blob: 71ab1bd9b8f144217417ed4c64ce0e62301f93ea [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
253``extern_weak``
254 The semantics of this linkage follow the ELF object file model: the
255 symbol is weak until linked, if not linked, the symbol becomes null
256 instead of being an undefined reference.
257``linkonce_odr``, ``weak_odr``
258 Some languages allow differing globals to be merged, such as two
259 functions with different semantics. Other languages, such as
260 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000261 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000262 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
263 global will only be merged with equivalent globals. These linkage
264 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000265``external``
266 If none of the above identifiers are used, the global is externally
267 visible, meaning that it participates in linkage and can be used to
268 resolve external symbol references.
269
Sean Silvab084af42012-12-07 10:36:55 +0000270It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000271other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000272
Sean Silvab084af42012-12-07 10:36:55 +0000273.. _callingconv:
274
275Calling Conventions
276-------------------
277
278LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
279:ref:`invokes <i_invoke>` can all have an optional calling convention
280specified for the call. The calling convention of any pair of dynamic
281caller/callee must match, or the behavior of the program is undefined.
282The following calling conventions are supported by LLVM, and more may be
283added in the future:
284
285"``ccc``" - The C calling convention
286 This calling convention (the default if no other calling convention
287 is specified) matches the target C calling conventions. This calling
288 convention supports varargs function calls and tolerates some
289 mismatch in the declared prototype and implemented declaration of
290 the function (as does normal C).
291"``fastcc``" - The fast calling convention
292 This calling convention attempts to make calls as fast as possible
293 (e.g. by passing things in registers). This calling convention
294 allows the target to use whatever tricks it wants to produce fast
295 code for the target, without having to conform to an externally
296 specified ABI (Application Binary Interface). `Tail calls can only
297 be optimized when this, the GHC or the HiPE convention is
298 used. <CodeGenerator.html#id80>`_ This calling convention does not
299 support varargs and requires the prototype of all callees to exactly
300 match the prototype of the function definition.
301"``coldcc``" - The cold calling convention
302 This calling convention attempts to make code in the caller as
303 efficient as possible under the assumption that the call is not
304 commonly executed. As such, these calls often preserve all registers
305 so that the call does not break any live ranges in the caller side.
306 This calling convention does not support varargs and requires the
307 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000308 function definition. Furthermore the inliner doesn't consider such function
309 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000310"``cc 10``" - GHC convention
311 This calling convention has been implemented specifically for use by
312 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
313 It passes everything in registers, going to extremes to achieve this
314 by disabling callee save registers. This calling convention should
315 not be used lightly but only for specific situations such as an
316 alternative to the *register pinning* performance technique often
317 used when implementing functional programming languages. At the
318 moment only X86 supports this convention and it has the following
319 limitations:
320
321 - On *X86-32* only supports up to 4 bit type parameters. No
322 floating point types are supported.
323 - On *X86-64* only supports up to 10 bit type parameters and 6
324 floating point parameters.
325
326 This calling convention supports `tail call
327 optimization <CodeGenerator.html#id80>`_ but requires both the
328 caller and callee are using it.
329"``cc 11``" - The HiPE calling convention
330 This calling convention has been implemented specifically for use by
331 the `High-Performance Erlang
332 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
333 native code compiler of the `Ericsson's Open Source Erlang/OTP
334 system <http://www.erlang.org/download.shtml>`_. It uses more
335 registers for argument passing than the ordinary C calling
336 convention and defines no callee-saved registers. The calling
337 convention properly supports `tail call
338 optimization <CodeGenerator.html#id80>`_ but requires that both the
339 caller and the callee use it. It uses a *register pinning*
340 mechanism, similar to GHC's convention, for keeping frequently
341 accessed runtime components pinned to specific hardware registers.
342 At the moment only X86 supports this convention (both 32 and 64
343 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000344"``webkit_jscc``" - WebKit's JavaScript calling convention
345 This calling convention has been implemented for `WebKit FTL JIT
346 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
347 stack right to left (as cdecl does), and returns a value in the
348 platform's customary return register.
349"``anyregcc``" - Dynamic calling convention for code patching
350 This is a special convention that supports patching an arbitrary code
351 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000352 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000353 allocated. This can currently only be used with calls to
354 llvm.experimental.patchpoint because only this intrinsic records
355 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000356"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 This calling convention attempts to make the code in the caller as
358 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000359 calling convention on how arguments and return values are passed, but it
360 uses a different set of caller/callee-saved registers. This alleviates the
361 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000362 call in the caller. If the arguments are passed in callee-saved registers,
363 then they will be preserved by the callee across the call. This doesn't
364 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000365
366 - On X86-64 the callee preserves all general purpose registers, except for
367 R11. R11 can be used as a scratch register. Floating-point registers
368 (XMMs/YMMs) are not preserved and need to be saved by the caller.
369
370 The idea behind this convention is to support calls to runtime functions
371 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000372 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000373 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000374 registers, which haven't already been saved by the caller. The
375 `PreserveMost` calling convention is very similar to the `cold` calling
376 convention in terms of caller/callee-saved registers, but they are used for
377 different types of function calls. `coldcc` is for function calls that are
378 rarely executed, whereas `preserve_mostcc` function calls are intended to be
379 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
380 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000381
382 This calling convention will be used by a future version of the ObjectiveC
383 runtime and should therefore still be considered experimental at this time.
384 Although this convention was created to optimize certain runtime calls to
385 the ObjectiveC runtime, it is not limited to this runtime and might be used
386 by other runtimes in the future too. The current implementation only
387 supports X86-64, but the intention is to support more architectures in the
388 future.
389"``preserve_allcc``" - The `PreserveAll` calling convention
390 This calling convention attempts to make the code in the caller even less
391 intrusive than the `PreserveMost` calling convention. This calling
392 convention also behaves identical to the `C` calling convention on how
393 arguments and return values are passed, but it uses a different set of
394 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000395 recovering a large register set before and after the call in the caller. If
396 the arguments are passed in callee-saved registers, then they will be
397 preserved by the callee across the call. This doesn't apply for values
398 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000399
400 - On X86-64 the callee preserves all general purpose registers, except for
401 R11. R11 can be used as a scratch register. Furthermore it also preserves
402 all floating-point registers (XMMs/YMMs).
403
404 The idea behind this convention is to support calls to runtime functions
405 that don't need to call out to any other functions.
406
407 This calling convention, like the `PreserveMost` calling convention, will be
408 used by a future version of the ObjectiveC runtime and should be considered
409 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000410"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000411 Clang generates an access function to access C++-style TLS. The access
412 function generally has an entry block, an exit block and an initialization
413 block that is run at the first time. The entry and exit blocks can access
414 a few TLS IR variables, each access will be lowered to a platform-specific
415 sequence.
416
Manman Ren19c7bbe2015-12-04 17:40:13 +0000417 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000418 preserving as many registers as possible (all the registers that are
419 perserved on the fast path, composed of the entry and exit blocks).
420
421 This calling convention behaves identical to the `C` calling convention on
422 how arguments and return values are passed, but it uses a different set of
423 caller/callee-saved registers.
424
425 Given that each platform has its own lowering sequence, hence its own set
426 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000427
428 - On X86-64 the callee preserves all general purpose registers, except for
429 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000430"``swiftcc``" - This calling convention is used for Swift language.
431 - On X86-64 RCX and R8 are available for additional integer returns, and
432 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000433 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000434"``cc <n>``" - Numbered convention
435 Any calling convention may be specified by number, allowing
436 target-specific calling conventions to be used. Target specific
437 calling conventions start at 64.
438
439More calling conventions can be added/defined on an as-needed basis, to
440support Pascal conventions or any other well-known target-independent
441convention.
442
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000443.. _visibilitystyles:
444
Sean Silvab084af42012-12-07 10:36:55 +0000445Visibility Styles
446-----------------
447
448All Global Variables and Functions have one of the following visibility
449styles:
450
451"``default``" - Default style
452 On targets that use the ELF object file format, default visibility
453 means that the declaration is visible to other modules and, in
454 shared libraries, means that the declared entity may be overridden.
455 On Darwin, default visibility means that the declaration is visible
456 to other modules. Default visibility corresponds to "external
457 linkage" in the language.
458"``hidden``" - Hidden style
459 Two declarations of an object with hidden visibility refer to the
460 same object if they are in the same shared object. Usually, hidden
461 visibility indicates that the symbol will not be placed into the
462 dynamic symbol table, so no other module (executable or shared
463 library) can reference it directly.
464"``protected``" - Protected style
465 On ELF, protected visibility indicates that the symbol will be
466 placed in the dynamic symbol table, but that references within the
467 defining module will bind to the local symbol. That is, the symbol
468 cannot be overridden by another module.
469
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000470A symbol with ``internal`` or ``private`` linkage must have ``default``
471visibility.
472
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000473.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000474
Nico Rieck7157bb72014-01-14 15:22:47 +0000475DLL Storage Classes
476-------------------
477
478All Global Variables, Functions and Aliases can have one of the following
479DLL storage class:
480
481``dllimport``
482 "``dllimport``" causes the compiler to reference a function or variable via
483 a global pointer to a pointer that is set up by the DLL exporting the
484 symbol. On Microsoft Windows targets, the pointer name is formed by
485 combining ``__imp_`` and the function or variable name.
486``dllexport``
487 "``dllexport``" causes the compiler to provide a global pointer to a pointer
488 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
489 Microsoft Windows targets, the pointer name is formed by combining
490 ``__imp_`` and the function or variable name. Since this storage class
491 exists for defining a dll interface, the compiler, assembler and linker know
492 it is externally referenced and must refrain from deleting the symbol.
493
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000494.. _tls_model:
495
496Thread Local Storage Models
497---------------------------
498
499A variable may be defined as ``thread_local``, which means that it will
500not be shared by threads (each thread will have a separated copy of the
501variable). Not all targets support thread-local variables. Optionally, a
502TLS model may be specified:
503
504``localdynamic``
505 For variables that are only used within the current shared library.
506``initialexec``
507 For variables in modules that will not be loaded dynamically.
508``localexec``
509 For variables defined in the executable and only used within it.
510
511If no explicit model is given, the "general dynamic" model is used.
512
513The models correspond to the ELF TLS models; see `ELF Handling For
514Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
515more information on under which circumstances the different models may
516be used. The target may choose a different TLS model if the specified
517model is not supported, or if a better choice of model can be made.
518
Sean Silva706fba52015-08-06 22:56:24 +0000519A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000520the alias is accessed. It will not have any effect in the aliasee.
521
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000522For platforms without linker support of ELF TLS model, the -femulated-tls
523flag can be used to generate GCC compatible emulated TLS code.
524
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000525.. _namedtypes:
526
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000527Structure Types
528---------------
Sean Silvab084af42012-12-07 10:36:55 +0000529
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000530LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000531types <t_struct>`. Literal types are uniqued structurally, but identified types
532are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000533to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000534
Sean Silva706fba52015-08-06 22:56:24 +0000535An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000536
537.. code-block:: llvm
538
539 %mytype = type { %mytype*, i32 }
540
Sean Silvaa1190322015-08-06 22:56:48 +0000541Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000542literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000543
544.. _globalvars:
545
546Global Variables
547----------------
548
549Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000550instead of run-time.
551
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000552Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000553
554Global variables in other translation units can also be declared, in which
555case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000556
Bob Wilson85b24f22014-06-12 20:40:33 +0000557Either global variable definitions or declarations may have an explicit section
558to be placed in and may have an optional explicit alignment specified.
559
Michael Gottesman006039c2013-01-31 05:48:48 +0000560A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000561the contents of the variable will **never** be modified (enabling better
562optimization, allowing the global data to be placed in the read-only
563section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000564initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000565variable.
566
567LLVM explicitly allows *declarations* of global variables to be marked
568constant, even if the final definition of the global is not. This
569capability can be used to enable slightly better optimization of the
570program, but requires the language definition to guarantee that
571optimizations based on the 'constantness' are valid for the translation
572units that do not include the definition.
573
574As SSA values, global variables define pointer values that are in scope
575(i.e. they dominate) all basic blocks in the program. Global variables
576always define a pointer to their "content" type because they describe a
577region of memory, and all memory objects in LLVM are accessed through
578pointers.
579
580Global variables can be marked with ``unnamed_addr`` which indicates
581that the address is not significant, only the content. Constants marked
582like this can be merged with other constants if they have the same
583initializer. Note that a constant with significant address *can* be
584merged with a ``unnamed_addr`` constant, the result being a constant
585whose address is significant.
586
587A global variable may be declared to reside in a target-specific
588numbered address space. For targets that support them, address spaces
589may affect how optimizations are performed and/or what target
590instructions are used to access the variable. The default address space
591is zero. The address space qualifier must precede any other attributes.
592
593LLVM allows an explicit section to be specified for globals. If the
594target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000595Additionally, the global can placed in a comdat if the target has the necessary
596support.
Sean Silvab084af42012-12-07 10:36:55 +0000597
Michael Gottesmane743a302013-02-04 03:22:00 +0000598By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000599variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000600initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000601true even for variables potentially accessible from outside the
602module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000603``@llvm.used`` or dllexported variables. This assumption may be suppressed
604by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000605
Sean Silvab084af42012-12-07 10:36:55 +0000606An explicit alignment may be specified for a global, which must be a
607power of 2. If not present, or if the alignment is set to zero, the
608alignment of the global is set by the target to whatever it feels
609convenient. If an explicit alignment is specified, the global is forced
610to have exactly that alignment. Targets and optimizers are not allowed
611to over-align the global if the global has an assigned section. In this
612case, the extra alignment could be observable: for example, code could
613assume that the globals are densely packed in their section and try to
614iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000615iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000616
Nico Rieck7157bb72014-01-14 15:22:47 +0000617Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
618
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000619Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000620:ref:`Thread Local Storage Model <tls_model>`.
621
Nico Rieck7157bb72014-01-14 15:22:47 +0000622Syntax::
623
624 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000625 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000626 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000627 [, section "name"] [, comdat [($name)]]
628 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000629
Sean Silvab084af42012-12-07 10:36:55 +0000630For example, the following defines a global in a numbered address space
631with an initializer, section, and alignment:
632
633.. code-block:: llvm
634
635 @G = addrspace(5) constant float 1.0, section "foo", align 4
636
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000637The following example just declares a global variable
638
639.. code-block:: llvm
640
641 @G = external global i32
642
Sean Silvab084af42012-12-07 10:36:55 +0000643The following example defines a thread-local global with the
644``initialexec`` TLS model:
645
646.. code-block:: llvm
647
648 @G = thread_local(initialexec) global i32 0, align 4
649
650.. _functionstructure:
651
652Functions
653---------
654
655LLVM function definitions consist of the "``define``" keyword, an
656optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000657style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
658an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000659an optional ``unnamed_addr`` attribute, a return type, an optional
660:ref:`parameter attribute <paramattrs>` for the return type, a function
661name, a (possibly empty) argument list (each with optional :ref:`parameter
662attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000663an optional section, an optional alignment,
664an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000665an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000666an optional :ref:`prologue <prologuedata>`,
667an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000668an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000669an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000670
671LLVM function declarations consist of the "``declare``" keyword, an
672optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000673style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
674an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000675an optional ``unnamed_addr`` attribute, a return type, an optional
676:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000677name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000678:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
679and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000680
Bill Wendling6822ecb2013-10-27 05:09:12 +0000681A function definition contains a list of basic blocks, forming the CFG (Control
682Flow Graph) for the function. Each basic block may optionally start with a label
683(giving the basic block a symbol table entry), contains a list of instructions,
684and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
685function return). If an explicit label is not provided, a block is assigned an
686implicit numbered label, using the next value from the same counter as used for
687unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
688entry block does not have an explicit label, it will be assigned label "%0",
689then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000690
691The first basic block in a function is special in two ways: it is
692immediately executed on entrance to the function, and it is not allowed
693to have predecessor basic blocks (i.e. there can not be any branches to
694the entry block of a function). Because the block can have no
695predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
696
697LLVM allows an explicit section to be specified for functions. If the
698target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000699Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000700
701An explicit alignment may be specified for a function. If not present,
702or if the alignment is set to zero, the alignment of the function is set
703by the target to whatever it feels convenient. If an explicit alignment
704is specified, the function is forced to have at least that much
705alignment. All alignments must be a power of 2.
706
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000707If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000708be significant and two identical functions can be merged.
709
710Syntax::
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000713 [cconv] [ret attrs]
714 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000715 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000716 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000717 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000718
Sean Silva706fba52015-08-06 22:56:24 +0000719The argument list is a comma separated sequence of arguments where each
720argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000721
722Syntax::
723
724 <type> [parameter Attrs] [name]
725
726
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000727.. _langref_aliases:
728
Sean Silvab084af42012-12-07 10:36:55 +0000729Aliases
730-------
731
Rafael Espindola64c1e182014-06-03 02:41:57 +0000732Aliases, unlike function or variables, don't create any new data. They
733are just a new symbol and metadata for an existing position.
734
735Aliases have a name and an aliasee that is either a global value or a
736constant expression.
737
Nico Rieck7157bb72014-01-14 15:22:47 +0000738Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000739:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
740<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000741
742Syntax::
743
David Blaikie196582e2015-10-22 01:17:29 +0000744 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000745
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000746The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000747``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000748might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000749
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000750Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000751the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
752to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000753
Rafael Espindola64c1e182014-06-03 02:41:57 +0000754Since aliases are only a second name, some restrictions apply, of which
755some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000756
Rafael Espindola64c1e182014-06-03 02:41:57 +0000757* The expression defining the aliasee must be computable at assembly
758 time. Since it is just a name, no relocations can be used.
759
760* No alias in the expression can be weak as the possibility of the
761 intermediate alias being overridden cannot be represented in an
762 object file.
763
764* No global value in the expression can be a declaration, since that
765 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000766
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000767.. _langref_ifunc:
768
769IFuncs
770-------
771
772IFuncs, like as aliases, don't create any new data or func. They are just a new
773symbol that dynamic linker resolves at runtime by calling a resolver function.
774
775IFuncs have a name and a resolver that is a function called by dynamic linker
776that returns address of another function associated with the name.
777
778IFunc may have an optional :ref:`linkage type <linkage>` and an optional
779:ref:`visibility style <visibility>`.
780
781Syntax::
782
783 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
784
785
David Majnemerdad0a642014-06-27 18:19:56 +0000786.. _langref_comdats:
787
788Comdats
789-------
790
791Comdat IR provides access to COFF and ELF object file COMDAT functionality.
792
Sean Silvaa1190322015-08-06 22:56:48 +0000793Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000794specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000795that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000796aliasee computes to, if any.
797
798Comdats have a selection kind to provide input on how the linker should
799choose between keys in two different object files.
800
801Syntax::
802
803 $<Name> = comdat SelectionKind
804
805The selection kind must be one of the following:
806
807``any``
808 The linker may choose any COMDAT key, the choice is arbitrary.
809``exactmatch``
810 The linker may choose any COMDAT key but the sections must contain the
811 same data.
812``largest``
813 The linker will choose the section containing the largest COMDAT key.
814``noduplicates``
815 The linker requires that only section with this COMDAT key exist.
816``samesize``
817 The linker may choose any COMDAT key but the sections must contain the
818 same amount of data.
819
820Note that the Mach-O platform doesn't support COMDATs and ELF only supports
821``any`` as a selection kind.
822
823Here is an example of a COMDAT group where a function will only be selected if
824the COMDAT key's section is the largest:
825
826.. code-block:: llvm
827
828 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000829 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000830
Rafael Espindola83a362c2015-01-06 22:55:16 +0000831 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000832 ret void
833 }
834
Rafael Espindola83a362c2015-01-06 22:55:16 +0000835As a syntactic sugar the ``$name`` can be omitted if the name is the same as
836the global name:
837
838.. code-block:: llvm
839
840 $foo = comdat any
841 @foo = global i32 2, comdat
842
843
David Majnemerdad0a642014-06-27 18:19:56 +0000844In a COFF object file, this will create a COMDAT section with selection kind
845``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
846and another COMDAT section with selection kind
847``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000848section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000849
850There are some restrictions on the properties of the global object.
851It, or an alias to it, must have the same name as the COMDAT group when
852targeting COFF.
853The contents and size of this object may be used during link-time to determine
854which COMDAT groups get selected depending on the selection kind.
855Because the name of the object must match the name of the COMDAT group, the
856linkage of the global object must not be local; local symbols can get renamed
857if a collision occurs in the symbol table.
858
859The combined use of COMDATS and section attributes may yield surprising results.
860For example:
861
862.. code-block:: llvm
863
864 $foo = comdat any
865 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 @g1 = global i32 42, section "sec", comdat($foo)
867 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000868
869From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000870with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000871COMDAT groups and COMDATs, at the object file level, are represented by
872sections.
873
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000874Note that certain IR constructs like global variables and functions may
875create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000876COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000877in individual sections (e.g. when `-data-sections` or `-function-sections`
878is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000879
Sean Silvab084af42012-12-07 10:36:55 +0000880.. _namedmetadatastructure:
881
882Named Metadata
883--------------
884
885Named metadata is a collection of metadata. :ref:`Metadata
886nodes <metadata>` (but not metadata strings) are the only valid
887operands for a named metadata.
888
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000889#. Named metadata are represented as a string of characters with the
890 metadata prefix. The rules for metadata names are the same as for
891 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
892 are still valid, which allows any character to be part of a name.
893
Sean Silvab084af42012-12-07 10:36:55 +0000894Syntax::
895
896 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000897 !0 = !{!"zero"}
898 !1 = !{!"one"}
899 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000900 ; A named metadata.
901 !name = !{!0, !1, !2}
902
903.. _paramattrs:
904
905Parameter Attributes
906--------------------
907
908The return type and each parameter of a function type may have a set of
909*parameter attributes* associated with them. Parameter attributes are
910used to communicate additional information about the result or
911parameters of a function. Parameter attributes are considered to be part
912of the function, not of the function type, so functions with different
913parameter attributes can have the same function type.
914
915Parameter attributes are simple keywords that follow the type specified.
916If multiple parameter attributes are needed, they are space separated.
917For example:
918
919.. code-block:: llvm
920
921 declare i32 @printf(i8* noalias nocapture, ...)
922 declare i32 @atoi(i8 zeroext)
923 declare signext i8 @returns_signed_char()
924
925Note that any attributes for the function result (``nounwind``,
926``readonly``) come immediately after the argument list.
927
928Currently, only the following parameter attributes are defined:
929
930``zeroext``
931 This indicates to the code generator that the parameter or return
932 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000933 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000934``signext``
935 This indicates to the code generator that the parameter or return
936 value should be sign-extended to the extent required by the target's
937 ABI (which is usually 32-bits) by the caller (for a parameter) or
938 the callee (for a return value).
939``inreg``
940 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000941 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000942 a function call or return (usually, by putting it in a register as
943 opposed to memory, though some targets use it to distinguish between
944 two different kinds of registers). Use of this attribute is
945 target-specific.
946``byval``
947 This indicates that the pointer parameter should really be passed by
948 value to the function. The attribute implies that a hidden copy of
949 the pointee is made between the caller and the callee, so the callee
950 is unable to modify the value in the caller. This attribute is only
951 valid on LLVM pointer arguments. It is generally used to pass
952 structs and arrays by value, but is also valid on pointers to
953 scalars. The copy is considered to belong to the caller not the
954 callee (for example, ``readonly`` functions should not write to
955 ``byval`` parameters). This is not a valid attribute for return
956 values.
957
958 The byval attribute also supports specifying an alignment with the
959 align attribute. It indicates the alignment of the stack slot to
960 form and the known alignment of the pointer specified to the call
961 site. If the alignment is not specified, then the code generator
962 makes a target-specific assumption.
963
Reid Klecknera534a382013-12-19 02:14:12 +0000964.. _attr_inalloca:
965
966``inalloca``
967
Reid Kleckner60d3a832014-01-16 22:59:24 +0000968 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000969 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000970 be a pointer to stack memory produced by an ``alloca`` instruction.
971 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000972 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000973 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000974
Reid Kleckner436c42e2014-01-17 23:58:17 +0000975 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000976 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000977 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000978 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000979 ``inalloca`` attribute also disables LLVM's implicit lowering of
980 large aggregate return values, which means that frontend authors
981 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000982
Reid Kleckner60d3a832014-01-16 22:59:24 +0000983 When the call site is reached, the argument allocation must have
984 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000985 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000986 space after an argument allocation and before its call site, but it
987 must be cleared off with :ref:`llvm.stackrestore
988 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000989
990 See :doc:`InAlloca` for more information on how to use this
991 attribute.
992
Sean Silvab084af42012-12-07 10:36:55 +0000993``sret``
994 This indicates that the pointer parameter specifies the address of a
995 structure that is the return value of the function in the source
996 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000997 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000998 not to trap and to be properly aligned. This may only be applied to
999 the first parameter. This is not a valid attribute for return
1000 values.
Sean Silva1703e702014-04-08 21:06:22 +00001001
Hal Finkelccc70902014-07-22 16:58:55 +00001002``align <n>``
1003 This indicates that the pointer value may be assumed by the optimizer to
1004 have the specified alignment.
1005
1006 Note that this attribute has additional semantics when combined with the
1007 ``byval`` attribute.
1008
Sean Silva1703e702014-04-08 21:06:22 +00001009.. _noalias:
1010
Sean Silvab084af42012-12-07 10:36:55 +00001011``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001012 This indicates that objects accessed via pointer values
1013 :ref:`based <pointeraliasing>` on the argument or return value are not also
1014 accessed, during the execution of the function, via pointer values not
1015 *based* on the argument or return value. The attribute on a return value
1016 also has additional semantics described below. The caller shares the
1017 responsibility with the callee for ensuring that these requirements are met.
1018 For further details, please see the discussion of the NoAlias response in
1019 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001020
1021 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001022 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001023
1024 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001025 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1026 attribute on return values are stronger than the semantics of the attribute
1027 when used on function arguments. On function return values, the ``noalias``
1028 attribute indicates that the function acts like a system memory allocation
1029 function, returning a pointer to allocated storage disjoint from the
1030 storage for any other object accessible to the caller.
1031
Sean Silvab084af42012-12-07 10:36:55 +00001032``nocapture``
1033 This indicates that the callee does not make any copies of the
1034 pointer that outlive the callee itself. This is not a valid
1035 attribute for return values.
1036
1037.. _nest:
1038
1039``nest``
1040 This indicates that the pointer parameter can be excised using the
1041 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001042 attribute for return values and can only be applied to one parameter.
1043
1044``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001045 This indicates that the function always returns the argument as its return
1046 value. This is an optimization hint to the code generator when generating
1047 the caller, allowing tail call optimization and omission of register saves
1048 and restores in some cases; it is not checked or enforced when generating
1049 the callee. The parameter and the function return type must be valid
1050 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1051 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001052
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001053``nonnull``
1054 This indicates that the parameter or return pointer is not null. This
1055 attribute may only be applied to pointer typed parameters. This is not
1056 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001058 is non-null.
1059
Hal Finkelb0407ba2014-07-18 15:51:28 +00001060``dereferenceable(<n>)``
1061 This indicates that the parameter or return pointer is dereferenceable. This
1062 attribute may only be applied to pointer typed parameters. A pointer that
1063 is dereferenceable can be loaded from speculatively without a risk of
1064 trapping. The number of bytes known to be dereferenceable must be provided
1065 in parentheses. It is legal for the number of bytes to be less than the
1066 size of the pointee type. The ``nonnull`` attribute does not imply
1067 dereferenceability (consider a pointer to one element past the end of an
1068 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1069 ``addrspace(0)`` (which is the default address space).
1070
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001071``dereferenceable_or_null(<n>)``
1072 This indicates that the parameter or return value isn't both
1073 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001074 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001075 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1076 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1077 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1078 and in other address spaces ``dereferenceable_or_null(<n>)``
1079 implies that a pointer is at least one of ``dereferenceable(<n>)``
1080 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001081 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001082 pointer typed parameters.
1083
Manman Renf46262e2016-03-29 17:37:21 +00001084``swiftself``
1085 This indicates that the parameter is the self/context parameter. This is not
1086 a valid attribute for return values and can only be applied to one
1087 parameter.
1088
Manman Ren9bfd0d02016-04-01 21:41:15 +00001089``swifterror``
1090 This attribute is motivated to model and optimize Swift error handling. It
1091 can be applied to a parameter with pointer to pointer type or a
1092 pointer-sized alloca. At the call site, the actual argument that corresponds
1093 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca. A
1094 ``swifterror`` value (either the parameter or the alloca) can only be loaded
1095 and stored from, or used as a ``swifterror`` argument. This is not a valid
1096 attribute for return values and can only be applied to one parameter.
1097
1098 These constraints allow the calling convention to optimize access to
1099 ``swifterror`` variables by associating them with a specific register at
1100 call boundaries rather than placing them in memory. Since this does change
1101 the calling convention, a function which uses the ``swifterror`` attribute
1102 on a parameter is not ABI-compatible with one which does not.
1103
1104 These constraints also allow LLVM to assume that a ``swifterror`` argument
1105 does not alias any other memory visible within a function and that a
1106 ``swifterror`` alloca passed as an argument does not escape.
1107
Sean Silvab084af42012-12-07 10:36:55 +00001108.. _gc:
1109
Philip Reamesf80bbff2015-02-25 23:45:20 +00001110Garbage Collector Strategy Names
1111--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001112
Philip Reamesf80bbff2015-02-25 23:45:20 +00001113Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001114string:
1115
1116.. code-block:: llvm
1117
1118 define void @f() gc "name" { ... }
1119
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001120The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001121<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001122strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001123named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001124garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001125which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001126
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001127.. _prefixdata:
1128
1129Prefix Data
1130-----------
1131
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001132Prefix data is data associated with a function which the code
1133generator will emit immediately before the function's entrypoint.
1134The purpose of this feature is to allow frontends to associate
1135language-specific runtime metadata with specific functions and make it
1136available through the function pointer while still allowing the
1137function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001138
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001139To access the data for a given function, a program may bitcast the
1140function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001141index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001142the prefix data. For instance, take the example of a function annotated
1143with a single ``i32``,
1144
1145.. code-block:: llvm
1146
1147 define void @f() prefix i32 123 { ... }
1148
1149The prefix data can be referenced as,
1150
1151.. code-block:: llvm
1152
David Blaikie16a97eb2015-03-04 22:02:58 +00001153 %0 = bitcast void* () @f to i32*
1154 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001155 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001156
1157Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001158of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001159beginning of the prefix data is aligned. This means that if the size
1160of the prefix data is not a multiple of the alignment size, the
1161function's entrypoint will not be aligned. If alignment of the
1162function's entrypoint is desired, padding must be added to the prefix
1163data.
1164
Sean Silvaa1190322015-08-06 22:56:48 +00001165A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001166to the ``available_externally`` linkage in that the data may be used by the
1167optimizers but will not be emitted in the object file.
1168
1169.. _prologuedata:
1170
1171Prologue Data
1172-------------
1173
1174The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1175be inserted prior to the function body. This can be used for enabling
1176function hot-patching and instrumentation.
1177
1178To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001179have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001180bytes which decode to a sequence of machine instructions, valid for the
1181module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001182the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001183the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001184definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001185makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001186
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001187A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001188which encodes the ``nop`` instruction:
1189
1190.. code-block:: llvm
1191
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001192 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001193
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001194Generally prologue data can be formed by encoding a relative branch instruction
1195which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001196x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1197
1198.. code-block:: llvm
1199
1200 %0 = type <{ i8, i8, i8* }>
1201
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001203
Sean Silvaa1190322015-08-06 22:56:48 +00001204A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001205to the ``available_externally`` linkage in that the data may be used by the
1206optimizers but will not be emitted in the object file.
1207
David Majnemer7fddecc2015-06-17 20:52:32 +00001208.. _personalityfn:
1209
1210Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001211--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001212
1213The ``personality`` attribute permits functions to specify what function
1214to use for exception handling.
1215
Bill Wendling63b88192013-02-06 06:52:58 +00001216.. _attrgrp:
1217
1218Attribute Groups
1219----------------
1220
1221Attribute groups are groups of attributes that are referenced by objects within
1222the IR. They are important for keeping ``.ll`` files readable, because a lot of
1223functions will use the same set of attributes. In the degenerative case of a
1224``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1225group will capture the important command line flags used to build that file.
1226
1227An attribute group is a module-level object. To use an attribute group, an
1228object references the attribute group's ID (e.g. ``#37``). An object may refer
1229to more than one attribute group. In that situation, the attributes from the
1230different groups are merged.
