blob: 8e19bf62c386c54b29fc3af55c5cc8aec8221288 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
253``extern_weak``
254 The semantics of this linkage follow the ELF object file model: the
255 symbol is weak until linked, if not linked, the symbol becomes null
256 instead of being an undefined reference.
257``linkonce_odr``, ``weak_odr``
258 Some languages allow differing globals to be merged, such as two
259 functions with different semantics. Other languages, such as
260 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000261 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000262 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
263 global will only be merged with equivalent globals. These linkage
264 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000265``external``
266 If none of the above identifiers are used, the global is externally
267 visible, meaning that it participates in linkage and can be used to
268 resolve external symbol references.
269
Sean Silvab084af42012-12-07 10:36:55 +0000270It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000271other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000272
Sean Silvab084af42012-12-07 10:36:55 +0000273.. _callingconv:
274
275Calling Conventions
276-------------------
277
278LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
279:ref:`invokes <i_invoke>` can all have an optional calling convention
280specified for the call. The calling convention of any pair of dynamic
281caller/callee must match, or the behavior of the program is undefined.
282The following calling conventions are supported by LLVM, and more may be
283added in the future:
284
285"``ccc``" - The C calling convention
286 This calling convention (the default if no other calling convention
287 is specified) matches the target C calling conventions. This calling
288 convention supports varargs function calls and tolerates some
289 mismatch in the declared prototype and implemented declaration of
290 the function (as does normal C).
291"``fastcc``" - The fast calling convention
292 This calling convention attempts to make calls as fast as possible
293 (e.g. by passing things in registers). This calling convention
294 allows the target to use whatever tricks it wants to produce fast
295 code for the target, without having to conform to an externally
296 specified ABI (Application Binary Interface). `Tail calls can only
297 be optimized when this, the GHC or the HiPE convention is
298 used. <CodeGenerator.html#id80>`_ This calling convention does not
299 support varargs and requires the prototype of all callees to exactly
300 match the prototype of the function definition.
301"``coldcc``" - The cold calling convention
302 This calling convention attempts to make code in the caller as
303 efficient as possible under the assumption that the call is not
304 commonly executed. As such, these calls often preserve all registers
305 so that the call does not break any live ranges in the caller side.
306 This calling convention does not support varargs and requires the
307 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000308 function definition. Furthermore the inliner doesn't consider such function
309 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000310"``cc 10``" - GHC convention
311 This calling convention has been implemented specifically for use by
312 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
313 It passes everything in registers, going to extremes to achieve this
314 by disabling callee save registers. This calling convention should
315 not be used lightly but only for specific situations such as an
316 alternative to the *register pinning* performance technique often
317 used when implementing functional programming languages. At the
318 moment only X86 supports this convention and it has the following
319 limitations:
320
321 - On *X86-32* only supports up to 4 bit type parameters. No
322 floating point types are supported.
323 - On *X86-64* only supports up to 10 bit type parameters and 6
324 floating point parameters.
325
326 This calling convention supports `tail call
327 optimization <CodeGenerator.html#id80>`_ but requires both the
328 caller and callee are using it.
329"``cc 11``" - The HiPE calling convention
330 This calling convention has been implemented specifically for use by
331 the `High-Performance Erlang
332 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
333 native code compiler of the `Ericsson's Open Source Erlang/OTP
334 system <http://www.erlang.org/download.shtml>`_. It uses more
335 registers for argument passing than the ordinary C calling
336 convention and defines no callee-saved registers. The calling
337 convention properly supports `tail call
338 optimization <CodeGenerator.html#id80>`_ but requires that both the
339 caller and the callee use it. It uses a *register pinning*
340 mechanism, similar to GHC's convention, for keeping frequently
341 accessed runtime components pinned to specific hardware registers.
342 At the moment only X86 supports this convention (both 32 and 64
343 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000344"``webkit_jscc``" - WebKit's JavaScript calling convention
345 This calling convention has been implemented for `WebKit FTL JIT
346 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
347 stack right to left (as cdecl does), and returns a value in the
348 platform's customary return register.
349"``anyregcc``" - Dynamic calling convention for code patching
350 This is a special convention that supports patching an arbitrary code
351 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000352 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000353 allocated. This can currently only be used with calls to
354 llvm.experimental.patchpoint because only this intrinsic records
355 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000356"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 This calling convention attempts to make the code in the caller as
358 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000359 calling convention on how arguments and return values are passed, but it
360 uses a different set of caller/callee-saved registers. This alleviates the
361 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000362 call in the caller. If the arguments are passed in callee-saved registers,
363 then they will be preserved by the callee across the call. This doesn't
364 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000365
366 - On X86-64 the callee preserves all general purpose registers, except for
367 R11. R11 can be used as a scratch register. Floating-point registers
368 (XMMs/YMMs) are not preserved and need to be saved by the caller.
369
370 The idea behind this convention is to support calls to runtime functions
371 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000372 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000373 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000374 registers, which haven't already been saved by the caller. The
375 `PreserveMost` calling convention is very similar to the `cold` calling
376 convention in terms of caller/callee-saved registers, but they are used for
377 different types of function calls. `coldcc` is for function calls that are
378 rarely executed, whereas `preserve_mostcc` function calls are intended to be
379 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
380 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000381
382 This calling convention will be used by a future version of the ObjectiveC
383 runtime and should therefore still be considered experimental at this time.
384 Although this convention was created to optimize certain runtime calls to
385 the ObjectiveC runtime, it is not limited to this runtime and might be used
386 by other runtimes in the future too. The current implementation only
387 supports X86-64, but the intention is to support more architectures in the
388 future.
389"``preserve_allcc``" - The `PreserveAll` calling convention
390 This calling convention attempts to make the code in the caller even less
391 intrusive than the `PreserveMost` calling convention. This calling
392 convention also behaves identical to the `C` calling convention on how
393 arguments and return values are passed, but it uses a different set of
394 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000395 recovering a large register set before and after the call in the caller. If
396 the arguments are passed in callee-saved registers, then they will be
397 preserved by the callee across the call. This doesn't apply for values
398 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000399
400 - On X86-64 the callee preserves all general purpose registers, except for
401 R11. R11 can be used as a scratch register. Furthermore it also preserves
402 all floating-point registers (XMMs/YMMs).
403
404 The idea behind this convention is to support calls to runtime functions
405 that don't need to call out to any other functions.
406
407 This calling convention, like the `PreserveMost` calling convention, will be
408 used by a future version of the ObjectiveC runtime and should be considered
409 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000410"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000411 Clang generates an access function to access C++-style TLS. The access
412 function generally has an entry block, an exit block and an initialization
413 block that is run at the first time. The entry and exit blocks can access
414 a few TLS IR variables, each access will be lowered to a platform-specific
415 sequence.
416
Manman Ren19c7bbe2015-12-04 17:40:13 +0000417 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000418 preserving as many registers as possible (all the registers that are
419 perserved on the fast path, composed of the entry and exit blocks).
420
421 This calling convention behaves identical to the `C` calling convention on
422 how arguments and return values are passed, but it uses a different set of
423 caller/callee-saved registers.
424
425 Given that each platform has its own lowering sequence, hence its own set
426 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000427
428 - On X86-64 the callee preserves all general purpose registers, except for
429 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000430"``swiftcc``" - This calling convention is used for Swift language.
431 - On X86-64 RCX and R8 are available for additional integer returns, and
432 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000433 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000434"``cc <n>``" - Numbered convention
435 Any calling convention may be specified by number, allowing
436 target-specific calling conventions to be used. Target specific
437 calling conventions start at 64.
438
439More calling conventions can be added/defined on an as-needed basis, to
440support Pascal conventions or any other well-known target-independent
441convention.
442
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000443.. _visibilitystyles:
444
Sean Silvab084af42012-12-07 10:36:55 +0000445Visibility Styles
446-----------------
447
448All Global Variables and Functions have one of the following visibility
449styles:
450
451"``default``" - Default style
452 On targets that use the ELF object file format, default visibility
453 means that the declaration is visible to other modules and, in
454 shared libraries, means that the declared entity may be overridden.
455 On Darwin, default visibility means that the declaration is visible
456 to other modules. Default visibility corresponds to "external
457 linkage" in the language.
458"``hidden``" - Hidden style
459 Two declarations of an object with hidden visibility refer to the
460 same object if they are in the same shared object. Usually, hidden
461 visibility indicates that the symbol will not be placed into the
462 dynamic symbol table, so no other module (executable or shared
463 library) can reference it directly.
464"``protected``" - Protected style
465 On ELF, protected visibility indicates that the symbol will be
466 placed in the dynamic symbol table, but that references within the
467 defining module will bind to the local symbol. That is, the symbol
468 cannot be overridden by another module.
469
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000470A symbol with ``internal`` or ``private`` linkage must have ``default``
471visibility.
472
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000473.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000474
Nico Rieck7157bb72014-01-14 15:22:47 +0000475DLL Storage Classes
476-------------------
477
478All Global Variables, Functions and Aliases can have one of the following
479DLL storage class:
480
481``dllimport``
482 "``dllimport``" causes the compiler to reference a function or variable via
483 a global pointer to a pointer that is set up by the DLL exporting the
484 symbol. On Microsoft Windows targets, the pointer name is formed by
485 combining ``__imp_`` and the function or variable name.
486``dllexport``
487 "``dllexport``" causes the compiler to provide a global pointer to a pointer
488 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
489 Microsoft Windows targets, the pointer name is formed by combining
490 ``__imp_`` and the function or variable name. Since this storage class
491 exists for defining a dll interface, the compiler, assembler and linker know
492 it is externally referenced and must refrain from deleting the symbol.
493
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000494.. _tls_model:
495
496Thread Local Storage Models
497---------------------------
498
499A variable may be defined as ``thread_local``, which means that it will
500not be shared by threads (each thread will have a separated copy of the
501variable). Not all targets support thread-local variables. Optionally, a
502TLS model may be specified:
503
504``localdynamic``
505 For variables that are only used within the current shared library.
506``initialexec``
507 For variables in modules that will not be loaded dynamically.
508``localexec``
509 For variables defined in the executable and only used within it.
510
511If no explicit model is given, the "general dynamic" model is used.
512
513The models correspond to the ELF TLS models; see `ELF Handling For
514Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
515more information on under which circumstances the different models may
516be used. The target may choose a different TLS model if the specified
517model is not supported, or if a better choice of model can be made.
518
Sean Silva706fba52015-08-06 22:56:24 +0000519A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000520the alias is accessed. It will not have any effect in the aliasee.
521
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000522For platforms without linker support of ELF TLS model, the -femulated-tls
523flag can be used to generate GCC compatible emulated TLS code.
524
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000525.. _namedtypes:
526
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000527Structure Types
528---------------
Sean Silvab084af42012-12-07 10:36:55 +0000529
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000530LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000531types <t_struct>`. Literal types are uniqued structurally, but identified types
532are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000533to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000534
Sean Silva706fba52015-08-06 22:56:24 +0000535An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000536
537.. code-block:: llvm
538
539 %mytype = type { %mytype*, i32 }
540
Sean Silvaa1190322015-08-06 22:56:48 +0000541Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000542literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000543
544.. _globalvars:
545
546Global Variables
547----------------
548
549Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000550instead of run-time.
551
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000552Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000553
554Global variables in other translation units can also be declared, in which
555case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000556
Bob Wilson85b24f22014-06-12 20:40:33 +0000557Either global variable definitions or declarations may have an explicit section
558to be placed in and may have an optional explicit alignment specified.
559
Michael Gottesman006039c2013-01-31 05:48:48 +0000560A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000561the contents of the variable will **never** be modified (enabling better
562optimization, allowing the global data to be placed in the read-only
563section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000564initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000565variable.
566
567LLVM explicitly allows *declarations* of global variables to be marked
568constant, even if the final definition of the global is not. This
569capability can be used to enable slightly better optimization of the
570program, but requires the language definition to guarantee that
571optimizations based on the 'constantness' are valid for the translation
572units that do not include the definition.
573
574As SSA values, global variables define pointer values that are in scope
575(i.e. they dominate) all basic blocks in the program. Global variables
576always define a pointer to their "content" type because they describe a
577region of memory, and all memory objects in LLVM are accessed through
578pointers.
579
580Global variables can be marked with ``unnamed_addr`` which indicates
581that the address is not significant, only the content. Constants marked
582like this can be merged with other constants if they have the same
583initializer. Note that a constant with significant address *can* be
584merged with a ``unnamed_addr`` constant, the result being a constant
585whose address is significant.
586
587A global variable may be declared to reside in a target-specific
588numbered address space. For targets that support them, address spaces
589may affect how optimizations are performed and/or what target
590instructions are used to access the variable. The default address space
591is zero. The address space qualifier must precede any other attributes.
592
593LLVM allows an explicit section to be specified for globals. If the
594target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000595Additionally, the global can placed in a comdat if the target has the necessary
596support.
Sean Silvab084af42012-12-07 10:36:55 +0000597
Michael Gottesmane743a302013-02-04 03:22:00 +0000598By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000599variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000600initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000601true even for variables potentially accessible from outside the
602module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000603``@llvm.used`` or dllexported variables. This assumption may be suppressed
604by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000605
Sean Silvab084af42012-12-07 10:36:55 +0000606An explicit alignment may be specified for a global, which must be a
607power of 2. If not present, or if the alignment is set to zero, the
608alignment of the global is set by the target to whatever it feels
609convenient. If an explicit alignment is specified, the global is forced
610to have exactly that alignment. Targets and optimizers are not allowed
611to over-align the global if the global has an assigned section. In this
612case, the extra alignment could be observable: for example, code could
613assume that the globals are densely packed in their section and try to
614iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000615iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000616
Nico Rieck7157bb72014-01-14 15:22:47 +0000617Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
618
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000619Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000620:ref:`Thread Local Storage Model <tls_model>`.
621
Nico Rieck7157bb72014-01-14 15:22:47 +0000622Syntax::
623
624 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000625 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000626 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000627 [, section "name"] [, comdat [($name)]]
628 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000629
Sean Silvab084af42012-12-07 10:36:55 +0000630For example, the following defines a global in a numbered address space
631with an initializer, section, and alignment:
632
633.. code-block:: llvm
634
635 @G = addrspace(5) constant float 1.0, section "foo", align 4
636
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000637The following example just declares a global variable
638
639.. code-block:: llvm
640
641 @G = external global i32
642
Sean Silvab084af42012-12-07 10:36:55 +0000643The following example defines a thread-local global with the
644``initialexec`` TLS model:
645
646.. code-block:: llvm
647
648 @G = thread_local(initialexec) global i32 0, align 4
649
650.. _functionstructure:
651
652Functions
653---------
654
655LLVM function definitions consist of the "``define``" keyword, an
656optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000657style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
658an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000659an optional ``unnamed_addr`` attribute, a return type, an optional
660:ref:`parameter attribute <paramattrs>` for the return type, a function
661name, a (possibly empty) argument list (each with optional :ref:`parameter
662attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000663an optional section, an optional alignment,
664an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000665an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000666an optional :ref:`prologue <prologuedata>`,
667an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000668an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000669an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000670
671LLVM function declarations consist of the "``declare``" keyword, an
672optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000673style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
674an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000675an optional ``unnamed_addr`` attribute, a return type, an optional
676:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000677name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000678:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
679and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000680
Bill Wendling6822ecb2013-10-27 05:09:12 +0000681A function definition contains a list of basic blocks, forming the CFG (Control
682Flow Graph) for the function. Each basic block may optionally start with a label
683(giving the basic block a symbol table entry), contains a list of instructions,
684and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
685function return). If an explicit label is not provided, a block is assigned an
686implicit numbered label, using the next value from the same counter as used for
687unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
688entry block does not have an explicit label, it will be assigned label "%0",
689then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000690
691The first basic block in a function is special in two ways: it is
692immediately executed on entrance to the function, and it is not allowed
693to have predecessor basic blocks (i.e. there can not be any branches to
694the entry block of a function). Because the block can have no
695predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
696
697LLVM allows an explicit section to be specified for functions. If the
698target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000699Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000700
701An explicit alignment may be specified for a function. If not present,
702or if the alignment is set to zero, the alignment of the function is set
703by the target to whatever it feels convenient. If an explicit alignment
704is specified, the function is forced to have at least that much
705alignment. All alignments must be a power of 2.
706
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000707If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000708be significant and two identical functions can be merged.
709
710Syntax::
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000713 [cconv] [ret attrs]
714 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000715 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000716 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000717 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000718
Sean Silva706fba52015-08-06 22:56:24 +0000719The argument list is a comma separated sequence of arguments where each
720argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000721
722Syntax::
723
724 <type> [parameter Attrs] [name]
725
726
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000727.. _langref_aliases:
728
Sean Silvab084af42012-12-07 10:36:55 +0000729Aliases
730-------
731
Rafael Espindola64c1e182014-06-03 02:41:57 +0000732Aliases, unlike function or variables, don't create any new data. They
733are just a new symbol and metadata for an existing position.
734
735Aliases have a name and an aliasee that is either a global value or a
736constant expression.
737
Nico Rieck7157bb72014-01-14 15:22:47 +0000738Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000739:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
740<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000741
742Syntax::
743
David Blaikie196582e2015-10-22 01:17:29 +0000744 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000745
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000746The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000747``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000748might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000749
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000750Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000751the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
752to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000753
Rafael Espindola64c1e182014-06-03 02:41:57 +0000754Since aliases are only a second name, some restrictions apply, of which
755some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000756
Rafael Espindola64c1e182014-06-03 02:41:57 +0000757* The expression defining the aliasee must be computable at assembly
758 time. Since it is just a name, no relocations can be used.
759
760* No alias in the expression can be weak as the possibility of the
761 intermediate alias being overridden cannot be represented in an
762 object file.
763
764* No global value in the expression can be a declaration, since that
765 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000766
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000767.. _langref_ifunc:
768
769IFuncs
770-------
771
772IFuncs, like as aliases, don't create any new data or func. They are just a new
773symbol that dynamic linker resolves at runtime by calling a resolver function.
774
775IFuncs have a name and a resolver that is a function called by dynamic linker
776that returns address of another function associated with the name.
777
778IFunc may have an optional :ref:`linkage type <linkage>` and an optional
779:ref:`visibility style <visibility>`.
780
781Syntax::
782
783 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
784
785
David Majnemerdad0a642014-06-27 18:19:56 +0000786.. _langref_comdats:
787
788Comdats
789-------
790
791Comdat IR provides access to COFF and ELF object file COMDAT functionality.
792
Sean Silvaa1190322015-08-06 22:56:48 +0000793Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000794specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000795that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000796aliasee computes to, if any.
797
798Comdats have a selection kind to provide input on how the linker should
799choose between keys in two different object files.
800
801Syntax::
802
803 $<Name> = comdat SelectionKind
804
805The selection kind must be one of the following:
806
807``any``
808 The linker may choose any COMDAT key, the choice is arbitrary.
809``exactmatch``
810 The linker may choose any COMDAT key but the sections must contain the
811 same data.
812``largest``
813 The linker will choose the section containing the largest COMDAT key.
814``noduplicates``
815 The linker requires that only section with this COMDAT key exist.
816``samesize``
817 The linker may choose any COMDAT key but the sections must contain the
818 same amount of data.
819
820Note that the Mach-O platform doesn't support COMDATs and ELF only supports
821``any`` as a selection kind.
822
823Here is an example of a COMDAT group where a function will only be selected if
824the COMDAT key's section is the largest:
825
826.. code-block:: llvm
827
828 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000829 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000830
Rafael Espindola83a362c2015-01-06 22:55:16 +0000831 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000832 ret void
833 }
834
Rafael Espindola83a362c2015-01-06 22:55:16 +0000835As a syntactic sugar the ``$name`` can be omitted if the name is the same as
836the global name:
837
838.. code-block:: llvm
839
840 $foo = comdat any
841 @foo = global i32 2, comdat
842
843
David Majnemerdad0a642014-06-27 18:19:56 +0000844In a COFF object file, this will create a COMDAT section with selection kind
845``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
846and another COMDAT section with selection kind
847``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000848section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000849
850There are some restrictions on the properties of the global object.
851It, or an alias to it, must have the same name as the COMDAT group when
852targeting COFF.
853The contents and size of this object may be used during link-time to determine
854which COMDAT groups get selected depending on the selection kind.
855Because the name of the object must match the name of the COMDAT group, the
856linkage of the global object must not be local; local symbols can get renamed
857if a collision occurs in the symbol table.
858
859The combined use of COMDATS and section attributes may yield surprising results.
860For example:
861
862.. code-block:: llvm
863
864 $foo = comdat any
865 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 @g1 = global i32 42, section "sec", comdat($foo)
867 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000868
869From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000870with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000871COMDAT groups and COMDATs, at the object file level, are represented by
872sections.
873
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000874Note that certain IR constructs like global variables and functions may
875create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000876COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000877in individual sections (e.g. when `-data-sections` or `-function-sections`
878is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000879
Sean Silvab084af42012-12-07 10:36:55 +0000880.. _namedmetadatastructure:
881
882Named Metadata
883--------------
884
885Named metadata is a collection of metadata. :ref:`Metadata
886nodes <metadata>` (but not metadata strings) are the only valid
887operands for a named metadata.
888
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000889#. Named metadata are represented as a string of characters with the
890 metadata prefix. The rules for metadata names are the same as for
891 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
892 are still valid, which allows any character to be part of a name.
893
Sean Silvab084af42012-12-07 10:36:55 +0000894Syntax::
895
896 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000897 !0 = !{!"zero"}
898 !1 = !{!"one"}
899 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000900 ; A named metadata.
901 !name = !{!0, !1, !2}
902
903.. _paramattrs:
904
905Parameter Attributes
906--------------------
907
908The return type and each parameter of a function type may have a set of
909*parameter attributes* associated with them. Parameter attributes are
910used to communicate additional information about the result or
911parameters of a function. Parameter attributes are considered to be part
912of the function, not of the function type, so functions with different
913parameter attributes can have the same function type.
914
915Parameter attributes are simple keywords that follow the type specified.
916If multiple parameter attributes are needed, they are space separated.
917For example:
918
919.. code-block:: llvm
920
921 declare i32 @printf(i8* noalias nocapture, ...)
922 declare i32 @atoi(i8 zeroext)
923 declare signext i8 @returns_signed_char()
924
925Note that any attributes for the function result (``nounwind``,
926``readonly``) come immediately after the argument list.
927
928Currently, only the following parameter attributes are defined:
929
930``zeroext``
931 This indicates to the code generator that the parameter or return
932 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000933 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000934``signext``
935 This indicates to the code generator that the parameter or return
936 value should be sign-extended to the extent required by the target's
937 ABI (which is usually 32-bits) by the caller (for a parameter) or
938 the callee (for a return value).
939``inreg``
940 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000941 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000942 a function call or return (usually, by putting it in a register as
943 opposed to memory, though some targets use it to distinguish between
944 two different kinds of registers). Use of this attribute is
945 target-specific.
946``byval``
947 This indicates that the pointer parameter should really be passed by
948 value to the function. The attribute implies that a hidden copy of
949 the pointee is made between the caller and the callee, so the callee
950 is unable to modify the value in the caller. This attribute is only
951 valid on LLVM pointer arguments. It is generally used to pass
952 structs and arrays by value, but is also valid on pointers to
953 scalars. The copy is considered to belong to the caller not the
954 callee (for example, ``readonly`` functions should not write to
955 ``byval`` parameters). This is not a valid attribute for return
956 values.
957
958 The byval attribute also supports specifying an alignment with the
959 align attribute. It indicates the alignment of the stack slot to
960 form and the known alignment of the pointer specified to the call
961 site. If the alignment is not specified, then the code generator
962 makes a target-specific assumption.
963
Reid Klecknera534a382013-12-19 02:14:12 +0000964.. _attr_inalloca:
965
966``inalloca``
967
Reid Kleckner60d3a832014-01-16 22:59:24 +0000968 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000969 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000970 be a pointer to stack memory produced by an ``alloca`` instruction.
971 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000972 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000973 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000974
Reid Kleckner436c42e2014-01-17 23:58:17 +0000975 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000976 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000977 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000978 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000979 ``inalloca`` attribute also disables LLVM's implicit lowering of
980 large aggregate return values, which means that frontend authors
981 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000982
Reid Kleckner60d3a832014-01-16 22:59:24 +0000983 When the call site is reached, the argument allocation must have
984 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000985 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000986 space after an argument allocation and before its call site, but it
987 must be cleared off with :ref:`llvm.stackrestore
988 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000989
990 See :doc:`InAlloca` for more information on how to use this
991 attribute.
992
Sean Silvab084af42012-12-07 10:36:55 +0000993``sret``
994 This indicates that the pointer parameter specifies the address of a
995 structure that is the return value of the function in the source
996 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000997 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000998 not to trap and to be properly aligned. This may only be applied to
999 the first parameter. This is not a valid attribute for return
1000 values.
Sean Silva1703e702014-04-08 21:06:22 +00001001
Hal Finkelccc70902014-07-22 16:58:55 +00001002``align <n>``
1003 This indicates that the pointer value may be assumed by the optimizer to
1004 have the specified alignment.
1005
1006 Note that this attribute has additional semantics when combined with the
1007 ``byval`` attribute.
1008
Sean Silva1703e702014-04-08 21:06:22 +00001009.. _noalias:
1010
Sean Silvab084af42012-12-07 10:36:55 +00001011``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001012 This indicates that objects accessed via pointer values
1013 :ref:`based <pointeraliasing>` on the argument or return value are not also
1014 accessed, during the execution of the function, via pointer values not
1015 *based* on the argument or return value. The attribute on a return value
1016 also has additional semantics described below. The caller shares the
1017 responsibility with the callee for ensuring that these requirements are met.
1018 For further details, please see the discussion of the NoAlias response in
1019 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001020
1021 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001022 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001023
1024 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001025 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1026 attribute on return values are stronger than the semantics of the attribute
1027 when used on function arguments. On function return values, the ``noalias``
1028 attribute indicates that the function acts like a system memory allocation
1029 function, returning a pointer to allocated storage disjoint from the
1030 storage for any other object accessible to the caller.
1031
Sean Silvab084af42012-12-07 10:36:55 +00001032``nocapture``
1033 This indicates that the callee does not make any copies of the
1034 pointer that outlive the callee itself. This is not a valid
1035 attribute for return values.
1036
1037.. _nest:
1038
1039``nest``
1040 This indicates that the pointer parameter can be excised using the
1041 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001042 attribute for return values and can only be applied to one parameter.
1043
1044``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001045 This indicates that the function always returns the argument as its return
1046 value. This is an optimization hint to the code generator when generating
1047 the caller, allowing tail call optimization and omission of register saves
1048 and restores in some cases; it is not checked or enforced when generating
1049 the callee. The parameter and the function return type must be valid
1050 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1051 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001052
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001053``nonnull``
1054 This indicates that the parameter or return pointer is not null. This
1055 attribute may only be applied to pointer typed parameters. This is not
1056 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001058 is non-null.
1059
Hal Finkelb0407ba2014-07-18 15:51:28 +00001060``dereferenceable(<n>)``
1061 This indicates that the parameter or return pointer is dereferenceable. This
1062 attribute may only be applied to pointer typed parameters. A pointer that
1063 is dereferenceable can be loaded from speculatively without a risk of
1064 trapping. The number of bytes known to be dereferenceable must be provided
1065 in parentheses. It is legal for the number of bytes to be less than the
1066 size of the pointee type. The ``nonnull`` attribute does not imply
1067 dereferenceability (consider a pointer to one element past the end of an
1068 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1069 ``addrspace(0)`` (which is the default address space).
1070
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001071``dereferenceable_or_null(<n>)``
1072 This indicates that the parameter or return value isn't both
1073 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001074 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001075 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1076 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1077 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1078 and in other address spaces ``dereferenceable_or_null(<n>)``
1079 implies that a pointer is at least one of ``dereferenceable(<n>)``
1080 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001081 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001082 pointer typed parameters.
1083
Manman Renf46262e2016-03-29 17:37:21 +00001084``swiftself``
1085 This indicates that the parameter is the self/context parameter. This is not
1086 a valid attribute for return values and can only be applied to one
1087 parameter.
1088
Manman Ren9bfd0d02016-04-01 21:41:15 +00001089``swifterror``
1090 This attribute is motivated to model and optimize Swift error handling. It
1091 can be applied to a parameter with pointer to pointer type or a
1092 pointer-sized alloca. At the call site, the actual argument that corresponds
1093 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca. A
1094 ``swifterror`` value (either the parameter or the alloca) can only be loaded
1095 and stored from, or used as a ``swifterror`` argument. This is not a valid
1096 attribute for return values and can only be applied to one parameter.
1097
1098 These constraints allow the calling convention to optimize access to
1099 ``swifterror`` variables by associating them with a specific register at
1100 call boundaries rather than placing them in memory. Since this does change
1101 the calling convention, a function which uses the ``swifterror`` attribute
1102 on a parameter is not ABI-compatible with one which does not.
1103
1104 These constraints also allow LLVM to assume that a ``swifterror`` argument
1105 does not alias any other memory visible within a function and that a
1106 ``swifterror`` alloca passed as an argument does not escape.
1107
Sean Silvab084af42012-12-07 10:36:55 +00001108.. _gc:
1109
Philip Reamesf80bbff2015-02-25 23:45:20 +00001110Garbage Collector Strategy Names
1111--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001112
Philip Reamesf80bbff2015-02-25 23:45:20 +00001113Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001114string:
1115
1116.. code-block:: llvm
1117
1118 define void @f() gc "name" { ... }
1119
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001120The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001121<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001122strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001123named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001124garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001125which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001126
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001127.. _prefixdata:
1128
1129Prefix Data
1130-----------
1131
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001132Prefix data is data associated with a function which the code
1133generator will emit immediately before the function's entrypoint.
1134The purpose of this feature is to allow frontends to associate
1135language-specific runtime metadata with specific functions and make it
1136available through the function pointer while still allowing the
1137function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001138
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001139To access the data for a given function, a program may bitcast the
1140function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001141index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001142the prefix data. For instance, take the example of a function annotated
1143with a single ``i32``,
1144
1145.. code-block:: llvm
1146
1147 define void @f() prefix i32 123 { ... }
1148
1149The prefix data can be referenced as,
1150
1151.. code-block:: llvm
1152
David Blaikie16a97eb2015-03-04 22:02:58 +00001153 %0 = bitcast void* () @f to i32*
1154 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001155 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001156
1157Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001158of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001159beginning of the prefix data is aligned. This means that if the size
1160of the prefix data is not a multiple of the alignment size, the
1161function's entrypoint will not be aligned. If alignment of the
1162function's entrypoint is desired, padding must be added to the prefix
1163data.
1164
Sean Silvaa1190322015-08-06 22:56:48 +00001165A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001166to the ``available_externally`` linkage in that the data may be used by the
1167optimizers but will not be emitted in the object file.
1168
1169.. _prologuedata:
1170
1171Prologue Data
1172-------------
1173
1174The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1175be inserted prior to the function body. This can be used for enabling
1176function hot-patching and instrumentation.
1177
1178To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001179have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001180bytes which decode to a sequence of machine instructions, valid for the
1181module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001182the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001183the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001184definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001185makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001186
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001187A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001188which encodes the ``nop`` instruction:
1189
1190.. code-block:: llvm
1191
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001192 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001193
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001194Generally prologue data can be formed by encoding a relative branch instruction
1195which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001196x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1197
1198.. code-block:: llvm
1199
1200 %0 = type <{ i8, i8, i8* }>
1201
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001203
Sean Silvaa1190322015-08-06 22:56:48 +00001204A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001205to the ``available_externally`` linkage in that the data may be used by the
1206optimizers but will not be emitted in the object file.
1207
David Majnemer7fddecc2015-06-17 20:52:32 +00001208.. _personalityfn:
1209
1210Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001211--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001212
1213The ``personality`` attribute permits functions to specify what function
1214to use for exception handling.
1215
Bill Wendling63b88192013-02-06 06:52:58 +00001216.. _attrgrp:
1217
1218Attribute Groups
1219----------------
1220
1221Attribute groups are groups of attributes that are referenced by objects within
1222the IR. They are important for keeping ``.ll`` files readable, because a lot of
1223functions will use the same set of attributes. In the degenerative case of a
1224``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1225group will capture the important command line flags used to build that file.
1226
1227An attribute group is a module-level object. To use an attribute group, an
1228object references the attribute group's ID (e.g. ``#37``). An object may refer
1229to more than one attribute group. In that situation, the attributes from the
1230different groups are merged.
1231
1232Here is an example of attribute groups for a function that should always be
1233inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1234
1235.. code-block:: llvm
1236
1237 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001238 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001239
1240 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001241 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001242
1243 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1244 define void @f() #0 #1 { ... }
1245
Sean Silvab084af42012-12-07 10:36:55 +00001246.. _fnattrs:
1247
1248Function Attributes
1249-------------------
1250
1251Function attributes are set to communicate additional information about
1252a function. Function attributes are considered to be part of the
1253function, not of the function type, so functions with different function
1254attributes can have the same function type.
1255
1256Function attributes are simple keywords that follow the type specified.
1257If multiple attributes are needed, they are space separated. For
1258example:
1259
1260.. code-block:: llvm
1261
1262 define void @f() noinline { ... }
1263 define void @f() alwaysinline { ... }
1264 define void @f() alwaysinline optsize { ... }
1265 define void @f() optsize { ... }
1266
Sean Silvab084af42012-12-07 10:36:55 +00001267``alignstack(<n>)``
1268 This attribute indicates that, when emitting the prologue and
1269 epilogue, the backend should forcibly align the stack pointer.
1270 Specify the desired alignment, which must be a power of two, in
1271 parentheses.
1272``alwaysinline``
1273 This attribute indicates that the inliner should attempt to inline
1274 this function into callers whenever possible, ignoring any active
1275 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001276``builtin``
1277 This indicates that the callee function at a call site should be
1278 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001279 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001280 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001281 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001282``cold``
1283 This attribute indicates that this function is rarely called. When
1284 computing edge weights, basic blocks post-dominated by a cold
1285 function call are also considered to be cold; and, thus, given low
1286 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001287``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001288 In some parallel execution models, there exist operations that cannot be
1289 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001290 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001291
Justin Lebar58535b12016-02-17 17:46:41 +00001292 The ``convergent`` attribute may appear on functions or call/invoke
1293 instructions. When it appears on a function, it indicates that calls to
1294 this function should not be made control-dependent on additional values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001295 For example, the intrinsic ``llvm.cuda.syncthreads`` is ``convergent``, so
1296 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001297 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001298
Justin Lebar58535b12016-02-17 17:46:41 +00001299 When it appears on a call/invoke, the ``convergent`` attribute indicates
1300 that we should treat the call as though we're calling a convergent
1301 function. This is particularly useful on indirect calls; without this we
1302 may treat such calls as though the target is non-convergent.
1303
1304 The optimizer may remove the ``convergent`` attribute on functions when it
1305 can prove that the function does not execute any convergent operations.
1306 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1307 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001308``inaccessiblememonly``
1309 This attribute indicates that the function may only access memory that
1310 is not accessible by the module being compiled. This is a weaker form
1311 of ``readnone``.
1312``inaccessiblemem_or_argmemonly``
1313 This attribute indicates that the function may only access memory that is
1314 either not accessible by the module being compiled, or is pointed to
1315 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001316``inlinehint``
1317 This attribute indicates that the source code contained a hint that
1318 inlining this function is desirable (such as the "inline" keyword in
1319 C/C++). It is just a hint; it imposes no requirements on the
1320 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001321``jumptable``
1322 This attribute indicates that the function should be added to a
1323 jump-instruction table at code-generation time, and that all address-taken
1324 references to this function should be replaced with a reference to the
1325 appropriate jump-instruction-table function pointer. Note that this creates
1326 a new pointer for the original function, which means that code that depends
1327 on function-pointer identity can break. So, any function annotated with
1328 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001329``minsize``
1330 This attribute suggests that optimization passes and code generator
1331 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001332 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001333 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001334``naked``
1335 This attribute disables prologue / epilogue emission for the
1336 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001337``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001338 This indicates that the callee function at a call site is not recognized as
1339 a built-in function. LLVM will retain the original call and not replace it
1340 with equivalent code based on the semantics of the built-in function, unless
1341 the call site uses the ``builtin`` attribute. This is valid at call sites
1342 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001343``noduplicate``
1344 This attribute indicates that calls to the function cannot be
1345 duplicated. A call to a ``noduplicate`` function may be moved
1346 within its parent function, but may not be duplicated within
1347 its parent function.
1348
1349 A function containing a ``noduplicate`` call may still
1350 be an inlining candidate, provided that the call is not
1351 duplicated by inlining. That implies that the function has
1352 internal linkage and only has one call site, so the original
1353 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001354``noimplicitfloat``
1355 This attributes disables implicit floating point instructions.
1356``noinline``
1357 This attribute indicates that the inliner should never inline this
1358 function in any situation. This attribute may not be used together
1359 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001360``nonlazybind``
1361 This attribute suppresses lazy symbol binding for the function. This
1362 may make calls to the function faster, at the cost of extra program
1363 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001364``noredzone``
1365 This attribute indicates that the code generator should not use a
1366 red zone, even if the target-specific ABI normally permits it.
1367``noreturn``
1368 This function attribute indicates that the function never returns
1369 normally. This produces undefined behavior at runtime if the
1370 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001371``norecurse``
1372 This function attribute indicates that the function does not call itself
1373 either directly or indirectly down any possible call path. This produces
1374 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001375``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001376 This function attribute indicates that the function never raises an
1377 exception. If the function does raise an exception, its runtime
1378 behavior is undefined. However, functions marked nounwind may still
1379 trap or generate asynchronous exceptions. Exception handling schemes
1380 that are recognized by LLVM to handle asynchronous exceptions, such
1381 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001382``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001383 This function attribute indicates that most optimization passes will skip
1384 this function, with the exception of interprocedural optimization passes.
1385 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001386 This attribute cannot be used together with the ``alwaysinline``
1387 attribute; this attribute is also incompatible
1388 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001389
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001390 This attribute requires the ``noinline`` attribute to be specified on
1391 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001392 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001393 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001394``optsize``
1395 This attribute suggests that optimization passes and code generator
1396 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001397 and otherwise do optimizations specifically to reduce code size as
1398 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001399``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001400 On a function, this attribute indicates that the function computes its
1401 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001402 without dereferencing any pointer arguments or otherwise accessing
1403 any mutable state (e.g. memory, control registers, etc) visible to
1404 caller functions. It does not write through any pointer arguments
1405 (including ``byval`` arguments) and never changes any state visible
1406 to callers. This means that it cannot unwind exceptions by calling
1407 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001408
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001409 On an argument, this attribute indicates that the function does not
1410 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001411 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001412``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001413 On a function, this attribute indicates that the function does not write
1414 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001415 modify any state (e.g. memory, control registers, etc) visible to
1416 caller functions. It may dereference pointer arguments and read
1417 state that may be set in the caller. A readonly function always
1418 returns the same value (or unwinds an exception identically) when
1419 called with the same set of arguments and global state. It cannot
1420 unwind an exception by calling the ``C++`` exception throwing
1421 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001422
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001423 On an argument, this attribute indicates that the function does not write
1424 through this pointer argument, even though it may write to the memory that
1425 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001426``argmemonly``
1427 This attribute indicates that the only memory accesses inside function are
1428 loads and stores from objects pointed to by its pointer-typed arguments,
1429 with arbitrary offsets. Or in other words, all memory operations in the
1430 function can refer to memory only using pointers based on its function
1431 arguments.
1432 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1433 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001434``returns_twice``
1435 This attribute indicates that this function can return twice. The C
1436 ``setjmp`` is an example of such a function. The compiler disables
1437 some optimizations (like tail calls) in the caller of these
1438 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001439``safestack``
1440 This attribute indicates that
1441 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1442 protection is enabled for this function.
1443
1444 If a function that has a ``safestack`` attribute is inlined into a
1445 function that doesn't have a ``safestack`` attribute or which has an
1446 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1447 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001448``sanitize_address``
1449 This attribute indicates that AddressSanitizer checks
1450 (dynamic address safety analysis) are enabled for this function.
1451``sanitize_memory``
1452 This attribute indicates that MemorySanitizer checks (dynamic detection
1453 of accesses to uninitialized memory) are enabled for this function.
1454``sanitize_thread``
1455 This attribute indicates that ThreadSanitizer checks
1456 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001457``ssp``
1458 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001459 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001460 placed on the stack before the local variables that's checked upon
1461 return from the function to see if it has been overwritten. A
1462 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001463 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001464
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001465 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1466 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1467 - Calls to alloca() with variable sizes or constant sizes greater than
1468 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001469
Josh Magee24c7f062014-02-01 01:36:16 +00001470 Variables that are identified as requiring a protector will be arranged
1471 on the stack such that they are adjacent to the stack protector guard.
1472
Sean Silvab084af42012-12-07 10:36:55 +00001473 If a function that has an ``ssp`` attribute is inlined into a
1474 function that doesn't have an ``ssp`` attribute, then the resulting
1475 function will have an ``ssp`` attribute.
1476``sspreq``
1477 This attribute indicates that the function should *always* emit a
1478 stack smashing protector. This overrides the ``ssp`` function
1479 attribute.
1480
Josh Magee24c7f062014-02-01 01:36:16 +00001481 Variables that are identified as requiring a protector will be arranged
1482 on the stack such that they are adjacent to the stack protector guard.
1483 The specific layout rules are:
1484
1485 #. Large arrays and structures containing large arrays
1486 (``>= ssp-buffer-size``) are closest to the stack protector.
1487 #. Small arrays and structures containing small arrays
1488 (``< ssp-buffer-size``) are 2nd closest to the protector.
1489 #. Variables that have had their address taken are 3rd closest to the
1490 protector.
1491
Sean Silvab084af42012-12-07 10:36:55 +00001492 If a function that has an ``sspreq`` attribute is inlined into a
1493 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001494 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1495 an ``sspreq`` attribute.
1496``sspstrong``
1497 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001498 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001499 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001500 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001501
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001502 - Arrays of any size and type
1503 - Aggregates containing an array of any size and type.
1504 - Calls to alloca().
1505 - Local variables that have had their address taken.
1506
Josh Magee24c7f062014-02-01 01:36:16 +00001507 Variables that are identified as requiring a protector will be arranged
1508 on the stack such that they are adjacent to the stack protector guard.
1509 The specific layout rules are:
1510
1511 #. Large arrays and structures containing large arrays
1512 (``>= ssp-buffer-size``) are closest to the stack protector.
