +00007015The contents of memory are updated to contain ``<value>`` at the
7016location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007017of scalar type then the number of bytes written does not exceed the
7018minimum number of bytes needed to hold all bits of the type. For
7019example, storing an ``i24`` writes at most three bytes. When writing a
7020value of a type like ``i20`` with a size that is not an integral number
7021of bytes, it is unspecified what happens to the extra bits that do not
7022belong to the type, but they will typically be overwritten.
7023
7024Example:
7025""""""""
7026
7027.. code-block:: llvm
7028
Tim Northover675a0962014-06-13 14:24:23 +00007029 %ptr = alloca i32 ; yields i32*:ptr
7030 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007031 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007032
7033.. _i_fence:
7034
7035'``fence``' Instruction
7036^^^^^^^^^^^^^^^^^^^^^^^
7037
7038Syntax:
7039"""""""
7040
7041::
7042
Tim Northover675a0962014-06-13 14:24:23 +00007043 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007044
7045Overview:
7046"""""""""
7047
7048The '``fence``' instruction is used to introduce happens-before edges
7049between operations.
7050
7051Arguments:
7052""""""""""
7053
7054'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7055defines what *synchronizes-with* edges they add. They can only be given
7056``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7057
7058Semantics:
7059""""""""""
7060
7061A fence A which has (at least) ``release`` ordering semantics
7062*synchronizes with* a fence B with (at least) ``acquire`` ordering
7063semantics if and only if there exist atomic operations X and Y, both
7064operating on some atomic object M, such that A is sequenced before X, X
7065modifies M (either directly or through some side effect of a sequence
7066headed by X), Y is sequenced before B, and Y observes M. This provides a
7067*happens-before* dependency between A and B. Rather than an explicit
7068``fence``, one (but not both) of the atomic operations X or Y might
7069provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7070still *synchronize-with* the explicit ``fence`` and establish the
7071*happens-before* edge.
7072
7073A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7074``acquire`` and ``release`` semantics specified above, participates in
7075the global program order of other ``seq_cst`` operations and/or fences.
7076
7077The optional ":ref:`singlethread <singlethread>`" argument specifies
7078that the fence only synchronizes with other fences in the same thread.
7079(This is useful for interacting with signal handlers.)
7080
7081Example:
7082""""""""
7083
7084.. code-block:: llvm
7085
Tim Northover675a0962014-06-13 14:24:23 +00007086 fence acquire ; yields void
7087 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007088
7089.. _i_cmpxchg:
7090
7091'``cmpxchg``' Instruction
7092^^^^^^^^^^^^^^^^^^^^^^^^^
7093
7094Syntax:
7095"""""""
7096
7097::
7098
Tim Northover675a0962014-06-13 14:24:23 +00007099 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007100
7101Overview:
7102"""""""""
7103
7104The '``cmpxchg``' instruction is used to atomically modify memory. It
7105loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007106equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007107
7108Arguments:
7109""""""""""
7110
7111There are three arguments to the '``cmpxchg``' instruction: an address
7112to operate on, a value to compare to the value currently be at that
7113address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007114are equal. The type of '<cmp>' must be an integer or pointer type whose
7115bit width is a power of two greater than or equal to eight and less
7116than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7117have the same type, and the type of '<pointer>' must be a pointer to
7118that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7119optimizer is not allowed to modify the number or order of execution of
7120this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007121
Tim Northovere94a5182014-03-11 10:48:52 +00007122The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007123``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7124must be at least ``monotonic``, the ordering constraint on failure must be no
7125stronger than that on success, and the failure ordering cannot be either
7126``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007127
7128The optional "``singlethread``" argument declares that the ``cmpxchg``
7129is only atomic with respect to code (usually signal handlers) running in
7130the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7131respect to all other code in the system.
7132
7133The pointer passed into cmpxchg must have alignment greater than or
7134equal to the size in memory of the operand.
7135
7136Semantics:
7137""""""""""
7138
Tim Northover420a2162014-06-13 14:24:07 +00007139The contents of memory at the location specified by the '``<pointer>``' operand
7140is read and compared to '``<cmp>``'; if the read value is the equal, the
7141'``<new>``' is written. The original value at the location is returned, together
7142with a flag indicating success (true) or failure (false).
7143
7144If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7145permitted: the operation may not write ``<new>`` even if the comparison
7146matched.
7147
7148If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7149if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007150
Tim Northovere94a5182014-03-11 10:48:52 +00007151A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7152identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7153load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007154
7155Example:
7156""""""""
7157
7158.. code-block:: llvm
7159
7160 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007161 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007162 br label %loop
7163
7164 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007165 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007166 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007167 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007168 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7169 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007170 br i1 %success, label %done, label %loop
7171
7172 done:
7173 ...
7174
7175.. _i_atomicrmw:
7176
7177'``atomicrmw``' Instruction
7178^^^^^^^^^^^^^^^^^^^^^^^^^^^
7179
7180Syntax:
7181"""""""
7182
7183::
7184
Tim Northover675a0962014-06-13 14:24:23 +00007185 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007186
7187Overview:
7188"""""""""
7189
7190The '``atomicrmw``' instruction is used to atomically modify memory.
7191
7192Arguments:
7193""""""""""
7194
7195There are three arguments to the '``atomicrmw``' instruction: an
7196operation to apply, an address whose value to modify, an argument to the
7197operation. The operation must be one of the following keywords:
7198
7199- xchg
7200- add
7201- sub
7202- and
7203- nand
7204- or
7205- xor
7206- max
7207- min
7208- umax
7209- umin
7210
7211The type of '<value>' must be an integer type whose bit width is a power
7212of two greater than or equal to eight and less than or equal to a
7213target-specific size limit. The type of the '``<pointer>``' operand must
7214be a pointer to that type. If the ``atomicrmw`` is marked as
7215``volatile``, then the optimizer is not allowed to modify the number or
7216order of execution of this ``atomicrmw`` with other :ref:`volatile
7217operations <volatile>`.
7218
7219Semantics:
7220""""""""""
7221
7222The contents of memory at the location specified by the '``<pointer>``'
7223operand are atomically read, modified, and written back. The original
7224value at the location is returned. The modification is specified by the
7225operation argument:
7226
7227- xchg: ``*ptr = val``
7228- add: ``*ptr = *ptr + val``
7229- sub: ``*ptr = *ptr - val``
7230- and: ``*ptr = *ptr & val``
7231- nand: ``*ptr = ~(*ptr & val)``
7232- or: ``*ptr = *ptr | val``
7233- xor: ``*ptr = *ptr ^ val``
7234- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7235- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7236- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7237 comparison)
7238- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7239 comparison)
7240
7241Example:
7242""""""""
7243
7244.. code-block:: llvm
7245
Tim Northover675a0962014-06-13 14:24:23 +00007246 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007247
7248.. _i_getelementptr:
7249
7250'``getelementptr``' Instruction
7251^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7252
7253Syntax:
7254"""""""
7255
7256::
7257
David Blaikie16a97eb2015-03-04 22:02:58 +00007258 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7259 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7260 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007261
7262Overview:
7263"""""""""
7264
7265The '``getelementptr``' instruction is used to get the address of a
7266subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007267address calculation only and does not access memory. The instruction can also
7268be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007269
7270Arguments:
7271""""""""""
7272
David Blaikie16a97eb2015-03-04 22:02:58 +00007273The first argument is always a type used as the basis for the calculations.
7274The second argument is always a pointer or a vector of pointers, and is the
7275base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007276that indicate which of the elements of the aggregate object are indexed.
7277The interpretation of each index is dependent on the type being indexed
7278into. The first index always indexes the pointer value given as the
7279first argument, the second index indexes a value of the type pointed to
7280(not necessarily the value directly pointed to, since the first index
7281can be non-zero), etc. The first type indexed into must be a pointer
7282value, subsequent types can be arrays, vectors, and structs. Note that
7283subsequent types being indexed into can never be pointers, since that
7284would require loading the pointer before continuing calculation.
7285
7286The type of each index argument depends on the type it is indexing into.
7287When indexing into a (optionally packed) structure, only ``i32`` integer
7288**constants** are allowed (when using a vector of indices they must all
7289be the **same** ``i32`` integer constant). When indexing into an array,
7290pointer or vector, integers of any width are allowed, and they are not
7291required to be constant. These integers are treated as signed values
7292where relevant.
7293
7294For example, let's consider a C code fragment and how it gets compiled
7295to LLVM:
7296
7297.. code-block:: c
7298
7299 struct RT {
7300 char A;
7301 int B[10][20];
7302 char C;
7303 };
7304 struct ST {
7305 int X;
7306 double Y;
7307 struct RT Z;
7308 };
7309
7310 int *foo(struct ST *s) {
7311 return &s[1].Z.B[5][13];
7312 }
7313
7314The LLVM code generated by Clang is:
7315
7316.. code-block:: llvm
7317
7318 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7319 %struct.ST = type { i32, double, %struct.RT }
7320
7321 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7322 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007323 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007324 ret i32* %arrayidx
7325 }
7326
7327Semantics:
7328""""""""""
7329
7330In the example above, the first index is indexing into the
7331'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7332= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7333indexes into the third element of the structure, yielding a
7334'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7335structure. The third index indexes into the second element of the
7336structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7337dimensions of the array are subscripted into, yielding an '``i32``'
7338type. The '``getelementptr``' instruction returns a pointer to this
7339element, thus computing a value of '``i32*``' type.
7340
7341Note that it is perfectly legal to index partially through a structure,
7342returning a pointer to an inner element. Because of this, the LLVM code
7343for the given testcase is equivalent to:
7344
7345.. code-block:: llvm
7346
7347 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007348 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7349 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7350 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7351 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7352 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007353 ret i32* %t5
7354 }
7355
7356If the ``inbounds`` keyword is present, the result value of the
7357``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7358pointer is not an *in bounds* address of an allocated object, or if any
7359of the addresses that would be formed by successive addition of the
7360offsets implied by the indices to the base address with infinitely
7361precise signed arithmetic are not an *in bounds* address of that
7362allocated object. The *in bounds* addresses for an allocated object are
7363all the addresses that point into the object, plus the address one byte
7364past the end. In cases where the base is a vector of pointers the
7365``inbounds`` keyword applies to each of the computations element-wise.
7366
7367If the ``inbounds`` keyword is not present, the offsets are added to the
7368base address with silently-wrapping two's complement arithmetic. If the
7369offsets have a different width from the pointer, they are sign-extended
7370or truncated to the width of the pointer. The result value of the
7371``getelementptr`` may be outside the object pointed to by the base
7372pointer. The result value may not necessarily be used to access memory
7373though, even if it happens to point into allocated storage. See the
7374:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7375information.
7376
7377The getelementptr instruction is often confusing. For some more insight
7378into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7379
7380Example:
7381""""""""
7382
7383.. code-block:: llvm
7384
7385 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007386 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007387 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007388 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007389 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007390 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007391 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007392 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007393
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007394Vector of pointers:
7395"""""""""""""""""""
7396
7397The ``getelementptr`` returns a vector of pointers, instead of a single address,
7398when one or more of its arguments is a vector. In such cases, all vector
7399arguments should have the same number of elements, and every scalar argument
7400will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007401
7402.. code-block:: llvm
7403
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007404 ; All arguments are vectors:
7405 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7406 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007407
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007408 ; Add the same scalar offset to each pointer of a vector:
7409 ; A[i] = ptrs[i] + offset*sizeof(i8)
7410 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007411
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007412 ; Add distinct offsets to the same pointer:
7413 ; A[i] = ptr + offsets[i]*sizeof(i8)
7414 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007415
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007416 ; In all cases described above the type of the result is <4 x i8*>
7417
7418The two following instructions are equivalent:
7419
7420.. code-block:: llvm
7421
7422 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7423 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7424 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7425 <4 x i32> %ind4,
7426 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007427
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007428 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7429 i32 2, i32 1, <4 x i32> %ind4, i64 13
7430
7431Let's look at the C code, where the vector version of ``getelementptr``
7432makes sense:
7433
7434.. code-block:: c
7435
7436 // Let's assume that we vectorize the following loop:
7437 double *A, B; int *C;
7438 for (int i = 0; i < size; ++i) {
7439 A[i] = B[C[i]];
7440 }
7441
7442.. code-block:: llvm
7443
7444 ; get pointers for 8 elements from array B
7445 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7446 ; load 8 elements from array B into A
7447 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7448 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007449
7450Conversion Operations
7451---------------------
7452
7453The instructions in this category are the conversion instructions
7454(casting) which all take a single operand and a type. They perform
7455various bit conversions on the operand.
7456
7457'``trunc .. to``' Instruction
7458^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7459
7460Syntax:
7461"""""""
7462
7463::
7464
7465 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7466
7467Overview:
7468"""""""""
7469
7470The '``trunc``' instruction truncates its operand to the type ``ty2``.
7471
7472Arguments:
7473""""""""""
7474
7475The '``trunc``' instruction takes a value to trunc, and a type to trunc
7476it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7477of the same number of integers. The bit size of the ``value`` must be
7478larger than the bit size of the destination type, ``ty2``. Equal sized
7479types are not allowed.
7480
7481Semantics:
7482""""""""""
7483
7484The '``trunc``' instruction truncates the high order bits in ``value``
7485and converts the remaining bits to ``ty2``. Since the source size must
7486be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7487It will always truncate bits.
7488
7489Example:
7490""""""""
7491
7492.. code-block:: llvm
7493
7494 %X = trunc i32 257 to i8 ; yields i8:1
7495 %Y = trunc i32 123 to i1 ; yields i1:true
7496 %Z = trunc i32 122 to i1 ; yields i1:false
7497 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7498
7499'``zext .. to``' Instruction
7500^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7501
7502Syntax:
7503"""""""
7504
7505::
7506
7507 <result> = zext <ty> <value> to <ty2> ; yields ty2
7508
7509Overview:
7510"""""""""
7511
7512The '``zext``' instruction zero extends its operand to type ``ty2``.
7513
7514Arguments:
7515""""""""""
7516
7517The '``zext``' instruction takes a value to cast, and a type to cast it
7518to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7519the same number of integers. The bit size of the ``value`` must be
7520smaller than the bit size of the destination type, ``ty2``.
7521
7522Semantics:
7523""""""""""
7524
7525The ``zext`` fills the high order bits of the ``value`` with zero bits
7526until it reaches the size of the destination type, ``ty2``.
7527
7528When zero extending from i1, the result will always be either 0 or 1.
7529
7530Example:
7531""""""""
7532
7533.. code-block:: llvm
7534
7535 %X = zext i32 257 to i64 ; yields i64:257
7536 %Y = zext i1 true to i32 ; yields i32:1
7537 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7538
7539'``sext .. to``' Instruction
7540^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7541
7542Syntax:
7543"""""""
7544
7545::
7546
7547 <result> = sext <ty> <value> to <ty2> ; yields ty2
7548
7549Overview:
7550"""""""""
7551
7552The '``sext``' sign extends ``value`` to the type ``ty2``.
7553
7554Arguments:
7555""""""""""
7556
7557The '``sext``' instruction takes a value to cast, and a type to cast it
7558to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7559the same number of integers. The bit size of the ``value`` must be
7560smaller than the bit size of the destination type, ``ty2``.
7561
7562Semantics:
7563""""""""""
7564
7565The '``sext``' instruction performs a sign extension by copying the sign
7566bit (highest order bit) of the ``value`` until it reaches the bit size
7567of the type ``ty2``.
7568
7569When sign extending from i1, the extension always results in -1 or 0.
7570
7571Example:
7572""""""""
7573
7574.. code-block:: llvm
7575
7576 %X = sext i8 -1 to i16 ; yields i16 :65535
7577 %Y = sext i1 true to i32 ; yields i32:-1
7578 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7579
7580'``fptrunc .. to``' Instruction
7581^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7582
7583Syntax:
7584"""""""
7585
7586::
7587
7588 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7589
7590Overview:
7591"""""""""
7592
7593The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7594
7595Arguments:
7596""""""""""
7597
7598The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7599value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7600The size of ``value`` must be larger than the size of ``ty2``. This
7601implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7602
7603Semantics:
7604""""""""""
7605
Dan Liew50456fb2015-09-03 18:43:56 +00007606The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007607:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007608point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7609destination type, ``ty2``, then the results are undefined. If the cast produces
7610an inexact result, how rounding is performed (e.g. truncation, also known as
7611round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007612
7613Example:
7614""""""""
7615
7616.. code-block:: llvm
7617
7618 %X = fptrunc double 123.0 to float ; yields float:123.0
7619 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7620
7621'``fpext .. to``' Instruction
7622^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7623
7624Syntax:
7625"""""""
7626
7627::
7628
7629 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7630
7631Overview:
7632"""""""""
7633
7634The '``fpext``' extends a floating point ``value`` to a larger floating
7635point value.
7636
7637Arguments:
7638""""""""""
7639
7640The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7641``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7642to. The source type must be smaller than the destination type.