1231
1232Here is an example of attribute groups for a function that should always be
1233inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1234
1235.. code-block:: llvm
1236
1237 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001238 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001239
1240 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001241 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001242
1243 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1244 define void @f() #0 #1 { ... }
1245
Sean Silvab084af42012-12-07 10:36:55 +00001246.. _fnattrs:
1247
1248Function Attributes
1249-------------------
1250
1251Function attributes are set to communicate additional information about
1252a function. Function attributes are considered to be part of the
1253function, not of the function type, so functions with different function
1254attributes can have the same function type.
1255
1256Function attributes are simple keywords that follow the type specified.
1257If multiple attributes are needed, they are space separated. For
1258example:
1259
1260.. code-block:: llvm
1261
1262 define void @f() noinline { ... }
1263 define void @f() alwaysinline { ... }
1264 define void @f() alwaysinline optsize { ... }
1265 define void @f() optsize { ... }
1266
Sean Silvab084af42012-12-07 10:36:55 +00001267``alignstack(<n>)``
1268 This attribute indicates that, when emitting the prologue and
1269 epilogue, the backend should forcibly align the stack pointer.
1270 Specify the desired alignment, which must be a power of two, in
1271 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001272``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1273 This attribute indicates that the annotated function will always return at
1274 least a given number of bytes (or null). Its arguments are zero-indexed
1275 parameter numbers; if one argument is provided, then it's assumed that at
1276 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1277 returned pointer. If two are provided, then it's assumed that
1278 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1279 available. The referenced parameters must be integer types. No assumptions
1280 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001281``alwaysinline``
1282 This attribute indicates that the inliner should attempt to inline
1283 this function into callers whenever possible, ignoring any active
1284 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001285``builtin``
1286 This indicates that the callee function at a call site should be
1287 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001288 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001289 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001290 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001291``cold``
1292 This attribute indicates that this function is rarely called. When
1293 computing edge weights, basic blocks post-dominated by a cold
1294 function call are also considered to be cold; and, thus, given low
1295 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001296``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001297 In some parallel execution models, there exist operations that cannot be
1298 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001299 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001300
Justin Lebar58535b12016-02-17 17:46:41 +00001301 The ``convergent`` attribute may appear on functions or call/invoke
1302 instructions. When it appears on a function, it indicates that calls to
1303 this function should not be made control-dependent on additional values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001304 For example, the intrinsic ``llvm.cuda.syncthreads`` is ``convergent``, so
1305 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001306 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001307
Justin Lebar58535b12016-02-17 17:46:41 +00001308 When it appears on a call/invoke, the ``convergent`` attribute indicates
1309 that we should treat the call as though we're calling a convergent
1310 function. This is particularly useful on indirect calls; without this we
1311 may treat such calls as though the target is non-convergent.
1312
1313 The optimizer may remove the ``convergent`` attribute on functions when it
1314 can prove that the function does not execute any convergent operations.
1315 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1316 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001317``inaccessiblememonly``
1318 This attribute indicates that the function may only access memory that
1319 is not accessible by the module being compiled. This is a weaker form
1320 of ``readnone``.
1321``inaccessiblemem_or_argmemonly``
1322 This attribute indicates that the function may only access memory that is
1323 either not accessible by the module being compiled, or is pointed to
1324 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001325``inlinehint``
1326 This attribute indicates that the source code contained a hint that
1327 inlining this function is desirable (such as the "inline" keyword in
1328 C/C++). It is just a hint; it imposes no requirements on the
1329 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001330``jumptable``
1331 This attribute indicates that the function should be added to a
1332 jump-instruction table at code-generation time, and that all address-taken
1333 references to this function should be replaced with a reference to the
1334 appropriate jump-instruction-table function pointer. Note that this creates
1335 a new pointer for the original function, which means that code that depends
1336 on function-pointer identity can break. So, any function annotated with
1337 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001338``minsize``
1339 This attribute suggests that optimization passes and code generator
1340 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001341 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001342 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001343``naked``
1344 This attribute disables prologue / epilogue emission for the
1345 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001346``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001347 This indicates that the callee function at a call site is not recognized as
1348 a built-in function. LLVM will retain the original call and not replace it
1349 with equivalent code based on the semantics of the built-in function, unless
1350 the call site uses the ``builtin`` attribute. This is valid at call sites
1351 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001352``noduplicate``
1353 This attribute indicates that calls to the function cannot be
1354 duplicated. A call to a ``noduplicate`` function may be moved
1355 within its parent function, but may not be duplicated within
1356 its parent function.
1357
1358 A function containing a ``noduplicate`` call may still
1359 be an inlining candidate, provided that the call is not
1360 duplicated by inlining. That implies that the function has
1361 internal linkage and only has one call site, so the original
1362 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001363``noimplicitfloat``
1364 This attributes disables implicit floating point instructions.
1365``noinline``
1366 This attribute indicates that the inliner should never inline this
1367 function in any situation. This attribute may not be used together
1368 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001369``nonlazybind``
1370 This attribute suppresses lazy symbol binding for the function. This
1371 may make calls to the function faster, at the cost of extra program
1372 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001373``noredzone``
1374 This attribute indicates that the code generator should not use a
1375 red zone, even if the target-specific ABI normally permits it.
1376``noreturn``
1377 This function attribute indicates that the function never returns
1378 normally. This produces undefined behavior at runtime if the
1379 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001380``norecurse``
1381 This function attribute indicates that the function does not call itself
1382 either directly or indirectly down any possible call path. This produces
1383 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001384``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001385 This function attribute indicates that the function never raises an
1386 exception. If the function does raise an exception, its runtime
1387 behavior is undefined. However, functions marked nounwind may still
1388 trap or generate asynchronous exceptions. Exception handling schemes
1389 that are recognized by LLVM to handle asynchronous exceptions, such
1390 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001391``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001392 This function attribute indicates that most optimization passes will skip
1393 this function, with the exception of interprocedural optimization passes.
1394 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001395 This attribute cannot be used together with the ``alwaysinline``
1396 attribute; this attribute is also incompatible
1397 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001398
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001399 This attribute requires the ``noinline`` attribute to be specified on
1400 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001401 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001402 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001403``optsize``
1404 This attribute suggests that optimization passes and code generator
1405 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001406 and otherwise do optimizations specifically to reduce code size as
1407 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001408``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001409 On a function, this attribute indicates that the function computes its
1410 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001411 without dereferencing any pointer arguments or otherwise accessing
1412 any mutable state (e.g. memory, control registers, etc) visible to
1413 caller functions. It does not write through any pointer arguments
1414 (including ``byval`` arguments) and never changes any state visible
1415 to callers. This means that it cannot unwind exceptions by calling
1416 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001417
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001418 On an argument, this attribute indicates that the function does not
1419 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001420 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001421``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001422 On a function, this attribute indicates that the function does not write
1423 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001424 modify any state (e.g. memory, control registers, etc) visible to
1425 caller functions. It may dereference pointer arguments and read
1426 state that may be set in the caller. A readonly function always
1427 returns the same value (or unwinds an exception identically) when
1428 called with the same set of arguments and global state. It cannot
1429 unwind an exception by calling the ``C++`` exception throwing
1430 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001431
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001432 On an argument, this attribute indicates that the function does not write
1433 through this pointer argument, even though it may write to the memory that
1434 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001435``argmemonly``
1436 This attribute indicates that the only memory accesses inside function are
1437 loads and stores from objects pointed to by its pointer-typed arguments,
1438 with arbitrary offsets. Or in other words, all memory operations in the
1439 function can refer to memory only using pointers based on its function
1440 arguments.
1441 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1442 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001443``returns_twice``
1444 This attribute indicates that this function can return twice. The C
1445 ``setjmp`` is an example of such a function. The compiler disables
1446 some optimizations (like tail calls) in the caller of these
1447 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001448``safestack``
1449 This attribute indicates that
1450 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1451 protection is enabled for this function.
1452
1453 If a function that has a ``safestack`` attribute is inlined into a
1454 function that doesn't have a ``safestack`` attribute or which has an
1455 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1456 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001457``sanitize_address``
1458 This attribute indicates that AddressSanitizer checks
1459 (dynamic address safety analysis) are enabled for this function.
1460``sanitize_memory``
1461 This attribute indicates that MemorySanitizer checks (dynamic detection
1462 of accesses to uninitialized memory) are enabled for this function.
1463``sanitize_thread``
1464 This attribute indicates that ThreadSanitizer checks
1465 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001466``ssp``
1467 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001468 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001469 placed on the stack before the local variables that's checked upon
1470 return from the function to see if it has been overwritten. A
1471 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001472 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001473
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001474 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1475 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1476 - Calls to alloca() with variable sizes or constant sizes greater than
1477 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001478
Josh Magee24c7f062014-02-01 01:36:16 +00001479 Variables that are identified as requiring a protector will be arranged
1480 on the stack such that they are adjacent to the stack protector guard.
1481
Sean Silvab084af42012-12-07 10:36:55 +00001482 If a function that has an ``ssp`` attribute is inlined into a
1483 function that doesn't have an ``ssp`` attribute, then the resulting
1484 function will have an ``ssp`` attribute.
1485``sspreq``
1486 This attribute indicates that the function should *always* emit a
1487 stack smashing protector. This overrides the ``ssp`` function
1488 attribute.
1489
Josh Magee24c7f062014-02-01 01:36:16 +00001490 Variables that are identified as requiring a protector will be arranged
1491 on the stack such that they are adjacent to the stack protector guard.
1492 The specific layout rules are:
1493
1494 #. Large arrays and structures containing large arrays
1495 (``>= ssp-buffer-size``) are closest to the stack protector.
1496 #. Small arrays and structures containing small arrays
1497 (``< ssp-buffer-size``) are 2nd closest to the protector.
1498 #. Variables that have had their address taken are 3rd closest to the
1499 protector.
1500
Sean Silvab084af42012-12-07 10:36:55 +00001501 If a function that has an ``sspreq`` attribute is inlined into a
1502 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001503 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1504 an ``sspreq`` attribute.
1505``sspstrong``
1506 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001507 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001508 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001509 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001510
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001511 - Arrays of any size and type
1512 - Aggregates containing an array of any size and type.
1513 - Calls to alloca().
1514 - Local variables that have had their address taken.
1515
Josh Magee24c7f062014-02-01 01:36:16 +00001516 Variables that are identified as requiring a protector will be arranged
1517 on the stack such that they are adjacent to the stack protector guard.
1518 The specific layout rules are:
1519
1520 #. Large arrays and structures containing large arrays
1521 (``>= ssp-buffer-size``) are closest to the stack protector.
1522 #. Small arrays and structures containing small arrays
1523 (``< ssp-buffer-size``) are 2nd closest to the protector.
1524 #. Variables that have had their address taken are 3rd closest to the
1525 protector.
1526
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001527 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001528
1529 If a function that has an ``sspstrong`` attribute is inlined into a
1530 function that doesn't have an ``sspstrong`` attribute, then the
1531 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001532``"thunk"``
1533 This attribute indicates that the function will delegate to some other
1534 function with a tail call. The prototype of a thunk should not be used for
1535 optimization purposes. The caller is expected to cast the thunk prototype to
1536 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001537``uwtable``
1538 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001539 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001540 show that no exceptions passes by it. This is normally the case for
1541 the ELF x86-64 abi, but it can be disabled for some compilation
1542 units.
Sean Silvab084af42012-12-07 10:36:55 +00001543
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001544
1545.. _opbundles:
1546
1547Operand Bundles
1548---------------
1549
1550Note: operand bundles are a work in progress, and they should be
1551considered experimental at this time.
1552
1553Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001554with certain LLVM instructions (currently only ``call`` s and
1555``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001556incorrect and will change program semantics.
1557
1558Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001559
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001560 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001561 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1562 bundle operand ::= SSA value
1563 tag ::= string constant
1564
1565Operand bundles are **not** part of a function's signature, and a
1566given function may be called from multiple places with different kinds
1567of operand bundles. This reflects the fact that the operand bundles
1568are conceptually a part of the ``call`` (or ``invoke``), not the
1569callee being dispatched to.
1570
1571Operand bundles are a generic mechanism intended to support
1572runtime-introspection-like functionality for managed languages. While
1573the exact semantics of an operand bundle depend on the bundle tag,
1574there are certain limitations to how much the presence of an operand
1575bundle can influence the semantics of a program. These restrictions
1576are described as the semantics of an "unknown" operand bundle. As
1577long as the behavior of an operand bundle is describable within these
1578restrictions, LLVM does not need to have special knowledge of the
1579operand bundle to not miscompile programs containing it.
1580
David Majnemer34cacb42015-10-22 01:46:38 +00001581- The bundle operands for an unknown operand bundle escape in unknown
1582 ways before control is transferred to the callee or invokee.
1583- Calls and invokes with operand bundles have unknown read / write
1584 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001585 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001586 callsite specific attributes.
1587- An operand bundle at a call site cannot change the implementation
1588 of the called function. Inter-procedural optimizations work as
1589 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001590
Sanjoy Dascdafd842015-11-11 21:38:02 +00001591More specific types of operand bundles are described below.
1592
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001593.. _deopt_opbundles:
1594
Sanjoy Dascdafd842015-11-11 21:38:02 +00001595Deoptimization Operand Bundles
1596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1597
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001598Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001599operand bundle tag. These operand bundles represent an alternate
1600"safe" continuation for the call site they're attached to, and can be
1601used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001602specified call site. There can be at most one ``"deopt"`` operand
1603bundle attached to a call site. Exact details of deoptimization is
1604out of scope for the language reference, but it usually involves
1605rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001606
1607From the compiler's perspective, deoptimization operand bundles make
1608the call sites they're attached to at least ``readonly``. They read
1609through all of their pointer typed operands (even if they're not
1610otherwise escaped) and the entire visible heap. Deoptimization
1611operand bundles do not capture their operands except during
1612deoptimization, in which case control will not be returned to the
1613compiled frame.
1614
Sanjoy Das2d161452015-11-18 06:23:38 +00001615The inliner knows how to inline through calls that have deoptimization
1616operand bundles. Just like inlining through a normal call site
1617involves composing the normal and exceptional continuations, inlining
1618through a call site with a deoptimization operand bundle needs to
1619appropriately compose the "safe" deoptimization continuation. The
1620inliner does this by prepending the parent's deoptimization
1621continuation to every deoptimization continuation in the inlined body.
1622E.g. inlining ``@f`` into ``@g`` in the following example
1623
1624.. code-block:: llvm
1625
1626 define void @f() {
1627 call void @x() ;; no deopt state
1628 call void @y() [ "deopt"(i32 10) ]
1629 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1630 ret void
1631 }
1632
1633 define void @g() {
1634 call void @f() [ "deopt"(i32 20) ]
1635 ret void
1636 }
1637
1638will result in
1639
1640.. code-block:: llvm
1641
1642 define void @g() {
1643 call void @x() ;; still no deopt state
1644 call void @y() [ "deopt"(i32 20, i32 10) ]
1645 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1646 ret void
1647 }
1648
1649It is the frontend's responsibility to structure or encode the
1650deoptimization state in a way that syntactically prepending the
1651caller's deoptimization state to the callee's deoptimization state is
1652semantically equivalent to composing the caller's deoptimization
1653continuation after the callee's deoptimization continuation.
1654
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001655.. _ob_funclet:
1656
David Majnemer3bb88c02015-12-15 21:27:27 +00001657Funclet Operand Bundles
1658^^^^^^^^^^^^^^^^^^^^^^^
1659
1660Funclet operand bundles are characterized by the ``"funclet"``
1661operand bundle tag. These operand bundles indicate that a call site
1662is within a particular funclet. There can be at most one
1663``"funclet"`` operand bundle attached to a call site and it must have
1664exactly one bundle operand.
1665
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001666If any funclet EH pads have been "entered" but not "exited" (per the
1667`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1668it is undefined behavior to execute a ``call`` or ``invoke`` which:
1669
1670* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1671 intrinsic, or
1672* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1673 not-yet-exited funclet EH pad.
1674
1675Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1676executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1677
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001678GC Transition Operand Bundles
1679^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1680
1681GC transition operand bundles are characterized by the
1682``"gc-transition"`` operand bundle tag. These operand bundles mark a
1683call as a transition between a function with one GC strategy to a
1684function with a different GC strategy. If coordinating the transition
1685between GC strategies requires additional code generation at the call
1686site, these bundles may contain any values that are needed by the
1687generated code. For more details, see :ref:`GC Transitions
1688<gc_transition_args>`.
1689
Sean Silvab084af42012-12-07 10:36:55 +00001690.. _moduleasm:
1691
1692Module-Level Inline Assembly
1693----------------------------
1694
1695Modules may contain "module-level inline asm" blocks, which corresponds
1696to the GCC "file scope inline asm" blocks. These blocks are internally
1697concatenated by LLVM and treated as a single unit, but may be separated
1698in the ``.ll`` file if desired. The syntax is very simple:
1699
1700.. code-block:: llvm
1701
1702 module asm "inline asm code goes here"
1703 module asm "more can go here"
1704
1705The strings can contain any character by escaping non-printable
1706characters. The escape sequence used is simply "\\xx" where "xx" is the
1707two digit hex code for the number.
1708
James Y Knightbc832ed2015-07-08 18:08:36 +00001709Note that the assembly string *must* be parseable by LLVM's integrated assembler
1710(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001711
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001712.. _langref_datalayout:
1713
Sean Silvab084af42012-12-07 10:36:55 +00001714Data Layout
1715-----------
1716
1717A module may specify a target specific data layout string that specifies
1718how data is to be laid out in memory. The syntax for the data layout is
1719simply:
1720
1721.. code-block:: llvm
1722
1723 target datalayout = "layout specification"
1724
1725The *layout specification* consists of a list of specifications
1726separated by the minus sign character ('-'). Each specification starts
1727with a letter and may include other information after the letter to
1728define some aspect of the data layout. The specifications accepted are
1729as follows:
1730
1731``E``
1732 Specifies that the target lays out data in big-endian form. That is,
1733 the bits with the most significance have the lowest address
1734 location.
1735``e``
1736 Specifies that the target lays out data in little-endian form. That
1737 is, the bits with the least significance have the lowest address
1738 location.
1739``S<size>``
1740 Specifies the natural alignment of the stack in bits. Alignment
1741 promotion of stack variables is limited to the natural stack
1742 alignment to avoid dynamic stack realignment. The stack alignment
1743 must be a multiple of 8-bits. If omitted, the natural stack
1744 alignment defaults to "unspecified", which does not prevent any
1745 alignment promotions.
1746``p[n]:<size>:<abi>:<pref>``
1747 This specifies the *size* of a pointer and its ``<abi>`` and
1748 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001749 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001750 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001751 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001752``i<size>:<abi>:<pref>``
1753 This specifies the alignment for an integer type of a given bit
1754 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1755``v<size>:<abi>:<pref>``
1756 This specifies the alignment for a vector type of a given bit
1757 ``<size>``.
1758``f<size>:<abi>:<pref>``
1759 This specifies the alignment for a floating point type of a given bit
1760 ``<size>``. Only values of ``<size>`` that are supported by the target
1761 will work. 32 (float) and 64 (double) are supported on all targets; 80
1762 or 128 (different flavors of long double) are also supported on some
1763 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001764``a:<abi>:<pref>``
1765 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001766``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001767 If present, specifies that llvm names are mangled in the output. The
1768 options are
1769
1770 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1771 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1772 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1773 symbols get a ``_`` prefix.
1774 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1775 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001776 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1777 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001778``n<size1>:<size2>:<size3>...``
1779 This specifies a set of native integer widths for the target CPU in
1780 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1781 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1782 this set are considered to support most general arithmetic operations
1783 efficiently.
1784
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001785On every specification that takes a ``<abi>:<pref>``, specifying the
1786``<pref>`` alignment is optional. If omitted, the preceding ``:``
1787should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1788
Sean Silvab084af42012-12-07 10:36:55 +00001789When constructing the data layout for a given target, LLVM starts with a
1790default set of specifications which are then (possibly) overridden by
1791the specifications in the ``datalayout`` keyword. The default
1792specifications are given in this list:
1793
1794- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001795- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1796- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1797 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001798- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001799- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1800- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1801- ``i16:16:16`` - i16 is 16-bit aligned
1802- ``i32:32:32`` - i32 is 32-bit aligned
1803- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1804 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001805- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001806- ``f32:32:32`` - float is 32-bit aligned
1807- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001808- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001809- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1810- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001811- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001812
1813When LLVM is determining the alignment for a given type, it uses the
1814following rules:
1815
1816#. If the type sought is an exact match for one of the specifications,
1817 that specification is used.
1818#. If no match is found, and the type sought is an integer type, then
1819 the smallest integer type that is larger than the bitwidth of the
1820 sought type is used. If none of the specifications are larger than
1821 the bitwidth then the largest integer type is used. For example,
1822 given the default specifications above, the i7 type will use the
1823 alignment of i8 (next largest) while both i65 and i256 will use the
1824 alignment of i64 (largest specified).
1825#. If no match is found, and the type sought is a vector type, then the
1826 largest vector type that is smaller than the sought vector type will
1827 be used as a fall back. This happens because <128 x double> can be
1828 implemented in terms of 64 <2 x double>, for example.
1829
1830The function of the data layout string may not be what you expect.
1831Notably, this is not a specification from the frontend of what alignment
1832the code generator should use.
1833
1834Instead, if specified, the target data layout is required to match what
1835the ultimate *code generator* expects. This string is used by the
1836mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001837what the ultimate code generator uses. There is no way to generate IR
1838that does not embed this target-specific detail into the IR. If you
1839don't specify the string, the default specifications will be used to
1840generate a Data Layout and the optimization phases will operate
1841accordingly and introduce target specificity into the IR with respect to
1842these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001843
Bill Wendling5cc90842013-10-18 23:41:25 +00001844.. _langref_triple:
1845
1846Target Triple
1847-------------
1848
1849A module may specify a target triple string that describes the target
1850host. The syntax for the target triple is simply:
1851
1852.. code-block:: llvm
1853
1854 target triple = "x86_64-apple-macosx10.7.0"
1855
1856The *target triple* string consists of a series of identifiers delimited
1857by the minus sign character ('-'). The canonical forms are:
1858
1859::
1860
1861 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1862 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1863
1864This information is passed along to the backend so that it generates
1865code for the proper architecture. It's possible to override this on the
1866command line with the ``-mtriple`` command line option.
1867
Sean Silvab084af42012-12-07 10:36:55 +00001868.. _pointeraliasing:
1869
1870Pointer Aliasing Rules
1871----------------------
1872
1873Any memory access must be done through a pointer value associated with
1874an address range of the memory access, otherwise the behavior is
1875undefined. Pointer values are associated with address ranges according
1876to the following rules:
1877
1878- A pointer value is associated with the addresses associated with any
1879 value it is *based* on.
1880- An address of a global variable is associated with the address range
1881 of the variable's storage.
1882- The result value of an allocation instruction is associated with the
1883 address range of the allocated storage.
1884- A null pointer in the default address-space is associated with no
1885 address.
1886- An integer constant other than zero or a pointer value returned from
1887 a function not defined within LLVM may be associated with address
1888 ranges allocated through mechanisms other than those provided by
1889 LLVM. Such ranges shall not overlap with any ranges of addresses
1890 allocated by mechanisms provided by LLVM.
1891
1892A pointer value is *based* on another pointer value according to the
1893following rules:
1894
1895- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001896 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001897- The result value of a ``bitcast`` is *based* on the operand of the
1898 ``bitcast``.
1899- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1900 values that contribute (directly or indirectly) to the computation of
1901 the pointer's value.
1902- The "*based* on" relationship is transitive.
1903
1904Note that this definition of *"based"* is intentionally similar to the
1905definition of *"based"* in C99, though it is slightly weaker.
1906
1907LLVM IR does not associate types with memory. The result type of a
1908``load`` merely indicates the size and alignment of the memory from
1909which to load, as well as the interpretation of the value. The first
1910operand type of a ``store`` similarly only indicates the size and
1911alignment of the store.
1912
1913Consequently, type-based alias analysis, aka TBAA, aka
1914``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1915:ref:`Metadata <metadata>` may be used to encode additional information
1916which specialized optimization passes may use to implement type-based
1917alias analysis.
1918
1919.. _volatile:
1920
1921Volatile Memory Accesses
1922------------------------
1923
1924Certain memory accesses, such as :ref:`load <i_load>`'s,
1925:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1926marked ``volatile``. The optimizers must not change the number of
1927volatile operations or change their order of execution relative to other
1928volatile operations. The optimizers *may* change the order of volatile
1929operations relative to non-volatile operations. This is not Java's
1930"volatile" and has no cross-thread synchronization behavior.
1931
Andrew Trick89fc5a62013-01-30 21:19:35 +00001932IR-level volatile loads and stores cannot safely be optimized into
1933llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1934flagged volatile. Likewise, the backend should never split or merge
1935target-legal volatile load/store instructions.
1936
Andrew Trick7e6f9282013-01-31 00:49:39 +00001937.. admonition:: Rationale
1938
1939 Platforms may rely on volatile loads and stores of natively supported
1940 data width to be executed as single instruction. For example, in C
1941 this holds for an l-value of volatile primitive type with native
1942 hardware support, but not necessarily for aggregate types. The
1943 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001944 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001945 do not violate the frontend's contract with the language.
1946
Sean Silvab084af42012-12-07 10:36:55 +00001947.. _memmodel:
1948
1949Memory Model for Concurrent Operations
1950--------------------------------------
1951
1952The LLVM IR does not define any way to start parallel threads of
1953execution or to register signal handlers. Nonetheless, there are
1954platform-specific ways to create them, and we define LLVM IR's behavior
1955in their presence. This model is inspired by the C++0x memory model.
1956
1957For a more informal introduction to this model, see the :doc:`Atomics`.
1958
1959We define a *happens-before* partial order as the least partial order
1960that
1961
1962- Is a superset of single-thread program order, and
1963- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1964 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1965 techniques, like pthread locks, thread creation, thread joining,
1966 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1967 Constraints <ordering>`).
1968
1969Note that program order does not introduce *happens-before* edges
1970between a thread and signals executing inside that thread.
1971
1972Every (defined) read operation (load instructions, memcpy, atomic
1973loads/read-modify-writes, etc.) R reads a series of bytes written by
1974(defined) write operations (store instructions, atomic
1975stores/read-modify-writes, memcpy, etc.). For the purposes of this
1976section, initialized globals are considered to have a write of the
1977initializer which is atomic and happens before any other read or write
1978of the memory in question. For each byte of a read R, R\ :sub:`byte`
1979may see any write to the same byte, except:
1980
1981- If write\ :sub:`1` happens before write\ :sub:`2`, and
1982 write\ :sub:`2` happens before R\ :sub:`byte`, then
1983 R\ :sub:`byte` does not see write\ :sub:`1`.
1984- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1985 R\ :sub:`byte` does not see write\ :sub:`3`.
1986
1987Given that definition, R\ :sub:`byte` is defined as follows:
1988
1989- If R is volatile, the result is target-dependent. (Volatile is
1990 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001991 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001992 like normal memory. It does not generally provide cross-thread
1993 synchronization.)
1994- Otherwise, if there is no write to the same byte that happens before
1995 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1996- Otherwise, if R\ :sub:`byte` may see exactly one write,
1997 R\ :sub:`byte` returns the value written by that write.
1998- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1999 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2000 Memory Ordering Constraints <ordering>` section for additional
2001 constraints on how the choice is made.
2002- Otherwise R\ :sub:`byte` returns ``undef``.
2003
2004R returns the value composed of the series of bytes it read. This
2005implies that some bytes within the value may be ``undef`` **without**
2006the entire value being ``undef``. Note that this only defines the
2007semantics of the operation; it doesn't mean that targets will emit more
2008than one instruction to read the series of bytes.
2009
2010Note that in cases where none of the atomic intrinsics are used, this
2011model places only one restriction on IR transformations on top of what
2012is required for single-threaded execution: introducing a store to a byte
2013which might not otherwise be stored is not allowed in general.
2014(Specifically, in the case where another thread might write to and read
2015from an address, introducing a store can change a load that may see
2016exactly one write into a load that may see multiple writes.)
2017
2018.. _ordering:
2019
2020Atomic Memory Ordering Constraints
2021----------------------------------
2022
2023Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2024:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2025:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002026ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002027the same address they *synchronize with*. These semantics are borrowed
2028from Java and C++0x, but are somewhat more colloquial. If these
2029descriptions aren't precise enough, check those specs (see spec
2030references in the :doc:`atomics guide <Atomics>`).
2031:ref:`fence <i_fence>` instructions treat these orderings somewhat
2032differently since they don't take an address. See that instruction's
2033documentation for details.
2034
2035For a simpler introduction to the ordering constraints, see the
2036:doc:`Atomics`.
2037
2038``unordered``
2039 The set of values that can be read is governed by the happens-before
2040 partial order. A value cannot be read unless some operation wrote
2041 it. This is intended to provide a guarantee strong enough to model
2042 Java's non-volatile shared variables. This ordering cannot be
2043 specified for read-modify-write operations; it is not strong enough
2044 to make them atomic in any interesting way.
2045``monotonic``
2046 In addition to the guarantees of ``unordered``, there is a single
2047 total order for modifications by ``monotonic`` operations on each
2048 address. All modification orders must be compatible with the
2049 happens-before order. There is no guarantee that the modification
2050 orders can be combined to a global total order for the whole program
2051 (and this often will not be possible). The read in an atomic
2052 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2053 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2054 order immediately before the value it writes. If one atomic read
2055 happens before another atomic read of the same address, the later
2056 read must see the same value or a later value in the address's
2057 modification order. This disallows reordering of ``monotonic`` (or
2058 stronger) operations on the same address. If an address is written
2059 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2060 read that address repeatedly, the other threads must eventually see
2061 the write. This corresponds to the C++0x/C1x
2062 ``memory_order_relaxed``.
2063``acquire``
2064 In addition to the guarantees of ``monotonic``, a
2065 *synchronizes-with* edge may be formed with a ``release`` operation.
2066 This is intended to model C++'s ``memory_order_acquire``.
2067``release``
2068 In addition to the guarantees of ``monotonic``, if this operation
2069 writes a value which is subsequently read by an ``acquire``
2070 operation, it *synchronizes-with* that operation. (This isn't a
2071 complete description; see the C++0x definition of a release
2072 sequence.) This corresponds to the C++0x/C1x
2073 ``memory_order_release``.
2074``acq_rel`` (acquire+release)
2075 Acts as both an ``acquire`` and ``release`` operation on its
2076 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2077``seq_cst`` (sequentially consistent)
2078 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002079 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002080 writes), there is a global total order on all
2081 sequentially-consistent operations on all addresses, which is
2082 consistent with the *happens-before* partial order and with the
2083 modification orders of all the affected addresses. Each
2084 sequentially-consistent read sees the last preceding write to the
2085 same address in this global order. This corresponds to the C++0x/C1x
2086 ``memory_order_seq_cst`` and Java volatile.
2087
2088.. _singlethread:
2089
2090If an atomic operation is marked ``singlethread``, it only *synchronizes
2091with* or participates in modification and seq\_cst total orderings with
2092other operations running in the same thread (for example, in signal
2093handlers).
2094
2095.. _fastmath:
2096
2097Fast-Math Flags
2098---------------
2099
2100LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2101:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002102:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2103be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002104
2105``nnan``
2106 No NaNs - Allow optimizations to assume the arguments and result are not
2107 NaN. Such optimizations are required to retain defined behavior over
2108 NaNs, but the value of the result is undefined.
2109
2110``ninf``
2111 No Infs - Allow optimizations to assume the arguments and result are not
2112 +/-Inf. Such optimizations are required to retain defined behavior over
2113 +/-Inf, but the value of the result is undefined.
2114
2115``nsz``
2116 No Signed Zeros - Allow optimizations to treat the sign of a zero
2117 argument or result as insignificant.
2118
2119``arcp``
2120 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2121 argument rather than perform division.
2122
2123``fast``
2124 Fast - Allow algebraically equivalent transformations that may
2125 dramatically change results in floating point (e.g. reassociate). This
2126 flag implies all the others.
2127
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002128.. _uselistorder:
2129
2130Use-list Order Directives
2131-------------------------
2132
2133Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002134order to be recreated. ``<order-indexes>`` is a comma-separated list of
2135indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002136value's use-list is immediately sorted by these indexes.