1513 #. Small arrays and structures containing small arrays
1514 (``< ssp-buffer-size``) are 2nd closest to the protector.
1515 #. Variables that have had their address taken are 3rd closest to the
1516 protector.
1517
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001518 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001519
1520 If a function that has an ``sspstrong`` attribute is inlined into a
1521 function that doesn't have an ``sspstrong`` attribute, then the
1522 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001523``"thunk"``
1524 This attribute indicates that the function will delegate to some other
1525 function with a tail call. The prototype of a thunk should not be used for
1526 optimization purposes. The caller is expected to cast the thunk prototype to
1527 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001528``uwtable``
1529 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001530 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001531 show that no exceptions passes by it. This is normally the case for
1532 the ELF x86-64 abi, but it can be disabled for some compilation
1533 units.
Sean Silvab084af42012-12-07 10:36:55 +00001534
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001535
1536.. _opbundles:
1537
1538Operand Bundles
1539---------------
1540
1541Note: operand bundles are a work in progress, and they should be
1542considered experimental at this time.
1543
1544Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001545with certain LLVM instructions (currently only ``call`` s and
1546``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001547incorrect and will change program semantics.
1548
1549Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001550
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001551 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001552 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1553 bundle operand ::= SSA value
1554 tag ::= string constant
1555
1556Operand bundles are **not** part of a function's signature, and a
1557given function may be called from multiple places with different kinds
1558of operand bundles. This reflects the fact that the operand bundles
1559are conceptually a part of the ``call`` (or ``invoke``), not the
1560callee being dispatched to.
1561
1562Operand bundles are a generic mechanism intended to support
1563runtime-introspection-like functionality for managed languages. While
1564the exact semantics of an operand bundle depend on the bundle tag,
1565there are certain limitations to how much the presence of an operand
1566bundle can influence the semantics of a program. These restrictions
1567are described as the semantics of an "unknown" operand bundle. As
1568long as the behavior of an operand bundle is describable within these
1569restrictions, LLVM does not need to have special knowledge of the
1570operand bundle to not miscompile programs containing it.
1571
David Majnemer34cacb42015-10-22 01:46:38 +00001572- The bundle operands for an unknown operand bundle escape in unknown
1573 ways before control is transferred to the callee or invokee.
1574- Calls and invokes with operand bundles have unknown read / write
1575 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001576 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001577 callsite specific attributes.
1578- An operand bundle at a call site cannot change the implementation
1579 of the called function. Inter-procedural optimizations work as
1580 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001581
Sanjoy Dascdafd842015-11-11 21:38:02 +00001582More specific types of operand bundles are described below.
1583
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001584.. _deopt_opbundles:
1585
Sanjoy Dascdafd842015-11-11 21:38:02 +00001586Deoptimization Operand Bundles
1587^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1588
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001589Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001590operand bundle tag. These operand bundles represent an alternate
1591"safe" continuation for the call site they're attached to, and can be
1592used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001593specified call site. There can be at most one ``"deopt"`` operand
1594bundle attached to a call site. Exact details of deoptimization is
1595out of scope for the language reference, but it usually involves
1596rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001597
1598From the compiler's perspective, deoptimization operand bundles make
1599the call sites they're attached to at least ``readonly``. They read
1600through all of their pointer typed operands (even if they're not
1601otherwise escaped) and the entire visible heap. Deoptimization
1602operand bundles do not capture their operands except during
1603deoptimization, in which case control will not be returned to the
1604compiled frame.
1605
Sanjoy Das2d161452015-11-18 06:23:38 +00001606The inliner knows how to inline through calls that have deoptimization
1607operand bundles. Just like inlining through a normal call site
1608involves composing the normal and exceptional continuations, inlining
1609through a call site with a deoptimization operand bundle needs to
1610appropriately compose the "safe" deoptimization continuation. The
1611inliner does this by prepending the parent's deoptimization
1612continuation to every deoptimization continuation in the inlined body.
1613E.g. inlining ``@f`` into ``@g`` in the following example
1614
1615.. code-block:: llvm
1616
1617 define void @f() {
1618 call void @x() ;; no deopt state
1619 call void @y() [ "deopt"(i32 10) ]
1620 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1621 ret void
1622 }
1623
1624 define void @g() {
1625 call void @f() [ "deopt"(i32 20) ]
1626 ret void
1627 }
1628
1629will result in
1630
1631.. code-block:: llvm
1632
1633 define void @g() {
1634 call void @x() ;; still no deopt state
1635 call void @y() [ "deopt"(i32 20, i32 10) ]
1636 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1637 ret void
1638 }
1639
1640It is the frontend's responsibility to structure or encode the
1641deoptimization state in a way that syntactically prepending the
1642caller's deoptimization state to the callee's deoptimization state is
1643semantically equivalent to composing the caller's deoptimization
1644continuation after the callee's deoptimization continuation.
1645
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001646.. _ob_funclet:
1647
David Majnemer3bb88c02015-12-15 21:27:27 +00001648Funclet Operand Bundles
1649^^^^^^^^^^^^^^^^^^^^^^^
1650
1651Funclet operand bundles are characterized by the ``"funclet"``
1652operand bundle tag. These operand bundles indicate that a call site
1653is within a particular funclet. There can be at most one
1654``"funclet"`` operand bundle attached to a call site and it must have
1655exactly one bundle operand.
1656
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001657If any funclet EH pads have been "entered" but not "exited" (per the
1658`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1659it is undefined behavior to execute a ``call`` or ``invoke`` which:
1660
1661* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1662 intrinsic, or
1663* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1664 not-yet-exited funclet EH pad.
1665
1666Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1667executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1668
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001669GC Transition Operand Bundles
1670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1671
1672GC transition operand bundles are characterized by the
1673``"gc-transition"`` operand bundle tag. These operand bundles mark a
1674call as a transition between a function with one GC strategy to a
1675function with a different GC strategy. If coordinating the transition
1676between GC strategies requires additional code generation at the call
1677site, these bundles may contain any values that are needed by the
1678generated code. For more details, see :ref:`GC Transitions
1679<gc_transition_args>`.
1680
Sean Silvab084af42012-12-07 10:36:55 +00001681.. _moduleasm:
1682
1683Module-Level Inline Assembly
1684----------------------------
1685
1686Modules may contain "module-level inline asm" blocks, which corresponds
1687to the GCC "file scope inline asm" blocks. These blocks are internally
1688concatenated by LLVM and treated as a single unit, but may be separated
1689in the ``.ll`` file if desired. The syntax is very simple:
1690
1691.. code-block:: llvm
1692
1693 module asm "inline asm code goes here"
1694 module asm "more can go here"
1695
1696The strings can contain any character by escaping non-printable
1697characters. The escape sequence used is simply "\\xx" where "xx" is the
1698two digit hex code for the number.
1699
James Y Knightbc832ed2015-07-08 18:08:36 +00001700Note that the assembly string *must* be parseable by LLVM's integrated assembler
1701(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001702
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001703.. _langref_datalayout:
1704
Sean Silvab084af42012-12-07 10:36:55 +00001705Data Layout
1706-----------
1707
1708A module may specify a target specific data layout string that specifies
1709how data is to be laid out in memory. The syntax for the data layout is
1710simply:
1711
1712.. code-block:: llvm
1713
1714 target datalayout = "layout specification"
1715
1716The *layout specification* consists of a list of specifications
1717separated by the minus sign character ('-'). Each specification starts
1718with a letter and may include other information after the letter to
1719define some aspect of the data layout. The specifications accepted are
1720as follows:
1721
1722``E``
1723 Specifies that the target lays out data in big-endian form. That is,
1724 the bits with the most significance have the lowest address
1725 location.
1726``e``
1727 Specifies that the target lays out data in little-endian form. That
1728 is, the bits with the least significance have the lowest address
1729 location.
1730``S<size>``
1731 Specifies the natural alignment of the stack in bits. Alignment
1732 promotion of stack variables is limited to the natural stack
1733 alignment to avoid dynamic stack realignment. The stack alignment
1734 must be a multiple of 8-bits. If omitted, the natural stack
1735 alignment defaults to "unspecified", which does not prevent any
1736 alignment promotions.
1737``p[n]:<size>:<abi>:<pref>``
1738 This specifies the *size* of a pointer and its ``<abi>`` and
1739 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001740 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001741 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001742 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001743``i<size>:<abi>:<pref>``
1744 This specifies the alignment for an integer type of a given bit
1745 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1746``v<size>:<abi>:<pref>``
1747 This specifies the alignment for a vector type of a given bit
1748 ``<size>``.
1749``f<size>:<abi>:<pref>``
1750 This specifies the alignment for a floating point type of a given bit
1751 ``<size>``. Only values of ``<size>`` that are supported by the target
1752 will work. 32 (float) and 64 (double) are supported on all targets; 80
1753 or 128 (different flavors of long double) are also supported on some
1754 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001755``a:<abi>:<pref>``
1756 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001757``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001758 If present, specifies that llvm names are mangled in the output. The
1759 options are
1760
1761 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1762 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1763 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1764 symbols get a ``_`` prefix.
1765 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1766 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001767 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1768 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001769``n<size1>:<size2>:<size3>...``
1770 This specifies a set of native integer widths for the target CPU in
1771 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1772 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1773 this set are considered to support most general arithmetic operations
1774 efficiently.
1775
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001776On every specification that takes a ``<abi>:<pref>``, specifying the
1777``<pref>`` alignment is optional. If omitted, the preceding ``:``
1778should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1779
Sean Silvab084af42012-12-07 10:36:55 +00001780When constructing the data layout for a given target, LLVM starts with a
1781default set of specifications which are then (possibly) overridden by
1782the specifications in the ``datalayout`` keyword. The default
1783specifications are given in this list:
1784
1785- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001786- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1787- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1788 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001789- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001790- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1791- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1792- ``i16:16:16`` - i16 is 16-bit aligned
1793- ``i32:32:32`` - i32 is 32-bit aligned
1794- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1795 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001796- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001797- ``f32:32:32`` - float is 32-bit aligned
1798- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001799- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001800- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1801- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001802- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001803
1804When LLVM is determining the alignment for a given type, it uses the
1805following rules:
1806
1807#. If the type sought is an exact match for one of the specifications,
1808 that specification is used.
1809#. If no match is found, and the type sought is an integer type, then
1810 the smallest integer type that is larger than the bitwidth of the
1811 sought type is used. If none of the specifications are larger than
1812 the bitwidth then the largest integer type is used. For example,
1813 given the default specifications above, the i7 type will use the
1814 alignment of i8 (next largest) while both i65 and i256 will use the
1815 alignment of i64 (largest specified).
1816#. If no match is found, and the type sought is a vector type, then the
1817 largest vector type that is smaller than the sought vector type will
1818 be used as a fall back. This happens because <128 x double> can be
1819 implemented in terms of 64 <2 x double>, for example.
1820
1821The function of the data layout string may not be what you expect.
1822Notably, this is not a specification from the frontend of what alignment
1823the code generator should use.
1824
1825Instead, if specified, the target data layout is required to match what
1826the ultimate *code generator* expects. This string is used by the
1827mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001828what the ultimate code generator uses. There is no way to generate IR
1829that does not embed this target-specific detail into the IR. If you
1830don't specify the string, the default specifications will be used to
1831generate a Data Layout and the optimization phases will operate
1832accordingly and introduce target specificity into the IR with respect to
1833these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001834
Bill Wendling5cc90842013-10-18 23:41:25 +00001835.. _langref_triple:
1836
1837Target Triple
1838-------------
1839
1840A module may specify a target triple string that describes the target
1841host. The syntax for the target triple is simply:
1842
1843.. code-block:: llvm
1844
1845 target triple = "x86_64-apple-macosx10.7.0"
1846
1847The *target triple* string consists of a series of identifiers delimited
1848by the minus sign character ('-'). The canonical forms are:
1849
1850::
1851
1852 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1853 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1854
1855This information is passed along to the backend so that it generates
1856code for the proper architecture. It's possible to override this on the
1857command line with the ``-mtriple`` command line option.
1858
Sean Silvab084af42012-12-07 10:36:55 +00001859.. _pointeraliasing:
1860
1861Pointer Aliasing Rules
1862----------------------
1863
1864Any memory access must be done through a pointer value associated with
1865an address range of the memory access, otherwise the behavior is
1866undefined. Pointer values are associated with address ranges according
1867to the following rules:
1868
1869- A pointer value is associated with the addresses associated with any
1870 value it is *based* on.
1871- An address of a global variable is associated with the address range
1872 of the variable's storage.
1873- The result value of an allocation instruction is associated with the
1874 address range of the allocated storage.
1875- A null pointer in the default address-space is associated with no
1876 address.
1877- An integer constant other than zero or a pointer value returned from
1878 a function not defined within LLVM may be associated with address
1879 ranges allocated through mechanisms other than those provided by
1880 LLVM. Such ranges shall not overlap with any ranges of addresses
1881 allocated by mechanisms provided by LLVM.
1882
1883A pointer value is *based* on another pointer value according to the
1884following rules:
1885
1886- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001887 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001888- The result value of a ``bitcast`` is *based* on the operand of the
1889 ``bitcast``.
1890- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1891 values that contribute (directly or indirectly) to the computation of
1892 the pointer's value.
1893- The "*based* on" relationship is transitive.
1894
1895Note that this definition of *"based"* is intentionally similar to the
1896definition of *"based"* in C99, though it is slightly weaker.
1897
1898LLVM IR does not associate types with memory. The result type of a
1899``load`` merely indicates the size and alignment of the memory from
1900which to load, as well as the interpretation of the value. The first
1901operand type of a ``store`` similarly only indicates the size and
1902alignment of the store.
1903
1904Consequently, type-based alias analysis, aka TBAA, aka
1905``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1906:ref:`Metadata <metadata>` may be used to encode additional information
1907which specialized optimization passes may use to implement type-based
1908alias analysis.
1909
1910.. _volatile:
1911
1912Volatile Memory Accesses
1913------------------------
1914
1915Certain memory accesses, such as :ref:`load <i_load>`'s,
1916:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1917marked ``volatile``. The optimizers must not change the number of
1918volatile operations or change their order of execution relative to other
1919volatile operations. The optimizers *may* change the order of volatile
1920operations relative to non-volatile operations. This is not Java's
1921"volatile" and has no cross-thread synchronization behavior.
1922
Andrew Trick89fc5a62013-01-30 21:19:35 +00001923IR-level volatile loads and stores cannot safely be optimized into
1924llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1925flagged volatile. Likewise, the backend should never split or merge
1926target-legal volatile load/store instructions.
1927
Andrew Trick7e6f9282013-01-31 00:49:39 +00001928.. admonition:: Rationale
1929
1930 Platforms may rely on volatile loads and stores of natively supported
1931 data width to be executed as single instruction. For example, in C
1932 this holds for an l-value of volatile primitive type with native
1933 hardware support, but not necessarily for aggregate types. The
1934 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001935 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001936 do not violate the frontend's contract with the language.
1937
Sean Silvab084af42012-12-07 10:36:55 +00001938.. _memmodel:
1939
1940Memory Model for Concurrent Operations
1941--------------------------------------
1942
1943The LLVM IR does not define any way to start parallel threads of
1944execution or to register signal handlers. Nonetheless, there are
1945platform-specific ways to create them, and we define LLVM IR's behavior
1946in their presence. This model is inspired by the C++0x memory model.
1947
1948For a more informal introduction to this model, see the :doc:`Atomics`.
1949
1950We define a *happens-before* partial order as the least partial order
1951that
1952
1953- Is a superset of single-thread program order, and
1954- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1955 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1956 techniques, like pthread locks, thread creation, thread joining,
1957 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1958 Constraints <ordering>`).
1959
1960Note that program order does not introduce *happens-before* edges
1961between a thread and signals executing inside that thread.
1962
1963Every (defined) read operation (load instructions, memcpy, atomic
1964loads/read-modify-writes, etc.) R reads a series of bytes written by
1965(defined) write operations (store instructions, atomic
1966stores/read-modify-writes, memcpy, etc.). For the purposes of this
1967section, initialized globals are considered to have a write of the
1968initializer which is atomic and happens before any other read or write
1969of the memory in question. For each byte of a read R, R\ :sub:`byte`
1970may see any write to the same byte, except:
1971
1972- If write\ :sub:`1` happens before write\ :sub:`2`, and
1973 write\ :sub:`2` happens before R\ :sub:`byte`, then
1974 R\ :sub:`byte` does not see write\ :sub:`1`.
1975- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1976 R\ :sub:`byte` does not see write\ :sub:`3`.
1977
1978Given that definition, R\ :sub:`byte` is defined as follows:
1979
1980- If R is volatile, the result is target-dependent. (Volatile is
1981 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001982 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001983 like normal memory. It does not generally provide cross-thread
1984 synchronization.)
1985- Otherwise, if there is no write to the same byte that happens before
1986 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1987- Otherwise, if R\ :sub:`byte` may see exactly one write,
1988 R\ :sub:`byte` returns the value written by that write.
1989- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1990 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1991 Memory Ordering Constraints <ordering>` section for additional
1992 constraints on how the choice is made.
1993- Otherwise R\ :sub:`byte` returns ``undef``.
1994
1995R returns the value composed of the series of bytes it read. This
1996implies that some bytes within the value may be ``undef`` **without**
1997the entire value being ``undef``. Note that this only defines the
1998semantics of the operation; it doesn't mean that targets will emit more
1999than one instruction to read the series of bytes.
2000
2001Note that in cases where none of the atomic intrinsics are used, this
2002model places only one restriction on IR transformations on top of what
2003is required for single-threaded execution: introducing a store to a byte
2004which might not otherwise be stored is not allowed in general.
2005(Specifically, in the case where another thread might write to and read
2006from an address, introducing a store can change a load that may see
2007exactly one write into a load that may see multiple writes.)
2008
2009.. _ordering:
2010
2011Atomic Memory Ordering Constraints
2012----------------------------------
2013
2014Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2015:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2016:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002017ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002018the same address they *synchronize with*. These semantics are borrowed
2019from Java and C++0x, but are somewhat more colloquial. If these
2020descriptions aren't precise enough, check those specs (see spec
2021references in the :doc:`atomics guide <Atomics>`).
2022:ref:`fence <i_fence>` instructions treat these orderings somewhat
2023differently since they don't take an address. See that instruction's
2024documentation for details.
2025
2026For a simpler introduction to the ordering constraints, see the
2027:doc:`Atomics`.
2028
2029``unordered``
2030 The set of values that can be read is governed by the happens-before
2031 partial order. A value cannot be read unless some operation wrote
2032 it. This is intended to provide a guarantee strong enough to model
2033 Java's non-volatile shared variables. This ordering cannot be
2034 specified for read-modify-write operations; it is not strong enough
2035 to make them atomic in any interesting way.
2036``monotonic``
2037 In addition to the guarantees of ``unordered``, there is a single
2038 total order for modifications by ``monotonic`` operations on each
2039 address. All modification orders must be compatible with the
2040 happens-before order. There is no guarantee that the modification
2041 orders can be combined to a global total order for the whole program
2042 (and this often will not be possible). The read in an atomic
2043 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2044 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2045 order immediately before the value it writes. If one atomic read
2046 happens before another atomic read of the same address, the later
2047 read must see the same value or a later value in the address's
2048 modification order. This disallows reordering of ``monotonic`` (or
2049 stronger) operations on the same address. If an address is written
2050 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2051 read that address repeatedly, the other threads must eventually see
2052 the write. This corresponds to the C++0x/C1x
2053 ``memory_order_relaxed``.
2054``acquire``
2055 In addition to the guarantees of ``monotonic``, a
2056 *synchronizes-with* edge may be formed with a ``release`` operation.
2057 This is intended to model C++'s ``memory_order_acquire``.
2058``release``
2059 In addition to the guarantees of ``monotonic``, if this operation
2060 writes a value which is subsequently read by an ``acquire``
2061 operation, it *synchronizes-with* that operation. (This isn't a
2062 complete description; see the C++0x definition of a release
2063 sequence.) This corresponds to the C++0x/C1x
2064 ``memory_order_release``.
2065``acq_rel`` (acquire+release)
2066 Acts as both an ``acquire`` and ``release`` operation on its
2067 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2068``seq_cst`` (sequentially consistent)
2069 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002070 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002071 writes), there is a global total order on all
2072 sequentially-consistent operations on all addresses, which is
2073 consistent with the *happens-before* partial order and with the
2074 modification orders of all the affected addresses. Each
2075 sequentially-consistent read sees the last preceding write to the
2076 same address in this global order. This corresponds to the C++0x/C1x
2077 ``memory_order_seq_cst`` and Java volatile.
2078
2079.. _singlethread:
2080
2081If an atomic operation is marked ``singlethread``, it only *synchronizes
2082with* or participates in modification and seq\_cst total orderings with
2083other operations running in the same thread (for example, in signal
2084handlers).
2085
2086.. _fastmath:
2087
2088Fast-Math Flags
2089---------------
2090
2091LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2092:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002093:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2094be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002095
2096``nnan``
2097 No NaNs - Allow optimizations to assume the arguments and result are not
2098 NaN. Such optimizations are required to retain defined behavior over
2099 NaNs, but the value of the result is undefined.
2100
2101``ninf``
2102 No Infs - Allow optimizations to assume the arguments and result are not
2103 +/-Inf. Such optimizations are required to retain defined behavior over
2104 +/-Inf, but the value of the result is undefined.
2105
2106``nsz``
2107 No Signed Zeros - Allow optimizations to treat the sign of a zero
2108 argument or result as insignificant.
2109
2110``arcp``
2111 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2112 argument rather than perform division.
2113
2114``fast``
2115 Fast - Allow algebraically equivalent transformations that may
2116 dramatically change results in floating point (e.g. reassociate). This
2117 flag implies all the others.
2118
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002119.. _uselistorder:
2120
2121Use-list Order Directives
2122-------------------------
2123
2124Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002125order to be recreated. ``<order-indexes>`` is a comma-separated list of
2126indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002127value's use-list is immediately sorted by these indexes.
2128
Sean Silvaa1190322015-08-06 22:56:48 +00002129Use-list directives may appear at function scope or global scope. They are not
2130instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002131function scope, they must appear after the terminator of the final basic block.
2132
2133If basic blocks have their address taken via ``blockaddress()`` expressions,
2134``uselistorder_bb`` can be used to reorder their use-lists from outside their
2135function's scope.
2136
2137:Syntax:
2138
2139::
2140
2141 uselistorder <ty> <value>, { <order-indexes> }
2142 uselistorder_bb @function, %block { <order-indexes> }
2143
2144:Examples:
2145
2146::
2147
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002148 define void @foo(i32 %arg1, i32 %arg2) {
2149 entry:
2150 ; ... instructions ...
2151 bb:
2152 ; ... instructions ...
2153
2154 ; At function scope.
2155 uselistorder i32 %arg1, { 1, 0, 2 }
2156 uselistorder label %bb, { 1, 0 }
2157 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002158
2159 ; At global scope.
2160 uselistorder i32* @global, { 1, 2, 0 }
2161 uselistorder i32 7, { 1, 0 }
2162 uselistorder i32 (i32) @bar, { 1, 0 }
2163 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2164
Sean Silvab084af42012-12-07 10:36:55 +00002165.. _typesystem:
2166
2167Type System
2168===========
2169
2170The LLVM type system is one of the most important features of the
2171intermediate representation. Being typed enables a number of
2172optimizations to be performed on the intermediate representation
2173directly, without having to do extra analyses on the side before the
2174transformation. A strong type system makes it easier to read the
2175generated code and enables novel analyses and transformations that are
2176not feasible to perform on normal three address code representations.
2177
Rafael Espindola08013342013-12-07 19:34:20 +00002178.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002179
Rafael Espindola08013342013-12-07 19:34:20 +00002180Void Type
2181---------
Sean Silvab084af42012-12-07 10:36:55 +00002182
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002183:Overview:
2184
Rafael Espindola08013342013-12-07 19:34:20 +00002185
2186The void type does not represent any value and has no size.
2187
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002188:Syntax:
2189
Rafael Espindola08013342013-12-07 19:34:20 +00002190
2191::
2192
2193 void
Sean Silvab084af42012-12-07 10:36:55 +00002194
2195
Rafael Espindola08013342013-12-07 19:34:20 +00002196.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002197
Rafael Espindola08013342013-12-07 19:34:20 +00002198Function Type
2199-------------
Sean Silvab084af42012-12-07 10:36:55 +00002200
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002201:Overview:
2202
Sean Silvab084af42012-12-07 10:36:55 +00002203
Rafael Espindola08013342013-12-07 19:34:20 +00002204The function type can be thought of as a function signature. It consists of a
2205return type and a list of formal parameter types. The return type of a function
2206type is a void type or first class type --- except for :ref:`label <t_label>`
2207and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002208
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002209:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002210
Rafael Espindola08013342013-12-07 19:34:20 +00002211::
Sean Silvab084af42012-12-07 10:36:55 +00002212
Rafael Espindola08013342013-12-07 19:34:20 +00002213 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002214
Rafael Espindola08013342013-12-07 19:34:20 +00002215...where '``<parameter list>``' is a comma-separated list of type
2216specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002217indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002218argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002219handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002220except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002221
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002222:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002223
Rafael Espindola08013342013-12-07 19:34:20 +00002224+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2225| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2226+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2227| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2228+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2229| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2230+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2231| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2232+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2233
2234.. _t_firstclass:
2235
2236First Class Types
2237-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002238
2239The :ref:`first class <t_firstclass>` types are perhaps the most important.
2240Values of these types are the only ones which can be produced by
2241instructions.
2242
Rafael Espindola08013342013-12-07 19:34:20 +00002243.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002244
Rafael Espindola08013342013-12-07 19:34:20 +00002245Single Value Types
2246^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002247
Rafael Espindola08013342013-12-07 19:34:20 +00002248These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002249
2250.. _t_integer:
2251
2252Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002253""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002254
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002255:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002256
2257The integer type is a very simple type that simply specifies an
2258arbitrary bit width for the integer type desired. Any bit width from 1
2259bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2260
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002261:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002262
2263::
2264
2265 iN
2266
2267The number of bits the integer will occupy is specified by the ``N``
2268value.
2269
2270Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002271*********
Sean Silvab084af42012-12-07 10:36:55 +00002272
2273+----------------+------------------------------------------------+
2274| ``i1`` | a single-bit integer. |
2275+----------------+------------------------------------------------+
2276| ``i32`` | a 32-bit integer. |
2277+----------------+------------------------------------------------+
2278| ``i1942652`` | a really big integer of over 1 million bits. |
2279+----------------+------------------------------------------------+
2280
2281.. _t_floating:
2282
2283Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002284""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002285
2286.. list-table::
2287 :header-rows: 1
2288
2289 * - Type
2290 - Description
2291
2292 * - ``half``
2293 - 16-bit floating point value
2294
2295 * - ``float``
2296 - 32-bit floating point value
2297
2298 * - ``double``
2299 - 64-bit floating point value
2300
2301 * - ``fp128``
2302 - 128-bit floating point value (112-bit mantissa)
2303
2304 * - ``x86_fp80``
2305 - 80-bit floating point value (X87)
2306
2307 * - ``ppc_fp128``
2308 - 128-bit floating point value (two 64-bits)
2309
Reid Kleckner9a16d082014-03-05 02:41:37 +00002310X86_mmx Type
2311""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002312
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002313:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002314
Reid Kleckner9a16d082014-03-05 02:41:37 +00002315The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002316machine. The operations allowed on it are quite limited: parameters and
2317return values, load and store, and bitcast. User-specified MMX
2318instructions are represented as intrinsic or asm calls with arguments
2319and/or results of this type. There are no arrays, vectors or constants
2320of this type.
2321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002323
2324::
2325
Reid Kleckner9a16d082014-03-05 02:41:37 +00002326 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002327
Sean Silvab084af42012-12-07 10:36:55 +00002328
Rafael Espindola08013342013-12-07 19:34:20 +00002329.. _t_pointer:
2330
2331Pointer Type
2332""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002333
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002334:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002335
Rafael Espindola08013342013-12-07 19:34:20 +00002336The pointer type is used to specify memory locations. Pointers are
2337commonly used to reference objects in memory.
2338
2339Pointer types may have an optional address space attribute defining the
2340numbered address space where the pointed-to object resides. The default
2341address space is number zero. The semantics of non-zero address spaces
2342are target-specific.
2343
2344Note that LLVM does not permit pointers to void (``void*``) nor does it
2345permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002346
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002347:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002348
2349::
2350
Rafael Espindola08013342013-12-07 19:34:20 +00002351 <type> *
2352
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002353:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002354
2355+-------------------------+--------------------------------------------------------------------------------------------------------------+
2356| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2357+-------------------------+--------------------------------------------------------------------------------------------------------------+
2358| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2359+-------------------------+--------------------------------------------------------------------------------------------------------------+
2360| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2361+-------------------------+--------------------------------------------------------------------------------------------------------------+
2362
2363.. _t_vector:
2364
2365Vector Type
2366"""""""""""
2367
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002368:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002369
2370A vector type is a simple derived type that represents a vector of
2371elements. Vector types are used when multiple primitive data are
2372operated in parallel using a single instruction (SIMD). A vector type
2373requires a size (number of elements) and an underlying primitive data
2374type. Vector types are considered :ref:`first class <t_firstclass>`.
2375
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002376:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002377
2378::
2379
2380 < <# elements> x <elementtype> >
2381
2382The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002383elementtype may be any integer, floating point or pointer type. Vectors
2384of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002385
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002386:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002387
2388+-------------------+--------------------------------------------------+
2389| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2390+-------------------+--------------------------------------------------+
2391| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2392+-------------------+--------------------------------------------------+
2393| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2394+-------------------+--------------------------------------------------+
2395| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2396+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002397
2398.. _t_label:
2399
2400Label Type
2401^^^^^^^^^^
2402
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002403:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002404
2405The label type represents code labels.
2406
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002407:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002408
2409::
2410
2411 label
2412
David Majnemerb611e3f2015-08-14 05:09:07 +00002413.. _t_token:
2414
2415Token Type
2416^^^^^^^^^^
2417
2418:Overview:
2419
2420The token type is used when a value is associated with an instruction
2421but all uses of the value must not attempt to introspect or obscure it.
2422As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2423:ref:`select <i_select>` of type token.
2424
2425:Syntax:
2426
2427::
2428
2429 token
2430
2431
2432
Sean Silvab084af42012-12-07 10:36:55 +00002433.. _t_metadata:
2434
2435Metadata Type
2436^^^^^^^^^^^^^
2437
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002438:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002439
2440The metadata type represents embedded metadata. No derived types may be
2441created from metadata except for :ref:`function <t_function>` arguments.
2442
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002443:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002444
2445::
2446
2447 metadata
2448
Sean Silvab084af42012-12-07 10:36:55 +00002449.. _t_aggregate:
2450
2451Aggregate Types
2452^^^^^^^^^^^^^^^
2453
2454Aggregate Types are a subset of derived types that can contain multiple
2455member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2456aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2457aggregate types.
2458
2459.. _t_array:
2460
2461Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002462""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002463
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002464:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002465
2466The array type is a very simple derived type that arranges elements
2467sequentially in memory. The array type requires a size (number of
2468elements) and an underlying data type.
2469
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002470:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002471
2472::
2473
2474 [<# elements> x <elementtype>]
2475
2476The number of elements is a constant integer value; ``elementtype`` may
2477be any type with a size.
2478
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002479:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002480
2481+------------------+--------------------------------------+
2482| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2483+------------------+--------------------------------------+
2484| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2485+------------------+--------------------------------------+
2486| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2487+------------------+--------------------------------------+
2488
2489Here are some examples of multidimensional arrays:
2490
2491+-----------------------------+----------------------------------------------------------+
2492| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2493+-----------------------------+----------------------------------------------------------+
2494| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2495+-----------------------------+----------------------------------------------------------+
2496| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2497+-----------------------------+----------------------------------------------------------+
2498
2499There is no restriction on indexing beyond the end of the array implied
2500by a static type (though there are restrictions on indexing beyond the
2501bounds of an allocated object in some cases). This means that
2502single-dimension 'variable sized array' addressing can be implemented in
2503LLVM with a zero length array type. An implementation of 'pascal style
2504arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2505example.
2506
Sean Silvab084af42012-12-07 10:36:55 +00002507.. _t_struct:
2508
2509Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002510""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002511
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002512:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002513
2514The structure type is used to represent a collection of data members
2515together in memory. The elements of a structure may be any type that has
2516a size.
2517
2518Structures in memory are accessed using '``load``' and '``store``' by
2519getting a pointer to a field with the '``getelementptr``' instruction.
2520Structures in registers are accessed using the '``extractvalue``' and
2521'``insertvalue``' instructions.
2522
2523Structures may optionally be "packed" structures, which indicate that
2524the alignment of the struct is one byte, and that there is no padding
2525between the elements. In non-packed structs, padding between field types
2526is inserted as defined by the DataLayout string in the module, which is
2527required to match what the underlying code generator expects.
2528
2529Structures can either be "literal" or "identified". A literal structure
2530is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2531identified types are always defined at the top level with a name.
2532Literal types are uniqued by their contents and can never be recursive
2533or opaque since there is no way to write one. Identified types can be
2534recursive, can be opaqued, and are never uniqued.
2535
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002536:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002537
2538::
2539
2540 %T1 = type { <type list> } ; Identified normal struct type
2541 %T2 = type <{ <type list> }> ; Identified packed struct type
2542
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002543:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002544
2545+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2546| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2547+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002548| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002549+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2550| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2551+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2552
2553.. _t_opaque:
2554
2555Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002556""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002557
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002558:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002559
2560Opaque structure types are used to represent named structure types that
2561do not have a body specified. This corresponds (for example) to the C
2562notion of a forward declared structure.
2563
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002564:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002565
2566::
2567
2568 %X = type opaque
2569 %52 = type opaque
2570
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002571:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002572
2573+--------------+-------------------+
2574| ``opaque`` | An opaque type. |
2575+--------------+-------------------+
2576
Sean Silva1703e702014-04-08 21:06:22 +00002577.. _constants:
2578
Sean Silvab084af42012-12-07 10:36:55 +00002579Constants
2580=========
2581
2582LLVM has several different basic types of constants. This section
2583describes them all and their syntax.
2584
2585Simple Constants
2586----------------
2587
2588**Boolean constants**
2589 The two strings '``true``' and '``false``' are both valid constants
2590 of the ``i1`` type.
2591**Integer constants**
2592 Standard integers (such as '4') are constants of the
2593 :ref:`integer <t_integer>` type. Negative numbers may be used with
2594 integer types.
2595**Floating point constants**
2596 Floating point constants use standard decimal notation (e.g.
2597 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2598 hexadecimal notation (see below). The assembler requires the exact
2599 decimal value of a floating-point constant. For example, the
2600 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2601 decimal in binary. Floating point constants must have a :ref:`floating
2602 point <t_floating>` type.
2603**Null pointer constants**
2604 The identifier '``null``' is recognized as a null pointer constant
2605 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002606**Token constants**
2607 The identifier '``none``' is recognized as an empty token constant
2608 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002609
2610The one non-intuitive notation for constants is the hexadecimal form of
2611floating point constants. For example, the form
2612'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2613than) '``double 4.5e+15``'. The only time hexadecimal floating point
2614constants are required (and the only time that they are generated by the
2615disassembler) is when a floating point constant must be emitted but it
2616cannot be represented as a decimal floating point number in a reasonable
2617number of digits. For example, NaN's, infinities, and other special
2618values are represented in their IEEE hexadecimal format so that assembly
2619and disassembly do not cause any bits to change in the constants.
2620
2621When using the hexadecimal form, constants of types half, float, and
2622double are represented using the 16-digit form shown above (which
2623matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002624must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002625precision, respectively. Hexadecimal format is always used for long
2626double, and there are three forms of long double. The 80-bit format used
2627by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2628128-bit format used by PowerPC (two adjacent doubles) is represented by
2629``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002630represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2631will only work if they match the long double format on your target.
2632The IEEE 16-bit format (half precision) is represented by ``0xH``
2633followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2634(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002635
Reid Kleckner9a16d082014-03-05 02:41:37 +00002636There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002637
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002638.. _complexconstants:
2639
Sean Silvab084af42012-12-07 10:36:55 +00002640Complex Constants
2641-----------------
2642
2643Complex constants are a (potentially recursive) combination of simple
2644constants and smaller complex constants.
2645
2646**Structure constants**
2647 Structure constants are represented with notation similar to
2648 structure type definitions (a comma separated list of elements,
2649 surrounded by braces (``{}``)). For example:
2650 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2651 "``@G = external global i32``". Structure constants must have
2652 :ref:`structure type <t_struct>`, and the number and types of elements
2653 must match those specified by the type.
2654**Array constants**
2655 Array constants are represented with notation similar to array type
2656 definitions (a comma separated list of elements, surrounded by
2657 square brackets (``[]``)). For example:
2658 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2659 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002660 match those specified by the type. As a special case, character array
2661 constants may also be represented as a double-quoted string using the ``c``
2662 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002663**Vector constants**
2664 Vector constants are represented with notation similar to vector
2665 type definitions (a comma separated list of elements, surrounded by
2666 less-than/greater-than's (``<>``)). For example:
2667 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2668 must have :ref:`vector type <t_vector>`, and the number and types of
2669 elements must match those specified by the type.
2670**Zero initialization**
2671 The string '``zeroinitializer``' can be used to zero initialize a
2672 value to zero of *any* type, including scalar and
2673 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2674 having to print large zero initializers (e.g. for large arrays) and
2675 is always exactly equivalent to using explicit zero initializers.
2676**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002677 A metadata node is a constant tuple without types. For example:
2678 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002679 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2680 Unlike other typed constants that are meant to be interpreted as part of
2681 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002682 information such as debug info.
2683
2684Global Variable and Function Addresses
2685--------------------------------------
2686
2687The addresses of :ref:`global variables <globalvars>` and
2688:ref:`functions <functionstructure>` are always implicitly valid
2689(link-time) constants. These constants are explicitly referenced when
2690the :ref:`identifier for the global <identifiers>` is used and always have
2691:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2692file:
2693
2694.. code-block:: llvm
2695
2696 @X = global i32 17
2697 @Y = global i32 42
2698 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2699
2700.. _undefvalues:
2701
2702Undefined Values
2703----------------
2704
2705The string '``undef``' can be used anywhere a constant is expected, and
2706indicates that the user of the value may receive an unspecified
2707bit-pattern. Undefined values may be of any type (other than '``label``'
2708or '``void``') and be used anywhere a constant is permitted.
2709
2710Undefined values are useful because they indicate to the compiler that
2711the program is well defined no matter what value is used. This gives the
2712compiler more freedom to optimize. Here are some examples of
2713(potentially surprising) transformations that are valid (in pseudo IR):
2714
2715.. code-block:: llvm
2716
2717 %A = add %X, undef
2718 %B = sub %X, undef
2719 %C = xor %X, undef
2720 Safe:
2721 %A = undef
2722 %B = undef
2723 %C = undef
2724
2725This is safe because all of the output bits are affected by the undef
2726bits. Any output bit can have a zero or one depending on the input bits.
2727
2728.. code-block:: llvm
2729
2730 %A = or %X, undef
2731 %B = and %X, undef
2732 Safe:
2733 %A = -1
2734 %B = 0
2735 Unsafe:
2736 %A = undef
2737 %B = undef
2738
2739These logical operations have bits that are not always affected by the
2740input. For example, if ``%X`` has a zero bit, then the output of the
2741'``and``' operation will always be a zero for that bit, no matter what
2742the corresponding bit from the '``undef``' is. As such, it is unsafe to
2743optimize or assume that the result of the '``and``' is '``undef``'.
2744However, it is safe to assume that all bits of the '``undef``' could be
27450, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2746all the bits of the '``undef``' operand to the '``or``' could be set,
2747allowing the '``or``' to be folded to -1.
2748
2749.. code-block:: llvm
2750
2751 %A = select undef, %X, %Y
2752 %B = select undef, 42, %Y
2753 %C = select %X, %Y, undef
2754 Safe:
2755 %A = %X (or %Y)
2756 %B = 42 (or %Y)
2757 %C = %Y
2758 Unsafe:
2759 %A = undef
2760 %B = undef
2761 %C = undef
2762
2763This set of examples shows that undefined '``select``' (and conditional
2764branch) conditions can go *either way*, but they have to come from one
2765of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2766both known to have a clear low bit, then ``%A`` would have to have a
2767cleared low bit. However, in the ``%C`` example, the optimizer is
2768allowed to assume that the '``undef``' operand could be the same as
2769``%Y``, allowing the whole '``select``' to be eliminated.
2770
2771.. code-block:: llvm
2772
2773 %A = xor undef, undef
2774
2775 %B = undef
2776 %C = xor %B, %B
2777
2778 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002779 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002780 %F = icmp gte %D, 4
2781
2782 Safe:
2783 %A = undef
2784 %B = undef
2785 %C = undef
2786 %D = undef
2787 %E = undef
2788 %F = undef
2789
2790This example points out that two '``undef``' operands are not
2791necessarily the same. This can be surprising to people (and also matches
2792C semantics) where they assume that "``X^X``" is always zero, even if
2793``X`` is undefined. This isn't true for a number of reasons, but the
2794short answer is that an '``undef``' "variable" can arbitrarily change
2795its value over its "live range". This is true because the variable
2796doesn't actually *have a live range*. Instead, the value is logically
2797read from arbitrary registers that happen to be around when needed, so
2798the value is not necessarily consistent over time. In fact, ``%A`` and
2799``%C`` need to have the same semantics or the core LLVM "replace all
2800uses with" concept would not hold.
2801
2802.. code-block:: llvm
2803
2804 %A = fdiv undef, %X
2805 %B = fdiv %X, undef
2806 Safe:
2807 %A = undef
2808 b: unreachable
2809
2810These examples show the crucial difference between an *undefined value*
2811and *undefined behavior*. An undefined value (like '``undef``') is
2812allowed to have an arbitrary bit-pattern. This means that the ``%A``
2813operation can be constant folded to '``undef``', because the '``undef``'
2814could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2815However, in the second example, we can make a more aggressive
2816assumption: because the ``undef`` is allowed to be an arbitrary value,
2817we are allowed to assume that it could be zero. Since a divide by zero
2818has *undefined behavior*, we are allowed to assume that the operation
2819does not execute at all. This allows us to delete the divide and all
2820code after it. Because the undefined operation "can't happen", the
2821optimizer can assume that it occurs in dead code.