7643
7644Semantics:
7645""""""""""
7646
7647The '``fpext``' instruction extends the ``value`` from a smaller
7648:ref:`floating point <t_floating>` type to a larger :ref:`floating
7649point <t_floating>` type. The ``fpext`` cannot be used to make a
7650*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7651*no-op cast* for a floating point cast.
7652
7653Example:
7654""""""""
7655
7656.. code-block:: llvm
7657
7658 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7659 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7660
7661'``fptoui .. to``' Instruction
7662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7663
7664Syntax:
7665"""""""
7666
7667::
7668
7669 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7670
7671Overview:
7672"""""""""
7673
7674The '``fptoui``' converts a floating point ``value`` to its unsigned
7675integer equivalent of type ``ty2``.
7676
7677Arguments:
7678""""""""""
7679
7680The '``fptoui``' instruction takes a value to cast, which must be a
7681scalar or vector :ref:`floating point <t_floating>` value, and a type to
7682cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7683``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7684type with the same number of elements as ``ty``
7685
7686Semantics:
7687""""""""""
7688
7689The '``fptoui``' instruction converts its :ref:`floating
7690point <t_floating>` operand into the nearest (rounding towards zero)
7691unsigned integer value. If the value cannot fit in ``ty2``, the results
7692are undefined.
7693
7694Example:
7695""""""""
7696
7697.. code-block:: llvm
7698
7699 %X = fptoui double 123.0 to i32 ; yields i32:123
7700 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7701 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7702
7703'``fptosi .. to``' Instruction
7704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7705
7706Syntax:
7707"""""""
7708
7709::
7710
7711 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7712
7713Overview:
7714"""""""""
7715
7716The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7717``value`` to type ``ty2``.
7718
7719Arguments:
7720""""""""""
7721
7722The '``fptosi``' instruction takes a value to cast, which must be a
7723scalar or vector :ref:`floating point <t_floating>` value, and a type to
7724cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7725``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7726type with the same number of elements as ``ty``
7727
7728Semantics:
7729""""""""""
7730
7731The '``fptosi``' instruction converts its :ref:`floating
7732point <t_floating>` operand into the nearest (rounding towards zero)
7733signed integer value. If the value cannot fit in ``ty2``, the results
7734are undefined.
7735
7736Example:
7737""""""""
7738
7739.. code-block:: llvm
7740
7741 %X = fptosi double -123.0 to i32 ; yields i32:-123
7742 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7743 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7744
7745'``uitofp .. to``' Instruction
7746^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7747
7748Syntax:
7749"""""""
7750
7751::
7752
7753 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7754
7755Overview:
7756"""""""""
7757
7758The '``uitofp``' instruction regards ``value`` as an unsigned integer
7759and converts that value to the ``ty2`` type.
7760
7761Arguments:
7762""""""""""
7763
7764The '``uitofp``' instruction takes a value to cast, which must be a
7765scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7766``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7767``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7768type with the same number of elements as ``ty``
7769
7770Semantics:
7771""""""""""
7772
7773The '``uitofp``' instruction interprets its operand as an unsigned
7774integer quantity and converts it to the corresponding floating point
7775value. If the value cannot fit in the floating point value, the results
7776are undefined.
7777
7778Example:
7779""""""""
7780
7781.. code-block:: llvm
7782
7783 %X = uitofp i32 257 to float ; yields float:257.0
7784 %Y = uitofp i8 -1 to double ; yields double:255.0
7785
7786'``sitofp .. to``' Instruction
7787^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7788
7789Syntax:
7790"""""""
7791
7792::
7793
7794 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7795
7796Overview:
7797"""""""""
7798
7799The '``sitofp``' instruction regards ``value`` as a signed integer and
7800converts that value to the ``ty2`` type.
7801
7802Arguments:
7803""""""""""
7804
7805The '``sitofp``' instruction takes a value to cast, which must be a
7806scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7807``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7808``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7809type with the same number of elements as ``ty``
7810
7811Semantics:
7812""""""""""
7813
7814The '``sitofp``' instruction interprets its operand as a signed integer
7815quantity and converts it to the corresponding floating point value. If
7816the value cannot fit in the floating point value, the results are
7817undefined.
7818
7819Example:
7820""""""""
7821
7822.. code-block:: llvm
7823
7824 %X = sitofp i32 257 to float ; yields float:257.0
7825 %Y = sitofp i8 -1 to double ; yields double:-1.0
7826
7827.. _i_ptrtoint:
7828
7829'``ptrtoint .. to``' Instruction
7830^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7831
7832Syntax:
7833"""""""
7834
7835::
7836
7837 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7838
7839Overview:
7840"""""""""
7841
7842The '``ptrtoint``' instruction converts the pointer or a vector of
7843pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7844
7845Arguments:
7846""""""""""
7847
7848The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007849a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007850type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7851a vector of integers type.
7852
7853Semantics:
7854""""""""""
7855
7856The '``ptrtoint``' instruction converts ``value`` to integer type
7857``ty2`` by interpreting the pointer value as an integer and either
7858truncating or zero extending that value to the size of the integer type.
7859If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7860``value`` is larger than ``ty2`` then a truncation is done. If they are
7861the same size, then nothing is done (*no-op cast*) other than a type
7862change.
7863
7864Example:
7865""""""""
7866
7867.. code-block:: llvm
7868
7869 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7870 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7871 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7872
7873.. _i_inttoptr:
7874
7875'``inttoptr .. to``' Instruction
7876^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7877
7878Syntax:
7879"""""""
7880
7881::
7882
7883 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7884
7885Overview:
7886"""""""""
7887
7888The '``inttoptr``' instruction converts an integer ``value`` to a
7889pointer type, ``ty2``.
7890
7891Arguments:
7892""""""""""
7893
7894The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7895cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7896type.
7897
7898Semantics:
7899""""""""""
7900
7901The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7902applying either a zero extension or a truncation depending on the size
7903of the integer ``value``. If ``value`` is larger than the size of a
7904pointer then a truncation is done. If ``value`` is smaller than the size
7905of a pointer then a zero extension is done. If they are the same size,
7906nothing is done (*no-op cast*).
7907
7908Example:
7909""""""""
7910
7911.. code-block:: llvm
7912
7913 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7914 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7915 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7916 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7917
7918.. _i_bitcast:
7919
7920'``bitcast .. to``' Instruction
7921^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7922
7923Syntax:
7924"""""""
7925
7926::
7927
7928 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7929
7930Overview:
7931"""""""""
7932
7933The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7934changing any bits.
7935
7936Arguments:
7937""""""""""
7938
7939The '``bitcast``' instruction takes a value to cast, which must be a
7940non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007941also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7942bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007943identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007944also be a pointer of the same size. This instruction supports bitwise
7945conversion of vectors to integers and to vectors of other types (as
7946long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007947
7948Semantics:
7949""""""""""
7950
Matt Arsenault24b49c42013-07-31 17:49:08 +00007951The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7952is always a *no-op cast* because no bits change with this
7953conversion. The conversion is done as if the ``value`` had been stored
7954to memory and read back as type ``ty2``. Pointer (or vector of
7955pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007956pointers) types with the same address space through this instruction.
7957To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7958or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007959
7960Example:
7961""""""""
7962
7963.. code-block:: llvm
7964
7965 %X = bitcast i8 255 to i8 ; yields i8 :-1
7966 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7967 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7968 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7969
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007970.. _i_addrspacecast:
7971
7972'``addrspacecast .. to``' Instruction
7973^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7974
7975Syntax:
7976"""""""
7977
7978::
7979
7980 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7981
7982Overview:
7983"""""""""
7984
7985The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7986address space ``n`` to type ``pty2`` in address space ``m``.
7987
7988Arguments:
7989""""""""""
7990
7991The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7992to cast and a pointer type to cast it to, which must have a different
7993address space.
7994
7995Semantics:
7996""""""""""
7997
7998The '``addrspacecast``' instruction converts the pointer value
7999``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008000value modification, depending on the target and the address space
8001pair. Pointer conversions within the same address space must be
8002performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008003conversion is legal then both result and operand refer to the same memory
8004location.
8005
8006Example:
8007""""""""
8008
8009.. code-block:: llvm
8010
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008011 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8012 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8013 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008014
Sean Silvab084af42012-12-07 10:36:55 +00008015.. _otherops:
8016
8017Other Operations
8018----------------
8019
8020The instructions in this category are the "miscellaneous" instructions,
8021which defy better classification.
8022
8023.. _i_icmp:
8024
8025'``icmp``' Instruction
8026^^^^^^^^^^^^^^^^^^^^^^
8027
8028Syntax:
8029"""""""
8030
8031::
8032
Tim Northover675a0962014-06-13 14:24:23 +00008033 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008034
8035Overview:
8036"""""""""
8037
8038The '``icmp``' instruction returns a boolean value or a vector of
8039boolean values based on comparison of its two integer, integer vector,
8040pointer, or pointer vector operands.
8041
8042Arguments:
8043""""""""""
8044
8045The '``icmp``' instruction takes three operands. The first operand is
8046the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008047not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008048
8049#. ``eq``: equal
8050#. ``ne``: not equal
8051#. ``ugt``: unsigned greater than
8052#. ``uge``: unsigned greater or equal
8053#. ``ult``: unsigned less than
8054#. ``ule``: unsigned less or equal
8055#. ``sgt``: signed greater than
8056#. ``sge``: signed greater or equal
8057#. ``slt``: signed less than
8058#. ``sle``: signed less or equal
8059
8060The remaining two arguments must be :ref:`integer <t_integer>` or
8061:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8062must also be identical types.
8063
8064Semantics:
8065""""""""""
8066
8067The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8068code given as ``cond``. The comparison performed always yields either an
8069:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8070
8071#. ``eq``: yields ``true`` if the operands are equal, ``false``
8072 otherwise. No sign interpretation is necessary or performed.
8073#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8074 otherwise. No sign interpretation is necessary or performed.
8075#. ``ugt``: interprets the operands as unsigned values and yields
8076 ``true`` if ``op1`` is greater than ``op2``.
8077#. ``uge``: interprets the operands as unsigned values and yields
8078 ``true`` if ``op1`` is greater than or equal to ``op2``.
8079#. ``ult``: interprets the operands as unsigned values and yields
8080 ``true`` if ``op1`` is less than ``op2``.
8081#. ``ule``: interprets the operands as unsigned values and yields
8082 ``true`` if ``op1`` is less than or equal to ``op2``.
8083#. ``sgt``: interprets the operands as signed values and yields ``true``
8084 if ``op1`` is greater than ``op2``.
8085#. ``sge``: interprets the operands as signed values and yields ``true``
8086 if ``op1`` is greater than or equal to ``op2``.
8087#. ``slt``: interprets the operands as signed values and yields ``true``
8088 if ``op1`` is less than ``op2``.
8089#. ``sle``: interprets the operands as signed values and yields ``true``
8090 if ``op1`` is less than or equal to ``op2``.
8091
8092If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8093are compared as if they were integers.
8094
8095If the operands are integer vectors, then they are compared element by
8096element. The result is an ``i1`` vector with the same number of elements
8097as the values being compared. Otherwise, the result is an ``i1``.
8098
8099Example:
8100""""""""
8101
8102.. code-block:: llvm
8103
8104 <result> = icmp eq i32 4, 5 ; yields: result=false
8105 <result> = icmp ne float* %X, %X ; yields: result=false
8106 <result> = icmp ult i16 4, 5 ; yields: result=true
8107 <result> = icmp sgt i16 4, 5 ; yields: result=false
8108 <result> = icmp ule i16 -4, 5 ; yields: result=false
8109 <result> = icmp sge i16 4, 5 ; yields: result=false
8110
8111Note that the code generator does not yet support vector types with the
8112``icmp`` instruction.
8113
8114.. _i_fcmp:
8115
8116'``fcmp``' Instruction
8117^^^^^^^^^^^^^^^^^^^^^^
8118
8119Syntax:
8120"""""""
8121
8122::
8123
James Molloy88eb5352015-07-10 12:52:00 +00008124 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008125
8126Overview:
8127"""""""""
8128
8129The '``fcmp``' instruction returns a boolean value or vector of boolean
8130values based on comparison of its operands.
8131
8132If the operands are floating point scalars, then the result type is a
8133boolean (:ref:`i1 <t_integer>`).
8134
8135If the operands are floating point vectors, then the result type is a
8136vector of boolean with the same number of elements as the operands being
8137compared.
8138
8139Arguments:
8140""""""""""
8141
8142The '``fcmp``' instruction takes three operands. The first operand is
8143the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008144not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008145
8146#. ``false``: no comparison, always returns false
8147#. ``oeq``: ordered and equal
8148#. ``ogt``: ordered and greater than
8149#. ``oge``: ordered and greater than or equal
8150#. ``olt``: ordered and less than
8151#. ``ole``: ordered and less than or equal
8152#. ``one``: ordered and not equal
8153#. ``ord``: ordered (no nans)
8154#. ``ueq``: unordered or equal
8155#. ``ugt``: unordered or greater than
8156#. ``uge``: unordered or greater than or equal
8157#. ``ult``: unordered or less than
8158#. ``ule``: unordered or less than or equal
8159#. ``une``: unordered or not equal
8160#. ``uno``: unordered (either nans)
8161#. ``true``: no comparison, always returns true
8162
8163*Ordered* means that neither operand is a QNAN while *unordered* means
8164that either operand may be a QNAN.
8165
8166Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8167point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8168type. They must have identical types.
8169
8170Semantics:
8171""""""""""
8172
8173The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8174condition code given as ``cond``. If the operands are vectors, then the
8175vectors are compared element by element. Each comparison performed
8176always yields an :ref:`i1 <t_integer>` result, as follows:
8177
8178#. ``false``: always yields ``false``, regardless of operands.
8179#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8180 is equal to ``op2``.
8181#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8182 is greater than ``op2``.
8183#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8184 is greater than or equal to ``op2``.
8185#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8186 is less than ``op2``.
8187#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8188 is less than or equal to ``op2``.
8189#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8190 is not equal to ``op2``.
8191#. ``ord``: yields ``true`` if both operands are not a QNAN.
8192#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8193 equal to ``op2``.
8194#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8195 greater than ``op2``.
8196#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8197 greater than or equal to ``op2``.
8198#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8199 less than ``op2``.
8200#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8201 less than or equal to ``op2``.
8202#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8203 not equal to ``op2``.
8204#. ``uno``: yields ``true`` if either operand is a QNAN.
8205#. ``true``: always yields ``true``, regardless of operands.
8206
James Molloy88eb5352015-07-10 12:52:00 +00008207The ``fcmp`` instruction can also optionally take any number of
8208:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8209otherwise unsafe floating point optimizations.
8210
8211Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8212only flags that have any effect on its semantics are those that allow
8213assumptions to be made about the values of input arguments; namely
8214``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8215
Sean Silvab084af42012-12-07 10:36:55 +00008216Example:
8217""""""""
8218
8219.. code-block:: llvm
8220
8221 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8222 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8223 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8224 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8225
8226Note that the code generator does not yet support vector types with the
8227``fcmp`` instruction.
8228
8229.. _i_phi:
8230
8231'``phi``' Instruction
8232^^^^^^^^^^^^^^^^^^^^^
8233
8234Syntax:
8235"""""""
8236
8237::
8238
8239 <result> = phi <ty> [ <val0>, <label0>], ...
8240
8241Overview:
8242"""""""""
8243
8244The '``phi``' instruction is used to implement the φ node in the SSA
8245graph representing the function.
8246
8247Arguments:
8248""""""""""
8249
8250The type of the incoming values is specified with the first type field.
8251After this, the '``phi``' instruction takes a list of pairs as
8252arguments, with one pair for each predecessor basic block of the current
8253block. Only values of :ref:`first class <t_firstclass>` type may be used as
8254the value arguments to the PHI node. Only labels may be used as the
8255label arguments.
8256
8257There must be no non-phi instructions between the start of a basic block
8258and the PHI instructions: i.e. PHI instructions must be first in a basic
8259block.
8260
8261For the purposes of the SSA form, the use of each incoming value is
8262deemed to occur on the edge from the corresponding predecessor block to
8263the current block (but after any definition of an '``invoke``'
8264instruction's return value on the same edge).
8265
8266Semantics:
8267""""""""""
8268
8269At runtime, the '``phi``' instruction logically takes on the value
8270specified by the pair corresponding to the predecessor basic block that
8271executed just prior to the current block.
8272
8273Example:
8274""""""""
8275
8276.. code-block:: llvm
8277
8278 Loop: ; Infinite loop that counts from 0 on up...
8279 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8280 %nextindvar = add i32 %indvar, 1
8281 br label %Loop
8282
8283.. _i_select:
8284
8285'``select``' Instruction
8286^^^^^^^^^^^^^^^^^^^^^^^^
8287
8288Syntax:
8289"""""""
8290
8291::
8292
8293 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8294
8295 selty is either i1 or {<N x i1>}
8296
8297Overview:
8298"""""""""
8299
8300The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008301condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008302
8303Arguments:
8304""""""""""
8305
8306The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8307values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008308class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008309
8310Semantics:
8311""""""""""
8312
8313If the condition is an i1 and it evaluates to 1, the instruction returns
8314the first value argument; otherwise, it returns the second value
8315argument.