2137
Sean Silvaa1190322015-08-06 22:56:48 +00002138Use-list directives may appear at function scope or global scope. They are not
2139instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002140function scope, they must appear after the terminator of the final basic block.
2141
2142If basic blocks have their address taken via ``blockaddress()`` expressions,
2143``uselistorder_bb`` can be used to reorder their use-lists from outside their
2144function's scope.
2145
2146:Syntax:
2147
2148::
2149
2150 uselistorder <ty> <value>, { <order-indexes> }
2151 uselistorder_bb @function, %block { <order-indexes> }
2152
2153:Examples:
2154
2155::
2156
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002157 define void @foo(i32 %arg1, i32 %arg2) {
2158 entry:
2159 ; ... instructions ...
2160 bb:
2161 ; ... instructions ...
2162
2163 ; At function scope.
2164 uselistorder i32 %arg1, { 1, 0, 2 }
2165 uselistorder label %bb, { 1, 0 }
2166 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002167
2168 ; At global scope.
2169 uselistorder i32* @global, { 1, 2, 0 }
2170 uselistorder i32 7, { 1, 0 }
2171 uselistorder i32 (i32) @bar, { 1, 0 }
2172 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2173
Sean Silvab084af42012-12-07 10:36:55 +00002174.. _typesystem:
2175
2176Type System
2177===========
2178
2179The LLVM type system is one of the most important features of the
2180intermediate representation. Being typed enables a number of
2181optimizations to be performed on the intermediate representation
2182directly, without having to do extra analyses on the side before the
2183transformation. A strong type system makes it easier to read the
2184generated code and enables novel analyses and transformations that are
2185not feasible to perform on normal three address code representations.
2186
Rafael Espindola08013342013-12-07 19:34:20 +00002187.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002188
Rafael Espindola08013342013-12-07 19:34:20 +00002189Void Type
2190---------
Sean Silvab084af42012-12-07 10:36:55 +00002191
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002192:Overview:
2193
Rafael Espindola08013342013-12-07 19:34:20 +00002194
2195The void type does not represent any value and has no size.
2196
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002197:Syntax:
2198
Rafael Espindola08013342013-12-07 19:34:20 +00002199
2200::
2201
2202 void
Sean Silvab084af42012-12-07 10:36:55 +00002203
2204
Rafael Espindola08013342013-12-07 19:34:20 +00002205.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002206
Rafael Espindola08013342013-12-07 19:34:20 +00002207Function Type
2208-------------
Sean Silvab084af42012-12-07 10:36:55 +00002209
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002210:Overview:
2211
Sean Silvab084af42012-12-07 10:36:55 +00002212
Rafael Espindola08013342013-12-07 19:34:20 +00002213The function type can be thought of as a function signature. It consists of a
2214return type and a list of formal parameter types. The return type of a function
2215type is a void type or first class type --- except for :ref:`label <t_label>`
2216and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002217
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002218:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002219
Rafael Espindola08013342013-12-07 19:34:20 +00002220::
Sean Silvab084af42012-12-07 10:36:55 +00002221
Rafael Espindola08013342013-12-07 19:34:20 +00002222 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002223
Rafael Espindola08013342013-12-07 19:34:20 +00002224...where '``<parameter list>``' is a comma-separated list of type
2225specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002226indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002227argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002228handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002229except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002230
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002231:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002232
Rafael Espindola08013342013-12-07 19:34:20 +00002233+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2234| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2235+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2236| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2237+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2238| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2239+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2240| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2241+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2242
2243.. _t_firstclass:
2244
2245First Class Types
2246-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002247
2248The :ref:`first class <t_firstclass>` types are perhaps the most important.
2249Values of these types are the only ones which can be produced by
2250instructions.
2251
Rafael Espindola08013342013-12-07 19:34:20 +00002252.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002253
Rafael Espindola08013342013-12-07 19:34:20 +00002254Single Value Types
2255^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002256
Rafael Espindola08013342013-12-07 19:34:20 +00002257These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002258
2259.. _t_integer:
2260
2261Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002262""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002263
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002264:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002265
2266The integer type is a very simple type that simply specifies an
2267arbitrary bit width for the integer type desired. Any bit width from 1
2268bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2269
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002270:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002271
2272::
2273
2274 iN
2275
2276The number of bits the integer will occupy is specified by the ``N``
2277value.
2278
2279Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002280*********
Sean Silvab084af42012-12-07 10:36:55 +00002281
2282+----------------+------------------------------------------------+
2283| ``i1`` | a single-bit integer. |
2284+----------------+------------------------------------------------+
2285| ``i32`` | a 32-bit integer. |
2286+----------------+------------------------------------------------+
2287| ``i1942652`` | a really big integer of over 1 million bits. |
2288+----------------+------------------------------------------------+
2289
2290.. _t_floating:
2291
2292Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002293""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002294
2295.. list-table::
2296 :header-rows: 1
2297
2298 * - Type
2299 - Description
2300
2301 * - ``half``
2302 - 16-bit floating point value
2303
2304 * - ``float``
2305 - 32-bit floating point value
2306
2307 * - ``double``
2308 - 64-bit floating point value
2309
2310 * - ``fp128``
2311 - 128-bit floating point value (112-bit mantissa)
2312
2313 * - ``x86_fp80``
2314 - 80-bit floating point value (X87)
2315
2316 * - ``ppc_fp128``
2317 - 128-bit floating point value (two 64-bits)
2318
Reid Kleckner9a16d082014-03-05 02:41:37 +00002319X86_mmx Type
2320""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002323
Reid Kleckner9a16d082014-03-05 02:41:37 +00002324The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002325machine. The operations allowed on it are quite limited: parameters and
2326return values, load and store, and bitcast. User-specified MMX
2327instructions are represented as intrinsic or asm calls with arguments
2328and/or results of this type. There are no arrays, vectors or constants
2329of this type.
2330
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002331:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002332
2333::
2334
Reid Kleckner9a16d082014-03-05 02:41:37 +00002335 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002336
Sean Silvab084af42012-12-07 10:36:55 +00002337
Rafael Espindola08013342013-12-07 19:34:20 +00002338.. _t_pointer:
2339
2340Pointer Type
2341""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002342
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002343:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002344
Rafael Espindola08013342013-12-07 19:34:20 +00002345The pointer type is used to specify memory locations. Pointers are
2346commonly used to reference objects in memory.
2347
2348Pointer types may have an optional address space attribute defining the
2349numbered address space where the pointed-to object resides. The default
2350address space is number zero. The semantics of non-zero address spaces
2351are target-specific.
2352
2353Note that LLVM does not permit pointers to void (``void*``) nor does it
2354permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002355
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002356:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002357
2358::
2359
Rafael Espindola08013342013-12-07 19:34:20 +00002360 <type> *
2361
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002362:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002363
2364+-------------------------+--------------------------------------------------------------------------------------------------------------+
2365| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2366+-------------------------+--------------------------------------------------------------------------------------------------------------+
2367| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2368+-------------------------+--------------------------------------------------------------------------------------------------------------+
2369| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2370+-------------------------+--------------------------------------------------------------------------------------------------------------+
2371
2372.. _t_vector:
2373
2374Vector Type
2375"""""""""""
2376
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002377:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002378
2379A vector type is a simple derived type that represents a vector of
2380elements. Vector types are used when multiple primitive data are
2381operated in parallel using a single instruction (SIMD). A vector type
2382requires a size (number of elements) and an underlying primitive data
2383type. Vector types are considered :ref:`first class <t_firstclass>`.
2384
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002385:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002386
2387::
2388
2389 < <# elements> x <elementtype> >
2390
2391The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002392elementtype may be any integer, floating point or pointer type. Vectors
2393of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002394
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002395:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002396
2397+-------------------+--------------------------------------------------+
2398| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2399+-------------------+--------------------------------------------------+
2400| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2401+-------------------+--------------------------------------------------+
2402| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2403+-------------------+--------------------------------------------------+
2404| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2405+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002406
2407.. _t_label:
2408
2409Label Type
2410^^^^^^^^^^
2411
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002412:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002413
2414The label type represents code labels.
2415
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002416:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002417
2418::
2419
2420 label
2421
David Majnemerb611e3f2015-08-14 05:09:07 +00002422.. _t_token:
2423
2424Token Type
2425^^^^^^^^^^
2426
2427:Overview:
2428
2429The token type is used when a value is associated with an instruction
2430but all uses of the value must not attempt to introspect or obscure it.
2431As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2432:ref:`select <i_select>` of type token.
2433
2434:Syntax:
2435
2436::
2437
2438 token
2439
2440
2441
Sean Silvab084af42012-12-07 10:36:55 +00002442.. _t_metadata:
2443
2444Metadata Type
2445^^^^^^^^^^^^^
2446
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002447:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002448
2449The metadata type represents embedded metadata. No derived types may be
2450created from metadata except for :ref:`function <t_function>` arguments.
2451
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002452:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002453
2454::
2455
2456 metadata
2457
Sean Silvab084af42012-12-07 10:36:55 +00002458.. _t_aggregate:
2459
2460Aggregate Types
2461^^^^^^^^^^^^^^^
2462
2463Aggregate Types are a subset of derived types that can contain multiple
2464member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2465aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2466aggregate types.
2467
2468.. _t_array:
2469
2470Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002471""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002472
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002473:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002474
2475The array type is a very simple derived type that arranges elements
2476sequentially in memory. The array type requires a size (number of
2477elements) and an underlying data type.
2478
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002479:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002480
2481::
2482
2483 [<# elements> x <elementtype>]
2484
2485The number of elements is a constant integer value; ``elementtype`` may
2486be any type with a size.
2487
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002488:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002489
2490+------------------+--------------------------------------+
2491| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2492+------------------+--------------------------------------+
2493| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2494+------------------+--------------------------------------+
2495| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2496+------------------+--------------------------------------+
2497
2498Here are some examples of multidimensional arrays:
2499
2500+-----------------------------+----------------------------------------------------------+
2501| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2502+-----------------------------+----------------------------------------------------------+
2503| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2504+-----------------------------+----------------------------------------------------------+
2505| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2506+-----------------------------+----------------------------------------------------------+
2507
2508There is no restriction on indexing beyond the end of the array implied
2509by a static type (though there are restrictions on indexing beyond the
2510bounds of an allocated object in some cases). This means that
2511single-dimension 'variable sized array' addressing can be implemented in
2512LLVM with a zero length array type. An implementation of 'pascal style
2513arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2514example.
2515
Sean Silvab084af42012-12-07 10:36:55 +00002516.. _t_struct:
2517
2518Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002519""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002520
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002521:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002522
2523The structure type is used to represent a collection of data members
2524together in memory. The elements of a structure may be any type that has
2525a size.
2526
2527Structures in memory are accessed using '``load``' and '``store``' by
2528getting a pointer to a field with the '``getelementptr``' instruction.
2529Structures in registers are accessed using the '``extractvalue``' and
2530'``insertvalue``' instructions.
2531
2532Structures may optionally be "packed" structures, which indicate that
2533the alignment of the struct is one byte, and that there is no padding
2534between the elements. In non-packed structs, padding between field types
2535is inserted as defined by the DataLayout string in the module, which is
2536required to match what the underlying code generator expects.
2537
2538Structures can either be "literal" or "identified". A literal structure
2539is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2540identified types are always defined at the top level with a name.
2541Literal types are uniqued by their contents and can never be recursive
2542or opaque since there is no way to write one. Identified types can be
2543recursive, can be opaqued, and are never uniqued.
2544
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002545:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002546
2547::
2548
2549 %T1 = type { <type list> } ; Identified normal struct type
2550 %T2 = type <{ <type list> }> ; Identified packed struct type
2551
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002552:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002553
2554+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2555| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2556+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002557| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002558+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2559| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2560+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2561
2562.. _t_opaque:
2563
2564Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002565""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002566
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002567:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002568
2569Opaque structure types are used to represent named structure types that
2570do not have a body specified. This corresponds (for example) to the C
2571notion of a forward declared structure.
2572
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002573:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002574
2575::
2576
2577 %X = type opaque
2578 %52 = type opaque
2579
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002580:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002581
2582+--------------+-------------------+
2583| ``opaque`` | An opaque type. |
2584+--------------+-------------------+
2585
Sean Silva1703e702014-04-08 21:06:22 +00002586.. _constants:
2587
Sean Silvab084af42012-12-07 10:36:55 +00002588Constants
2589=========
2590
2591LLVM has several different basic types of constants. This section
2592describes them all and their syntax.
2593
2594Simple Constants
2595----------------
2596
2597**Boolean constants**
2598 The two strings '``true``' and '``false``' are both valid constants
2599 of the ``i1`` type.
2600**Integer constants**
2601 Standard integers (such as '4') are constants of the
2602 :ref:`integer <t_integer>` type. Negative numbers may be used with
2603 integer types.
2604**Floating point constants**
2605 Floating point constants use standard decimal notation (e.g.
2606 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2607 hexadecimal notation (see below). The assembler requires the exact
2608 decimal value of a floating-point constant. For example, the
2609 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2610 decimal in binary. Floating point constants must have a :ref:`floating
2611 point <t_floating>` type.
2612**Null pointer constants**
2613 The identifier '``null``' is recognized as a null pointer constant
2614 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002615**Token constants**
2616 The identifier '``none``' is recognized as an empty token constant
2617 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002618
2619The one non-intuitive notation for constants is the hexadecimal form of
2620floating point constants. For example, the form
2621'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2622than) '``double 4.5e+15``'. The only time hexadecimal floating point
2623constants are required (and the only time that they are generated by the
2624disassembler) is when a floating point constant must be emitted but it
2625cannot be represented as a decimal floating point number in a reasonable
2626number of digits. For example, NaN's, infinities, and other special
2627values are represented in their IEEE hexadecimal format so that assembly
2628and disassembly do not cause any bits to change in the constants.
2629
2630When using the hexadecimal form, constants of types half, float, and
2631double are represented using the 16-digit form shown above (which
2632matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002633must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002634precision, respectively. Hexadecimal format is always used for long
2635double, and there are three forms of long double. The 80-bit format used
2636by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2637128-bit format used by PowerPC (two adjacent doubles) is represented by
2638``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002639represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2640will only work if they match the long double format on your target.
2641The IEEE 16-bit format (half precision) is represented by ``0xH``
2642followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2643(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002644
Reid Kleckner9a16d082014-03-05 02:41:37 +00002645There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002646
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002647.. _complexconstants:
2648
Sean Silvab084af42012-12-07 10:36:55 +00002649Complex Constants
2650-----------------
2651
2652Complex constants are a (potentially recursive) combination of simple
2653constants and smaller complex constants.
2654
2655**Structure constants**
2656 Structure constants are represented with notation similar to
2657 structure type definitions (a comma separated list of elements,
2658 surrounded by braces (``{}``)). For example:
2659 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2660 "``@G = external global i32``". Structure constants must have
2661 :ref:`structure type <t_struct>`, and the number and types of elements
2662 must match those specified by the type.
2663**Array constants**
2664 Array constants are represented with notation similar to array type
2665 definitions (a comma separated list of elements, surrounded by
2666 square brackets (``[]``)). For example:
2667 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2668 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002669 match those specified by the type. As a special case, character array
2670 constants may also be represented as a double-quoted string using the ``c``
2671 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002672**Vector constants**
2673 Vector constants are represented with notation similar to vector
2674 type definitions (a comma separated list of elements, surrounded by
2675 less-than/greater-than's (``<>``)). For example:
2676 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2677 must have :ref:`vector type <t_vector>`, and the number and types of
2678 elements must match those specified by the type.
2679**Zero initialization**
2680 The string '``zeroinitializer``' can be used to zero initialize a
2681 value to zero of *any* type, including scalar and
2682 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2683 having to print large zero initializers (e.g. for large arrays) and
2684 is always exactly equivalent to using explicit zero initializers.
2685**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002686 A metadata node is a constant tuple without types. For example:
2687 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002688 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2689 Unlike other typed constants that are meant to be interpreted as part of
2690 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002691 information such as debug info.
2692
2693Global Variable and Function Addresses
2694--------------------------------------
2695
2696The addresses of :ref:`global variables <globalvars>` and
2697:ref:`functions <functionstructure>` are always implicitly valid
2698(link-time) constants. These constants are explicitly referenced when
2699the :ref:`identifier for the global <identifiers>` is used and always have
2700:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2701file:
2702
2703.. code-block:: llvm
2704
2705 @X = global i32 17
2706 @Y = global i32 42
2707 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2708
2709.. _undefvalues:
2710
2711Undefined Values
2712----------------
2713
2714The string '``undef``' can be used anywhere a constant is expected, and
2715indicates that the user of the value may receive an unspecified
2716bit-pattern. Undefined values may be of any type (other than '``label``'
2717or '``void``') and be used anywhere a constant is permitted.
2718
2719Undefined values are useful because they indicate to the compiler that
2720the program is well defined no matter what value is used. This gives the
2721compiler more freedom to optimize. Here are some examples of
2722(potentially surprising) transformations that are valid (in pseudo IR):
2723
2724.. code-block:: llvm
2725
2726 %A = add %X, undef
2727 %B = sub %X, undef
2728 %C = xor %X, undef
2729 Safe:
2730 %A = undef
2731 %B = undef
2732 %C = undef
2733
2734This is safe because all of the output bits are affected by the undef
2735bits. Any output bit can have a zero or one depending on the input bits.
2736
2737.. code-block:: llvm
2738
2739 %A = or %X, undef
2740 %B = and %X, undef
2741 Safe:
2742 %A = -1
2743 %B = 0
2744 Unsafe:
2745 %A = undef
2746 %B = undef
2747
2748These logical operations have bits that are not always affected by the
2749input. For example, if ``%X`` has a zero bit, then the output of the
2750'``and``' operation will always be a zero for that bit, no matter what
2751the corresponding bit from the '``undef``' is. As such, it is unsafe to
2752optimize or assume that the result of the '``and``' is '``undef``'.
2753However, it is safe to assume that all bits of the '``undef``' could be
27540, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2755all the bits of the '``undef``' operand to the '``or``' could be set,
2756allowing the '``or``' to be folded to -1.
2757
2758.. code-block:: llvm
2759
2760 %A = select undef, %X, %Y
2761 %B = select undef, 42, %Y
2762 %C = select %X, %Y, undef
2763 Safe:
2764 %A = %X (or %Y)
2765 %B = 42 (or %Y)
2766 %C = %Y
2767 Unsafe:
2768 %A = undef
2769 %B = undef
2770 %C = undef
2771
2772This set of examples shows that undefined '``select``' (and conditional
2773branch) conditions can go *either way*, but they have to come from one
2774of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2775both known to have a clear low bit, then ``%A`` would have to have a
2776cleared low bit. However, in the ``%C`` example, the optimizer is
2777allowed to assume that the '``undef``' operand could be the same as
2778``%Y``, allowing the whole '``select``' to be eliminated.
2779
2780.. code-block:: llvm
2781
2782 %A = xor undef, undef
2783
2784 %B = undef
2785 %C = xor %B, %B
2786
2787 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002788 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002789 %F = icmp gte %D, 4
2790
2791 Safe:
2792 %A = undef
2793 %B = undef
2794 %C = undef
2795 %D = undef
2796 %E = undef
2797 %F = undef
2798
2799This example points out that two '``undef``' operands are not
2800necessarily the same. This can be surprising to people (and also matches
2801C semantics) where they assume that "``X^X``" is always zero, even if
2802``X`` is undefined. This isn't true for a number of reasons, but the
2803short answer is that an '``undef``' "variable" can arbitrarily change
2804its value over its "live range". This is true because the variable
2805doesn't actually *have a live range*. Instead, the value is logically
2806read from arbitrary registers that happen to be around when needed, so
2807the value is not necessarily consistent over time. In fact, ``%A`` and
2808``%C`` need to have the same semantics or the core LLVM "replace all
2809uses with" concept would not hold.
2810
2811.. code-block:: llvm
2812
2813 %A = fdiv undef, %X
2814 %B = fdiv %X, undef
2815 Safe:
2816 %A = undef
2817 b: unreachable
2818
2819These examples show the crucial difference between an *undefined value*
2820and *undefined behavior*. An undefined value (like '``undef``') is
2821allowed to have an arbitrary bit-pattern. This means that the ``%A``
2822operation can be constant folded to '``undef``', because the '``undef``'
2823could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2824However, in the second example, we can make a more aggressive
2825assumption: because the ``undef`` is allowed to be an arbitrary value,
2826we are allowed to assume that it could be zero. Since a divide by zero
2827has *undefined behavior*, we are allowed to assume that the operation
2828does not execute at all. This allows us to delete the divide and all
2829code after it. Because the undefined operation "can't happen", the
2830optimizer can assume that it occurs in dead code.
2831
2832.. code-block:: llvm
2833
2834 a: store undef -> %X
2835 b: store %X -> undef
2836 Safe:
2837 a: <deleted>
2838 b: unreachable
2839
2840These examples reiterate the ``fdiv`` example: a store *of* an undefined
2841value can be assumed to not have any effect; we can assume that the
2842value is overwritten with bits that happen to match what was already
2843there. However, a store *to* an undefined location could clobber
2844arbitrary memory, therefore, it has undefined behavior.
2845
2846.. _poisonvalues:
2847
2848Poison Values
2849-------------
2850
2851Poison values are similar to :ref:`undef values <undefvalues>`, however
2852they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002853that cannot evoke side effects has nevertheless detected a condition
2854that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002855
2856There is currently no way of representing a poison value in the IR; they
2857only exist when produced by operations such as :ref:`add <i_add>` with
2858the ``nsw`` flag.
2859
2860Poison value behavior is defined in terms of value *dependence*:
2861
2862- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2863- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2864 their dynamic predecessor basic block.
2865- Function arguments depend on the corresponding actual argument values
2866 in the dynamic callers of their functions.
2867- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2868 instructions that dynamically transfer control back to them.
2869- :ref:`Invoke <i_invoke>` instructions depend on the
2870 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2871 call instructions that dynamically transfer control back to them.
2872- Non-volatile loads and stores depend on the most recent stores to all
2873 of the referenced memory addresses, following the order in the IR
2874 (including loads and stores implied by intrinsics such as
2875 :ref:`@llvm.memcpy <int_memcpy>`.)
2876- An instruction with externally visible side effects depends on the
2877 most recent preceding instruction with externally visible side
2878 effects, following the order in the IR. (This includes :ref:`volatile
2879 operations <volatile>`.)
2880- An instruction *control-depends* on a :ref:`terminator
2881 instruction <terminators>` if the terminator instruction has
2882 multiple successors and the instruction is always executed when
2883 control transfers to one of the successors, and may not be executed
2884 when control is transferred to another.
2885- Additionally, an instruction also *control-depends* on a terminator
2886 instruction if the set of instructions it otherwise depends on would
2887 be different if the terminator had transferred control to a different
2888 successor.
2889- Dependence is transitive.
2890
Richard Smith32dbdf62014-07-31 04:25:36 +00002891Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2892with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002893on a poison value has undefined behavior.
2894
2895Here are some examples:
2896
2897.. code-block:: llvm
2898
2899 entry:
2900 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2901 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002902 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002903 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2904
2905 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002906 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002907
2908 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2909
2910 %narrowaddr = bitcast i32* @g to i16*
2911 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002912 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2913 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002914
2915 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2916 br i1 %cmp, label %true, label %end ; Branch to either destination.
2917
2918 true:
2919 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2920 ; it has undefined behavior.
2921 br label %end
2922
2923 end:
2924 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2925 ; Both edges into this PHI are
2926 ; control-dependent on %cmp, so this
2927 ; always results in a poison value.
2928
2929 store volatile i32 0, i32* @g ; This would depend on the store in %true
2930 ; if %cmp is true, or the store in %entry
2931 ; otherwise, so this is undefined behavior.
2932
2933 br i1 %cmp, label %second_true, label %second_end
2934 ; The same branch again, but this time the
2935 ; true block doesn't have side effects.
2936
2937 second_true:
2938 ; No side effects!
2939 ret void
2940
2941 second_end:
2942 store volatile i32 0, i32* @g ; This time, the instruction always depends
2943 ; on the store in %end. Also, it is
2944 ; control-equivalent to %end, so this is
2945 ; well-defined (ignoring earlier undefined
2946 ; behavior in this example).
2947
2948.. _blockaddress:
2949
2950Addresses of Basic Blocks
2951-------------------------
2952
2953``blockaddress(@function, %block)``
2954
2955The '``blockaddress``' constant computes the address of the specified
2956basic block in the specified function, and always has an ``i8*`` type.
2957Taking the address of the entry block is illegal.
2958
2959This value only has defined behavior when used as an operand to the
2960':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2961against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002962undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002963no label is equal to the null pointer. This may be passed around as an
2964opaque pointer sized value as long as the bits are not inspected. This
2965allows ``ptrtoint`` and arithmetic to be performed on these values so
2966long as the original value is reconstituted before the ``indirectbr``
2967instruction.
2968
2969Finally, some targets may provide defined semantics when using the value
2970as the operand to an inline assembly, but that is target specific.
2971
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002972.. _constantexprs:
2973
Sean Silvab084af42012-12-07 10:36:55 +00002974Constant Expressions
2975--------------------
2976
2977Constant expressions are used to allow expressions involving other
2978constants to be used as constants. Constant expressions may be of any
2979:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2980that does not have side effects (e.g. load and call are not supported).
2981The following is the syntax for constant expressions:
2982
2983``trunc (CST to TYPE)``
2984 Truncate a constant to another type. The bit size of CST must be
2985 larger than the bit size of TYPE. Both types must be integers.
2986``zext (CST to TYPE)``
2987 Zero extend a constant to another type. The bit size of CST must be
2988 smaller than the bit size of TYPE. Both types must be integers.
2989``sext (CST to TYPE)``
2990 Sign extend a constant to another type. The bit size of CST must be
2991 smaller than the bit size of TYPE. Both types must be integers.
2992``fptrunc (CST to TYPE)``
2993 Truncate a floating point constant to another floating point type.
2994 The size of CST must be larger than the size of TYPE. Both types
2995 must be floating point.
2996``fpext (CST to TYPE)``
2997 Floating point extend a constant to another type. The size of CST
2998 must be smaller or equal to the size of TYPE. Both types must be
2999 floating point.
3000``fptoui (CST to TYPE)``
3001 Convert a floating point constant to the corresponding unsigned
3002 integer constant. TYPE must be a scalar or vector integer type. CST
3003 must be of scalar or vector floating point type. Both CST and TYPE
3004 must be scalars, or vectors of the same number of elements. If the
3005 value won't fit in the integer type, the results are undefined.
3006``fptosi (CST to TYPE)``
3007 Convert a floating point constant to the corresponding signed
3008 integer constant. TYPE must be a scalar or vector integer type. CST
3009 must be of scalar or vector floating point type. Both CST and TYPE
3010 must be scalars, or vectors of the same number of elements. If the
3011 value won't fit in the integer type, the results are undefined.
3012``uitofp (CST to TYPE)``
3013 Convert an unsigned integer constant to the corresponding floating
3014 point constant. TYPE must be a scalar or vector floating point type.
3015 CST must be of scalar or vector integer type. Both CST and TYPE must
3016 be scalars, or vectors of the same number of elements. If the value
3017 won't fit in the floating point type, the results are undefined.
3018``sitofp (CST to TYPE)``
3019 Convert a signed integer constant to the corresponding floating
3020 point constant. TYPE must be a scalar or vector floating point type.
3021 CST must be of scalar or vector integer type. Both CST and TYPE must
3022 be scalars, or vectors of the same number of elements. If the value
3023 won't fit in the floating point type, the results are undefined.
3024``ptrtoint (CST to TYPE)``
3025 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003026 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003027 pointer type. The ``CST`` value is zero extended, truncated, or
3028 unchanged to make it fit in ``TYPE``.
3029``inttoptr (CST to TYPE)``
3030 Convert an integer constant to a pointer constant. TYPE must be a
3031 pointer type. CST must be of integer type. The CST value is zero
3032 extended, truncated, or unchanged to make it fit in a pointer size.
3033 This one is *really* dangerous!
3034``bitcast (CST to TYPE)``
3035 Convert a constant, CST, to another TYPE. The constraints of the
3036 operands are the same as those for the :ref:`bitcast
3037 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003038``addrspacecast (CST to TYPE)``
3039 Convert a constant pointer or constant vector of pointer, CST, to another
3040 TYPE in a different address space. The constraints of the operands are the
3041 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003042``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003043 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3044 constants. As with the :ref:`getelementptr <i_getelementptr>`
3045 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003046 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003047``select (COND, VAL1, VAL2)``
3048 Perform the :ref:`select operation <i_select>` on constants.
3049``icmp COND (VAL1, VAL2)``
3050 Performs the :ref:`icmp operation <i_icmp>` on constants.
3051``fcmp COND (VAL1, VAL2)``
3052 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3053``extractelement (VAL, IDX)``
3054 Perform the :ref:`extractelement operation <i_extractelement>` on
3055 constants.
3056``insertelement (VAL, ELT, IDX)``
3057 Perform the :ref:`insertelement operation <i_insertelement>` on
3058 constants.
3059``shufflevector (VEC1, VEC2, IDXMASK)``
3060 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3061 constants.
3062``extractvalue (VAL, IDX0, IDX1, ...)``
3063 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3064 constants. The index list is interpreted in a similar manner as
3065 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3066 least one index value must be specified.
3067``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3068 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3069 The index list is interpreted in a similar manner as indices in a
3070 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3071 value must be specified.
3072``OPCODE (LHS, RHS)``
3073 Perform the specified operation of the LHS and RHS constants. OPCODE
3074 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3075 binary <bitwiseops>` operations. The constraints on operands are
3076 the same as those for the corresponding instruction (e.g. no bitwise
3077 operations on floating point values are allowed).
3078
3079Other Values
3080============
3081
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003082.. _inlineasmexprs:
3083
Sean Silvab084af42012-12-07 10:36:55 +00003084Inline Assembler Expressions
3085----------------------------
3086
3087LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003088Inline Assembly <moduleasm>`) through the use of a special value. This value
3089represents the inline assembler as a template string (containing the
3090instructions to emit), a list of operand constraints (stored as a string), a
3091flag that indicates whether or not the inline asm expression has side effects,
3092and a flag indicating whether the function containing the asm needs to align its
3093stack conservatively.
3094
3095The template string supports argument substitution of the operands using "``$``"
3096followed by a number, to indicate substitution of the given register/memory
3097location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3098be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3099operand (See :ref:`inline-asm-modifiers`).
3100
3101A literal "``$``" may be included by using "``$$``" in the template. To include
3102other special characters into the output, the usual "``\XX``" escapes may be
3103used, just as in other strings. Note that after template substitution, the
3104resulting assembly string is parsed by LLVM's integrated assembler unless it is
3105disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3106syntax known to LLVM.
3107
3108LLVM's support for inline asm is modeled closely on the requirements of Clang's
3109GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3110modifier codes listed here are similar or identical to those in GCC's inline asm
3111support. However, to be clear, the syntax of the template and constraint strings
3112described here is *not* the same as the syntax accepted by GCC and Clang, and,
3113while most constraint letters are passed through as-is by Clang, some get
3114translated to other codes when converting from the C source to the LLVM
3115assembly.
3116
3117An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003118
3119.. code-block:: llvm
3120
3121 i32 (i32) asm "bswap $0", "=r,r"
3122
3123Inline assembler expressions may **only** be used as the callee operand
3124of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3125Thus, typically we have:
3126
3127.. code-block:: llvm
3128
3129 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3130
3131Inline asms with side effects not visible in the constraint list must be
3132marked as having side effects. This is done through the use of the
3133'``sideeffect``' keyword, like so:
3134
3135.. code-block:: llvm
3136
3137 call void asm sideeffect "eieio", ""()
3138
3139In some cases inline asms will contain code that will not work unless
3140the stack is aligned in some way, such as calls or SSE instructions on
3141x86, yet will not contain code that does that alignment within the asm.
3142The compiler should make conservative assumptions about what the asm
3143might contain and should generate its usual stack alignment code in the
3144prologue if the '``alignstack``' keyword is present:
3145
3146.. code-block:: llvm
3147
3148 call void asm alignstack "eieio", ""()
3149
3150Inline asms also support using non-standard assembly dialects. The
3151assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3152the inline asm is using the Intel dialect. Currently, ATT and Intel are
3153the only supported dialects. An example is:
3154
3155.. code-block:: llvm
3156
3157 call void asm inteldialect "eieio", ""()
3158
3159If multiple keywords appear the '``sideeffect``' keyword must come
3160first, the '``alignstack``' keyword second and the '``inteldialect``'
3161keyword last.