2822
2823.. code-block:: llvm
2824
2825 a: store undef -> %X
2826 b: store %X -> undef
2827 Safe:
2828 a: <deleted>
2829 b: unreachable
2830
2831These examples reiterate the ``fdiv`` example: a store *of* an undefined
2832value can be assumed to not have any effect; we can assume that the
2833value is overwritten with bits that happen to match what was already
2834there. However, a store *to* an undefined location could clobber
2835arbitrary memory, therefore, it has undefined behavior.
2836
2837.. _poisonvalues:
2838
2839Poison Values
2840-------------
2841
2842Poison values are similar to :ref:`undef values <undefvalues>`, however
2843they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002844that cannot evoke side effects has nevertheless detected a condition
2845that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002846
2847There is currently no way of representing a poison value in the IR; they
2848only exist when produced by operations such as :ref:`add <i_add>` with
2849the ``nsw`` flag.
2850
2851Poison value behavior is defined in terms of value *dependence*:
2852
2853- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2854- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2855 their dynamic predecessor basic block.
2856- Function arguments depend on the corresponding actual argument values
2857 in the dynamic callers of their functions.
2858- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2859 instructions that dynamically transfer control back to them.
2860- :ref:`Invoke <i_invoke>` instructions depend on the
2861 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2862 call instructions that dynamically transfer control back to them.
2863- Non-volatile loads and stores depend on the most recent stores to all
2864 of the referenced memory addresses, following the order in the IR
2865 (including loads and stores implied by intrinsics such as
2866 :ref:`@llvm.memcpy <int_memcpy>`.)
2867- An instruction with externally visible side effects depends on the
2868 most recent preceding instruction with externally visible side
2869 effects, following the order in the IR. (This includes :ref:`volatile
2870 operations <volatile>`.)
2871- An instruction *control-depends* on a :ref:`terminator
2872 instruction <terminators>` if the terminator instruction has
2873 multiple successors and the instruction is always executed when
2874 control transfers to one of the successors, and may not be executed
2875 when control is transferred to another.
2876- Additionally, an instruction also *control-depends* on a terminator
2877 instruction if the set of instructions it otherwise depends on would
2878 be different if the terminator had transferred control to a different
2879 successor.
2880- Dependence is transitive.
2881
Richard Smith32dbdf62014-07-31 04:25:36 +00002882Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2883with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002884on a poison value has undefined behavior.
2885
2886Here are some examples:
2887
2888.. code-block:: llvm
2889
2890 entry:
2891 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2892 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002893 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002894 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2895
2896 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002897 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002898
2899 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2900
2901 %narrowaddr = bitcast i32* @g to i16*
2902 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002903 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2904 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002905
2906 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2907 br i1 %cmp, label %true, label %end ; Branch to either destination.
2908
2909 true:
2910 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2911 ; it has undefined behavior.
2912 br label %end
2913
2914 end:
2915 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2916 ; Both edges into this PHI are
2917 ; control-dependent on %cmp, so this
2918 ; always results in a poison value.
2919
2920 store volatile i32 0, i32* @g ; This would depend on the store in %true
2921 ; if %cmp is true, or the store in %entry
2922 ; otherwise, so this is undefined behavior.
2923
2924 br i1 %cmp, label %second_true, label %second_end
2925 ; The same branch again, but this time the
2926 ; true block doesn't have side effects.
2927
2928 second_true:
2929 ; No side effects!
2930 ret void
2931
2932 second_end:
2933 store volatile i32 0, i32* @g ; This time, the instruction always depends
2934 ; on the store in %end. Also, it is
2935 ; control-equivalent to %end, so this is
2936 ; well-defined (ignoring earlier undefined
2937 ; behavior in this example).
2938
2939.. _blockaddress:
2940
2941Addresses of Basic Blocks
2942-------------------------
2943
2944``blockaddress(@function, %block)``
2945
2946The '``blockaddress``' constant computes the address of the specified
2947basic block in the specified function, and always has an ``i8*`` type.
2948Taking the address of the entry block is illegal.
2949
2950This value only has defined behavior when used as an operand to the
2951':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2952against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002953undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002954no label is equal to the null pointer. This may be passed around as an
2955opaque pointer sized value as long as the bits are not inspected. This
2956allows ``ptrtoint`` and arithmetic to be performed on these values so
2957long as the original value is reconstituted before the ``indirectbr``
2958instruction.
2959
2960Finally, some targets may provide defined semantics when using the value
2961as the operand to an inline assembly, but that is target specific.
2962
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002963.. _constantexprs:
2964
Sean Silvab084af42012-12-07 10:36:55 +00002965Constant Expressions
2966--------------------
2967
2968Constant expressions are used to allow expressions involving other
2969constants to be used as constants. Constant expressions may be of any
2970:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2971that does not have side effects (e.g. load and call are not supported).
2972The following is the syntax for constant expressions:
2973
2974``trunc (CST to TYPE)``
2975 Truncate a constant to another type. The bit size of CST must be
2976 larger than the bit size of TYPE. Both types must be integers.
2977``zext (CST to TYPE)``
2978 Zero extend a constant to another type. The bit size of CST must be
2979 smaller than the bit size of TYPE. Both types must be integers.
2980``sext (CST to TYPE)``
2981 Sign extend a constant to another type. The bit size of CST must be
2982 smaller than the bit size of TYPE. Both types must be integers.
2983``fptrunc (CST to TYPE)``
2984 Truncate a floating point constant to another floating point type.
2985 The size of CST must be larger than the size of TYPE. Both types
2986 must be floating point.
2987``fpext (CST to TYPE)``
2988 Floating point extend a constant to another type. The size of CST
2989 must be smaller or equal to the size of TYPE. Both types must be
2990 floating point.
2991``fptoui (CST to TYPE)``
2992 Convert a floating point constant to the corresponding unsigned
2993 integer constant. TYPE must be a scalar or vector integer type. CST
2994 must be of scalar or vector floating point type. Both CST and TYPE
2995 must be scalars, or vectors of the same number of elements. If the
2996 value won't fit in the integer type, the results are undefined.
2997``fptosi (CST to TYPE)``
2998 Convert a floating point constant to the corresponding signed
2999 integer constant. TYPE must be a scalar or vector integer type. CST
3000 must be of scalar or vector floating point type. Both CST and TYPE
3001 must be scalars, or vectors of the same number of elements. If the
3002 value won't fit in the integer type, the results are undefined.
3003``uitofp (CST to TYPE)``
3004 Convert an unsigned integer constant to the corresponding floating
3005 point constant. TYPE must be a scalar or vector floating point type.
3006 CST must be of scalar or vector integer type. Both CST and TYPE must
3007 be scalars, or vectors of the same number of elements. If the value
3008 won't fit in the floating point type, the results are undefined.
3009``sitofp (CST to TYPE)``
3010 Convert a signed integer constant to the corresponding floating
3011 point constant. TYPE must be a scalar or vector floating point type.
3012 CST must be of scalar or vector integer type. Both CST and TYPE must
3013 be scalars, or vectors of the same number of elements. If the value
3014 won't fit in the floating point type, the results are undefined.
3015``ptrtoint (CST to TYPE)``
3016 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003017 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003018 pointer type. The ``CST`` value is zero extended, truncated, or
3019 unchanged to make it fit in ``TYPE``.
3020``inttoptr (CST to TYPE)``
3021 Convert an integer constant to a pointer constant. TYPE must be a
3022 pointer type. CST must be of integer type. The CST value is zero
3023 extended, truncated, or unchanged to make it fit in a pointer size.
3024 This one is *really* dangerous!
3025``bitcast (CST to TYPE)``
3026 Convert a constant, CST, to another TYPE. The constraints of the
3027 operands are the same as those for the :ref:`bitcast
3028 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003029``addrspacecast (CST to TYPE)``
3030 Convert a constant pointer or constant vector of pointer, CST, to another
3031 TYPE in a different address space. The constraints of the operands are the
3032 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003033``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003034 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3035 constants. As with the :ref:`getelementptr <i_getelementptr>`
3036 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003037 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003038``select (COND, VAL1, VAL2)``
3039 Perform the :ref:`select operation <i_select>` on constants.
3040``icmp COND (VAL1, VAL2)``
3041 Performs the :ref:`icmp operation <i_icmp>` on constants.
3042``fcmp COND (VAL1, VAL2)``
3043 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3044``extractelement (VAL, IDX)``
3045 Perform the :ref:`extractelement operation <i_extractelement>` on
3046 constants.
3047``insertelement (VAL, ELT, IDX)``
3048 Perform the :ref:`insertelement operation <i_insertelement>` on
3049 constants.
3050``shufflevector (VEC1, VEC2, IDXMASK)``
3051 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3052 constants.
3053``extractvalue (VAL, IDX0, IDX1, ...)``
3054 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3055 constants. The index list is interpreted in a similar manner as
3056 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3057 least one index value must be specified.
3058``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3059 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3060 The index list is interpreted in a similar manner as indices in a
3061 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3062 value must be specified.
3063``OPCODE (LHS, RHS)``
3064 Perform the specified operation of the LHS and RHS constants. OPCODE
3065 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3066 binary <bitwiseops>` operations. The constraints on operands are
3067 the same as those for the corresponding instruction (e.g. no bitwise
3068 operations on floating point values are allowed).
3069
3070Other Values
3071============
3072
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003073.. _inlineasmexprs:
3074
Sean Silvab084af42012-12-07 10:36:55 +00003075Inline Assembler Expressions
3076----------------------------
3077
3078LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003079Inline Assembly <moduleasm>`) through the use of a special value. This value
3080represents the inline assembler as a template string (containing the
3081instructions to emit), a list of operand constraints (stored as a string), a
3082flag that indicates whether or not the inline asm expression has side effects,
3083and a flag indicating whether the function containing the asm needs to align its
3084stack conservatively.
3085
3086The template string supports argument substitution of the operands using "``$``"
3087followed by a number, to indicate substitution of the given register/memory
3088location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3089be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3090operand (See :ref:`inline-asm-modifiers`).
3091
3092A literal "``$``" may be included by using "``$$``" in the template. To include
3093other special characters into the output, the usual "``\XX``" escapes may be
3094used, just as in other strings. Note that after template substitution, the
3095resulting assembly string is parsed by LLVM's integrated assembler unless it is
3096disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3097syntax known to LLVM.
3098
3099LLVM's support for inline asm is modeled closely on the requirements of Clang's
3100GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3101modifier codes listed here are similar or identical to those in GCC's inline asm
3102support. However, to be clear, the syntax of the template and constraint strings
3103described here is *not* the same as the syntax accepted by GCC and Clang, and,
3104while most constraint letters are passed through as-is by Clang, some get
3105translated to other codes when converting from the C source to the LLVM
3106assembly.
3107
3108An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003109
3110.. code-block:: llvm
3111
3112 i32 (i32) asm "bswap $0", "=r,r"
3113
3114Inline assembler expressions may **only** be used as the callee operand
3115of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3116Thus, typically we have:
3117
3118.. code-block:: llvm
3119
3120 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3121
3122Inline asms with side effects not visible in the constraint list must be
3123marked as having side effects. This is done through the use of the
3124'``sideeffect``' keyword, like so:
3125
3126.. code-block:: llvm
3127
3128 call void asm sideeffect "eieio", ""()
3129
3130In some cases inline asms will contain code that will not work unless
3131the stack is aligned in some way, such as calls or SSE instructions on
3132x86, yet will not contain code that does that alignment within the asm.
3133The compiler should make conservative assumptions about what the asm
3134might contain and should generate its usual stack alignment code in the
3135prologue if the '``alignstack``' keyword is present:
3136
3137.. code-block:: llvm
3138
3139 call void asm alignstack "eieio", ""()
3140
3141Inline asms also support using non-standard assembly dialects. The
3142assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3143the inline asm is using the Intel dialect. Currently, ATT and Intel are
3144the only supported dialects. An example is:
3145
3146.. code-block:: llvm
3147
3148 call void asm inteldialect "eieio", ""()
3149
3150If multiple keywords appear the '``sideeffect``' keyword must come
3151first, the '``alignstack``' keyword second and the '``inteldialect``'
3152keyword last.
3153
James Y Knightbc832ed2015-07-08 18:08:36 +00003154Inline Asm Constraint String
3155^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3156
3157The constraint list is a comma-separated string, each element containing one or
3158more constraint codes.
3159
3160For each element in the constraint list an appropriate register or memory
3161operand will be chosen, and it will be made available to assembly template
3162string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3163second, etc.
3164
3165There are three different types of constraints, which are distinguished by a
3166prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3167constraints must always be given in that order: outputs first, then inputs, then
3168clobbers. They cannot be intermingled.
3169
3170There are also three different categories of constraint codes:
3171
3172- Register constraint. This is either a register class, or a fixed physical
3173 register. This kind of constraint will allocate a register, and if necessary,
3174 bitcast the argument or result to the appropriate type.
3175- Memory constraint. This kind of constraint is for use with an instruction
3176 taking a memory operand. Different constraints allow for different addressing
3177 modes used by the target.
3178- Immediate value constraint. This kind of constraint is for an integer or other
3179 immediate value which can be rendered directly into an instruction. The
3180 various target-specific constraints allow the selection of a value in the
3181 proper range for the instruction you wish to use it with.
3182
3183Output constraints
3184""""""""""""""""""
3185
3186Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3187indicates that the assembly will write to this operand, and the operand will
3188then be made available as a return value of the ``asm`` expression. Output
3189constraints do not consume an argument from the call instruction. (Except, see
3190below about indirect outputs).
3191
3192Normally, it is expected that no output locations are written to by the assembly
3193expression until *all* of the inputs have been read. As such, LLVM may assign
3194the same register to an output and an input. If this is not safe (e.g. if the
3195assembly contains two instructions, where the first writes to one output, and
3196the second reads an input and writes to a second output), then the "``&``"
3197modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003198"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003199will not use the same register for any inputs (other than an input tied to this
3200output).
3201
3202Input constraints
3203"""""""""""""""""
3204
3205Input constraints do not have a prefix -- just the constraint codes. Each input
3206constraint will consume one argument from the call instruction. It is not
3207permitted for the asm to write to any input register or memory location (unless
3208that input is tied to an output). Note also that multiple inputs may all be
3209assigned to the same register, if LLVM can determine that they necessarily all
3210contain the same value.
3211
3212Instead of providing a Constraint Code, input constraints may also "tie"
3213themselves to an output constraint, by providing an integer as the constraint
3214string. Tied inputs still consume an argument from the call instruction, and
3215take up a position in the asm template numbering as is usual -- they will simply
3216be constrained to always use the same register as the output they've been tied
3217to. For example, a constraint string of "``=r,0``" says to assign a register for
3218output, and use that register as an input as well (it being the 0'th
3219constraint).
3220
3221It is permitted to tie an input to an "early-clobber" output. In that case, no
3222*other* input may share the same register as the input tied to the early-clobber
3223(even when the other input has the same value).
3224
3225You may only tie an input to an output which has a register constraint, not a
3226memory constraint. Only a single input may be tied to an output.
3227
3228There is also an "interesting" feature which deserves a bit of explanation: if a
3229register class constraint allocates a register which is too small for the value
3230type operand provided as input, the input value will be split into multiple
3231registers, and all of them passed to the inline asm.
3232
3233However, this feature is often not as useful as you might think.
3234
3235Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3236architectures that have instructions which operate on multiple consecutive
3237instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3238SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3239hardware then loads into both the named register, and the next register. This
3240feature of inline asm would not be useful to support that.)
3241
3242A few of the targets provide a template string modifier allowing explicit access
3243to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3244``D``). On such an architecture, you can actually access the second allocated
3245register (yet, still, not any subsequent ones). But, in that case, you're still
3246probably better off simply splitting the value into two separate operands, for
3247clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3248despite existing only for use with this feature, is not really a good idea to
3249use)
3250
3251Indirect inputs and outputs
3252"""""""""""""""""""""""""""
3253
3254Indirect output or input constraints can be specified by the "``*``" modifier
3255(which goes after the "``=``" in case of an output). This indicates that the asm
3256will write to or read from the contents of an *address* provided as an input
3257argument. (Note that in this way, indirect outputs act more like an *input* than
3258an output: just like an input, they consume an argument of the call expression,
3259rather than producing a return value. An indirect output constraint is an
3260"output" only in that the asm is expected to write to the contents of the input
3261memory location, instead of just read from it).
3262
3263This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3264address of a variable as a value.
3265
3266It is also possible to use an indirect *register* constraint, but only on output
3267(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3268value normally, and then, separately emit a store to the address provided as
3269input, after the provided inline asm. (It's not clear what value this
3270functionality provides, compared to writing the store explicitly after the asm
3271statement, and it can only produce worse code, since it bypasses many
3272optimization passes. I would recommend not using it.)
3273
3274
3275Clobber constraints
3276"""""""""""""""""""
3277
3278A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3279consume an input operand, nor generate an output. Clobbers cannot use any of the
3280general constraint code letters -- they may use only explicit register
3281constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3282"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3283memory locations -- not only the memory pointed to by a declared indirect
3284output.
3285
3286
3287Constraint Codes
3288""""""""""""""""
3289After a potential prefix comes constraint code, or codes.
3290
3291A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3292followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3293(e.g. "``{eax}``").
3294
3295The one and two letter constraint codes are typically chosen to be the same as
3296GCC's constraint codes.
3297
3298A single constraint may include one or more than constraint code in it, leaving
3299it up to LLVM to choose which one to use. This is included mainly for
3300compatibility with the translation of GCC inline asm coming from clang.
3301
3302There are two ways to specify alternatives, and either or both may be used in an
3303inline asm constraint list:
3304
33051) Append the codes to each other, making a constraint code set. E.g. "``im``"
3306 or "``{eax}m``". This means "choose any of the options in the set". The
3307 choice of constraint is made independently for each constraint in the
3308 constraint list.
3309
33102) Use "``|``" between constraint code sets, creating alternatives. Every
3311 constraint in the constraint list must have the same number of alternative
3312 sets. With this syntax, the same alternative in *all* of the items in the
3313 constraint list will be chosen together.
3314
3315Putting those together, you might have a two operand constraint string like
3316``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3317operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3318may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3319
3320However, the use of either of the alternatives features is *NOT* recommended, as
3321LLVM is not able to make an intelligent choice about which one to use. (At the
3322point it currently needs to choose, not enough information is available to do so
3323in a smart way.) Thus, it simply tries to make a choice that's most likely to
3324compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3325always choose to use memory, not registers). And, if given multiple registers,
3326or multiple register classes, it will simply choose the first one. (In fact, it
3327doesn't currently even ensure explicitly specified physical registers are
3328unique, so specifying multiple physical registers as alternatives, like
3329``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3330intended.)
3331
3332Supported Constraint Code List
3333""""""""""""""""""""""""""""""
3334
3335The constraint codes are, in general, expected to behave the same way they do in
3336GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3337inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3338and GCC likely indicates a bug in LLVM.
3339
3340Some constraint codes are typically supported by all targets:
3341
3342- ``r``: A register in the target's general purpose register class.
3343- ``m``: A memory address operand. It is target-specific what addressing modes
3344 are supported, typical examples are register, or register + register offset,
3345 or register + immediate offset (of some target-specific size).
3346- ``i``: An integer constant (of target-specific width). Allows either a simple
3347 immediate, or a relocatable value.
3348- ``n``: An integer constant -- *not* including relocatable values.
3349- ``s``: An integer constant, but allowing *only* relocatable values.
3350- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3351 useful to pass a label for an asm branch or call.
3352
3353 .. FIXME: but that surely isn't actually okay to jump out of an asm
3354 block without telling llvm about the control transfer???)
3355
3356- ``{register-name}``: Requires exactly the named physical register.
3357
3358Other constraints are target-specific:
3359
3360AArch64:
3361
3362- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3363- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3364 i.e. 0 to 4095 with optional shift by 12.
3365- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3366 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3367- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3368 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3369- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3370 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3371- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3372 32-bit register. This is a superset of ``K``: in addition to the bitmask
3373 immediate, also allows immediate integers which can be loaded with a single
3374 ``MOVZ`` or ``MOVL`` instruction.
3375- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3376 64-bit register. This is a superset of ``L``.
3377- ``Q``: Memory address operand must be in a single register (no
3378 offsets). (However, LLVM currently does this for the ``m`` constraint as
3379 well.)
3380- ``r``: A 32 or 64-bit integer register (W* or X*).
3381- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3382- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3383
3384AMDGPU:
3385
3386- ``r``: A 32 or 64-bit integer register.
3387- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3388- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3389
3390
3391All ARM modes:
3392
3393- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3394 operand. Treated the same as operand ``m``, at the moment.
3395
3396ARM and ARM's Thumb2 mode:
3397
3398- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3399- ``I``: An immediate integer valid for a data-processing instruction.
3400- ``J``: An immediate integer between -4095 and 4095.
3401- ``K``: An immediate integer whose bitwise inverse is valid for a
3402 data-processing instruction. (Can be used with template modifier "``B``" to
3403 print the inverted value).
3404- ``L``: An immediate integer whose negation is valid for a data-processing
3405 instruction. (Can be used with template modifier "``n``" to print the negated
3406 value).
3407- ``M``: A power of two or a integer between 0 and 32.
3408- ``N``: Invalid immediate constraint.
3409- ``O``: Invalid immediate constraint.
3410- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3411- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3412 as ``r``.
3413- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3414 invalid.
3415- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3416 ``d0-d31``, or ``q0-q15``.
3417- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3418 ``d0-d7``, or ``q0-q3``.
3419- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3420 ``s0-s31``.
3421
3422ARM's Thumb1 mode:
3423
3424- ``I``: An immediate integer between 0 and 255.
3425- ``J``: An immediate integer between -255 and -1.
3426- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3427 some amount.
3428- ``L``: An immediate integer between -7 and 7.
3429- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3430- ``N``: An immediate integer between 0 and 31.
3431- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3432- ``r``: A low 32-bit GPR register (``r0-r7``).
3433- ``l``: A low 32-bit GPR register (``r0-r7``).
3434- ``h``: A high GPR register (``r0-r7``).
3435- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3436 ``d0-d31``, or ``q0-q15``.
3437- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3438 ``d0-d7``, or ``q0-q3``.
3439- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3440 ``s0-s31``.
3441
3442
3443Hexagon:
3444
3445- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3446 at the moment.
3447- ``r``: A 32 or 64-bit register.
3448
3449MSP430:
3450
3451- ``r``: An 8 or 16-bit register.
3452
3453MIPS:
3454
3455- ``I``: An immediate signed 16-bit integer.
3456- ``J``: An immediate integer zero.
3457- ``K``: An immediate unsigned 16-bit integer.
3458- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3459- ``N``: An immediate integer between -65535 and -1.
3460- ``O``: An immediate signed 15-bit integer.
3461- ``P``: An immediate integer between 1 and 65535.
3462- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3463 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3464- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3465 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3466 ``m``.
3467- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3468 ``sc`` instruction on the given subtarget (details vary).
3469- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3470- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003471 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3472 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003473- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3474 ``25``).
3475- ``l``: The ``lo`` register, 32 or 64-bit.
3476- ``x``: Invalid.
3477
3478NVPTX:
3479
3480- ``b``: A 1-bit integer register.
3481- ``c`` or ``h``: A 16-bit integer register.
3482- ``r``: A 32-bit integer register.
3483- ``l`` or ``N``: A 64-bit integer register.
3484- ``f``: A 32-bit float register.
3485- ``d``: A 64-bit float register.
3486
3487
3488PowerPC:
3489
3490- ``I``: An immediate signed 16-bit integer.
3491- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3492- ``K``: An immediate unsigned 16-bit integer.
3493- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3494- ``M``: An immediate integer greater than 31.
3495- ``N``: An immediate integer that is an exact power of 2.
3496- ``O``: The immediate integer constant 0.
3497- ``P``: An immediate integer constant whose negation is a signed 16-bit
3498 constant.
3499- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3500 treated the same as ``m``.
3501- ``r``: A 32 or 64-bit integer register.
3502- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3503 ``R1-R31``).
3504- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3505 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3506- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3507 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3508 altivec vector register (``V0-V31``).
3509
3510 .. FIXME: is this a bug that v accepts QPX registers? I think this
3511 is supposed to only use the altivec vector registers?
3512
3513- ``y``: Condition register (``CR0-CR7``).
3514- ``wc``: An individual CR bit in a CR register.
3515- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3516 register set (overlapping both the floating-point and vector register files).
3517- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3518 set.
3519
3520Sparc:
3521
3522- ``I``: An immediate 13-bit signed integer.
3523- ``r``: A 32-bit integer register.
3524
3525SystemZ:
3526
3527- ``I``: An immediate unsigned 8-bit integer.
3528- ``J``: An immediate unsigned 12-bit integer.
3529- ``K``: An immediate signed 16-bit integer.
3530- ``L``: An immediate signed 20-bit integer.
3531- ``M``: An immediate integer 0x7fffffff.
3532- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3533 ``m``, at the moment.
3534- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3535- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3536 address context evaluates as zero).
3537- ``h``: A 32-bit value in the high part of a 64bit data register
3538 (LLVM-specific)
3539- ``f``: A 32, 64, or 128-bit floating point register.
3540
3541X86:
3542
3543- ``I``: An immediate integer between 0 and 31.
3544- ``J``: An immediate integer between 0 and 64.
3545- ``K``: An immediate signed 8-bit integer.
3546- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3547 0xffffffff.
3548- ``M``: An immediate integer between 0 and 3.
3549- ``N``: An immediate unsigned 8-bit integer.
3550- ``O``: An immediate integer between 0 and 127.
3551- ``e``: An immediate 32-bit signed integer.
3552- ``Z``: An immediate 32-bit unsigned integer.
3553- ``o``, ``v``: Treated the same as ``m``, at the moment.
3554- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3555 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3556 registers, and on X86-64, it is all of the integer registers.
3557- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3558 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3559- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3560- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3561 existed since i386, and can be accessed without the REX prefix.
3562- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3563- ``y``: A 64-bit MMX register, if MMX is enabled.
3564- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3565 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3566 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3567 512-bit vector operand in an AVX512 register, Otherwise, an error.
3568- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3569- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3570 32-bit mode, a 64-bit integer operand will get split into two registers). It
3571 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3572 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3573 you're better off splitting it yourself, before passing it to the asm
3574 statement.
3575
3576XCore:
3577
3578- ``r``: A 32-bit integer register.
3579
3580
3581.. _inline-asm-modifiers:
3582
3583Asm template argument modifiers
3584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3585
3586In the asm template string, modifiers can be used on the operand reference, like
3587"``${0:n}``".
3588
3589The modifiers are, in general, expected to behave the same way they do in
3590GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3591inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3592and GCC likely indicates a bug in LLVM.
3593
3594Target-independent:
3595
Sean Silvaa1190322015-08-06 22:56:48 +00003596- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003597 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3598- ``n``: Negate and print immediate integer constant unadorned, without the
3599 target-specific immediate punctuation (e.g. no ``$`` prefix).
3600- ``l``: Print as an unadorned label, without the target-specific label
3601 punctuation (e.g. no ``$`` prefix).
3602
3603AArch64:
3604
3605- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3606 instead of ``x30``, print ``w30``.
3607- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3608- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3609 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3610 ``v*``.
3611
3612AMDGPU:
3613
3614- ``r``: No effect.
3615
3616ARM:
3617
3618- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3619 register).
3620- ``P``: No effect.
3621- ``q``: No effect.
3622- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3623 as ``d4[1]`` instead of ``s9``)
3624- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3625 prefix.
3626- ``L``: Print the low 16-bits of an immediate integer constant.
3627- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3628 register operands subsequent to the specified one (!), so use carefully.
3629- ``Q``: Print the low-order register of a register-pair, or the low-order
3630 register of a two-register operand.
3631- ``R``: Print the high-order register of a register-pair, or the high-order
3632 register of a two-register operand.
3633- ``H``: Print the second register of a register-pair. (On a big-endian system,
3634 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3635 to ``R``.)
3636
3637 .. FIXME: H doesn't currently support printing the second register
3638 of a two-register operand.
3639
3640- ``e``: Print the low doubleword register of a NEON quad register.
3641- ``f``: Print the high doubleword register of a NEON quad register.
3642- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3643 adornment.
3644
3645Hexagon:
3646
3647- ``L``: Print the second register of a two-register operand. Requires that it
3648 has been allocated consecutively to the first.
3649
3650 .. FIXME: why is it restricted to consecutive ones? And there's
3651 nothing that ensures that happens, is there?
3652
3653- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3654 nothing. Used to print 'addi' vs 'add' instructions.
3655
3656MSP430:
3657
3658No additional modifiers.
3659
3660MIPS:
3661
3662- ``X``: Print an immediate integer as hexadecimal
3663- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3664- ``d``: Print an immediate integer as decimal.
3665- ``m``: Subtract one and print an immediate integer as decimal.
3666- ``z``: Print $0 if an immediate zero, otherwise print normally.
3667- ``L``: Print the low-order register of a two-register operand, or prints the
3668 address of the low-order word of a double-word memory operand.
3669
3670 .. FIXME: L seems to be missing memory operand support.
3671
3672- ``M``: Print the high-order register of a two-register operand, or prints the
3673 address of the high-order word of a double-word memory operand.
3674
3675 .. FIXME: M seems to be missing memory operand support.
3676
3677- ``D``: Print the second register of a two-register operand, or prints the
3678 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3679 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3680 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003681- ``w``: No effect. Provided for compatibility with GCC which requires this
3682 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3683 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003684
3685NVPTX:
3686
3687- ``r``: No effect.
3688
3689PowerPC:
3690
3691- ``L``: Print the second register of a two-register operand. Requires that it
3692 has been allocated consecutively to the first.
3693
3694 .. FIXME: why is it restricted to consecutive ones? And there's
3695 nothing that ensures that happens, is there?
3696
3697- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3698 nothing. Used to print 'addi' vs 'add' instructions.
3699- ``y``: For a memory operand, prints formatter for a two-register X-form
3700 instruction. (Currently always prints ``r0,OPERAND``).
3701- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3702 otherwise. (NOTE: LLVM does not support update form, so this will currently
3703 always print nothing)
3704- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3705 not support indexed form, so this will currently always print nothing)
3706
3707Sparc:
3708
3709- ``r``: No effect.
3710
3711SystemZ:
3712
3713SystemZ implements only ``n``, and does *not* support any of the other
3714target-independent modifiers.
3715
3716X86:
3717
3718- ``c``: Print an unadorned integer or symbol name. (The latter is
3719 target-specific behavior for this typically target-independent modifier).
3720- ``A``: Print a register name with a '``*``' before it.
3721- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3722 operand.
3723- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3724 memory operand.
3725- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3726 operand.
3727- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3728 operand.
3729- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3730 available, otherwise the 32-bit register name; do nothing on a memory operand.
3731- ``n``: Negate and print an unadorned integer, or, for operands other than an
3732 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3733 the operand. (The behavior for relocatable symbol expressions is a
3734 target-specific behavior for this typically target-independent modifier)
3735- ``H``: Print a memory reference with additional offset +8.
3736- ``P``: Print a memory reference or operand for use as the argument of a call
3737 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3738
3739XCore:
3740
3741No additional modifiers.
3742
3743
Sean Silvab084af42012-12-07 10:36:55 +00003744Inline Asm Metadata
3745^^^^^^^^^^^^^^^^^^^
3746
3747The call instructions that wrap inline asm nodes may have a
3748"``!srcloc``" MDNode attached to it that contains a list of constant
3749integers. If present, the code generator will use the integer as the
3750location cookie value when report errors through the ``LLVMContext``
3751error reporting mechanisms. This allows a front-end to correlate backend
3752errors that occur with inline asm back to the source code that produced
3753it. For example:
3754
3755.. code-block:: llvm
3756
3757 call void asm sideeffect "something bad", ""(), !srcloc !42
3758 ...
3759 !42 = !{ i32 1234567 }
3760
3761It is up to the front-end to make sense of the magic numbers it places
3762in the IR. If the MDNode contains multiple constants, the code generator
3763will use the one that corresponds to the line of the asm that the error
3764occurs on.
3765
3766.. _metadata:
3767
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003768Metadata
3769========
Sean Silvab084af42012-12-07 10:36:55 +00003770
3771LLVM IR allows metadata to be attached to instructions in the program
3772that can convey extra information about the code to the optimizers and
3773code generator. One example application of metadata is source-level
3774debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003775
Sean Silvaa1190322015-08-06 22:56:48 +00003776Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003777``call`` instruction, it uses the ``metadata`` type.
3778
3779All metadata are identified in syntax by a exclamation point ('``!``').
3780
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003781.. _metadata-string:
3782
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003783Metadata Nodes and Metadata Strings
3784-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003785
3786A metadata string is a string surrounded by double quotes. It can
3787contain any character by escaping non-printable characters with
3788"``\xx``" where "``xx``" is the two digit hex code. For example:
3789"``!"test\00"``".
3790
3791Metadata nodes are represented with notation similar to structure
3792constants (a comma separated list of elements, surrounded by braces and
3793preceded by an exclamation point). Metadata nodes can have any values as
3794their operand. For example:
3795
3796.. code-block:: llvm
3797
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003798 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003799
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003800Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3801
3802.. code-block:: llvm
3803
3804 !0 = distinct !{!"test\00", i32 10}
3805
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003806``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003807content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003808when metadata operands change.
3809
Sean Silvab084af42012-12-07 10:36:55 +00003810A :ref:`named metadata <namedmetadatastructure>` is a collection of
3811metadata nodes, which can be looked up in the module symbol table. For
3812example:
3813
3814.. code-block:: llvm
3815
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003816 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003817
3818Metadata can be used as function arguments. Here ``llvm.dbg.value``
3819function is using two metadata arguments:
3820
3821.. code-block:: llvm
3822
3823 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3824
Peter Collingbourne50108682015-11-06 02:41:02 +00003825Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3826to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003827
3828.. code-block:: llvm
3829
3830 %indvar.next = add i64 %indvar, 1, !dbg !21
3831
Peter Collingbourne50108682015-11-06 02:41:02 +00003832Metadata can also be attached to a function definition. Here metadata ``!22``
3833is attached to the ``foo`` function using the ``!dbg`` identifier:
3834
3835.. code-block:: llvm
3836
3837 define void @foo() !dbg !22 {
3838 ret void
3839 }
3840
Sean Silvab084af42012-12-07 10:36:55 +00003841More information about specific metadata nodes recognized by the
3842optimizers and code generator is found below.
3843
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003844.. _specialized-metadata:
3845
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003846Specialized Metadata Nodes
3847^^^^^^^^^^^^^^^^^^^^^^^^^^
3848
3849Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003850to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003851order.
3852
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003853These aren't inherently debug info centric, but currently all the specialized
3854metadata nodes are related to debug info.
3855
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003856.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003857
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003858DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003859"""""""""""""
3860
Sean Silvaa1190322015-08-06 22:56:48 +00003861``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003862``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3863fields are tuples containing the debug info to be emitted along with the compile
3864unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003865references to them from instructions).
3866
3867.. code-block:: llvm
3868
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003869 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003870 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003871 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003872 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003873 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003874
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003875Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003876specific compilation unit. File descriptors are defined using this scope.
3877These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003878keep track of subprograms, global variables, type information, and imported
3879entities (declarations and namespaces).
3880
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003881.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003882
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003883DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003884""""""
3885
Sean Silvaa1190322015-08-06 22:56:48 +00003886``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003887
3888.. code-block:: llvm
3889
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003890 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003891
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003892Files are sometimes used in ``scope:`` fields, and are the only valid target
3893for ``file:`` fields.
3894
Michael Kuperstein605308a2015-05-14 10:58:59 +00003895.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003896
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003897DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003898"""""""""""
3899
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003900``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003901``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003902
3903.. code-block:: llvm
3904
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003905 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003906 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003907 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003908
Sean Silvaa1190322015-08-06 22:56:48 +00003909The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003910following:
3911
3912.. code-block:: llvm
3913
3914 DW_ATE_address = 1
3915 DW_ATE_boolean = 2
3916 DW_ATE_float = 4
3917 DW_ATE_signed = 5
3918 DW_ATE_signed_char = 6
3919 DW_ATE_unsigned = 7
3920 DW_ATE_unsigned_char = 8
3921
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003922.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003923
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003924DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003925""""""""""""""""
3926
Sean Silvaa1190322015-08-06 22:56:48 +00003927``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003928refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003929types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003930represents a function with no return value (such as ``void foo() {}`` in C++).
3931
3932.. code-block:: llvm
3933
3934 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3935 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003936 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003937
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003938.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003939
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003940DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003941"""""""""""""
3942
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003943``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003944qualified types.
3945
3946.. code-block:: llvm
3947
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003948 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003949 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003950 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003951 align: 32)
3952
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003953The following ``tag:`` values are valid:
3954
3955.. code-block:: llvm
3956
3957 DW_TAG_formal_parameter = 5
3958 DW_TAG_member = 13
3959 DW_TAG_pointer_type = 15
3960 DW_TAG_reference_type = 16
3961 DW_TAG_typedef = 22
3962 DW_TAG_ptr_to_member_type = 31
3963 DW_TAG_const_type = 38
3964 DW_TAG_volatile_type = 53
3965 DW_TAG_restrict_type = 55
3966
3967``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003968<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3969is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003970``DW_TAG_formal_parameter`` is used to define a member which is a formal
3971argument of a subprogram.
3972
3973``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3974
3975``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3976``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3977``baseType:``.
3978
3979Note that the ``void *`` type is expressed as a type derived from NULL.
3980
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003981.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003982
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003983DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003984"""""""""""""""
3985
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003986``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003987structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003988
3989If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003990identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003991can refer to composite types indirectly via a :ref:`metadata string
3992<metadata-string>` that matches their identifier.
3993
3994.. code-block:: llvm
3995
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003996 !0 = !DIEnumerator(name: "SixKind", value: 7)
3997 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3998 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3999 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004000 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4001 elements: !{!0, !1, !2})
4002
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004003The following ``tag:`` values are valid:
4004
4005.. code-block:: llvm
4006
4007 DW_TAG_array_type = 1
4008 DW_TAG_class_type = 2
4009 DW_TAG_enumeration_type = 4
4010 DW_TAG_structure_type = 19
4011 DW_TAG_union_type = 23
4012 DW_TAG_subroutine_type = 21
4013 DW_TAG_inheritance = 28
4014
4015
4016For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004017descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004018level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004019array type is a native packed vector.
4020
4021For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004022descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004023value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004024``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004025
4026For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4027``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004028<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004029
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004030.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004031
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004032DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004033""""""""""
4034
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004035``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004036:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004037
4038.. code-block:: llvm
4039
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004040 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4041 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4042 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004043
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004044.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004045
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004046DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004047""""""""""""
4048
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004049``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4050variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004051
4052.. code-block:: llvm
4053
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004054 !0 = !DIEnumerator(name: "SixKind", value: 7)
4055 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4056 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004057
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004058DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004059"""""""""""""""""""""""
4060
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004061``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004062language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004063:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004064
4065.. code-block:: llvm
4066
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004067 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004068
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004069DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004070""""""""""""""""""""""""
4071
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004072``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004073language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004074but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004075``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004076:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004077
4078.. code-block:: llvm
4079
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004080 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004081
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004082DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004083"""""""""""
4084
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004085``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004086
4087.. code-block:: llvm
4088
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004089 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004090
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004091DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004092""""""""""""""""
4093
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004094``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004095
4096.. code-block:: llvm
4097
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004098 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004099 file: !2, line: 7, type: !3, isLocal: true,
4100 isDefinition: false, variable: i32* @foo,
4101 declaration: !4)
4102
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004103All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004104:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004105
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004106.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004107
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004108DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004109""""""""""""
4110
Peter Collingbourne50108682015-11-06 02:41:02 +00004111``DISubprogram`` nodes represent functions from the source language. A
4112``DISubprogram`` may be attached to a function definition using ``!dbg``
4113metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4114that must be retained, even if their IR counterparts are optimized out of
4115the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004116
4117.. code-block:: llvm
4118
Peter Collingbourne50108682015-11-06 02:41:02 +00004119 define void @_Z3foov() !dbg !0 {
4120 ...
4121 }
4122
4123 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4124 file: !2, line: 7, type: !3, isLocal: true,
4125 isDefinition: false, scopeLine: 8,
4126 containingType: !4,
4127 virtuality: DW_VIRTUALITY_pure_virtual,
4128 virtualIndex: 10, flags: DIFlagPrototyped,
4129 isOptimized: true, templateParams: !5,
4130 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004131
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004132.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004133
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004134DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004135""""""""""""""
4136
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004137``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004138<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004139two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004140fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004141
4142.. code-block:: llvm
4143
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004144 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004145
4146Usually lexical blocks are ``distinct`` to prevent node merging based on
4147operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004148
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004149.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004150
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004151DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004152""""""""""""""""""
4153
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004154``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004155:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004156indicate textual inclusion, or the ``discriminator:`` field can be used to
4157discriminate between control flow within a single block in the source language.
4158
4159.. code-block:: llvm
4160
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004161 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4162 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4163 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004164
Michael Kuperstein605308a2015-05-14 10:58:59 +00004165.. _DILocation:
4166
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004167DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004168""""""""""
4169
Sean Silvaa1190322015-08-06 22:56:48 +00004170``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004171mandatory, and points at an :ref:`DILexicalBlockFile`, an
4172:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004173
4174.. code-block:: llvm
4175
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004176 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004177
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004178.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004179
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004180DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004181"""""""""""""""
4182
Sean Silvaa1190322015-08-06 22:56:48 +00004183``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004184the ``arg:`` field is set to non-zero, then this variable is a subprogram
4185parameter, and it will be included in the ``variables:`` field of its
4186:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004187
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004188.. code-block:: llvm
4189
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004190 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4191 type: !3, flags: DIFlagArtificial)
4192 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4193 type: !3)
4194 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004195
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004196DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004197""""""""""""
4198
Sean Silvaa1190322015-08-06 22:56:48 +00004199``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004200:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4201describe how the referenced LLVM variable relates to the source language
4202variable.
4203
4204The current supported vocabulary is limited:
4205
4206- ``DW_OP_deref`` dereferences the working expression.
4207- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4208- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4209 here, respectively) of the variable piece from the working expression.
4210
4211.. code-block:: llvm
4212
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004213 !0 = !DIExpression(DW_OP_deref)
4214 !1 = !DIExpression(DW_OP_plus, 3)
4215 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4216 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004217
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004218DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004219""""""""""""""
4220
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004221``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004222
4223.. code-block:: llvm
4224
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004225 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004226 getter: "getFoo", attributes: 7, type: !2)
4227
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004228DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004229""""""""""""""""
4230
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004231``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004232compile unit.