8316
8317If the condition is a vector of i1, then the value arguments must be
8318vectors of the same size, and the selection is done element by element.
8319
David Majnemer40a0b592015-03-03 22:45:47 +00008320If the condition is an i1 and the value arguments are vectors of the
8321same size, then an entire vector is selected.
8322
Sean Silvab084af42012-12-07 10:36:55 +00008323Example:
8324""""""""
8325
8326.. code-block:: llvm
8327
8328 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8329
8330.. _i_call:
8331
8332'``call``' Instruction
8333^^^^^^^^^^^^^^^^^^^^^^
8334
8335Syntax:
8336"""""""
8337
8338::
8339
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008340 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008341 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008342
8343Overview:
8344"""""""""
8345
8346The '``call``' instruction represents a simple function call.
8347
8348Arguments:
8349""""""""""
8350
8351This instruction requires several arguments:
8352
Reid Kleckner5772b772014-04-24 20:14:34 +00008353#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008354 should perform tail call optimization. The ``tail`` marker is a hint that
8355 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008356 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008357 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008358
8359 #. The call will not cause unbounded stack growth if it is part of a
8360 recursive cycle in the call graph.
8361 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8362 forwarded in place.
8363
8364 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008365 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008366 rules:
8367
8368 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8369 or a pointer bitcast followed by a ret instruction.
8370 - The ret instruction must return the (possibly bitcasted) value
8371 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008372 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008373 parameters or return types may differ in pointee type, but not
8374 in address space.
8375 - The calling conventions of the caller and callee must match.
8376 - All ABI-impacting function attributes, such as sret, byval, inreg,
8377 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008378 - The callee must be varargs iff the caller is varargs. Bitcasting a
8379 non-varargs function to the appropriate varargs type is legal so
8380 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008381
8382 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8383 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008384
8385 - Caller and callee both have the calling convention ``fastcc``.
8386 - The call is in tail position (ret immediately follows call and ret
8387 uses value of call or is void).
8388 - Option ``-tailcallopt`` is enabled, or
8389 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008390 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008391 met. <CodeGenerator.html#tailcallopt>`_
8392
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008393#. The optional ``notail`` marker indicates that the optimizers should not add
8394 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8395 call optimization from being performed on the call.
8396
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008397#. The optional ``fast-math flags`` marker indicates that the call has one or more
8398 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8399 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8400 for calls that return a floating-point scalar or vector type.
8401
Sean Silvab084af42012-12-07 10:36:55 +00008402#. The optional "cconv" marker indicates which :ref:`calling
8403 convention <callingconv>` the call should use. If none is
8404 specified, the call defaults to using C calling conventions. The
8405 calling convention of the call must match the calling convention of
8406 the target function, or else the behavior is undefined.
8407#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8408 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8409 are valid here.
8410#. '``ty``': the type of the call instruction itself which is also the
8411 type of the return value. Functions that return no value are marked
8412 ``void``.
8413#. '``fnty``': shall be the signature of the pointer to function value
8414 being invoked. The argument types must match the types implied by
8415 this signature. This type can be omitted if the function is not
8416 varargs and if the function type does not return a pointer to a
8417 function.
8418#. '``fnptrval``': An LLVM value containing a pointer to a function to
8419 be invoked. In most cases, this is a direct function invocation, but
8420 indirect ``call``'s are just as possible, calling an arbitrary pointer
8421 to function value.
8422#. '``function args``': argument list whose types match the function
8423 signature argument types and parameter attributes. All arguments must
8424 be of :ref:`first class <t_firstclass>` type. If the function signature
8425 indicates the function accepts a variable number of arguments, the
8426 extra arguments can be specified.
8427#. The optional :ref:`function attributes <fnattrs>` list. Only
8428 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8429 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008430#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008431
8432Semantics:
8433""""""""""
8434
8435The '``call``' instruction is used to cause control flow to transfer to
8436a specified function, with its incoming arguments bound to the specified
8437values. Upon a '``ret``' instruction in the called function, control
8438flow continues with the instruction after the function call, and the
8439return value of the function is bound to the result argument.
8440
8441Example:
8442""""""""
8443
8444.. code-block:: llvm
8445
8446 %retval = call i32 @test(i32 %argc)
8447 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8448 %X = tail call i32 @foo() ; yields i32
8449 %Y = tail call fastcc i32 @foo() ; yields i32
8450 call void %foo(i8 97 signext)
8451
8452 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008453 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008454 %gr = extractvalue %struct.A %r, 0 ; yields i32
8455 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8456 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8457 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8458
8459llvm treats calls to some functions with names and arguments that match
8460the standard C99 library as being the C99 library functions, and may
8461perform optimizations or generate code for them under that assumption.
8462This is something we'd like to change in the future to provide better
8463support for freestanding environments and non-C-based languages.
8464
8465.. _i_va_arg:
8466
8467'``va_arg``' Instruction
8468^^^^^^^^^^^^^^^^^^^^^^^^
8469
8470Syntax:
8471"""""""
8472
8473::
8474
8475 <resultval> = va_arg <va_list*> <arglist>, <argty>
8476
8477Overview:
8478"""""""""
8479
8480The '``va_arg``' instruction is used to access arguments passed through
8481the "variable argument" area of a function call. It is used to implement
8482the ``va_arg`` macro in C.
8483
8484Arguments:
8485""""""""""
8486
8487This instruction takes a ``va_list*`` value and the type of the
8488argument. It returns a value of the specified argument type and
8489increments the ``va_list`` to point to the next argument. The actual
8490type of ``va_list`` is target specific.
8491
8492Semantics:
8493""""""""""
8494
8495The '``va_arg``' instruction loads an argument of the specified type
8496from the specified ``va_list`` and causes the ``va_list`` to point to
8497the next argument. For more information, see the variable argument
8498handling :ref:`Intrinsic Functions <int_varargs>`.
8499
8500It is legal for this instruction to be called in a function which does
8501not take a variable number of arguments, for example, the ``vfprintf``
8502function.
8503
8504``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8505function <intrinsics>` because it takes a type as an argument.
8506
8507Example:
8508""""""""
8509
8510See the :ref:`variable argument processing <int_varargs>` section.
8511
8512Note that the code generator does not yet fully support va\_arg on many
8513targets. Also, it does not currently support va\_arg with aggregate
8514types on any target.
8515
8516.. _i_landingpad:
8517
8518'``landingpad``' Instruction
8519^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8520
8521Syntax:
8522"""""""
8523
8524::
8525
David Majnemer7fddecc2015-06-17 20:52:32 +00008526 <resultval> = landingpad <resultty> <clause>+
8527 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008528
8529 <clause> := catch <type> <value>
8530 <clause> := filter <array constant type> <array constant>
8531
8532Overview:
8533"""""""""
8534
8535The '``landingpad``' instruction is used by `LLVM's exception handling
8536system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008537is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008538code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008539defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008540re-entry to the function. The ``resultval`` has the type ``resultty``.
8541
8542Arguments:
8543""""""""""
8544
David Majnemer7fddecc2015-06-17 20:52:32 +00008545The optional
Sean Silvab084af42012-12-07 10:36:55 +00008546``cleanup`` flag indicates that the landing pad block is a cleanup.
8547
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008548A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008549contains the global variable representing the "type" that may be caught
8550or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8551clause takes an array constant as its argument. Use
8552"``[0 x i8**] undef``" for a filter which cannot throw. The
8553'``landingpad``' instruction must contain *at least* one ``clause`` or
8554the ``cleanup`` flag.
8555
8556Semantics:
8557""""""""""
8558
8559The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008560:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008561therefore the "result type" of the ``landingpad`` instruction. As with
8562calling conventions, how the personality function results are
8563represented in LLVM IR is target specific.
8564
8565The clauses are applied in order from top to bottom. If two
8566``landingpad`` instructions are merged together through inlining, the
8567clauses from the calling function are appended to the list of clauses.
8568When the call stack is being unwound due to an exception being thrown,
8569the exception is compared against each ``clause`` in turn. If it doesn't
8570match any of the clauses, and the ``cleanup`` flag is not set, then
8571unwinding continues further up the call stack.
8572
8573The ``landingpad`` instruction has several restrictions:
8574
8575- A landing pad block is a basic block which is the unwind destination
8576 of an '``invoke``' instruction.
8577- A landing pad block must have a '``landingpad``' instruction as its
8578 first non-PHI instruction.
8579- There can be only one '``landingpad``' instruction within the landing
8580 pad block.
8581- A basic block that is not a landing pad block may not include a
8582 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008583
8584Example:
8585""""""""
8586
8587.. code-block:: llvm
8588
8589 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008590 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008591 catch i8** @_ZTIi
8592 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008593 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008594 cleanup
8595 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008596 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008597 catch i8** @_ZTIi
8598 filter [1 x i8**] [@_ZTId]
8599
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008600.. _i_catchpad:
8601
8602'``catchpad``' Instruction
8603^^^^^^^^^^^^^^^^^^^^^^^^^^
8604
8605Syntax:
8606"""""""
8607
8608::
8609
8610 <resultval> = catchpad within <catchswitch> [<args>*]
8611
8612Overview:
8613"""""""""
8614
8615The '``catchpad``' instruction is used by `LLVM's exception handling
8616system <ExceptionHandling.html#overview>`_ to specify that a basic block
8617begins a catch handler --- one where a personality routine attempts to transfer
8618control to catch an exception.
8619
8620Arguments:
8621""""""""""
8622
8623The ``catchswitch`` operand must always be a token produced by a
8624:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8625ensures that each ``catchpad`` has exactly one predecessor block, and it always
8626terminates in a ``catchswitch``.
8627
8628The ``args`` correspond to whatever information the personality routine
8629requires to know if this is an appropriate handler for the exception. Control
8630will transfer to the ``catchpad`` if this is the first appropriate handler for
8631the exception.
8632
8633The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8634``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8635pads.
8636
8637Semantics:
8638""""""""""
8639
8640When the call stack is being unwound due to an exception being thrown, the
8641exception is compared against the ``args``. If it doesn't match, control will
8642not reach the ``catchpad`` instruction. The representation of ``args`` is
8643entirely target and personality function-specific.
8644
8645Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8646instruction must be the first non-phi of its parent basic block.
8647
8648The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8649instructions is described in the
8650`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8651
8652When a ``catchpad`` has been "entered" but not yet "exited" (as
8653described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8654it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8655that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8656
8657Example:
8658""""""""
8659
8660.. code-block:: llvm
8661
8662 dispatch:
8663 %cs = catchswitch within none [label %handler0] unwind to caller
8664 ;; A catch block which can catch an integer.
8665 handler0:
8666 %tok = catchpad within %cs [i8** @_ZTIi]
8667
David Majnemer654e1302015-07-31 17:58:14 +00008668.. _i_cleanuppad:
8669
8670'``cleanuppad``' Instruction
8671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8672
8673Syntax:
8674"""""""
8675
8676::
8677
David Majnemer8a1c45d2015-12-12 05:38:55 +00008678 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008679
8680Overview:
8681"""""""""
8682
8683The '``cleanuppad``' instruction is used by `LLVM's exception handling
8684system <ExceptionHandling.html#overview>`_ to specify that a basic block
8685is a cleanup block --- one where a personality routine attempts to
8686transfer control to run cleanup actions.
8687The ``args`` correspond to whatever additional
8688information the :ref:`personality function <personalityfn>` requires to
8689execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008690The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008691match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8692The ``parent`` argument is the token of the funclet that contains the
8693``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8694this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008695
8696Arguments:
8697""""""""""
8698
8699The instruction takes a list of arbitrary values which are interpreted
8700by the :ref:`personality function <personalityfn>`.
8701
8702Semantics:
8703""""""""""
8704
David Majnemer654e1302015-07-31 17:58:14 +00008705When the call stack is being unwound due to an exception being thrown,
8706the :ref:`personality function <personalityfn>` transfers control to the
8707``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008708As with calling conventions, how the personality function results are
8709represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008710
8711The ``cleanuppad`` instruction has several restrictions:
8712
8713- A cleanup block is a basic block which is the unwind destination of
8714 an exceptional instruction.
8715- A cleanup block must have a '``cleanuppad``' instruction as its
8716 first non-PHI instruction.
8717- There can be only one '``cleanuppad``' instruction within the
8718 cleanup block.
8719- A basic block that is not a cleanup block may not include a
8720 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008721
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008722When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8723described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8724it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8725that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008726
David Majnemer654e1302015-07-31 17:58:14 +00008727Example:
8728""""""""
8729
8730.. code-block:: llvm
8731
David Majnemer8a1c45d2015-12-12 05:38:55 +00008732 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008733
Sean Silvab084af42012-12-07 10:36:55 +00008734.. _intrinsics:
8735
8736Intrinsic Functions
8737===================
8738
8739LLVM supports the notion of an "intrinsic function". These functions
8740have well known names and semantics and are required to follow certain
8741restrictions. Overall, these intrinsics represent an extension mechanism
8742for the LLVM language that does not require changing all of the
8743transformations in LLVM when adding to the language (or the bitcode
8744reader/writer, the parser, etc...).
8745
8746Intrinsic function names must all start with an "``llvm.``" prefix. This
8747prefix is reserved in LLVM for intrinsic names; thus, function names may
8748not begin with this prefix. Intrinsic functions must always be external
8749functions: you cannot define the body of intrinsic functions. Intrinsic
8750functions may only be used in call or invoke instructions: it is illegal
8751to take the address of an intrinsic function. Additionally, because
8752intrinsic functions are part of the LLVM language, it is required if any
8753are added that they be documented here.
8754
8755Some intrinsic functions can be overloaded, i.e., the intrinsic
8756represents a family of functions that perform the same operation but on
8757different data types. Because LLVM can represent over 8 million
8758different integer types, overloading is used commonly to allow an
8759intrinsic function to operate on any integer type. One or more of the
8760argument types or the result type can be overloaded to accept any
8761integer type. Argument types may also be defined as exactly matching a
8762previous argument's type or the result type. This allows an intrinsic
8763function which accepts multiple arguments, but needs all of them to be
8764of the same type, to only be overloaded with respect to a single
8765argument or the result.
8766
8767Overloaded intrinsics will have the names of its overloaded argument
8768types encoded into its function name, each preceded by a period. Only
8769those types which are overloaded result in a name suffix. Arguments
8770whose type is matched against another type do not. For example, the
8771``llvm.ctpop`` function can take an integer of any width and returns an
8772integer of exactly the same integer width. This leads to a family of
8773functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8774``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8775overloaded, and only one type suffix is required. Because the argument's
8776type is matched against the return type, it does not require its own
8777name suffix.
8778
8779To learn how to add an intrinsic function, please see the `Extending
8780LLVM Guide <ExtendingLLVM.html>`_.
8781
8782.. _int_varargs:
8783
8784Variable Argument Handling Intrinsics
8785-------------------------------------
8786
8787Variable argument support is defined in LLVM with the
8788:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8789functions. These functions are related to the similarly named macros
8790defined in the ``<stdarg.h>`` header file.
8791
8792All of these functions operate on arguments that use a target-specific
8793value type "``va_list``". The LLVM assembly language reference manual
8794does not define what this type is, so all transformations should be
8795prepared to handle these functions regardless of the type used.
8796
8797This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8798variable argument handling intrinsic functions are used.
8799
8800.. code-block:: llvm
8801
Tim Northoverab60bb92014-11-02 01:21:51 +00008802 ; This struct is different for every platform. For most platforms,
8803 ; it is merely an i8*.
8804 %struct.va_list = type { i8* }
8805
8806 ; For Unix x86_64 platforms, va_list is the following struct:
8807 ; %struct.va_list = type { i32, i32, i8*, i8* }
8808
Sean Silvab084af42012-12-07 10:36:55 +00008809 define i32 @test(i32 %X, ...) {
8810 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008811 %ap = alloca %struct.va_list
8812 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008813 call void @llvm.va_start(i8* %ap2)
8814
8815 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008816 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008817
8818 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8819 %aq = alloca i8*
8820 %aq2 = bitcast i8** %aq to i8*
8821 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8822 call void @llvm.va_end(i8* %aq2)
8823
8824 ; Stop processing of arguments.
8825 call void @llvm.va_end(i8* %ap2)
8826 ret i32 %tmp
8827 }
8828
8829 declare void @llvm.va_start(i8*)
8830 declare void @llvm.va_copy(i8*, i8*)
8831 declare void @llvm.va_end(i8*)
8832
8833.. _int_va_start:
8834
8835'``llvm.va_start``' Intrinsic
8836^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8837
8838Syntax:
8839"""""""
8840
8841::
8842
Nick Lewycky04f6de02013-09-11 22:04:52 +00008843 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008844
8845Overview:
8846"""""""""
8847
8848The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8849subsequent use by ``va_arg``.
8850
8851Arguments:
8852""""""""""
8853
8854The argument is a pointer to a ``va_list`` element to initialize.