3162
James Y Knightbc832ed2015-07-08 18:08:36 +00003163Inline Asm Constraint String
3164^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3165
3166The constraint list is a comma-separated string, each element containing one or
3167more constraint codes.
3168
3169For each element in the constraint list an appropriate register or memory
3170operand will be chosen, and it will be made available to assembly template
3171string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3172second, etc.
3173
3174There are three different types of constraints, which are distinguished by a
3175prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3176constraints must always be given in that order: outputs first, then inputs, then
3177clobbers. They cannot be intermingled.
3178
3179There are also three different categories of constraint codes:
3180
3181- Register constraint. This is either a register class, or a fixed physical
3182 register. This kind of constraint will allocate a register, and if necessary,
3183 bitcast the argument or result to the appropriate type.
3184- Memory constraint. This kind of constraint is for use with an instruction
3185 taking a memory operand. Different constraints allow for different addressing
3186 modes used by the target.
3187- Immediate value constraint. This kind of constraint is for an integer or other
3188 immediate value which can be rendered directly into an instruction. The
3189 various target-specific constraints allow the selection of a value in the
3190 proper range for the instruction you wish to use it with.
3191
3192Output constraints
3193""""""""""""""""""
3194
3195Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3196indicates that the assembly will write to this operand, and the operand will
3197then be made available as a return value of the ``asm`` expression. Output
3198constraints do not consume an argument from the call instruction. (Except, see
3199below about indirect outputs).
3200
3201Normally, it is expected that no output locations are written to by the assembly
3202expression until *all* of the inputs have been read. As such, LLVM may assign
3203the same register to an output and an input. If this is not safe (e.g. if the
3204assembly contains two instructions, where the first writes to one output, and
3205the second reads an input and writes to a second output), then the "``&``"
3206modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003207"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003208will not use the same register for any inputs (other than an input tied to this
3209output).
3210
3211Input constraints
3212"""""""""""""""""
3213
3214Input constraints do not have a prefix -- just the constraint codes. Each input
3215constraint will consume one argument from the call instruction. It is not
3216permitted for the asm to write to any input register or memory location (unless
3217that input is tied to an output). Note also that multiple inputs may all be
3218assigned to the same register, if LLVM can determine that they necessarily all
3219contain the same value.
3220
3221Instead of providing a Constraint Code, input constraints may also "tie"
3222themselves to an output constraint, by providing an integer as the constraint
3223string. Tied inputs still consume an argument from the call instruction, and
3224take up a position in the asm template numbering as is usual -- they will simply
3225be constrained to always use the same register as the output they've been tied
3226to. For example, a constraint string of "``=r,0``" says to assign a register for
3227output, and use that register as an input as well (it being the 0'th
3228constraint).
3229
3230It is permitted to tie an input to an "early-clobber" output. In that case, no
3231*other* input may share the same register as the input tied to the early-clobber
3232(even when the other input has the same value).
3233
3234You may only tie an input to an output which has a register constraint, not a
3235memory constraint. Only a single input may be tied to an output.
3236
3237There is also an "interesting" feature which deserves a bit of explanation: if a
3238register class constraint allocates a register which is too small for the value
3239type operand provided as input, the input value will be split into multiple
3240registers, and all of them passed to the inline asm.
3241
3242However, this feature is often not as useful as you might think.
3243
3244Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3245architectures that have instructions which operate on multiple consecutive
3246instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3247SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3248hardware then loads into both the named register, and the next register. This
3249feature of inline asm would not be useful to support that.)
3250
3251A few of the targets provide a template string modifier allowing explicit access
3252to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3253``D``). On such an architecture, you can actually access the second allocated
3254register (yet, still, not any subsequent ones). But, in that case, you're still
3255probably better off simply splitting the value into two separate operands, for
3256clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3257despite existing only for use with this feature, is not really a good idea to
3258use)
3259
3260Indirect inputs and outputs
3261"""""""""""""""""""""""""""
3262
3263Indirect output or input constraints can be specified by the "``*``" modifier
3264(which goes after the "``=``" in case of an output). This indicates that the asm
3265will write to or read from the contents of an *address* provided as an input
3266argument. (Note that in this way, indirect outputs act more like an *input* than
3267an output: just like an input, they consume an argument of the call expression,
3268rather than producing a return value. An indirect output constraint is an
3269"output" only in that the asm is expected to write to the contents of the input
3270memory location, instead of just read from it).
3271
3272This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3273address of a variable as a value.
3274
3275It is also possible to use an indirect *register* constraint, but only on output
3276(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3277value normally, and then, separately emit a store to the address provided as
3278input, after the provided inline asm. (It's not clear what value this
3279functionality provides, compared to writing the store explicitly after the asm
3280statement, and it can only produce worse code, since it bypasses many
3281optimization passes. I would recommend not using it.)
3282
3283
3284Clobber constraints
3285"""""""""""""""""""
3286
3287A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3288consume an input operand, nor generate an output. Clobbers cannot use any of the
3289general constraint code letters -- they may use only explicit register
3290constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3291"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3292memory locations -- not only the memory pointed to by a declared indirect
3293output.
3294
3295
3296Constraint Codes
3297""""""""""""""""
3298After a potential prefix comes constraint code, or codes.
3299
3300A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3301followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3302(e.g. "``{eax}``").
3303
3304The one and two letter constraint codes are typically chosen to be the same as
3305GCC's constraint codes.
3306
3307A single constraint may include one or more than constraint code in it, leaving
3308it up to LLVM to choose which one to use. This is included mainly for
3309compatibility with the translation of GCC inline asm coming from clang.
3310
3311There are two ways to specify alternatives, and either or both may be used in an
3312inline asm constraint list:
3313
33141) Append the codes to each other, making a constraint code set. E.g. "``im``"
3315 or "``{eax}m``". This means "choose any of the options in the set". The
3316 choice of constraint is made independently for each constraint in the
3317 constraint list.
3318
33192) Use "``|``" between constraint code sets, creating alternatives. Every
3320 constraint in the constraint list must have the same number of alternative
3321 sets. With this syntax, the same alternative in *all* of the items in the
3322 constraint list will be chosen together.
3323
3324Putting those together, you might have a two operand constraint string like
3325``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3326operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3327may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3328
3329However, the use of either of the alternatives features is *NOT* recommended, as
3330LLVM is not able to make an intelligent choice about which one to use. (At the
3331point it currently needs to choose, not enough information is available to do so
3332in a smart way.) Thus, it simply tries to make a choice that's most likely to
3333compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3334always choose to use memory, not registers). And, if given multiple registers,
3335or multiple register classes, it will simply choose the first one. (In fact, it
3336doesn't currently even ensure explicitly specified physical registers are
3337unique, so specifying multiple physical registers as alternatives, like
3338``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3339intended.)
3340
3341Supported Constraint Code List
3342""""""""""""""""""""""""""""""
3343
3344The constraint codes are, in general, expected to behave the same way they do in
3345GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3346inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3347and GCC likely indicates a bug in LLVM.
3348
3349Some constraint codes are typically supported by all targets:
3350
3351- ``r``: A register in the target's general purpose register class.
3352- ``m``: A memory address operand. It is target-specific what addressing modes
3353 are supported, typical examples are register, or register + register offset,
3354 or register + immediate offset (of some target-specific size).
3355- ``i``: An integer constant (of target-specific width). Allows either a simple
3356 immediate, or a relocatable value.
3357- ``n``: An integer constant -- *not* including relocatable values.
3358- ``s``: An integer constant, but allowing *only* relocatable values.
3359- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3360 useful to pass a label for an asm branch or call.
3361
3362 .. FIXME: but that surely isn't actually okay to jump out of an asm
3363 block without telling llvm about the control transfer???)
3364
3365- ``{register-name}``: Requires exactly the named physical register.
3366
3367Other constraints are target-specific:
3368
3369AArch64:
3370
3371- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3372- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3373 i.e. 0 to 4095 with optional shift by 12.
3374- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3375 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3376- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3377 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3378- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3379 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3380- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3381 32-bit register. This is a superset of ``K``: in addition to the bitmask
3382 immediate, also allows immediate integers which can be loaded with a single
3383 ``MOVZ`` or ``MOVL`` instruction.
3384- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3385 64-bit register. This is a superset of ``L``.
3386- ``Q``: Memory address operand must be in a single register (no
3387 offsets). (However, LLVM currently does this for the ``m`` constraint as
3388 well.)
3389- ``r``: A 32 or 64-bit integer register (W* or X*).
3390- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3391- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3392
3393AMDGPU:
3394
3395- ``r``: A 32 or 64-bit integer register.
3396- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3397- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3398
3399
3400All ARM modes:
3401
3402- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3403 operand. Treated the same as operand ``m``, at the moment.
3404
3405ARM and ARM's Thumb2 mode:
3406
3407- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3408- ``I``: An immediate integer valid for a data-processing instruction.
3409- ``J``: An immediate integer between -4095 and 4095.
3410- ``K``: An immediate integer whose bitwise inverse is valid for a
3411 data-processing instruction. (Can be used with template modifier "``B``" to
3412 print the inverted value).
3413- ``L``: An immediate integer whose negation is valid for a data-processing
3414 instruction. (Can be used with template modifier "``n``" to print the negated
3415 value).
3416- ``M``: A power of two or a integer between 0 and 32.
3417- ``N``: Invalid immediate constraint.
3418- ``O``: Invalid immediate constraint.
3419- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3420- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3421 as ``r``.
3422- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3423 invalid.
3424- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3425 ``d0-d31``, or ``q0-q15``.
3426- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3427 ``d0-d7``, or ``q0-q3``.
3428- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3429 ``s0-s31``.
3430
3431ARM's Thumb1 mode:
3432
3433- ``I``: An immediate integer between 0 and 255.
3434- ``J``: An immediate integer between -255 and -1.
3435- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3436 some amount.
3437- ``L``: An immediate integer between -7 and 7.
3438- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3439- ``N``: An immediate integer between 0 and 31.
3440- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3441- ``r``: A low 32-bit GPR register (``r0-r7``).
3442- ``l``: A low 32-bit GPR register (``r0-r7``).
3443- ``h``: A high GPR register (``r0-r7``).
3444- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3445 ``d0-d31``, or ``q0-q15``.
3446- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3447 ``d0-d7``, or ``q0-q3``.
3448- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3449 ``s0-s31``.
3450
3451
3452Hexagon:
3453
3454- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3455 at the moment.
3456- ``r``: A 32 or 64-bit register.
3457
3458MSP430:
3459
3460- ``r``: An 8 or 16-bit register.
3461
3462MIPS:
3463
3464- ``I``: An immediate signed 16-bit integer.
3465- ``J``: An immediate integer zero.
3466- ``K``: An immediate unsigned 16-bit integer.
3467- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3468- ``N``: An immediate integer between -65535 and -1.
3469- ``O``: An immediate signed 15-bit integer.
3470- ``P``: An immediate integer between 1 and 65535.
3471- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3472 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3473- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3474 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3475 ``m``.
3476- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3477 ``sc`` instruction on the given subtarget (details vary).
3478- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3479- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003480 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3481 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003482- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3483 ``25``).
3484- ``l``: The ``lo`` register, 32 or 64-bit.
3485- ``x``: Invalid.
3486
3487NVPTX:
3488
3489- ``b``: A 1-bit integer register.
3490- ``c`` or ``h``: A 16-bit integer register.
3491- ``r``: A 32-bit integer register.
3492- ``l`` or ``N``: A 64-bit integer register.
3493- ``f``: A 32-bit float register.
3494- ``d``: A 64-bit float register.
3495
3496
3497PowerPC:
3498
3499- ``I``: An immediate signed 16-bit integer.
3500- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3501- ``K``: An immediate unsigned 16-bit integer.
3502- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3503- ``M``: An immediate integer greater than 31.
3504- ``N``: An immediate integer that is an exact power of 2.
3505- ``O``: The immediate integer constant 0.
3506- ``P``: An immediate integer constant whose negation is a signed 16-bit
3507 constant.
3508- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3509 treated the same as ``m``.
3510- ``r``: A 32 or 64-bit integer register.
3511- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3512 ``R1-R31``).
3513- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3514 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3515- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3516 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3517 altivec vector register (``V0-V31``).
3518
3519 .. FIXME: is this a bug that v accepts QPX registers? I think this
3520 is supposed to only use the altivec vector registers?
3521
3522- ``y``: Condition register (``CR0-CR7``).
3523- ``wc``: An individual CR bit in a CR register.
3524- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3525 register set (overlapping both the floating-point and vector register files).
3526- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3527 set.
3528
3529Sparc:
3530
3531- ``I``: An immediate 13-bit signed integer.
3532- ``r``: A 32-bit integer register.
3533
3534SystemZ:
3535
3536- ``I``: An immediate unsigned 8-bit integer.
3537- ``J``: An immediate unsigned 12-bit integer.
3538- ``K``: An immediate signed 16-bit integer.
3539- ``L``: An immediate signed 20-bit integer.
3540- ``M``: An immediate integer 0x7fffffff.
3541- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3542 ``m``, at the moment.
3543- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3544- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3545 address context evaluates as zero).
3546- ``h``: A 32-bit value in the high part of a 64bit data register
3547 (LLVM-specific)
3548- ``f``: A 32, 64, or 128-bit floating point register.
3549
3550X86:
3551
3552- ``I``: An immediate integer between 0 and 31.
3553- ``J``: An immediate integer between 0 and 64.
3554- ``K``: An immediate signed 8-bit integer.
3555- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3556 0xffffffff.
3557- ``M``: An immediate integer between 0 and 3.
3558- ``N``: An immediate unsigned 8-bit integer.
3559- ``O``: An immediate integer between 0 and 127.
3560- ``e``: An immediate 32-bit signed integer.
3561- ``Z``: An immediate 32-bit unsigned integer.
3562- ``o``, ``v``: Treated the same as ``m``, at the moment.
3563- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3564 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3565 registers, and on X86-64, it is all of the integer registers.
3566- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3567 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3568- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3569- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3570 existed since i386, and can be accessed without the REX prefix.
3571- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3572- ``y``: A 64-bit MMX register, if MMX is enabled.
3573- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3574 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3575 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3576 512-bit vector operand in an AVX512 register, Otherwise, an error.
3577- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3578- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3579 32-bit mode, a 64-bit integer operand will get split into two registers). It
3580 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3581 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3582 you're better off splitting it yourself, before passing it to the asm
3583 statement.
3584
3585XCore:
3586
3587- ``r``: A 32-bit integer register.
3588
3589
3590.. _inline-asm-modifiers:
3591
3592Asm template argument modifiers
3593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3594
3595In the asm template string, modifiers can be used on the operand reference, like
3596"``${0:n}``".
3597
3598The modifiers are, in general, expected to behave the same way they do in
3599GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3600inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3601and GCC likely indicates a bug in LLVM.
3602
3603Target-independent:
3604
Sean Silvaa1190322015-08-06 22:56:48 +00003605- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003606 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3607- ``n``: Negate and print immediate integer constant unadorned, without the
3608 target-specific immediate punctuation (e.g. no ``$`` prefix).
3609- ``l``: Print as an unadorned label, without the target-specific label
3610 punctuation (e.g. no ``$`` prefix).
3611
3612AArch64:
3613
3614- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3615 instead of ``x30``, print ``w30``.
3616- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3617- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3618 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3619 ``v*``.
3620
3621AMDGPU:
3622
3623- ``r``: No effect.
3624
3625ARM:
3626
3627- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3628 register).
3629- ``P``: No effect.
3630- ``q``: No effect.
3631- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3632 as ``d4[1]`` instead of ``s9``)
3633- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3634 prefix.
3635- ``L``: Print the low 16-bits of an immediate integer constant.
3636- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3637 register operands subsequent to the specified one (!), so use carefully.
3638- ``Q``: Print the low-order register of a register-pair, or the low-order
3639 register of a two-register operand.
3640- ``R``: Print the high-order register of a register-pair, or the high-order
3641 register of a two-register operand.
3642- ``H``: Print the second register of a register-pair. (On a big-endian system,
3643 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3644 to ``R``.)
3645
3646 .. FIXME: H doesn't currently support printing the second register
3647 of a two-register operand.
3648
3649- ``e``: Print the low doubleword register of a NEON quad register.
3650- ``f``: Print the high doubleword register of a NEON quad register.
3651- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3652 adornment.
3653
3654Hexagon:
3655
3656- ``L``: Print the second register of a two-register operand. Requires that it
3657 has been allocated consecutively to the first.
3658
3659 .. FIXME: why is it restricted to consecutive ones? And there's
3660 nothing that ensures that happens, is there?
3661
3662- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3663 nothing. Used to print 'addi' vs 'add' instructions.
3664
3665MSP430:
3666
3667No additional modifiers.
3668
3669MIPS:
3670
3671- ``X``: Print an immediate integer as hexadecimal
3672- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3673- ``d``: Print an immediate integer as decimal.
3674- ``m``: Subtract one and print an immediate integer as decimal.
3675- ``z``: Print $0 if an immediate zero, otherwise print normally.
3676- ``L``: Print the low-order register of a two-register operand, or prints the
3677 address of the low-order word of a double-word memory operand.
3678
3679 .. FIXME: L seems to be missing memory operand support.
3680
3681- ``M``: Print the high-order register of a two-register operand, or prints the
3682 address of the high-order word of a double-word memory operand.
3683
3684 .. FIXME: M seems to be missing memory operand support.
3685
3686- ``D``: Print the second register of a two-register operand, or prints the
3687 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3688 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3689 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003690- ``w``: No effect. Provided for compatibility with GCC which requires this
3691 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3692 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003693
3694NVPTX:
3695
3696- ``r``: No effect.
3697
3698PowerPC:
3699
3700- ``L``: Print the second register of a two-register operand. Requires that it
3701 has been allocated consecutively to the first.
3702
3703 .. FIXME: why is it restricted to consecutive ones? And there's
3704 nothing that ensures that happens, is there?
3705
3706- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3707 nothing. Used to print 'addi' vs 'add' instructions.
3708- ``y``: For a memory operand, prints formatter for a two-register X-form
3709 instruction. (Currently always prints ``r0,OPERAND``).
3710- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3711 otherwise. (NOTE: LLVM does not support update form, so this will currently
3712 always print nothing)
3713- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3714 not support indexed form, so this will currently always print nothing)
3715
3716Sparc:
3717
3718- ``r``: No effect.
3719
3720SystemZ:
3721
3722SystemZ implements only ``n``, and does *not* support any of the other
3723target-independent modifiers.
3724
3725X86:
3726
3727- ``c``: Print an unadorned integer or symbol name. (The latter is
3728 target-specific behavior for this typically target-independent modifier).
3729- ``A``: Print a register name with a '``*``' before it.
3730- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3731 operand.
3732- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3733 memory operand.
3734- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3735 operand.
3736- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3737 operand.
3738- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3739 available, otherwise the 32-bit register name; do nothing on a memory operand.
3740- ``n``: Negate and print an unadorned integer, or, for operands other than an
3741 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3742 the operand. (The behavior for relocatable symbol expressions is a
3743 target-specific behavior for this typically target-independent modifier)
3744- ``H``: Print a memory reference with additional offset +8.
3745- ``P``: Print a memory reference or operand for use as the argument of a call
3746 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3747
3748XCore:
3749
3750No additional modifiers.
3751
3752
Sean Silvab084af42012-12-07 10:36:55 +00003753Inline Asm Metadata
3754^^^^^^^^^^^^^^^^^^^
3755
3756The call instructions that wrap inline asm nodes may have a
3757"``!srcloc``" MDNode attached to it that contains a list of constant
3758integers. If present, the code generator will use the integer as the
3759location cookie value when report errors through the ``LLVMContext``
3760error reporting mechanisms. This allows a front-end to correlate backend
3761errors that occur with inline asm back to the source code that produced
3762it. For example:
3763
3764.. code-block:: llvm
3765
3766 call void asm sideeffect "something bad", ""(), !srcloc !42
3767 ...
3768 !42 = !{ i32 1234567 }
3769
3770It is up to the front-end to make sense of the magic numbers it places
3771in the IR. If the MDNode contains multiple constants, the code generator
3772will use the one that corresponds to the line of the asm that the error
3773occurs on.
3774
3775.. _metadata:
3776
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003777Metadata
3778========
Sean Silvab084af42012-12-07 10:36:55 +00003779
3780LLVM IR allows metadata to be attached to instructions in the program
3781that can convey extra information about the code to the optimizers and
3782code generator. One example application of metadata is source-level
3783debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003784
Sean Silvaa1190322015-08-06 22:56:48 +00003785Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003786``call`` instruction, it uses the ``metadata`` type.
3787
3788All metadata are identified in syntax by a exclamation point ('``!``').
3789
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003790.. _metadata-string:
3791
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003792Metadata Nodes and Metadata Strings
3793-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003794
3795A metadata string is a string surrounded by double quotes. It can
3796contain any character by escaping non-printable characters with
3797"``\xx``" where "``xx``" is the two digit hex code. For example:
3798"``!"test\00"``".
3799
3800Metadata nodes are represented with notation similar to structure
3801constants (a comma separated list of elements, surrounded by braces and
3802preceded by an exclamation point). Metadata nodes can have any values as
3803their operand. For example:
3804
3805.. code-block:: llvm
3806
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003807 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003808
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003809Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3810
3811.. code-block:: llvm
3812
3813 !0 = distinct !{!"test\00", i32 10}
3814
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003815``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003816content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003817when metadata operands change.
3818
Sean Silvab084af42012-12-07 10:36:55 +00003819A :ref:`named metadata <namedmetadatastructure>` is a collection of
3820metadata nodes, which can be looked up in the module symbol table. For
3821example:
3822
3823.. code-block:: llvm
3824
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003825 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003826
3827Metadata can be used as function arguments. Here ``llvm.dbg.value``
3828function is using two metadata arguments:
3829
3830.. code-block:: llvm
3831
3832 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3833
Peter Collingbourne50108682015-11-06 02:41:02 +00003834Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3835to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003836
3837.. code-block:: llvm
3838
3839 %indvar.next = add i64 %indvar, 1, !dbg !21
3840
Peter Collingbourne50108682015-11-06 02:41:02 +00003841Metadata can also be attached to a function definition. Here metadata ``!22``
3842is attached to the ``foo`` function using the ``!dbg`` identifier:
3843
3844.. code-block:: llvm
3845
3846 define void @foo() !dbg !22 {
3847 ret void
3848 }
3849
Sean Silvab084af42012-12-07 10:36:55 +00003850More information about specific metadata nodes recognized by the
3851optimizers and code generator is found below.
3852
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003853.. _specialized-metadata:
3854
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003855Specialized Metadata Nodes
3856^^^^^^^^^^^^^^^^^^^^^^^^^^
3857
3858Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003859to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003860order.
3861
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003862These aren't inherently debug info centric, but currently all the specialized
3863metadata nodes are related to debug info.
3864
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003865.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003866
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003867DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003868"""""""""""""
3869
Sean Silvaa1190322015-08-06 22:56:48 +00003870``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003871``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3872fields are tuples containing the debug info to be emitted along with the compile
3873unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003874references to them from instructions).
3875
3876.. code-block:: llvm
3877
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003878 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003879 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003880 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003881 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003882 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003883
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003884Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003885specific compilation unit. File descriptors are defined using this scope.
3886These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003887keep track of subprograms, global variables, type information, and imported
3888entities (declarations and namespaces).
3889
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003890.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003891
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003892DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003893""""""
3894
Sean Silvaa1190322015-08-06 22:56:48 +00003895``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003896
3897.. code-block:: llvm
3898
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003899 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003900
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003901Files are sometimes used in ``scope:`` fields, and are the only valid target
3902for ``file:`` fields.
3903
Michael Kuperstein605308a2015-05-14 10:58:59 +00003904.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003905
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003906DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003907"""""""""""
3908
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003909``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003910``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003911
3912.. code-block:: llvm
3913
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003914 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003915 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003916 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003917
Sean Silvaa1190322015-08-06 22:56:48 +00003918The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003919following:
3920
3921.. code-block:: llvm
3922
3923 DW_ATE_address = 1
3924 DW_ATE_boolean = 2
3925 DW_ATE_float = 4
3926 DW_ATE_signed = 5
3927 DW_ATE_signed_char = 6
3928 DW_ATE_unsigned = 7
3929 DW_ATE_unsigned_char = 8
3930
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003931.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003932
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003933DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003934""""""""""""""""
3935
Sean Silvaa1190322015-08-06 22:56:48 +00003936``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003937refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003938types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003939represents a function with no return value (such as ``void foo() {}`` in C++).
3940
3941.. code-block:: llvm
3942
3943 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3944 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003945 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003946
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003947.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003948
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003949DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003950"""""""""""""
3951
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003952``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003953qualified types.
3954
3955.. code-block:: llvm
3956
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003957 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003958 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003959 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003960 align: 32)
3961
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003962The following ``tag:`` values are valid:
3963
3964.. code-block:: llvm
3965
3966 DW_TAG_formal_parameter = 5
3967 DW_TAG_member = 13
3968 DW_TAG_pointer_type = 15
3969 DW_TAG_reference_type = 16
3970 DW_TAG_typedef = 22
3971 DW_TAG_ptr_to_member_type = 31
3972 DW_TAG_const_type = 38
3973 DW_TAG_volatile_type = 53
3974 DW_TAG_restrict_type = 55
3975
3976``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003977<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3978is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003979``DW_TAG_formal_parameter`` is used to define a member which is a formal
3980argument of a subprogram.
3981
3982``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3983
3984``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3985``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3986``baseType:``.
3987
3988Note that the ``void *`` type is expressed as a type derived from NULL.
3989
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003990.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003991
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003992DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003993"""""""""""""""
3994
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003995``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003996structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003997
3998If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003999identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004000can refer to composite types indirectly via a :ref:`metadata string
4001<metadata-string>` that matches their identifier.
4002
4003.. code-block:: llvm
4004
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004005 !0 = !DIEnumerator(name: "SixKind", value: 7)
4006 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4007 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4008 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004009 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4010 elements: !{!0, !1, !2})
4011
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004012The following ``tag:`` values are valid:
4013
4014.. code-block:: llvm
4015
4016 DW_TAG_array_type = 1
4017 DW_TAG_class_type = 2
4018 DW_TAG_enumeration_type = 4
4019 DW_TAG_structure_type = 19
4020 DW_TAG_union_type = 23
4021 DW_TAG_subroutine_type = 21
4022 DW_TAG_inheritance = 28
4023
4024
4025For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004026descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004027level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004028array type is a native packed vector.
4029
4030For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004031descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004032value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004033``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004034
4035For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4036``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004037<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004038
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004039.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004040
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004041DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004042""""""""""
4043
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004044``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004045:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004046
4047.. code-block:: llvm
4048
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004049 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4050 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4051 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004052
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004053.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004054
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004055DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004056""""""""""""
4057
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004058``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4059variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004060
4061.. code-block:: llvm
4062
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004063 !0 = !DIEnumerator(name: "SixKind", value: 7)
4064 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4065 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004066
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004067DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004068"""""""""""""""""""""""
4069
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004070``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004071language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004072:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004073
4074.. code-block:: llvm
4075
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004076 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004077
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004078DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004079""""""""""""""""""""""""
4080
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004081``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004082language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004083but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004084``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004085:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004086
4087.. code-block:: llvm
4088
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004089 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004090
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004091DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004092"""""""""""
4093
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004094``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004095
4096.. code-block:: llvm
4097
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004098 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004099
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004100DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004101""""""""""""""""
4102
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004103``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004104
4105.. code-block:: llvm
4106
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004107 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004108 file: !2, line: 7, type: !3, isLocal: true,
4109 isDefinition: false, variable: i32* @foo,
4110 declaration: !4)
4111
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004112All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004113:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004114
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004115.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004116
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004117DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004118""""""""""""
4119
Peter Collingbourne50108682015-11-06 02:41:02 +00004120``DISubprogram`` nodes represent functions from the source language. A
4121``DISubprogram`` may be attached to a function definition using ``!dbg``
4122metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4123that must be retained, even if their IR counterparts are optimized out of
4124the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004125
4126.. code-block:: llvm
4127
Peter Collingbourne50108682015-11-06 02:41:02 +00004128 define void @_Z3foov() !dbg !0 {
4129 ...
4130 }
4131
4132 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4133 file: !2, line: 7, type: !3, isLocal: true,
4134 isDefinition: false, scopeLine: 8,
4135 containingType: !4,
4136 virtuality: DW_VIRTUALITY_pure_virtual,
4137 virtualIndex: 10, flags: DIFlagPrototyped,
4138 isOptimized: true, templateParams: !5,
4139 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004140
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004141.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004142
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004143DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004144""""""""""""""
4145
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004146``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004147<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004148two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004149fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004150
4151.. code-block:: llvm
4152
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004153 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004154
4155Usually lexical blocks are ``distinct`` to prevent node merging based on
4156operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004157
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004158.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004159
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004160DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004161""""""""""""""""""
4162
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004163``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004164:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004165indicate textual inclusion, or the ``discriminator:`` field can be used to
4166discriminate between control flow within a single block in the source language.
4167
4168.. code-block:: llvm
4169
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004170 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4171 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4172 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004173
Michael Kuperstein605308a2015-05-14 10:58:59 +00004174.. _DILocation:
4175
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004176DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004177""""""""""
4178
Sean Silvaa1190322015-08-06 22:56:48 +00004179``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004180mandatory, and points at an :ref:`DILexicalBlockFile`, an
4181:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004182
4183.. code-block:: llvm
4184
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004185 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004186
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004187.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004188
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004189DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004190"""""""""""""""
4191
Sean Silvaa1190322015-08-06 22:56:48 +00004192``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004193the ``arg:`` field is set to non-zero, then this variable is a subprogram
4194parameter, and it will be included in the ``variables:`` field of its
4195:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004196
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004197.. code-block:: llvm
4198
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004199 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4200 type: !3, flags: DIFlagArtificial)
4201 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4202 type: !3)
4203 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004204
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004205DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004206""""""""""""
4207
Sean Silvaa1190322015-08-06 22:56:48 +00004208``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004209:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4210describe how the referenced LLVM variable relates to the source language
4211variable.
4212
4213The current supported vocabulary is limited:
4214
4215- ``DW_OP_deref`` dereferences the working expression.
4216- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4217- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4218 here, respectively) of the variable piece from the working expression.
4219
4220.. code-block:: llvm
4221
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004222 !0 = !DIExpression(DW_OP_deref)
4223 !1 = !DIExpression(DW_OP_plus, 3)
4224 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4225 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004226
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004227DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004228""""""""""""""
4229
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004230``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004231
4232.. code-block:: llvm
4233
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004234 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004235 getter: "getFoo", attributes: 7, type: !2)
4236
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004237DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004238""""""""""""""""
4239
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004240``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004241compile unit.
4242
4243.. code-block:: llvm
4244
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004245 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004246 entity: !1, line: 7)
4247
Amjad Abouda9bcf162015-12-10 12:56:35 +00004248DIMacro
4249"""""""
4250
4251``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4252The ``name:`` field is the macro identifier, followed by macro parameters when
4253definining a function-like macro, and the ``value`` field is the token-string
4254used to expand the macro identifier.
4255
4256.. code-block:: llvm
4257
4258 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4259 value: "((x) + 1)")
4260 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4261
4262DIMacroFile
4263"""""""""""
4264
4265``DIMacroFile`` nodes represent inclusion of source files.
4266The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4267appear in the included source file.
4268
4269.. code-block:: llvm
4270
4271 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4272 nodes: !3)
4273
Sean Silvab084af42012-12-07 10:36:55 +00004274'``tbaa``' Metadata
4275^^^^^^^^^^^^^^^^^^^
4276
4277In LLVM IR, memory does not have types, so LLVM's own type system is not
4278suitable for doing TBAA. Instead, metadata is added to the IR to
4279describe a type system of a higher level language. This can be used to
4280implement typical C/C++ TBAA, but it can also be used to implement
4281custom alias analysis behavior for other languages.