4233
4234.. code-block:: llvm
4235
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004236 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004237 entity: !1, line: 7)
4238
Amjad Abouda9bcf162015-12-10 12:56:35 +00004239DIMacro
4240"""""""
4241
4242``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4243The ``name:`` field is the macro identifier, followed by macro parameters when
4244definining a function-like macro, and the ``value`` field is the token-string
4245used to expand the macro identifier.
4246
4247.. code-block:: llvm
4248
4249 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4250 value: "((x) + 1)")
4251 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4252
4253DIMacroFile
4254"""""""""""
4255
4256``DIMacroFile`` nodes represent inclusion of source files.
4257The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4258appear in the included source file.
4259
4260.. code-block:: llvm
4261
4262 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4263 nodes: !3)
4264
Sean Silvab084af42012-12-07 10:36:55 +00004265'``tbaa``' Metadata
4266^^^^^^^^^^^^^^^^^^^
4267
4268In LLVM IR, memory does not have types, so LLVM's own type system is not
4269suitable for doing TBAA. Instead, metadata is added to the IR to
4270describe a type system of a higher level language. This can be used to
4271implement typical C/C++ TBAA, but it can also be used to implement
4272custom alias analysis behavior for other languages.
4273
4274The current metadata format is very simple. TBAA metadata nodes have up
4275to three fields, e.g.:
4276
4277.. code-block:: llvm
4278
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004279 !0 = !{ !"an example type tree" }
4280 !1 = !{ !"int", !0 }
4281 !2 = !{ !"float", !0 }
4282 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004283
4284The first field is an identity field. It can be any value, usually a
4285metadata string, which uniquely identifies the type. The most important
4286name in the tree is the name of the root node. Two trees with different
4287root node names are entirely disjoint, even if they have leaves with
4288common names.
4289
4290The second field identifies the type's parent node in the tree, or is
4291null or omitted for a root node. A type is considered to alias all of
4292its descendants and all of its ancestors in the tree. Also, a type is
4293considered to alias all types in other trees, so that bitcode produced
4294from multiple front-ends is handled conservatively.
4295
4296If the third field is present, it's an integer which if equal to 1
4297indicates that the type is "constant" (meaning
4298``pointsToConstantMemory`` should return true; see `other useful
4299AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4300
4301'``tbaa.struct``' Metadata
4302^^^^^^^^^^^^^^^^^^^^^^^^^^
4303
4304The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4305aggregate assignment operations in C and similar languages, however it
4306is defined to copy a contiguous region of memory, which is more than
4307strictly necessary for aggregate types which contain holes due to
4308padding. Also, it doesn't contain any TBAA information about the fields
4309of the aggregate.
4310
4311``!tbaa.struct`` metadata can describe which memory subregions in a
4312memcpy are padding and what the TBAA tags of the struct are.
4313
4314The current metadata format is very simple. ``!tbaa.struct`` metadata
4315nodes are a list of operands which are in conceptual groups of three.
4316For each group of three, the first operand gives the byte offset of a
4317field in bytes, the second gives its size in bytes, and the third gives
4318its tbaa tag. e.g.:
4319
4320.. code-block:: llvm
4321
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004322 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004323
4324This describes a struct with two fields. The first is at offset 0 bytes
4325with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4326and has size 4 bytes and has tbaa tag !2.
4327
4328Note that the fields need not be contiguous. In this example, there is a
43294 byte gap between the two fields. This gap represents padding which
4330does not carry useful data and need not be preserved.
4331
Hal Finkel94146652014-07-24 14:25:39 +00004332'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004334
4335``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4336noalias memory-access sets. This means that some collection of memory access
4337instructions (loads, stores, memory-accessing calls, etc.) that carry
4338``noalias`` metadata can specifically be specified not to alias with some other
4339collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004340Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004341a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004342of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004343subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004344instruction's ``noalias`` list, then the two memory accesses are assumed not to
4345alias.
Hal Finkel94146652014-07-24 14:25:39 +00004346
Hal Finkel029cde62014-07-25 15:50:02 +00004347The metadata identifying each domain is itself a list containing one or two
4348entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004349string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004350self-reference can be used to create globally unique domain names. A
4351descriptive string may optionally be provided as a second list entry.
4352
4353The metadata identifying each scope is also itself a list containing two or
4354three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004355is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004356self-reference can be used to create globally unique scope names. A metadata
4357reference to the scope's domain is the second entry. A descriptive string may
4358optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004359
4360For example,
4361
4362.. code-block:: llvm
4363
Hal Finkel029cde62014-07-25 15:50:02 +00004364 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004365 !0 = !{!0}
4366 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004367
Hal Finkel029cde62014-07-25 15:50:02 +00004368 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004369 !2 = !{!2, !0}
4370 !3 = !{!3, !0}
4371 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004372
Hal Finkel029cde62014-07-25 15:50:02 +00004373 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004374 !5 = !{!4} ; A list containing only scope !4
4375 !6 = !{!4, !3, !2}
4376 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004377
4378 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004379 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004380 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004381
Hal Finkel029cde62014-07-25 15:50:02 +00004382 ; These two instructions also don't alias (for domain !1, the set of scopes
4383 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004384 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004385 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004386
Adam Nemet0a8416f2015-05-11 08:30:28 +00004387 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004388 ; the !noalias list is not a superset of, or equal to, the scopes in the
4389 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004390 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004391 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004392
Sean Silvab084af42012-12-07 10:36:55 +00004393'``fpmath``' Metadata
4394^^^^^^^^^^^^^^^^^^^^^
4395
4396``fpmath`` metadata may be attached to any instruction of floating point
4397type. It can be used to express the maximum acceptable error in the
4398result of that instruction, in ULPs, thus potentially allowing the
4399compiler to use a more efficient but less accurate method of computing
4400it. ULP is defined as follows:
4401
4402 If ``x`` is a real number that lies between two finite consecutive
4403 floating-point numbers ``a`` and ``b``, without being equal to one
4404 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4405 distance between the two non-equal finite floating-point numbers
4406 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4407
4408The metadata node shall consist of a single positive floating point
4409number representing the maximum relative error, for example:
4410
4411.. code-block:: llvm
4412
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004413 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004414
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004415.. _range-metadata:
4416
Sean Silvab084af42012-12-07 10:36:55 +00004417'``range``' Metadata
4418^^^^^^^^^^^^^^^^^^^^
4419
Jingyue Wu37fcb592014-06-19 16:50:16 +00004420``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4421integer types. It expresses the possible ranges the loaded value or the value
4422returned by the called function at this call site is in. The ranges are
4423represented with a flattened list of integers. The loaded value or the value
4424returned is known to be in the union of the ranges defined by each consecutive
4425pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004426
4427- The type must match the type loaded by the instruction.
4428- The pair ``a,b`` represents the range ``[a,b)``.
4429- Both ``a`` and ``b`` are constants.
4430- The range is allowed to wrap.
4431- The range should not represent the full or empty set. That is,
4432 ``a!=b``.
4433
4434In addition, the pairs must be in signed order of the lower bound and
4435they must be non-contiguous.
4436
4437Examples:
4438
4439.. code-block:: llvm
4440
David Blaikiec7aabbb2015-03-04 22:06:14 +00004441 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4442 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004443 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4444 %d = invoke i8 @bar() to label %cont
4445 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004446 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004447 !0 = !{ i8 0, i8 2 }
4448 !1 = !{ i8 255, i8 2 }
4449 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4450 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004451
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004452'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004453^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004454
4455``unpredictable`` metadata may be attached to any branch or switch
4456instruction. It can be used to express the unpredictability of control
4457flow. Similar to the llvm.expect intrinsic, it may be used to alter
4458optimizations related to compare and branch instructions. The metadata
4459is treated as a boolean value; if it exists, it signals that the branch
4460or switch that it is attached to is completely unpredictable.
4461
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004462'``llvm.loop``'
4463^^^^^^^^^^^^^^^
4464
4465It is sometimes useful to attach information to loop constructs. Currently,
4466loop metadata is implemented as metadata attached to the branch instruction
4467in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004468guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004469specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004470
4471The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004472itself to avoid merging it with any other identifier metadata, e.g.,
4473during module linkage or function inlining. That is, each loop should refer
4474to their own identification metadata even if they reside in separate functions.
4475The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004476constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004477
4478.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004479
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004480 !0 = !{!0}
4481 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004482
Mark Heffernan893752a2014-07-18 19:24:51 +00004483The loop identifier metadata can be used to specify additional
4484per-loop metadata. Any operands after the first operand can be treated
4485as user-defined metadata. For example the ``llvm.loop.unroll.count``
4486suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004487
Paul Redmond5fdf8362013-05-28 20:00:34 +00004488.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004489
Paul Redmond5fdf8362013-05-28 20:00:34 +00004490 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4491 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004492 !0 = !{!0, !1}
4493 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004494
Mark Heffernan9d20e422014-07-21 23:11:03 +00004495'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004497
Mark Heffernan9d20e422014-07-21 23:11:03 +00004498Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4499used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004500vectorization width and interleave count. These metadata should be used in
4501conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004502``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4503optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004504it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004505which contains information about loop-carried memory dependencies can be helpful
4506in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004507
Mark Heffernan9d20e422014-07-21 23:11:03 +00004508'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004509^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4510
Mark Heffernan9d20e422014-07-21 23:11:03 +00004511This metadata suggests an interleave count to the loop interleaver.
4512The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004513second operand is an integer specifying the interleave count. For
4514example:
4515
4516.. code-block:: llvm
4517
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004518 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004519
Mark Heffernan9d20e422014-07-21 23:11:03 +00004520Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004521multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004522then the interleave count will be determined automatically.
4523
4524'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004526
4527This metadata selectively enables or disables vectorization for the loop. The
4528first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004529is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000045300 disables vectorization:
4531
4532.. code-block:: llvm
4533
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004534 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4535 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004536
4537'``llvm.loop.vectorize.width``' Metadata
4538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4539
4540This metadata sets the target width of the vectorizer. The first
4541operand is the string ``llvm.loop.vectorize.width`` and the second
4542operand is an integer specifying the width. For example:
4543
4544.. code-block:: llvm
4545
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004546 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004547
4548Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004549vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000045500 or if the loop does not have this metadata the width will be
4551determined automatically.
4552
4553'``llvm.loop.unroll``'
4554^^^^^^^^^^^^^^^^^^^^^^
4555
4556Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4557optimization hints such as the unroll factor. ``llvm.loop.unroll``
4558metadata should be used in conjunction with ``llvm.loop`` loop
4559identification metadata. The ``llvm.loop.unroll`` metadata are only
4560optimization hints and the unrolling will only be performed if the
4561optimizer believes it is safe to do so.
4562
Mark Heffernan893752a2014-07-18 19:24:51 +00004563'``llvm.loop.unroll.count``' Metadata
4564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4565
4566This metadata suggests an unroll factor to the loop unroller. The
4567first operand is the string ``llvm.loop.unroll.count`` and the second
4568operand is a positive integer specifying the unroll factor. For
4569example:
4570
4571.. code-block:: llvm
4572
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004573 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004574
4575If the trip count of the loop is less than the unroll count the loop
4576will be partially unrolled.
4577
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004578'``llvm.loop.unroll.disable``' Metadata
4579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4580
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004581This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004582which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004583
4584.. code-block:: llvm
4585
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004586 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004587
Kevin Qin715b01e2015-03-09 06:14:18 +00004588'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004589^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004590
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004591This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004592operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004593
4594.. code-block:: llvm
4595
4596 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4597
Mark Heffernan89391542015-08-10 17:28:08 +00004598'``llvm.loop.unroll.enable``' Metadata
4599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4600
4601This metadata suggests that the loop should be fully unrolled if the trip count
4602is known at compile time and partially unrolled if the trip count is not known
4603at compile time. The metadata has a single operand which is the string
4604``llvm.loop.unroll.enable``. For example:
4605
4606.. code-block:: llvm
4607
4608 !0 = !{!"llvm.loop.unroll.enable"}
4609
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004610'``llvm.loop.unroll.full``' Metadata
4611^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4612
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004613This metadata suggests that the loop should be unrolled fully. The
4614metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004615For example:
4616
4617.. code-block:: llvm
4618
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004619 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004620
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004621'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004622^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004623
4624This metadata indicates that the loop should not be versioned for the purpose
4625of enabling loop-invariant code motion (LICM). The metadata has a single operand
4626which is the string ``llvm.loop.licm_versioning.disable``. For example:
4627
4628.. code-block:: llvm
4629
4630 !0 = !{!"llvm.loop.licm_versioning.disable"}
4631
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004632'``llvm.mem``'
4633^^^^^^^^^^^^^^^
4634
4635Metadata types used to annotate memory accesses with information helpful
4636for optimizations are prefixed with ``llvm.mem``.
4637
4638'``llvm.mem.parallel_loop_access``' Metadata
4639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4640
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004641The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4642or metadata containing a list of loop identifiers for nested loops.
4643The metadata is attached to memory accessing instructions and denotes that
4644no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004645with the same loop identifier.
4646
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004647Precisely, given two instructions ``m1`` and ``m2`` that both have the
4648``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4649set of loops associated with that metadata, respectively, then there is no loop
4650carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004651``L2``.
4652
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004653As a special case, if all memory accessing instructions in a loop have
4654``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4655loop has no loop carried memory dependences and is considered to be a parallel
4656loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004657
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004658Note that if not all memory access instructions have such metadata referring to
4659the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004660memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004661safe mechanism, this causes loops that were originally parallel to be considered
4662sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004663insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004664
4665Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004666both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004667metadata types that refer to the same loop identifier metadata.
4668
4669.. code-block:: llvm
4670
4671 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004672 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004673 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004674 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004675 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004676 ...
4677 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004678
4679 for.end:
4680 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004681 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004682
4683It is also possible to have nested parallel loops. In that case the
4684memory accesses refer to a list of loop identifier metadata nodes instead of
4685the loop identifier metadata node directly:
4686
4687.. code-block:: llvm
4688
4689 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004690 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004691 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004692 ...
4693 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004694
4695 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004696 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004697 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004698 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004699 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004700 ...
4701 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004702
4703 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004704 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004705 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004706 ...
4707 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004708
4709 outer.for.end: ; preds = %for.body
4710 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004711 !0 = !{!1, !2} ; a list of loop identifiers
4712 !1 = !{!1} ; an identifier for the inner loop
4713 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004714
Peter Collingbournee6909c82015-02-20 20:30:47 +00004715'``llvm.bitsets``'
4716^^^^^^^^^^^^^^^^^^
4717
4718The ``llvm.bitsets`` global metadata is used to implement
4719:doc:`bitsets <BitSets>`.
4720
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004721'``invariant.group``' Metadata
4722^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4723
4724The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4725The existence of the ``invariant.group`` metadata on the instruction tells
4726the optimizer that every ``load`` and ``store`` to the same pointer operand
4727within the same invariant group can be assumed to load or store the same
4728value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4729when two pointers are considered the same).
4730
4731Examples:
4732
4733.. code-block:: llvm
4734
4735 @unknownPtr = external global i8
4736 ...
4737 %ptr = alloca i8
4738 store i8 42, i8* %ptr, !invariant.group !0
4739 call void @foo(i8* %ptr)
4740
4741 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4742 call void @foo(i8* %ptr)
4743 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4744
4745 %newPtr = call i8* @getPointer(i8* %ptr)
4746 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4747
4748 %unknownValue = load i8, i8* @unknownPtr
4749 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4750
4751 call void @foo(i8* %ptr)
4752 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4753 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4754
4755 ...
4756 declare void @foo(i8*)
4757 declare i8* @getPointer(i8*)
4758 declare i8* @llvm.invariant.group.barrier(i8*)
4759
4760 !0 = !{!"magic ptr"}
4761 !1 = !{!"other ptr"}
4762
4763
4764
Sean Silvab084af42012-12-07 10:36:55 +00004765Module Flags Metadata
4766=====================
4767
4768Information about the module as a whole is difficult to convey to LLVM's
4769subsystems. The LLVM IR isn't sufficient to transmit this information.
4770The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004771this. These flags are in the form of key / value pairs --- much like a
4772dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004773look it up.
4774
4775The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4776Each triplet has the following form:
4777
4778- The first element is a *behavior* flag, which specifies the behavior
4779 when two (or more) modules are merged together, and it encounters two
4780 (or more) metadata with the same ID. The supported behaviors are
4781 described below.
4782- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004783 metadata. Each module may only have one flag entry for each unique ID (not
4784 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004785- The third element is the value of the flag.
4786
4787When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004788``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4789each unique metadata ID string, there will be exactly one entry in the merged
4790modules ``llvm.module.flags`` metadata table, and the value for that entry will
4791be determined by the merge behavior flag, as described below. The only exception
4792is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004793
4794The following behaviors are supported:
4795
4796.. list-table::
4797 :header-rows: 1
4798 :widths: 10 90
4799
4800 * - Value
4801 - Behavior
4802
4803 * - 1
4804 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004805 Emits an error if two values disagree, otherwise the resulting value
4806 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004807
4808 * - 2
4809 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004810 Emits a warning if two values disagree. The result value will be the
4811 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004812
4813 * - 3
4814 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004815 Adds a requirement that another module flag be present and have a
4816 specified value after linking is performed. The value must be a
4817 metadata pair, where the first element of the pair is the ID of the
4818 module flag to be restricted, and the second element of the pair is
4819 the value the module flag should be restricted to. This behavior can
4820 be used to restrict the allowable results (via triggering of an
4821 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004822
4823 * - 4
4824 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004825 Uses the specified value, regardless of the behavior or value of the
4826 other module. If both modules specify **Override**, but the values
4827 differ, an error will be emitted.
4828
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004829 * - 5
4830 - **Append**
4831 Appends the two values, which are required to be metadata nodes.
4832
4833 * - 6
4834 - **AppendUnique**
4835 Appends the two values, which are required to be metadata
4836 nodes. However, duplicate entries in the second list are dropped
4837 during the append operation.
4838
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004839It is an error for a particular unique flag ID to have multiple behaviors,
4840except in the case of **Require** (which adds restrictions on another metadata
4841value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004842
4843An example of module flags:
4844
4845.. code-block:: llvm
4846
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004847 !0 = !{ i32 1, !"foo", i32 1 }
4848 !1 = !{ i32 4, !"bar", i32 37 }
4849 !2 = !{ i32 2, !"qux", i32 42 }
4850 !3 = !{ i32 3, !"qux",
4851 !{
4852 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004853 }
4854 }
4855 !llvm.module.flags = !{ !0, !1, !2, !3 }
4856
4857- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4858 if two or more ``!"foo"`` flags are seen is to emit an error if their
4859 values are not equal.
4860
4861- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4862 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004863 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004864
4865- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4866 behavior if two or more ``!"qux"`` flags are seen is to emit a
4867 warning if their values are not equal.
4868
4869- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4870
4871 ::
4872
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004873 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004874
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004875 The behavior is to emit an error if the ``llvm.module.flags`` does not
4876 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4877 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004878
4879Objective-C Garbage Collection Module Flags Metadata
4880----------------------------------------------------
4881
4882On the Mach-O platform, Objective-C stores metadata about garbage
4883collection in a special section called "image info". The metadata
4884consists of a version number and a bitmask specifying what types of
4885garbage collection are supported (if any) by the file. If two or more
4886modules are linked together their garbage collection metadata needs to
4887be merged rather than appended together.
4888
4889The Objective-C garbage collection module flags metadata consists of the
4890following key-value pairs:
4891
4892.. list-table::
4893 :header-rows: 1
4894 :widths: 30 70
4895
4896 * - Key
4897 - Value
4898
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004899 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004900 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004901
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004902 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004903 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004904 always 0.
4905
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004906 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004907 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004908 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4909 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4910 Objective-C ABI version 2.
4911
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004912 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004913 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004914 not. Valid values are 0, for no garbage collection, and 2, for garbage
4915 collection supported.
4916
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004917 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004918 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004919 If present, its value must be 6. This flag requires that the
4920 ``Objective-C Garbage Collection`` flag have the value 2.
4921
4922Some important flag interactions:
4923
4924- If a module with ``Objective-C Garbage Collection`` set to 0 is
4925 merged with a module with ``Objective-C Garbage Collection`` set to
4926 2, then the resulting module has the
4927 ``Objective-C Garbage Collection`` flag set to 0.
4928- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4929 merged with a module with ``Objective-C GC Only`` set to 6.
4930
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004931Automatic Linker Flags Module Flags Metadata
4932--------------------------------------------
4933
4934Some targets support embedding flags to the linker inside individual object
4935files. Typically this is used in conjunction with language extensions which
4936allow source files to explicitly declare the libraries they depend on, and have
4937these automatically be transmitted to the linker via object files.
4938
4939These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004940using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004941to be ``AppendUnique``, and the value for the key is expected to be a metadata
4942node which should be a list of other metadata nodes, each of which should be a
4943list of metadata strings defining linker options.
4944
4945For example, the following metadata section specifies two separate sets of
4946linker options, presumably to link against ``libz`` and the ``Cocoa``
4947framework::
4948
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004949 !0 = !{ i32 6, !"Linker Options",
4950 !{
4951 !{ !"-lz" },
4952 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004953 !llvm.module.flags = !{ !0 }
4954
4955The metadata encoding as lists of lists of options, as opposed to a collapsed
4956list of options, is chosen so that the IR encoding can use multiple option
4957strings to specify e.g., a single library, while still having that specifier be
4958preserved as an atomic element that can be recognized by a target specific
4959assembly writer or object file emitter.
4960
4961Each individual option is required to be either a valid option for the target's
4962linker, or an option that is reserved by the target specific assembly writer or
4963object file emitter. No other aspect of these options is defined by the IR.
4964
Oliver Stannard5dc29342014-06-20 10:08:11 +00004965C type width Module Flags Metadata
4966----------------------------------
4967
4968The ARM backend emits a section into each generated object file describing the
4969options that it was compiled with (in a compiler-independent way) to prevent
4970linking incompatible objects, and to allow automatic library selection. Some
4971of these options are not visible at the IR level, namely wchar_t width and enum
4972width.
4973
4974To pass this information to the backend, these options are encoded in module
4975flags metadata, using the following key-value pairs:
4976
4977.. list-table::
4978 :header-rows: 1
4979 :widths: 30 70
4980
4981 * - Key
4982 - Value
4983
4984 * - short_wchar
4985 - * 0 --- sizeof(wchar_t) == 4
4986 * 1 --- sizeof(wchar_t) == 2
4987
4988 * - short_enum
4989 - * 0 --- Enums are at least as large as an ``int``.
4990 * 1 --- Enums are stored in the smallest integer type which can
4991 represent all of its values.
4992
4993For example, the following metadata section specifies that the module was
4994compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4995enum is the smallest type which can represent all of its values::
4996
4997 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004998 !0 = !{i32 1, !"short_wchar", i32 1}
4999 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005000
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005001.. _intrinsicglobalvariables:
5002
Sean Silvab084af42012-12-07 10:36:55 +00005003Intrinsic Global Variables
5004==========================
5005
5006LLVM has a number of "magic" global variables that contain data that
5007affect code generation or other IR semantics. These are documented here.
5008All globals of this sort should have a section specified as
5009"``llvm.metadata``". This section and all globals that start with
5010"``llvm.``" are reserved for use by LLVM.
5011
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005012.. _gv_llvmused:
5013
Sean Silvab084af42012-12-07 10:36:55 +00005014The '``llvm.used``' Global Variable
5015-----------------------------------
5016
Rafael Espindola74f2e462013-04-22 14:58:02 +00005017The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005018:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005019pointers to named global variables, functions and aliases which may optionally
5020have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005021use of it is:
5022
5023.. code-block:: llvm
5024
5025 @X = global i8 4
5026 @Y = global i32 123
5027
5028 @llvm.used = appending global [2 x i8*] [
5029 i8* @X,
5030 i8* bitcast (i32* @Y to i8*)
5031 ], section "llvm.metadata"
5032
Rafael Espindola74f2e462013-04-22 14:58:02 +00005033If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5034and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005035symbol that it cannot see (which is why they have to be named). For example, if
5036a variable has internal linkage and no references other than that from the
5037``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5038references from inline asms and other things the compiler cannot "see", and
5039corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005040
5041On some targets, the code generator must emit a directive to the
5042assembler or object file to prevent the assembler and linker from
5043molesting the symbol.
5044
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005045.. _gv_llvmcompilerused:
5046
Sean Silvab084af42012-12-07 10:36:55 +00005047The '``llvm.compiler.used``' Global Variable
5048--------------------------------------------
5049
5050The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5051directive, except that it only prevents the compiler from touching the
5052symbol. On targets that support it, this allows an intelligent linker to
5053optimize references to the symbol without being impeded as it would be
5054by ``@llvm.used``.
5055
5056This is a rare construct that should only be used in rare circumstances,
5057and should not be exposed to source languages.
5058
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005059.. _gv_llvmglobalctors:
5060
Sean Silvab084af42012-12-07 10:36:55 +00005061The '``llvm.global_ctors``' Global Variable
5062-------------------------------------------
5063
5064.. code-block:: llvm
5065
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005066 %0 = type { i32, void ()*, i8* }
5067 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005068
5069The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005070functions, priorities, and an optional associated global or function.
5071The functions referenced by this array will be called in ascending order
5072of priority (i.e. lowest first) when the module is loaded. The order of
5073functions with the same priority is not defined.
5074
5075If the third field is present, non-null, and points to a global variable
5076or function, the initializer function will only run if the associated
5077data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005078
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005079.. _llvmglobaldtors:
5080
Sean Silvab084af42012-12-07 10:36:55 +00005081The '``llvm.global_dtors``' Global Variable
5082-------------------------------------------
5083
5084.. code-block:: llvm
5085
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005086 %0 = type { i32, void ()*, i8* }
5087 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005088
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005089The ``@llvm.global_dtors`` array contains a list of destructor
5090functions, priorities, and an optional associated global or function.
5091The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005092order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005093order of functions with the same priority is not defined.
5094
5095If the third field is present, non-null, and points to a global variable
5096or function, the destructor function will only run if the associated
5097data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005098
5099Instruction Reference
5100=====================
5101
5102The LLVM instruction set consists of several different classifications
5103of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5104instructions <binaryops>`, :ref:`bitwise binary
5105instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5106:ref:`other instructions <otherops>`.
5107
5108.. _terminators:
5109
5110Terminator Instructions
5111-----------------------
5112
5113As mentioned :ref:`previously <functionstructure>`, every basic block in a
5114program ends with a "Terminator" instruction, which indicates which
5115block should be executed after the current block is finished. These
5116terminator instructions typically yield a '``void``' value: they produce
5117control flow, not values (the one exception being the
5118':ref:`invoke <i_invoke>`' instruction).
5119
5120The terminator instructions are: ':ref:`ret <i_ret>`',
5121':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5122':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005123':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005124':ref:`catchret <i_catchret>`',
5125':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005126and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005127
5128.. _i_ret:
5129
5130'``ret``' Instruction
5131^^^^^^^^^^^^^^^^^^^^^
5132
5133Syntax:
5134"""""""
5135
5136::
5137
5138 ret <type> <value> ; Return a value from a non-void function
5139 ret void ; Return from void function
5140
5141Overview:
5142"""""""""
5143
5144The '``ret``' instruction is used to return control flow (and optionally
5145a value) from a function back to the caller.
5146
5147There are two forms of the '``ret``' instruction: one that returns a
5148value and then causes control flow, and one that just causes control
5149flow to occur.
5150
5151Arguments:
5152""""""""""
5153
5154The '``ret``' instruction optionally accepts a single argument, the
5155return value. The type of the return value must be a ':ref:`first
5156class <t_firstclass>`' type.
5157
5158A function is not :ref:`well formed <wellformed>` if it it has a non-void
5159return type and contains a '``ret``' instruction with no return value or
5160a return value with a type that does not match its type, or if it has a
5161void return type and contains a '``ret``' instruction with a return
5162value.
5163
5164Semantics:
5165""""""""""
5166
5167When the '``ret``' instruction is executed, control flow returns back to
5168the calling function's context. If the caller is a
5169":ref:`call <i_call>`" instruction, execution continues at the
5170instruction after the call. If the caller was an
5171":ref:`invoke <i_invoke>`" instruction, execution continues at the
5172beginning of the "normal" destination block. If the instruction returns
5173a value, that value shall set the call or invoke instruction's return
5174value.
5175
5176Example:
5177""""""""
5178
5179.. code-block:: llvm
5180
5181 ret i32 5 ; Return an integer value of 5
5182 ret void ; Return from a void function
5183 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5184
5185.. _i_br:
5186
5187'``br``' Instruction
5188^^^^^^^^^^^^^^^^^^^^
5189
5190Syntax:
5191"""""""
5192
5193::
5194
5195 br i1 <cond>, label <iftrue>, label <iffalse>
5196 br label <dest> ; Unconditional branch
5197
5198Overview:
5199"""""""""
5200
5201The '``br``' instruction is used to cause control flow to transfer to a
5202different basic block in the current function. There are two forms of
5203this instruction, corresponding to a conditional branch and an
5204unconditional branch.
5205
5206Arguments:
5207""""""""""
5208
5209The conditional branch form of the '``br``' instruction takes a single
5210'``i1``' value and two '``label``' values. The unconditional form of the
5211'``br``' instruction takes a single '``label``' value as a target.
5212
5213Semantics:
5214""""""""""
5215
5216Upon execution of a conditional '``br``' instruction, the '``i1``'
5217argument is evaluated. If the value is ``true``, control flows to the
5218'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5219to the '``iffalse``' ``label`` argument.
5220
5221Example:
5222""""""""
5223
5224.. code-block:: llvm
5225
5226 Test:
5227 %cond = icmp eq i32 %a, %b
5228 br i1 %cond, label %IfEqual, label %IfUnequal
5229 IfEqual:
5230 ret i32 1
5231 IfUnequal:
5232 ret i32 0
5233
5234.. _i_switch:
5235
5236'``switch``' Instruction
5237^^^^^^^^^^^^^^^^^^^^^^^^
5238
5239Syntax:
5240"""""""
5241
5242::
5243
5244 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5245
5246Overview:
5247"""""""""
5248
5249The '``switch``' instruction is used to transfer control flow to one of
5250several different places. It is a generalization of the '``br``'
5251instruction, allowing a branch to occur to one of many possible
5252destinations.
5253
5254Arguments:
5255""""""""""
5256
5257The '``switch``' instruction uses three parameters: an integer
5258comparison value '``value``', a default '``label``' destination, and an
5259array of pairs of comparison value constants and '``label``'s. The table
5260is not allowed to contain duplicate constant entries.
5261
5262Semantics:
5263""""""""""
5264
5265The ``switch`` instruction specifies a table of values and destinations.
5266When the '``switch``' instruction is executed, this table is searched
5267for the given value. If the value is found, control flow is transferred
5268to the corresponding destination; otherwise, control flow is transferred
5269to the default destination.
5270
5271Implementation:
5272"""""""""""""""
5273
5274Depending on properties of the target machine and the particular
5275``switch`` instruction, this instruction may be code generated in
5276different ways. For example, it could be generated as a series of
5277chained conditional branches or with a lookup table.
5278
5279Example:
5280""""""""
5281
5282.. code-block:: llvm
5283
5284 ; Emulate a conditional br instruction
5285 %Val = zext i1 %value to i32
5286 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5287
5288 ; Emulate an unconditional br instruction
5289 switch i32 0, label %dest [ ]
5290
5291 ; Implement a jump table:
5292 switch i32 %val, label %otherwise [ i32 0, label %onzero
5293 i32 1, label %onone
5294 i32 2, label %ontwo ]
5295
5296.. _i_indirectbr:
5297
5298'``indirectbr``' Instruction
5299^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5300
5301Syntax:
5302"""""""
5303
5304::
5305
5306 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5307
5308Overview:
5309"""""""""
5310
5311The '``indirectbr``' instruction implements an indirect branch to a
5312label within the current function, whose address is specified by
5313"``address``". Address must be derived from a
5314:ref:`blockaddress <blockaddress>` constant.
5315
5316Arguments:
5317""""""""""
5318
5319The '``address``' argument is the address of the label to jump to. The
5320rest of the arguments indicate the full set of possible destinations
5321that the address may point to. Blocks are allowed to occur multiple
5322times in the destination list, though this isn't particularly useful.
5323
5324This destination list is required so that dataflow analysis has an
5325accurate understanding of the CFG.
5326
5327Semantics:
5328""""""""""
5329
5330Control transfers to the block specified in the address argument. All
5331possible destination blocks must be listed in the label list, otherwise
5332this instruction has undefined behavior. This implies that jumps to
5333labels defined in other functions have undefined behavior as well.
5334
5335Implementation:
5336"""""""""""""""
5337
5338This is typically implemented with a jump through a register.
5339
5340Example:
5341""""""""
5342
5343.. code-block:: llvm
5344
5345 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5346
5347.. _i_invoke:
5348
5349'``invoke``' Instruction
5350^^^^^^^^^^^^^^^^^^^^^^^^
5351
5352Syntax:
5353"""""""
5354
5355::
5356
5357 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005358 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005359
5360Overview:
5361"""""""""
5362
5363The '``invoke``' instruction causes control to transfer to a specified
5364function, with the possibility of control flow transfer to either the
5365'``normal``' label or the '``exception``' label. If the callee function
5366returns with the "``ret``" instruction, control flow will return to the
5367"normal" label. If the callee (or any indirect callees) returns via the
5368":ref:`resume <i_resume>`" instruction or other exception handling
5369mechanism, control is interrupted and continued at the dynamically
5370nearest "exception" label.
5371
5372The '``exception``' label is a `landing
5373pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5374'``exception``' label is required to have the
5375":ref:`landingpad <i_landingpad>`" instruction, which contains the
5376information about the behavior of the program after unwinding happens,
5377as its first non-PHI instruction. The restrictions on the
5378"``landingpad``" instruction's tightly couples it to the "``invoke``"
5379instruction, so that the important information contained within the
5380"``landingpad``" instruction can't be lost through normal code motion.
5381
5382Arguments:
5383""""""""""
5384
5385This instruction requires several arguments:
5386
5387#. The optional "cconv" marker indicates which :ref:`calling
5388 convention <callingconv>` the call should use. If none is
5389 specified, the call defaults to using C calling conventions.
5390#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5391 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5392 are valid here.
5393#. '``ptr to function ty``': shall be the signature of the pointer to
5394 function value being invoked. In most cases, this is a direct
5395 function invocation, but indirect ``invoke``'s are just as possible,
5396 branching off an arbitrary pointer to function value.
5397#. '``function ptr val``': An LLVM value containing a pointer to a
5398 function to be invoked.
5399#. '``function args``': argument list whose types match the function
5400 signature argument types and parameter attributes. All arguments must
5401 be of :ref:`first class <t_firstclass>` type. If the function signature
5402 indicates the function accepts a variable number of arguments, the
5403 extra arguments can be specified.
5404#. '``normal label``': the label reached when the called function
5405 executes a '``ret``' instruction.
5406#. '``exception label``': the label reached when a callee returns via
5407 the :ref:`resume <i_resume>` instruction or other exception handling
5408 mechanism.
5409#. The optional :ref:`function attributes <fnattrs>` list. Only
5410 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5411 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005412#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005413
5414Semantics:
5415""""""""""
5416
5417This instruction is designed to operate as a standard '``call``'
5418instruction in most regards. The primary difference is that it
5419establishes an association with a label, which is used by the runtime
5420library to unwind the stack.
5421
5422This instruction is used in languages with destructors to ensure that
5423proper cleanup is performed in the case of either a ``longjmp`` or a
5424thrown exception. Additionally, this is important for implementation of
5425'``catch``' clauses in high-level languages that support them.
5426
5427For the purposes of the SSA form, the definition of the value returned
5428by the '``invoke``' instruction is deemed to occur on the edge from the
5429current block to the "normal" label. If the callee unwinds then no
5430return value is available.
5431
5432Example:
5433""""""""
5434
5435.. code-block:: llvm
5436
5437 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005438 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005439 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005440 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005441
5442.. _i_resume:
5443
5444'``resume``' Instruction
5445^^^^^^^^^^^^^^^^^^^^^^^^
5446
5447Syntax:
5448"""""""
5449
5450::
5451
5452 resume <type> <value>
5453
5454Overview:
5455"""""""""
5456
5457The '``resume``' instruction is a terminator instruction that has no
5458successors.
5459
5460Arguments:
5461""""""""""
5462
5463The '``resume``' instruction requires one argument, which must have the
5464same type as the result of any '``landingpad``' instruction in the same
5465function.
5466
5467Semantics:
5468""""""""""
5469
5470The '``resume``' instruction resumes propagation of an existing
5471(in-flight) exception whose unwinding was interrupted with a
5472:ref:`landingpad <i_landingpad>` instruction.
5473
5474Example:
5475""""""""
5476
5477.. code-block:: llvm
5478
5479 resume { i8*, i32 } %exn
5480
David Majnemer8a1c45d2015-12-12 05:38:55 +00005481.. _i_catchswitch:
5482
5483'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005485
5486Syntax:
5487"""""""
5488
5489::
5490
5491 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5492 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5493
5494Overview:
5495"""""""""
5496
5497The '``catchswitch``' instruction is used by `LLVM's exception handling system
5498<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5499that may be executed by the :ref:`EH personality routine <personalityfn>`.
5500
5501Arguments:
5502""""""""""
5503
5504The ``parent`` argument is the token of the funclet that contains the
5505``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5506this operand may be the token ``none``.
5507
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005508The ``default`` argument is the label of another basic block beginning with
5509either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5510must be a legal target with respect to the ``parent`` links, as described in
5511the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005512
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005513The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005514:ref:`catchpad <i_catchpad>` instruction.
5515
5516Semantics:
5517""""""""""
5518
5519Executing this instruction transfers control to one of the successors in
5520``handlers``, if appropriate, or continues to unwind via the unwind label if
5521present.
5522
5523The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5524it must be both the first non-phi instruction and last instruction in the basic
5525block. Therefore, it must be the only non-phi instruction in the block.
5526
5527Example:
5528""""""""
5529
5530.. code-block:: llvm
5531
5532 dispatch1:
5533 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5534 dispatch2:
5535 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5536
David Majnemer654e1302015-07-31 17:58:14 +00005537.. _i_catchret:
5538
5539'``catchret``' Instruction
5540^^^^^^^^^^^^^^^^^^^^^^^^^^
5541
5542Syntax:
5543"""""""
5544
5545::
5546
David Majnemer8a1c45d2015-12-12 05:38:55 +00005547 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005548
5549Overview:
5550"""""""""
5551
5552The '``catchret``' instruction is a terminator instruction that has a
5553single successor.
5554
5555
5556Arguments:
5557""""""""""
5558
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005559The first argument to a '``catchret``' indicates which ``catchpad`` it
5560exits. It must be a :ref:`catchpad <i_catchpad>`.
5561The second argument to a '``catchret``' specifies where control will
5562transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005563
5564Semantics:
5565""""""""""
5566
David Majnemer8a1c45d2015-12-12 05:38:55 +00005567The '``catchret``' instruction ends an existing (in-flight) exception whose
5568unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5569:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5570code to, for example, destroy the active exception. Control then transfers to
5571``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005572
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005573The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5574If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5575funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5576the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005577
5578Example:
5579""""""""
5580
5581.. code-block:: llvm
5582
David Majnemer8a1c45d2015-12-12 05:38:55 +00005583 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005584
David Majnemer654e1302015-07-31 17:58:14 +00005585.. _i_cleanupret:
5586
5587'``cleanupret``' Instruction
5588^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5589
5590Syntax:
5591"""""""
5592
5593::
5594
David Majnemer8a1c45d2015-12-12 05:38:55 +00005595 cleanupret from <value> unwind label <continue>
5596 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005597
5598Overview:
5599"""""""""
5600
5601The '``cleanupret``' instruction is a terminator instruction that has
5602an optional successor.
5603
5604
5605Arguments:
5606""""""""""
5607
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005608The '``cleanupret``' instruction requires one argument, which indicates
5609which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005610If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5611funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5612the ``cleanupret``'s behavior is undefined.
5613
5614The '``cleanupret``' instruction also has an optional successor, ``continue``,
5615which must be the label of another basic block beginning with either a
5616``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5617be a legal target with respect to the ``parent`` links, as described in the
5618`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005619
5620Semantics:
5621""""""""""
5622
5623The '``cleanupret``' instruction indicates to the
5624:ref:`personality function <personalityfn>` that one
5625:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5626It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005627
David Majnemer654e1302015-07-31 17:58:14 +00005628Example:
5629""""""""
5630
5631.. code-block:: llvm
5632
David Majnemer8a1c45d2015-12-12 05:38:55 +00005633 cleanupret from %cleanup unwind to caller
5634 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005635
Sean Silvab084af42012-12-07 10:36:55 +00005636.. _i_unreachable:
5637
5638'``unreachable``' Instruction
5639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5640
5641Syntax:
5642"""""""
5643
5644::
5645
5646 unreachable
5647
5648Overview:
5649"""""""""
5650
5651The '``unreachable``' instruction has no defined semantics. This
5652instruction is used to inform the optimizer that a particular portion of
5653the code is not reachable. This can be used to indicate that the code
5654after a no-return function cannot be reached, and other facts.
5655
5656Semantics:
5657""""""""""
5658
5659The '``unreachable``' instruction has no defined semantics.
5660
5661.. _binaryops:
5662
5663Binary Operations
5664-----------------
5665
5666Binary operators are used to do most of the computation in a program.
5667They require two operands of the same type, execute an operation on
5668them, and produce a single value. The operands might represent multiple
5669data, as is the case with the :ref:`vector <t_vector>` data type. The
5670result value has the same type as its operands.
5671
5672There are several different binary operators:
5673
5674.. _i_add:
5675
5676'``add``' Instruction
5677^^^^^^^^^^^^^^^^^^^^^
5678
5679Syntax:
5680"""""""
5681
5682::
5683
Tim Northover675a0962014-06-13 14:24:23 +00005684 <result> = add <ty> <op1>, <op2> ; yields ty:result
5685 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5686 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5687 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005688
5689Overview:
5690"""""""""
5691
5692The '``add``' instruction returns the sum of its two operands.
5693
5694Arguments:
5695""""""""""
5696
5697The two arguments to the '``add``' instruction must be
5698:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5699arguments must have identical types.