8855
8856Semantics:
8857""""""""""
8858
8859The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8860available in C. In a target-dependent way, it initializes the
8861``va_list`` element to which the argument points, so that the next call
8862to ``va_arg`` will produce the first variable argument passed to the
8863function. Unlike the C ``va_start`` macro, this intrinsic does not need
8864to know the last argument of the function as the compiler can figure
8865that out.
8866
8867'``llvm.va_end``' Intrinsic
8868^^^^^^^^^^^^^^^^^^^^^^^^^^^
8869
8870Syntax:
8871"""""""
8872
8873::
8874
8875 declare void @llvm.va_end(i8* <arglist>)
8876
8877Overview:
8878"""""""""
8879
8880The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8881initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8882
8883Arguments:
8884""""""""""
8885
8886The argument is a pointer to a ``va_list`` to destroy.
8887
8888Semantics:
8889""""""""""
8890
8891The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8892available in C. In a target-dependent way, it destroys the ``va_list``
8893element to which the argument points. Calls to
8894:ref:`llvm.va_start <int_va_start>` and
8895:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8896``llvm.va_end``.
8897
8898.. _int_va_copy:
8899
8900'``llvm.va_copy``' Intrinsic
8901^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8902
8903Syntax:
8904"""""""
8905
8906::
8907
8908 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8909
8910Overview:
8911"""""""""
8912
8913The '``llvm.va_copy``' intrinsic copies the current argument position
8914from the source argument list to the destination argument list.
8915
8916Arguments:
8917""""""""""
8918
8919The first argument is a pointer to a ``va_list`` element to initialize.
8920The second argument is a pointer to a ``va_list`` element to copy from.
8921
8922Semantics:
8923""""""""""
8924
8925The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8926available in C. In a target-dependent way, it copies the source
8927``va_list`` element into the destination ``va_list`` element. This
8928intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8929arbitrarily complex and require, for example, memory allocation.
8930
8931Accurate Garbage Collection Intrinsics
8932--------------------------------------
8933
Philip Reamesc5b0f562015-02-25 23:52:06 +00008934LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008935(GC) requires the frontend to generate code containing appropriate intrinsic
8936calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008937intrinsics in a manner which is appropriate for the target collector.
8938
Sean Silvab084af42012-12-07 10:36:55 +00008939These intrinsics allow identification of :ref:`GC roots on the
8940stack <int_gcroot>`, as well as garbage collector implementations that
8941require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008942Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008943these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008944details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008945
Philip Reamesf80bbff2015-02-25 23:45:20 +00008946Experimental Statepoint Intrinsics
8947^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8948
8949LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008950collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008951to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008952:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008953differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008954<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008955described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008956
8957.. _int_gcroot:
8958
8959'``llvm.gcroot``' Intrinsic
8960^^^^^^^^^^^^^^^^^^^^^^^^^^^
8961
8962Syntax:
8963"""""""
8964
8965::
8966
8967 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8968
8969Overview:
8970"""""""""
8971
8972The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8973the code generator, and allows some metadata to be associated with it.
8974
8975Arguments:
8976""""""""""
8977
8978The first argument specifies the address of a stack object that contains
8979the root pointer. The second pointer (which must be either a constant or
8980a global value address) contains the meta-data to be associated with the
8981root.
8982
8983Semantics:
8984""""""""""
8985
8986At runtime, a call to this intrinsic stores a null pointer into the
8987"ptrloc" location. At compile-time, the code generator generates
8988information to allow the runtime to find the pointer at GC safe points.
8989The '``llvm.gcroot``' intrinsic may only be used in a function which
8990:ref:`specifies a GC algorithm <gc>`.
8991
8992.. _int_gcread:
8993
8994'``llvm.gcread``' Intrinsic
8995^^^^^^^^^^^^^^^^^^^^^^^^^^^
8996
8997Syntax:
8998"""""""
8999
9000::
9001
9002 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9003
9004Overview:
9005"""""""""
9006
9007The '``llvm.gcread``' intrinsic identifies reads of references from heap
9008locations, allowing garbage collector implementations that require read
9009barriers.
9010
9011Arguments:
9012""""""""""
9013
9014The second argument is the address to read from, which should be an
9015address allocated from the garbage collector. The first object is a
9016pointer to the start of the referenced object, if needed by the language
9017runtime (otherwise null).
9018
9019Semantics:
9020""""""""""
9021
9022The '``llvm.gcread``' intrinsic has the same semantics as a load
9023instruction, but may be replaced with substantially more complex code by
9024the garbage collector runtime, as needed. The '``llvm.gcread``'
9025intrinsic may only be used in a function which :ref:`specifies a GC
9026algorithm <gc>`.
9027
9028.. _int_gcwrite:
9029
9030'``llvm.gcwrite``' Intrinsic
9031^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9032
9033Syntax:
9034"""""""
9035
9036::
9037
9038 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9039
9040Overview:
9041"""""""""
9042
9043The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9044locations, allowing garbage collector implementations that require write
9045barriers (such as generational or reference counting collectors).
9046
9047Arguments:
9048""""""""""
9049
9050The first argument is the reference to store, the second is the start of
9051the object to store it to, and the third is the address of the field of
9052Obj to store to. If the runtime does not require a pointer to the
9053object, Obj may be null.
9054
9055Semantics:
9056""""""""""
9057
9058The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9059instruction, but may be replaced with substantially more complex code by
9060the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9061intrinsic may only be used in a function which :ref:`specifies a GC
9062algorithm <gc>`.
9063
9064Code Generator Intrinsics
9065-------------------------
9066
9067These intrinsics are provided by LLVM to expose special features that
9068may only be implemented with code generator support.
9069
9070'``llvm.returnaddress``' Intrinsic
9071^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9072
9073Syntax:
9074"""""""
9075
9076::
9077
9078 declare i8 *@llvm.returnaddress(i32 <level>)
9079
9080Overview:
9081"""""""""
9082
9083The '``llvm.returnaddress``' intrinsic attempts to compute a
9084target-specific value indicating the return address of the current
9085function or one of its callers.
9086
9087Arguments:
9088""""""""""
9089
9090The argument to this intrinsic indicates which function to return the
9091address for. Zero indicates the calling function, one indicates its
9092caller, etc. The argument is **required** to be a constant integer
9093value.
9094
9095Semantics:
9096""""""""""
9097
9098The '``llvm.returnaddress``' intrinsic either returns a pointer
9099indicating the return address of the specified call frame, or zero if it
9100cannot be identified. The value returned by this intrinsic is likely to
9101be incorrect or 0 for arguments other than zero, so it should only be
9102used for debugging purposes.
9103
9104Note that calling this intrinsic does not prevent function inlining or
9105other aggressive transformations, so the value returned may not be that
9106of the obvious source-language caller.
9107
9108'``llvm.frameaddress``' Intrinsic
9109^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9110
9111Syntax:
9112"""""""
9113
9114::
9115
9116 declare i8* @llvm.frameaddress(i32 <level>)
9117
9118Overview:
9119"""""""""
9120
9121The '``llvm.frameaddress``' intrinsic attempts to return the
9122target-specific frame pointer value for the specified stack frame.
9123
9124Arguments:
9125""""""""""
9126
9127The argument to this intrinsic indicates which function to return the
9128frame pointer for. Zero indicates the calling function, one indicates
9129its caller, etc. The argument is **required** to be a constant integer
9130value.
9131
9132Semantics:
9133""""""""""
9134
9135The '``llvm.frameaddress``' intrinsic either returns a pointer
9136indicating the frame address of the specified call frame, or zero if it
9137cannot be identified. The value returned by this intrinsic is likely to
9138be incorrect or 0 for arguments other than zero, so it should only be
9139used for debugging purposes.
9140
9141Note that calling this intrinsic does not prevent function inlining or
9142other aggressive transformations, so the value returned may not be that
9143of the obvious source-language caller.
9144
Reid Kleckner60381792015-07-07 22:25:32 +00009145'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009146^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9147
9148Syntax:
9149"""""""
9150
9151::
9152
Reid Kleckner60381792015-07-07 22:25:32 +00009153 declare void @llvm.localescape(...)
9154 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009155
9156Overview:
9157"""""""""
9158
Reid Kleckner60381792015-07-07 22:25:32 +00009159The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9160allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009161live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009162computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009163
9164Arguments:
9165""""""""""
9166
Reid Kleckner60381792015-07-07 22:25:32 +00009167All arguments to '``llvm.localescape``' must be pointers to static allocas or
9168casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009169once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009170
Reid Kleckner60381792015-07-07 22:25:32 +00009171The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009172bitcasted pointer to a function defined in the current module. The code
9173generator cannot determine the frame allocation offset of functions defined in
9174other modules.
9175
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009176The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9177call frame that is currently live. The return value of '``llvm.localaddress``'
9178is one way to produce such a value, but various runtimes also expose a suitable
9179pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009180
Reid Kleckner60381792015-07-07 22:25:32 +00009181The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9182'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009183
Reid Klecknere9b89312015-01-13 00:48:10 +00009184Semantics:
9185""""""""""
9186
Reid Kleckner60381792015-07-07 22:25:32 +00009187These intrinsics allow a group of functions to share access to a set of local
9188stack allocations of a one parent function. The parent function may call the
9189'``llvm.localescape``' intrinsic once from the function entry block, and the
9190child functions can use '``llvm.localrecover``' to access the escaped allocas.
9191The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9192the escaped allocas are allocated, which would break attempts to use
9193'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009194
Renato Golinc7aea402014-05-06 16:51:25 +00009195.. _int_read_register:
9196.. _int_write_register:
9197
9198'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9200
9201Syntax:
9202"""""""
9203
9204::
9205
9206 declare i32 @llvm.read_register.i32(metadata)
9207 declare i64 @llvm.read_register.i64(metadata)
9208 declare void @llvm.write_register.i32(metadata, i32 @value)
9209 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009210 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009211
9212Overview:
9213"""""""""
9214
9215The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9216provides access to the named register. The register must be valid on
9217the architecture being compiled to. The type needs to be compatible
9218with the register being read.
9219
9220Semantics:
9221""""""""""
9222
9223The '``llvm.read_register``' intrinsic returns the current value of the
9224register, where possible. The '``llvm.write_register``' intrinsic sets
9225the current value of the register, where possible.
9226
9227This is useful to implement named register global variables that need
9228to always be mapped to a specific register, as is common practice on
9229bare-metal programs including OS kernels.
9230
9231The compiler doesn't check for register availability or use of the used
9232register in surrounding code, including inline assembly. Because of that,
9233allocatable registers are not supported.
9234
9235Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009236architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009237work is needed to support other registers and even more so, allocatable
9238registers.
9239
Sean Silvab084af42012-12-07 10:36:55 +00009240.. _int_stacksave:
9241
9242'``llvm.stacksave``' Intrinsic
9243^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9244
9245Syntax:
9246"""""""
9247
9248::
9249
9250 declare i8* @llvm.stacksave()
9251
9252Overview:
9253"""""""""
9254
9255The '``llvm.stacksave``' intrinsic is used to remember the current state
9256of the function stack, for use with
9257:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9258implementing language features like scoped automatic variable sized
9259arrays in C99.
9260
9261Semantics:
9262""""""""""
9263
9264This intrinsic returns a opaque pointer value that can be passed to
9265:ref:`llvm.stackrestore <int_stackrestore>`. When an
9266``llvm.stackrestore`` intrinsic is executed with a value saved from
9267``llvm.stacksave``, it effectively restores the state of the stack to
9268the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9269practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9270were allocated after the ``llvm.stacksave`` was executed.
9271
9272.. _int_stackrestore:
9273
9274'``llvm.stackrestore``' Intrinsic
9275^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9276
9277Syntax:
9278"""""""
9279
9280::
9281
9282 declare void @llvm.stackrestore(i8* %ptr)
9283
9284Overview:
9285"""""""""
9286
9287The '``llvm.stackrestore``' intrinsic is used to restore the state of
9288the function stack to the state it was in when the corresponding
9289:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9290useful for implementing language features like scoped automatic variable
9291sized arrays in C99.
9292
9293Semantics:
9294""""""""""
9295
9296See the description for :ref:`llvm.stacksave <int_stacksave>`.
9297
Yury Gribovd7dbb662015-12-01 11:40:55 +00009298.. _int_get_dynamic_area_offset:
9299
9300'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009301^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009302
9303Syntax:
9304"""""""
9305
9306::
9307
9308 declare i32 @llvm.get.dynamic.area.offset.i32()
9309 declare i64 @llvm.get.dynamic.area.offset.i64()
9310
9311 Overview:
9312 """""""""
9313
9314 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9315 get the offset from native stack pointer to the address of the most
9316 recent dynamic alloca on the caller's stack. These intrinsics are
9317 intendend for use in combination with
9318 :ref:`llvm.stacksave <int_stacksave>` to get a
9319 pointer to the most recent dynamic alloca. This is useful, for example,
9320 for AddressSanitizer's stack unpoisoning routines.
9321
9322Semantics:
9323""""""""""
9324
9325 These intrinsics return a non-negative integer value that can be used to
9326 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9327 on the caller's stack. In particular, for targets where stack grows downwards,
9328 adding this offset to the native stack pointer would get the address of the most
9329 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9330 complicated, because substracting this value from stack pointer would get the address
9331 one past the end of the most recent dynamic alloca.
9332
9333 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9334 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9335 compile-time-known constant value.
9336
9337 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9338 must match the target's generic address space's (address space 0) pointer type.
9339
Sean Silvab084af42012-12-07 10:36:55 +00009340'``llvm.prefetch``' Intrinsic
9341^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9342
9343Syntax:
9344"""""""
9345
9346::
9347
9348 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9349
9350Overview:
9351"""""""""
9352
9353The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9354insert a prefetch instruction if supported; otherwise, it is a noop.
9355Prefetches have no effect on the behavior of the program but can change
9356its performance characteristics.
9357
9358Arguments:
9359""""""""""
9360
9361``address`` is the address to be prefetched, ``rw`` is the specifier
9362determining if the fetch should be for a read (0) or write (1), and
9363``locality`` is a temporal locality specifier ranging from (0) - no
9364locality, to (3) - extremely local keep in cache. The ``cache type``
9365specifies whether the prefetch is performed on the data (1) or
9366instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9367arguments must be constant integers.
9368
9369Semantics:
9370""""""""""
9371
9372This intrinsic does not modify the behavior of the program. In
9373particular, prefetches cannot trap and do not produce a value. On
9374targets that support this intrinsic, the prefetch can provide hints to
9375the processor cache for better performance.
9376
9377'``llvm.pcmarker``' Intrinsic
9378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9379
9380Syntax:
9381"""""""
9382
9383::
9384
9385 declare void @llvm.pcmarker(i32 <id>)
9386
9387Overview:
9388"""""""""
9389
9390The '``llvm.pcmarker``' intrinsic is a method to export a Program
9391Counter (PC) in a region of code to simulators and other tools. The
9392method is target specific, but it is expected that the marker will use
9393exported symbols to transmit the PC of the marker. The marker makes no
9394guarantees that it will remain with any specific instruction after
9395optimizations. It is possible that the presence of a marker will inhibit
9396optimizations. The intended use is to be inserted after optimizations to
9397allow correlations of simulation runs.
9398
9399Arguments:
9400""""""""""
9401
9402``id`` is a numerical id identifying the marker.
9403
9404Semantics:
9405""""""""""
9406
9407This intrinsic does not modify the behavior of the program. Backends
9408that do not support this intrinsic may ignore it.
9409
9410'``llvm.readcyclecounter``' Intrinsic
9411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9412
9413Syntax:
9414"""""""
9415
9416::
9417
9418 declare i64 @llvm.readcyclecounter()
9419
9420Overview:
9421"""""""""
9422
9423The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9424counter register (or similar low latency, high accuracy clocks) on those
9425targets that support it. On X86, it should map to RDTSC. On Alpha, it
9426should map to RPCC. As the backing counters overflow quickly (on the
9427order of 9 seconds on alpha), this should only be used for small
9428timings.
9429
9430Semantics:
9431""""""""""
9432
9433When directly supported, reading the cycle counter should not modify any
9434memory. Implementations are allowed to either return a application
9435specific value or a system wide value. On backends without support, this
9436is lowered to a constant 0.
9437
Tim Northoverbc933082013-05-23 19:11:20 +00009438Note that runtime support may be conditional on the privilege-level code is
9439running at and the host platform.
9440
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009441'``llvm.clear_cache``' Intrinsic
9442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9443
9444Syntax:
9445"""""""
9446
9447::
9448
9449 declare void @llvm.clear_cache(i8*, i8*)
9450
9451Overview:
9452"""""""""
9453
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009454The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9455in the specified range to the execution unit of the processor. On
9456targets with non-unified instruction and data cache, the implementation
9457flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009458
9459Semantics:
9460""""""""""
9461
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009462On platforms with coherent instruction and data caches (e.g. x86), this
9463intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009464cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009465instructions or a system call, if cache flushing requires special
9466privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009467
Sean Silvad02bf3e2014-04-07 22:29:53 +00009468The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009469time library.