4282
4283The current metadata format is very simple. TBAA metadata nodes have up
4284to three fields, e.g.:
4285
4286.. code-block:: llvm
4287
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004288 !0 = !{ !"an example type tree" }
4289 !1 = !{ !"int", !0 }
4290 !2 = !{ !"float", !0 }
4291 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004292
4293The first field is an identity field. It can be any value, usually a
4294metadata string, which uniquely identifies the type. The most important
4295name in the tree is the name of the root node. Two trees with different
4296root node names are entirely disjoint, even if they have leaves with
4297common names.
4298
4299The second field identifies the type's parent node in the tree, or is
4300null or omitted for a root node. A type is considered to alias all of
4301its descendants and all of its ancestors in the tree. Also, a type is
4302considered to alias all types in other trees, so that bitcode produced
4303from multiple front-ends is handled conservatively.
4304
4305If the third field is present, it's an integer which if equal to 1
4306indicates that the type is "constant" (meaning
4307``pointsToConstantMemory`` should return true; see `other useful
4308AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4309
4310'``tbaa.struct``' Metadata
4311^^^^^^^^^^^^^^^^^^^^^^^^^^
4312
4313The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4314aggregate assignment operations in C and similar languages, however it
4315is defined to copy a contiguous region of memory, which is more than
4316strictly necessary for aggregate types which contain holes due to
4317padding. Also, it doesn't contain any TBAA information about the fields
4318of the aggregate.
4319
4320``!tbaa.struct`` metadata can describe which memory subregions in a
4321memcpy are padding and what the TBAA tags of the struct are.
4322
4323The current metadata format is very simple. ``!tbaa.struct`` metadata
4324nodes are a list of operands which are in conceptual groups of three.
4325For each group of three, the first operand gives the byte offset of a
4326field in bytes, the second gives its size in bytes, and the third gives
4327its tbaa tag. e.g.:
4328
4329.. code-block:: llvm
4330
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004331 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004332
4333This describes a struct with two fields. The first is at offset 0 bytes
4334with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4335and has size 4 bytes and has tbaa tag !2.
4336
4337Note that the fields need not be contiguous. In this example, there is a
43384 byte gap between the two fields. This gap represents padding which
4339does not carry useful data and need not be preserved.
4340
Hal Finkel94146652014-07-24 14:25:39 +00004341'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004343
4344``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4345noalias memory-access sets. This means that some collection of memory access
4346instructions (loads, stores, memory-accessing calls, etc.) that carry
4347``noalias`` metadata can specifically be specified not to alias with some other
4348collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004349Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004350a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004351of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004352subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004353instruction's ``noalias`` list, then the two memory accesses are assumed not to
4354alias.
Hal Finkel94146652014-07-24 14:25:39 +00004355
Hal Finkel029cde62014-07-25 15:50:02 +00004356The metadata identifying each domain is itself a list containing one or two
4357entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004358string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004359self-reference can be used to create globally unique domain names. A
4360descriptive string may optionally be provided as a second list entry.
4361
4362The metadata identifying each scope is also itself a list containing two or
4363three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004364is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004365self-reference can be used to create globally unique scope names. A metadata
4366reference to the scope's domain is the second entry. A descriptive string may
4367optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004368
4369For example,
4370
4371.. code-block:: llvm
4372
Hal Finkel029cde62014-07-25 15:50:02 +00004373 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004374 !0 = !{!0}
4375 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004376
Hal Finkel029cde62014-07-25 15:50:02 +00004377 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004378 !2 = !{!2, !0}
4379 !3 = !{!3, !0}
4380 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004381
Hal Finkel029cde62014-07-25 15:50:02 +00004382 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004383 !5 = !{!4} ; A list containing only scope !4
4384 !6 = !{!4, !3, !2}
4385 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004386
4387 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004388 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004389 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004390
Hal Finkel029cde62014-07-25 15:50:02 +00004391 ; These two instructions also don't alias (for domain !1, the set of scopes
4392 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004393 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004394 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004395
Adam Nemet0a8416f2015-05-11 08:30:28 +00004396 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004397 ; the !noalias list is not a superset of, or equal to, the scopes in the
4398 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004399 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004400 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004401
Sean Silvab084af42012-12-07 10:36:55 +00004402'``fpmath``' Metadata
4403^^^^^^^^^^^^^^^^^^^^^
4404
4405``fpmath`` metadata may be attached to any instruction of floating point
4406type. It can be used to express the maximum acceptable error in the
4407result of that instruction, in ULPs, thus potentially allowing the
4408compiler to use a more efficient but less accurate method of computing
4409it. ULP is defined as follows:
4410
4411 If ``x`` is a real number that lies between two finite consecutive
4412 floating-point numbers ``a`` and ``b``, without being equal to one
4413 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4414 distance between the two non-equal finite floating-point numbers
4415 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4416
4417The metadata node shall consist of a single positive floating point
4418number representing the maximum relative error, for example:
4419
4420.. code-block:: llvm
4421
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004422 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004423
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004424.. _range-metadata:
4425
Sean Silvab084af42012-12-07 10:36:55 +00004426'``range``' Metadata
4427^^^^^^^^^^^^^^^^^^^^
4428
Jingyue Wu37fcb592014-06-19 16:50:16 +00004429``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4430integer types. It expresses the possible ranges the loaded value or the value
4431returned by the called function at this call site is in. The ranges are
4432represented with a flattened list of integers. The loaded value or the value
4433returned is known to be in the union of the ranges defined by each consecutive
4434pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004435
4436- The type must match the type loaded by the instruction.
4437- The pair ``a,b`` represents the range ``[a,b)``.
4438- Both ``a`` and ``b`` are constants.
4439- The range is allowed to wrap.
4440- The range should not represent the full or empty set. That is,
4441 ``a!=b``.
4442
4443In addition, the pairs must be in signed order of the lower bound and
4444they must be non-contiguous.
4445
4446Examples:
4447
4448.. code-block:: llvm
4449
David Blaikiec7aabbb2015-03-04 22:06:14 +00004450 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4451 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004452 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4453 %d = invoke i8 @bar() to label %cont
4454 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004455 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004456 !0 = !{ i8 0, i8 2 }
4457 !1 = !{ i8 255, i8 2 }
4458 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4459 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004460
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004461'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004462^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004463
4464``unpredictable`` metadata may be attached to any branch or switch
4465instruction. It can be used to express the unpredictability of control
4466flow. Similar to the llvm.expect intrinsic, it may be used to alter
4467optimizations related to compare and branch instructions. The metadata
4468is treated as a boolean value; if it exists, it signals that the branch
4469or switch that it is attached to is completely unpredictable.
4470
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004471'``llvm.loop``'
4472^^^^^^^^^^^^^^^
4473
4474It is sometimes useful to attach information to loop constructs. Currently,
4475loop metadata is implemented as metadata attached to the branch instruction
4476in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004477guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004478specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004479
4480The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004481itself to avoid merging it with any other identifier metadata, e.g.,
4482during module linkage or function inlining. That is, each loop should refer
4483to their own identification metadata even if they reside in separate functions.
4484The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004485constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004486
4487.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004488
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004489 !0 = !{!0}
4490 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004491
Mark Heffernan893752a2014-07-18 19:24:51 +00004492The loop identifier metadata can be used to specify additional
4493per-loop metadata. Any operands after the first operand can be treated
4494as user-defined metadata. For example the ``llvm.loop.unroll.count``
4495suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004496
Paul Redmond5fdf8362013-05-28 20:00:34 +00004497.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004498
Paul Redmond5fdf8362013-05-28 20:00:34 +00004499 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4500 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004501 !0 = !{!0, !1}
4502 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004503
Mark Heffernan9d20e422014-07-21 23:11:03 +00004504'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004506
Mark Heffernan9d20e422014-07-21 23:11:03 +00004507Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4508used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004509vectorization width and interleave count. These metadata should be used in
4510conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004511``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4512optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004513it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004514which contains information about loop-carried memory dependencies can be helpful
4515in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004516
Mark Heffernan9d20e422014-07-21 23:11:03 +00004517'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004518^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4519
Mark Heffernan9d20e422014-07-21 23:11:03 +00004520This metadata suggests an interleave count to the loop interleaver.
4521The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004522second operand is an integer specifying the interleave count. For
4523example:
4524
4525.. code-block:: llvm
4526
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004527 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004528
Mark Heffernan9d20e422014-07-21 23:11:03 +00004529Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004530multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004531then the interleave count will be determined automatically.
4532
4533'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004535
4536This metadata selectively enables or disables vectorization for the loop. The
4537first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004538is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000045390 disables vectorization:
4540
4541.. code-block:: llvm
4542
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004543 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4544 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004545
4546'``llvm.loop.vectorize.width``' Metadata
4547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4548
4549This metadata sets the target width of the vectorizer. The first
4550operand is the string ``llvm.loop.vectorize.width`` and the second
4551operand is an integer specifying the width. For example:
4552
4553.. code-block:: llvm
4554
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004555 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004556
4557Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004558vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000045590 or if the loop does not have this metadata the width will be
4560determined automatically.
4561
4562'``llvm.loop.unroll``'
4563^^^^^^^^^^^^^^^^^^^^^^
4564
4565Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4566optimization hints such as the unroll factor. ``llvm.loop.unroll``
4567metadata should be used in conjunction with ``llvm.loop`` loop
4568identification metadata. The ``llvm.loop.unroll`` metadata are only
4569optimization hints and the unrolling will only be performed if the
4570optimizer believes it is safe to do so.
4571
Mark Heffernan893752a2014-07-18 19:24:51 +00004572'``llvm.loop.unroll.count``' Metadata
4573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4574
4575This metadata suggests an unroll factor to the loop unroller. The
4576first operand is the string ``llvm.loop.unroll.count`` and the second
4577operand is a positive integer specifying the unroll factor. For
4578example:
4579
4580.. code-block:: llvm
4581
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004582 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004583
4584If the trip count of the loop is less than the unroll count the loop
4585will be partially unrolled.
4586
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004587'``llvm.loop.unroll.disable``' Metadata
4588^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4589
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004590This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004591which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004592
4593.. code-block:: llvm
4594
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004595 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004596
Kevin Qin715b01e2015-03-09 06:14:18 +00004597'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004599
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004600This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004601operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004602
4603.. code-block:: llvm
4604
4605 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4606
Mark Heffernan89391542015-08-10 17:28:08 +00004607'``llvm.loop.unroll.enable``' Metadata
4608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4609
4610This metadata suggests that the loop should be fully unrolled if the trip count
4611is known at compile time and partially unrolled if the trip count is not known
4612at compile time. The metadata has a single operand which is the string
4613``llvm.loop.unroll.enable``. For example:
4614
4615.. code-block:: llvm
4616
4617 !0 = !{!"llvm.loop.unroll.enable"}
4618
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004619'``llvm.loop.unroll.full``' Metadata
4620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4621
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004622This metadata suggests that the loop should be unrolled fully. The
4623metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004624For example:
4625
4626.. code-block:: llvm
4627
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004628 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004629
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004630'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004631^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004632
4633This metadata indicates that the loop should not be versioned for the purpose
4634of enabling loop-invariant code motion (LICM). The metadata has a single operand
4635which is the string ``llvm.loop.licm_versioning.disable``. For example:
4636
4637.. code-block:: llvm
4638
4639 !0 = !{!"llvm.loop.licm_versioning.disable"}
4640
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004641'``llvm.mem``'
4642^^^^^^^^^^^^^^^
4643
4644Metadata types used to annotate memory accesses with information helpful
4645for optimizations are prefixed with ``llvm.mem``.
4646
4647'``llvm.mem.parallel_loop_access``' Metadata
4648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4649
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004650The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4651or metadata containing a list of loop identifiers for nested loops.
4652The metadata is attached to memory accessing instructions and denotes that
4653no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004654with the same loop identifier.
4655
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004656Precisely, given two instructions ``m1`` and ``m2`` that both have the
4657``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4658set of loops associated with that metadata, respectively, then there is no loop
4659carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004660``L2``.
4661
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004662As a special case, if all memory accessing instructions in a loop have
4663``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4664loop has no loop carried memory dependences and is considered to be a parallel
4665loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004666
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004667Note that if not all memory access instructions have such metadata referring to
4668the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004669memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004670safe mechanism, this causes loops that were originally parallel to be considered
4671sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004672insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004673
4674Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004675both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004676metadata types that refer to the same loop identifier metadata.
4677
4678.. code-block:: llvm
4679
4680 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004681 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004682 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004683 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004684 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004685 ...
4686 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004687
4688 for.end:
4689 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004690 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004691
4692It is also possible to have nested parallel loops. In that case the
4693memory accesses refer to a list of loop identifier metadata nodes instead of
4694the loop identifier metadata node directly:
4695
4696.. code-block:: llvm
4697
4698 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004699 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004700 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004701 ...
4702 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004703
4704 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004705 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004706 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004707 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004708 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004709 ...
4710 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004711
4712 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004713 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004714 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004715 ...
4716 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004717
4718 outer.for.end: ; preds = %for.body
4719 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004720 !0 = !{!1, !2} ; a list of loop identifiers
4721 !1 = !{!1} ; an identifier for the inner loop
4722 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004723
Peter Collingbournee6909c82015-02-20 20:30:47 +00004724'``llvm.bitsets``'
4725^^^^^^^^^^^^^^^^^^
4726
4727The ``llvm.bitsets`` global metadata is used to implement
4728:doc:`bitsets <BitSets>`.
4729
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004730'``invariant.group``' Metadata
4731^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4732
4733The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4734The existence of the ``invariant.group`` metadata on the instruction tells
4735the optimizer that every ``load`` and ``store`` to the same pointer operand
4736within the same invariant group can be assumed to load or store the same
4737value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4738when two pointers are considered the same).
4739
4740Examples:
4741
4742.. code-block:: llvm
4743
4744 @unknownPtr = external global i8
4745 ...
4746 %ptr = alloca i8
4747 store i8 42, i8* %ptr, !invariant.group !0
4748 call void @foo(i8* %ptr)
4749
4750 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4751 call void @foo(i8* %ptr)
4752 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4753
4754 %newPtr = call i8* @getPointer(i8* %ptr)
4755 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4756
4757 %unknownValue = load i8, i8* @unknownPtr
4758 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4759
4760 call void @foo(i8* %ptr)
4761 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4762 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4763
4764 ...
4765 declare void @foo(i8*)
4766 declare i8* @getPointer(i8*)
4767 declare i8* @llvm.invariant.group.barrier(i8*)
4768
4769 !0 = !{!"magic ptr"}
4770 !1 = !{!"other ptr"}
4771
4772
4773
Sean Silvab084af42012-12-07 10:36:55 +00004774Module Flags Metadata
4775=====================
4776
4777Information about the module as a whole is difficult to convey to LLVM's
4778subsystems. The LLVM IR isn't sufficient to transmit this information.
4779The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004780this. These flags are in the form of key / value pairs --- much like a
4781dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004782look it up.
4783
4784The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4785Each triplet has the following form:
4786
4787- The first element is a *behavior* flag, which specifies the behavior
4788 when two (or more) modules are merged together, and it encounters two
4789 (or more) metadata with the same ID. The supported behaviors are
4790 described below.
4791- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004792 metadata. Each module may only have one flag entry for each unique ID (not
4793 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004794- The third element is the value of the flag.
4795
4796When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004797``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4798each unique metadata ID string, there will be exactly one entry in the merged
4799modules ``llvm.module.flags`` metadata table, and the value for that entry will
4800be determined by the merge behavior flag, as described below. The only exception
4801is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004802
4803The following behaviors are supported:
4804
4805.. list-table::
4806 :header-rows: 1
4807 :widths: 10 90
4808
4809 * - Value
4810 - Behavior
4811
4812 * - 1
4813 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004814 Emits an error if two values disagree, otherwise the resulting value
4815 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004816
4817 * - 2
4818 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004819 Emits a warning if two values disagree. The result value will be the
4820 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004821
4822 * - 3
4823 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004824 Adds a requirement that another module flag be present and have a
4825 specified value after linking is performed. The value must be a
4826 metadata pair, where the first element of the pair is the ID of the
4827 module flag to be restricted, and the second element of the pair is
4828 the value the module flag should be restricted to. This behavior can
4829 be used to restrict the allowable results (via triggering of an
4830 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004831
4832 * - 4
4833 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004834 Uses the specified value, regardless of the behavior or value of the
4835 other module. If both modules specify **Override**, but the values
4836 differ, an error will be emitted.
4837
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004838 * - 5
4839 - **Append**
4840 Appends the two values, which are required to be metadata nodes.
4841
4842 * - 6
4843 - **AppendUnique**
4844 Appends the two values, which are required to be metadata
4845 nodes. However, duplicate entries in the second list are dropped
4846 during the append operation.
4847
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004848It is an error for a particular unique flag ID to have multiple behaviors,
4849except in the case of **Require** (which adds restrictions on another metadata
4850value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004851
4852An example of module flags:
4853
4854.. code-block:: llvm
4855
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004856 !0 = !{ i32 1, !"foo", i32 1 }
4857 !1 = !{ i32 4, !"bar", i32 37 }
4858 !2 = !{ i32 2, !"qux", i32 42 }
4859 !3 = !{ i32 3, !"qux",
4860 !{
4861 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004862 }
4863 }
4864 !llvm.module.flags = !{ !0, !1, !2, !3 }
4865
4866- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4867 if two or more ``!"foo"`` flags are seen is to emit an error if their
4868 values are not equal.
4869
4870- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4871 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004872 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004873
4874- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4875 behavior if two or more ``!"qux"`` flags are seen is to emit a
4876 warning if their values are not equal.
4877
4878- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4879
4880 ::
4881
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004882 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004883
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004884 The behavior is to emit an error if the ``llvm.module.flags`` does not
4885 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4886 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004887
4888Objective-C Garbage Collection Module Flags Metadata
4889----------------------------------------------------
4890
4891On the Mach-O platform, Objective-C stores metadata about garbage
4892collection in a special section called "image info". The metadata
4893consists of a version number and a bitmask specifying what types of
4894garbage collection are supported (if any) by the file. If two or more
4895modules are linked together their garbage collection metadata needs to
4896be merged rather than appended together.
4897
4898The Objective-C garbage collection module flags metadata consists of the
4899following key-value pairs:
4900
4901.. list-table::
4902 :header-rows: 1
4903 :widths: 30 70
4904
4905 * - Key
4906 - Value
4907
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004908 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004909 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004910
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004911 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004912 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004913 always 0.
4914
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004915 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004916 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004917 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4918 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4919 Objective-C ABI version 2.
4920
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004921 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004922 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004923 not. Valid values are 0, for no garbage collection, and 2, for garbage
4924 collection supported.
4925
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004926 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004927 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004928 If present, its value must be 6. This flag requires that the
4929 ``Objective-C Garbage Collection`` flag have the value 2.
4930
4931Some important flag interactions:
4932
4933- If a module with ``Objective-C Garbage Collection`` set to 0 is
4934 merged with a module with ``Objective-C Garbage Collection`` set to
4935 2, then the resulting module has the
4936 ``Objective-C Garbage Collection`` flag set to 0.
4937- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4938 merged with a module with ``Objective-C GC Only`` set to 6.
4939
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004940Automatic Linker Flags Module Flags Metadata
4941--------------------------------------------
4942
4943Some targets support embedding flags to the linker inside individual object
4944files. Typically this is used in conjunction with language extensions which
4945allow source files to explicitly declare the libraries they depend on, and have
4946these automatically be transmitted to the linker via object files.
4947
4948These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004949using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004950to be ``AppendUnique``, and the value for the key is expected to be a metadata
4951node which should be a list of other metadata nodes, each of which should be a
4952list of metadata strings defining linker options.
4953
4954For example, the following metadata section specifies two separate sets of
4955linker options, presumably to link against ``libz`` and the ``Cocoa``
4956framework::
4957
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004958 !0 = !{ i32 6, !"Linker Options",
4959 !{
4960 !{ !"-lz" },
4961 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004962 !llvm.module.flags = !{ !0 }
4963
4964The metadata encoding as lists of lists of options, as opposed to a collapsed
4965list of options, is chosen so that the IR encoding can use multiple option
4966strings to specify e.g., a single library, while still having that specifier be
4967preserved as an atomic element that can be recognized by a target specific
4968assembly writer or object file emitter.
4969
4970Each individual option is required to be either a valid option for the target's
4971linker, or an option that is reserved by the target specific assembly writer or
4972object file emitter. No other aspect of these options is defined by the IR.
4973
Oliver Stannard5dc29342014-06-20 10:08:11 +00004974C type width Module Flags Metadata
4975----------------------------------
4976
4977The ARM backend emits a section into each generated object file describing the
4978options that it was compiled with (in a compiler-independent way) to prevent
4979linking incompatible objects, and to allow automatic library selection. Some
4980of these options are not visible at the IR level, namely wchar_t width and enum
4981width.
4982
4983To pass this information to the backend, these options are encoded in module
4984flags metadata, using the following key-value pairs:
4985
4986.. list-table::
4987 :header-rows: 1
4988 :widths: 30 70
4989
4990 * - Key
4991 - Value
4992
4993 * - short_wchar
4994 - * 0 --- sizeof(wchar_t) == 4
4995 * 1 --- sizeof(wchar_t) == 2
4996
4997 * - short_enum
4998 - * 0 --- Enums are at least as large as an ``int``.
4999 * 1 --- Enums are stored in the smallest integer type which can
5000 represent all of its values.
5001
5002For example, the following metadata section specifies that the module was
5003compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5004enum is the smallest type which can represent all of its values::
5005
5006 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005007 !0 = !{i32 1, !"short_wchar", i32 1}
5008 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005009
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005010.. _intrinsicglobalvariables:
5011
Sean Silvab084af42012-12-07 10:36:55 +00005012Intrinsic Global Variables
5013==========================
5014
5015LLVM has a number of "magic" global variables that contain data that
5016affect code generation or other IR semantics. These are documented here.
5017All globals of this sort should have a section specified as
5018"``llvm.metadata``". This section and all globals that start with
5019"``llvm.``" are reserved for use by LLVM.
5020
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005021.. _gv_llvmused:
5022
Sean Silvab084af42012-12-07 10:36:55 +00005023The '``llvm.used``' Global Variable
5024-----------------------------------
5025
Rafael Espindola74f2e462013-04-22 14:58:02 +00005026The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005027:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005028pointers to named global variables, functions and aliases which may optionally
5029have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005030use of it is:
5031
5032.. code-block:: llvm
5033
5034 @X = global i8 4
5035 @Y = global i32 123
5036
5037 @llvm.used = appending global [2 x i8*] [
5038 i8* @X,
5039 i8* bitcast (i32* @Y to i8*)
5040 ], section "llvm.metadata"
5041
Rafael Espindola74f2e462013-04-22 14:58:02 +00005042If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5043and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005044symbol that it cannot see (which is why they have to be named). For example, if
5045a variable has internal linkage and no references other than that from the
5046``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5047references from inline asms and other things the compiler cannot "see", and
5048corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005049
5050On some targets, the code generator must emit a directive to the
5051assembler or object file to prevent the assembler and linker from
5052molesting the symbol.
5053
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005054.. _gv_llvmcompilerused:
5055
Sean Silvab084af42012-12-07 10:36:55 +00005056The '``llvm.compiler.used``' Global Variable
5057--------------------------------------------
5058
5059The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5060directive, except that it only prevents the compiler from touching the
5061symbol. On targets that support it, this allows an intelligent linker to
5062optimize references to the symbol without being impeded as it would be
5063by ``@llvm.used``.
5064
5065This is a rare construct that should only be used in rare circumstances,
5066and should not be exposed to source languages.
5067
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005068.. _gv_llvmglobalctors:
5069
Sean Silvab084af42012-12-07 10:36:55 +00005070The '``llvm.global_ctors``' Global Variable
5071-------------------------------------------
5072
5073.. code-block:: llvm
5074
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005075 %0 = type { i32, void ()*, i8* }
5076 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005077
5078The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005079functions, priorities, and an optional associated global or function.
5080The functions referenced by this array will be called in ascending order
5081of priority (i.e. lowest first) when the module is loaded. The order of
5082functions with the same priority is not defined.
5083
5084If the third field is present, non-null, and points to a global variable
5085or function, the initializer function will only run if the associated
5086data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005087
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005088.. _llvmglobaldtors:
5089
Sean Silvab084af42012-12-07 10:36:55 +00005090The '``llvm.global_dtors``' Global Variable
5091-------------------------------------------
5092
5093.. code-block:: llvm
5094
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005095 %0 = type { i32, void ()*, i8* }
5096 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005097
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005098The ``@llvm.global_dtors`` array contains a list of destructor
5099functions, priorities, and an optional associated global or function.
5100The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005101order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005102order of functions with the same priority is not defined.
5103
5104If the third field is present, non-null, and points to a global variable
5105or function, the destructor function will only run if the associated
5106data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005107
5108Instruction Reference
5109=====================
5110
5111The LLVM instruction set consists of several different classifications
5112of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5113instructions <binaryops>`, :ref:`bitwise binary
5114instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5115:ref:`other instructions <otherops>`.
5116
5117.. _terminators:
5118
5119Terminator Instructions
5120-----------------------
5121
5122As mentioned :ref:`previously <functionstructure>`, every basic block in a
5123program ends with a "Terminator" instruction, which indicates which
5124block should be executed after the current block is finished. These
5125terminator instructions typically yield a '``void``' value: they produce
5126control flow, not values (the one exception being the
5127':ref:`invoke <i_invoke>`' instruction).
5128
5129The terminator instructions are: ':ref:`ret <i_ret>`',
5130':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5131':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005132':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005133':ref:`catchret <i_catchret>`',
5134':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005135and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005136
5137.. _i_ret:
5138
5139'``ret``' Instruction
5140^^^^^^^^^^^^^^^^^^^^^
5141
5142Syntax:
5143"""""""
5144
5145::
5146
5147 ret <type> <value> ; Return a value from a non-void function
5148 ret void ; Return from void function
5149
5150Overview:
5151"""""""""
5152
5153The '``ret``' instruction is used to return control flow (and optionally
5154a value) from a function back to the caller.
5155
5156There are two forms of the '``ret``' instruction: one that returns a
5157value and then causes control flow, and one that just causes control
5158flow to occur.
5159
5160Arguments:
5161""""""""""
5162
5163The '``ret``' instruction optionally accepts a single argument, the
5164return value. The type of the return value must be a ':ref:`first
5165class <t_firstclass>`' type.
5166
5167A function is not :ref:`well formed <wellformed>` if it it has a non-void
5168return type and contains a '``ret``' instruction with no return value or
5169a return value with a type that does not match its type, or if it has a
5170void return type and contains a '``ret``' instruction with a return
5171value.
5172
5173Semantics:
5174""""""""""
5175
5176When the '``ret``' instruction is executed, control flow returns back to
5177the calling function's context. If the caller is a
5178":ref:`call <i_call>`" instruction, execution continues at the
5179instruction after the call. If the caller was an
5180":ref:`invoke <i_invoke>`" instruction, execution continues at the
5181beginning of the "normal" destination block. If the instruction returns
5182a value, that value shall set the call or invoke instruction's return
5183value.
5184
5185Example:
5186""""""""
5187
5188.. code-block:: llvm
5189
5190 ret i32 5 ; Return an integer value of 5
5191 ret void ; Return from a void function
5192 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5193
5194.. _i_br:
5195
5196'``br``' Instruction
5197^^^^^^^^^^^^^^^^^^^^
5198
5199Syntax:
5200"""""""
5201
5202::
5203
5204 br i1 <cond>, label <iftrue>, label <iffalse>
5205 br label <dest> ; Unconditional branch
5206
5207Overview:
5208"""""""""
5209
5210The '``br``' instruction is used to cause control flow to transfer to a
5211different basic block in the current function. There are two forms of
5212this instruction, corresponding to a conditional branch and an
5213unconditional branch.
5214
5215Arguments:
5216""""""""""
5217
5218The conditional branch form of the '``br``' instruction takes a single
5219'``i1``' value and two '``label``' values. The unconditional form of the
5220'``br``' instruction takes a single '``label``' value as a target.
5221
5222Semantics:
5223""""""""""
5224
5225Upon execution of a conditional '``br``' instruction, the '``i1``'
5226argument is evaluated. If the value is ``true``, control flows to the
5227'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5228to the '``iffalse``' ``label`` argument.
5229
5230Example:
5231""""""""
5232
5233.. code-block:: llvm
5234
5235 Test:
5236 %cond = icmp eq i32 %a, %b
5237 br i1 %cond, label %IfEqual, label %IfUnequal
5238 IfEqual:
5239 ret i32 1
5240 IfUnequal:
5241 ret i32 0
5242
5243.. _i_switch:
5244
5245'``switch``' Instruction
5246^^^^^^^^^^^^^^^^^^^^^^^^
5247
5248Syntax:
5249"""""""
5250
5251::
5252
5253 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5254
5255Overview:
5256"""""""""
5257
5258The '``switch``' instruction is used to transfer control flow to one of
5259several different places. It is a generalization of the '``br``'
5260instruction, allowing a branch to occur to one of many possible
5261destinations.
5262
5263Arguments:
5264""""""""""
5265
5266The '``switch``' instruction uses three parameters: an integer
5267comparison value '``value``', a default '``label``' destination, and an
5268array of pairs of comparison value constants and '``label``'s. The table
5269is not allowed to contain duplicate constant entries.
5270
5271Semantics:
5272""""""""""
5273
5274The ``switch`` instruction specifies a table of values and destinations.
5275When the '``switch``' instruction is executed, this table is searched
5276for the given value. If the value is found, control flow is transferred
5277to the corresponding destination; otherwise, control flow is transferred
5278to the default destination.
5279
5280Implementation:
5281"""""""""""""""
5282
5283Depending on properties of the target machine and the particular
5284``switch`` instruction, this instruction may be code generated in
5285different ways. For example, it could be generated as a series of
5286chained conditional branches or with a lookup table.
5287
5288Example:
5289""""""""
5290
5291.. code-block:: llvm
5292
5293 ; Emulate a conditional br instruction
5294 %Val = zext i1 %value to i32
5295 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5296
5297 ; Emulate an unconditional br instruction
5298 switch i32 0, label %dest [ ]
5299
5300 ; Implement a jump table:
5301 switch i32 %val, label %otherwise [ i32 0, label %onzero
5302 i32 1, label %onone
5303 i32 2, label %ontwo ]
5304
5305.. _i_indirectbr:
5306
5307'``indirectbr``' Instruction
5308^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5309
5310Syntax:
5311"""""""
5312
5313::
5314
5315 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5316
5317Overview:
5318"""""""""
5319
5320The '``indirectbr``' instruction implements an indirect branch to a
5321label within the current function, whose address is specified by
5322"``address``". Address must be derived from a
5323:ref:`blockaddress <blockaddress>` constant.
5324
5325Arguments:
5326""""""""""
5327
5328The '``address``' argument is the address of the label to jump to. The
5329rest of the arguments indicate the full set of possible destinations
5330that the address may point to. Blocks are allowed to occur multiple
5331times in the destination list, though this isn't particularly useful.
5332
5333This destination list is required so that dataflow analysis has an
5334accurate understanding of the CFG.
5335
5336Semantics:
5337""""""""""
5338
5339Control transfers to the block specified in the address argument. All
5340possible destination blocks must be listed in the label list, otherwise
5341this instruction has undefined behavior. This implies that jumps to
5342labels defined in other functions have undefined behavior as well.
5343
5344Implementation:
5345"""""""""""""""
5346
5347This is typically implemented with a jump through a register.
5348
5349Example:
5350""""""""
5351
5352.. code-block:: llvm
5353
5354 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5355
5356.. _i_invoke:
5357
5358'``invoke``' Instruction
5359^^^^^^^^^^^^^^^^^^^^^^^^
5360
5361Syntax:
5362"""""""
5363
5364::
5365
5366 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005367 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005368
5369Overview:
5370"""""""""
5371
5372The '``invoke``' instruction causes control to transfer to a specified
5373function, with the possibility of control flow transfer to either the
5374'``normal``' label or the '``exception``' label. If the callee function
5375returns with the "``ret``" instruction, control flow will return to the
5376"normal" label. If the callee (or any indirect callees) returns via the
5377":ref:`resume <i_resume>`" instruction or other exception handling
5378mechanism, control is interrupted and continued at the dynamically
5379nearest "exception" label.
5380
5381The '``exception``' label is a `landing
5382pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5383'``exception``' label is required to have the
5384":ref:`landingpad <i_landingpad>`" instruction, which contains the
5385information about the behavior of the program after unwinding happens,
5386as its first non-PHI instruction. The restrictions on the
5387"``landingpad``" instruction's tightly couples it to the "``invoke``"
5388instruction, so that the important information contained within the
5389"``landingpad``" instruction can't be lost through normal code motion.