5700
5701Semantics:
5702""""""""""
5703
5704The value produced is the integer sum of the two operands.
5705
5706If the sum has unsigned overflow, the result returned is the
5707mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5708the result.
5709
5710Because LLVM integers use a two's complement representation, this
5711instruction is appropriate for both signed and unsigned integers.
5712
5713``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5714respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5715result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5716unsigned and/or signed overflow, respectively, occurs.
5717
5718Example:
5719""""""""
5720
5721.. code-block:: llvm
5722
Tim Northover675a0962014-06-13 14:24:23 +00005723 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005724
5725.. _i_fadd:
5726
5727'``fadd``' Instruction
5728^^^^^^^^^^^^^^^^^^^^^^
5729
5730Syntax:
5731"""""""
5732
5733::
5734
Tim Northover675a0962014-06-13 14:24:23 +00005735 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005736
5737Overview:
5738"""""""""
5739
5740The '``fadd``' instruction returns the sum of its two operands.
5741
5742Arguments:
5743""""""""""
5744
5745The two arguments to the '``fadd``' instruction must be :ref:`floating
5746point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5747Both arguments must have identical types.
5748
5749Semantics:
5750""""""""""
5751
5752The value produced is the floating point sum of the two operands. This
5753instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5754which are optimization hints to enable otherwise unsafe floating point
5755optimizations:
5756
5757Example:
5758""""""""
5759
5760.. code-block:: llvm
5761
Tim Northover675a0962014-06-13 14:24:23 +00005762 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005763
5764'``sub``' Instruction
5765^^^^^^^^^^^^^^^^^^^^^
5766
5767Syntax:
5768"""""""
5769
5770::
5771
Tim Northover675a0962014-06-13 14:24:23 +00005772 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5773 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5774 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5775 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005776
5777Overview:
5778"""""""""
5779
5780The '``sub``' instruction returns the difference of its two operands.
5781
5782Note that the '``sub``' instruction is used to represent the '``neg``'
5783instruction present in most other intermediate representations.
5784
5785Arguments:
5786""""""""""
5787
5788The two arguments to the '``sub``' instruction must be
5789:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5790arguments must have identical types.
5791
5792Semantics:
5793""""""""""
5794
5795The value produced is the integer difference of the two operands.
5796
5797If the difference has unsigned overflow, the result returned is the
5798mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5799the result.
5800
5801Because LLVM integers use a two's complement representation, this
5802instruction is appropriate for both signed and unsigned integers.
5803
5804``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5805respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5806result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5807unsigned and/or signed overflow, respectively, occurs.
5808
5809Example:
5810""""""""
5811
5812.. code-block:: llvm
5813
Tim Northover675a0962014-06-13 14:24:23 +00005814 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5815 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005816
5817.. _i_fsub:
5818
5819'``fsub``' Instruction
5820^^^^^^^^^^^^^^^^^^^^^^
5821
5822Syntax:
5823"""""""
5824
5825::
5826
Tim Northover675a0962014-06-13 14:24:23 +00005827 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005828
5829Overview:
5830"""""""""
5831
5832The '``fsub``' instruction returns the difference of its two operands.
5833
5834Note that the '``fsub``' instruction is used to represent the '``fneg``'
5835instruction present in most other intermediate representations.
5836
5837Arguments:
5838""""""""""
5839
5840The two arguments to the '``fsub``' instruction must be :ref:`floating
5841point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5842Both arguments must have identical types.
5843
5844Semantics:
5845""""""""""
5846
5847The value produced is the floating point difference of the two operands.
5848This instruction can also take any number of :ref:`fast-math
5849flags <fastmath>`, which are optimization hints to enable otherwise
5850unsafe floating point optimizations:
5851
5852Example:
5853""""""""
5854
5855.. code-block:: llvm
5856
Tim Northover675a0962014-06-13 14:24:23 +00005857 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5858 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005859
5860'``mul``' Instruction
5861^^^^^^^^^^^^^^^^^^^^^
5862
5863Syntax:
5864"""""""
5865
5866::
5867
Tim Northover675a0962014-06-13 14:24:23 +00005868 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5869 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5870 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5871 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005872
5873Overview:
5874"""""""""
5875
5876The '``mul``' instruction returns the product of its two operands.
5877
5878Arguments:
5879""""""""""
5880
5881The two arguments to the '``mul``' instruction must be
5882:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5883arguments must have identical types.
5884
5885Semantics:
5886""""""""""
5887
5888The value produced is the integer product of the two operands.
5889
5890If the result of the multiplication has unsigned overflow, the result
5891returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5892bit width of the result.
5893
5894Because LLVM integers use a two's complement representation, and the
5895result is the same width as the operands, this instruction returns the
5896correct result for both signed and unsigned integers. If a full product
5897(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5898sign-extended or zero-extended as appropriate to the width of the full
5899product.
5900
5901``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5902respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5903result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5904unsigned and/or signed overflow, respectively, occurs.
5905
5906Example:
5907""""""""
5908
5909.. code-block:: llvm
5910
Tim Northover675a0962014-06-13 14:24:23 +00005911 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005912
5913.. _i_fmul:
5914
5915'``fmul``' Instruction
5916^^^^^^^^^^^^^^^^^^^^^^
5917
5918Syntax:
5919"""""""
5920
5921::
5922
Tim Northover675a0962014-06-13 14:24:23 +00005923 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005924
5925Overview:
5926"""""""""
5927
5928The '``fmul``' instruction returns the product of its two operands.
5929
5930Arguments:
5931""""""""""
5932
5933The two arguments to the '``fmul``' instruction must be :ref:`floating
5934point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5935Both arguments must have identical types.
5936
5937Semantics:
5938""""""""""
5939
5940The value produced is the floating point product of the two operands.
5941This instruction can also take any number of :ref:`fast-math
5942flags <fastmath>`, which are optimization hints to enable otherwise
5943unsafe floating point optimizations:
5944
5945Example:
5946""""""""
5947
5948.. code-block:: llvm
5949
Tim Northover675a0962014-06-13 14:24:23 +00005950 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005951
5952'``udiv``' Instruction
5953^^^^^^^^^^^^^^^^^^^^^^
5954
5955Syntax:
5956"""""""
5957
5958::
5959
Tim Northover675a0962014-06-13 14:24:23 +00005960 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5961 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005962
5963Overview:
5964"""""""""
5965
5966The '``udiv``' instruction returns the quotient of its two operands.
5967
5968Arguments:
5969""""""""""
5970
5971The two arguments to the '``udiv``' instruction must be
5972:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5973arguments must have identical types.
5974
5975Semantics:
5976""""""""""
5977
5978The value produced is the unsigned integer quotient of the two operands.
5979
5980Note that unsigned integer division and signed integer division are
5981distinct operations; for signed integer division, use '``sdiv``'.
5982
5983Division by zero leads to undefined behavior.
5984
5985If the ``exact`` keyword is present, the result value of the ``udiv`` is
5986a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5987such, "((a udiv exact b) mul b) == a").
5988
5989Example:
5990""""""""
5991
5992.. code-block:: llvm
5993
Tim Northover675a0962014-06-13 14:24:23 +00005994 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005995
5996'``sdiv``' Instruction
5997^^^^^^^^^^^^^^^^^^^^^^
5998
5999Syntax:
6000"""""""
6001
6002::
6003
Tim Northover675a0962014-06-13 14:24:23 +00006004 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6005 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006006
6007Overview:
6008"""""""""
6009
6010The '``sdiv``' instruction returns the quotient of its two operands.
6011
6012Arguments:
6013""""""""""
6014
6015The two arguments to the '``sdiv``' instruction must be
6016:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6017arguments must have identical types.
6018
6019Semantics:
6020""""""""""
6021
6022The value produced is the signed integer quotient of the two operands
6023rounded towards zero.
6024
6025Note that signed integer division and unsigned integer division are
6026distinct operations; for unsigned integer division, use '``udiv``'.
6027
6028Division by zero leads to undefined behavior. Overflow also leads to
6029undefined behavior; this is a rare case, but can occur, for example, by
6030doing a 32-bit division of -2147483648 by -1.
6031
6032If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6033a :ref:`poison value <poisonvalues>` if the result would be rounded.
6034
6035Example:
6036""""""""
6037
6038.. code-block:: llvm
6039
Tim Northover675a0962014-06-13 14:24:23 +00006040 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006041
6042.. _i_fdiv:
6043
6044'``fdiv``' Instruction
6045^^^^^^^^^^^^^^^^^^^^^^
6046
6047Syntax:
6048"""""""
6049
6050::
6051
Tim Northover675a0962014-06-13 14:24:23 +00006052 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006053
6054Overview:
6055"""""""""
6056
6057The '``fdiv``' instruction returns the quotient of its two operands.
6058
6059Arguments:
6060""""""""""
6061
6062The two arguments to the '``fdiv``' instruction must be :ref:`floating
6063point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6064Both arguments must have identical types.
6065
6066Semantics:
6067""""""""""
6068
6069The value produced is the floating point quotient of the two operands.
6070This instruction can also take any number of :ref:`fast-math
6071flags <fastmath>`, which are optimization hints to enable otherwise
6072unsafe floating point optimizations:
6073
6074Example:
6075""""""""
6076
6077.. code-block:: llvm
6078
Tim Northover675a0962014-06-13 14:24:23 +00006079 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006080
6081'``urem``' Instruction
6082^^^^^^^^^^^^^^^^^^^^^^
6083
6084Syntax:
6085"""""""
6086
6087::
6088
Tim Northover675a0962014-06-13 14:24:23 +00006089 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006090
6091Overview:
6092"""""""""
6093
6094The '``urem``' instruction returns the remainder from the unsigned
6095division of its two arguments.
6096
6097Arguments:
6098""""""""""
6099
6100The two arguments to the '``urem``' instruction must be
6101:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6102arguments must have identical types.
6103
6104Semantics:
6105""""""""""
6106
6107This instruction returns the unsigned integer *remainder* of a division.
6108This instruction always performs an unsigned division to get the
6109remainder.
6110
6111Note that unsigned integer remainder and signed integer remainder are
6112distinct operations; for signed integer remainder, use '``srem``'.
6113
6114Taking the remainder of a division by zero leads to undefined behavior.
6115
6116Example:
6117""""""""
6118
6119.. code-block:: llvm
6120
Tim Northover675a0962014-06-13 14:24:23 +00006121 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006122
6123'``srem``' Instruction
6124^^^^^^^^^^^^^^^^^^^^^^
6125
6126Syntax:
6127"""""""
6128
6129::
6130
Tim Northover675a0962014-06-13 14:24:23 +00006131 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006132
6133Overview:
6134"""""""""
6135
6136The '``srem``' instruction returns the remainder from the signed
6137division of its two operands. This instruction can also take
6138:ref:`vector <t_vector>` versions of the values in which case the elements
6139must be integers.
6140
6141Arguments:
6142""""""""""
6143
6144The two arguments to the '``srem``' instruction must be
6145:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6146arguments must have identical types.
6147
6148Semantics:
6149""""""""""
6150
6151This instruction returns the *remainder* of a division (where the result
6152is either zero or has the same sign as the dividend, ``op1``), not the
6153*modulo* operator (where the result is either zero or has the same sign
6154as the divisor, ``op2``) of a value. For more information about the
6155difference, see `The Math
6156Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6157table of how this is implemented in various languages, please see
6158`Wikipedia: modulo
6159operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6160
6161Note that signed integer remainder and unsigned integer remainder are
6162distinct operations; for unsigned integer remainder, use '``urem``'.
6163
6164Taking the remainder of a division by zero leads to undefined behavior.
6165Overflow also leads to undefined behavior; this is a rare case, but can
6166occur, for example, by taking the remainder of a 32-bit division of
6167-2147483648 by -1. (The remainder doesn't actually overflow, but this
6168rule lets srem be implemented using instructions that return both the
6169result of the division and the remainder.)
6170
6171Example:
6172""""""""
6173
6174.. code-block:: llvm
6175
Tim Northover675a0962014-06-13 14:24:23 +00006176 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006177
6178.. _i_frem:
6179
6180'``frem``' Instruction
6181^^^^^^^^^^^^^^^^^^^^^^
6182
6183Syntax:
6184"""""""
6185
6186::
6187
Tim Northover675a0962014-06-13 14:24:23 +00006188 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006189
6190Overview:
6191"""""""""
6192
6193The '``frem``' instruction returns the remainder from the division of
6194its two operands.
6195
6196Arguments:
6197""""""""""
6198
6199The two arguments to the '``frem``' instruction must be :ref:`floating
6200point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6201Both arguments must have identical types.
6202
6203Semantics:
6204""""""""""
6205
6206This instruction returns the *remainder* of a division. The remainder
6207has the same sign as the dividend. This instruction can also take any
6208number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6209to enable otherwise unsafe floating point optimizations:
6210
6211Example:
6212""""""""
6213
6214.. code-block:: llvm
6215
Tim Northover675a0962014-06-13 14:24:23 +00006216 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006217
6218.. _bitwiseops:
6219
6220Bitwise Binary Operations
6221-------------------------
6222
6223Bitwise binary operators are used to do various forms of bit-twiddling
6224in a program. They are generally very efficient instructions and can
6225commonly be strength reduced from other instructions. They require two
6226operands of the same type, execute an operation on them, and produce a
6227single value. The resulting value is the same type as its operands.
6228
6229'``shl``' Instruction
6230^^^^^^^^^^^^^^^^^^^^^
6231
6232Syntax:
6233"""""""
6234
6235::
6236
Tim Northover675a0962014-06-13 14:24:23 +00006237 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6238 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6239 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6240 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006241
6242Overview:
6243"""""""""
6244
6245The '``shl``' instruction returns the first operand shifted to the left
6246a specified number of bits.
6247
6248Arguments:
6249""""""""""
6250
6251Both arguments to the '``shl``' instruction must be the same
6252:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6253'``op2``' is treated as an unsigned value.
6254
6255Semantics:
6256""""""""""
6257
6258The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6259where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006260dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006261``op1``, the result is undefined. If the arguments are vectors, each
6262vector element of ``op1`` is shifted by the corresponding shift amount
6263in ``op2``.
6264
6265If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6266value <poisonvalues>` if it shifts out any non-zero bits. If the
6267``nsw`` keyword is present, then the shift produces a :ref:`poison
6268value <poisonvalues>` if it shifts out any bits that disagree with the
6269resultant sign bit. As such, NUW/NSW have the same semantics as they
6270would if the shift were expressed as a mul instruction with the same
6271nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6272
6273Example:
6274""""""""
6275
6276.. code-block:: llvm
6277
Tim Northover675a0962014-06-13 14:24:23 +00006278 <result> = shl i32 4, %var ; yields i32: 4 << %var
6279 <result> = shl i32 4, 2 ; yields i32: 16
6280 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006281 <result> = shl i32 1, 32 ; undefined
6282 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6283
6284'``lshr``' Instruction
6285^^^^^^^^^^^^^^^^^^^^^^
6286
6287Syntax:
6288"""""""
6289
6290::
6291
Tim Northover675a0962014-06-13 14:24:23 +00006292 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6293 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006294
6295Overview:
6296"""""""""
6297
6298The '``lshr``' instruction (logical shift right) returns the first
6299operand shifted to the right a specified number of bits with zero fill.
6300
6301Arguments:
6302""""""""""
6303
6304Both arguments to the '``lshr``' instruction must be the same
6305:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6306'``op2``' is treated as an unsigned value.
6307
6308Semantics:
6309""""""""""
6310
6311This instruction always performs a logical shift right operation. The
6312most significant bits of the result will be filled with zero bits after
6313the shift. If ``op2`` is (statically or dynamically) equal to or larger
6314than the number of bits in ``op1``, the result is undefined. If the
6315arguments are vectors, each vector element of ``op1`` is shifted by the
6316corresponding shift amount in ``op2``.
6317
6318If the ``exact`` keyword is present, the result value of the ``lshr`` is
6319a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6320non-zero.
6321
6322Example:
6323""""""""
6324
6325.. code-block:: llvm
6326
Tim Northover675a0962014-06-13 14:24:23 +00006327 <result> = lshr i32 4, 1 ; yields i32:result = 2
6328 <result> = lshr i32 4, 2 ; yields i32:result = 1
6329 <result> = lshr i8 4, 3 ; yields i8:result = 0
6330 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006331 <result> = lshr i32 1, 32 ; undefined
6332 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6333
6334'``ashr``' Instruction
6335^^^^^^^^^^^^^^^^^^^^^^
6336
6337Syntax:
6338"""""""
6339
6340::
6341
Tim Northover675a0962014-06-13 14:24:23 +00006342 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6343 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006344
6345Overview:
6346"""""""""
6347
6348The '``ashr``' instruction (arithmetic shift right) returns the first
6349operand shifted to the right a specified number of bits with sign
6350extension.
6351
6352Arguments:
6353""""""""""
6354
6355Both arguments to the '``ashr``' instruction must be the same
6356:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6357'``op2``' is treated as an unsigned value.
6358
6359Semantics:
6360""""""""""
6361
6362This instruction always performs an arithmetic shift right operation,
6363The most significant bits of the result will be filled with the sign bit
6364of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6365than the number of bits in ``op1``, the result is undefined. If the
6366arguments are vectors, each vector element of ``op1`` is shifted by the
6367corresponding shift amount in ``op2``.
6368
6369If the ``exact`` keyword is present, the result value of the ``ashr`` is
6370a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6371non-zero.
6372
6373Example:
6374""""""""
6375
6376.. code-block:: llvm
6377
Tim Northover675a0962014-06-13 14:24:23 +00006378 <result> = ashr i32 4, 1 ; yields i32:result = 2
6379 <result> = ashr i32 4, 2 ; yields i32:result = 1
6380 <result> = ashr i8 4, 3 ; yields i8:result = 0
6381 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006382 <result> = ashr i32 1, 32 ; undefined
6383 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6384
6385'``and``' Instruction
6386^^^^^^^^^^^^^^^^^^^^^
6387
6388Syntax:
6389"""""""
6390
6391::
6392
Tim Northover675a0962014-06-13 14:24:23 +00006393 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006394
6395Overview:
6396"""""""""
6397
6398The '``and``' instruction returns the bitwise logical and of its two
6399operands.
6400
6401Arguments:
6402""""""""""
6403
6404The two arguments to the '``and``' instruction must be
6405:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6406arguments must have identical types.
6407
6408Semantics:
6409""""""""""
6410
6411The truth table used for the '``and``' instruction is:
6412
6413+-----+-----+-----+
6414| In0 | In1 | Out |
6415+-----+-----+-----+
6416| 0 | 0 | 0 |
6417+-----+-----+-----+
6418| 0 | 1 | 0 |
6419+-----+-----+-----+
6420| 1 | 0 | 0 |
6421+-----+-----+-----+
6422| 1 | 1 | 1 |
6423+-----+-----+-----+
6424
6425Example:
6426""""""""
6427
6428.. code-block:: llvm
6429
Tim Northover675a0962014-06-13 14:24:23 +00006430 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6431 <result> = and i32 15, 40 ; yields i32:result = 8
6432 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006433
6434'``or``' Instruction
6435^^^^^^^^^^^^^^^^^^^^
6436
6437Syntax:
6438"""""""
6439
6440::
6441
Tim Northover675a0962014-06-13 14:24:23 +00006442 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006443
6444Overview:
6445"""""""""
6446
6447The '``or``' instruction returns the bitwise logical inclusive or of its
6448two operands.
6449
6450Arguments:
6451""""""""""
6452
6453The two arguments to the '``or``' instruction must be
6454:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6455arguments must have identical types.
6456
6457Semantics:
6458""""""""""
6459
6460The truth table used for the '``or``' instruction is:
6461
6462+-----+-----+-----+
6463| In0 | In1 | Out |
6464+-----+-----+-----+
6465| 0 | 0 | 0 |
6466+-----+-----+-----+
6467| 0 | 1 | 1 |
6468+-----+-----+-----+
6469| 1 | 0 | 1 |
6470+-----+-----+-----+
6471| 1 | 1 | 1 |
6472+-----+-----+-----+
6473
6474Example:
6475""""""""
6476
6477::
6478
Tim Northover675a0962014-06-13 14:24:23 +00006479 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6480 <result> = or i32 15, 40 ; yields i32:result = 47
6481 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006482
6483'``xor``' Instruction
6484^^^^^^^^^^^^^^^^^^^^^
6485
6486Syntax:
6487"""""""
6488
6489::
6490
Tim Northover675a0962014-06-13 14:24:23 +00006491 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006492
6493Overview:
6494"""""""""
6495
6496The '``xor``' instruction returns the bitwise logical exclusive or of
6497its two operands. The ``xor`` is used to implement the "one's
6498complement" operation, which is the "~" operator in C.
6499
6500Arguments:
6501""""""""""
6502
6503The two arguments to the '``xor``' instruction must be
6504:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6505arguments must have identical types.
6506
6507Semantics:
6508""""""""""
6509
6510The truth table used for the '``xor``' instruction is:
6511
6512+-----+-----+-----+
6513| In0 | In1 | Out |
6514+-----+-----+-----+
6515| 0 | 0 | 0 |
6516+-----+-----+-----+
6517| 0 | 1 | 1 |
6518+-----+-----+-----+
6519| 1 | 0 | 1 |
6520+-----+-----+-----+
6521| 1 | 1 | 0 |
6522+-----+-----+-----+
6523
6524Example:
6525""""""""
6526
6527.. code-block:: llvm
6528
Tim Northover675a0962014-06-13 14:24:23 +00006529 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6530 <result> = xor i32 15, 40 ; yields i32:result = 39
6531 <result> = xor i32 4, 8 ; yields i32:result = 12
6532 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006533
6534Vector Operations
6535-----------------
6536
6537LLVM supports several instructions to represent vector operations in a
6538target-independent manner. These instructions cover the element-access
6539and vector-specific operations needed to process vectors effectively.
6540While LLVM does directly support these vector operations, many
6541sophisticated algorithms will want to use target-specific intrinsics to
6542take full advantage of a specific target.
6543
6544.. _i_extractelement:
6545
6546'``extractelement``' Instruction
6547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6548
6549Syntax:
6550"""""""
6551
6552::
6553
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006554 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006555
6556Overview:
6557"""""""""
6558
6559The '``extractelement``' instruction extracts a single scalar element
6560from a vector at a specified index.
6561
6562Arguments:
6563""""""""""
6564
6565The first operand of an '``extractelement``' instruction is a value of
6566:ref:`vector <t_vector>` type. The second operand is an index indicating
6567the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006568variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006569
6570Semantics:
6571""""""""""
6572
6573The result is a scalar of the same type as the element type of ``val``.
6574Its value is the value at position ``idx`` of ``val``. If ``idx``
6575exceeds the length of ``val``, the results are undefined.
6576
6577Example:
6578""""""""
6579
6580.. code-block:: llvm
6581
6582 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6583
6584.. _i_insertelement:
6585
6586'``insertelement``' Instruction
6587^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6588
6589Syntax:
6590"""""""
6591
6592::
6593
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006594 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006595
6596Overview:
6597"""""""""
6598
6599The '``insertelement``' instruction inserts a scalar element into a
6600vector at a specified index.
6601
6602Arguments:
6603""""""""""
6604
6605The first operand of an '``insertelement``' instruction is a value of
6606:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6607type must equal the element type of the first operand. The third operand
6608is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006609index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006610
6611Semantics:
6612""""""""""
6613
6614The result is a vector of the same type as ``val``. Its element values
6615are those of ``val`` except at position ``idx``, where it gets the value
6616``elt``. If ``idx`` exceeds the length of ``val``, the results are
6617undefined.
6618
6619Example:
6620""""""""
6621
6622.. code-block:: llvm
6623
6624 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6625
6626.. _i_shufflevector:
6627
6628'``shufflevector``' Instruction
6629^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6630
6631Syntax:
6632"""""""
6633
6634::
6635
6636 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6637
6638Overview:
6639"""""""""
6640
6641The '``shufflevector``' instruction constructs a permutation of elements
6642from two input vectors, returning a vector with the same element type as
6643the input and length that is the same as the shuffle mask.
6644
6645Arguments:
6646""""""""""
6647
6648The first two operands of a '``shufflevector``' instruction are vectors
6649with the same type. The third argument is a shuffle mask whose element
6650type is always 'i32'. The result of the instruction is a vector whose
6651length is the same as the shuffle mask and whose element type is the
6652same as the element type of the first two operands.
6653
6654The shuffle mask operand is required to be a constant vector with either
6655constant integer or undef values.
6656
6657Semantics:
6658""""""""""
6659
6660The elements of the two input vectors are numbered from left to right
6661across both of the vectors. The shuffle mask operand specifies, for each
6662element of the result vector, which element of the two input vectors the
6663result element gets. The element selector may be undef (meaning "don't
6664care") and the second operand may be undef if performing a shuffle from
6665only one vector.
6666
6667Example:
6668""""""""
6669
6670.. code-block:: llvm
6671
6672 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6673 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6674 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6675 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6676 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6677 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6678 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6679 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6680
6681Aggregate Operations
6682--------------------
6683
6684LLVM supports several instructions for working with
6685:ref:`aggregate <t_aggregate>` values.
6686
6687.. _i_extractvalue:
6688
6689'``extractvalue``' Instruction
6690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6691
6692Syntax:
6693"""""""
6694
6695::
6696
6697 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6698
6699Overview:
6700"""""""""
6701
6702The '``extractvalue``' instruction extracts the value of a member field
6703from an :ref:`aggregate <t_aggregate>` value.
6704
6705Arguments:
6706""""""""""
6707
6708The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006709:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006710constant indices to specify which value to extract in a similar manner
6711as indices in a '``getelementptr``' instruction.
6712
6713The major differences to ``getelementptr`` indexing are:
6714
6715- Since the value being indexed is not a pointer, the first index is
6716 omitted and assumed to be zero.
6717- At least one index must be specified.
6718- Not only struct indices but also array indices must be in bounds.
6719
6720Semantics:
6721""""""""""
6722
6723The result is the value at the position in the aggregate specified by
6724the index operands.
6725
6726Example:
6727""""""""
6728
6729.. code-block:: llvm
6730
6731 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6732
6733.. _i_insertvalue:
6734
6735'``insertvalue``' Instruction
6736^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6737
6738Syntax:
6739"""""""
6740
6741::
6742
6743 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6744
6745Overview:
6746"""""""""
6747
6748The '``insertvalue``' instruction inserts a value into a member field in
6749an :ref:`aggregate <t_aggregate>` value.
6750
6751Arguments:
6752""""""""""
6753
6754The first operand of an '``insertvalue``' instruction is a value of
6755:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6756a first-class value to insert. The following operands are constant
6757indices indicating the position at which to insert the value in a
6758similar manner as indices in a '``extractvalue``' instruction. The value
6759to insert must have the same type as the value identified by the
6760indices.
6761
6762Semantics:
6763""""""""""
6764
6765The result is an aggregate of the same type as ``val``. Its value is
6766that of ``val`` except that the value at the position specified by the
6767indices is that of ``elt``.
6768
6769Example:
6770""""""""
6771
6772.. code-block:: llvm
6773
6774 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6775 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006776 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006777
6778.. _memoryops:
6779
6780Memory Access and Addressing Operations
6781---------------------------------------
6782
6783A key design point of an SSA-based representation is how it represents
6784memory. In LLVM, no memory locations are in SSA form, which makes things
6785very simple. This section describes how to read, write, and allocate
6786memory in LLVM.
6787
6788.. _i_alloca:
6789
6790'``alloca``' Instruction
6791^^^^^^^^^^^^^^^^^^^^^^^^
6792
6793Syntax:
6794"""""""
6795
6796::
6797
Tim Northover675a0962014-06-13 14:24:23 +00006798 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006799
6800Overview:
6801"""""""""
6802
6803The '``alloca``' instruction allocates memory on the stack frame of the
6804currently executing function, to be automatically released when this
6805function returns to its caller. The object is always allocated in the
6806generic address space (address space zero).
6807
6808Arguments:
6809""""""""""
6810
6811The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6812bytes of memory on the runtime stack, returning a pointer of the
6813appropriate type to the program. If "NumElements" is specified, it is
6814the number of elements allocated, otherwise "NumElements" is defaulted
6815to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006816allocation is guaranteed to be aligned to at least that boundary. The
6817alignment may not be greater than ``1 << 29``. If not specified, or if
6818zero, the target can choose to align the allocation on any convenient
6819boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006820
6821'``type``' may be any sized type.
6822
6823Semantics:
6824""""""""""
6825
6826Memory is allocated; a pointer is returned. The operation is undefined
6827if there is insufficient stack space for the allocation. '``alloca``'d
6828memory is automatically released when the function returns. The
6829'``alloca``' instruction is commonly used to represent automatic
6830variables that must have an address available. When the function returns
6831(either with the ``ret`` or ``resume`` instructions), the memory is
6832reclaimed. Allocating zero bytes is legal, but the result is undefined.
6833The order in which memory is allocated (ie., which way the stack grows)
6834is not specified.
6835
6836Example:
6837""""""""
6838
6839.. code-block:: llvm
6840
Tim Northover675a0962014-06-13 14:24:23 +00006841 %ptr = alloca i32 ; yields i32*:ptr
6842 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6843 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6844 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006845
6846.. _i_load:
6847
6848'``load``' Instruction
6849^^^^^^^^^^^^^^^^^^^^^^
6850
6851Syntax:
6852"""""""
6853
6854::
6855
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006856 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006857 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006858 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006859 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006860 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006861
6862Overview:
6863"""""""""
6864
6865The '``load``' instruction is used to read from memory.
6866
6867Arguments:
6868""""""""""
6869
Eli Bendersky239a78b2013-04-17 20:17:08 +00006870The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006871from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006872class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6873then the optimizer is not allowed to modify the number or order of
6874execution of this ``load`` with other :ref:`volatile
6875operations <volatile>`.
6876
JF Bastiend1fb5852015-12-17 22:09:19 +00006877If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6878<ordering>` and optional ``singlethread`` argument. The ``release`` and
6879``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
6880produce :ref:`defined <memmodel>` results when they may see multiple atomic
6881stores. The type of the pointee must be an integer, pointer, or floating-point
6882type whose bit width is a power of two greater than or equal to eight and less
6883than or equal to a target-specific size limit. ``align`` must be explicitly
6884specified on atomic loads, and the load has undefined behavior if the alignment
6885is not set to a value which is at least the size in bytes of the
6886pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00006887
6888The optional constant ``align`` argument specifies the alignment of the
6889operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006890or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006891alignment for the target. It is the responsibility of the code emitter
6892to ensure that the alignment information is correct. Overestimating the
6893alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006894may produce less efficient code. An alignment of 1 is always safe. The
6895maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006896
6897The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006898metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006899``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006900metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006901that this load is not expected to be reused in the cache. The code
6902generator may select special instructions to save cache bandwidth, such
6903as the ``MOVNT`` instruction on x86.
6904
6905The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006906metadata name ``<index>`` corresponding to a metadata node with no
6907entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006908instruction tells the optimizer and code generator that the address
6909operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006910Being invariant does not imply that a location is dereferenceable,
6911but it does imply that once the location is known dereferenceable
6912its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006913
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006914The optional ``!invariant.group`` metadata must reference a single metadata name
6915 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6916
Philip Reamescdb72f32014-10-20 22:40:55 +00006917The optional ``!nonnull`` metadata must reference a single
6918metadata name ``<index>`` corresponding to a metadata node with no
6919entries. The existence of the ``!nonnull`` metadata on the
6920instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006921never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006922on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006923to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006924
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006925The optional ``!dereferenceable`` metadata must reference a single metadata
6926name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006927entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006928tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006929The number of bytes known to be dereferenceable is specified by the integer
6930value in the metadata node. This is analogous to the ''dereferenceable''
6931attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006932to loads of a pointer type.
6933
6934The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006935metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6936``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006937instruction tells the optimizer that the value loaded is known to be either
6938dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006939The number of bytes known to be dereferenceable is specified by the integer
6940value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6941attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006942to loads of a pointer type.
6943
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006944The optional ``!align`` metadata must reference a single metadata name
6945``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6946The existence of the ``!align`` metadata on the instruction tells the
6947optimizer that the value loaded is known to be aligned to a boundary specified
6948by the integer value in the metadata node. The alignment must be a power of 2.
6949This is analogous to the ''align'' attribute on parameters and return values.
6950This metadata can only be applied to loads of a pointer type.
6951
Sean Silvab084af42012-12-07 10:36:55 +00006952Semantics:
6953""""""""""
6954
6955The location of memory pointed to is loaded. If the value being loaded
6956is of scalar type then the number of bytes read does not exceed the
6957minimum number of bytes needed to hold all bits of the type. For
6958example, loading an ``i24`` reads at most three bytes. When loading a
6959value of a type like ``i20`` with a size that is not an integral number
6960of bytes, the result is undefined if the value was not originally
6961written using a store of the same type.
6962
6963Examples:
6964"""""""""
6965
6966.. code-block:: llvm
6967
Tim Northover675a0962014-06-13 14:24:23 +00006968 %ptr = alloca i32 ; yields i32*:ptr
6969 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006970 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006971
6972.. _i_store:
6973
6974'``store``' Instruction
6975^^^^^^^^^^^^^^^^^^^^^^^
6976
6977Syntax:
6978"""""""
6979
6980::
6981
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006982 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6983 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006984
6985Overview:
6986"""""""""
6987
6988The '``store``' instruction is used to write to memory.
6989
6990Arguments:
6991""""""""""
6992
Eli Benderskyca380842013-04-17 17:17:20 +00006993There are two arguments to the ``store`` instruction: a value to store
6994and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006995operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006996the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006997then the optimizer is not allowed to modify the number or order of
6998execution of this ``store`` with other :ref:`volatile
6999operations <volatile>`.
7000
JF Bastiend1fb5852015-12-17 22:09:19 +00007001If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7002<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7003``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7004produce :ref:`defined <memmodel>` results when they may see multiple atomic
7005stores. The type of the pointee must be an integer, pointer, or floating-point
7006type whose bit width is a power of two greater than or equal to eight and less
7007than or equal to a target-specific size limit. ``align`` must be explicitly
7008specified on atomic stores, and the store has undefined behavior if the
7009alignment is not set to a value which is at least the size in bytes of the
7010pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007011
Eli Benderskyca380842013-04-17 17:17:20 +00007012The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007013operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007014or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007015alignment for the target. It is the responsibility of the code emitter
7016to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007017alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007018alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007019safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007020
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007021The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007022name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007023value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007024tells the optimizer and code generator that this load is not expected to
7025be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007026instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007027x86.
7028
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007029The optional ``!invariant.group`` metadata must reference a
7030single metadata name ``<index>``. See ``invariant.group`` metadata.
7031
Sean Silvab084af42012-12-07 10:36:55 +00007032Semantics:
7033""""""""""
7034
Eli Benderskyca380842013-04-17 17:17:20 +00007035The contents of memory are updated to contain ``<value>`` at the
7036location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007037of scalar type then the number of bytes written does not exceed the
7038minimum number of bytes needed to hold all bits of the type. For
7039example, storing an ``i24`` writes at most three bytes. When writing a
7040value of a type like ``i20`` with a size that is not an integral number
7041of bytes, it is unspecified what happens to the extra bits that do not
7042belong to the type, but they will typically be overwritten.
7043
7044Example:
7045""""""""
7046
7047.. code-block:: llvm
7048
Tim Northover675a0962014-06-13 14:24:23 +00007049 %ptr = alloca i32 ; yields i32*:ptr
7050 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007051 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007052
7053.. _i_fence:
7054
7055'``fence``' Instruction
7056^^^^^^^^^^^^^^^^^^^^^^^
7057
7058Syntax:
7059"""""""
7060
7061::
7062
Tim Northover675a0962014-06-13 14:24:23 +00007063 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007064
7065Overview:
7066"""""""""
7067
7068The '``fence``' instruction is used to introduce happens-before edges
7069between operations.
7070
7071Arguments:
7072""""""""""
7073
7074'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7075defines what *synchronizes-with* edges they add. They can only be given
7076``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7077
7078Semantics:
7079""""""""""
7080
7081A fence A which has (at least) ``release`` ordering semantics
7082*synchronizes with* a fence B with (at least) ``acquire`` ordering
7083semantics if and only if there exist atomic operations X and Y, both
7084operating on some atomic object M, such that A is sequenced before X, X
7085modifies M (either directly or through some side effect of a sequence
7086headed by X), Y is sequenced before B, and Y observes M. This provides a
7087*happens-before* dependency between A and B. Rather than an explicit
7088``fence``, one (but not both) of the atomic operations X or Y might
7089provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7090still *synchronize-with* the explicit ``fence`` and establish the
7091*happens-before* edge.
7092
7093A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7094``acquire`` and ``release`` semantics specified above, participates in
7095the global program order of other ``seq_cst`` operations and/or fences.
7096
7097The optional ":ref:`singlethread <singlethread>`" argument specifies
7098that the fence only synchronizes with other fences in the same thread.
7099(This is useful for interacting with signal handlers.)
7100
7101Example:
7102""""""""
7103
7104.. code-block:: llvm
7105
Tim Northover675a0962014-06-13 14:24:23 +00007106 fence acquire ; yields void
7107 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007108
7109.. _i_cmpxchg:
7110
7111'``cmpxchg``' Instruction
7112^^^^^^^^^^^^^^^^^^^^^^^^^
7113
7114Syntax:
7115"""""""
7116
7117::
7118
Tim Northover675a0962014-06-13 14:24:23 +00007119 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007120
7121Overview:
7122"""""""""
7123
7124The '``cmpxchg``' instruction is used to atomically modify memory. It
7125loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007126equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007127
7128Arguments:
7129""""""""""
7130
7131There are three arguments to the '``cmpxchg``' instruction: an address
7132to operate on, a value to compare to the value currently be at that
7133address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007134are equal. The type of '<cmp>' must be an integer or pointer type whose
7135bit width is a power of two greater than or equal to eight and less
7136than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7137have the same type, and the type of '<pointer>' must be a pointer to
7138that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7139optimizer is not allowed to modify the number or order of execution of
7140this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007141
Tim Northovere94a5182014-03-11 10:48:52 +00007142The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007143``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7144must be at least ``monotonic``, the ordering constraint on failure must be no
7145stronger than that on success, and the failure ordering cannot be either
7146``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007147
7148The optional "``singlethread``" argument declares that the ``cmpxchg``
7149is only atomic with respect to code (usually signal handlers) running in
7150the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7151respect to all other code in the system.
7152
7153The pointer passed into cmpxchg must have alignment greater than or
7154equal to the size in memory of the operand.
7155
7156Semantics:
7157""""""""""
7158
Tim Northover420a2162014-06-13 14:24:07 +00007159The contents of memory at the location specified by the '``<pointer>``' operand
7160is read and compared to '``<cmp>``'; if the read value is the equal, the
7161'``<new>``' is written. The original value at the location is returned, together
7162with a flag indicating success (true) or failure (false).
7163
7164If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7165permitted: the operation may not write ``<new>`` even if the comparison
7166matched.
7167
7168If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7169if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007170
Tim Northovere94a5182014-03-11 10:48:52 +00007171A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7172identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7173load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007174
7175Example:
7176""""""""
7177
7178.. code-block:: llvm
7179
7180 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007181 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007182 br label %loop
7183
7184 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007185 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007186 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007187 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007188 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7189 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007190 br i1 %success, label %done, label %loop
7191
7192 done:
7193 ...
7194
7195.. _i_atomicrmw:
7196
7197'``atomicrmw``' Instruction
7198^^^^^^^^^^^^^^^^^^^^^^^^^^^
7199
7200Syntax:
7201"""""""
7202
7203::
7204
Tim Northover675a0962014-06-13 14:24:23 +00007205 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007206
7207Overview:
7208"""""""""
7209
7210The '``atomicrmw``' instruction is used to atomically modify memory.
7211
7212Arguments:
7213""""""""""
7214
7215There are three arguments to the '``atomicrmw``' instruction: an
7216operation to apply, an address whose value to modify, an argument to the
7217operation. The operation must be one of the following keywords:
7218
7219- xchg
7220- add
7221- sub
7222- and
7223- nand
7224- or
7225- xor
7226- max
7227- min
7228- umax
7229- umin
7230
7231The type of '<value>' must be an integer type whose bit width is a power
7232of two greater than or equal to eight and less than or equal to a
7233target-specific size limit. The type of the '``<pointer>``' operand must
7234be a pointer to that type. If the ``atomicrmw`` is marked as
7235``volatile``, then the optimizer is not allowed to modify the number or
7236order of execution of this ``atomicrmw`` with other :ref:`volatile
7237operations <volatile>`.
7238
7239Semantics:
7240""""""""""
7241
7242The contents of memory at the location specified by the '``<pointer>``'
7243operand are atomically read, modified, and written back. The original
7244value at the location is returned. The modification is specified by the
7245operation argument:
7246
7247- xchg: ``*ptr = val``
7248- add: ``*ptr = *ptr + val``
7249- sub: ``*ptr = *ptr - val``
7250- and: ``*ptr = *ptr & val``
7251- nand: ``*ptr = ~(*ptr & val)``
7252- or: ``*ptr = *ptr | val``
7253- xor: ``*ptr = *ptr ^ val``
7254- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7255- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7256- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7257 comparison)
7258- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7259 comparison)
7260
7261Example:
7262""""""""
7263
7264.. code-block:: llvm
7265
Tim Northover675a0962014-06-13 14:24:23 +00007266 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007267
7268.. _i_getelementptr:
7269
7270'``getelementptr``' Instruction
7271^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7272
7273Syntax:
7274"""""""
7275
7276::
7277
David Blaikie16a97eb2015-03-04 22:02:58 +00007278 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7279 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7280 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007281
7282Overview:
7283"""""""""
7284
7285The '``getelementptr``' instruction is used to get the address of a
7286subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007287address calculation only and does not access memory. The instruction can also
7288be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007289
7290Arguments:
7291""""""""""
7292
David Blaikie16a97eb2015-03-04 22:02:58 +00007293The first argument is always a type used as the basis for the calculations.
7294The second argument is always a pointer or a vector of pointers, and is the
7295base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007296that indicate which of the elements of the aggregate object are indexed.
7297The interpretation of each index is dependent on the type being indexed
7298into. The first index always indexes the pointer value given as the
7299first argument, the second index indexes a value of the type pointed to
7300(not necessarily the value directly pointed to, since the first index
7301can be non-zero), etc. The first type indexed into must be a pointer
7302value, subsequent types can be arrays, vectors, and structs. Note that
7303subsequent types being indexed into can never be pointers, since that
7304would require loading the pointer before continuing calculation.