Renato Golin93010e62014-03-26 14:01:32 +00009470
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009471This instrinsic does *not* empty the instruction pipeline. Modifications
9472of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009473
Justin Bogner61ba2e32014-12-08 18:02:35 +00009474'``llvm.instrprof_increment``' Intrinsic
9475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9476
9477Syntax:
9478"""""""
9479
9480::
9481
9482 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9483 i32 <num-counters>, i32 <index>)
9484
9485Overview:
9486"""""""""
9487
9488The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9489frontend for use with instrumentation based profiling. These will be
9490lowered by the ``-instrprof`` pass to generate execution counts of a
9491program at runtime.
9492
9493Arguments:
9494""""""""""
9495
9496The first argument is a pointer to a global variable containing the
9497name of the entity being instrumented. This should generally be the
9498(mangled) function name for a set of counters.
9499
9500The second argument is a hash value that can be used by the consumer
9501of the profile data to detect changes to the instrumented source, and
9502the third is the number of counters associated with ``name``. It is an
9503error if ``hash`` or ``num-counters`` differ between two instances of
9504``instrprof_increment`` that refer to the same name.
9505
9506The last argument refers to which of the counters for ``name`` should
9507be incremented. It should be a value between 0 and ``num-counters``.
9508
9509Semantics:
9510""""""""""
9511
9512This intrinsic represents an increment of a profiling counter. It will
9513cause the ``-instrprof`` pass to generate the appropriate data
9514structures and the code to increment the appropriate value, in a
9515format that can be written out by a compiler runtime and consumed via
9516the ``llvm-profdata`` tool.
9517
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009518'``llvm.instrprof_value_profile``' Intrinsic
9519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9520
9521Syntax:
9522"""""""
9523
9524::
9525
9526 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9527 i64 <value>, i32 <value_kind>,
9528 i32 <index>)
9529
9530Overview:
9531"""""""""
9532
9533The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9534frontend for use with instrumentation based profiling. This will be
9535lowered by the ``-instrprof`` pass to find out the target values,
9536instrumented expressions take in a program at runtime.
9537
9538Arguments:
9539""""""""""
9540
9541The first argument is a pointer to a global variable containing the
9542name of the entity being instrumented. ``name`` should generally be the
9543(mangled) function name for a set of counters.
9544
9545The second argument is a hash value that can be used by the consumer
9546of the profile data to detect changes to the instrumented source. It
9547is an error if ``hash`` differs between two instances of
9548``llvm.instrprof_*`` that refer to the same name.
9549
9550The third argument is the value of the expression being profiled. The profiled
9551expression's value should be representable as an unsigned 64-bit value. The
9552fourth argument represents the kind of value profiling that is being done. The
9553supported value profiling kinds are enumerated through the
9554``InstrProfValueKind`` type declared in the
9555``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9556index of the instrumented expression within ``name``. It should be >= 0.
9557
9558Semantics:
9559""""""""""
9560
9561This intrinsic represents the point where a call to a runtime routine
9562should be inserted for value profiling of target expressions. ``-instrprof``
9563pass will generate the appropriate data structures and replace the
9564``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9565runtime library with proper arguments.
9566
Sean Silvab084af42012-12-07 10:36:55 +00009567Standard C Library Intrinsics
9568-----------------------------
9569
9570LLVM provides intrinsics for a few important standard C library
9571functions. These intrinsics allow source-language front-ends to pass
9572information about the alignment of the pointer arguments to the code
9573generator, providing opportunity for more efficient code generation.
9574
9575.. _int_memcpy:
9576
9577'``llvm.memcpy``' Intrinsic
9578^^^^^^^^^^^^^^^^^^^^^^^^^^^
9579
9580Syntax:
9581"""""""
9582
9583This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9584integer bit width and for different address spaces. Not all targets
9585support all bit widths however.
9586
9587::
9588
9589 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9590 i32 <len>, i32 <align>, i1 <isvolatile>)
9591 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9592 i64 <len>, i32 <align>, i1 <isvolatile>)
9593
9594Overview:
9595"""""""""
9596
9597The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9598source location to the destination location.
9599
9600Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9601intrinsics do not return a value, takes extra alignment/isvolatile
9602arguments and the pointers can be in specified address spaces.
9603
9604Arguments:
9605""""""""""
9606
9607The first argument is a pointer to the destination, the second is a
9608pointer to the source. The third argument is an integer argument
9609specifying the number of bytes to copy, the fourth argument is the
9610alignment of the source and destination locations, and the fifth is a
9611boolean indicating a volatile access.
9612
9613If the call to this intrinsic has an alignment value that is not 0 or 1,
9614then the caller guarantees that both the source and destination pointers
9615are aligned to that boundary.
9616
9617If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9618a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9619very cleanly specified and it is unwise to depend on it.
9620
9621Semantics:
9622""""""""""
9623
9624The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9625source location to the destination location, which are not allowed to
9626overlap. It copies "len" bytes of memory over. If the argument is known
9627to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009628argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009629
9630'``llvm.memmove``' Intrinsic
9631^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9632
9633Syntax:
9634"""""""
9635
9636This is an overloaded intrinsic. You can use llvm.memmove on any integer
9637bit width and for different address space. Not all targets support all
9638bit widths however.
9639
9640::
9641
9642 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9643 i32 <len>, i32 <align>, i1 <isvolatile>)
9644 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9645 i64 <len>, i32 <align>, i1 <isvolatile>)
9646
9647Overview:
9648"""""""""
9649
9650The '``llvm.memmove.*``' intrinsics move a block of memory from the
9651source location to the destination location. It is similar to the
9652'``llvm.memcpy``' intrinsic but allows the two memory locations to
9653overlap.
9654
9655Note that, unlike the standard libc function, the ``llvm.memmove.*``
9656intrinsics do not return a value, takes extra alignment/isvolatile
9657arguments and the pointers can be in specified address spaces.
9658
9659Arguments:
9660""""""""""
9661
9662The first argument is a pointer to the destination, the second is a
9663pointer to the source. The third argument is an integer argument
9664specifying the number of bytes to copy, the fourth argument is the
9665alignment of the source and destination locations, and the fifth is a
9666boolean indicating a volatile access.
9667
9668If the call to this intrinsic has an alignment value that is not 0 or 1,
9669then the caller guarantees that the source and destination pointers are
9670aligned to that boundary.
9671
9672If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9673is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9674not very cleanly specified and it is unwise to depend on it.
9675
9676Semantics:
9677""""""""""
9678
9679The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9680source location to the destination location, which may overlap. It
9681copies "len" bytes of memory over. If the argument is known to be
9682aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009683otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009684
9685'``llvm.memset.*``' Intrinsics
9686^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9687
9688Syntax:
9689"""""""
9690
9691This is an overloaded intrinsic. You can use llvm.memset on any integer
9692bit width and for different address spaces. However, not all targets
9693support all bit widths.
9694
9695::
9696
9697 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9698 i32 <len>, i32 <align>, i1 <isvolatile>)
9699 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9700 i64 <len>, i32 <align>, i1 <isvolatile>)
9701
9702Overview:
9703"""""""""
9704
9705The '``llvm.memset.*``' intrinsics fill a block of memory with a
9706particular byte value.
9707
9708Note that, unlike the standard libc function, the ``llvm.memset``
9709intrinsic does not return a value and takes extra alignment/volatile
9710arguments. Also, the destination can be in an arbitrary address space.
9711
9712Arguments:
9713""""""""""
9714
9715The first argument is a pointer to the destination to fill, the second
9716is the byte value with which to fill it, the third argument is an
9717integer argument specifying the number of bytes to fill, and the fourth
9718argument is the known alignment of the destination location.
9719
9720If the call to this intrinsic has an alignment value that is not 0 or 1,
9721then the caller guarantees that the destination pointer is aligned to
9722that boundary.
9723
9724If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9725a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9726very cleanly specified and it is unwise to depend on it.
9727
9728Semantics:
9729""""""""""
9730
9731The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9732at the destination location. If the argument is known to be aligned to
9733some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009734it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009735
9736'``llvm.sqrt.*``' Intrinsic
9737^^^^^^^^^^^^^^^^^^^^^^^^^^^
9738
9739Syntax:
9740"""""""
9741
9742This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9743floating point or vector of floating point type. Not all targets support
9744all types however.
9745
9746::
9747
9748 declare float @llvm.sqrt.f32(float %Val)
9749 declare double @llvm.sqrt.f64(double %Val)
9750 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9751 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9752 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9753
9754Overview:
9755"""""""""
9756
9757The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9758returning the same value as the libm '``sqrt``' functions would. Unlike
9759``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9760negative numbers other than -0.0 (which allows for better optimization,
9761because there is no need to worry about errno being set).
9762``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9763
9764Arguments:
9765""""""""""
9766
9767The argument and return value are floating point numbers of the same
9768type.
9769
9770Semantics:
9771""""""""""
9772
9773This function returns the sqrt of the specified operand if it is a
9774nonnegative floating point number.
9775
9776'``llvm.powi.*``' Intrinsic
9777^^^^^^^^^^^^^^^^^^^^^^^^^^^
9778
9779Syntax:
9780"""""""
9781
9782This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9783floating point or vector of floating point type. Not all targets support
9784all types however.
9785
9786::
9787
9788 declare float @llvm.powi.f32(float %Val, i32 %power)
9789 declare double @llvm.powi.f64(double %Val, i32 %power)
9790 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9791 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9792 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9793
9794Overview:
9795"""""""""
9796
9797The '``llvm.powi.*``' intrinsics return the first operand raised to the
9798specified (positive or negative) power. The order of evaluation of
9799multiplications is not defined. When a vector of floating point type is
9800used, the second argument remains a scalar integer value.
9801
9802Arguments:
9803""""""""""
9804
9805The second argument is an integer power, and the first is a value to
9806raise to that power.
9807
9808Semantics:
9809""""""""""
9810
9811This function returns the first value raised to the second power with an
9812unspecified sequence of rounding operations.
9813
9814'``llvm.sin.*``' Intrinsic
9815^^^^^^^^^^^^^^^^^^^^^^^^^^
9816
9817Syntax:
9818"""""""
9819
9820This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9821floating point or vector of floating point type. Not all targets support
9822all types however.
9823
9824::
9825
9826 declare float @llvm.sin.f32(float %Val)
9827 declare double @llvm.sin.f64(double %Val)
9828 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9829 declare fp128 @llvm.sin.f128(fp128 %Val)
9830 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9831
9832Overview:
9833"""""""""
9834
9835The '``llvm.sin.*``' intrinsics return the sine of the operand.
9836
9837Arguments:
9838""""""""""
9839
9840The argument and return value are floating point numbers of the same
9841type.
9842
9843Semantics:
9844""""""""""
9845
9846This function returns the sine of the specified operand, returning the
9847same values as the libm ``sin`` functions would, and handles error
9848conditions in the same way.
9849
9850'``llvm.cos.*``' Intrinsic
9851^^^^^^^^^^^^^^^^^^^^^^^^^^
9852
9853Syntax:
9854"""""""
9855
9856This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9857floating point or vector of floating point type. Not all targets support
9858all types however.
9859
9860::
9861
9862 declare float @llvm.cos.f32(float %Val)
9863 declare double @llvm.cos.f64(double %Val)
9864 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9865 declare fp128 @llvm.cos.f128(fp128 %Val)
9866 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9867
9868Overview:
9869"""""""""
9870
9871The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9872
9873Arguments:
9874""""""""""
9875
9876The argument and return value are floating point numbers of the same
9877type.
9878
9879Semantics:
9880""""""""""
9881
9882This function returns the cosine of the specified operand, returning the
9883same values as the libm ``cos`` functions would, and handles error
9884conditions in the same way.
9885
9886'``llvm.pow.*``' Intrinsic
9887^^^^^^^^^^^^^^^^^^^^^^^^^^
9888
9889Syntax:
9890"""""""
9891
9892This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9893floating point or vector of floating point type. Not all targets support
9894all types however.
9895
9896::
9897
9898 declare float @llvm.pow.f32(float %Val, float %Power)
9899 declare double @llvm.pow.f64(double %Val, double %Power)
9900 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9901 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9902 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9903
9904Overview:
9905"""""""""
9906
9907The '``llvm.pow.*``' intrinsics return the first operand raised to the
9908specified (positive or negative) power.
9909
9910Arguments:
9911""""""""""
9912
9913The second argument is a floating point power, and the first is a value
9914to raise to that power.
9915
9916Semantics:
9917""""""""""
9918
9919This function returns the first value raised to the second power,
9920returning the same values as the libm ``pow`` functions would, and
9921handles error conditions in the same way.
9922
9923'``llvm.exp.*``' Intrinsic
9924^^^^^^^^^^^^^^^^^^^^^^^^^^
9925
9926Syntax:
9927"""""""
9928
9929This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9930floating point or vector of floating point type. Not all targets support
9931all types however.
9932
9933::
9934
9935 declare float @llvm.exp.f32(float %Val)
9936 declare double @llvm.exp.f64(double %Val)
9937 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9938 declare fp128 @llvm.exp.f128(fp128 %Val)
9939 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9940
9941Overview:
9942"""""""""
9943
9944The '``llvm.exp.*``' intrinsics perform the exp function.
9945
9946Arguments:
9947""""""""""
9948
9949The argument and return value are floating point numbers of the same
9950type.
9951
9952Semantics:
9953""""""""""
9954
9955This function returns the same values as the libm ``exp`` functions
9956would, and handles error conditions in the same way.
9957
9958'``llvm.exp2.*``' Intrinsic
9959^^^^^^^^^^^^^^^^^^^^^^^^^^^
9960
9961Syntax:
9962"""""""
9963
9964This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9965floating point or vector of floating point type. Not all targets support
9966all types however.
9967
9968::
9969
9970 declare float @llvm.exp2.f32(float %Val)
9971 declare double @llvm.exp2.f64(double %Val)
9972 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9973 declare fp128 @llvm.exp2.f128(fp128 %Val)
9974 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9975
9976Overview:
9977"""""""""
9978
9979The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9980
9981Arguments:
9982""""""""""
9983
9984The argument and return value are floating point numbers of the same
9985type.
9986
9987Semantics:
9988""""""""""
9989
9990This function returns the same values as the libm ``exp2`` functions
9991would, and handles error conditions in the same way.
9992
9993'``llvm.log.*``' Intrinsic
9994^^^^^^^^^^^^^^^^^^^^^^^^^^
9995
9996Syntax:
9997"""""""
9998
9999This is an overloaded intrinsic. You can use ``llvm.log`` on any
10000floating point or vector of floating point type. Not all targets support
10001all types however.
10002
10003::
10004
10005 declare float @llvm.log.f32(float %Val)
10006 declare double @llvm.log.f64(double %Val)
10007 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10008 declare fp128 @llvm.log.f128(fp128 %Val)
10009 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10010
10011Overview:
10012"""""""""
10013
10014The '``llvm.log.*``' intrinsics perform the log function.
10015
10016Arguments:
10017""""""""""
10018
10019The argument and return value are floating point numbers of the same
10020type.
10021
10022Semantics:
10023""""""""""
10024
10025This function returns the same values as the libm ``log`` functions
10026would, and handles error conditions in the same way.
10027
10028'``llvm.log10.*``' Intrinsic
10029^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10030
10031Syntax:
10032"""""""
10033
10034This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10035floating point or vector of floating point type. Not all targets support
10036all types however.
10037
10038::
10039
10040 declare float @llvm.log10.f32(float %Val)
10041 declare double @llvm.log10.f64(double %Val)
10042 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10043 declare fp128 @llvm.log10.f128(fp128 %Val)
10044 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10045
10046Overview:
10047"""""""""
10048
10049The '``llvm.log10.*``' intrinsics perform the log10 function.
10050
10051Arguments:
10052""""""""""
10053
10054The argument and return value are floating point numbers of the same
10055type.
10056
10057Semantics:
10058""""""""""
10059
10060This function returns the same values as the libm ``log10`` functions
10061would, and handles error conditions in the same way.
10062
10063'``llvm.log2.*``' Intrinsic
10064^^^^^^^^^^^^^^^^^^^^^^^^^^^
10065
10066Syntax:
10067"""""""
10068
10069This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10070floating point or vector of floating point type. Not all targets support
10071all types however.
10072
10073::
10074
10075 declare float @llvm.log2.f32(float %Val)
10076 declare double @llvm.log2.f64(double %Val)
10077 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10078 declare fp128 @llvm.log2.f128(fp128 %Val)
10079 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10080
10081Overview:
10082"""""""""
10083
10084The '``llvm.log2.*``' intrinsics perform the log2 function.
10085
10086Arguments:
10087""""""""""
10088
10089The argument and return value are floating point numbers of the same
10090type.
10091
10092Semantics:
10093""""""""""
10094
10095This function returns the same values as the libm ``log2`` functions
10096would, and handles error conditions in the same way.
10097
10098'``llvm.fma.*``' Intrinsic
10099^^^^^^^^^^^^^^^^^^^^^^^^^^
10100
10101Syntax:
10102"""""""
10103
10104This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10105floating point or vector of floating point type. Not all targets support
10106all types however.