5390
5391Arguments:
5392""""""""""
5393
5394This instruction requires several arguments:
5395
5396#. The optional "cconv" marker indicates which :ref:`calling
5397 convention <callingconv>` the call should use. If none is
5398 specified, the call defaults to using C calling conventions.
5399#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5400 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5401 are valid here.
5402#. '``ptr to function ty``': shall be the signature of the pointer to
5403 function value being invoked. In most cases, this is a direct
5404 function invocation, but indirect ``invoke``'s are just as possible,
5405 branching off an arbitrary pointer to function value.
5406#. '``function ptr val``': An LLVM value containing a pointer to a
5407 function to be invoked.
5408#. '``function args``': argument list whose types match the function
5409 signature argument types and parameter attributes. All arguments must
5410 be of :ref:`first class <t_firstclass>` type. If the function signature
5411 indicates the function accepts a variable number of arguments, the
5412 extra arguments can be specified.
5413#. '``normal label``': the label reached when the called function
5414 executes a '``ret``' instruction.
5415#. '``exception label``': the label reached when a callee returns via
5416 the :ref:`resume <i_resume>` instruction or other exception handling
5417 mechanism.
5418#. The optional :ref:`function attributes <fnattrs>` list. Only
5419 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5420 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005421#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005422
5423Semantics:
5424""""""""""
5425
5426This instruction is designed to operate as a standard '``call``'
5427instruction in most regards. The primary difference is that it
5428establishes an association with a label, which is used by the runtime
5429library to unwind the stack.
5430
5431This instruction is used in languages with destructors to ensure that
5432proper cleanup is performed in the case of either a ``longjmp`` or a
5433thrown exception. Additionally, this is important for implementation of
5434'``catch``' clauses in high-level languages that support them.
5435
5436For the purposes of the SSA form, the definition of the value returned
5437by the '``invoke``' instruction is deemed to occur on the edge from the
5438current block to the "normal" label. If the callee unwinds then no
5439return value is available.
5440
5441Example:
5442""""""""
5443
5444.. code-block:: llvm
5445
5446 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005447 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005448 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005449 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005450
5451.. _i_resume:
5452
5453'``resume``' Instruction
5454^^^^^^^^^^^^^^^^^^^^^^^^
5455
5456Syntax:
5457"""""""
5458
5459::
5460
5461 resume <type> <value>
5462
5463Overview:
5464"""""""""
5465
5466The '``resume``' instruction is a terminator instruction that has no
5467successors.
5468
5469Arguments:
5470""""""""""
5471
5472The '``resume``' instruction requires one argument, which must have the
5473same type as the result of any '``landingpad``' instruction in the same
5474function.
5475
5476Semantics:
5477""""""""""
5478
5479The '``resume``' instruction resumes propagation of an existing
5480(in-flight) exception whose unwinding was interrupted with a
5481:ref:`landingpad <i_landingpad>` instruction.
5482
5483Example:
5484""""""""
5485
5486.. code-block:: llvm
5487
5488 resume { i8*, i32 } %exn
5489
David Majnemer8a1c45d2015-12-12 05:38:55 +00005490.. _i_catchswitch:
5491
5492'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005494
5495Syntax:
5496"""""""
5497
5498::
5499
5500 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5501 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5502
5503Overview:
5504"""""""""
5505
5506The '``catchswitch``' instruction is used by `LLVM's exception handling system
5507<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5508that may be executed by the :ref:`EH personality routine <personalityfn>`.
5509
5510Arguments:
5511""""""""""
5512
5513The ``parent`` argument is the token of the funclet that contains the
5514``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5515this operand may be the token ``none``.
5516
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005517The ``default`` argument is the label of another basic block beginning with
5518either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5519must be a legal target with respect to the ``parent`` links, as described in
5520the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005521
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005522The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005523:ref:`catchpad <i_catchpad>` instruction.
5524
5525Semantics:
5526""""""""""
5527
5528Executing this instruction transfers control to one of the successors in
5529``handlers``, if appropriate, or continues to unwind via the unwind label if
5530present.
5531
5532The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5533it must be both the first non-phi instruction and last instruction in the basic
5534block. Therefore, it must be the only non-phi instruction in the block.
5535
5536Example:
5537""""""""
5538
5539.. code-block:: llvm
5540
5541 dispatch1:
5542 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5543 dispatch2:
5544 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5545
David Majnemer654e1302015-07-31 17:58:14 +00005546.. _i_catchret:
5547
5548'``catchret``' Instruction
5549^^^^^^^^^^^^^^^^^^^^^^^^^^
5550
5551Syntax:
5552"""""""
5553
5554::
5555
David Majnemer8a1c45d2015-12-12 05:38:55 +00005556 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005557
5558Overview:
5559"""""""""
5560
5561The '``catchret``' instruction is a terminator instruction that has a
5562single successor.
5563
5564
5565Arguments:
5566""""""""""
5567
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005568The first argument to a '``catchret``' indicates which ``catchpad`` it
5569exits. It must be a :ref:`catchpad <i_catchpad>`.
5570The second argument to a '``catchret``' specifies where control will
5571transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005572
5573Semantics:
5574""""""""""
5575
David Majnemer8a1c45d2015-12-12 05:38:55 +00005576The '``catchret``' instruction ends an existing (in-flight) exception whose
5577unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5578:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5579code to, for example, destroy the active exception. Control then transfers to
5580``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005581
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005582The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5583If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5584funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5585the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005586
5587Example:
5588""""""""
5589
5590.. code-block:: llvm
5591
David Majnemer8a1c45d2015-12-12 05:38:55 +00005592 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005593
David Majnemer654e1302015-07-31 17:58:14 +00005594.. _i_cleanupret:
5595
5596'``cleanupret``' Instruction
5597^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5598
5599Syntax:
5600"""""""
5601
5602::
5603
David Majnemer8a1c45d2015-12-12 05:38:55 +00005604 cleanupret from <value> unwind label <continue>
5605 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005606
5607Overview:
5608"""""""""
5609
5610The '``cleanupret``' instruction is a terminator instruction that has
5611an optional successor.
5612
5613
5614Arguments:
5615""""""""""
5616
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005617The '``cleanupret``' instruction requires one argument, which indicates
5618which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005619If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5620funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5621the ``cleanupret``'s behavior is undefined.
5622
5623The '``cleanupret``' instruction also has an optional successor, ``continue``,
5624which must be the label of another basic block beginning with either a
5625``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5626be a legal target with respect to the ``parent`` links, as described in the
5627`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005628
5629Semantics:
5630""""""""""
5631
5632The '``cleanupret``' instruction indicates to the
5633:ref:`personality function <personalityfn>` that one
5634:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5635It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005636
David Majnemer654e1302015-07-31 17:58:14 +00005637Example:
5638""""""""
5639
5640.. code-block:: llvm
5641
David Majnemer8a1c45d2015-12-12 05:38:55 +00005642 cleanupret from %cleanup unwind to caller
5643 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005644
Sean Silvab084af42012-12-07 10:36:55 +00005645.. _i_unreachable:
5646
5647'``unreachable``' Instruction
5648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5649
5650Syntax:
5651"""""""
5652
5653::
5654
5655 unreachable
5656
5657Overview:
5658"""""""""
5659
5660The '``unreachable``' instruction has no defined semantics. This
5661instruction is used to inform the optimizer that a particular portion of
5662the code is not reachable. This can be used to indicate that the code
5663after a no-return function cannot be reached, and other facts.
5664
5665Semantics:
5666""""""""""
5667
5668The '``unreachable``' instruction has no defined semantics.
5669
5670.. _binaryops:
5671
5672Binary Operations
5673-----------------
5674
5675Binary operators are used to do most of the computation in a program.
5676They require two operands of the same type, execute an operation on
5677them, and produce a single value. The operands might represent multiple
5678data, as is the case with the :ref:`vector <t_vector>` data type. The
5679result value has the same type as its operands.
5680
5681There are several different binary operators:
5682
5683.. _i_add:
5684
5685'``add``' Instruction
5686^^^^^^^^^^^^^^^^^^^^^
5687
5688Syntax:
5689"""""""
5690
5691::
5692
Tim Northover675a0962014-06-13 14:24:23 +00005693 <result> = add <ty> <op1>, <op2> ; yields ty:result
5694 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5695 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5696 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005697
5698Overview:
5699"""""""""
5700
5701The '``add``' instruction returns the sum of its two operands.
5702
5703Arguments:
5704""""""""""
5705
5706The two arguments to the '``add``' instruction must be
5707:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5708arguments must have identical types.
5709
5710Semantics:
5711""""""""""
5712
5713The value produced is the integer sum of the two operands.
5714
5715If the sum has unsigned overflow, the result returned is the
5716mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5717the result.
5718
5719Because LLVM integers use a two's complement representation, this
5720instruction is appropriate for both signed and unsigned integers.
5721
5722``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5723respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5724result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5725unsigned and/or signed overflow, respectively, occurs.
5726
5727Example:
5728""""""""
5729
5730.. code-block:: llvm
5731
Tim Northover675a0962014-06-13 14:24:23 +00005732 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005733
5734.. _i_fadd:
5735
5736'``fadd``' Instruction
5737^^^^^^^^^^^^^^^^^^^^^^
5738
5739Syntax:
5740"""""""
5741
5742::
5743
Tim Northover675a0962014-06-13 14:24:23 +00005744 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005745
5746Overview:
5747"""""""""
5748
5749The '``fadd``' instruction returns the sum of its two operands.
5750
5751Arguments:
5752""""""""""
5753
5754The two arguments to the '``fadd``' instruction must be :ref:`floating
5755point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5756Both arguments must have identical types.
5757
5758Semantics:
5759""""""""""
5760
5761The value produced is the floating point sum of the two operands. This
5762instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5763which are optimization hints to enable otherwise unsafe floating point
5764optimizations:
5765
5766Example:
5767""""""""
5768
5769.. code-block:: llvm
5770
Tim Northover675a0962014-06-13 14:24:23 +00005771 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005772
5773'``sub``' Instruction
5774^^^^^^^^^^^^^^^^^^^^^
5775
5776Syntax:
5777"""""""
5778
5779::
5780
Tim Northover675a0962014-06-13 14:24:23 +00005781 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5782 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5783 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5784 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005785
5786Overview:
5787"""""""""
5788
5789The '``sub``' instruction returns the difference of its two operands.
5790
5791Note that the '``sub``' instruction is used to represent the '``neg``'
5792instruction present in most other intermediate representations.
5793
5794Arguments:
5795""""""""""
5796
5797The two arguments to the '``sub``' instruction must be
5798:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5799arguments must have identical types.
5800
5801Semantics:
5802""""""""""
5803
5804The value produced is the integer difference of the two operands.
5805
5806If the difference has unsigned overflow, the result returned is the
5807mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5808the result.
5809
5810Because LLVM integers use a two's complement representation, this
5811instruction is appropriate for both signed and unsigned integers.
5812
5813``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5814respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5815result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5816unsigned and/or signed overflow, respectively, occurs.
5817
5818Example:
5819""""""""
5820
5821.. code-block:: llvm
5822
Tim Northover675a0962014-06-13 14:24:23 +00005823 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5824 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005825
5826.. _i_fsub:
5827
5828'``fsub``' Instruction
5829^^^^^^^^^^^^^^^^^^^^^^
5830
5831Syntax:
5832"""""""
5833
5834::
5835
Tim Northover675a0962014-06-13 14:24:23 +00005836 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005837
5838Overview:
5839"""""""""
5840
5841The '``fsub``' instruction returns the difference of its two operands.
5842
5843Note that the '``fsub``' instruction is used to represent the '``fneg``'
5844instruction present in most other intermediate representations.
5845
5846Arguments:
5847""""""""""
5848
5849The two arguments to the '``fsub``' instruction must be :ref:`floating
5850point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5851Both arguments must have identical types.
5852
5853Semantics:
5854""""""""""
5855
5856The value produced is the floating point difference of the two operands.
5857This instruction can also take any number of :ref:`fast-math
5858flags <fastmath>`, which are optimization hints to enable otherwise
5859unsafe floating point optimizations:
5860
5861Example:
5862""""""""
5863
5864.. code-block:: llvm
5865
Tim Northover675a0962014-06-13 14:24:23 +00005866 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5867 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005868
5869'``mul``' Instruction
5870^^^^^^^^^^^^^^^^^^^^^
5871
5872Syntax:
5873"""""""
5874
5875::
5876
Tim Northover675a0962014-06-13 14:24:23 +00005877 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5878 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5879 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5880 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005881
5882Overview:
5883"""""""""
5884
5885The '``mul``' instruction returns the product of its two operands.
5886
5887Arguments:
5888""""""""""
5889
5890The two arguments to the '``mul``' instruction must be
5891:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5892arguments must have identical types.
5893
5894Semantics:
5895""""""""""
5896
5897The value produced is the integer product of the two operands.
5898
5899If the result of the multiplication has unsigned overflow, the result
5900returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5901bit width of the result.
5902
5903Because LLVM integers use a two's complement representation, and the
5904result is the same width as the operands, this instruction returns the
5905correct result for both signed and unsigned integers. If a full product
5906(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5907sign-extended or zero-extended as appropriate to the width of the full
5908product.
5909
5910``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5911respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5912result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5913unsigned and/or signed overflow, respectively, occurs.
5914
5915Example:
5916""""""""
5917
5918.. code-block:: llvm
5919
Tim Northover675a0962014-06-13 14:24:23 +00005920 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005921
5922.. _i_fmul:
5923
5924'``fmul``' Instruction
5925^^^^^^^^^^^^^^^^^^^^^^
5926
5927Syntax:
5928"""""""
5929
5930::
5931
Tim Northover675a0962014-06-13 14:24:23 +00005932 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005933
5934Overview:
5935"""""""""
5936
5937The '``fmul``' instruction returns the product of its two operands.
5938
5939Arguments:
5940""""""""""
5941
5942The two arguments to the '``fmul``' instruction must be :ref:`floating
5943point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5944Both arguments must have identical types.
5945
5946Semantics:
5947""""""""""
5948
5949The value produced is the floating point product of the two operands.
5950This instruction can also take any number of :ref:`fast-math
5951flags <fastmath>`, which are optimization hints to enable otherwise
5952unsafe floating point optimizations:
5953
5954Example:
5955""""""""
5956
5957.. code-block:: llvm
5958
Tim Northover675a0962014-06-13 14:24:23 +00005959 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005960
5961'``udiv``' Instruction
5962^^^^^^^^^^^^^^^^^^^^^^
5963
5964Syntax:
5965"""""""
5966
5967::
5968
Tim Northover675a0962014-06-13 14:24:23 +00005969 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5970 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005971
5972Overview:
5973"""""""""
5974
5975The '``udiv``' instruction returns the quotient of its two operands.
5976
5977Arguments:
5978""""""""""
5979
5980The two arguments to the '``udiv``' instruction must be
5981:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5982arguments must have identical types.
5983
5984Semantics:
5985""""""""""
5986
5987The value produced is the unsigned integer quotient of the two operands.
5988
5989Note that unsigned integer division and signed integer division are
5990distinct operations; for signed integer division, use '``sdiv``'.
5991
5992Division by zero leads to undefined behavior.
5993
5994If the ``exact`` keyword is present, the result value of the ``udiv`` is
5995a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5996such, "((a udiv exact b) mul b) == a").
5997
5998Example:
5999""""""""
6000
6001.. code-block:: llvm
6002
Tim Northover675a0962014-06-13 14:24:23 +00006003 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006004
6005'``sdiv``' Instruction
6006^^^^^^^^^^^^^^^^^^^^^^
6007
6008Syntax:
6009"""""""
6010
6011::
6012
Tim Northover675a0962014-06-13 14:24:23 +00006013 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6014 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006015
6016Overview:
6017"""""""""
6018
6019The '``sdiv``' instruction returns the quotient of its two operands.
6020
6021Arguments:
6022""""""""""
6023
6024The two arguments to the '``sdiv``' instruction must be
6025:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6026arguments must have identical types.
6027
6028Semantics:
6029""""""""""
6030
6031The value produced is the signed integer quotient of the two operands
6032rounded towards zero.
6033
6034Note that signed integer division and unsigned integer division are
6035distinct operations; for unsigned integer division, use '``udiv``'.
6036
6037Division by zero leads to undefined behavior. Overflow also leads to
6038undefined behavior; this is a rare case, but can occur, for example, by
6039doing a 32-bit division of -2147483648 by -1.
6040
6041If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6042a :ref:`poison value <poisonvalues>` if the result would be rounded.
6043
6044Example:
6045""""""""
6046
6047.. code-block:: llvm
6048
Tim Northover675a0962014-06-13 14:24:23 +00006049 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006050
6051.. _i_fdiv:
6052
6053'``fdiv``' Instruction
6054^^^^^^^^^^^^^^^^^^^^^^
6055
6056Syntax:
6057"""""""
6058
6059::
6060
Tim Northover675a0962014-06-13 14:24:23 +00006061 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006062
6063Overview:
6064"""""""""
6065
6066The '``fdiv``' instruction returns the quotient of its two operands.
6067
6068Arguments:
6069""""""""""
6070
6071The two arguments to the '``fdiv``' instruction must be :ref:`floating
6072point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6073Both arguments must have identical types.
6074
6075Semantics:
6076""""""""""
6077
6078The value produced is the floating point quotient of the two operands.
6079This instruction can also take any number of :ref:`fast-math
6080flags <fastmath>`, which are optimization hints to enable otherwise
6081unsafe floating point optimizations:
6082
6083Example:
6084""""""""
6085
6086.. code-block:: llvm
6087
Tim Northover675a0962014-06-13 14:24:23 +00006088 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006089
6090'``urem``' Instruction
6091^^^^^^^^^^^^^^^^^^^^^^
6092
6093Syntax:
6094"""""""
6095
6096::
6097
Tim Northover675a0962014-06-13 14:24:23 +00006098 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006099
6100Overview:
6101"""""""""
6102
6103The '``urem``' instruction returns the remainder from the unsigned
6104division of its two arguments.
6105
6106Arguments:
6107""""""""""
6108
6109The two arguments to the '``urem``' instruction must be
6110:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6111arguments must have identical types.
6112
6113Semantics:
6114""""""""""
6115
6116This instruction returns the unsigned integer *remainder* of a division.
6117This instruction always performs an unsigned division to get the
6118remainder.
6119
6120Note that unsigned integer remainder and signed integer remainder are
6121distinct operations; for signed integer remainder, use '``srem``'.
6122
6123Taking the remainder of a division by zero leads to undefined behavior.
6124
6125Example:
6126""""""""
6127
6128.. code-block:: llvm
6129
Tim Northover675a0962014-06-13 14:24:23 +00006130 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006131
6132'``srem``' Instruction
6133^^^^^^^^^^^^^^^^^^^^^^
6134
6135Syntax:
6136"""""""
6137
6138::
6139
Tim Northover675a0962014-06-13 14:24:23 +00006140 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006141
6142Overview:
6143"""""""""
6144
6145The '``srem``' instruction returns the remainder from the signed
6146division of its two operands. This instruction can also take
6147:ref:`vector <t_vector>` versions of the values in which case the elements
6148must be integers.
6149
6150Arguments:
6151""""""""""
6152
6153The two arguments to the '``srem``' instruction must be
6154:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6155arguments must have identical types.
6156
6157Semantics:
6158""""""""""
6159
6160This instruction returns the *remainder* of a division (where the result
6161is either zero or has the same sign as the dividend, ``op1``), not the
6162*modulo* operator (where the result is either zero or has the same sign
6163as the divisor, ``op2``) of a value. For more information about the
6164difference, see `The Math
6165Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6166table of how this is implemented in various languages, please see
6167`Wikipedia: modulo
6168operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6169
6170Note that signed integer remainder and unsigned integer remainder are
6171distinct operations; for unsigned integer remainder, use '``urem``'.
6172
6173Taking the remainder of a division by zero leads to undefined behavior.
6174Overflow also leads to undefined behavior; this is a rare case, but can
6175occur, for example, by taking the remainder of a 32-bit division of
6176-2147483648 by -1. (The remainder doesn't actually overflow, but this
6177rule lets srem be implemented using instructions that return both the
6178result of the division and the remainder.)
6179
6180Example:
6181""""""""
6182
6183.. code-block:: llvm
6184
Tim Northover675a0962014-06-13 14:24:23 +00006185 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006186
6187.. _i_frem:
6188
6189'``frem``' Instruction
6190^^^^^^^^^^^^^^^^^^^^^^
6191
6192Syntax:
6193"""""""
6194
6195::
6196
Tim Northover675a0962014-06-13 14:24:23 +00006197 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006198
6199Overview:
6200"""""""""
6201
6202The '``frem``' instruction returns the remainder from the division of
6203its two operands.
6204
6205Arguments:
6206""""""""""
6207
6208The two arguments to the '``frem``' instruction must be :ref:`floating
6209point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6210Both arguments must have identical types.
6211
6212Semantics:
6213""""""""""
6214
6215This instruction returns the *remainder* of a division. The remainder
6216has the same sign as the dividend. This instruction can also take any
6217number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6218to enable otherwise unsafe floating point optimizations:
6219
6220Example:
6221""""""""
6222
6223.. code-block:: llvm
6224
Tim Northover675a0962014-06-13 14:24:23 +00006225 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006226
6227.. _bitwiseops:
6228
6229Bitwise Binary Operations
6230-------------------------
6231
6232Bitwise binary operators are used to do various forms of bit-twiddling
6233in a program. They are generally very efficient instructions and can
6234commonly be strength reduced from other instructions. They require two
6235operands of the same type, execute an operation on them, and produce a
6236single value. The resulting value is the same type as its operands.
6237
6238'``shl``' Instruction
6239^^^^^^^^^^^^^^^^^^^^^
6240
6241Syntax:
6242"""""""
6243
6244::
6245
Tim Northover675a0962014-06-13 14:24:23 +00006246 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6247 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6248 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6249 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006250
6251Overview:
6252"""""""""
6253
6254The '``shl``' instruction returns the first operand shifted to the left
6255a specified number of bits.
6256
6257Arguments:
6258""""""""""
6259
6260Both arguments to the '``shl``' instruction must be the same
6261:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6262'``op2``' is treated as an unsigned value.
6263
6264Semantics:
6265""""""""""
6266
6267The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6268where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006269dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006270``op1``, the result is undefined. If the arguments are vectors, each
6271vector element of ``op1`` is shifted by the corresponding shift amount
6272in ``op2``.
6273
6274If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6275value <poisonvalues>` if it shifts out any non-zero bits. If the
6276``nsw`` keyword is present, then the shift produces a :ref:`poison
6277value <poisonvalues>` if it shifts out any bits that disagree with the
6278resultant sign bit. As such, NUW/NSW have the same semantics as they
6279would if the shift were expressed as a mul instruction with the same
6280nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6281
6282Example:
6283""""""""
6284
6285.. code-block:: llvm
6286
Tim Northover675a0962014-06-13 14:24:23 +00006287 <result> = shl i32 4, %var ; yields i32: 4 << %var
6288 <result> = shl i32 4, 2 ; yields i32: 16
6289 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006290 <result> = shl i32 1, 32 ; undefined
6291 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6292
6293'``lshr``' Instruction
6294^^^^^^^^^^^^^^^^^^^^^^
6295
6296Syntax:
6297"""""""
6298
6299::
6300
Tim Northover675a0962014-06-13 14:24:23 +00006301 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6302 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006303
6304Overview:
6305"""""""""
6306
6307The '``lshr``' instruction (logical shift right) returns the first
6308operand shifted to the right a specified number of bits with zero fill.
6309
6310Arguments:
6311""""""""""
6312
6313Both arguments to the '``lshr``' instruction must be the same
6314:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6315'``op2``' is treated as an unsigned value.
6316
6317Semantics:
6318""""""""""
6319
6320This instruction always performs a logical shift right operation. The
6321most significant bits of the result will be filled with zero bits after
6322the shift. If ``op2`` is (statically or dynamically) equal to or larger
6323than the number of bits in ``op1``, the result is undefined. If the
6324arguments are vectors, each vector element of ``op1`` is shifted by the
6325corresponding shift amount in ``op2``.
6326
6327If the ``exact`` keyword is present, the result value of the ``lshr`` is
6328a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6329non-zero.
6330
6331Example:
6332""""""""
6333
6334.. code-block:: llvm
6335
Tim Northover675a0962014-06-13 14:24:23 +00006336 <result> = lshr i32 4, 1 ; yields i32:result = 2
6337 <result> = lshr i32 4, 2 ; yields i32:result = 1
6338 <result> = lshr i8 4, 3 ; yields i8:result = 0
6339 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006340 <result> = lshr i32 1, 32 ; undefined
6341 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6342
6343'``ashr``' Instruction
6344^^^^^^^^^^^^^^^^^^^^^^
6345
6346Syntax:
6347"""""""
6348
6349::
6350
Tim Northover675a0962014-06-13 14:24:23 +00006351 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6352 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006353
6354Overview:
6355"""""""""
6356
6357The '``ashr``' instruction (arithmetic shift right) returns the first
6358operand shifted to the right a specified number of bits with sign
6359extension.
6360
6361Arguments:
6362""""""""""
6363
6364Both arguments to the '``ashr``' instruction must be the same
6365:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6366'``op2``' is treated as an unsigned value.
6367
6368Semantics:
6369""""""""""
6370
6371This instruction always performs an arithmetic shift right operation,
6372The most significant bits of the result will be filled with the sign bit
6373of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6374than the number of bits in ``op1``, the result is undefined. If the
6375arguments are vectors, each vector element of ``op1`` is shifted by the
6376corresponding shift amount in ``op2``.
6377
6378If the ``exact`` keyword is present, the result value of the ``ashr`` is
6379a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6380non-zero.
6381
6382Example:
6383""""""""
6384
6385.. code-block:: llvm
6386
Tim Northover675a0962014-06-13 14:24:23 +00006387 <result> = ashr i32 4, 1 ; yields i32:result = 2
6388 <result> = ashr i32 4, 2 ; yields i32:result = 1
6389 <result> = ashr i8 4, 3 ; yields i8:result = 0
6390 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006391 <result> = ashr i32 1, 32 ; undefined
6392 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6393
6394'``and``' Instruction
6395^^^^^^^^^^^^^^^^^^^^^
6396
6397Syntax:
6398"""""""
6399
6400::
6401
Tim Northover675a0962014-06-13 14:24:23 +00006402 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006403
6404Overview:
6405"""""""""
6406
6407The '``and``' instruction returns the bitwise logical and of its two
6408operands.
6409
6410Arguments:
6411""""""""""
6412
6413The two arguments to the '``and``' instruction must be
6414:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6415arguments must have identical types.
6416
6417Semantics:
6418""""""""""
6419
6420The truth table used for the '``and``' instruction is:
6421
6422+-----+-----+-----+
6423| In0 | In1 | Out |
6424+-----+-----+-----+
6425| 0 | 0 | 0 |
6426+-----+-----+-----+
6427| 0 | 1 | 0 |
6428+-----+-----+-----+
6429| 1 | 0 | 0 |
6430+-----+-----+-----+
6431| 1 | 1 | 1 |
6432+-----+-----+-----+
6433
6434Example:
6435""""""""
6436
6437.. code-block:: llvm
6438
Tim Northover675a0962014-06-13 14:24:23 +00006439 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6440 <result> = and i32 15, 40 ; yields i32:result = 8
6441 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006442
6443'``or``' Instruction
6444^^^^^^^^^^^^^^^^^^^^
6445
6446Syntax:
6447"""""""
6448
6449::
6450
Tim Northover675a0962014-06-13 14:24:23 +00006451 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006452
6453Overview:
6454"""""""""
6455
6456The '``or``' instruction returns the bitwise logical inclusive or of its
6457two operands.
6458
6459Arguments:
6460""""""""""
6461
6462The two arguments to the '``or``' instruction must be
6463:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6464arguments must have identical types.
6465
6466Semantics:
6467""""""""""
6468
6469The truth table used for the '``or``' instruction is:
6470
6471+-----+-----+-----+
6472| In0 | In1 | Out |
6473+-----+-----+-----+
6474| 0 | 0 | 0 |
6475+-----+-----+-----+
6476| 0 | 1 | 1 |
6477+-----+-----+-----+
6478| 1 | 0 | 1 |
6479+-----+-----+-----+
6480| 1 | 1 | 1 |
6481+-----+-----+-----+
6482
6483Example:
6484""""""""
6485
6486::
6487
Tim Northover675a0962014-06-13 14:24:23 +00006488 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6489 <result> = or i32 15, 40 ; yields i32:result = 47
6490 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006491
6492'``xor``' Instruction
6493^^^^^^^^^^^^^^^^^^^^^
6494
6495Syntax:
6496"""""""
6497
6498::
6499
Tim Northover675a0962014-06-13 14:24:23 +00006500 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006501
6502Overview:
6503"""""""""
6504
6505The '``xor``' instruction returns the bitwise logical exclusive or of
6506its two operands. The ``xor`` is used to implement the "one's
6507complement" operation, which is the "~" operator in C.
6508
6509Arguments:
6510""""""""""
6511
6512The two arguments to the '``xor``' instruction must be
6513:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6514arguments must have identical types.
6515
6516Semantics:
6517""""""""""
6518
6519The truth table used for the '``xor``' instruction is:
6520
6521+-----+-----+-----+
6522| In0 | In1 | Out |
6523+-----+-----+-----+
6524| 0 | 0 | 0 |
6525+-----+-----+-----+
6526| 0 | 1 | 1 |
6527+-----+-----+-----+
6528| 1 | 0 | 1 |
6529+-----+-----+-----+
6530| 1 | 1 | 0 |
6531+-----+-----+-----+
6532
6533Example:
6534""""""""
6535
6536.. code-block:: llvm
6537
Tim Northover675a0962014-06-13 14:24:23 +00006538 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6539 <result> = xor i32 15, 40 ; yields i32:result = 39
6540 <result> = xor i32 4, 8 ; yields i32:result = 12
6541 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006542
6543Vector Operations
6544-----------------
6545
6546LLVM supports several instructions to represent vector operations in a
6547target-independent manner. These instructions cover the element-access
6548and vector-specific operations needed to process vectors effectively.
6549While LLVM does directly support these vector operations, many
6550sophisticated algorithms will want to use target-specific intrinsics to
6551take full advantage of a specific target.
6552
6553.. _i_extractelement:
6554
6555'``extractelement``' Instruction
6556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6557
6558Syntax:
6559"""""""
6560
6561::
6562
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006563 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006564
6565Overview:
6566"""""""""
6567
6568The '``extractelement``' instruction extracts a single scalar element
6569from a vector at a specified index.
6570
6571Arguments:
6572""""""""""
6573
6574The first operand of an '``extractelement``' instruction is a value of
6575:ref:`vector <t_vector>` type. The second operand is an index indicating
6576the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006577variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006578
6579Semantics:
6580""""""""""
6581
6582The result is a scalar of the same type as the element type of ``val``.
6583Its value is the value at position ``idx`` of ``val``. If ``idx``
6584exceeds the length of ``val``, the results are undefined.
6585
6586Example:
6587""""""""
6588
6589.. code-block:: llvm
6590
6591 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6592
6593.. _i_insertelement:
6594
6595'``insertelement``' Instruction
6596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6597
6598Syntax:
6599"""""""
6600
6601::
6602
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006603 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006604
6605Overview:
6606"""""""""
6607
6608The '``insertelement``' instruction inserts a scalar element into a
6609vector at a specified index.
6610
6611Arguments:
6612""""""""""
6613
6614The first operand of an '``insertelement``' instruction is a value of
6615:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6616type must equal the element type of the first operand. The third operand
6617is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006618index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006619
6620Semantics:
6621""""""""""
6622
6623The result is a vector of the same type as ``val``. Its element values
6624are those of ``val`` except at position ``idx``, where it gets the value
6625``elt``. If ``idx`` exceeds the length of ``val``, the results are
6626undefined.
6627
6628Example:
6629""""""""
6630
6631.. code-block:: llvm
6632
6633 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6634
6635.. _i_shufflevector:
6636
6637'``shufflevector``' Instruction
6638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6639
6640Syntax:
6641"""""""
6642
6643::
6644
6645 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6646
6647Overview:
6648"""""""""
6649
6650The '``shufflevector``' instruction constructs a permutation of elements
6651from two input vectors, returning a vector with the same element type as
6652the input and length that is the same as the shuffle mask.