7305
7306The type of each index argument depends on the type it is indexing into.
7307When indexing into a (optionally packed) structure, only ``i32`` integer
7308**constants** are allowed (when using a vector of indices they must all
7309be the **same** ``i32`` integer constant). When indexing into an array,
7310pointer or vector, integers of any width are allowed, and they are not
7311required to be constant. These integers are treated as signed values
7312where relevant.
7313
7314For example, let's consider a C code fragment and how it gets compiled
7315to LLVM:
7316
7317.. code-block:: c
7318
7319 struct RT {
7320 char A;
7321 int B[10][20];
7322 char C;
7323 };
7324 struct ST {
7325 int X;
7326 double Y;
7327 struct RT Z;
7328 };
7329
7330 int *foo(struct ST *s) {
7331 return &s[1].Z.B[5][13];
7332 }
7333
7334The LLVM code generated by Clang is:
7335
7336.. code-block:: llvm
7337
7338 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7339 %struct.ST = type { i32, double, %struct.RT }
7340
7341 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7342 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007343 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007344 ret i32* %arrayidx
7345 }
7346
7347Semantics:
7348""""""""""
7349
7350In the example above, the first index is indexing into the
7351'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7352= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7353indexes into the third element of the structure, yielding a
7354'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7355structure. The third index indexes into the second element of the
7356structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7357dimensions of the array are subscripted into, yielding an '``i32``'
7358type. The '``getelementptr``' instruction returns a pointer to this
7359element, thus computing a value of '``i32*``' type.
7360
7361Note that it is perfectly legal to index partially through a structure,
7362returning a pointer to an inner element. Because of this, the LLVM code
7363for the given testcase is equivalent to:
7364
7365.. code-block:: llvm
7366
7367 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007368 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7369 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7370 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7371 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7372 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007373 ret i32* %t5
7374 }
7375
7376If the ``inbounds`` keyword is present, the result value of the
7377``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7378pointer is not an *in bounds* address of an allocated object, or if any
7379of the addresses that would be formed by successive addition of the
7380offsets implied by the indices to the base address with infinitely
7381precise signed arithmetic are not an *in bounds* address of that
7382allocated object. The *in bounds* addresses for an allocated object are
7383all the addresses that point into the object, plus the address one byte
7384past the end. In cases where the base is a vector of pointers the
7385``inbounds`` keyword applies to each of the computations element-wise.
7386
7387If the ``inbounds`` keyword is not present, the offsets are added to the
7388base address with silently-wrapping two's complement arithmetic. If the
7389offsets have a different width from the pointer, they are sign-extended
7390or truncated to the width of the pointer. The result value of the
7391``getelementptr`` may be outside the object pointed to by the base
7392pointer. The result value may not necessarily be used to access memory
7393though, even if it happens to point into allocated storage. See the
7394:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7395information.
7396
7397The getelementptr instruction is often confusing. For some more insight
7398into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7399
7400Example:
7401""""""""
7402
7403.. code-block:: llvm
7404
7405 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007406 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007407 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007408 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007409 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007410 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007411 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007412 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007413
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007414Vector of pointers:
7415"""""""""""""""""""
7416
7417The ``getelementptr`` returns a vector of pointers, instead of a single address,
7418when one or more of its arguments is a vector. In such cases, all vector
7419arguments should have the same number of elements, and every scalar argument
7420will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007421
7422.. code-block:: llvm
7423
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007424 ; All arguments are vectors:
7425 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7426 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007427
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007428 ; Add the same scalar offset to each pointer of a vector:
7429 ; A[i] = ptrs[i] + offset*sizeof(i8)
7430 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007431
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007432 ; Add distinct offsets to the same pointer:
7433 ; A[i] = ptr + offsets[i]*sizeof(i8)
7434 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007435
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007436 ; In all cases described above the type of the result is <4 x i8*>
7437
7438The two following instructions are equivalent:
7439
7440.. code-block:: llvm
7441
7442 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7443 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7444 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7445 <4 x i32> %ind4,
7446 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007447
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007448 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7449 i32 2, i32 1, <4 x i32> %ind4, i64 13
7450
7451Let's look at the C code, where the vector version of ``getelementptr``
7452makes sense:
7453
7454.. code-block:: c
7455
7456 // Let's assume that we vectorize the following loop:
7457 double *A, B; int *C;
7458 for (int i = 0; i < size; ++i) {
7459 A[i] = B[C[i]];
7460 }
7461
7462.. code-block:: llvm
7463
7464 ; get pointers for 8 elements from array B
7465 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7466 ; load 8 elements from array B into A
7467 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7468 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007469
7470Conversion Operations
7471---------------------
7472
7473The instructions in this category are the conversion instructions
7474(casting) which all take a single operand and a type. They perform
7475various bit conversions on the operand.
7476
7477'``trunc .. to``' Instruction
7478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7479
7480Syntax:
7481"""""""
7482
7483::
7484
7485 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7486
7487Overview:
7488"""""""""
7489
7490The '``trunc``' instruction truncates its operand to the type ``ty2``.
7491
7492Arguments:
7493""""""""""
7494
7495The '``trunc``' instruction takes a value to trunc, and a type to trunc
7496it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7497of the same number of integers. The bit size of the ``value`` must be
7498larger than the bit size of the destination type, ``ty2``. Equal sized
7499types are not allowed.
7500
7501Semantics:
7502""""""""""
7503
7504The '``trunc``' instruction truncates the high order bits in ``value``
7505and converts the remaining bits to ``ty2``. Since the source size must
7506be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7507It will always truncate bits.
7508
7509Example:
7510""""""""
7511
7512.. code-block:: llvm
7513
7514 %X = trunc i32 257 to i8 ; yields i8:1
7515 %Y = trunc i32 123 to i1 ; yields i1:true
7516 %Z = trunc i32 122 to i1 ; yields i1:false
7517 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7518
7519'``zext .. to``' Instruction
7520^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7521
7522Syntax:
7523"""""""
7524
7525::
7526
7527 <result> = zext <ty> <value> to <ty2> ; yields ty2
7528
7529Overview:
7530"""""""""
7531
7532The '``zext``' instruction zero extends its operand to type ``ty2``.
7533
7534Arguments:
7535""""""""""
7536
7537The '``zext``' instruction takes a value to cast, and a type to cast it
7538to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7539the same number of integers. The bit size of the ``value`` must be
7540smaller than the bit size of the destination type, ``ty2``.
7541
7542Semantics:
7543""""""""""
7544
7545The ``zext`` fills the high order bits of the ``value`` with zero bits
7546until it reaches the size of the destination type, ``ty2``.
7547
7548When zero extending from i1, the result will always be either 0 or 1.
7549
7550Example:
7551""""""""
7552
7553.. code-block:: llvm
7554
7555 %X = zext i32 257 to i64 ; yields i64:257
7556 %Y = zext i1 true to i32 ; yields i32:1
7557 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7558
7559'``sext .. to``' Instruction
7560^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7561
7562Syntax:
7563"""""""
7564
7565::
7566
7567 <result> = sext <ty> <value> to <ty2> ; yields ty2
7568
7569Overview:
7570"""""""""
7571
7572The '``sext``' sign extends ``value`` to the type ``ty2``.
7573
7574Arguments:
7575""""""""""
7576
7577The '``sext``' instruction takes a value to cast, and a type to cast it
7578to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7579the same number of integers. The bit size of the ``value`` must be
7580smaller than the bit size of the destination type, ``ty2``.
7581
7582Semantics:
7583""""""""""
7584
7585The '``sext``' instruction performs a sign extension by copying the sign
7586bit (highest order bit) of the ``value`` until it reaches the bit size
7587of the type ``ty2``.
7588
7589When sign extending from i1, the extension always results in -1 or 0.
7590
7591Example:
7592""""""""
7593
7594.. code-block:: llvm
7595
7596 %X = sext i8 -1 to i16 ; yields i16 :65535
7597 %Y = sext i1 true to i32 ; yields i32:-1
7598 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7599
7600'``fptrunc .. to``' Instruction
7601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7602
7603Syntax:
7604"""""""
7605
7606::
7607
7608 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7609
7610Overview:
7611"""""""""
7612
7613The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7614
7615Arguments:
7616""""""""""
7617
7618The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7619value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7620The size of ``value`` must be larger than the size of ``ty2``. This
7621implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7622
7623Semantics:
7624""""""""""
7625
Dan Liew50456fb2015-09-03 18:43:56 +00007626The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007627:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007628point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7629destination type, ``ty2``, then the results are undefined. If the cast produces
7630an inexact result, how rounding is performed (e.g. truncation, also known as
7631round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007632
7633Example:
7634""""""""
7635
7636.. code-block:: llvm
7637
7638 %X = fptrunc double 123.0 to float ; yields float:123.0
7639 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7640
7641'``fpext .. to``' Instruction
7642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7643
7644Syntax:
7645"""""""
7646
7647::
7648
7649 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7650
7651Overview:
7652"""""""""
7653
7654The '``fpext``' extends a floating point ``value`` to a larger floating
7655point value.
7656
7657Arguments:
7658""""""""""
7659
7660The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7661``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7662to. The source type must be smaller than the destination type.
7663
7664Semantics:
7665""""""""""
7666
7667The '``fpext``' instruction extends the ``value`` from a smaller
7668:ref:`floating point <t_floating>` type to a larger :ref:`floating
7669point <t_floating>` type. The ``fpext`` cannot be used to make a
7670*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7671*no-op cast* for a floating point cast.
7672
7673Example:
7674""""""""
7675
7676.. code-block:: llvm
7677
7678 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7679 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7680
7681'``fptoui .. to``' Instruction
7682^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7683
7684Syntax:
7685"""""""
7686
7687::
7688
7689 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7690
7691Overview:
7692"""""""""
7693
7694The '``fptoui``' converts a floating point ``value`` to its unsigned
7695integer equivalent of type ``ty2``.
7696
7697Arguments:
7698""""""""""
7699
7700The '``fptoui``' instruction takes a value to cast, which must be a
7701scalar or vector :ref:`floating point <t_floating>` value, and a type to
7702cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7703``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7704type with the same number of elements as ``ty``
7705
7706Semantics:
7707""""""""""
7708
7709The '``fptoui``' instruction converts its :ref:`floating
7710point <t_floating>` operand into the nearest (rounding towards zero)
7711unsigned integer value. If the value cannot fit in ``ty2``, the results
7712are undefined.
7713
7714Example:
7715""""""""
7716
7717.. code-block:: llvm
7718
7719 %X = fptoui double 123.0 to i32 ; yields i32:123
7720 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7721 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7722
7723'``fptosi .. to``' Instruction
7724^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7725
7726Syntax:
7727"""""""
7728
7729::
7730
7731 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7732
7733Overview:
7734"""""""""
7735
7736The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7737``value`` to type ``ty2``.
7738
7739Arguments:
7740""""""""""
7741
7742The '``fptosi``' instruction takes a value to cast, which must be a
7743scalar or vector :ref:`floating point <t_floating>` value, and a type to
7744cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7745``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7746type with the same number of elements as ``ty``
7747
7748Semantics:
7749""""""""""
7750
7751The '``fptosi``' instruction converts its :ref:`floating
7752point <t_floating>` operand into the nearest (rounding towards zero)
7753signed integer value. If the value cannot fit in ``ty2``, the results
7754are undefined.
7755
7756Example:
7757""""""""
7758
7759.. code-block:: llvm
7760
7761 %X = fptosi double -123.0 to i32 ; yields i32:-123
7762 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7763 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7764
7765'``uitofp .. to``' Instruction
7766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7767
7768Syntax:
7769"""""""
7770
7771::
7772
7773 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7774
7775Overview:
7776"""""""""
7777
7778The '``uitofp``' instruction regards ``value`` as an unsigned integer
7779and converts that value to the ``ty2`` type.
7780
7781Arguments:
7782""""""""""
7783
7784The '``uitofp``' instruction takes a value to cast, which must be a
7785scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7786``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7787``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7788type with the same number of elements as ``ty``
7789
7790Semantics:
7791""""""""""
7792
7793The '``uitofp``' instruction interprets its operand as an unsigned
7794integer quantity and converts it to the corresponding floating point
7795value. If the value cannot fit in the floating point value, the results
7796are undefined.
7797
7798Example:
7799""""""""
7800
7801.. code-block:: llvm
7802
7803 %X = uitofp i32 257 to float ; yields float:257.0
7804 %Y = uitofp i8 -1 to double ; yields double:255.0
7805
7806'``sitofp .. to``' Instruction
7807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7808
7809Syntax:
7810"""""""
7811
7812::
7813
7814 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7815
7816Overview:
7817"""""""""
7818
7819The '``sitofp``' instruction regards ``value`` as a signed integer and
7820converts that value to the ``ty2`` type.
7821
7822Arguments:
7823""""""""""
7824
7825The '``sitofp``' instruction takes a value to cast, which must be a
7826scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7827``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7828``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7829type with the same number of elements as ``ty``
7830
7831Semantics:
7832""""""""""
7833
7834The '``sitofp``' instruction interprets its operand as a signed integer
7835quantity and converts it to the corresponding floating point value. If
7836the value cannot fit in the floating point value, the results are
7837undefined.
7838
7839Example:
7840""""""""
7841
7842.. code-block:: llvm
7843
7844 %X = sitofp i32 257 to float ; yields float:257.0
7845 %Y = sitofp i8 -1 to double ; yields double:-1.0
7846
7847.. _i_ptrtoint:
7848
7849'``ptrtoint .. to``' Instruction
7850^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7851
7852Syntax:
7853"""""""
7854
7855::
7856
7857 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7858
7859Overview:
7860"""""""""
7861
7862The '``ptrtoint``' instruction converts the pointer or a vector of
7863pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7864
7865Arguments:
7866""""""""""
7867
7868The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007869a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007870type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7871a vector of integers type.
7872
7873Semantics:
7874""""""""""
7875
7876The '``ptrtoint``' instruction converts ``value`` to integer type
7877``ty2`` by interpreting the pointer value as an integer and either
7878truncating or zero extending that value to the size of the integer type.
7879If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7880``value`` is larger than ``ty2`` then a truncation is done. If they are
7881the same size, then nothing is done (*no-op cast*) other than a type
7882change.
7883
7884Example:
7885""""""""
7886
7887.. code-block:: llvm
7888
7889 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7890 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7891 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7892
7893.. _i_inttoptr:
7894
7895'``inttoptr .. to``' Instruction
7896^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7897
7898Syntax:
7899"""""""
7900
7901::
7902
7903 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7904
7905Overview:
7906"""""""""
7907
7908The '``inttoptr``' instruction converts an integer ``value`` to a
7909pointer type, ``ty2``.
7910
7911Arguments:
7912""""""""""
7913
7914The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7915cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7916type.
7917
7918Semantics:
7919""""""""""
7920
7921The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7922applying either a zero extension or a truncation depending on the size
7923of the integer ``value``. If ``value`` is larger than the size of a
7924pointer then a truncation is done. If ``value`` is smaller than the size
7925of a pointer then a zero extension is done. If they are the same size,
7926nothing is done (*no-op cast*).
7927
7928Example:
7929""""""""
7930
7931.. code-block:: llvm
7932
7933 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7934 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7935 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7936 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7937
7938.. _i_bitcast:
7939
7940'``bitcast .. to``' Instruction
7941^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7942
7943Syntax:
7944"""""""
7945
7946::
7947
7948 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7949
7950Overview:
7951"""""""""
7952
7953The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7954changing any bits.
7955
7956Arguments:
7957""""""""""
7958
7959The '``bitcast``' instruction takes a value to cast, which must be a
7960non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007961also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7962bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007963identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007964also be a pointer of the same size. This instruction supports bitwise
7965conversion of vectors to integers and to vectors of other types (as
7966long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007967
7968Semantics:
7969""""""""""
7970
Matt Arsenault24b49c42013-07-31 17:49:08 +00007971The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7972is always a *no-op cast* because no bits change with this
7973conversion. The conversion is done as if the ``value`` had been stored
7974to memory and read back as type ``ty2``. Pointer (or vector of
7975pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007976pointers) types with the same address space through this instruction.
7977To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7978or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007979
7980Example:
7981""""""""
7982
7983.. code-block:: llvm
7984
7985 %X = bitcast i8 255 to i8 ; yields i8 :-1
7986 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7987 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7988 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7989
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007990.. _i_addrspacecast:
7991
7992'``addrspacecast .. to``' Instruction
7993^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7994
7995Syntax:
7996"""""""
7997
7998::
7999
8000 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8001
8002Overview:
8003"""""""""
8004
8005The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8006address space ``n`` to type ``pty2`` in address space ``m``.
8007
8008Arguments:
8009""""""""""
8010
8011The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8012to cast and a pointer type to cast it to, which must have a different
8013address space.
8014
8015Semantics:
8016""""""""""
8017
8018The '``addrspacecast``' instruction converts the pointer value
8019``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008020value modification, depending on the target and the address space
8021pair. Pointer conversions within the same address space must be
8022performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008023conversion is legal then both result and operand refer to the same memory
8024location.
8025
8026Example:
8027""""""""
8028
8029.. code-block:: llvm
8030
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008031 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8032 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8033 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008034
Sean Silvab084af42012-12-07 10:36:55 +00008035.. _otherops:
8036
8037Other Operations
8038----------------
8039
8040The instructions in this category are the "miscellaneous" instructions,
8041which defy better classification.
8042
8043.. _i_icmp:
8044
8045'``icmp``' Instruction
8046^^^^^^^^^^^^^^^^^^^^^^
8047
8048Syntax:
8049"""""""
8050
8051::
8052
Tim Northover675a0962014-06-13 14:24:23 +00008053 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008054
8055Overview:
8056"""""""""
8057
8058The '``icmp``' instruction returns a boolean value or a vector of
8059boolean values based on comparison of its two integer, integer vector,
8060pointer, or pointer vector operands.
8061
8062Arguments:
8063""""""""""
8064
8065The '``icmp``' instruction takes three operands. The first operand is
8066the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008067not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008068
8069#. ``eq``: equal
8070#. ``ne``: not equal
8071#. ``ugt``: unsigned greater than
8072#. ``uge``: unsigned greater or equal
8073#. ``ult``: unsigned less than
8074#. ``ule``: unsigned less or equal
8075#. ``sgt``: signed greater than
8076#. ``sge``: signed greater or equal
8077#. ``slt``: signed less than
8078#. ``sle``: signed less or equal
8079
8080The remaining two arguments must be :ref:`integer <t_integer>` or
8081:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8082must also be identical types.
8083
8084Semantics:
8085""""""""""
8086
8087The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8088code given as ``cond``. The comparison performed always yields either an
8089:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8090
8091#. ``eq``: yields ``true`` if the operands are equal, ``false``
8092 otherwise. No sign interpretation is necessary or performed.
8093#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8094 otherwise. No sign interpretation is necessary or performed.
8095#. ``ugt``: interprets the operands as unsigned values and yields
8096 ``true`` if ``op1`` is greater than ``op2``.
8097#. ``uge``: interprets the operands as unsigned values and yields
8098 ``true`` if ``op1`` is greater than or equal to ``op2``.
8099#. ``ult``: interprets the operands as unsigned values and yields
8100 ``true`` if ``op1`` is less than ``op2``.
8101#. ``ule``: interprets the operands as unsigned values and yields
8102 ``true`` if ``op1`` is less than or equal to ``op2``.
8103#. ``sgt``: interprets the operands as signed values and yields ``true``
8104 if ``op1`` is greater than ``op2``.
8105#. ``sge``: interprets the operands as signed values and yields ``true``
8106 if ``op1`` is greater than or equal to ``op2``.
8107#. ``slt``: interprets the operands as signed values and yields ``true``
8108 if ``op1`` is less than ``op2``.
8109#. ``sle``: interprets the operands as signed values and yields ``true``
8110 if ``op1`` is less than or equal to ``op2``.
8111
8112If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8113are compared as if they were integers.
8114
8115If the operands are integer vectors, then they are compared element by
8116element. The result is an ``i1`` vector with the same number of elements
8117as the values being compared. Otherwise, the result is an ``i1``.
8118
8119Example:
8120""""""""
8121
8122.. code-block:: llvm
8123
8124 <result> = icmp eq i32 4, 5 ; yields: result=false
8125 <result> = icmp ne float* %X, %X ; yields: result=false
8126 <result> = icmp ult i16 4, 5 ; yields: result=true
8127 <result> = icmp sgt i16 4, 5 ; yields: result=false
8128 <result> = icmp ule i16 -4, 5 ; yields: result=false
8129 <result> = icmp sge i16 4, 5 ; yields: result=false
8130
8131Note that the code generator does not yet support vector types with the
8132``icmp`` instruction.
8133
8134.. _i_fcmp:
8135
8136'``fcmp``' Instruction
8137^^^^^^^^^^^^^^^^^^^^^^
8138
8139Syntax:
8140"""""""
8141
8142::
8143
James Molloy88eb5352015-07-10 12:52:00 +00008144 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008145
8146Overview:
8147"""""""""
8148
8149The '``fcmp``' instruction returns a boolean value or vector of boolean
8150values based on comparison of its operands.
8151
8152If the operands are floating point scalars, then the result type is a
8153boolean (:ref:`i1 <t_integer>`).
8154
8155If the operands are floating point vectors, then the result type is a
8156vector of boolean with the same number of elements as the operands being
8157compared.
8158
8159Arguments:
8160""""""""""
8161
8162The '``fcmp``' instruction takes three operands. The first operand is
8163the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008164not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008165
8166#. ``false``: no comparison, always returns false
8167#. ``oeq``: ordered and equal
8168#. ``ogt``: ordered and greater than
8169#. ``oge``: ordered and greater than or equal
8170#. ``olt``: ordered and less than
8171#. ``ole``: ordered and less than or equal
8172#. ``one``: ordered and not equal
8173#. ``ord``: ordered (no nans)
8174#. ``ueq``: unordered or equal
8175#. ``ugt``: unordered or greater than
8176#. ``uge``: unordered or greater than or equal
8177#. ``ult``: unordered or less than
8178#. ``ule``: unordered or less than or equal
8179#. ``une``: unordered or not equal
8180#. ``uno``: unordered (either nans)
8181#. ``true``: no comparison, always returns true
8182
8183*Ordered* means that neither operand is a QNAN while *unordered* means
8184that either operand may be a QNAN.
8185
8186Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8187point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8188type. They must have identical types.
8189
8190Semantics:
8191""""""""""
8192
8193The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8194condition code given as ``cond``. If the operands are vectors, then the
8195vectors are compared element by element. Each comparison performed
8196always yields an :ref:`i1 <t_integer>` result, as follows:
8197
8198#. ``false``: always yields ``false``, regardless of operands.
8199#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8200 is equal to ``op2``.
8201#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8202 is greater than ``op2``.
8203#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8204 is greater than or equal to ``op2``.
8205#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8206 is less than ``op2``.
8207#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8208 is less than or equal to ``op2``.
8209#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8210 is not equal to ``op2``.
8211#. ``ord``: yields ``true`` if both operands are not a QNAN.
8212#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8213 equal to ``op2``.
8214#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8215 greater than ``op2``.
8216#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8217 greater than or equal to ``op2``.
8218#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8219 less than ``op2``.
8220#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8221 less than or equal to ``op2``.
8222#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8223 not equal to ``op2``.
8224#. ``uno``: yields ``true`` if either operand is a QNAN.
8225#. ``true``: always yields ``true``, regardless of operands.
8226
James Molloy88eb5352015-07-10 12:52:00 +00008227The ``fcmp`` instruction can also optionally take any number of
8228:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8229otherwise unsafe floating point optimizations.
8230
8231Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8232only flags that have any effect on its semantics are those that allow
8233assumptions to be made about the values of input arguments; namely
8234``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8235
Sean Silvab084af42012-12-07 10:36:55 +00008236Example:
8237""""""""
8238
8239.. code-block:: llvm
8240
8241 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8242 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8243 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8244 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8245
8246Note that the code generator does not yet support vector types with the
8247``fcmp`` instruction.
8248
8249.. _i_phi:
8250
8251'``phi``' Instruction
8252^^^^^^^^^^^^^^^^^^^^^
8253
8254Syntax:
8255"""""""
8256
8257::
8258
8259 <result> = phi <ty> [ <val0>, <label0>], ...
8260
8261Overview:
8262"""""""""
8263
8264The '``phi``' instruction is used to implement the φ node in the SSA
8265graph representing the function.
8266
8267Arguments:
8268""""""""""
8269
8270The type of the incoming values is specified with the first type field.
8271After this, the '``phi``' instruction takes a list of pairs as
8272arguments, with one pair for each predecessor basic block of the current
8273block. Only values of :ref:`first class <t_firstclass>` type may be used as
8274the value arguments to the PHI node. Only labels may be used as the
8275label arguments.
8276
8277There must be no non-phi instructions between the start of a basic block
8278and the PHI instructions: i.e. PHI instructions must be first in a basic
8279block.
8280
8281For the purposes of the SSA form, the use of each incoming value is
8282deemed to occur on the edge from the corresponding predecessor block to
8283the current block (but after any definition of an '``invoke``'
8284instruction's return value on the same edge).
8285
8286Semantics:
8287""""""""""
8288
8289At runtime, the '``phi``' instruction logically takes on the value
8290specified by the pair corresponding to the predecessor basic block that
8291executed just prior to the current block.
8292
8293Example:
8294""""""""
8295
8296.. code-block:: llvm
8297
8298 Loop: ; Infinite loop that counts from 0 on up...
8299 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8300 %nextindvar = add i32 %indvar, 1
8301 br label %Loop
8302
8303.. _i_select:
8304
8305'``select``' Instruction
8306^^^^^^^^^^^^^^^^^^^^^^^^
8307
8308Syntax:
8309"""""""
8310
8311::
8312
8313 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8314
8315 selty is either i1 or {<N x i1>}
8316
8317Overview:
8318"""""""""
8319
8320The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008321condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008322
8323Arguments:
8324""""""""""
8325
8326The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8327values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008328class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008329
8330Semantics:
8331""""""""""
8332
8333If the condition is an i1 and it evaluates to 1, the instruction returns
8334the first value argument; otherwise, it returns the second value
8335argument.
8336
8337If the condition is a vector of i1, then the value arguments must be
8338vectors of the same size, and the selection is done element by element.
8339
David Majnemer40a0b592015-03-03 22:45:47 +00008340If the condition is an i1 and the value arguments are vectors of the
8341same size, then an entire vector is selected.
8342
Sean Silvab084af42012-12-07 10:36:55 +00008343Example:
8344""""""""
8345
8346.. code-block:: llvm
8347
8348 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8349
8350.. _i_call:
8351
8352'``call``' Instruction
8353^^^^^^^^^^^^^^^^^^^^^^
8354
8355Syntax:
8356"""""""
8357
8358::
8359
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008360 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008361 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008362
8363Overview:
8364"""""""""
8365
8366The '``call``' instruction represents a simple function call.
8367
8368Arguments:
8369""""""""""
8370
8371This instruction requires several arguments:
8372
Reid Kleckner5772b772014-04-24 20:14:34 +00008373#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008374 should perform tail call optimization. The ``tail`` marker is a hint that
8375 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008376 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008377 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008378
8379 #. The call will not cause unbounded stack growth if it is part of a
8380 recursive cycle in the call graph.
8381 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8382 forwarded in place.
8383
8384 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008385 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008386 rules:
8387
8388 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8389 or a pointer bitcast followed by a ret instruction.
8390 - The ret instruction must return the (possibly bitcasted) value
8391 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008392 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008393 parameters or return types may differ in pointee type, but not
8394 in address space.
8395 - The calling conventions of the caller and callee must match.
8396 - All ABI-impacting function attributes, such as sret, byval, inreg,
8397 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008398 - The callee must be varargs iff the caller is varargs. Bitcasting a
8399 non-varargs function to the appropriate varargs type is legal so
8400 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008401
8402 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8403 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008404
8405 - Caller and callee both have the calling convention ``fastcc``.
8406 - The call is in tail position (ret immediately follows call and ret
8407 uses value of call or is void).
8408 - Option ``-tailcallopt`` is enabled, or
8409 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008410 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008411 met. <CodeGenerator.html#tailcallopt>`_
8412
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008413#. The optional ``notail`` marker indicates that the optimizers should not add
8414 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8415 call optimization from being performed on the call.
8416
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008417#. The optional ``fast-math flags`` marker indicates that the call has one or more
8418 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8419 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8420 for calls that return a floating-point scalar or vector type.
8421
Sean Silvab084af42012-12-07 10:36:55 +00008422#. The optional "cconv" marker indicates which :ref:`calling
8423 convention <callingconv>` the call should use. If none is
8424 specified, the call defaults to using C calling conventions. The
8425 calling convention of the call must match the calling convention of
8426 the target function, or else the behavior is undefined.
8427#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8428 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8429 are valid here.
8430#. '``ty``': the type of the call instruction itself which is also the
8431 type of the return value. Functions that return no value are marked
8432 ``void``.
8433#. '``fnty``': shall be the signature of the pointer to function value
8434 being invoked. The argument types must match the types implied by
8435 this signature. This type can be omitted if the function is not
8436 varargs and if the function type does not return a pointer to a
8437 function.
8438#. '``fnptrval``': An LLVM value containing a pointer to a function to
8439 be invoked. In most cases, this is a direct function invocation, but
8440 indirect ``call``'s are just as possible, calling an arbitrary pointer
8441 to function value.
8442#. '``function args``': argument list whose types match the function
8443 signature argument types and parameter attributes. All arguments must
8444 be of :ref:`first class <t_firstclass>` type. If the function signature
8445 indicates the function accepts a variable number of arguments, the
8446 extra arguments can be specified.
8447#. The optional :ref:`function attributes <fnattrs>` list. Only
8448 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8449 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008450#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008451
8452Semantics:
8453""""""""""
8454
8455The '``call``' instruction is used to cause control flow to transfer to
8456a specified function, with its incoming arguments bound to the specified
8457values. Upon a '``ret``' instruction in the called function, control
8458flow continues with the instruction after the function call, and the
8459return value of the function is bound to the result argument.
8460
8461Example:
8462""""""""
8463
8464.. code-block:: llvm
8465
8466 %retval = call i32 @test(i32 %argc)
8467 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8468 %X = tail call i32 @foo() ; yields i32
8469 %Y = tail call fastcc i32 @foo() ; yields i32
8470 call void %foo(i8 97 signext)
8471
8472 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008473 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008474 %gr = extractvalue %struct.A %r, 0 ; yields i32
8475 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8476 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8477 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8478
8479llvm treats calls to some functions with names and arguments that match
8480the standard C99 library as being the C99 library functions, and may
8481perform optimizations or generate code for them under that assumption.
8482This is something we'd like to change in the future to provide better
8483support for freestanding environments and non-C-based languages.
8484
8485.. _i_va_arg:
8486
8487'``va_arg``' Instruction
8488^^^^^^^^^^^^^^^^^^^^^^^^
8489
8490Syntax:
8491"""""""
8492
8493::
8494
8495 <resultval> = va_arg <va_list*> <arglist>, <argty>
8496
8497Overview:
8498"""""""""
8499
8500The '``va_arg``' instruction is used to access arguments passed through
8501the "variable argument" area of a function call. It is used to implement
8502the ``va_arg`` macro in C.
8503
8504Arguments:
8505""""""""""
8506
8507This instruction takes a ``va_list*`` value and the type of the
8508argument. It returns a value of the specified argument type and
8509increments the ``va_list`` to point to the next argument. The actual
8510type of ``va_list`` is target specific.
8511
8512Semantics:
8513""""""""""
8514
8515The '``va_arg``' instruction loads an argument of the specified type
8516from the specified ``va_list`` and causes the ``va_list`` to point to
8517the next argument. For more information, see the variable argument
8518handling :ref:`Intrinsic Functions <int_varargs>`.
8519
8520It is legal for this instruction to be called in a function which does
8521not take a variable number of arguments, for example, the ``vfprintf``
8522function.
8523
8524``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8525function <intrinsics>` because it takes a type as an argument.
8526
8527Example:
8528""""""""
8529
8530See the :ref:`variable argument processing <int_varargs>` section.
8531
8532Note that the code generator does not yet fully support va\_arg on many
8533targets. Also, it does not currently support va\_arg with aggregate
8534types on any target.
8535
8536.. _i_landingpad:
8537
8538'``landingpad``' Instruction
8539^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8540
8541Syntax:
8542"""""""
8543
8544::
8545
David Majnemer7fddecc2015-06-17 20:52:32 +00008546 <resultval> = landingpad <resultty> <clause>+
8547 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008548
8549 <clause> := catch <type> <value>
8550 <clause> := filter <array constant type> <array constant>
8551
8552Overview:
8553"""""""""
8554
8555The '``landingpad``' instruction is used by `LLVM's exception handling
8556system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008557is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008558code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008559defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008560re-entry to the function. The ``resultval`` has the type ``resultty``.
8561
8562Arguments:
8563""""""""""
8564
David Majnemer7fddecc2015-06-17 20:52:32 +00008565The optional
Sean Silvab084af42012-12-07 10:36:55 +00008566``cleanup`` flag indicates that the landing pad block is a cleanup.
8567
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008568A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008569contains the global variable representing the "type" that may be caught
8570or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8571clause takes an array constant as its argument. Use
8572"``[0 x i8**] undef``" for a filter which cannot throw. The
8573'``landingpad``' instruction must contain *at least* one ``clause`` or
8574the ``cleanup`` flag.
8575
8576Semantics:
8577""""""""""
8578
8579The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008580:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008581therefore the "result type" of the ``landingpad`` instruction. As with
8582calling conventions, how the personality function results are
8583represented in LLVM IR is target specific.
8584
8585The clauses are applied in order from top to bottom. If two
8586``landingpad`` instructions are merged together through inlining, the
8587clauses from the calling function are appended to the list of clauses.
8588When the call stack is being unwound due to an exception being thrown,
8589the exception is compared against each ``clause`` in turn. If it doesn't
8590match any of the clauses, and the ``cleanup`` flag is not set, then
8591unwinding continues further up the call stack.
8592
8593The ``landingpad`` instruction has several restrictions:
8594
8595- A landing pad block is a basic block which is the unwind destination
8596 of an '``invoke``' instruction.
8597- A landing pad block must have a '``landingpad``' instruction as its
8598 first non-PHI instruction.
8599- There can be only one '``landingpad``' instruction within the landing
8600 pad block.
8601- A basic block that is not a landing pad block may not include a
8602 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008603
8604Example:
8605""""""""
8606
8607.. code-block:: llvm
8608
8609 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008610 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008611 catch i8** @_ZTIi
8612 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008613 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008614 cleanup
8615 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008616 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008617 catch i8** @_ZTIi
8618 filter [1 x i8**] [@_ZTId]
8619
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008620.. _i_catchpad:
8621
8622'``catchpad``' Instruction
8623^^^^^^^^^^^^^^^^^^^^^^^^^^
8624
8625Syntax:
8626"""""""
8627
8628::
8629
8630 <resultval> = catchpad within <catchswitch> [<args>*]
8631
8632Overview:
8633"""""""""
8634
8635The '``catchpad``' instruction is used by `LLVM's exception handling
8636system <ExceptionHandling.html#overview>`_ to specify that a basic block
8637begins a catch handler --- one where a personality routine attempts to transfer
8638control to catch an exception.
8639
8640Arguments:
8641""""""""""
8642
8643The ``catchswitch`` operand must always be a token produced by a
8644:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8645ensures that each ``catchpad`` has exactly one predecessor block, and it always
8646terminates in a ``catchswitch``.
8647
8648The ``args`` correspond to whatever information the personality routine
8649requires to know if this is an appropriate handler for the exception. Control
8650will transfer to the ``catchpad`` if this is the first appropriate handler for
8651the exception.
8652
8653The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8654``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8655pads.
8656
8657Semantics:
8658""""""""""
8659
8660When the call stack is being unwound due to an exception being thrown, the
8661exception is compared against the ``args``. If it doesn't match, control will
8662not reach the ``catchpad`` instruction. The representation of ``args`` is
8663entirely target and personality function-specific.
8664
8665Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8666instruction must be the first non-phi of its parent basic block.
8667
8668The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8669instructions is described in the
8670`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8671
8672When a ``catchpad`` has been "entered" but not yet "exited" (as
8673described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8674it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8675that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8676
8677Example:
8678""""""""
8679
8680.. code-block:: llvm
8681
8682 dispatch:
8683 %cs = catchswitch within none [label %handler0] unwind to caller
8684 ;; A catch block which can catch an integer.
8685 handler0:
8686 %tok = catchpad within %cs [i8** @_ZTIi]
8687
David Majnemer654e1302015-07-31 17:58:14 +00008688.. _i_cleanuppad:
8689
8690'``cleanuppad``' Instruction
8691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8692
8693Syntax:
8694"""""""
8695
8696::
8697
David Majnemer8a1c45d2015-12-12 05:38:55 +00008698 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008699
8700Overview:
8701"""""""""
8702
8703The '``cleanuppad``' instruction is used by `LLVM's exception handling
8704system <ExceptionHandling.html#overview>`_ to specify that a basic block
8705is a cleanup block --- one where a personality routine attempts to
8706transfer control to run cleanup actions.
8707The ``args`` correspond to whatever additional
8708information the :ref:`personality function <personalityfn>` requires to
8709execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008710The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008711match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8712The ``parent`` argument is the token of the funclet that contains the
8713``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8714this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008715
8716Arguments:
8717""""""""""
8718
8719The instruction takes a list of arbitrary values which are interpreted
8720by the :ref:`personality function <personalityfn>`.
8721
8722Semantics:
8723""""""""""
8724
David Majnemer654e1302015-07-31 17:58:14 +00008725When the call stack is being unwound due to an exception being thrown,
8726the :ref:`personality function <personalityfn>` transfers control to the
8727``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008728As with calling conventions, how the personality function results are
8729represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008730
8731The ``cleanuppad`` instruction has several restrictions:
8732
8733- A cleanup block is a basic block which is the unwind destination of
8734 an exceptional instruction.
8735- A cleanup block must have a '``cleanuppad``' instruction as its
8736 first non-PHI instruction.
8737- There can be only one '``cleanuppad``' instruction within the
8738 cleanup block.
8739- A basic block that is not a cleanup block may not include a
8740 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008741
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008742When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8743described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8744it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8745that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008746
David Majnemer654e1302015-07-31 17:58:14 +00008747Example:
8748""""""""
8749
8750.. code-block:: llvm
8751
David Majnemer8a1c45d2015-12-12 05:38:55 +00008752 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008753
Sean Silvab084af42012-12-07 10:36:55 +00008754.. _intrinsics:
8755
8756Intrinsic Functions
8757===================
8758
8759LLVM supports the notion of an "intrinsic function". These functions
8760have well known names and semantics and are required to follow certain
8761restrictions. Overall, these intrinsics represent an extension mechanism
8762for the LLVM language that does not require changing all of the
8763transformations in LLVM when adding to the language (or the bitcode
8764reader/writer, the parser, etc...).
8765
8766Intrinsic function names must all start with an "``llvm.``" prefix. This
8767prefix is reserved in LLVM for intrinsic names; thus, function names may
8768not begin with this prefix. Intrinsic functions must always be external
8769functions: you cannot define the body of intrinsic functions. Intrinsic
8770functions may only be used in call or invoke instructions: it is illegal
8771to take the address of an intrinsic function. Additionally, because
8772intrinsic functions are part of the LLVM language, it is required if any
8773are added that they be documented here.
8774
8775Some intrinsic functions can be overloaded, i.e., the intrinsic
8776represents a family of functions that perform the same operation but on
8777different data types. Because LLVM can represent over 8 million
8778different integer types, overloading is used commonly to allow an
8779intrinsic function to operate on any integer type. One or more of the
8780argument types or the result type can be overloaded to accept any
8781integer type. Argument types may also be defined as exactly matching a
8782previous argument's type or the result type. This allows an intrinsic
8783function which accepts multiple arguments, but needs all of them to be
8784of the same type, to only be overloaded with respect to a single
8785argument or the result.
8786
8787Overloaded intrinsics will have the names of its overloaded argument
8788types encoded into its function name, each preceded by a period. Only
8789those types which are overloaded result in a name suffix. Arguments
8790whose type is matched against another type do not. For example, the
8791``llvm.ctpop`` function can take an integer of any width and returns an
8792integer of exactly the same integer width. This leads to a family of
8793functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8794``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8795overloaded, and only one type suffix is required. Because the argument's
8796type is matched against the return type, it does not require its own
8797name suffix.
8798
8799To learn how to add an intrinsic function, please see the `Extending
8800LLVM Guide <ExtendingLLVM.html>`_.
8801
8802.. _int_varargs:
8803
8804Variable Argument Handling Intrinsics
8805-------------------------------------
8806
8807Variable argument support is defined in LLVM with the
8808:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8809functions. These functions are related to the similarly named macros
8810defined in the ``<stdarg.h>`` header file.
8811
8812All of these functions operate on arguments that use a target-specific
8813value type "``va_list``". The LLVM assembly language reference manual
8814does not define what this type is, so all transformations should be
8815prepared to handle these functions regardless of the type used.
8816
8817This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8818variable argument handling intrinsic functions are used.
8819
8820.. code-block:: llvm
8821
Tim Northoverab60bb92014-11-02 01:21:51 +00008822 ; This struct is different for every platform. For most platforms,
8823 ; it is merely an i8*.
8824 %struct.va_list = type { i8* }
8825
8826 ; For Unix x86_64 platforms, va_list is the following struct:
8827 ; %struct.va_list = type { i32, i32, i8*, i8* }
8828
Sean Silvab084af42012-12-07 10:36:55 +00008829 define i32 @test(i32 %X, ...) {
8830 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008831 %ap = alloca %struct.va_list
8832 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008833 call void @llvm.va_start(i8* %ap2)
8834
8835 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008836 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008837
8838 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8839 %aq = alloca i8*
8840 %aq2 = bitcast i8** %aq to i8*
8841 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8842 call void @llvm.va_end(i8* %aq2)
8843
8844 ; Stop processing of arguments.
8845 call void @llvm.va_end(i8* %ap2)
8846 ret i32 %tmp
8847 }
8848
8849 declare void @llvm.va_start(i8*)
8850 declare void @llvm.va_copy(i8*, i8*)
8851 declare void @llvm.va_end(i8*)
8852
8853.. _int_va_start:
8854
8855'``llvm.va_start``' Intrinsic
8856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8857
8858Syntax:
8859"""""""
8860
8861::
8862
Nick Lewycky04f6de02013-09-11 22:04:52 +00008863 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008864
8865Overview:
8866"""""""""
8867
8868The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8869subsequent use by ``va_arg``.