10107
10108::
10109
10110 declare float @llvm.fma.f32(float %a, float %b, float %c)
10111 declare double @llvm.fma.f64(double %a, double %b, double %c)
10112 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10113 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10114 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10115
10116Overview:
10117"""""""""
10118
10119The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10120operation.
10121
10122Arguments:
10123""""""""""
10124
10125The argument and return value are floating point numbers of the same
10126type.
10127
10128Semantics:
10129""""""""""
10130
10131This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010132would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010133
10134'``llvm.fabs.*``' Intrinsic
10135^^^^^^^^^^^^^^^^^^^^^^^^^^^
10136
10137Syntax:
10138"""""""
10139
10140This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10141floating point or vector of floating point type. Not all targets support
10142all types however.
10143
10144::
10145
10146 declare float @llvm.fabs.f32(float %Val)
10147 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010148 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010149 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010150 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010151
10152Overview:
10153"""""""""
10154
10155The '``llvm.fabs.*``' intrinsics return the absolute value of the
10156operand.
10157
10158Arguments:
10159""""""""""
10160
10161The argument and return value are floating point numbers of the same
10162type.
10163
10164Semantics:
10165""""""""""
10166
10167This function returns the same values as the libm ``fabs`` functions
10168would, and handles error conditions in the same way.
10169
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010170'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010171^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010172
10173Syntax:
10174"""""""
10175
10176This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10177floating point or vector of floating point type. Not all targets support
10178all types however.
10179
10180::
10181
Matt Arsenault64313c92014-10-22 18:25:02 +000010182 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10183 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10184 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10185 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10186 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010187
10188Overview:
10189"""""""""
10190
10191The '``llvm.minnum.*``' intrinsics return the minimum of the two
10192arguments.
10193
10194
10195Arguments:
10196""""""""""
10197
10198The arguments and return value are floating point numbers of the same
10199type.
10200
10201Semantics:
10202""""""""""
10203
10204Follows the IEEE-754 semantics for minNum, which also match for libm's
10205fmin.
10206
10207If either operand is a NaN, returns the other non-NaN operand. Returns
10208NaN only if both operands are NaN. If the operands compare equal,
10209returns a value that compares equal to both operands. This means that
10210fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10211
10212'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010214
10215Syntax:
10216"""""""
10217
10218This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10219floating point or vector of floating point type. Not all targets support
10220all types however.
10221
10222::
10223
Matt Arsenault64313c92014-10-22 18:25:02 +000010224 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10225 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10226 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10227 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10228 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010229
10230Overview:
10231"""""""""
10232
10233The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10234arguments.
10235
10236
10237Arguments:
10238""""""""""
10239
10240The arguments and return value are floating point numbers of the same
10241type.
10242
10243Semantics:
10244""""""""""
10245Follows the IEEE-754 semantics for maxNum, which also match for libm's
10246fmax.
10247
10248If either operand is a NaN, returns the other non-NaN operand. Returns
10249NaN only if both operands are NaN. If the operands compare equal,
10250returns a value that compares equal to both operands. This means that
10251fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10252
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010253'``llvm.copysign.*``' Intrinsic
10254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10255
10256Syntax:
10257"""""""
10258
10259This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10260floating point or vector of floating point type. Not all targets support
10261all types however.
10262
10263::
10264
10265 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10266 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10267 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10268 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10269 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10270
10271Overview:
10272"""""""""
10273
10274The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10275first operand and the sign of the second operand.
10276
10277Arguments:
10278""""""""""
10279
10280The arguments and return value are floating point numbers of the same
10281type.
10282
10283Semantics:
10284""""""""""
10285
10286This function returns the same values as the libm ``copysign``
10287functions would, and handles error conditions in the same way.
10288
Sean Silvab084af42012-12-07 10:36:55 +000010289'``llvm.floor.*``' Intrinsic
10290^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10291
10292Syntax:
10293"""""""
10294
10295This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10296floating point or vector of floating point type. Not all targets support
10297all types however.
10298
10299::
10300
10301 declare float @llvm.floor.f32(float %Val)
10302 declare double @llvm.floor.f64(double %Val)
10303 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10304 declare fp128 @llvm.floor.f128(fp128 %Val)
10305 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10306
10307Overview:
10308"""""""""
10309
10310The '``llvm.floor.*``' intrinsics return the floor of the operand.
10311
10312Arguments:
10313""""""""""
10314
10315The argument and return value are floating point numbers of the same
10316type.
10317
10318Semantics:
10319""""""""""
10320
10321This function returns the same values as the libm ``floor`` functions
10322would, and handles error conditions in the same way.
10323
10324'``llvm.ceil.*``' Intrinsic
10325^^^^^^^^^^^^^^^^^^^^^^^^^^^
10326
10327Syntax:
10328"""""""
10329
10330This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10331floating point or vector of floating point type. Not all targets support
10332all types however.
10333
10334::
10335
10336 declare float @llvm.ceil.f32(float %Val)
10337 declare double @llvm.ceil.f64(double %Val)
10338 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10339 declare fp128 @llvm.ceil.f128(fp128 %Val)
10340 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10341
10342Overview:
10343"""""""""
10344
10345The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10346
10347Arguments:
10348""""""""""
10349
10350The argument and return value are floating point numbers of the same
10351type.
10352
10353Semantics:
10354""""""""""
10355
10356This function returns the same values as the libm ``ceil`` functions
10357would, and handles error conditions in the same way.
10358
10359'``llvm.trunc.*``' Intrinsic
10360^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10361
10362Syntax:
10363"""""""
10364
10365This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10366floating point or vector of floating point type. Not all targets support
10367all types however.
10368
10369::
10370
10371 declare float @llvm.trunc.f32(float %Val)
10372 declare double @llvm.trunc.f64(double %Val)
10373 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10374 declare fp128 @llvm.trunc.f128(fp128 %Val)
10375 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10376
10377Overview:
10378"""""""""
10379
10380The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10381nearest integer not larger in magnitude than the operand.
10382
10383Arguments:
10384""""""""""
10385
10386The argument and return value are floating point numbers of the same
10387type.
10388
10389Semantics:
10390""""""""""
10391
10392This function returns the same values as the libm ``trunc`` functions
10393would, and handles error conditions in the same way.
10394
10395'``llvm.rint.*``' Intrinsic
10396^^^^^^^^^^^^^^^^^^^^^^^^^^^
10397
10398Syntax:
10399"""""""
10400
10401This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10402floating point or vector of floating point type. Not all targets support
10403all types however.
10404
10405::
10406
10407 declare float @llvm.rint.f32(float %Val)
10408 declare double @llvm.rint.f64(double %Val)
10409 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10410 declare fp128 @llvm.rint.f128(fp128 %Val)
10411 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10412
10413Overview:
10414"""""""""
10415
10416The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10417nearest integer. It may raise an inexact floating-point exception if the
10418operand isn't an integer.
10419
10420Arguments:
10421""""""""""
10422
10423The argument and return value are floating point numbers of the same
10424type.
10425
10426Semantics:
10427""""""""""
10428
10429This function returns the same values as the libm ``rint`` functions
10430would, and handles error conditions in the same way.
10431
10432'``llvm.nearbyint.*``' Intrinsic
10433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10434
10435Syntax:
10436"""""""
10437
10438This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10439floating point or vector of floating point type. Not all targets support
10440all types however.
10441
10442::
10443
10444 declare float @llvm.nearbyint.f32(float %Val)
10445 declare double @llvm.nearbyint.f64(double %Val)
10446 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10447 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10448 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10449
10450Overview:
10451"""""""""
10452
10453The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10454nearest integer.
10455
10456Arguments:
10457""""""""""
10458
10459The argument and return value are floating point numbers of the same
10460type.
10461
10462Semantics:
10463""""""""""
10464
10465This function returns the same values as the libm ``nearbyint``
10466functions would, and handles error conditions in the same way.
10467
Hal Finkel171817e2013-08-07 22:49:12 +000010468'``llvm.round.*``' Intrinsic
10469^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10470
10471Syntax:
10472"""""""
10473
10474This is an overloaded intrinsic. You can use ``llvm.round`` on any
10475floating point or vector of floating point type. Not all targets support
10476all types however.
10477
10478::
10479
10480 declare float @llvm.round.f32(float %Val)
10481 declare double @llvm.round.f64(double %Val)
10482 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10483 declare fp128 @llvm.round.f128(fp128 %Val)
10484 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10485
10486Overview:
10487"""""""""
10488
10489The '``llvm.round.*``' intrinsics returns the operand rounded to the
10490nearest integer.
10491
10492Arguments:
10493""""""""""
10494
10495The argument and return value are floating point numbers of the same
10496type.
10497
10498Semantics:
10499""""""""""
10500
10501This function returns the same values as the libm ``round``
10502functions would, and handles error conditions in the same way.
10503
Sean Silvab084af42012-12-07 10:36:55 +000010504Bit Manipulation Intrinsics
10505---------------------------
10506
10507LLVM provides intrinsics for a few important bit manipulation
10508operations. These allow efficient code generation for some algorithms.
10509
James Molloy90111f72015-11-12 12:29:09 +000010510'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010511^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010512
10513Syntax:
10514"""""""
10515
10516This is an overloaded intrinsic function. You can use bitreverse on any
10517integer type.
10518
10519::
10520
10521 declare i16 @llvm.bitreverse.i16(i16 <id>)
10522 declare i32 @llvm.bitreverse.i32(i32 <id>)
10523 declare i64 @llvm.bitreverse.i64(i64 <id>)
10524
10525Overview:
10526"""""""""
10527
10528The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010529bitpattern of an integer value; for example ``0b10110110`` becomes
10530``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010531
10532Semantics:
10533""""""""""
10534
10535The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10536``M`` in the input moved to bit ``N-M`` in the output.
10537
Sean Silvab084af42012-12-07 10:36:55 +000010538'``llvm.bswap.*``' Intrinsics
10539^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10540
10541Syntax:
10542"""""""
10543
10544This is an overloaded intrinsic function. You can use bswap on any
10545integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10546
10547::
10548
10549 declare i16 @llvm.bswap.i16(i16 <id>)
10550 declare i32 @llvm.bswap.i32(i32 <id>)
10551 declare i64 @llvm.bswap.i64(i64 <id>)
10552
10553Overview:
10554"""""""""
10555
10556The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10557values with an even number of bytes (positive multiple of 16 bits).
10558These are useful for performing operations on data that is not in the
10559target's native byte order.
10560
10561Semantics:
10562""""""""""
10563
10564The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10565and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10566intrinsic returns an i32 value that has the four bytes of the input i32
10567swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10568returned i32 will have its bytes in 3, 2, 1, 0 order. The
10569``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10570concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10571respectively).
10572
10573'``llvm.ctpop.*``' Intrinsic
10574^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10575
10576Syntax:
10577"""""""
10578
10579This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10580bit width, or on any vector with integer elements. Not all targets
10581support all bit widths or vector types, however.
10582
10583::
10584
10585 declare i8 @llvm.ctpop.i8(i8 <src>)
10586 declare i16 @llvm.ctpop.i16(i16 <src>)
10587 declare i32 @llvm.ctpop.i32(i32 <src>)
10588 declare i64 @llvm.ctpop.i64(i64 <src>)
10589 declare i256 @llvm.ctpop.i256(i256 <src>)
10590 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10591
10592Overview:
10593"""""""""
10594
10595The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10596in a value.
10597
10598Arguments:
10599""""""""""
10600
10601The only argument is the value to be counted. The argument may be of any
10602integer type, or a vector with integer elements. The return type must
10603match the argument type.
10604
10605Semantics:
10606""""""""""
10607
10608The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10609each element of a vector.
10610
10611'``llvm.ctlz.*``' Intrinsic
10612^^^^^^^^^^^^^^^^^^^^^^^^^^^
10613
10614Syntax:
10615"""""""
10616
10617This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10618integer bit width, or any vector whose elements are integers. Not all
10619targets support all bit widths or vector types, however.
10620
10621::
10622
10623 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10624 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10625 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10626 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10627 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010628 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010629
10630Overview:
10631"""""""""
10632
10633The '``llvm.ctlz``' family of intrinsic functions counts the number of
10634leading zeros in a variable.
10635
10636Arguments:
10637""""""""""
10638
10639The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010640any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010641type must match the first argument type.
10642
10643The second argument must be a constant and is a flag to indicate whether
10644the intrinsic should ensure that a zero as the first argument produces a
10645defined result. Historically some architectures did not provide a
10646defined result for zero values as efficiently, and many algorithms are
10647now predicated on avoiding zero-value inputs.
10648
10649Semantics:
10650""""""""""
10651
10652The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10653zeros in a variable, or within each element of the vector. If
10654``src == 0`` then the result is the size in bits of the type of ``src``
10655if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10656``llvm.ctlz(i32 2) = 30``.
10657
10658'``llvm.cttz.*``' Intrinsic
10659^^^^^^^^^^^^^^^^^^^^^^^^^^^
10660
10661Syntax:
10662"""""""
10663
10664This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10665integer bit width, or any vector of integer elements. Not all targets
10666support all bit widths or vector types, however.
10667
10668::
10669
10670 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10671 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10672 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10673 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10674 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010675 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010676
10677Overview:
10678"""""""""
10679
10680The '``llvm.cttz``' family of intrinsic functions counts the number of
10681trailing zeros.
10682
10683Arguments:
10684""""""""""
10685
10686The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010687any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010688type must match the first argument type.
10689
10690The second argument must be a constant and is a flag to indicate whether
10691the intrinsic should ensure that a zero as the first argument produces a
10692defined result. Historically some architectures did not provide a
10693defined result for zero values as efficiently, and many algorithms are
10694now predicated on avoiding zero-value inputs.
10695
10696Semantics:
10697""""""""""
10698
10699The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10700zeros in a variable, or within each element of a vector. If ``src == 0``
10701then the result is the size in bits of the type of ``src`` if
10702``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10703``llvm.cttz(2) = 1``.
10704
Philip Reames34843ae2015-03-05 05:55:55 +000010705.. _int_overflow:
10706
Sean Silvab084af42012-12-07 10:36:55 +000010707Arithmetic with Overflow Intrinsics
10708-----------------------------------
10709
10710LLVM provides intrinsics for some arithmetic with overflow operations.
10711
10712'``llvm.sadd.with.overflow.*``' Intrinsics
10713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10714
10715Syntax:
10716"""""""
10717
10718This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10719on any integer bit width.
10720
10721::
10722
10723 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10724 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10725 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10726
10727Overview:
10728"""""""""
10729
10730The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10731a signed addition of the two arguments, and indicate whether an overflow
10732occurred during the signed summation.
10733
10734Arguments:
10735""""""""""
10736
10737The arguments (%a and %b) and the first element of the result structure
10738may be of integer types of any bit width, but they must have the same
10739bit width. The second element of the result structure must be of type
10740``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10741addition.
10742
10743Semantics:
10744""""""""""
10745
10746The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010747a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010748first element of which is the signed summation, and the second element
10749of which is a bit specifying if the signed summation resulted in an
10750overflow.
10751
10752Examples:
10753"""""""""
10754
10755.. code-block:: llvm
10756
10757 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10758 %sum = extractvalue {i32, i1} %res, 0
10759 %obit = extractvalue {i32, i1} %res, 1
10760 br i1 %obit, label %overflow, label %normal
10761
10762'``llvm.uadd.with.overflow.*``' Intrinsics
10763^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10764
10765Syntax:
10766"""""""
10767
10768This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10769on any integer bit width.
10770
10771::
10772
10773 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10774 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10775 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10776
10777Overview:
10778"""""""""
10779
10780The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10781an unsigned addition of the two arguments, and indicate whether a carry
10782occurred during the unsigned summation.
10783
10784Arguments:
10785""""""""""
10786
10787The arguments (%a and %b) and the first element of the result structure
10788may be of integer types of any bit width, but they must have the same
10789bit width. The second element of the result structure must be of type
10790``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10791addition.
10792
10793Semantics:
10794""""""""""
10795
10796The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010797an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010798first element of which is the sum, and the second element of which is a
10799bit specifying if the unsigned summation resulted in a carry.
10800
10801Examples:
10802"""""""""
10803
10804.. code-block:: llvm
10805
10806 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10807 %sum = extractvalue {i32, i1} %res, 0
10808 %obit = extractvalue {i32, i1} %res, 1
10809 br i1 %obit, label %carry, label %normal
10810
10811'``llvm.ssub.with.overflow.*``' Intrinsics
10812^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10813
10814Syntax:
10815"""""""
10816
10817This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10818on any integer bit width.
10819
10820::
10821
10822 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10823 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10824 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10825
10826Overview:
10827"""""""""
10828
10829The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10830a signed subtraction of the two arguments, and indicate whether an
10831overflow occurred during the signed subtraction.
10832
10833Arguments:
10834""""""""""
10835
10836The arguments (%a and %b) and the first element of the result structure
10837may be of integer types of any bit width, but they must have the same
10838bit width. The second element of the result structure must be of type
10839``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10840subtraction.
10841
10842Semantics:
10843""""""""""
10844
10845The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010846a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010847first element of which is the subtraction, and the second element of
10848which is a bit specifying if the signed subtraction resulted in an
10849overflow.