6653
6654Arguments:
6655""""""""""
6656
6657The first two operands of a '``shufflevector``' instruction are vectors
6658with the same type. The third argument is a shuffle mask whose element
6659type is always 'i32'. The result of the instruction is a vector whose
6660length is the same as the shuffle mask and whose element type is the
6661same as the element type of the first two operands.
6662
6663The shuffle mask operand is required to be a constant vector with either
6664constant integer or undef values.
6665
6666Semantics:
6667""""""""""
6668
6669The elements of the two input vectors are numbered from left to right
6670across both of the vectors. The shuffle mask operand specifies, for each
6671element of the result vector, which element of the two input vectors the
6672result element gets. The element selector may be undef (meaning "don't
6673care") and the second operand may be undef if performing a shuffle from
6674only one vector.
6675
6676Example:
6677""""""""
6678
6679.. code-block:: llvm
6680
6681 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6682 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6683 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6684 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6685 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6686 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6687 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6688 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6689
6690Aggregate Operations
6691--------------------
6692
6693LLVM supports several instructions for working with
6694:ref:`aggregate <t_aggregate>` values.
6695
6696.. _i_extractvalue:
6697
6698'``extractvalue``' Instruction
6699^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6700
6701Syntax:
6702"""""""
6703
6704::
6705
6706 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6707
6708Overview:
6709"""""""""
6710
6711The '``extractvalue``' instruction extracts the value of a member field
6712from an :ref:`aggregate <t_aggregate>` value.
6713
6714Arguments:
6715""""""""""
6716
6717The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006718:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006719constant indices to specify which value to extract in a similar manner
6720as indices in a '``getelementptr``' instruction.
6721
6722The major differences to ``getelementptr`` indexing are:
6723
6724- Since the value being indexed is not a pointer, the first index is
6725 omitted and assumed to be zero.
6726- At least one index must be specified.
6727- Not only struct indices but also array indices must be in bounds.
6728
6729Semantics:
6730""""""""""
6731
6732The result is the value at the position in the aggregate specified by
6733the index operands.
6734
6735Example:
6736""""""""
6737
6738.. code-block:: llvm
6739
6740 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6741
6742.. _i_insertvalue:
6743
6744'``insertvalue``' Instruction
6745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6746
6747Syntax:
6748"""""""
6749
6750::
6751
6752 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6753
6754Overview:
6755"""""""""
6756
6757The '``insertvalue``' instruction inserts a value into a member field in
6758an :ref:`aggregate <t_aggregate>` value.
6759
6760Arguments:
6761""""""""""
6762
6763The first operand of an '``insertvalue``' instruction is a value of
6764:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6765a first-class value to insert. The following operands are constant
6766indices indicating the position at which to insert the value in a
6767similar manner as indices in a '``extractvalue``' instruction. The value
6768to insert must have the same type as the value identified by the
6769indices.
6770
6771Semantics:
6772""""""""""
6773
6774The result is an aggregate of the same type as ``val``. Its value is
6775that of ``val`` except that the value at the position specified by the
6776indices is that of ``elt``.
6777
6778Example:
6779""""""""
6780
6781.. code-block:: llvm
6782
6783 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6784 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006785 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006786
6787.. _memoryops:
6788
6789Memory Access and Addressing Operations
6790---------------------------------------
6791
6792A key design point of an SSA-based representation is how it represents
6793memory. In LLVM, no memory locations are in SSA form, which makes things
6794very simple. This section describes how to read, write, and allocate
6795memory in LLVM.
6796
6797.. _i_alloca:
6798
6799'``alloca``' Instruction
6800^^^^^^^^^^^^^^^^^^^^^^^^
6801
6802Syntax:
6803"""""""
6804
6805::
6806
Tim Northover675a0962014-06-13 14:24:23 +00006807 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006808
6809Overview:
6810"""""""""
6811
6812The '``alloca``' instruction allocates memory on the stack frame of the
6813currently executing function, to be automatically released when this
6814function returns to its caller. The object is always allocated in the
6815generic address space (address space zero).
6816
6817Arguments:
6818""""""""""
6819
6820The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6821bytes of memory on the runtime stack, returning a pointer of the
6822appropriate type to the program. If "NumElements" is specified, it is
6823the number of elements allocated, otherwise "NumElements" is defaulted
6824to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006825allocation is guaranteed to be aligned to at least that boundary. The
6826alignment may not be greater than ``1 << 29``. If not specified, or if
6827zero, the target can choose to align the allocation on any convenient
6828boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006829
6830'``type``' may be any sized type.
6831
6832Semantics:
6833""""""""""
6834
6835Memory is allocated; a pointer is returned. The operation is undefined
6836if there is insufficient stack space for the allocation. '``alloca``'d
6837memory is automatically released when the function returns. The
6838'``alloca``' instruction is commonly used to represent automatic
6839variables that must have an address available. When the function returns
6840(either with the ``ret`` or ``resume`` instructions), the memory is
6841reclaimed. Allocating zero bytes is legal, but the result is undefined.
6842The order in which memory is allocated (ie., which way the stack grows)
6843is not specified.
6844
6845Example:
6846""""""""
6847
6848.. code-block:: llvm
6849
Tim Northover675a0962014-06-13 14:24:23 +00006850 %ptr = alloca i32 ; yields i32*:ptr
6851 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6852 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6853 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006854
6855.. _i_load:
6856
6857'``load``' Instruction
6858^^^^^^^^^^^^^^^^^^^^^^
6859
6860Syntax:
6861"""""""
6862
6863::
6864
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006865 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00006866 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006867 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006868 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006869 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006870
6871Overview:
6872"""""""""
6873
6874The '``load``' instruction is used to read from memory.
6875
6876Arguments:
6877""""""""""
6878
Eli Bendersky239a78b2013-04-17 20:17:08 +00006879The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006880from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006881class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6882then the optimizer is not allowed to modify the number or order of
6883execution of this ``load`` with other :ref:`volatile
6884operations <volatile>`.
6885
JF Bastiend1fb5852015-12-17 22:09:19 +00006886If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6887<ordering>` and optional ``singlethread`` argument. The ``release`` and
6888``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
6889produce :ref:`defined <memmodel>` results when they may see multiple atomic
6890stores. The type of the pointee must be an integer, pointer, or floating-point
6891type whose bit width is a power of two greater than or equal to eight and less
6892than or equal to a target-specific size limit. ``align`` must be explicitly
6893specified on atomic loads, and the load has undefined behavior if the alignment
6894is not set to a value which is at least the size in bytes of the
6895pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00006896
6897The optional constant ``align`` argument specifies the alignment of the
6898operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006899or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006900alignment for the target. It is the responsibility of the code emitter
6901to ensure that the alignment information is correct. Overestimating the
6902alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006903may produce less efficient code. An alignment of 1 is always safe. The
6904maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006905
6906The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006907metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006908``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006909metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006910that this load is not expected to be reused in the cache. The code
6911generator may select special instructions to save cache bandwidth, such
6912as the ``MOVNT`` instruction on x86.
6913
6914The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006915metadata name ``<index>`` corresponding to a metadata node with no
6916entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006917instruction tells the optimizer and code generator that the address
6918operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006919Being invariant does not imply that a location is dereferenceable,
6920but it does imply that once the location is known dereferenceable
6921its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006922
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006923The optional ``!invariant.group`` metadata must reference a single metadata name
6924 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6925
Philip Reamescdb72f32014-10-20 22:40:55 +00006926The optional ``!nonnull`` metadata must reference a single
6927metadata name ``<index>`` corresponding to a metadata node with no
6928entries. The existence of the ``!nonnull`` metadata on the
6929instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006930never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006931on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006932to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006933
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006934The optional ``!dereferenceable`` metadata must reference a single metadata
6935name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006936entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006937tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006938The number of bytes known to be dereferenceable is specified by the integer
6939value in the metadata node. This is analogous to the ''dereferenceable''
6940attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006941to loads of a pointer type.
6942
6943The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006944metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6945``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006946instruction tells the optimizer that the value loaded is known to be either
6947dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006948The number of bytes known to be dereferenceable is specified by the integer
6949value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6950attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006951to loads of a pointer type.
6952
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006953The optional ``!align`` metadata must reference a single metadata name
6954``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6955The existence of the ``!align`` metadata on the instruction tells the
6956optimizer that the value loaded is known to be aligned to a boundary specified
6957by the integer value in the metadata node. The alignment must be a power of 2.
6958This is analogous to the ''align'' attribute on parameters and return values.
6959This metadata can only be applied to loads of a pointer type.
6960
Sean Silvab084af42012-12-07 10:36:55 +00006961Semantics:
6962""""""""""
6963
6964The location of memory pointed to is loaded. If the value being loaded
6965is of scalar type then the number of bytes read does not exceed the
6966minimum number of bytes needed to hold all bits of the type. For
6967example, loading an ``i24`` reads at most three bytes. When loading a
6968value of a type like ``i20`` with a size that is not an integral number
6969of bytes, the result is undefined if the value was not originally
6970written using a store of the same type.
6971
6972Examples:
6973"""""""""
6974
6975.. code-block:: llvm
6976
Tim Northover675a0962014-06-13 14:24:23 +00006977 %ptr = alloca i32 ; yields i32*:ptr
6978 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006979 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006980
6981.. _i_store:
6982
6983'``store``' Instruction
6984^^^^^^^^^^^^^^^^^^^^^^^
6985
6986Syntax:
6987"""""""
6988
6989::
6990
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006991 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6992 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006993
6994Overview:
6995"""""""""
6996
6997The '``store``' instruction is used to write to memory.
6998
6999Arguments:
7000""""""""""
7001
Eli Benderskyca380842013-04-17 17:17:20 +00007002There are two arguments to the ``store`` instruction: a value to store
7003and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00007004operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00007005the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00007006then the optimizer is not allowed to modify the number or order of
7007execution of this ``store`` with other :ref:`volatile
7008operations <volatile>`.
7009
JF Bastiend1fb5852015-12-17 22:09:19 +00007010If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7011<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7012``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7013produce :ref:`defined <memmodel>` results when they may see multiple atomic
7014stores. The type of the pointee must be an integer, pointer, or floating-point
7015type whose bit width is a power of two greater than or equal to eight and less
7016than or equal to a target-specific size limit. ``align`` must be explicitly
7017specified on atomic stores, and the store has undefined behavior if the
7018alignment is not set to a value which is at least the size in bytes of the
7019pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007020
Eli Benderskyca380842013-04-17 17:17:20 +00007021The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007022operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007023or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007024alignment for the target. It is the responsibility of the code emitter
7025to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007026alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007027alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007028safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007029
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007030The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007031name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007032value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007033tells the optimizer and code generator that this load is not expected to
7034be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007035instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007036x86.
7037
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007038The optional ``!invariant.group`` metadata must reference a
7039single metadata name ``<index>``. See ``invariant.group`` metadata.
7040
Sean Silvab084af42012-12-07 10:36:55 +00007041Semantics:
7042""""""""""
7043
Eli Benderskyca380842013-04-17 17:17:20 +00007044The contents of memory are updated to contain ``<value>`` at the
7045location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007046of scalar type then the number of bytes written does not exceed the
7047minimum number of bytes needed to hold all bits of the type. For
7048example, storing an ``i24`` writes at most three bytes. When writing a
7049value of a type like ``i20`` with a size that is not an integral number
7050of bytes, it is unspecified what happens to the extra bits that do not
7051belong to the type, but they will typically be overwritten.
7052
7053Example:
7054""""""""
7055
7056.. code-block:: llvm
7057
Tim Northover675a0962014-06-13 14:24:23 +00007058 %ptr = alloca i32 ; yields i32*:ptr
7059 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007060 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007061
7062.. _i_fence:
7063
7064'``fence``' Instruction
7065^^^^^^^^^^^^^^^^^^^^^^^
7066
7067Syntax:
7068"""""""
7069
7070::
7071
Tim Northover675a0962014-06-13 14:24:23 +00007072 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007073
7074Overview:
7075"""""""""
7076
7077The '``fence``' instruction is used to introduce happens-before edges
7078between operations.
7079
7080Arguments:
7081""""""""""
7082
7083'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7084defines what *synchronizes-with* edges they add. They can only be given
7085``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7086
7087Semantics:
7088""""""""""
7089
7090A fence A which has (at least) ``release`` ordering semantics
7091*synchronizes with* a fence B with (at least) ``acquire`` ordering
7092semantics if and only if there exist atomic operations X and Y, both
7093operating on some atomic object M, such that A is sequenced before X, X
7094modifies M (either directly or through some side effect of a sequence
7095headed by X), Y is sequenced before B, and Y observes M. This provides a
7096*happens-before* dependency between A and B. Rather than an explicit
7097``fence``, one (but not both) of the atomic operations X or Y might
7098provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7099still *synchronize-with* the explicit ``fence`` and establish the
7100*happens-before* edge.
7101
7102A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7103``acquire`` and ``release`` semantics specified above, participates in
7104the global program order of other ``seq_cst`` operations and/or fences.
7105
7106The optional ":ref:`singlethread <singlethread>`" argument specifies
7107that the fence only synchronizes with other fences in the same thread.
7108(This is useful for interacting with signal handlers.)
7109
7110Example:
7111""""""""
7112
7113.. code-block:: llvm
7114
Tim Northover675a0962014-06-13 14:24:23 +00007115 fence acquire ; yields void
7116 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007117
7118.. _i_cmpxchg:
7119
7120'``cmpxchg``' Instruction
7121^^^^^^^^^^^^^^^^^^^^^^^^^
7122
7123Syntax:
7124"""""""
7125
7126::
7127
Tim Northover675a0962014-06-13 14:24:23 +00007128 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007129
7130Overview:
7131"""""""""
7132
7133The '``cmpxchg``' instruction is used to atomically modify memory. It
7134loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007135equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007136
7137Arguments:
7138""""""""""
7139
7140There are three arguments to the '``cmpxchg``' instruction: an address
7141to operate on, a value to compare to the value currently be at that
7142address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007143are equal. The type of '<cmp>' must be an integer or pointer type whose
7144bit width is a power of two greater than or equal to eight and less
7145than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7146have the same type, and the type of '<pointer>' must be a pointer to
7147that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7148optimizer is not allowed to modify the number or order of execution of
7149this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007150
Tim Northovere94a5182014-03-11 10:48:52 +00007151The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007152``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7153must be at least ``monotonic``, the ordering constraint on failure must be no
7154stronger than that on success, and the failure ordering cannot be either
7155``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007156
7157The optional "``singlethread``" argument declares that the ``cmpxchg``
7158is only atomic with respect to code (usually signal handlers) running in
7159the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7160respect to all other code in the system.
7161
7162The pointer passed into cmpxchg must have alignment greater than or
7163equal to the size in memory of the operand.
7164
7165Semantics:
7166""""""""""
7167
Tim Northover420a2162014-06-13 14:24:07 +00007168The contents of memory at the location specified by the '``<pointer>``' operand
7169is read and compared to '``<cmp>``'; if the read value is the equal, the
7170'``<new>``' is written. The original value at the location is returned, together
7171with a flag indicating success (true) or failure (false).
7172
7173If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7174permitted: the operation may not write ``<new>`` even if the comparison
7175matched.
7176
7177If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7178if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007179
Tim Northovere94a5182014-03-11 10:48:52 +00007180A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7181identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7182load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007183
7184Example:
7185""""""""
7186
7187.. code-block:: llvm
7188
7189 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007190 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007191 br label %loop
7192
7193 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007194 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007195 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007196 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007197 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7198 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007199 br i1 %success, label %done, label %loop
7200
7201 done:
7202 ...
7203
7204.. _i_atomicrmw:
7205
7206'``atomicrmw``' Instruction
7207^^^^^^^^^^^^^^^^^^^^^^^^^^^
7208
7209Syntax:
7210"""""""
7211
7212::
7213
Tim Northover675a0962014-06-13 14:24:23 +00007214 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007215
7216Overview:
7217"""""""""
7218
7219The '``atomicrmw``' instruction is used to atomically modify memory.
7220
7221Arguments:
7222""""""""""
7223
7224There are three arguments to the '``atomicrmw``' instruction: an
7225operation to apply, an address whose value to modify, an argument to the
7226operation. The operation must be one of the following keywords:
7227
7228- xchg
7229- add
7230- sub
7231- and
7232- nand
7233- or
7234- xor
7235- max
7236- min
7237- umax
7238- umin
7239
7240The type of '<value>' must be an integer type whose bit width is a power
7241of two greater than or equal to eight and less than or equal to a
7242target-specific size limit. The type of the '``<pointer>``' operand must
7243be a pointer to that type. If the ``atomicrmw`` is marked as
7244``volatile``, then the optimizer is not allowed to modify the number or
7245order of execution of this ``atomicrmw`` with other :ref:`volatile
7246operations <volatile>`.
7247
7248Semantics:
7249""""""""""
7250
7251The contents of memory at the location specified by the '``<pointer>``'
7252operand are atomically read, modified, and written back. The original
7253value at the location is returned. The modification is specified by the
7254operation argument:
7255
7256- xchg: ``*ptr = val``
7257- add: ``*ptr = *ptr + val``
7258- sub: ``*ptr = *ptr - val``
7259- and: ``*ptr = *ptr & val``
7260- nand: ``*ptr = ~(*ptr & val)``
7261- or: ``*ptr = *ptr | val``
7262- xor: ``*ptr = *ptr ^ val``
7263- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7264- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7265- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7266 comparison)
7267- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7268 comparison)
7269
7270Example:
7271""""""""
7272
7273.. code-block:: llvm
7274
Tim Northover675a0962014-06-13 14:24:23 +00007275 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007276
7277.. _i_getelementptr:
7278
7279'``getelementptr``' Instruction
7280^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7281
7282Syntax:
7283"""""""
7284
7285::
7286
David Blaikie16a97eb2015-03-04 22:02:58 +00007287 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7288 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7289 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007290
7291Overview:
7292"""""""""
7293
7294The '``getelementptr``' instruction is used to get the address of a
7295subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007296address calculation only and does not access memory. The instruction can also
7297be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007298
7299Arguments:
7300""""""""""
7301
David Blaikie16a97eb2015-03-04 22:02:58 +00007302The first argument is always a type used as the basis for the calculations.
7303The second argument is always a pointer or a vector of pointers, and is the
7304base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007305that indicate which of the elements of the aggregate object are indexed.
7306The interpretation of each index is dependent on the type being indexed
7307into. The first index always indexes the pointer value given as the
7308first argument, the second index indexes a value of the type pointed to
7309(not necessarily the value directly pointed to, since the first index
7310can be non-zero), etc. The first type indexed into must be a pointer
7311value, subsequent types can be arrays, vectors, and structs. Note that
7312subsequent types being indexed into can never be pointers, since that
7313would require loading the pointer before continuing calculation.
7314
7315The type of each index argument depends on the type it is indexing into.
7316When indexing into a (optionally packed) structure, only ``i32`` integer
7317**constants** are allowed (when using a vector of indices they must all
7318be the **same** ``i32`` integer constant). When indexing into an array,
7319pointer or vector, integers of any width are allowed, and they are not
7320required to be constant. These integers are treated as signed values
7321where relevant.
7322
7323For example, let's consider a C code fragment and how it gets compiled
7324to LLVM:
7325
7326.. code-block:: c
7327
7328 struct RT {
7329 char A;
7330 int B[10][20];
7331 char C;
7332 };
7333 struct ST {
7334 int X;
7335 double Y;
7336 struct RT Z;
7337 };
7338
7339 int *foo(struct ST *s) {
7340 return &s[1].Z.B[5][13];
7341 }
7342
7343The LLVM code generated by Clang is:
7344
7345.. code-block:: llvm
7346
7347 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7348 %struct.ST = type { i32, double, %struct.RT }
7349
7350 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7351 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007352 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007353 ret i32* %arrayidx
7354 }
7355
7356Semantics:
7357""""""""""
7358
7359In the example above, the first index is indexing into the
7360'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7361= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7362indexes into the third element of the structure, yielding a
7363'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7364structure. The third index indexes into the second element of the
7365structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7366dimensions of the array are subscripted into, yielding an '``i32``'
7367type. The '``getelementptr``' instruction returns a pointer to this
7368element, thus computing a value of '``i32*``' type.
7369
7370Note that it is perfectly legal to index partially through a structure,
7371returning a pointer to an inner element. Because of this, the LLVM code
7372for the given testcase is equivalent to:
7373
7374.. code-block:: llvm
7375
7376 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007377 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7378 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7379 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7380 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7381 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007382 ret i32* %t5
7383 }
7384
7385If the ``inbounds`` keyword is present, the result value of the
7386``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7387pointer is not an *in bounds* address of an allocated object, or if any
7388of the addresses that would be formed by successive addition of the
7389offsets implied by the indices to the base address with infinitely
7390precise signed arithmetic are not an *in bounds* address of that
7391allocated object. The *in bounds* addresses for an allocated object are
7392all the addresses that point into the object, plus the address one byte
7393past the end. In cases where the base is a vector of pointers the
7394``inbounds`` keyword applies to each of the computations element-wise.
7395
7396If the ``inbounds`` keyword is not present, the offsets are added to the
7397base address with silently-wrapping two's complement arithmetic. If the
7398offsets have a different width from the pointer, they are sign-extended
7399or truncated to the width of the pointer. The result value of the
7400``getelementptr`` may be outside the object pointed to by the base
7401pointer. The result value may not necessarily be used to access memory
7402though, even if it happens to point into allocated storage. See the
7403:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7404information.
7405
7406The getelementptr instruction is often confusing. For some more insight
7407into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7408
7409Example:
7410""""""""
7411
7412.. code-block:: llvm
7413
7414 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007415 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007416 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007417 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007418 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007419 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007420 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007421 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007422
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007423Vector of pointers:
7424"""""""""""""""""""
7425
7426The ``getelementptr`` returns a vector of pointers, instead of a single address,
7427when one or more of its arguments is a vector. In such cases, all vector
7428arguments should have the same number of elements, and every scalar argument
7429will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007430
7431.. code-block:: llvm
7432
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007433 ; All arguments are vectors:
7434 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7435 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007436
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007437 ; Add the same scalar offset to each pointer of a vector:
7438 ; A[i] = ptrs[i] + offset*sizeof(i8)
7439 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007440
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007441 ; Add distinct offsets to the same pointer:
7442 ; A[i] = ptr + offsets[i]*sizeof(i8)
7443 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007444
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007445 ; In all cases described above the type of the result is <4 x i8*>
7446
7447The two following instructions are equivalent:
7448
7449.. code-block:: llvm
7450
7451 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7452 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7453 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7454 <4 x i32> %ind4,
7455 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007456
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007457 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7458 i32 2, i32 1, <4 x i32> %ind4, i64 13
7459
7460Let's look at the C code, where the vector version of ``getelementptr``
7461makes sense:
7462
7463.. code-block:: c
7464
7465 // Let's assume that we vectorize the following loop:
7466 double *A, B; int *C;
7467 for (int i = 0; i < size; ++i) {
7468 A[i] = B[C[i]];
7469 }
7470
7471.. code-block:: llvm
7472
7473 ; get pointers for 8 elements from array B
7474 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7475 ; load 8 elements from array B into A
7476 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7477 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007478
7479Conversion Operations
7480---------------------
7481
7482The instructions in this category are the conversion instructions
7483(casting) which all take a single operand and a type. They perform
7484various bit conversions on the operand.
7485
7486'``trunc .. to``' Instruction
7487^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7488
7489Syntax:
7490"""""""
7491
7492::
7493
7494 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7495
7496Overview:
7497"""""""""
7498
7499The '``trunc``' instruction truncates its operand to the type ``ty2``.
7500
7501Arguments:
7502""""""""""
7503
7504The '``trunc``' instruction takes a value to trunc, and a type to trunc
7505it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7506of the same number of integers. The bit size of the ``value`` must be
7507larger than the bit size of the destination type, ``ty2``. Equal sized
7508types are not allowed.
7509
7510Semantics:
7511""""""""""
7512
7513The '``trunc``' instruction truncates the high order bits in ``value``
7514and converts the remaining bits to ``ty2``. Since the source size must
7515be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7516It will always truncate bits.
7517
7518Example:
7519""""""""
7520
7521.. code-block:: llvm
7522
7523 %X = trunc i32 257 to i8 ; yields i8:1
7524 %Y = trunc i32 123 to i1 ; yields i1:true
7525 %Z = trunc i32 122 to i1 ; yields i1:false
7526 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7527
7528'``zext .. to``' Instruction
7529^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7530
7531Syntax:
7532"""""""
7533
7534::
7535
7536 <result> = zext <ty> <value> to <ty2> ; yields ty2
7537
7538Overview:
7539"""""""""
7540
7541The '``zext``' instruction zero extends its operand to type ``ty2``.
7542
7543Arguments:
7544""""""""""
7545
7546The '``zext``' instruction takes a value to cast, and a type to cast it
7547to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7548the same number of integers. The bit size of the ``value`` must be
7549smaller than the bit size of the destination type, ``ty2``.
7550
7551Semantics:
7552""""""""""
7553
7554The ``zext`` fills the high order bits of the ``value`` with zero bits
7555until it reaches the size of the destination type, ``ty2``.
7556
7557When zero extending from i1, the result will always be either 0 or 1.
7558
7559Example:
7560""""""""
7561
7562.. code-block:: llvm
7563
7564 %X = zext i32 257 to i64 ; yields i64:257
7565 %Y = zext i1 true to i32 ; yields i32:1
7566 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7567
7568'``sext .. to``' Instruction
7569^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7570
7571Syntax:
7572"""""""
7573
7574::
7575
7576 <result> = sext <ty> <value> to <ty2> ; yields ty2
7577
7578Overview:
7579"""""""""
7580
7581The '``sext``' sign extends ``value`` to the type ``ty2``.
7582
7583Arguments:
7584""""""""""
7585
7586The '``sext``' instruction takes a value to cast, and a type to cast it
7587to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7588the same number of integers. The bit size of the ``value`` must be
7589smaller than the bit size of the destination type, ``ty2``.
7590
7591Semantics:
7592""""""""""
7593
7594The '``sext``' instruction performs a sign extension by copying the sign
7595bit (highest order bit) of the ``value`` until it reaches the bit size
7596of the type ``ty2``.
7597
7598When sign extending from i1, the extension always results in -1 or 0.
7599
7600Example:
7601""""""""
7602
7603.. code-block:: llvm
7604
7605 %X = sext i8 -1 to i16 ; yields i16 :65535
7606 %Y = sext i1 true to i32 ; yields i32:-1
7607 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7608
7609'``fptrunc .. to``' Instruction
7610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7611
7612Syntax:
7613"""""""
7614
7615::
7616
7617 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7618
7619Overview:
7620"""""""""
7621
7622The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7623
7624Arguments:
7625""""""""""
7626
7627The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7628value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7629The size of ``value`` must be larger than the size of ``ty2``. This
7630implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7631
7632Semantics:
7633""""""""""
7634
Dan Liew50456fb2015-09-03 18:43:56 +00007635The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007636:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007637point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7638destination type, ``ty2``, then the results are undefined. If the cast produces
7639an inexact result, how rounding is performed (e.g. truncation, also known as
7640round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007641
7642Example:
7643""""""""
7644
7645.. code-block:: llvm
7646
7647 %X = fptrunc double 123.0 to float ; yields float:123.0
7648 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7649
7650'``fpext .. to``' Instruction
7651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7652
7653Syntax:
7654"""""""
7655
7656::
7657
7658 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7659
7660Overview:
7661"""""""""
7662
7663The '``fpext``' extends a floating point ``value`` to a larger floating
7664point value.
7665
7666Arguments:
7667""""""""""
7668
7669The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7670``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7671to. The source type must be smaller than the destination type.
7672
7673Semantics:
7674""""""""""
7675
7676The '``fpext``' instruction extends the ``value`` from a smaller
7677:ref:`floating point <t_floating>` type to a larger :ref:`floating
7678point <t_floating>` type. The ``fpext`` cannot be used to make a
7679*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7680*no-op cast* for a floating point cast.
7681
7682Example:
7683""""""""
7684
7685.. code-block:: llvm
7686
7687 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7688 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7689
7690'``fptoui .. to``' Instruction
7691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7692
7693Syntax:
7694"""""""
7695
7696::
7697
7698 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7699
7700Overview:
7701"""""""""
7702
7703The '``fptoui``' converts a floating point ``value`` to its unsigned
7704integer equivalent of type ``ty2``.
7705
7706Arguments:
7707""""""""""
7708
7709The '``fptoui``' instruction takes a value to cast, which must be a
7710scalar or vector :ref:`floating point <t_floating>` value, and a type to
7711cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7712``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7713type with the same number of elements as ``ty``
7714
7715Semantics:
7716""""""""""
7717
7718The '``fptoui``' instruction converts its :ref:`floating
7719point <t_floating>` operand into the nearest (rounding towards zero)
7720unsigned integer value. If the value cannot fit in ``ty2``, the results
7721are undefined.
7722
7723Example:
7724""""""""
7725
7726.. code-block:: llvm
7727
7728 %X = fptoui double 123.0 to i32 ; yields i32:123
7729 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7730 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7731
7732'``fptosi .. to``' Instruction
7733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7734
7735Syntax:
7736"""""""
7737
7738::
7739
7740 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7741
7742Overview:
7743"""""""""
7744
7745The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7746``value`` to type ``ty2``.
7747
7748Arguments:
7749""""""""""
7750
7751The '``fptosi``' instruction takes a value to cast, which must be a
7752scalar or vector :ref:`floating point <t_floating>` value, and a type to
7753cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7754``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7755type with the same number of elements as ``ty``
7756
7757Semantics:
7758""""""""""
7759
7760The '``fptosi``' instruction converts its :ref:`floating
7761point <t_floating>` operand into the nearest (rounding towards zero)
7762signed integer value. If the value cannot fit in ``ty2``, the results
7763are undefined.
7764
7765Example:
7766""""""""
7767
7768.. code-block:: llvm
7769
7770 %X = fptosi double -123.0 to i32 ; yields i32:-123
7771 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7772 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7773
7774'``uitofp .. to``' Instruction
7775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7776
7777Syntax:
7778"""""""
7779
7780::
7781
7782 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7783
7784Overview:
7785"""""""""
7786
7787The '``uitofp``' instruction regards ``value`` as an unsigned integer
7788and converts that value to the ``ty2`` type.
7789
7790Arguments:
7791""""""""""
7792
7793The '``uitofp``' instruction takes a value to cast, which must be a
7794scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7795``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7796``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7797type with the same number of elements as ``ty``
7798
7799Semantics:
7800""""""""""
7801
7802The '``uitofp``' instruction interprets its operand as an unsigned
7803integer quantity and converts it to the corresponding floating point
7804value. If the value cannot fit in the floating point value, the results
7805are undefined.
7806
7807Example:
7808""""""""
7809
7810.. code-block:: llvm
7811
7812 %X = uitofp i32 257 to float ; yields float:257.0
7813 %Y = uitofp i8 -1 to double ; yields double:255.0
7814
7815'``sitofp .. to``' Instruction
7816^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7817
7818Syntax:
7819"""""""
7820
7821::
7822
7823 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7824
7825Overview:
7826"""""""""
7827
7828The '``sitofp``' instruction regards ``value`` as a signed integer and
7829converts that value to the ``ty2`` type.
7830
7831Arguments:
7832""""""""""
7833
7834The '``sitofp``' instruction takes a value to cast, which must be a
7835scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7836``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7837``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7838type with the same number of elements as ``ty``
7839
7840Semantics:
7841""""""""""
7842
7843The '``sitofp``' instruction interprets its operand as a signed integer
7844quantity and converts it to the corresponding floating point value. If
7845the value cannot fit in the floating point value, the results are
7846undefined.
7847
7848Example:
7849""""""""
7850
7851.. code-block:: llvm
7852
7853 %X = sitofp i32 257 to float ; yields float:257.0
7854 %Y = sitofp i8 -1 to double ; yields double:-1.0
7855
7856.. _i_ptrtoint:
7857
7858'``ptrtoint .. to``' Instruction
7859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7860
7861Syntax:
7862"""""""
7863
7864::
7865
7866 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7867
7868Overview:
7869"""""""""
7870
7871The '``ptrtoint``' instruction converts the pointer or a vector of
7872pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7873
7874Arguments:
7875""""""""""
7876
7877The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007878a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007879type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7880a vector of integers type.