8870
8871Arguments:
8872""""""""""
8873
8874The argument is a pointer to a ``va_list`` element to initialize.
8875
8876Semantics:
8877""""""""""
8878
8879The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8880available in C. In a target-dependent way, it initializes the
8881``va_list`` element to which the argument points, so that the next call
8882to ``va_arg`` will produce the first variable argument passed to the
8883function. Unlike the C ``va_start`` macro, this intrinsic does not need
8884to know the last argument of the function as the compiler can figure
8885that out.
8886
8887'``llvm.va_end``' Intrinsic
8888^^^^^^^^^^^^^^^^^^^^^^^^^^^
8889
8890Syntax:
8891"""""""
8892
8893::
8894
8895 declare void @llvm.va_end(i8* <arglist>)
8896
8897Overview:
8898"""""""""
8899
8900The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8901initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8902
8903Arguments:
8904""""""""""
8905
8906The argument is a pointer to a ``va_list`` to destroy.
8907
8908Semantics:
8909""""""""""
8910
8911The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8912available in C. In a target-dependent way, it destroys the ``va_list``
8913element to which the argument points. Calls to
8914:ref:`llvm.va_start <int_va_start>` and
8915:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8916``llvm.va_end``.
8917
8918.. _int_va_copy:
8919
8920'``llvm.va_copy``' Intrinsic
8921^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8922
8923Syntax:
8924"""""""
8925
8926::
8927
8928 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8929
8930Overview:
8931"""""""""
8932
8933The '``llvm.va_copy``' intrinsic copies the current argument position
8934from the source argument list to the destination argument list.
8935
8936Arguments:
8937""""""""""
8938
8939The first argument is a pointer to a ``va_list`` element to initialize.
8940The second argument is a pointer to a ``va_list`` element to copy from.
8941
8942Semantics:
8943""""""""""
8944
8945The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8946available in C. In a target-dependent way, it copies the source
8947``va_list`` element into the destination ``va_list`` element. This
8948intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8949arbitrarily complex and require, for example, memory allocation.
8950
8951Accurate Garbage Collection Intrinsics
8952--------------------------------------
8953
Philip Reamesc5b0f562015-02-25 23:52:06 +00008954LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008955(GC) requires the frontend to generate code containing appropriate intrinsic
8956calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008957intrinsics in a manner which is appropriate for the target collector.
8958
Sean Silvab084af42012-12-07 10:36:55 +00008959These intrinsics allow identification of :ref:`GC roots on the
8960stack <int_gcroot>`, as well as garbage collector implementations that
8961require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008962Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008963these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008964details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008965
Philip Reamesf80bbff2015-02-25 23:45:20 +00008966Experimental Statepoint Intrinsics
8967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8968
8969LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008970collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008971to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008972:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008973differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008974<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008975described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008976
8977.. _int_gcroot:
8978
8979'``llvm.gcroot``' Intrinsic
8980^^^^^^^^^^^^^^^^^^^^^^^^^^^
8981
8982Syntax:
8983"""""""
8984
8985::
8986
8987 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8988
8989Overview:
8990"""""""""
8991
8992The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8993the code generator, and allows some metadata to be associated with it.
8994
8995Arguments:
8996""""""""""
8997
8998The first argument specifies the address of a stack object that contains
8999the root pointer. The second pointer (which must be either a constant or
9000a global value address) contains the meta-data to be associated with the
9001root.
9002
9003Semantics:
9004""""""""""
9005
9006At runtime, a call to this intrinsic stores a null pointer into the
9007"ptrloc" location. At compile-time, the code generator generates
9008information to allow the runtime to find the pointer at GC safe points.
9009The '``llvm.gcroot``' intrinsic may only be used in a function which
9010:ref:`specifies a GC algorithm <gc>`.
9011
9012.. _int_gcread:
9013
9014'``llvm.gcread``' Intrinsic
9015^^^^^^^^^^^^^^^^^^^^^^^^^^^
9016
9017Syntax:
9018"""""""
9019
9020::
9021
9022 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9023
9024Overview:
9025"""""""""
9026
9027The '``llvm.gcread``' intrinsic identifies reads of references from heap
9028locations, allowing garbage collector implementations that require read
9029barriers.
9030
9031Arguments:
9032""""""""""
9033
9034The second argument is the address to read from, which should be an
9035address allocated from the garbage collector. The first object is a
9036pointer to the start of the referenced object, if needed by the language
9037runtime (otherwise null).
9038
9039Semantics:
9040""""""""""
9041
9042The '``llvm.gcread``' intrinsic has the same semantics as a load
9043instruction, but may be replaced with substantially more complex code by
9044the garbage collector runtime, as needed. The '``llvm.gcread``'
9045intrinsic may only be used in a function which :ref:`specifies a GC
9046algorithm <gc>`.
9047
9048.. _int_gcwrite:
9049
9050'``llvm.gcwrite``' Intrinsic
9051^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9052
9053Syntax:
9054"""""""
9055
9056::
9057
9058 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9059
9060Overview:
9061"""""""""
9062
9063The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9064locations, allowing garbage collector implementations that require write
9065barriers (such as generational or reference counting collectors).
9066
9067Arguments:
9068""""""""""
9069
9070The first argument is the reference to store, the second is the start of
9071the object to store it to, and the third is the address of the field of
9072Obj to store to. If the runtime does not require a pointer to the
9073object, Obj may be null.
9074
9075Semantics:
9076""""""""""
9077
9078The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9079instruction, but may be replaced with substantially more complex code by
9080the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9081intrinsic may only be used in a function which :ref:`specifies a GC
9082algorithm <gc>`.
9083
9084Code Generator Intrinsics
9085-------------------------
9086
9087These intrinsics are provided by LLVM to expose special features that
9088may only be implemented with code generator support.
9089
9090'``llvm.returnaddress``' Intrinsic
9091^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9092
9093Syntax:
9094"""""""
9095
9096::
9097
9098 declare i8 *@llvm.returnaddress(i32 <level>)
9099
9100Overview:
9101"""""""""
9102
9103The '``llvm.returnaddress``' intrinsic attempts to compute a
9104target-specific value indicating the return address of the current
9105function or one of its callers.
9106
9107Arguments:
9108""""""""""
9109
9110The argument to this intrinsic indicates which function to return the
9111address for. Zero indicates the calling function, one indicates its
9112caller, etc. The argument is **required** to be a constant integer
9113value.
9114
9115Semantics:
9116""""""""""
9117
9118The '``llvm.returnaddress``' intrinsic either returns a pointer
9119indicating the return address of the specified call frame, or zero if it
9120cannot be identified. The value returned by this intrinsic is likely to
9121be incorrect or 0 for arguments other than zero, so it should only be
9122used for debugging purposes.
9123
9124Note that calling this intrinsic does not prevent function inlining or
9125other aggressive transformations, so the value returned may not be that
9126of the obvious source-language caller.
9127
9128'``llvm.frameaddress``' Intrinsic
9129^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9130
9131Syntax:
9132"""""""
9133
9134::
9135
9136 declare i8* @llvm.frameaddress(i32 <level>)
9137
9138Overview:
9139"""""""""
9140
9141The '``llvm.frameaddress``' intrinsic attempts to return the
9142target-specific frame pointer value for the specified stack frame.
9143
9144Arguments:
9145""""""""""
9146
9147The argument to this intrinsic indicates which function to return the
9148frame pointer for. Zero indicates the calling function, one indicates
9149its caller, etc. The argument is **required** to be a constant integer
9150value.
9151
9152Semantics:
9153""""""""""
9154
9155The '``llvm.frameaddress``' intrinsic either returns a pointer
9156indicating the frame address of the specified call frame, or zero if it
9157cannot be identified. The value returned by this intrinsic is likely to
9158be incorrect or 0 for arguments other than zero, so it should only be
9159used for debugging purposes.
9160
9161Note that calling this intrinsic does not prevent function inlining or
9162other aggressive transformations, so the value returned may not be that
9163of the obvious source-language caller.
9164
Reid Kleckner60381792015-07-07 22:25:32 +00009165'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9167
9168Syntax:
9169"""""""
9170
9171::
9172
Reid Kleckner60381792015-07-07 22:25:32 +00009173 declare void @llvm.localescape(...)
9174 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009175
9176Overview:
9177"""""""""
9178
Reid Kleckner60381792015-07-07 22:25:32 +00009179The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9180allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009181live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009182computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009183
9184Arguments:
9185""""""""""
9186
Reid Kleckner60381792015-07-07 22:25:32 +00009187All arguments to '``llvm.localescape``' must be pointers to static allocas or
9188casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009189once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009190
Reid Kleckner60381792015-07-07 22:25:32 +00009191The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009192bitcasted pointer to a function defined in the current module. The code
9193generator cannot determine the frame allocation offset of functions defined in
9194other modules.
9195
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009196The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9197call frame that is currently live. The return value of '``llvm.localaddress``'
9198is one way to produce such a value, but various runtimes also expose a suitable
9199pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009200
Reid Kleckner60381792015-07-07 22:25:32 +00009201The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9202'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009203
Reid Klecknere9b89312015-01-13 00:48:10 +00009204Semantics:
9205""""""""""
9206
Reid Kleckner60381792015-07-07 22:25:32 +00009207These intrinsics allow a group of functions to share access to a set of local
9208stack allocations of a one parent function. The parent function may call the
9209'``llvm.localescape``' intrinsic once from the function entry block, and the
9210child functions can use '``llvm.localrecover``' to access the escaped allocas.
9211The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9212the escaped allocas are allocated, which would break attempts to use
9213'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009214
Renato Golinc7aea402014-05-06 16:51:25 +00009215.. _int_read_register:
9216.. _int_write_register:
9217
9218'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9219^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9220
9221Syntax:
9222"""""""
9223
9224::
9225
9226 declare i32 @llvm.read_register.i32(metadata)
9227 declare i64 @llvm.read_register.i64(metadata)
9228 declare void @llvm.write_register.i32(metadata, i32 @value)
9229 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009230 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009231
9232Overview:
9233"""""""""
9234
9235The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9236provides access to the named register. The register must be valid on
9237the architecture being compiled to. The type needs to be compatible
9238with the register being read.
9239
9240Semantics:
9241""""""""""
9242
9243The '``llvm.read_register``' intrinsic returns the current value of the
9244register, where possible. The '``llvm.write_register``' intrinsic sets
9245the current value of the register, where possible.
9246
9247This is useful to implement named register global variables that need
9248to always be mapped to a specific register, as is common practice on
9249bare-metal programs including OS kernels.
9250
9251The compiler doesn't check for register availability or use of the used
9252register in surrounding code, including inline assembly. Because of that,
9253allocatable registers are not supported.
9254
9255Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009256architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009257work is needed to support other registers and even more so, allocatable
9258registers.
9259
Sean Silvab084af42012-12-07 10:36:55 +00009260.. _int_stacksave:
9261
9262'``llvm.stacksave``' Intrinsic
9263^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9264
9265Syntax:
9266"""""""
9267
9268::
9269
9270 declare i8* @llvm.stacksave()
9271
9272Overview:
9273"""""""""
9274
9275The '``llvm.stacksave``' intrinsic is used to remember the current state
9276of the function stack, for use with
9277:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9278implementing language features like scoped automatic variable sized
9279arrays in C99.
9280
9281Semantics:
9282""""""""""
9283
9284This intrinsic returns a opaque pointer value that can be passed to
9285:ref:`llvm.stackrestore <int_stackrestore>`. When an
9286``llvm.stackrestore`` intrinsic is executed with a value saved from
9287``llvm.stacksave``, it effectively restores the state of the stack to
9288the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9289practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9290were allocated after the ``llvm.stacksave`` was executed.
9291
9292.. _int_stackrestore:
9293
9294'``llvm.stackrestore``' Intrinsic
9295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9296
9297Syntax:
9298"""""""
9299
9300::
9301
9302 declare void @llvm.stackrestore(i8* %ptr)
9303
9304Overview:
9305"""""""""
9306
9307The '``llvm.stackrestore``' intrinsic is used to restore the state of
9308the function stack to the state it was in when the corresponding
9309:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9310useful for implementing language features like scoped automatic variable
9311sized arrays in C99.
9312
9313Semantics:
9314""""""""""
9315
9316See the description for :ref:`llvm.stacksave <int_stacksave>`.
9317
Yury Gribovd7dbb662015-12-01 11:40:55 +00009318.. _int_get_dynamic_area_offset:
9319
9320'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009321^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009322
9323Syntax:
9324"""""""
9325
9326::
9327
9328 declare i32 @llvm.get.dynamic.area.offset.i32()
9329 declare i64 @llvm.get.dynamic.area.offset.i64()
9330
9331 Overview:
9332 """""""""
9333
9334 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9335 get the offset from native stack pointer to the address of the most
9336 recent dynamic alloca on the caller's stack. These intrinsics are
9337 intendend for use in combination with
9338 :ref:`llvm.stacksave <int_stacksave>` to get a
9339 pointer to the most recent dynamic alloca. This is useful, for example,
9340 for AddressSanitizer's stack unpoisoning routines.
9341
9342Semantics:
9343""""""""""
9344
9345 These intrinsics return a non-negative integer value that can be used to
9346 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9347 on the caller's stack. In particular, for targets where stack grows downwards,
9348 adding this offset to the native stack pointer would get the address of the most
9349 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9350 complicated, because substracting this value from stack pointer would get the address
9351 one past the end of the most recent dynamic alloca.
9352
9353 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9354 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9355 compile-time-known constant value.
9356
9357 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9358 must match the target's generic address space's (address space 0) pointer type.
9359
Sean Silvab084af42012-12-07 10:36:55 +00009360'``llvm.prefetch``' Intrinsic
9361^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9362
9363Syntax:
9364"""""""
9365
9366::
9367
9368 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9369
9370Overview:
9371"""""""""
9372
9373The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9374insert a prefetch instruction if supported; otherwise, it is a noop.
9375Prefetches have no effect on the behavior of the program but can change
9376its performance characteristics.
9377
9378Arguments:
9379""""""""""
9380
9381``address`` is the address to be prefetched, ``rw`` is the specifier
9382determining if the fetch should be for a read (0) or write (1), and
9383``locality`` is a temporal locality specifier ranging from (0) - no
9384locality, to (3) - extremely local keep in cache. The ``cache type``
9385specifies whether the prefetch is performed on the data (1) or
9386instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9387arguments must be constant integers.
9388
9389Semantics:
9390""""""""""
9391
9392This intrinsic does not modify the behavior of the program. In
9393particular, prefetches cannot trap and do not produce a value. On
9394targets that support this intrinsic, the prefetch can provide hints to
9395the processor cache for better performance.
9396
9397'``llvm.pcmarker``' Intrinsic
9398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9399
9400Syntax:
9401"""""""
9402
9403::
9404
9405 declare void @llvm.pcmarker(i32 <id>)
9406
9407Overview:
9408"""""""""
9409
9410The '``llvm.pcmarker``' intrinsic is a method to export a Program
9411Counter (PC) in a region of code to simulators and other tools. The
9412method is target specific, but it is expected that the marker will use
9413exported symbols to transmit the PC of the marker. The marker makes no
9414guarantees that it will remain with any specific instruction after
9415optimizations. It is possible that the presence of a marker will inhibit
9416optimizations. The intended use is to be inserted after optimizations to
9417allow correlations of simulation runs.
9418
9419Arguments:
9420""""""""""
9421
9422``id`` is a numerical id identifying the marker.
9423
9424Semantics:
9425""""""""""
9426
9427This intrinsic does not modify the behavior of the program. Backends
9428that do not support this intrinsic may ignore it.
9429
9430'``llvm.readcyclecounter``' Intrinsic
9431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9432
9433Syntax:
9434"""""""
9435
9436::
9437
9438 declare i64 @llvm.readcyclecounter()
9439
9440Overview:
9441"""""""""
9442
9443The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9444counter register (or similar low latency, high accuracy clocks) on those
9445targets that support it. On X86, it should map to RDTSC. On Alpha, it
9446should map to RPCC. As the backing counters overflow quickly (on the
9447order of 9 seconds on alpha), this should only be used for small
9448timings.
9449
9450Semantics:
9451""""""""""
9452
9453When directly supported, reading the cycle counter should not modify any
9454memory. Implementations are allowed to either return a application
9455specific value or a system wide value. On backends without support, this
9456is lowered to a constant 0.
9457
Tim Northoverbc933082013-05-23 19:11:20 +00009458Note that runtime support may be conditional on the privilege-level code is
9459running at and the host platform.
9460
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009461'``llvm.clear_cache``' Intrinsic
9462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9463
9464Syntax:
9465"""""""
9466
9467::
9468
9469 declare void @llvm.clear_cache(i8*, i8*)
9470
9471Overview:
9472"""""""""
9473
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009474The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9475in the specified range to the execution unit of the processor. On
9476targets with non-unified instruction and data cache, the implementation
9477flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009478
9479Semantics:
9480""""""""""
9481
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009482On platforms with coherent instruction and data caches (e.g. x86), this
9483intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009484cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009485instructions or a system call, if cache flushing requires special
9486privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009487
Sean Silvad02bf3e2014-04-07 22:29:53 +00009488The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009489time library.
Renato Golin93010e62014-03-26 14:01:32 +00009490
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009491This instrinsic does *not* empty the instruction pipeline. Modifications
9492of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009493
Justin Bogner61ba2e32014-12-08 18:02:35 +00009494'``llvm.instrprof_increment``' Intrinsic
9495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9496
9497Syntax:
9498"""""""
9499
9500::
9501
9502 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9503 i32 <num-counters>, i32 <index>)
9504
9505Overview:
9506"""""""""
9507
9508The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9509frontend for use with instrumentation based profiling. These will be
9510lowered by the ``-instrprof`` pass to generate execution counts of a
9511program at runtime.
9512
9513Arguments:
9514""""""""""
9515
9516The first argument is a pointer to a global variable containing the
9517name of the entity being instrumented. This should generally be the
9518(mangled) function name for a set of counters.
9519
9520The second argument is a hash value that can be used by the consumer
9521of the profile data to detect changes to the instrumented source, and
9522the third is the number of counters associated with ``name``. It is an
9523error if ``hash`` or ``num-counters`` differ between two instances of
9524``instrprof_increment`` that refer to the same name.
9525
9526The last argument refers to which of the counters for ``name`` should
9527be incremented. It should be a value between 0 and ``num-counters``.
9528
9529Semantics:
9530""""""""""
9531
9532This intrinsic represents an increment of a profiling counter. It will
9533cause the ``-instrprof`` pass to generate the appropriate data
9534structures and the code to increment the appropriate value, in a
9535format that can be written out by a compiler runtime and consumed via
9536the ``llvm-profdata`` tool.
9537
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009538'``llvm.instrprof_value_profile``' Intrinsic
9539^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9540
9541Syntax:
9542"""""""
9543
9544::
9545
9546 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9547 i64 <value>, i32 <value_kind>,
9548 i32 <index>)
9549
9550Overview:
9551"""""""""
9552
9553The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9554frontend for use with instrumentation based profiling. This will be
9555lowered by the ``-instrprof`` pass to find out the target values,
9556instrumented expressions take in a program at runtime.
9557
9558Arguments:
9559""""""""""
9560
9561The first argument is a pointer to a global variable containing the
9562name of the entity being instrumented. ``name`` should generally be the
9563(mangled) function name for a set of counters.
9564
9565The second argument is a hash value that can be used by the consumer
9566of the profile data to detect changes to the instrumented source. It
9567is an error if ``hash`` differs between two instances of
9568``llvm.instrprof_*`` that refer to the same name.
9569
9570The third argument is the value of the expression being profiled. The profiled
9571expression's value should be representable as an unsigned 64-bit value. The
9572fourth argument represents the kind of value profiling that is being done. The
9573supported value profiling kinds are enumerated through the
9574``InstrProfValueKind`` type declared in the
9575``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9576index of the instrumented expression within ``name``. It should be >= 0.
9577
9578Semantics:
9579""""""""""
9580
9581This intrinsic represents the point where a call to a runtime routine
9582should be inserted for value profiling of target expressions. ``-instrprof``
9583pass will generate the appropriate data structures and replace the
9584``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9585runtime library with proper arguments.
9586
Sean Silvab084af42012-12-07 10:36:55 +00009587Standard C Library Intrinsics
9588-----------------------------
9589
9590LLVM provides intrinsics for a few important standard C library
9591functions. These intrinsics allow source-language front-ends to pass
9592information about the alignment of the pointer arguments to the code
9593generator, providing opportunity for more efficient code generation.
9594
9595.. _int_memcpy:
9596
9597'``llvm.memcpy``' Intrinsic
9598^^^^^^^^^^^^^^^^^^^^^^^^^^^
9599
9600Syntax:
9601"""""""
9602
9603This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9604integer bit width and for different address spaces. Not all targets
9605support all bit widths however.
9606
9607::
9608
9609 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9610 i32 <len>, i32 <align>, i1 <isvolatile>)
9611 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9612 i64 <len>, i32 <align>, i1 <isvolatile>)
9613
9614Overview:
9615"""""""""
9616
9617The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9618source location to the destination location.
9619
9620Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9621intrinsics do not return a value, takes extra alignment/isvolatile
9622arguments and the pointers can be in specified address spaces.
9623
9624Arguments:
9625""""""""""
9626
9627The first argument is a pointer to the destination, the second is a
9628pointer to the source. The third argument is an integer argument
9629specifying the number of bytes to copy, the fourth argument is the
9630alignment of the source and destination locations, and the fifth is a
9631boolean indicating a volatile access.
9632
9633If the call to this intrinsic has an alignment value that is not 0 or 1,
9634then the caller guarantees that both the source and destination pointers
9635are aligned to that boundary.
9636
9637If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9638a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9639very cleanly specified and it is unwise to depend on it.
9640
9641Semantics:
9642""""""""""
9643
9644The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9645source location to the destination location, which are not allowed to
9646overlap. It copies "len" bytes of memory over. If the argument is known
9647to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009648argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009649
9650'``llvm.memmove``' Intrinsic
9651^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9652
9653Syntax:
9654"""""""
9655
9656This is an overloaded intrinsic. You can use llvm.memmove on any integer
9657bit width and for different address space. Not all targets support all
9658bit widths however.
9659
9660::
9661
9662 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9663 i32 <len>, i32 <align>, i1 <isvolatile>)
9664 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9665 i64 <len>, i32 <align>, i1 <isvolatile>)
9666
9667Overview:
9668"""""""""
9669
9670The '``llvm.memmove.*``' intrinsics move a block of memory from the
9671source location to the destination location. It is similar to the
9672'``llvm.memcpy``' intrinsic but allows the two memory locations to
9673overlap.
9674
9675Note that, unlike the standard libc function, the ``llvm.memmove.*``
9676intrinsics do not return a value, takes extra alignment/isvolatile
9677arguments and the pointers can be in specified address spaces.
9678
9679Arguments:
9680""""""""""
9681
9682The first argument is a pointer to the destination, the second is a
9683pointer to the source. The third argument is an integer argument
9684specifying the number of bytes to copy, the fourth argument is the
9685alignment of the source and destination locations, and the fifth is a
9686boolean indicating a volatile access.
9687
9688If the call to this intrinsic has an alignment value that is not 0 or 1,
9689then the caller guarantees that the source and destination pointers are
9690aligned to that boundary.
9691
9692If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9693is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9694not very cleanly specified and it is unwise to depend on it.
9695
9696Semantics:
9697""""""""""
9698
9699The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9700source location to the destination location, which may overlap. It
9701copies "len" bytes of memory over. If the argument is known to be
9702aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009703otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009704
9705'``llvm.memset.*``' Intrinsics
9706^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9707
9708Syntax:
9709"""""""
9710
9711This is an overloaded intrinsic. You can use llvm.memset on any integer
9712bit width and for different address spaces. However, not all targets
9713support all bit widths.
9714
9715::
9716
9717 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9718 i32 <len>, i32 <align>, i1 <isvolatile>)
9719 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9720 i64 <len>, i32 <align>, i1 <isvolatile>)
9721
9722Overview:
9723"""""""""
9724
9725The '``llvm.memset.*``' intrinsics fill a block of memory with a
9726particular byte value.
9727
9728Note that, unlike the standard libc function, the ``llvm.memset``
9729intrinsic does not return a value and takes extra alignment/volatile
9730arguments. Also, the destination can be in an arbitrary address space.
9731
9732Arguments:
9733""""""""""
9734
9735The first argument is a pointer to the destination to fill, the second
9736is the byte value with which to fill it, the third argument is an
9737integer argument specifying the number of bytes to fill, and the fourth
9738argument is the known alignment of the destination location.
9739
9740If the call to this intrinsic has an alignment value that is not 0 or 1,
9741then the caller guarantees that the destination pointer is aligned to
9742that boundary.
9743
9744If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9745a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9746very cleanly specified and it is unwise to depend on it.
9747
9748Semantics:
9749""""""""""
9750
9751The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9752at the destination location. If the argument is known to be aligned to
9753some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009754it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009755
9756'``llvm.sqrt.*``' Intrinsic
9757^^^^^^^^^^^^^^^^^^^^^^^^^^^
9758
9759Syntax:
9760"""""""
9761
9762This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9763floating point or vector of floating point type. Not all targets support
9764all types however.
9765
9766::
9767
9768 declare float @llvm.sqrt.f32(float %Val)
9769 declare double @llvm.sqrt.f64(double %Val)
9770 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9771 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9772 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9773
9774Overview:
9775"""""""""
9776
9777The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9778returning the same value as the libm '``sqrt``' functions would. Unlike
9779``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9780negative numbers other than -0.0 (which allows for better optimization,
9781because there is no need to worry about errno being set).
9782``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9783
9784Arguments:
9785""""""""""
9786
9787The argument and return value are floating point numbers of the same
9788type.
9789
9790Semantics:
9791""""""""""
9792
9793This function returns the sqrt of the specified operand if it is a
9794nonnegative floating point number.
9795
9796'``llvm.powi.*``' Intrinsic
9797^^^^^^^^^^^^^^^^^^^^^^^^^^^
9798
9799Syntax:
9800"""""""
9801
9802This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9803floating point or vector of floating point type. Not all targets support
9804all types however.
9805
9806::
9807
9808 declare float @llvm.powi.f32(float %Val, i32 %power)
9809 declare double @llvm.powi.f64(double %Val, i32 %power)
9810 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9811 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9812 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9813
9814Overview:
9815"""""""""
9816
9817The '``llvm.powi.*``' intrinsics return the first operand raised to the
9818specified (positive or negative) power. The order of evaluation of
9819multiplications is not defined. When a vector of floating point type is
9820used, the second argument remains a scalar integer value.
9821
9822Arguments:
9823""""""""""
9824
9825The second argument is an integer power, and the first is a value to
9826raise to that power.
9827
9828Semantics:
9829""""""""""
9830
9831This function returns the first value raised to the second power with an
9832unspecified sequence of rounding operations.
9833
9834'``llvm.sin.*``' Intrinsic
9835^^^^^^^^^^^^^^^^^^^^^^^^^^
9836
9837Syntax:
9838"""""""
9839
9840This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9841floating point or vector of floating point type. Not all targets support
9842all types however.
9843
9844::
9845
9846 declare float @llvm.sin.f32(float %Val)
9847 declare double @llvm.sin.f64(double %Val)
9848 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9849 declare fp128 @llvm.sin.f128(fp128 %Val)
9850 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9851
9852Overview:
9853"""""""""
9854
9855The '``llvm.sin.*``' intrinsics return the sine of the operand.
9856
9857Arguments:
9858""""""""""
9859
9860The argument and return value are floating point numbers of the same
9861type.
9862
9863Semantics:
9864""""""""""
9865
9866This function returns the sine of the specified operand, returning the
9867same values as the libm ``sin`` functions would, and handles error
9868conditions in the same way.
9869
9870'``llvm.cos.*``' Intrinsic
9871^^^^^^^^^^^^^^^^^^^^^^^^^^
9872
9873Syntax:
9874"""""""
9875
9876This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9877floating point or vector of floating point type. Not all targets support
9878all types however.
9879
9880::
9881
9882 declare float @llvm.cos.f32(float %Val)
9883 declare double @llvm.cos.f64(double %Val)
9884 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9885 declare fp128 @llvm.cos.f128(fp128 %Val)
9886 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9887
9888Overview:
9889"""""""""
9890
9891The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9892
9893Arguments:
9894""""""""""
9895
9896The argument and return value are floating point numbers of the same
9897type.
9898
9899Semantics:
9900""""""""""
9901
9902This function returns the cosine of the specified operand, returning the
9903same values as the libm ``cos`` functions would, and handles error
9904conditions in the same way.
9905
9906'``llvm.pow.*``' Intrinsic
9907^^^^^^^^^^^^^^^^^^^^^^^^^^
9908
9909Syntax:
9910"""""""
9911
9912This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9913floating point or vector of floating point type. Not all targets support
9914all types however.
9915
9916::
9917
9918 declare float @llvm.pow.f32(float %Val, float %Power)
9919 declare double @llvm.pow.f64(double %Val, double %Power)
9920 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9921 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9922 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9923
9924Overview:
9925"""""""""
9926
9927The '``llvm.pow.*``' intrinsics return the first operand raised to the
9928specified (positive or negative) power.
9929
9930Arguments:
9931""""""""""
9932
9933The second argument is a floating point power, and the first is a value
9934to raise to that power.
9935
9936Semantics:
9937""""""""""
9938
9939This function returns the first value raised to the second power,
9940returning the same values as the libm ``pow`` functions would, and
9941handles error conditions in the same way.
9942
9943'``llvm.exp.*``' Intrinsic
9944^^^^^^^^^^^^^^^^^^^^^^^^^^
9945
9946Syntax:
9947"""""""
9948
9949This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9950floating point or vector of floating point type. Not all targets support
9951all types however.
9952
9953::
9954
9955 declare float @llvm.exp.f32(float %Val)
9956 declare double @llvm.exp.f64(double %Val)
9957 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9958 declare fp128 @llvm.exp.f128(fp128 %Val)
9959 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9960
9961Overview:
9962"""""""""
9963
9964The '``llvm.exp.*``' intrinsics perform the exp function.
9965
9966Arguments:
9967""""""""""
9968
9969The argument and return value are floating point numbers of the same
9970type.
9971
9972Semantics:
9973""""""""""
9974
9975This function returns the same values as the libm ``exp`` functions
9976would, and handles error conditions in the same way.
9977
9978'``llvm.exp2.*``' Intrinsic
9979^^^^^^^^^^^^^^^^^^^^^^^^^^^
9980
9981Syntax:
9982"""""""
9983
9984This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9985floating point or vector of floating point type. Not all targets support
9986all types however.
9987
9988::
9989
9990 declare float @llvm.exp2.f32(float %Val)
9991 declare double @llvm.exp2.f64(double %Val)
9992 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9993 declare fp128 @llvm.exp2.f128(fp128 %Val)
9994 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9995
9996Overview:
9997"""""""""
9998
9999The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10000
10001Arguments:
10002""""""""""
10003
10004The argument and return value are floating point numbers of the same
10005type.
10006
10007Semantics:
10008""""""""""
10009
10010This function returns the same values as the libm ``exp2`` functions
10011would, and handles error conditions in the same way.
10012
10013'``llvm.log.*``' Intrinsic
10014^^^^^^^^^^^^^^^^^^^^^^^^^^
10015
10016Syntax:
10017"""""""
10018
10019This is an overloaded intrinsic. You can use ``llvm.log`` on any
10020floating point or vector of floating point type. Not all targets support
10021all types however.
10022
10023::
10024
10025 declare float @llvm.log.f32(float %Val)
10026 declare double @llvm.log.f64(double %Val)
10027 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10028 declare fp128 @llvm.log.f128(fp128 %Val)
10029 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10030
10031Overview:
10032"""""""""
10033
10034The '``llvm.log.*``' intrinsics perform the log function.
10035
10036Arguments:
10037""""""""""
10038
10039The argument and return value are floating point numbers of the same
10040type.
10041
10042Semantics:
10043""""""""""
10044
10045This function returns the same values as the libm ``log`` functions
10046would, and handles error conditions in the same way.
10047
10048'``llvm.log10.*``' Intrinsic
10049^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10050
10051Syntax:
10052"""""""
10053
10054This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10055floating point or vector of floating point type. Not all targets support
10056all types however.
10057
10058::
10059
10060 declare float @llvm.log10.f32(float %Val)
10061 declare double @llvm.log10.f64(double %Val)
10062 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10063 declare fp128 @llvm.log10.f128(fp128 %Val)
10064 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10065
10066Overview:
10067"""""""""
10068
10069The '``llvm.log10.*``' intrinsics perform the log10 function.
10070
10071Arguments:
10072""""""""""
10073
10074The argument and return value are floating point numbers of the same
10075type.
10076
10077Semantics:
10078""""""""""
10079
10080This function returns the same values as the libm ``log10`` functions
10081would, and handles error conditions in the same way.
10082
10083'``llvm.log2.*``' Intrinsic
10084^^^^^^^^^^^^^^^^^^^^^^^^^^^
10085
10086Syntax:
10087"""""""
10088
10089This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10090floating point or vector of floating point type. Not all targets support
10091all types however.
10092
10093::
10094
10095 declare float @llvm.log2.f32(float %Val)
10096 declare double @llvm.log2.f64(double %Val)
10097 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10098 declare fp128 @llvm.log2.f128(fp128 %Val)
10099 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10100
10101Overview:
10102"""""""""
10103
10104The '``llvm.log2.*``' intrinsics perform the log2 function.
10105
10106Arguments:
10107""""""""""
10108
10109The argument and return value are floating point numbers of the same
10110type.
10111
10112Semantics:
10113""""""""""
10114
10115This function returns the same values as the libm ``log2`` functions
10116would, and handles error conditions in the same way.
10117
10118'``llvm.fma.*``' Intrinsic
10119^^^^^^^^^^^^^^^^^^^^^^^^^^
10120
10121Syntax:
10122"""""""
10123
10124This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10125floating point or vector of floating point type. Not all targets support
10126all types however.
10127
10128::
10129
10130 declare float @llvm.fma.f32(float %a, float %b, float %c)
10131 declare double @llvm.fma.f64(double %a, double %b, double %c)
10132 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10133 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10134 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10135
10136Overview:
10137"""""""""
10138
10139The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10140operation.
10141
10142Arguments:
10143""""""""""
10144
10145The argument and return value are floating point numbers of the same
10146type.
10147
10148Semantics:
10149""""""""""
10150
10151This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010152would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010153
10154'``llvm.fabs.*``' Intrinsic
10155^^^^^^^^^^^^^^^^^^^^^^^^^^^
10156
10157Syntax:
10158"""""""
10159
10160This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10161floating point or vector of floating point type. Not all targets support
10162all types however.
10163
10164::
10165
10166 declare float @llvm.fabs.f32(float %Val)
10167 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010168 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010169 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010170 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010171
10172Overview:
10173"""""""""
10174
10175The '``llvm.fabs.*``' intrinsics return the absolute value of the
10176operand.
10177
10178Arguments:
10179""""""""""
10180
10181The argument and return value are floating point numbers of the same
10182type.
10183
10184Semantics:
10185""""""""""
10186
10187This function returns the same values as the libm ``fabs`` functions
10188would, and handles error conditions in the same way.
10189
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010190'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010191^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010192
10193Syntax:
10194"""""""
10195
10196This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10197floating point or vector of floating point type. Not all targets support
10198all types however.
10199
10200::
10201
Matt Arsenault64313c92014-10-22 18:25:02 +000010202 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10203 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10204 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10205 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10206 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010207
10208Overview:
10209"""""""""
10210
10211The '``llvm.minnum.*``' intrinsics return the minimum of the two
10212arguments.
10213
10214
10215Arguments:
10216""""""""""
10217
10218The arguments and return value are floating point numbers of the same
10219type.
10220
10221Semantics:
10222""""""""""
10223
10224Follows the IEEE-754 semantics for minNum, which also match for libm's
10225fmin.
10226
10227If either operand is a NaN, returns the other non-NaN operand. Returns
10228NaN only if both operands are NaN. If the operands compare equal,
10229returns a value that compares equal to both operands. This means that
10230fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10231
10232'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010234
10235Syntax:
10236"""""""
10237
10238This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10239floating point or vector of floating point type. Not all targets support
10240all types however.
10241
10242::
10243
Matt Arsenault64313c92014-10-22 18:25:02 +000010244 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10245 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10246 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10247 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10248 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010249
10250Overview:
10251"""""""""
10252
10253The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10254arguments.
10255
10256
10257Arguments:
10258""""""""""
10259
10260The arguments and return value are floating point numbers of the same
10261type.
10262
10263Semantics:
10264""""""""""
10265Follows the IEEE-754 semantics for maxNum, which also match for libm's
10266fmax.
10267
10268If either operand is a NaN, returns the other non-NaN operand. Returns
10269NaN only if both operands are NaN. If the operands compare equal,
10270returns a value that compares equal to both operands. This means that
10271fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10272
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010273'``llvm.copysign.*``' Intrinsic
10274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10275
10276Syntax:
10277"""""""
10278
10279This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10280floating point or vector of floating point type. Not all targets support
10281all types however.
10282
10283::
10284
10285 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10286 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10287 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10288 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10289 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10290
10291Overview:
10292"""""""""
10293
10294The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10295first operand and the sign of the second operand.
10296
10297Arguments:
10298""""""""""
10299
10300The arguments and return value are floating point numbers of the same
10301type.
10302
10303Semantics:
10304""""""""""
10305
10306This function returns the same values as the libm ``copysign``
10307functions would, and handles error conditions in the same way.
10308
Sean Silvab084af42012-12-07 10:36:55 +000010309'``llvm.floor.*``' Intrinsic
10310^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10311
10312Syntax:
10313"""""""
10314
10315This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10316floating point or vector of floating point type. Not all targets support
10317all types however.
10318
10319::
10320
10321 declare float @llvm.floor.f32(float %Val)
10322 declare double @llvm.floor.f64(double %Val)
10323 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10324 declare fp128 @llvm.floor.f128(fp128 %Val)
10325 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10326
10327Overview:
10328"""""""""
10329
10330The '``llvm.floor.*``' intrinsics return the floor of the operand.
10331
10332Arguments:
10333""""""""""
10334
10335The argument and return value are floating point numbers of the same
10336type.
10337
10338Semantics:
10339""""""""""
10340
10341This function returns the same values as the libm ``floor`` functions
10342would, and handles error conditions in the same way.
10343
10344'``llvm.ceil.*``' Intrinsic
10345^^^^^^^^^^^^^^^^^^^^^^^^^^^
10346
10347Syntax:
10348"""""""
10349
10350This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10351floating point or vector of floating point type. Not all targets support
10352all types however.
10353
10354::
10355
10356 declare float @llvm.ceil.f32(float %Val)
10357 declare double @llvm.ceil.f64(double %Val)
10358 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10359 declare fp128 @llvm.ceil.f128(fp128 %Val)
10360 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10361
10362Overview:
10363"""""""""
10364
10365The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10366
10367Arguments:
10368""""""""""
10369
10370The argument and return value are floating point numbers of the same
10371type.
10372
10373Semantics:
10374""""""""""
10375
10376This function returns the same values as the libm ``ceil`` functions
10377would, and handles error conditions in the same way.
10378
10379'``llvm.trunc.*``' Intrinsic
10380^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10381
10382Syntax:
10383"""""""
10384
10385This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10386floating point or vector of floating point type. Not all targets support
10387all types however.
10388
10389::
10390
10391 declare float @llvm.trunc.f32(float %Val)
10392 declare double @llvm.trunc.f64(double %Val)
10393 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10394 declare fp128 @llvm.trunc.f128(fp128 %Val)
10395 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10396
10397Overview:
10398"""""""""
10399
10400The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10401nearest integer not larger in magnitude than the operand.
10402
10403Arguments:
10404""""""""""
10405
10406The argument and return value are floating point numbers of the same
10407type.
10408
10409Semantics:
10410""""""""""
10411
10412This function returns the same values as the libm ``trunc`` functions
10413would, and handles error conditions in the same way.
10414
10415'``llvm.rint.*``' Intrinsic
10416^^^^^^^^^^^^^^^^^^^^^^^^^^^
10417
10418Syntax:
10419"""""""
10420
10421This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10422floating point or vector of floating point type. Not all targets support
10423all types however.
10424
10425::
10426
10427 declare float @llvm.rint.f32(float %Val)
10428 declare double @llvm.rint.f64(double %Val)
10429 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10430 declare fp128 @llvm.rint.f128(fp128 %Val)
10431 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10432
10433Overview:
10434"""""""""
10435
10436The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10437nearest integer. It may raise an inexact floating-point exception if the
10438operand isn't an integer.
10439
10440Arguments:
10441""""""""""
10442
10443The argument and return value are floating point numbers of the same
10444type.
10445
10446Semantics:
10447""""""""""
10448
10449This function returns the same values as the libm ``rint`` functions
10450would, and handles error conditions in the same way.
10451
10452'``llvm.nearbyint.*``' Intrinsic
10453^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10454
10455Syntax:
10456"""""""
10457
10458This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10459floating point or vector of floating point type. Not all targets support
10460all types however.
10461
10462::
10463
10464 declare float @llvm.nearbyint.f32(float %Val)
10465 declare double @llvm.nearbyint.f64(double %Val)
10466 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10467 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10468 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10469
10470Overview:
10471"""""""""
10472
10473The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10474nearest integer.
10475
10476Arguments:
10477""""""""""
10478
10479The argument and return value are floating point numbers of the same
10480type.
10481
10482Semantics:
10483""""""""""
10484
10485This function returns the same values as the libm ``nearbyint``
10486functions would, and handles error conditions in the same way.
10487
Hal Finkel171817e2013-08-07 22:49:12 +000010488'``llvm.round.*``' Intrinsic
10489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10490
10491Syntax:
10492"""""""
10493
10494This is an overloaded intrinsic. You can use ``llvm.round`` on any
10495floating point or vector of floating point type. Not all targets support
10496all types however.
10497
10498::
10499
10500 declare float @llvm.round.f32(float %Val)
10501 declare double @llvm.round.f64(double %Val)
10502 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10503 declare fp128 @llvm.round.f128(fp128 %Val)
10504 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10505
10506Overview:
10507"""""""""
10508
10509The '``llvm.round.*``' intrinsics returns the operand rounded to the
10510nearest integer.