10850
10851Examples:
10852"""""""""
10853
10854.. code-block:: llvm
10855
10856 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10857 %sum = extractvalue {i32, i1} %res, 0
10858 %obit = extractvalue {i32, i1} %res, 1
10859 br i1 %obit, label %overflow, label %normal
10860
10861'``llvm.usub.with.overflow.*``' Intrinsics
10862^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10863
10864Syntax:
10865"""""""
10866
10867This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10868on any integer bit width.
10869
10870::
10871
10872 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10873 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10874 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10875
10876Overview:
10877"""""""""
10878
10879The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10880an unsigned subtraction of the two arguments, and indicate whether an
10881overflow occurred during the unsigned subtraction.
10882
10883Arguments:
10884""""""""""
10885
10886The arguments (%a and %b) and the first element of the result structure
10887may be of integer types of any bit width, but they must have the same
10888bit width. The second element of the result structure must be of type
10889``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10890subtraction.
10891
10892Semantics:
10893""""""""""
10894
10895The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010896an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010897the first element of which is the subtraction, and the second element of
10898which is a bit specifying if the unsigned subtraction resulted in an
10899overflow.
10900
10901Examples:
10902"""""""""
10903
10904.. code-block:: llvm
10905
10906 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10907 %sum = extractvalue {i32, i1} %res, 0
10908 %obit = extractvalue {i32, i1} %res, 1
10909 br i1 %obit, label %overflow, label %normal
10910
10911'``llvm.smul.with.overflow.*``' Intrinsics
10912^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10913
10914Syntax:
10915"""""""
10916
10917This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10918on any integer bit width.
10919
10920::
10921
10922 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10923 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10924 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10925
10926Overview:
10927"""""""""
10928
10929The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10930a signed multiplication of the two arguments, and indicate whether an
10931overflow occurred during the signed multiplication.
10932
10933Arguments:
10934""""""""""
10935
10936The arguments (%a and %b) and the first element of the result structure
10937may be of integer types of any bit width, but they must have the same
10938bit width. The second element of the result structure must be of type
10939``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10940multiplication.
10941
10942Semantics:
10943""""""""""
10944
10945The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010946a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010947the first element of which is the multiplication, and the second element
10948of which is a bit specifying if the signed multiplication resulted in an
10949overflow.
10950
10951Examples:
10952"""""""""
10953
10954.. code-block:: llvm
10955
10956 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10957 %sum = extractvalue {i32, i1} %res, 0
10958 %obit = extractvalue {i32, i1} %res, 1
10959 br i1 %obit, label %overflow, label %normal
10960
10961'``llvm.umul.with.overflow.*``' Intrinsics
10962^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10963
10964Syntax:
10965"""""""
10966
10967This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10968on any integer bit width.
10969
10970::
10971
10972 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10973 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10974 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10975
10976Overview:
10977"""""""""
10978
10979The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10980a unsigned multiplication of the two arguments, and indicate whether an
10981overflow occurred during the unsigned multiplication.
10982
10983Arguments:
10984""""""""""
10985
10986The arguments (%a and %b) and the first element of the result structure
10987may be of integer types of any bit width, but they must have the same
10988bit width. The second element of the result structure must be of type
10989``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10990multiplication.
10991
10992Semantics:
10993""""""""""
10994
10995The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010996an unsigned multiplication of the two arguments. They return a structure ---
10997the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010998element of which is a bit specifying if the unsigned multiplication
10999resulted in an overflow.
11000
11001Examples:
11002"""""""""
11003
11004.. code-block:: llvm
11005
11006 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11007 %sum = extractvalue {i32, i1} %res, 0
11008 %obit = extractvalue {i32, i1} %res, 1
11009 br i1 %obit, label %overflow, label %normal
11010
11011Specialised Arithmetic Intrinsics
11012---------------------------------
11013
Owen Anderson1056a922015-07-11 07:01:27 +000011014'``llvm.canonicalize.*``' Intrinsic
11015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11016
11017Syntax:
11018"""""""
11019
11020::
11021
11022 declare float @llvm.canonicalize.f32(float %a)
11023 declare double @llvm.canonicalize.f64(double %b)
11024
11025Overview:
11026"""""""""
11027
11028The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011029encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011030implementing certain numeric primitives such as frexp. The canonical encoding is
11031defined by IEEE-754-2008 to be:
11032
11033::
11034
11035 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011036 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011037 numbers, infinities, and NaNs, especially in decimal formats.
11038
11039This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011040conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011041according to section 6.2.
11042
11043Examples of non-canonical encodings:
11044
Sean Silvaa1190322015-08-06 22:56:48 +000011045- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011046 converted to a canonical representation per hardware-specific protocol.
11047- Many normal decimal floating point numbers have non-canonical alternative
11048 encodings.
11049- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011050 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011051 a zero of the same sign by this operation.
11052
11053Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11054default exception handling must signal an invalid exception, and produce a
11055quiet NaN result.
11056
11057This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011058that the compiler does not constant fold the operation. Likewise, division by
110591.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011060-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11061
Sean Silvaa1190322015-08-06 22:56:48 +000011062``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011063
11064- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11065- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11066 to ``(x == y)``
11067
11068Additionally, the sign of zero must be conserved:
11069``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11070
11071The payload bits of a NaN must be conserved, with two exceptions.
11072First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011073must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011074usual methods.
11075
11076The canonicalization operation may be optimized away if:
11077
Sean Silvaa1190322015-08-06 22:56:48 +000011078- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011079 floating-point operation that is required by the standard to be canonical.
11080- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011081 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011082
Sean Silvab084af42012-12-07 10:36:55 +000011083'``llvm.fmuladd.*``' Intrinsic
11084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11085
11086Syntax:
11087"""""""
11088
11089::
11090
11091 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11092 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11093
11094Overview:
11095"""""""""
11096
11097The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011098expressions that can be fused if the code generator determines that (a) the
11099target instruction set has support for a fused operation, and (b) that the
11100fused operation is more efficient than the equivalent, separate pair of mul
11101and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011102
11103Arguments:
11104""""""""""
11105
11106The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11107multiplicands, a and b, and an addend c.
11108
11109Semantics:
11110""""""""""
11111
11112The expression:
11113
11114::
11115
11116 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11117
11118is equivalent to the expression a \* b + c, except that rounding will
11119not be performed between the multiplication and addition steps if the
11120code generator fuses the operations. Fusion is not guaranteed, even if
11121the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011122corresponding llvm.fma.\* intrinsic function should be used
11123instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011124
11125Examples:
11126"""""""""
11127
11128.. code-block:: llvm
11129
Tim Northover675a0962014-06-13 14:24:23 +000011130 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011131
11132Half Precision Floating Point Intrinsics
11133----------------------------------------
11134
11135For most target platforms, half precision floating point is a
11136storage-only format. This means that it is a dense encoding (in memory)
11137but does not support computation in the format.
11138
11139This means that code must first load the half-precision floating point
11140value as an i16, then convert it to float with
11141:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11142then be performed on the float value (including extending to double
11143etc). To store the value back to memory, it is first converted to float
11144if needed, then converted to i16 with
11145:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11146i16 value.
11147
11148.. _int_convert_to_fp16:
11149
11150'``llvm.convert.to.fp16``' Intrinsic
11151^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11152
11153Syntax:
11154"""""""
11155
11156::
11157
Tim Northoverfd7e4242014-07-17 10:51:23 +000011158 declare i16 @llvm.convert.to.fp16.f32(float %a)
11159 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011160
11161Overview:
11162"""""""""
11163
Tim Northoverfd7e4242014-07-17 10:51:23 +000011164The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11165conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011166
11167Arguments:
11168""""""""""
11169
11170The intrinsic function contains single argument - the value to be
11171converted.
11172
11173Semantics:
11174""""""""""
11175
Tim Northoverfd7e4242014-07-17 10:51:23 +000011176The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11177conventional floating point format to half precision floating point format. The
11178return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011179
11180Examples:
11181"""""""""
11182
11183.. code-block:: llvm
11184
Tim Northoverfd7e4242014-07-17 10:51:23 +000011185 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011186 store i16 %res, i16* @x, align 2
11187
11188.. _int_convert_from_fp16:
11189
11190'``llvm.convert.from.fp16``' Intrinsic
11191^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11192
11193Syntax:
11194"""""""
11195
11196::
11197
Tim Northoverfd7e4242014-07-17 10:51:23 +000011198 declare float @llvm.convert.from.fp16.f32(i16 %a)
11199 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011200
11201Overview:
11202"""""""""
11203
11204The '``llvm.convert.from.fp16``' intrinsic function performs a
11205conversion from half precision floating point format to single precision
11206floating point format.
11207
11208Arguments:
11209""""""""""
11210
11211The intrinsic function contains single argument - the value to be
11212converted.
11213
11214Semantics:
11215""""""""""
11216
11217The '``llvm.convert.from.fp16``' intrinsic function performs a
11218conversion from half single precision floating point format to single
11219precision floating point format. The input half-float value is
11220represented by an ``i16`` value.
11221
11222Examples:
11223"""""""""
11224
11225.. code-block:: llvm
11226
David Blaikiec7aabbb2015-03-04 22:06:14 +000011227 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011228 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011229
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011230.. _dbg_intrinsics:
11231
Sean Silvab084af42012-12-07 10:36:55 +000011232Debugger Intrinsics
11233-------------------
11234
11235The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11236prefix), are described in the `LLVM Source Level
11237Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11238document.
11239
11240Exception Handling Intrinsics
11241-----------------------------
11242
11243The LLVM exception handling intrinsics (which all start with
11244``llvm.eh.`` prefix), are described in the `LLVM Exception
11245Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11246
11247.. _int_trampoline:
11248
11249Trampoline Intrinsics
11250---------------------
11251
11252These intrinsics make it possible to excise one parameter, marked with
11253the :ref:`nest <nest>` attribute, from a function. The result is a
11254callable function pointer lacking the nest parameter - the caller does
11255not need to provide a value for it. Instead, the value to use is stored
11256in advance in a "trampoline", a block of memory usually allocated on the
11257stack, which also contains code to splice the nest value into the
11258argument list. This is used to implement the GCC nested function address
11259extension.
11260
11261For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11262then the resulting function pointer has signature ``i32 (i32, i32)*``.
11263It can be created as follows:
11264
11265.. code-block:: llvm
11266
11267 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011268 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011269 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11270 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11271 %fp = bitcast i8* %p to i32 (i32, i32)*
11272
11273The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11274``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11275
11276.. _int_it:
11277
11278'``llvm.init.trampoline``' Intrinsic
11279^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11280
11281Syntax:
11282"""""""
11283
11284::
11285
11286 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11287
11288Overview:
11289"""""""""
11290
11291This fills the memory pointed to by ``tramp`` with executable code,
11292turning it into a trampoline.
11293
11294Arguments:
11295""""""""""
11296
11297The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11298pointers. The ``tramp`` argument must point to a sufficiently large and
11299sufficiently aligned block of memory; this memory is written to by the
11300intrinsic. Note that the size and the alignment are target-specific -
11301LLVM currently provides no portable way of determining them, so a
11302front-end that generates this intrinsic needs to have some
11303target-specific knowledge. The ``func`` argument must hold a function
11304bitcast to an ``i8*``.
11305
11306Semantics:
11307""""""""""
11308
11309The block of memory pointed to by ``tramp`` is filled with target
11310dependent code, turning it into a function. Then ``tramp`` needs to be
11311passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11312be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11313function's signature is the same as that of ``func`` with any arguments
11314marked with the ``nest`` attribute removed. At most one such ``nest``
11315argument is allowed, and it must be of pointer type. Calling the new
11316function is equivalent to calling ``func`` with the same argument list,
11317but with ``nval`` used for the missing ``nest`` argument. If, after
11318calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11319modified, then the effect of any later call to the returned function
11320pointer is undefined.
11321
11322.. _int_at:
11323
11324'``llvm.adjust.trampoline``' Intrinsic
11325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11326
11327Syntax:
11328"""""""
11329
11330::
11331
11332 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11333
11334Overview:
11335"""""""""
11336
11337This performs any required machine-specific adjustment to the address of
11338a trampoline (passed as ``tramp``).
11339
11340Arguments:
11341""""""""""
11342
11343``tramp`` must point to a block of memory which already has trampoline
11344code filled in by a previous call to
11345:ref:`llvm.init.trampoline <int_it>`.
11346
11347Semantics:
11348""""""""""
11349
11350On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011351different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011352intrinsic returns the executable address corresponding to ``tramp``
11353after performing the required machine specific adjustments. The pointer
11354returned can then be :ref:`bitcast and executed <int_trampoline>`.
11355
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011356.. _int_mload_mstore:
11357
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011358Masked Vector Load and Store Intrinsics
11359---------------------------------------
11360
11361LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11362
11363.. _int_mload:
11364
11365'``llvm.masked.load.*``' Intrinsics
11366^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11367
11368Syntax:
11369"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011370This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011371
11372::
11373
Matthias Braun68bb2932016-03-22 20:24:34 +000011374 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11375 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011376 ;; The data is a vector of pointers to double
Matthias Braun68bb2932016-03-22 20:24:34 +000011377 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011378 ;; The data is a vector of function pointers
Matthias Braun68bb2932016-03-22 20:24:34 +000011379 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011380
11381Overview:
11382"""""""""
11383
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011384Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011385
11386
11387Arguments:
11388""""""""""
11389
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011390The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011391
11392
11393Semantics:
11394""""""""""
11395
11396The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11397The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11398
11399
11400::
11401
Matthias Braun68bb2932016-03-22 20:24:34 +000011402 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011403
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011404 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011405 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011406 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011407
11408.. _int_mstore:
11409
11410'``llvm.masked.store.*``' Intrinsics
11411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11412
11413Syntax:
11414"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011415This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011416
11417::
11418
Matthias Braun68bb2932016-03-22 20:24:34 +000011419 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11420 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011421 ;; The data is a vector of pointers to double
Matthias Braun68bb2932016-03-22 20:24:34 +000011422 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011423 ;; The data is a vector of function pointers
Matthias Braun68bb2932016-03-22 20:24:34 +000011424 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011425
11426Overview:
11427"""""""""
11428
11429Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11430
11431Arguments:
11432""""""""""
11433
11434The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11435
11436
11437Semantics:
11438""""""""""
11439
11440The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11441The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11442
11443::
11444
Matthias Braun68bb2932016-03-22 20:24:34 +000011445 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011446
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011447 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011448 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011449 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11450 store <16 x float> %res, <16 x float>* %ptr, align 4
11451
11452
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011453Masked Vector Gather and Scatter Intrinsics
11454-------------------------------------------
11455
11456LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11457
11458.. _int_mgather:
11459
11460'``llvm.masked.gather.*``' Intrinsics
11461^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11462
11463Syntax:
11464"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011465This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011466
11467::
11468
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011469 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11470 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11471 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011472
11473Overview:
11474"""""""""
11475
11476Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11477
11478
11479Arguments:
11480""""""""""
11481
11482The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11483
11484
11485Semantics:
11486""""""""""
11487
11488The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11489The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11490
11491
11492::
11493
11494 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11495
11496 ;; The gather with all-true mask is equivalent to the following instruction sequence
11497 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11498 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11499 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11500 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11501
11502 %val0 = load double, double* %ptr0, align 8
11503 %val1 = load double, double* %ptr1, align 8
11504 %val2 = load double, double* %ptr2, align 8
11505 %val3 = load double, double* %ptr3, align 8
11506
11507 %vec0 = insertelement <4 x double>undef, %val0, 0
11508 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11509 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11510 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11511
11512.. _int_mscatter:
11513
11514'``llvm.masked.scatter.*``' Intrinsics
11515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11516
11517Syntax:
11518"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011519This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011520
11521::
11522
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011523 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11524 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11525 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011526
11527Overview:
11528"""""""""
11529
11530Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11531
11532Arguments:
11533""""""""""
11534
11535The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11536
11537
11538Semantics:
11539""""""""""
11540
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011541The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011542
11543::
11544
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011545 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011546 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11547
11548 ;; It is equivalent to a list of scalar stores
11549 %val0 = extractelement <8 x i32> %value, i32 0
11550 %val1 = extractelement <8 x i32> %value, i32 1
11551 ..
11552 %val7 = extractelement <8 x i32> %value, i32 7
11553 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11554 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11555 ..
11556 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11557 ;; Note: the order of the following stores is important when they overlap:
11558 store i32 %val0, i32* %ptr0, align 4
11559 store i32 %val1, i32* %ptr1, align 4
11560 ..
11561 store i32 %val7, i32* %ptr7, align 4
11562
11563
Sean Silvab084af42012-12-07 10:36:55 +000011564Memory Use Markers
11565------------------
11566
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011567This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011568memory objects and ranges where variables are immutable.
11569
Reid Klecknera534a382013-12-19 02:14:12 +000011570.. _int_lifestart:
11571
Sean Silvab084af42012-12-07 10:36:55 +000011572'``llvm.lifetime.start``' Intrinsic
11573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11574
11575Syntax:
11576"""""""
11577
11578::
11579
11580 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11581
11582Overview:
11583"""""""""
11584
11585The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11586object's lifetime.