10511
10512Arguments:
10513""""""""""
10514
10515The argument and return value are floating point numbers of the same
10516type.
10517
10518Semantics:
10519""""""""""
10520
10521This function returns the same values as the libm ``round``
10522functions would, and handles error conditions in the same way.
10523
Sean Silvab084af42012-12-07 10:36:55 +000010524Bit Manipulation Intrinsics
10525---------------------------
10526
10527LLVM provides intrinsics for a few important bit manipulation
10528operations. These allow efficient code generation for some algorithms.
10529
James Molloy90111f72015-11-12 12:29:09 +000010530'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010531^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010532
10533Syntax:
10534"""""""
10535
10536This is an overloaded intrinsic function. You can use bitreverse on any
10537integer type.
10538
10539::
10540
10541 declare i16 @llvm.bitreverse.i16(i16 <id>)
10542 declare i32 @llvm.bitreverse.i32(i32 <id>)
10543 declare i64 @llvm.bitreverse.i64(i64 <id>)
10544
10545Overview:
10546"""""""""
10547
10548The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010549bitpattern of an integer value; for example ``0b10110110`` becomes
10550``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010551
10552Semantics:
10553""""""""""
10554
10555The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10556``M`` in the input moved to bit ``N-M`` in the output.
10557
Sean Silvab084af42012-12-07 10:36:55 +000010558'``llvm.bswap.*``' Intrinsics
10559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10560
10561Syntax:
10562"""""""
10563
10564This is an overloaded intrinsic function. You can use bswap on any
10565integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10566
10567::
10568
10569 declare i16 @llvm.bswap.i16(i16 <id>)
10570 declare i32 @llvm.bswap.i32(i32 <id>)
10571 declare i64 @llvm.bswap.i64(i64 <id>)
10572
10573Overview:
10574"""""""""
10575
10576The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10577values with an even number of bytes (positive multiple of 16 bits).
10578These are useful for performing operations on data that is not in the
10579target's native byte order.
10580
10581Semantics:
10582""""""""""
10583
10584The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10585and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10586intrinsic returns an i32 value that has the four bytes of the input i32
10587swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10588returned i32 will have its bytes in 3, 2, 1, 0 order. The
10589``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10590concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10591respectively).
10592
10593'``llvm.ctpop.*``' Intrinsic
10594^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10595
10596Syntax:
10597"""""""
10598
10599This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10600bit width, or on any vector with integer elements. Not all targets
10601support all bit widths or vector types, however.
10602
10603::
10604
10605 declare i8 @llvm.ctpop.i8(i8 <src>)
10606 declare i16 @llvm.ctpop.i16(i16 <src>)
10607 declare i32 @llvm.ctpop.i32(i32 <src>)
10608 declare i64 @llvm.ctpop.i64(i64 <src>)
10609 declare i256 @llvm.ctpop.i256(i256 <src>)
10610 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10611
10612Overview:
10613"""""""""
10614
10615The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10616in a value.
10617
10618Arguments:
10619""""""""""
10620
10621The only argument is the value to be counted. The argument may be of any
10622integer type, or a vector with integer elements. The return type must
10623match the argument type.
10624
10625Semantics:
10626""""""""""
10627
10628The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10629each element of a vector.
10630
10631'``llvm.ctlz.*``' Intrinsic
10632^^^^^^^^^^^^^^^^^^^^^^^^^^^
10633
10634Syntax:
10635"""""""
10636
10637This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10638integer bit width, or any vector whose elements are integers. Not all
10639targets support all bit widths or vector types, however.
10640
10641::
10642
10643 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10644 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10645 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10646 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10647 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010648 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010649
10650Overview:
10651"""""""""
10652
10653The '``llvm.ctlz``' family of intrinsic functions counts the number of
10654leading zeros in a variable.
10655
10656Arguments:
10657""""""""""
10658
10659The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010660any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010661type must match the first argument type.
10662
10663The second argument must be a constant and is a flag to indicate whether
10664the intrinsic should ensure that a zero as the first argument produces a
10665defined result. Historically some architectures did not provide a
10666defined result for zero values as efficiently, and many algorithms are
10667now predicated on avoiding zero-value inputs.
10668
10669Semantics:
10670""""""""""
10671
10672The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10673zeros in a variable, or within each element of the vector. If
10674``src == 0`` then the result is the size in bits of the type of ``src``
10675if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10676``llvm.ctlz(i32 2) = 30``.
10677
10678'``llvm.cttz.*``' Intrinsic
10679^^^^^^^^^^^^^^^^^^^^^^^^^^^
10680
10681Syntax:
10682"""""""
10683
10684This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10685integer bit width, or any vector of integer elements. Not all targets
10686support all bit widths or vector types, however.
10687
10688::
10689
10690 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10691 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10692 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10693 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10694 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010695 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010696
10697Overview:
10698"""""""""
10699
10700The '``llvm.cttz``' family of intrinsic functions counts the number of
10701trailing zeros.
10702
10703Arguments:
10704""""""""""
10705
10706The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010707any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010708type must match the first argument type.
10709
10710The second argument must be a constant and is a flag to indicate whether
10711the intrinsic should ensure that a zero as the first argument produces a
10712defined result. Historically some architectures did not provide a
10713defined result for zero values as efficiently, and many algorithms are
10714now predicated on avoiding zero-value inputs.
10715
10716Semantics:
10717""""""""""
10718
10719The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10720zeros in a variable, or within each element of a vector. If ``src == 0``
10721then the result is the size in bits of the type of ``src`` if
10722``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10723``llvm.cttz(2) = 1``.
10724
Philip Reames34843ae2015-03-05 05:55:55 +000010725.. _int_overflow:
10726
Sean Silvab084af42012-12-07 10:36:55 +000010727Arithmetic with Overflow Intrinsics
10728-----------------------------------
10729
10730LLVM provides intrinsics for some arithmetic with overflow operations.
10731
10732'``llvm.sadd.with.overflow.*``' Intrinsics
10733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10734
10735Syntax:
10736"""""""
10737
10738This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10739on any integer bit width.
10740
10741::
10742
10743 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10744 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10745 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10746
10747Overview:
10748"""""""""
10749
10750The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10751a signed addition of the two arguments, and indicate whether an overflow
10752occurred during the signed summation.
10753
10754Arguments:
10755""""""""""
10756
10757The arguments (%a and %b) and the first element of the result structure
10758may be of integer types of any bit width, but they must have the same
10759bit width. The second element of the result structure must be of type
10760``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10761addition.
10762
10763Semantics:
10764""""""""""
10765
10766The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010767a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010768first element of which is the signed summation, and the second element
10769of which is a bit specifying if the signed summation resulted in an
10770overflow.
10771
10772Examples:
10773"""""""""
10774
10775.. code-block:: llvm
10776
10777 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10778 %sum = extractvalue {i32, i1} %res, 0
10779 %obit = extractvalue {i32, i1} %res, 1
10780 br i1 %obit, label %overflow, label %normal
10781
10782'``llvm.uadd.with.overflow.*``' Intrinsics
10783^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10784
10785Syntax:
10786"""""""
10787
10788This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10789on any integer bit width.
10790
10791::
10792
10793 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10794 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10795 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10796
10797Overview:
10798"""""""""
10799
10800The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10801an unsigned addition of the two arguments, and indicate whether a carry
10802occurred during the unsigned summation.
10803
10804Arguments:
10805""""""""""
10806
10807The arguments (%a and %b) and the first element of the result structure
10808may be of integer types of any bit width, but they must have the same
10809bit width. The second element of the result structure must be of type
10810``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10811addition.
10812
10813Semantics:
10814""""""""""
10815
10816The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010817an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010818first element of which is the sum, and the second element of which is a
10819bit specifying if the unsigned summation resulted in a carry.
10820
10821Examples:
10822"""""""""
10823
10824.. code-block:: llvm
10825
10826 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10827 %sum = extractvalue {i32, i1} %res, 0
10828 %obit = extractvalue {i32, i1} %res, 1
10829 br i1 %obit, label %carry, label %normal
10830
10831'``llvm.ssub.with.overflow.*``' Intrinsics
10832^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10833
10834Syntax:
10835"""""""
10836
10837This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10838on any integer bit width.
10839
10840::
10841
10842 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10843 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10844 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10845
10846Overview:
10847"""""""""
10848
10849The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10850a signed subtraction of the two arguments, and indicate whether an
10851overflow occurred during the signed subtraction.
10852
10853Arguments:
10854""""""""""
10855
10856The arguments (%a and %b) and the first element of the result structure
10857may be of integer types of any bit width, but they must have the same
10858bit width. The second element of the result structure must be of type
10859``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10860subtraction.
10861
10862Semantics:
10863""""""""""
10864
10865The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010866a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010867first element of which is the subtraction, and the second element of
10868which is a bit specifying if the signed subtraction resulted in an
10869overflow.
10870
10871Examples:
10872"""""""""
10873
10874.. code-block:: llvm
10875
10876 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10877 %sum = extractvalue {i32, i1} %res, 0
10878 %obit = extractvalue {i32, i1} %res, 1
10879 br i1 %obit, label %overflow, label %normal
10880
10881'``llvm.usub.with.overflow.*``' Intrinsics
10882^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10883
10884Syntax:
10885"""""""
10886
10887This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10888on any integer bit width.
10889
10890::
10891
10892 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10893 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10894 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10895
10896Overview:
10897"""""""""
10898
10899The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10900an unsigned subtraction of the two arguments, and indicate whether an
10901overflow occurred during the unsigned subtraction.
10902
10903Arguments:
10904""""""""""
10905
10906The arguments (%a and %b) and the first element of the result structure
10907may be of integer types of any bit width, but they must have the same
10908bit width. The second element of the result structure must be of type
10909``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10910subtraction.
10911
10912Semantics:
10913""""""""""
10914
10915The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010916an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010917the first element of which is the subtraction, and the second element of
10918which is a bit specifying if the unsigned subtraction resulted in an
10919overflow.
10920
10921Examples:
10922"""""""""
10923
10924.. code-block:: llvm
10925
10926 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10927 %sum = extractvalue {i32, i1} %res, 0
10928 %obit = extractvalue {i32, i1} %res, 1
10929 br i1 %obit, label %overflow, label %normal
10930
10931'``llvm.smul.with.overflow.*``' Intrinsics
10932^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10933
10934Syntax:
10935"""""""
10936
10937This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10938on any integer bit width.
10939
10940::
10941
10942 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10943 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10944 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10945
10946Overview:
10947"""""""""
10948
10949The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10950a signed multiplication of the two arguments, and indicate whether an
10951overflow occurred during the signed multiplication.
10952
10953Arguments:
10954""""""""""
10955
10956The arguments (%a and %b) and the first element of the result structure
10957may be of integer types of any bit width, but they must have the same
10958bit width. The second element of the result structure must be of type
10959``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10960multiplication.
10961
10962Semantics:
10963""""""""""
10964
10965The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010966a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010967the first element of which is the multiplication, and the second element
10968of which is a bit specifying if the signed multiplication resulted in an
10969overflow.
10970
10971Examples:
10972"""""""""
10973
10974.. code-block:: llvm
10975
10976 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10977 %sum = extractvalue {i32, i1} %res, 0
10978 %obit = extractvalue {i32, i1} %res, 1
10979 br i1 %obit, label %overflow, label %normal
10980
10981'``llvm.umul.with.overflow.*``' Intrinsics
10982^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10983
10984Syntax:
10985"""""""
10986
10987This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10988on any integer bit width.
10989
10990::
10991
10992 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10993 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10994 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10995
10996Overview:
10997"""""""""
10998
10999The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11000a unsigned multiplication of the two arguments, and indicate whether an
11001overflow occurred during the unsigned multiplication.
11002
11003Arguments:
11004""""""""""
11005
11006The arguments (%a and %b) and the first element of the result structure
11007may be of integer types of any bit width, but they must have the same
11008bit width. The second element of the result structure must be of type
11009``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11010multiplication.
11011
11012Semantics:
11013""""""""""
11014
11015The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011016an unsigned multiplication of the two arguments. They return a structure ---
11017the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011018element of which is a bit specifying if the unsigned multiplication
11019resulted in an overflow.
11020
11021Examples:
11022"""""""""
11023
11024.. code-block:: llvm
11025
11026 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11027 %sum = extractvalue {i32, i1} %res, 0
11028 %obit = extractvalue {i32, i1} %res, 1
11029 br i1 %obit, label %overflow, label %normal
11030
11031Specialised Arithmetic Intrinsics
11032---------------------------------
11033
Owen Anderson1056a922015-07-11 07:01:27 +000011034'``llvm.canonicalize.*``' Intrinsic
11035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11036
11037Syntax:
11038"""""""
11039
11040::
11041
11042 declare float @llvm.canonicalize.f32(float %a)
11043 declare double @llvm.canonicalize.f64(double %b)
11044
11045Overview:
11046"""""""""
11047
11048The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011049encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011050implementing certain numeric primitives such as frexp. The canonical encoding is
11051defined by IEEE-754-2008 to be:
11052
11053::
11054
11055 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011056 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011057 numbers, infinities, and NaNs, especially in decimal formats.
11058
11059This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011060conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011061according to section 6.2.
11062
11063Examples of non-canonical encodings:
11064
Sean Silvaa1190322015-08-06 22:56:48 +000011065- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011066 converted to a canonical representation per hardware-specific protocol.
11067- Many normal decimal floating point numbers have non-canonical alternative
11068 encodings.
11069- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011070 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011071 a zero of the same sign by this operation.
11072
11073Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11074default exception handling must signal an invalid exception, and produce a
11075quiet NaN result.
11076
11077This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011078that the compiler does not constant fold the operation. Likewise, division by
110791.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011080-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11081
Sean Silvaa1190322015-08-06 22:56:48 +000011082``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011083
11084- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11085- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11086 to ``(x == y)``
11087
11088Additionally, the sign of zero must be conserved:
11089``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11090
11091The payload bits of a NaN must be conserved, with two exceptions.
11092First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011093must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011094usual methods.
11095
11096The canonicalization operation may be optimized away if:
11097
Sean Silvaa1190322015-08-06 22:56:48 +000011098- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011099 floating-point operation that is required by the standard to be canonical.
11100- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011101 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011102
Sean Silvab084af42012-12-07 10:36:55 +000011103'``llvm.fmuladd.*``' Intrinsic
11104^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11105
11106Syntax:
11107"""""""
11108
11109::
11110
11111 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11112 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11113
11114Overview:
11115"""""""""
11116
11117The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011118expressions that can be fused if the code generator determines that (a) the
11119target instruction set has support for a fused operation, and (b) that the
11120fused operation is more efficient than the equivalent, separate pair of mul
11121and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011122
11123Arguments:
11124""""""""""
11125
11126The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11127multiplicands, a and b, and an addend c.
11128
11129Semantics:
11130""""""""""
11131
11132The expression:
11133
11134::
11135
11136 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11137
11138is equivalent to the expression a \* b + c, except that rounding will
11139not be performed between the multiplication and addition steps if the
11140code generator fuses the operations. Fusion is not guaranteed, even if
11141the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011142corresponding llvm.fma.\* intrinsic function should be used
11143instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011144
11145Examples:
11146"""""""""
11147
11148.. code-block:: llvm
11149
Tim Northover675a0962014-06-13 14:24:23 +000011150 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011151
11152Half Precision Floating Point Intrinsics
11153----------------------------------------
11154
11155For most target platforms, half precision floating point is a
11156storage-only format. This means that it is a dense encoding (in memory)
11157but does not support computation in the format.
11158
11159This means that code must first load the half-precision floating point
11160value as an i16, then convert it to float with
11161:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11162then be performed on the float value (including extending to double
11163etc). To store the value back to memory, it is first converted to float
11164if needed, then converted to i16 with
11165:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11166i16 value.
11167
11168.. _int_convert_to_fp16:
11169
11170'``llvm.convert.to.fp16``' Intrinsic
11171^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11172
11173Syntax:
11174"""""""
11175
11176::
11177
Tim Northoverfd7e4242014-07-17 10:51:23 +000011178 declare i16 @llvm.convert.to.fp16.f32(float %a)
11179 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011180
11181Overview:
11182"""""""""
11183
Tim Northoverfd7e4242014-07-17 10:51:23 +000011184The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11185conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011186
11187Arguments:
11188""""""""""
11189
11190The intrinsic function contains single argument - the value to be
11191converted.
11192
11193Semantics:
11194""""""""""
11195
Tim Northoverfd7e4242014-07-17 10:51:23 +000011196The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11197conventional floating point format to half precision floating point format. The
11198return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011199
11200Examples:
11201"""""""""
11202
11203.. code-block:: llvm
11204
Tim Northoverfd7e4242014-07-17 10:51:23 +000011205 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011206 store i16 %res, i16* @x, align 2
11207
11208.. _int_convert_from_fp16:
11209
11210'``llvm.convert.from.fp16``' Intrinsic
11211^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11212
11213Syntax:
11214"""""""
11215
11216::
11217
Tim Northoverfd7e4242014-07-17 10:51:23 +000011218 declare float @llvm.convert.from.fp16.f32(i16 %a)
11219 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011220
11221Overview:
11222"""""""""
11223
11224The '``llvm.convert.from.fp16``' intrinsic function performs a
11225conversion from half precision floating point format to single precision
11226floating point format.
11227
11228Arguments:
11229""""""""""
11230
11231The intrinsic function contains single argument - the value to be
11232converted.
11233
11234Semantics:
11235""""""""""
11236
11237The '``llvm.convert.from.fp16``' intrinsic function performs a
11238conversion from half single precision floating point format to single
11239precision floating point format. The input half-float value is
11240represented by an ``i16`` value.
11241
11242Examples:
11243"""""""""
11244
11245.. code-block:: llvm
11246
David Blaikiec7aabbb2015-03-04 22:06:14 +000011247 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011248 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011249
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011250.. _dbg_intrinsics:
11251
Sean Silvab084af42012-12-07 10:36:55 +000011252Debugger Intrinsics
11253-------------------
11254
11255The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11256prefix), are described in the `LLVM Source Level
11257Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11258document.
11259
11260Exception Handling Intrinsics
11261-----------------------------
11262
11263The LLVM exception handling intrinsics (which all start with
11264``llvm.eh.`` prefix), are described in the `LLVM Exception
11265Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11266
11267.. _int_trampoline:
11268
11269Trampoline Intrinsics
11270---------------------
11271
11272These intrinsics make it possible to excise one parameter, marked with
11273the :ref:`nest <nest>` attribute, from a function. The result is a
11274callable function pointer lacking the nest parameter - the caller does
11275not need to provide a value for it. Instead, the value to use is stored
11276in advance in a "trampoline", a block of memory usually allocated on the
11277stack, which also contains code to splice the nest value into the
11278argument list. This is used to implement the GCC nested function address
11279extension.
11280
11281For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11282then the resulting function pointer has signature ``i32 (i32, i32)*``.
11283It can be created as follows:
11284
11285.. code-block:: llvm
11286
11287 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011288 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011289 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11290 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11291 %fp = bitcast i8* %p to i32 (i32, i32)*
11292
11293The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11294``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11295
11296.. _int_it:
11297
11298'``llvm.init.trampoline``' Intrinsic
11299^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11300
11301Syntax:
11302"""""""
11303
11304::
11305
11306 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11307
11308Overview:
11309"""""""""
11310
11311This fills the memory pointed to by ``tramp`` with executable code,
11312turning it into a trampoline.
11313
11314Arguments:
11315""""""""""
11316
11317The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11318pointers. The ``tramp`` argument must point to a sufficiently large and
11319sufficiently aligned block of memory; this memory is written to by the
11320intrinsic. Note that the size and the alignment are target-specific -
11321LLVM currently provides no portable way of determining them, so a
11322front-end that generates this intrinsic needs to have some
11323target-specific knowledge. The ``func`` argument must hold a function
11324bitcast to an ``i8*``.
11325
11326Semantics:
11327""""""""""
11328
11329The block of memory pointed to by ``tramp`` is filled with target
11330dependent code, turning it into a function. Then ``tramp`` needs to be
11331passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11332be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11333function's signature is the same as that of ``func`` with any arguments
11334marked with the ``nest`` attribute removed. At most one such ``nest``
11335argument is allowed, and it must be of pointer type. Calling the new
11336function is equivalent to calling ``func`` with the same argument list,
11337but with ``nval`` used for the missing ``nest`` argument. If, after
11338calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11339modified, then the effect of any later call to the returned function
11340pointer is undefined.
11341
11342.. _int_at:
11343
11344'``llvm.adjust.trampoline``' Intrinsic
11345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11346
11347Syntax:
11348"""""""
11349
11350::
11351
11352 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11353
11354Overview:
11355"""""""""
11356
11357This performs any required machine-specific adjustment to the address of
11358a trampoline (passed as ``tramp``).
11359
11360Arguments:
11361""""""""""
11362
11363``tramp`` must point to a block of memory which already has trampoline
11364code filled in by a previous call to
11365:ref:`llvm.init.trampoline <int_it>`.
11366
11367Semantics:
11368""""""""""
11369
11370On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011371different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011372intrinsic returns the executable address corresponding to ``tramp``
11373after performing the required machine specific adjustments. The pointer
11374returned can then be :ref:`bitcast and executed <int_trampoline>`.
11375
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011376.. _int_mload_mstore:
11377
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011378Masked Vector Load and Store Intrinsics
11379---------------------------------------
11380
11381LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11382
11383.. _int_mload:
11384
11385'``llvm.masked.load.*``' Intrinsics
11386^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11387
11388Syntax:
11389"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011390This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011391
11392::
11393
Matthias Braun68bb2932016-03-22 20:24:34 +000011394 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11395 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011396 ;; The data is a vector of pointers to double
Matthias Braun68bb2932016-03-22 20:24:34 +000011397 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011398 ;; The data is a vector of function pointers
Matthias Braun68bb2932016-03-22 20:24:34 +000011399 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011400
11401Overview:
11402"""""""""
11403
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011404Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011405
11406
11407Arguments:
11408""""""""""
11409
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011410The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011411
11412
11413Semantics:
11414""""""""""
11415
11416The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11417The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11418
11419
11420::
11421
Matthias Braun68bb2932016-03-22 20:24:34 +000011422 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011423
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011424 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011425 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011426 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011427
11428.. _int_mstore:
11429
11430'``llvm.masked.store.*``' Intrinsics
11431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11432
11433Syntax:
11434"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011435This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011436
11437::
11438
Matthias Braun68bb2932016-03-22 20:24:34 +000011439 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11440 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011441 ;; The data is a vector of pointers to double
Matthias Braun68bb2932016-03-22 20:24:34 +000011442 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011443 ;; The data is a vector of function pointers
Matthias Braun68bb2932016-03-22 20:24:34 +000011444 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011445
11446Overview:
11447"""""""""
11448
11449Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11450
11451Arguments:
11452""""""""""
11453
11454The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11455
11456
11457Semantics:
11458""""""""""
11459
11460The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11461The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11462
11463::
11464
Matthias Braun68bb2932016-03-22 20:24:34 +000011465 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011466
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011467 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011468 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011469 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11470 store <16 x float> %res, <16 x float>* %ptr, align 4
11471
11472
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011473Masked Vector Gather and Scatter Intrinsics
11474-------------------------------------------
11475
11476LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11477
11478.. _int_mgather:
11479
11480'``llvm.masked.gather.*``' Intrinsics
11481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11482
11483Syntax:
11484"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011485This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011486
11487::
11488
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011489 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11490 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11491 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011492
11493Overview:
11494"""""""""
11495
11496Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11497
11498
11499Arguments:
11500""""""""""
11501
11502The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11503
11504
11505Semantics:
11506""""""""""
11507
11508The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11509The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11510
11511
11512::
11513
11514 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11515
11516 ;; The gather with all-true mask is equivalent to the following instruction sequence
11517 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11518 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11519 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11520 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11521
11522 %val0 = load double, double* %ptr0, align 8
11523 %val1 = load double, double* %ptr1, align 8
11524 %val2 = load double, double* %ptr2, align 8
11525 %val3 = load double, double* %ptr3, align 8
11526
11527 %vec0 = insertelement <4 x double>undef, %val0, 0
11528 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11529 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11530 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11531
11532.. _int_mscatter:
11533
11534'``llvm.masked.scatter.*``' Intrinsics
11535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11536
11537Syntax:
11538"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011539This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011540
11541::
11542
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011543 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11544 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11545 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011546
11547Overview:
11548"""""""""
11549
11550Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11551
11552Arguments:
11553""""""""""
11554
11555The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11556
11557
11558Semantics:
11559""""""""""
11560
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011561The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011562
11563::
11564
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011565 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011566 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11567
11568 ;; It is equivalent to a list of scalar stores
11569 %val0 = extractelement <8 x i32> %value, i32 0
11570 %val1 = extractelement <8 x i32> %value, i32 1
11571 ..
11572 %val7 = extractelement <8 x i32> %value, i32 7
11573 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11574 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11575 ..
11576 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11577 ;; Note: the order of the following stores is important when they overlap:
11578 store i32 %val0, i32* %ptr0, align 4
11579 store i32 %val1, i32* %ptr1, align 4
11580 ..
11581 store i32 %val7, i32* %ptr7, align 4
11582
11583
Sean Silvab084af42012-12-07 10:36:55 +000011584Memory Use Markers
11585------------------
11586
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011587This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011588memory objects and ranges where variables are immutable.
11589
Reid Klecknera534a382013-12-19 02:14:12 +000011590.. _int_lifestart:
11591
Sean Silvab084af42012-12-07 10:36:55 +000011592'``llvm.lifetime.start``' Intrinsic
11593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11594
11595Syntax:
11596"""""""
11597
11598::
11599
11600 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11601
11602Overview:
11603"""""""""
11604
11605The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11606object's lifetime.
11607
11608Arguments:
11609""""""""""
11610
11611The first argument is a constant integer representing the size of the
11612object, or -1 if it is variable sized. The second argument is a pointer
11613to the object.
11614
11615Semantics:
11616""""""""""
11617
11618This intrinsic indicates that before this point in the code, the value
11619of the memory pointed to by ``ptr`` is dead. This means that it is known
11620to never be used and has an undefined value. A load from the pointer
11621that precedes this intrinsic can be replaced with ``'undef'``.
11622
Reid Klecknera534a382013-12-19 02:14:12 +000011623.. _int_lifeend:
11624
Sean Silvab084af42012-12-07 10:36:55 +000011625'``llvm.lifetime.end``' Intrinsic
11626^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11627
11628Syntax:
11629"""""""
11630
11631::
11632
11633 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11634
11635Overview:
11636"""""""""
11637
11638The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11639object's lifetime.
11640
11641Arguments:
11642""""""""""
11643
11644The first argument is a constant integer representing the size of the
11645object, or -1 if it is variable sized. The second argument is a pointer
11646to the object.
11647
11648Semantics:
11649""""""""""
11650
11651This intrinsic indicates that after this point in the code, the value of
11652the memory pointed to by ``ptr`` is dead. This means that it is known to
11653never be used and has an undefined value. Any stores into the memory
11654object following this intrinsic may be removed as dead.
11655
11656'``llvm.invariant.start``' Intrinsic
11657^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11658
11659Syntax:
11660"""""""
11661
11662::
11663
11664 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11665
11666Overview:
11667"""""""""
11668
11669The '``llvm.invariant.start``' intrinsic specifies that the contents of
11670a memory object will not change.
11671
11672Arguments:
11673""""""""""
11674
11675The first argument is a constant integer representing the size of the
11676object, or -1 if it is variable sized. The second argument is a pointer
11677to the object.
11678
11679Semantics:
11680""""""""""
11681
11682This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11683the return value, the referenced memory location is constant and
11684unchanging.
11685
11686'``llvm.invariant.end``' Intrinsic
11687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11688
11689Syntax:
11690"""""""
11691
11692::
11693
11694 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11695
11696Overview:
11697"""""""""
11698
11699The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11700memory object are mutable.
11701
11702Arguments:
11703""""""""""
11704
11705The first argument is the matching ``llvm.invariant.start`` intrinsic.
11706The second argument is a constant integer representing the size of the
11707object, or -1 if it is variable sized and the third argument is a
11708pointer to the object.
11709
11710Semantics:
11711""""""""""
11712
11713This intrinsic indicates that the memory is mutable again.
11714
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011715'``llvm.invariant.group.barrier``' Intrinsic
11716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11717
11718Syntax:
11719"""""""
11720
11721::
11722
11723 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11724
11725Overview:
11726"""""""""
11727
11728The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11729established by invariant.group metadata no longer holds, to obtain a new pointer
11730value that does not carry the invariant information.
11731
11732
11733Arguments:
11734""""""""""
11735
11736The ``llvm.invariant.group.barrier`` takes only one argument, which is
11737the pointer to the memory for which the ``invariant.group`` no longer holds.
11738
11739Semantics:
11740""""""""""
11741
11742Returns another pointer that aliases its argument but which is considered different
11743for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11744
Sean Silvab084af42012-12-07 10:36:55 +000011745General Intrinsics
11746------------------
11747
11748This class of intrinsics is designed to be generic and has no specific
11749purpose.
11750
11751'``llvm.var.annotation``' Intrinsic
11752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11753
11754Syntax:
11755"""""""
11756
11757::
11758
11759 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11760
11761Overview:
11762"""""""""
11763
11764The '``llvm.var.annotation``' intrinsic.
11765
11766Arguments:
11767""""""""""
11768
11769The first argument is a pointer to a value, the second is a pointer to a
11770global string, the third is a pointer to a global string which is the
11771source file name, and the last argument is the line number.
11772
11773Semantics:
11774""""""""""
11775
11776This intrinsic allows annotation of local variables with arbitrary
11777strings. This can be useful for special purpose optimizations that want
11778to look for these annotations. These have no other defined use; they are
11779ignored by code generation and optimization.
11780
Michael Gottesman88d18832013-03-26 00:34:27 +000011781'``llvm.ptr.annotation.*``' Intrinsic
11782^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11783
11784Syntax:
11785"""""""
11786
11787This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11788pointer to an integer of any width. *NOTE* you must specify an address space for
11789the pointer. The identifier for the default address space is the integer
11790'``0``'.
11791
11792::
11793
11794 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11795 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11796 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11797 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11798 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11799
11800Overview:
11801"""""""""
11802
11803The '``llvm.ptr.annotation``' intrinsic.
11804
11805Arguments:
11806""""""""""
11807
11808The first argument is a pointer to an integer value of arbitrary bitwidth
11809(result of some expression), the second is a pointer to a global string, the
11810third is a pointer to a global string which is the source file name, and the
11811last argument is the line number. It returns the value of the first argument.
11812
11813Semantics:
11814""""""""""
11815
11816This intrinsic allows annotation of a pointer to an integer with arbitrary
11817strings. This can be useful for special purpose optimizations that want to look
11818for these annotations. These have no other defined use; they are ignored by code
11819generation and optimization.
11820
Sean Silvab084af42012-12-07 10:36:55 +000011821'``llvm.annotation.*``' Intrinsic
11822^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11823
11824Syntax:
11825"""""""
11826
11827This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11828any integer bit width.
11829
11830::
11831
11832 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11833 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11834 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11835 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11836 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11837
11838Overview:
11839"""""""""
11840
11841The '``llvm.annotation``' intrinsic.
11842
11843Arguments:
11844""""""""""
11845
11846The first argument is an integer value (result of some expression), the
11847second is a pointer to a global string, the third is a pointer to a
11848global string which is the source file name, and the last argument is
11849the line number. It returns the value of the first argument.
11850
11851Semantics:
11852""""""""""
11853
11854This intrinsic allows annotations to be put on arbitrary expressions
11855with arbitrary strings. This can be useful for special purpose
11856optimizations that want to look for these annotations. These have no
11857other defined use; they are ignored by code generation and optimization.
11858
11859'``llvm.trap``' Intrinsic
11860^^^^^^^^^^^^^^^^^^^^^^^^^
11861
11862Syntax:
11863"""""""
11864
11865::
11866
11867 declare void @llvm.trap() noreturn nounwind
11868
11869Overview:
11870"""""""""
11871
11872The '``llvm.trap``' intrinsic.
11873
11874Arguments:
11875""""""""""
11876
11877None.
11878
11879Semantics:
11880""""""""""
11881
11882This intrinsic is lowered to the target dependent trap instruction. If
11883the target does not have a trap instruction, this intrinsic will be
11884lowered to a call of the ``abort()`` function.
11885
11886'``llvm.debugtrap``' Intrinsic
11887^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11888
11889Syntax:
11890"""""""
11891
11892::
11893
11894 declare void @llvm.debugtrap() nounwind
11895
11896Overview:
11897"""""""""
11898
11899The '``llvm.debugtrap``' intrinsic.
11900
11901Arguments:
11902""""""""""
11903
11904None.
11905
11906Semantics:
11907""""""""""
11908
11909This intrinsic is lowered to code which is intended to cause an
11910execution trap with the intention of requesting the attention of a
11911debugger.
11912
11913'``llvm.stackprotector``' Intrinsic
11914^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11915
11916Syntax:
11917"""""""
11918
11919::
11920
11921 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11922
11923Overview:
11924"""""""""
11925
11926The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11927onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11928is placed on the stack before local variables.
11929
11930Arguments:
11931""""""""""
11932
11933The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11934The first argument is the value loaded from the stack guard
11935``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11936enough space to hold the value of the guard.
11937
11938Semantics:
11939""""""""""
11940
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011941This intrinsic causes the prologue/epilogue inserter to force the position of
11942the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11943to ensure that if a local variable on the stack is overwritten, it will destroy
11944the value of the guard. When the function exits, the guard on the stack is
11945checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11946different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11947calling the ``__stack_chk_fail()`` function.
11948
11949'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011951
11952Syntax:
11953"""""""
11954
11955::
11956
11957 declare void @llvm.stackprotectorcheck(i8** <guard>)
11958
11959Overview:
11960"""""""""
11961
11962The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011963created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011964``__stack_chk_fail()`` function.
11965
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011966Arguments:
11967""""""""""
11968
11969The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11970the variable ``@__stack_chk_guard``.
11971
11972Semantics:
11973""""""""""
11974
11975This intrinsic is provided to perform the stack protector check by comparing
11976``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11977values do not match call the ``__stack_chk_fail()`` function.
11978
11979The reason to provide this as an IR level intrinsic instead of implementing it
11980via other IR operations is that in order to perform this operation at the IR
11981level without an intrinsic, one would need to create additional basic blocks to
11982handle the success/failure cases. This makes it difficult to stop the stack
11983protector check from disrupting sibling tail calls in Codegen. With this
11984intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011985codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011986
Sean Silvab084af42012-12-07 10:36:55 +000011987'``llvm.objectsize``' Intrinsic
11988^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11989
11990Syntax:
11991"""""""
11992
11993::
11994
11995 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11996 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11997
11998Overview:
11999"""""""""
12000
12001The ``llvm.objectsize`` intrinsic is designed to provide information to
12002the optimizers to determine at compile time whether a) an operation
12003(like memcpy) will overflow a buffer that corresponds to an object, or
12004b) that a runtime check for overflow isn't necessary. An object in this
12005context means an allocation of a specific class, structure, array, or
12006other object.
12007
12008Arguments:
12009""""""""""
12010
12011The ``llvm.objectsize`` intrinsic takes two arguments. The first
12012argument is a pointer to or into the ``object``. The second argument is
12013a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12014or -1 (if false) when the object size is unknown. The second argument
12015only accepts constants.
12016
12017Semantics:
12018""""""""""
12019
12020The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12021the size of the object concerned. If the size cannot be determined at
12022compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12023on the ``min`` argument).
12024
12025'``llvm.expect``' Intrinsic
12026^^^^^^^^^^^^^^^^^^^^^^^^^^^
12027
12028Syntax:
12029"""""""
12030
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012031This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12032integer bit width.
12033
Sean Silvab084af42012-12-07 10:36:55 +000012034::
12035
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012036 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012037 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12038 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12039
12040Overview:
12041"""""""""
12042
12043The ``llvm.expect`` intrinsic provides information about expected (the
12044most probable) value of ``val``, which can be used by optimizers.
12045
12046Arguments:
12047""""""""""
12048
12049The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12050a value. The second argument is an expected value, this needs to be a
12051constant value, variables are not allowed.
12052
12053Semantics:
12054""""""""""
12055
12056This intrinsic is lowered to the ``val``.
12057
Philip Reamese0e90832015-04-26 22:23:12 +000012058.. _int_assume:
12059
Hal Finkel93046912014-07-25 21:13:35 +000012060'``llvm.assume``' Intrinsic
12061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12062
12063Syntax:
12064"""""""
12065
12066::
12067
12068 declare void @llvm.assume(i1 %cond)
12069
12070Overview:
12071"""""""""
12072
12073The ``llvm.assume`` allows the optimizer to assume that the provided
12074condition is true. This information can then be used in simplifying other parts
12075of the code.
12076
12077Arguments:
12078""""""""""
12079
12080The condition which the optimizer may assume is always true.
12081
12082Semantics:
12083""""""""""
12084
12085The intrinsic allows the optimizer to assume that the provided condition is
12086always true whenever the control flow reaches the intrinsic call. No code is
12087generated for this intrinsic, and instructions that contribute only to the
12088provided condition are not used for code generation. If the condition is
12089violated during execution, the behavior is undefined.
12090
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012091Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012092used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12093only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012094if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012095sufficient overall improvement in code quality. For this reason,
12096``llvm.assume`` should not be used to document basic mathematical invariants
12097that the optimizer can otherwise deduce or facts that are of little use to the
12098optimizer.
12099
Peter Collingbournee6909c82015-02-20 20:30:47 +000012100.. _bitset.test:
12101
12102'``llvm.bitset.test``' Intrinsic
12103^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12104
12105Syntax:
12106"""""""
12107
12108::
12109
12110 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12111
12112
12113Arguments:
12114""""""""""
12115
12116The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012117metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012118
12119Overview:
12120"""""""""
12121
12122The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12123member of the given bitset.
12124
Sean Silvab084af42012-12-07 10:36:55 +000012125'``llvm.donothing``' Intrinsic
12126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12127
12128Syntax:
12129"""""""
12130
12131::
12132
12133 declare void @llvm.donothing() nounwind readnone
12134
12135Overview:
12136"""""""""
12137
Juergen Ributzkac9161192014-10-23 22:36:13 +000012138The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012139three intrinsics (besides ``llvm.experimental.patchpoint`` and
12140``llvm.experimental.gc.statepoint``) that can be called with an invoke
12141instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012142
12143Arguments:
12144""""""""""
12145
12146None.
12147
12148Semantics:
12149""""""""""
12150
12151This intrinsic does nothing, and it's removed by optimizers and ignored
12152by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012153
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012154'``llvm.experimental.deoptimize``' Intrinsic
12155^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12156
12157Syntax:
12158"""""""
12159
12160::
12161
12162 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12163
12164Overview:
12165"""""""""
12166
12167This intrinsic, together with :ref:`deoptimization operand bundles
12168<deopt_opbundles>`, allow frontends to express transfer of control and
12169frame-local state from the currently executing (typically more specialized,
12170hence faster) version of a function into another (typically more generic, hence
12171slower) version.
12172
12173In languages with a fully integrated managed runtime like Java and JavaScript
12174this intrinsic can be used to implement "uncommon trap" or "side exit" like
12175functionality. In unmanaged languages like C and C++, this intrinsic can be
12176used to represent the slow paths of specialized functions.
12177
12178
12179Arguments:
12180""""""""""
12181
12182The intrinsic takes an arbitrary number of arguments, whose meaning is
12183decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12184
12185Semantics:
12186""""""""""
12187
12188The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12189deoptimization continuation (denoted using a :ref:`deoptimization
12190operand bundle <deopt_opbundles>`) and returns the value returned by
12191the deoptimization continuation. Defining the semantic properties of
12192the continuation itself is out of scope of the language reference --
12193as far as LLVM is concerned, the deoptimization continuation can
12194invoke arbitrary side effects, including reading from and writing to
12195the entire heap.
12196
12197Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12198continue execution to the end of the physical frame containing them, so all
12199calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12200
12201 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12202 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12203 - The ``ret`` instruction must return the value produced by the
12204 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12205
12206Note that the above restrictions imply that the return type for a call to
12207``@llvm.experimental.deoptimize`` will match the return type of its immediate
12208caller.
12209
12210The inliner composes the ``"deopt"`` continuations of the caller into the
12211``"deopt"`` continuations present in the inlinee, and also updates calls to this
12212intrinsic to return directly from the frame of the function it inlined into.
12213
12214.. _deoptimize_lowering:
12215
12216Lowering:
12217"""""""""
12218
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012219Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12220symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12221ensure that this symbol is defined). The call arguments to
12222``@llvm.experimental.deoptimize`` are lowered as if they were formal
12223arguments of the specified types, and not as varargs.
12224
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012225
Sanjoy Das021de052016-03-31 00:18:46 +000012226'``llvm.experimental.guard``' Intrinsic
12227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12228
12229Syntax:
12230"""""""
12231
12232::
12233
12234 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12235
12236Overview:
12237"""""""""
12238
12239This intrinsic, together with :ref:`deoptimization operand bundles
12240<deopt_opbundles>`, allows frontends to express guards or checks on
12241optimistic assumptions made during compilation. The semantics of
12242``@llvm.experimental.guard`` is defined in terms of
12243``@llvm.experimental.deoptimize`` -- its body is defined to be
12244equivalent to:
12245
12246.. code-block:: llvm
12247
12248 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12249 %realPred = and i1 %pred, undef
12250 br i1 %realPred, label %continue, label %leave
12251
12252 leave:
12253 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12254 ret void
12255
12256 continue:
12257 ret void
12258 }
12259
12260In words, ``@llvm.experimental.guard`` executes the attached
12261``"deopt"`` continuation if (but **not** only if) its first argument
12262is ``false``. Since the optimizer is allowed to replace the ``undef``
12263with an arbitrary value, it can optimize guard to fail "spuriously",
12264i.e. without the original condition being false (hence the "not only
12265if"); and this allows for "check widening" type optimizations.
12266
12267``@llvm.experimental.guard`` cannot be invoked.
12268
12269
Andrew Trick5e029ce2013-12-24 02:57:25 +000012270Stack Map Intrinsics
12271--------------------
12272
12273LLVM provides experimental intrinsics to support runtime patching
12274mechanisms commonly desired in dynamic language JITs. These intrinsics
12275are described in :doc:`StackMaps`.