11587
11588Arguments:
11589""""""""""
11590
11591The first argument is a constant integer representing the size of the
11592object, or -1 if it is variable sized. The second argument is a pointer
11593to the object.
11594
11595Semantics:
11596""""""""""
11597
11598This intrinsic indicates that before this point in the code, the value
11599of the memory pointed to by ``ptr`` is dead. This means that it is known
11600to never be used and has an undefined value. A load from the pointer
11601that precedes this intrinsic can be replaced with ``'undef'``.
11602
Reid Klecknera534a382013-12-19 02:14:12 +000011603.. _int_lifeend:
11604
Sean Silvab084af42012-12-07 10:36:55 +000011605'``llvm.lifetime.end``' Intrinsic
11606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11607
11608Syntax:
11609"""""""
11610
11611::
11612
11613 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11614
11615Overview:
11616"""""""""
11617
11618The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11619object's lifetime.
11620
11621Arguments:
11622""""""""""
11623
11624The first argument is a constant integer representing the size of the
11625object, or -1 if it is variable sized. The second argument is a pointer
11626to the object.
11627
11628Semantics:
11629""""""""""
11630
11631This intrinsic indicates that after this point in the code, the value of
11632the memory pointed to by ``ptr`` is dead. This means that it is known to
11633never be used and has an undefined value. Any stores into the memory
11634object following this intrinsic may be removed as dead.
11635
11636'``llvm.invariant.start``' Intrinsic
11637^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11638
11639Syntax:
11640"""""""
11641
11642::
11643
11644 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11645
11646Overview:
11647"""""""""
11648
11649The '``llvm.invariant.start``' intrinsic specifies that the contents of
11650a memory object will not change.
11651
11652Arguments:
11653""""""""""
11654
11655The first argument is a constant integer representing the size of the
11656object, or -1 if it is variable sized. The second argument is a pointer
11657to the object.
11658
11659Semantics:
11660""""""""""
11661
11662This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11663the return value, the referenced memory location is constant and
11664unchanging.
11665
11666'``llvm.invariant.end``' Intrinsic
11667^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11668
11669Syntax:
11670"""""""
11671
11672::
11673
11674 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11675
11676Overview:
11677"""""""""
11678
11679The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11680memory object are mutable.
11681
11682Arguments:
11683""""""""""
11684
11685The first argument is the matching ``llvm.invariant.start`` intrinsic.
11686The second argument is a constant integer representing the size of the
11687object, or -1 if it is variable sized and the third argument is a
11688pointer to the object.
11689
11690Semantics:
11691""""""""""
11692
11693This intrinsic indicates that the memory is mutable again.
11694
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011695'``llvm.invariant.group.barrier``' Intrinsic
11696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11697
11698Syntax:
11699"""""""
11700
11701::
11702
11703 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11704
11705Overview:
11706"""""""""
11707
11708The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11709established by invariant.group metadata no longer holds, to obtain a new pointer
11710value that does not carry the invariant information.
11711
11712
11713Arguments:
11714""""""""""
11715
11716The ``llvm.invariant.group.barrier`` takes only one argument, which is
11717the pointer to the memory for which the ``invariant.group`` no longer holds.
11718
11719Semantics:
11720""""""""""
11721
11722Returns another pointer that aliases its argument but which is considered different
11723for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11724
Sean Silvab084af42012-12-07 10:36:55 +000011725General Intrinsics
11726------------------
11727
11728This class of intrinsics is designed to be generic and has no specific
11729purpose.
11730
11731'``llvm.var.annotation``' Intrinsic
11732^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11733
11734Syntax:
11735"""""""
11736
11737::
11738
11739 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11740
11741Overview:
11742"""""""""
11743
11744The '``llvm.var.annotation``' intrinsic.
11745
11746Arguments:
11747""""""""""
11748
11749The first argument is a pointer to a value, the second is a pointer to a
11750global string, the third is a pointer to a global string which is the
11751source file name, and the last argument is the line number.
11752
11753Semantics:
11754""""""""""
11755
11756This intrinsic allows annotation of local variables with arbitrary
11757strings. This can be useful for special purpose optimizations that want
11758to look for these annotations. These have no other defined use; they are
11759ignored by code generation and optimization.
11760
Michael Gottesman88d18832013-03-26 00:34:27 +000011761'``llvm.ptr.annotation.*``' Intrinsic
11762^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11763
11764Syntax:
11765"""""""
11766
11767This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11768pointer to an integer of any width. *NOTE* you must specify an address space for
11769the pointer. The identifier for the default address space is the integer
11770'``0``'.
11771
11772::
11773
11774 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11775 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11776 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11777 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11778 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11779
11780Overview:
11781"""""""""
11782
11783The '``llvm.ptr.annotation``' intrinsic.
11784
11785Arguments:
11786""""""""""
11787
11788The first argument is a pointer to an integer value of arbitrary bitwidth
11789(result of some expression), the second is a pointer to a global string, the
11790third is a pointer to a global string which is the source file name, and the
11791last argument is the line number. It returns the value of the first argument.
11792
11793Semantics:
11794""""""""""
11795
11796This intrinsic allows annotation of a pointer to an integer with arbitrary
11797strings. This can be useful for special purpose optimizations that want to look
11798for these annotations. These have no other defined use; they are ignored by code
11799generation and optimization.
11800
Sean Silvab084af42012-12-07 10:36:55 +000011801'``llvm.annotation.*``' Intrinsic
11802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11803
11804Syntax:
11805"""""""
11806
11807This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11808any integer bit width.
11809
11810::
11811
11812 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11813 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11814 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11815 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11816 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11817
11818Overview:
11819"""""""""
11820
11821The '``llvm.annotation``' intrinsic.
11822
11823Arguments:
11824""""""""""
11825
11826The first argument is an integer value (result of some expression), the
11827second is a pointer to a global string, the third is a pointer to a
11828global string which is the source file name, and the last argument is
11829the line number. It returns the value of the first argument.
11830
11831Semantics:
11832""""""""""
11833
11834This intrinsic allows annotations to be put on arbitrary expressions
11835with arbitrary strings. This can be useful for special purpose
11836optimizations that want to look for these annotations. These have no
11837other defined use; they are ignored by code generation and optimization.
11838
11839'``llvm.trap``' Intrinsic
11840^^^^^^^^^^^^^^^^^^^^^^^^^
11841
11842Syntax:
11843"""""""
11844
11845::
11846
11847 declare void @llvm.trap() noreturn nounwind
11848
11849Overview:
11850"""""""""
11851
11852The '``llvm.trap``' intrinsic.
11853
11854Arguments:
11855""""""""""
11856
11857None.
11858
11859Semantics:
11860""""""""""
11861
11862This intrinsic is lowered to the target dependent trap instruction. If
11863the target does not have a trap instruction, this intrinsic will be
11864lowered to a call of the ``abort()`` function.
11865
11866'``llvm.debugtrap``' Intrinsic
11867^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11868
11869Syntax:
11870"""""""
11871
11872::
11873
11874 declare void @llvm.debugtrap() nounwind
11875
11876Overview:
11877"""""""""
11878
11879The '``llvm.debugtrap``' intrinsic.
11880
11881Arguments:
11882""""""""""
11883
11884None.
11885
11886Semantics:
11887""""""""""
11888
11889This intrinsic is lowered to code which is intended to cause an
11890execution trap with the intention of requesting the attention of a
11891debugger.
11892
11893'``llvm.stackprotector``' Intrinsic
11894^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11895
11896Syntax:
11897"""""""
11898
11899::
11900
11901 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11902
11903Overview:
11904"""""""""
11905
11906The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11907onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11908is placed on the stack before local variables.
11909
11910Arguments:
11911""""""""""
11912
11913The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11914The first argument is the value loaded from the stack guard
11915``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11916enough space to hold the value of the guard.
11917
11918Semantics:
11919""""""""""
11920
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011921This intrinsic causes the prologue/epilogue inserter to force the position of
11922the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11923to ensure that if a local variable on the stack is overwritten, it will destroy
11924the value of the guard. When the function exits, the guard on the stack is
11925checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11926different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11927calling the ``__stack_chk_fail()`` function.
11928
11929'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011930^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011931
11932Syntax:
11933"""""""
11934
11935::
11936
11937 declare void @llvm.stackprotectorcheck(i8** <guard>)
11938
11939Overview:
11940"""""""""
11941
11942The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011943created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011944``__stack_chk_fail()`` function.
11945
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011946Arguments:
11947""""""""""
11948
11949The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11950the variable ``@__stack_chk_guard``.
11951
11952Semantics:
11953""""""""""
11954
11955This intrinsic is provided to perform the stack protector check by comparing
11956``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11957values do not match call the ``__stack_chk_fail()`` function.
11958
11959The reason to provide this as an IR level intrinsic instead of implementing it
11960via other IR operations is that in order to perform this operation at the IR
11961level without an intrinsic, one would need to create additional basic blocks to
11962handle the success/failure cases. This makes it difficult to stop the stack
11963protector check from disrupting sibling tail calls in Codegen. With this
11964intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011965codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011966
Sean Silvab084af42012-12-07 10:36:55 +000011967'``llvm.objectsize``' Intrinsic
11968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11969
11970Syntax:
11971"""""""
11972
11973::
11974
11975 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11976 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11977
11978Overview:
11979"""""""""
11980
11981The ``llvm.objectsize`` intrinsic is designed to provide information to
11982the optimizers to determine at compile time whether a) an operation
11983(like memcpy) will overflow a buffer that corresponds to an object, or
11984b) that a runtime check for overflow isn't necessary. An object in this
11985context means an allocation of a specific class, structure, array, or
11986other object.
11987
11988Arguments:
11989""""""""""
11990
11991The ``llvm.objectsize`` intrinsic takes two arguments. The first
11992argument is a pointer to or into the ``object``. The second argument is
11993a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11994or -1 (if false) when the object size is unknown. The second argument
11995only accepts constants.
11996
11997Semantics:
11998""""""""""
11999
12000The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12001the size of the object concerned. If the size cannot be determined at
12002compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12003on the ``min`` argument).
12004
12005'``llvm.expect``' Intrinsic
12006^^^^^^^^^^^^^^^^^^^^^^^^^^^
12007
12008Syntax:
12009"""""""
12010
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012011This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12012integer bit width.
12013
Sean Silvab084af42012-12-07 10:36:55 +000012014::
12015
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012016 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012017 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12018 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12019
12020Overview:
12021"""""""""
12022
12023The ``llvm.expect`` intrinsic provides information about expected (the
12024most probable) value of ``val``, which can be used by optimizers.
12025
12026Arguments:
12027""""""""""
12028
12029The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12030a value. The second argument is an expected value, this needs to be a
12031constant value, variables are not allowed.
12032
12033Semantics:
12034""""""""""
12035
12036This intrinsic is lowered to the ``val``.
12037
Philip Reamese0e90832015-04-26 22:23:12 +000012038.. _int_assume:
12039
Hal Finkel93046912014-07-25 21:13:35 +000012040'``llvm.assume``' Intrinsic
12041^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12042
12043Syntax:
12044"""""""
12045
12046::
12047
12048 declare void @llvm.assume(i1 %cond)
12049
12050Overview:
12051"""""""""
12052
12053The ``llvm.assume`` allows the optimizer to assume that the provided
12054condition is true. This information can then be used in simplifying other parts
12055of the code.
12056
12057Arguments:
12058""""""""""
12059
12060The condition which the optimizer may assume is always true.
12061
12062Semantics:
12063""""""""""
12064
12065The intrinsic allows the optimizer to assume that the provided condition is
12066always true whenever the control flow reaches the intrinsic call. No code is
12067generated for this intrinsic, and instructions that contribute only to the
12068provided condition are not used for code generation. If the condition is
12069violated during execution, the behavior is undefined.
12070
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012071Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012072used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12073only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012074if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012075sufficient overall improvement in code quality. For this reason,
12076``llvm.assume`` should not be used to document basic mathematical invariants
12077that the optimizer can otherwise deduce or facts that are of little use to the
12078optimizer.
12079
Peter Collingbournee6909c82015-02-20 20:30:47 +000012080.. _bitset.test:
12081
12082'``llvm.bitset.test``' Intrinsic
12083^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12084
12085Syntax:
12086"""""""
12087
12088::
12089
12090 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12091
12092
12093Arguments:
12094""""""""""
12095
12096The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012097metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012098
12099Overview:
12100"""""""""
12101
12102The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12103member of the given bitset.
12104
Sean Silvab084af42012-12-07 10:36:55 +000012105'``llvm.donothing``' Intrinsic
12106^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12107
12108Syntax:
12109"""""""
12110
12111::
12112
12113 declare void @llvm.donothing() nounwind readnone
12114
12115Overview:
12116"""""""""
12117
Juergen Ributzkac9161192014-10-23 22:36:13 +000012118The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012119three intrinsics (besides ``llvm.experimental.patchpoint`` and
12120``llvm.experimental.gc.statepoint``) that can be called with an invoke
12121instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012122
12123Arguments:
12124""""""""""
12125
12126None.
12127
12128Semantics:
12129""""""""""
12130
12131This intrinsic does nothing, and it's removed by optimizers and ignored
12132by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012133
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012134'``llvm.experimental.deoptimize``' Intrinsic
12135^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12136
12137Syntax:
12138"""""""
12139
12140::
12141
12142 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12143
12144Overview:
12145"""""""""
12146
12147This intrinsic, together with :ref:`deoptimization operand bundles
12148<deopt_opbundles>`, allow frontends to express transfer of control and
12149frame-local state from the currently executing (typically more specialized,
12150hence faster) version of a function into another (typically more generic, hence
12151slower) version.
12152
12153In languages with a fully integrated managed runtime like Java and JavaScript
12154this intrinsic can be used to implement "uncommon trap" or "side exit" like
12155functionality. In unmanaged languages like C and C++, this intrinsic can be
12156used to represent the slow paths of specialized functions.
12157
12158
12159Arguments:
12160""""""""""
12161
12162The intrinsic takes an arbitrary number of arguments, whose meaning is
12163decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12164
12165Semantics:
12166""""""""""
12167
12168The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12169deoptimization continuation (denoted using a :ref:`deoptimization
12170operand bundle <deopt_opbundles>`) and returns the value returned by
12171the deoptimization continuation. Defining the semantic properties of
12172the continuation itself is out of scope of the language reference --
12173as far as LLVM is concerned, the deoptimization continuation can
12174invoke arbitrary side effects, including reading from and writing to
12175the entire heap.
12176
12177Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12178continue execution to the end of the physical frame containing them, so all
12179calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12180
12181 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12182 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12183 - The ``ret`` instruction must return the value produced by the
12184 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12185
12186Note that the above restrictions imply that the return type for a call to
12187``@llvm.experimental.deoptimize`` will match the return type of its immediate
12188caller.
12189
12190The inliner composes the ``"deopt"`` continuations of the caller into the
12191``"deopt"`` continuations present in the inlinee, and also updates calls to this
12192intrinsic to return directly from the frame of the function it inlined into.
12193
12194.. _deoptimize_lowering:
12195
12196Lowering:
12197"""""""""
12198
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012199Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12200symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12201ensure that this symbol is defined). The call arguments to
12202``@llvm.experimental.deoptimize`` are lowered as if they were formal
12203arguments of the specified types, and not as varargs.
12204
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012205
Sanjoy Das021de052016-03-31 00:18:46 +000012206'``llvm.experimental.guard``' Intrinsic
12207^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12208
12209Syntax:
12210"""""""
12211
12212::
12213
12214 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12215
12216Overview:
12217"""""""""
12218
12219This intrinsic, together with :ref:`deoptimization operand bundles
12220<deopt_opbundles>`, allows frontends to express guards or checks on
12221optimistic assumptions made during compilation. The semantics of
12222``@llvm.experimental.guard`` is defined in terms of
12223``@llvm.experimental.deoptimize`` -- its body is defined to be
12224equivalent to:
12225
12226.. code-block:: llvm
12227
12228 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12229 %realPred = and i1 %pred, undef
12230 br i1 %realPred, label %continue, label %leave
12231
12232 leave:
12233 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12234 ret void
12235
12236 continue:
12237 ret void
12238 }
12239
12240In words, ``@llvm.experimental.guard`` executes the attached
12241``"deopt"`` continuation if (but **not** only if) its first argument
12242is ``false``. Since the optimizer is allowed to replace the ``undef``
12243with an arbitrary value, it can optimize guard to fail "spuriously",
12244i.e. without the original condition being false (hence the "not only
12245if"); and this allows for "check widening" type optimizations.
12246
12247``@llvm.experimental.guard`` cannot be invoked.
12248
12249
Andrew Trick5e029ce2013-12-24 02:57:25 +000012250Stack Map Intrinsics
12251--------------------
12252
12253LLVM provides experimental intrinsics to support runtime patching
12254mechanisms commonly desired in dynamic language JITs. These intrinsics
12255are described in :doc:`StackMaps`.