7881
7882Semantics:
7883""""""""""
7884
7885The '``ptrtoint``' instruction converts ``value`` to integer type
7886``ty2`` by interpreting the pointer value as an integer and either
7887truncating or zero extending that value to the size of the integer type.
7888If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7889``value`` is larger than ``ty2`` then a truncation is done. If they are
7890the same size, then nothing is done (*no-op cast*) other than a type
7891change.
7892
7893Example:
7894""""""""
7895
7896.. code-block:: llvm
7897
7898 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7899 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7900 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7901
7902.. _i_inttoptr:
7903
7904'``inttoptr .. to``' Instruction
7905^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7906
7907Syntax:
7908"""""""
7909
7910::
7911
7912 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7913
7914Overview:
7915"""""""""
7916
7917The '``inttoptr``' instruction converts an integer ``value`` to a
7918pointer type, ``ty2``.
7919
7920Arguments:
7921""""""""""
7922
7923The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7924cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7925type.
7926
7927Semantics:
7928""""""""""
7929
7930The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7931applying either a zero extension or a truncation depending on the size
7932of the integer ``value``. If ``value`` is larger than the size of a
7933pointer then a truncation is done. If ``value`` is smaller than the size
7934of a pointer then a zero extension is done. If they are the same size,
7935nothing is done (*no-op cast*).
7936
7937Example:
7938""""""""
7939
7940.. code-block:: llvm
7941
7942 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7943 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7944 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7945 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7946
7947.. _i_bitcast:
7948
7949'``bitcast .. to``' Instruction
7950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7951
7952Syntax:
7953"""""""
7954
7955::
7956
7957 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7958
7959Overview:
7960"""""""""
7961
7962The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7963changing any bits.
7964
7965Arguments:
7966""""""""""
7967
7968The '``bitcast``' instruction takes a value to cast, which must be a
7969non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007970also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7971bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007972identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007973also be a pointer of the same size. This instruction supports bitwise
7974conversion of vectors to integers and to vectors of other types (as
7975long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007976
7977Semantics:
7978""""""""""
7979
Matt Arsenault24b49c42013-07-31 17:49:08 +00007980The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7981is always a *no-op cast* because no bits change with this
7982conversion. The conversion is done as if the ``value`` had been stored
7983to memory and read back as type ``ty2``. Pointer (or vector of
7984pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007985pointers) types with the same address space through this instruction.
7986To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7987or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007988
7989Example:
7990""""""""
7991
7992.. code-block:: llvm
7993
7994 %X = bitcast i8 255 to i8 ; yields i8 :-1
7995 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7996 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7997 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7998
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007999.. _i_addrspacecast:
8000
8001'``addrspacecast .. to``' Instruction
8002^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8003
8004Syntax:
8005"""""""
8006
8007::
8008
8009 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8010
8011Overview:
8012"""""""""
8013
8014The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8015address space ``n`` to type ``pty2`` in address space ``m``.
8016
8017Arguments:
8018""""""""""
8019
8020The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8021to cast and a pointer type to cast it to, which must have a different
8022address space.
8023
8024Semantics:
8025""""""""""
8026
8027The '``addrspacecast``' instruction converts the pointer value
8028``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008029value modification, depending on the target and the address space
8030pair. Pointer conversions within the same address space must be
8031performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008032conversion is legal then both result and operand refer to the same memory
8033location.
8034
8035Example:
8036""""""""
8037
8038.. code-block:: llvm
8039
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008040 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8041 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8042 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008043
Sean Silvab084af42012-12-07 10:36:55 +00008044.. _otherops:
8045
8046Other Operations
8047----------------
8048
8049The instructions in this category are the "miscellaneous" instructions,
8050which defy better classification.
8051
8052.. _i_icmp:
8053
8054'``icmp``' Instruction
8055^^^^^^^^^^^^^^^^^^^^^^
8056
8057Syntax:
8058"""""""
8059
8060::
8061
Tim Northover675a0962014-06-13 14:24:23 +00008062 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008063
8064Overview:
8065"""""""""
8066
8067The '``icmp``' instruction returns a boolean value or a vector of
8068boolean values based on comparison of its two integer, integer vector,
8069pointer, or pointer vector operands.
8070
8071Arguments:
8072""""""""""
8073
8074The '``icmp``' instruction takes three operands. The first operand is
8075the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008076not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008077
8078#. ``eq``: equal
8079#. ``ne``: not equal
8080#. ``ugt``: unsigned greater than
8081#. ``uge``: unsigned greater or equal
8082#. ``ult``: unsigned less than
8083#. ``ule``: unsigned less or equal
8084#. ``sgt``: signed greater than
8085#. ``sge``: signed greater or equal
8086#. ``slt``: signed less than
8087#. ``sle``: signed less or equal
8088
8089The remaining two arguments must be :ref:`integer <t_integer>` or
8090:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8091must also be identical types.
8092
8093Semantics:
8094""""""""""
8095
8096The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8097code given as ``cond``. The comparison performed always yields either an
8098:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8099
8100#. ``eq``: yields ``true`` if the operands are equal, ``false``
8101 otherwise. No sign interpretation is necessary or performed.
8102#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8103 otherwise. No sign interpretation is necessary or performed.
8104#. ``ugt``: interprets the operands as unsigned values and yields
8105 ``true`` if ``op1`` is greater than ``op2``.
8106#. ``uge``: interprets the operands as unsigned values and yields
8107 ``true`` if ``op1`` is greater than or equal to ``op2``.
8108#. ``ult``: interprets the operands as unsigned values and yields
8109 ``true`` if ``op1`` is less than ``op2``.
8110#. ``ule``: interprets the operands as unsigned values and yields
8111 ``true`` if ``op1`` is less than or equal to ``op2``.
8112#. ``sgt``: interprets the operands as signed values and yields ``true``
8113 if ``op1`` is greater than ``op2``.
8114#. ``sge``: interprets the operands as signed values and yields ``true``
8115 if ``op1`` is greater than or equal to ``op2``.
8116#. ``slt``: interprets the operands as signed values and yields ``true``
8117 if ``op1`` is less than ``op2``.
8118#. ``sle``: interprets the operands as signed values and yields ``true``
8119 if ``op1`` is less than or equal to ``op2``.
8120
8121If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8122are compared as if they were integers.
8123
8124If the operands are integer vectors, then they are compared element by
8125element. The result is an ``i1`` vector with the same number of elements
8126as the values being compared. Otherwise, the result is an ``i1``.
8127
8128Example:
8129""""""""
8130
8131.. code-block:: llvm
8132
8133 <result> = icmp eq i32 4, 5 ; yields: result=false
8134 <result> = icmp ne float* %X, %X ; yields: result=false
8135 <result> = icmp ult i16 4, 5 ; yields: result=true
8136 <result> = icmp sgt i16 4, 5 ; yields: result=false
8137 <result> = icmp ule i16 -4, 5 ; yields: result=false
8138 <result> = icmp sge i16 4, 5 ; yields: result=false
8139
8140Note that the code generator does not yet support vector types with the
8141``icmp`` instruction.
8142
8143.. _i_fcmp:
8144
8145'``fcmp``' Instruction
8146^^^^^^^^^^^^^^^^^^^^^^
8147
8148Syntax:
8149"""""""
8150
8151::
8152
James Molloy88eb5352015-07-10 12:52:00 +00008153 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008154
8155Overview:
8156"""""""""
8157
8158The '``fcmp``' instruction returns a boolean value or vector of boolean
8159values based on comparison of its operands.
8160
8161If the operands are floating point scalars, then the result type is a
8162boolean (:ref:`i1 <t_integer>`).
8163
8164If the operands are floating point vectors, then the result type is a
8165vector of boolean with the same number of elements as the operands being
8166compared.
8167
8168Arguments:
8169""""""""""
8170
8171The '``fcmp``' instruction takes three operands. The first operand is
8172the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008173not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008174
8175#. ``false``: no comparison, always returns false
8176#. ``oeq``: ordered and equal
8177#. ``ogt``: ordered and greater than
8178#. ``oge``: ordered and greater than or equal
8179#. ``olt``: ordered and less than
8180#. ``ole``: ordered and less than or equal
8181#. ``one``: ordered and not equal
8182#. ``ord``: ordered (no nans)
8183#. ``ueq``: unordered or equal
8184#. ``ugt``: unordered or greater than
8185#. ``uge``: unordered or greater than or equal
8186#. ``ult``: unordered or less than
8187#. ``ule``: unordered or less than or equal
8188#. ``une``: unordered or not equal
8189#. ``uno``: unordered (either nans)
8190#. ``true``: no comparison, always returns true
8191
8192*Ordered* means that neither operand is a QNAN while *unordered* means
8193that either operand may be a QNAN.
8194
8195Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8196point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8197type. They must have identical types.
8198
8199Semantics:
8200""""""""""
8201
8202The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8203condition code given as ``cond``. If the operands are vectors, then the
8204vectors are compared element by element. Each comparison performed
8205always yields an :ref:`i1 <t_integer>` result, as follows:
8206
8207#. ``false``: always yields ``false``, regardless of operands.
8208#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8209 is equal to ``op2``.
8210#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8211 is greater than ``op2``.
8212#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8213 is greater than or equal to ``op2``.
8214#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8215 is less than ``op2``.
8216#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8217 is less than or equal to ``op2``.
8218#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8219 is not equal to ``op2``.
8220#. ``ord``: yields ``true`` if both operands are not a QNAN.
8221#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8222 equal to ``op2``.
8223#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8224 greater than ``op2``.
8225#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8226 greater than or equal to ``op2``.
8227#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8228 less than ``op2``.
8229#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8230 less than or equal to ``op2``.
8231#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8232 not equal to ``op2``.
8233#. ``uno``: yields ``true`` if either operand is a QNAN.
8234#. ``true``: always yields ``true``, regardless of operands.
8235
James Molloy88eb5352015-07-10 12:52:00 +00008236The ``fcmp`` instruction can also optionally take any number of
8237:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8238otherwise unsafe floating point optimizations.
8239
8240Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8241only flags that have any effect on its semantics are those that allow
8242assumptions to be made about the values of input arguments; namely
8243``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8244
Sean Silvab084af42012-12-07 10:36:55 +00008245Example:
8246""""""""
8247
8248.. code-block:: llvm
8249
8250 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8251 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8252 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8253 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8254
8255Note that the code generator does not yet support vector types with the
8256``fcmp`` instruction.
8257
8258.. _i_phi:
8259
8260'``phi``' Instruction
8261^^^^^^^^^^^^^^^^^^^^^
8262
8263Syntax:
8264"""""""
8265
8266::
8267
8268 <result> = phi <ty> [ <val0>, <label0>], ...
8269
8270Overview:
8271"""""""""
8272
8273The '``phi``' instruction is used to implement the φ node in the SSA
8274graph representing the function.
8275
8276Arguments:
8277""""""""""
8278
8279The type of the incoming values is specified with the first type field.
8280After this, the '``phi``' instruction takes a list of pairs as
8281arguments, with one pair for each predecessor basic block of the current
8282block. Only values of :ref:`first class <t_firstclass>` type may be used as
8283the value arguments to the PHI node. Only labels may be used as the
8284label arguments.
8285
8286There must be no non-phi instructions between the start of a basic block
8287and the PHI instructions: i.e. PHI instructions must be first in a basic
8288block.
8289
8290For the purposes of the SSA form, the use of each incoming value is
8291deemed to occur on the edge from the corresponding predecessor block to
8292the current block (but after any definition of an '``invoke``'
8293instruction's return value on the same edge).
8294
8295Semantics:
8296""""""""""
8297
8298At runtime, the '``phi``' instruction logically takes on the value
8299specified by the pair corresponding to the predecessor basic block that
8300executed just prior to the current block.
8301
8302Example:
8303""""""""
8304
8305.. code-block:: llvm
8306
8307 Loop: ; Infinite loop that counts from 0 on up...
8308 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8309 %nextindvar = add i32 %indvar, 1
8310 br label %Loop
8311
8312.. _i_select:
8313
8314'``select``' Instruction
8315^^^^^^^^^^^^^^^^^^^^^^^^
8316
8317Syntax:
8318"""""""
8319
8320::
8321
8322 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8323
8324 selty is either i1 or {<N x i1>}
8325
8326Overview:
8327"""""""""
8328
8329The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008330condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008331
8332Arguments:
8333""""""""""
8334
8335The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8336values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008337class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008338
8339Semantics:
8340""""""""""
8341
8342If the condition is an i1 and it evaluates to 1, the instruction returns
8343the first value argument; otherwise, it returns the second value
8344argument.
8345
8346If the condition is a vector of i1, then the value arguments must be
8347vectors of the same size, and the selection is done element by element.
8348
David Majnemer40a0b592015-03-03 22:45:47 +00008349If the condition is an i1 and the value arguments are vectors of the
8350same size, then an entire vector is selected.
8351
Sean Silvab084af42012-12-07 10:36:55 +00008352Example:
8353""""""""
8354
8355.. code-block:: llvm
8356
8357 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8358
8359.. _i_call:
8360
8361'``call``' Instruction
8362^^^^^^^^^^^^^^^^^^^^^^
8363
8364Syntax:
8365"""""""
8366
8367::
8368
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008369 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008370 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008371
8372Overview:
8373"""""""""
8374
8375The '``call``' instruction represents a simple function call.
8376
8377Arguments:
8378""""""""""
8379
8380This instruction requires several arguments:
8381
Reid Kleckner5772b772014-04-24 20:14:34 +00008382#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008383 should perform tail call optimization. The ``tail`` marker is a hint that
8384 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008385 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008386 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008387
8388 #. The call will not cause unbounded stack growth if it is part of a
8389 recursive cycle in the call graph.
8390 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8391 forwarded in place.
8392
8393 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008394 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008395 rules:
8396
8397 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8398 or a pointer bitcast followed by a ret instruction.
8399 - The ret instruction must return the (possibly bitcasted) value
8400 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008401 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008402 parameters or return types may differ in pointee type, but not
8403 in address space.
8404 - The calling conventions of the caller and callee must match.
8405 - All ABI-impacting function attributes, such as sret, byval, inreg,
8406 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008407 - The callee must be varargs iff the caller is varargs. Bitcasting a
8408 non-varargs function to the appropriate varargs type is legal so
8409 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008410
8411 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8412 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008413
8414 - Caller and callee both have the calling convention ``fastcc``.
8415 - The call is in tail position (ret immediately follows call and ret
8416 uses value of call or is void).
8417 - Option ``-tailcallopt`` is enabled, or
8418 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008419 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008420 met. <CodeGenerator.html#tailcallopt>`_
8421
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008422#. The optional ``notail`` marker indicates that the optimizers should not add
8423 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8424 call optimization from being performed on the call.
8425
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008426#. The optional ``fast-math flags`` marker indicates that the call has one or more
8427 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8428 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8429 for calls that return a floating-point scalar or vector type.
8430
Sean Silvab084af42012-12-07 10:36:55 +00008431#. The optional "cconv" marker indicates which :ref:`calling
8432 convention <callingconv>` the call should use. If none is
8433 specified, the call defaults to using C calling conventions. The
8434 calling convention of the call must match the calling convention of
8435 the target function, or else the behavior is undefined.
8436#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8437 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8438 are valid here.
8439#. '``ty``': the type of the call instruction itself which is also the
8440 type of the return value. Functions that return no value are marked
8441 ``void``.
8442#. '``fnty``': shall be the signature of the pointer to function value
8443 being invoked. The argument types must match the types implied by
8444 this signature. This type can be omitted if the function is not
8445 varargs and if the function type does not return a pointer to a
8446 function.
8447#. '``fnptrval``': An LLVM value containing a pointer to a function to
8448 be invoked. In most cases, this is a direct function invocation, but
8449 indirect ``call``'s are just as possible, calling an arbitrary pointer
8450 to function value.
8451#. '``function args``': argument list whose types match the function
8452 signature argument types and parameter attributes. All arguments must
8453 be of :ref:`first class <t_firstclass>` type. If the function signature
8454 indicates the function accepts a variable number of arguments, the
8455 extra arguments can be specified.
8456#. The optional :ref:`function attributes <fnattrs>` list. Only
8457 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8458 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008459#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008460
8461Semantics:
8462""""""""""
8463
8464The '``call``' instruction is used to cause control flow to transfer to
8465a specified function, with its incoming arguments bound to the specified
8466values. Upon a '``ret``' instruction in the called function, control
8467flow continues with the instruction after the function call, and the
8468return value of the function is bound to the result argument.
8469
8470Example:
8471""""""""
8472
8473.. code-block:: llvm
8474
8475 %retval = call i32 @test(i32 %argc)
8476 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8477 %X = tail call i32 @foo() ; yields i32
8478 %Y = tail call fastcc i32 @foo() ; yields i32
8479 call void %foo(i8 97 signext)
8480
8481 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008482 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008483 %gr = extractvalue %struct.A %r, 0 ; yields i32
8484 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8485 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8486 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8487
8488llvm treats calls to some functions with names and arguments that match
8489the standard C99 library as being the C99 library functions, and may
8490perform optimizations or generate code for them under that assumption.
8491This is something we'd like to change in the future to provide better
8492support for freestanding environments and non-C-based languages.
8493
8494.. _i_va_arg:
8495
8496'``va_arg``' Instruction
8497^^^^^^^^^^^^^^^^^^^^^^^^
8498
8499Syntax:
8500"""""""
8501
8502::
8503
8504 <resultval> = va_arg <va_list*> <arglist>, <argty>
8505
8506Overview:
8507"""""""""
8508
8509The '``va_arg``' instruction is used to access arguments passed through
8510the "variable argument" area of a function call. It is used to implement
8511the ``va_arg`` macro in C.
8512
8513Arguments:
8514""""""""""
8515
8516This instruction takes a ``va_list*`` value and the type of the
8517argument. It returns a value of the specified argument type and
8518increments the ``va_list`` to point to the next argument. The actual
8519type of ``va_list`` is target specific.
8520
8521Semantics:
8522""""""""""
8523
8524The '``va_arg``' instruction loads an argument of the specified type
8525from the specified ``va_list`` and causes the ``va_list`` to point to
8526the next argument. For more information, see the variable argument
8527handling :ref:`Intrinsic Functions <int_varargs>`.
8528
8529It is legal for this instruction to be called in a function which does
8530not take a variable number of arguments, for example, the ``vfprintf``
8531function.
8532
8533``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8534function <intrinsics>` because it takes a type as an argument.
8535
8536Example:
8537""""""""
8538
8539See the :ref:`variable argument processing <int_varargs>` section.
8540
8541Note that the code generator does not yet fully support va\_arg on many
8542targets. Also, it does not currently support va\_arg with aggregate
8543types on any target.
8544
8545.. _i_landingpad:
8546
8547'``landingpad``' Instruction
8548^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8549
8550Syntax:
8551"""""""
8552
8553::
8554
David Majnemer7fddecc2015-06-17 20:52:32 +00008555 <resultval> = landingpad <resultty> <clause>+
8556 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008557
8558 <clause> := catch <type> <value>
8559 <clause> := filter <array constant type> <array constant>
8560
8561Overview:
8562"""""""""
8563
8564The '``landingpad``' instruction is used by `LLVM's exception handling
8565system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008566is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008567code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008568defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008569re-entry to the function. The ``resultval`` has the type ``resultty``.
8570
8571Arguments:
8572""""""""""
8573
David Majnemer7fddecc2015-06-17 20:52:32 +00008574The optional
Sean Silvab084af42012-12-07 10:36:55 +00008575``cleanup`` flag indicates that the landing pad block is a cleanup.
8576
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008577A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008578contains the global variable representing the "type" that may be caught
8579or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8580clause takes an array constant as its argument. Use
8581"``[0 x i8**] undef``" for a filter which cannot throw. The
8582'``landingpad``' instruction must contain *at least* one ``clause`` or
8583the ``cleanup`` flag.
8584
8585Semantics:
8586""""""""""
8587
8588The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008589:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008590therefore the "result type" of the ``landingpad`` instruction. As with
8591calling conventions, how the personality function results are
8592represented in LLVM IR is target specific.
8593
8594The clauses are applied in order from top to bottom. If two
8595``landingpad`` instructions are merged together through inlining, the
8596clauses from the calling function are appended to the list of clauses.
8597When the call stack is being unwound due to an exception being thrown,
8598the exception is compared against each ``clause`` in turn. If it doesn't
8599match any of the clauses, and the ``cleanup`` flag is not set, then
8600unwinding continues further up the call stack.
8601
8602The ``landingpad`` instruction has several restrictions:
8603
8604- A landing pad block is a basic block which is the unwind destination
8605 of an '``invoke``' instruction.
8606- A landing pad block must have a '``landingpad``' instruction as its
8607 first non-PHI instruction.
8608- There can be only one '``landingpad``' instruction within the landing
8609 pad block.
8610- A basic block that is not a landing pad block may not include a
8611 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008612
8613Example:
8614""""""""
8615
8616.. code-block:: llvm
8617
8618 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008619 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008620 catch i8** @_ZTIi
8621 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008622 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008623 cleanup
8624 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008625 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008626 catch i8** @_ZTIi
8627 filter [1 x i8**] [@_ZTId]
8628
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008629.. _i_catchpad:
8630
8631'``catchpad``' Instruction
8632^^^^^^^^^^^^^^^^^^^^^^^^^^
8633
8634Syntax:
8635"""""""
8636
8637::
8638
8639 <resultval> = catchpad within <catchswitch> [<args>*]
8640
8641Overview:
8642"""""""""
8643
8644The '``catchpad``' instruction is used by `LLVM's exception handling
8645system <ExceptionHandling.html#overview>`_ to specify that a basic block
8646begins a catch handler --- one where a personality routine attempts to transfer
8647control to catch an exception.
8648
8649Arguments:
8650""""""""""
8651
8652The ``catchswitch`` operand must always be a token produced by a
8653:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8654ensures that each ``catchpad`` has exactly one predecessor block, and it always
8655terminates in a ``catchswitch``.
8656
8657The ``args`` correspond to whatever information the personality routine
8658requires to know if this is an appropriate handler for the exception. Control
8659will transfer to the ``catchpad`` if this is the first appropriate handler for
8660the exception.
8661
8662The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8663``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8664pads.
8665
8666Semantics:
8667""""""""""
8668
8669When the call stack is being unwound due to an exception being thrown, the
8670exception is compared against the ``args``. If it doesn't match, control will
8671not reach the ``catchpad`` instruction. The representation of ``args`` is
8672entirely target and personality function-specific.
8673
8674Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8675instruction must be the first non-phi of its parent basic block.
8676
8677The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8678instructions is described in the
8679`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8680
8681When a ``catchpad`` has been "entered" but not yet "exited" (as
8682described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8683it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8684that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8685
8686Example:
8687""""""""
8688
8689.. code-block:: llvm
8690
8691 dispatch:
8692 %cs = catchswitch within none [label %handler0] unwind to caller
8693 ;; A catch block which can catch an integer.
8694 handler0:
8695 %tok = catchpad within %cs [i8** @_ZTIi]
8696
David Majnemer654e1302015-07-31 17:58:14 +00008697.. _i_cleanuppad:
8698
8699'``cleanuppad``' Instruction
8700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8701
8702Syntax:
8703"""""""
8704
8705::
8706
David Majnemer8a1c45d2015-12-12 05:38:55 +00008707 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008708
8709Overview:
8710"""""""""
8711
8712The '``cleanuppad``' instruction is used by `LLVM's exception handling
8713system <ExceptionHandling.html#overview>`_ to specify that a basic block
8714is a cleanup block --- one where a personality routine attempts to
8715transfer control to run cleanup actions.
8716The ``args`` correspond to whatever additional
8717information the :ref:`personality function <personalityfn>` requires to
8718execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008719The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008720match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8721The ``parent`` argument is the token of the funclet that contains the
8722``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8723this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008724
8725Arguments:
8726""""""""""
8727
8728The instruction takes a list of arbitrary values which are interpreted
8729by the :ref:`personality function <personalityfn>`.
8730
8731Semantics:
8732""""""""""
8733
David Majnemer654e1302015-07-31 17:58:14 +00008734When the call stack is being unwound due to an exception being thrown,
8735the :ref:`personality function <personalityfn>` transfers control to the
8736``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008737As with calling conventions, how the personality function results are
8738represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008739
8740The ``cleanuppad`` instruction has several restrictions:
8741
8742- A cleanup block is a basic block which is the unwind destination of
8743 an exceptional instruction.
8744- A cleanup block must have a '``cleanuppad``' instruction as its
8745 first non-PHI instruction.
8746- There can be only one '``cleanuppad``' instruction within the
8747 cleanup block.
8748- A basic block that is not a cleanup block may not include a
8749 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008750
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008751When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8752described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8753it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8754that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008755
David Majnemer654e1302015-07-31 17:58:14 +00008756Example:
8757""""""""
8758
8759.. code-block:: llvm
8760
David Majnemer8a1c45d2015-12-12 05:38:55 +00008761 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008762
Sean Silvab084af42012-12-07 10:36:55 +00008763.. _intrinsics:
8764
8765Intrinsic Functions
8766===================
8767
8768LLVM supports the notion of an "intrinsic function". These functions
8769have well known names and semantics and are required to follow certain
8770restrictions. Overall, these intrinsics represent an extension mechanism
8771for the LLVM language that does not require changing all of the
8772transformations in LLVM when adding to the language (or the bitcode
8773reader/writer, the parser, etc...).
8774
8775Intrinsic function names must all start with an "``llvm.``" prefix. This
8776prefix is reserved in LLVM for intrinsic names; thus, function names may
8777not begin with this prefix. Intrinsic functions must always be external
8778functions: you cannot define the body of intrinsic functions. Intrinsic
8779functions may only be used in call or invoke instructions: it is illegal
8780to take the address of an intrinsic function. Additionally, because
8781intrinsic functions are part of the LLVM language, it is required if any
8782are added that they be documented here.
8783
8784Some intrinsic functions can be overloaded, i.e., the intrinsic
8785represents a family of functions that perform the same operation but on
8786different data types. Because LLVM can represent over 8 million
8787different integer types, overloading is used commonly to allow an
8788intrinsic function to operate on any integer type. One or more of the
8789argument types or the result type can be overloaded to accept any
8790integer type. Argument types may also be defined as exactly matching a
8791previous argument's type or the result type. This allows an intrinsic
8792function which accepts multiple arguments, but needs all of them to be
8793of the same type, to only be overloaded with respect to a single
8794argument or the result.
8795
8796Overloaded intrinsics will have the names of its overloaded argument
8797types encoded into its function name, each preceded by a period. Only
8798those types which are overloaded result in a name suffix. Arguments
8799whose type is matched against another type do not. For example, the
8800``llvm.ctpop`` function can take an integer of any width and returns an
8801integer of exactly the same integer width. This leads to a family of
8802functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8803``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8804overloaded, and only one type suffix is required. Because the argument's
8805type is matched against the return type, it does not require its own
8806name suffix.
8807
8808To learn how to add an intrinsic function, please see the `Extending
8809LLVM Guide <ExtendingLLVM.html>`_.
8810
8811.. _int_varargs:
8812
8813Variable Argument Handling Intrinsics
8814-------------------------------------
8815
8816Variable argument support is defined in LLVM with the
8817:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8818functions. These functions are related to the similarly named macros
8819defined in the ``<stdarg.h>`` header file.
8820
8821All of these functions operate on arguments that use a target-specific
8822value type "``va_list``". The LLVM assembly language reference manual
8823does not define what this type is, so all transformations should be
8824prepared to handle these functions regardless of the type used.
8825
8826This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8827variable argument handling intrinsic functions are used.
8828
8829.. code-block:: llvm
8830
Tim Northoverab60bb92014-11-02 01:21:51 +00008831 ; This struct is different for every platform. For most platforms,
8832 ; it is merely an i8*.
8833 %struct.va_list = type { i8* }
8834
8835 ; For Unix x86_64 platforms, va_list is the following struct:
8836 ; %struct.va_list = type { i32, i32, i8*, i8* }
8837
Sean Silvab084af42012-12-07 10:36:55 +00008838 define i32 @test(i32 %X, ...) {
8839 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008840 %ap = alloca %struct.va_list
8841 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008842 call void @llvm.va_start(i8* %ap2)
8843
8844 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008845 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008846
8847 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8848 %aq = alloca i8*
8849 %aq2 = bitcast i8** %aq to i8*
8850 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8851 call void @llvm.va_end(i8* %aq2)
8852
8853 ; Stop processing of arguments.
8854 call void @llvm.va_end(i8* %ap2)
8855 ret i32 %tmp
8856 }
8857
8858 declare void @llvm.va_start(i8*)
8859 declare void @llvm.va_copy(i8*, i8*)
8860 declare void @llvm.va_end(i8*)
8861
8862.. _int_va_start:
8863
8864'``llvm.va_start``' Intrinsic
8865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8866
8867Syntax:
8868"""""""
8869
8870::
8871
Nick Lewycky04f6de02013-09-11 22:04:52 +00008872 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008873
8874Overview:
8875"""""""""
8876
8877The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8878subsequent use by ``va_arg``.
8879
8880Arguments:
8881""""""""""
8882
8883The argument is a pointer to a ``va_list`` element to initialize.
8884
8885Semantics:
8886""""""""""
8887
8888The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8889available in C. In a target-dependent way, it initializes the
8890``va_list`` element to which the argument points, so that the next call
8891to ``va_arg`` will produce the first variable argument passed to the
8892function. Unlike the C ``va_start`` macro, this intrinsic does not need
8893to know the last argument of the function as the compiler can figure
8894that out.
8895
8896'``llvm.va_end``' Intrinsic
8897^^^^^^^^^^^^^^^^^^^^^^^^^^^
8898
8899Syntax:
8900"""""""
8901
8902::
8903
8904 declare void @llvm.va_end(i8* <arglist>)
8905
8906Overview:
8907"""""""""
8908
8909The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8910initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8911
8912Arguments:
8913""""""""""
8914
8915The argument is a pointer to a ``va_list`` to destroy.
8916
8917Semantics:
8918""""""""""
8919
8920The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8921available in C. In a target-dependent way, it destroys the ``va_list``
8922element to which the argument points. Calls to
8923:ref:`llvm.va_start <int_va_start>` and
8924:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8925``llvm.va_end``.
8926
8927.. _int_va_copy:
8928
8929'``llvm.va_copy``' Intrinsic
8930^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8931
8932Syntax:
8933"""""""
8934
8935::
8936
8937 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8938
8939Overview:
8940"""""""""
8941
8942The '``llvm.va_copy``' intrinsic copies the current argument position
8943from the source argument list to the destination argument list.
8944
8945Arguments:
8946""""""""""
8947
8948The first argument is a pointer to a ``va_list`` element to initialize.
8949The second argument is a pointer to a ``va_list`` element to copy from.
8950
8951Semantics:
8952""""""""""
8953
8954The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8955available in C. In a target-dependent way, it copies the source
8956``va_list`` element into the destination ``va_list`` element. This
8957intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8958arbitrarily complex and require, for example, memory allocation.
8959
8960Accurate Garbage Collection Intrinsics
8961--------------------------------------
8962
Philip Reamesc5b0f562015-02-25 23:52:06 +00008963LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008964(GC) requires the frontend to generate code containing appropriate intrinsic
8965calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008966intrinsics in a manner which is appropriate for the target collector.
8967
Sean Silvab084af42012-12-07 10:36:55 +00008968These intrinsics allow identification of :ref:`GC roots on the
8969stack <int_gcroot>`, as well as garbage collector implementations that
8970require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008971Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008972these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008973details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008974
Philip Reamesf80bbff2015-02-25 23:45:20 +00008975Experimental Statepoint Intrinsics
8976^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8977
8978LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008979collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008980to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008981:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008982differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008983<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008984described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008985
8986.. _int_gcroot:
8987
8988'``llvm.gcroot``' Intrinsic
8989^^^^^^^^^^^^^^^^^^^^^^^^^^^
8990
8991Syntax:
8992"""""""
8993
8994::
8995
8996 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8997
8998Overview:
8999"""""""""
9000
9001The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9002the code generator, and allows some metadata to be associated with it.
9003
9004Arguments:
9005""""""""""
9006
9007The first argument specifies the address of a stack object that contains
9008the root pointer. The second pointer (which must be either a constant or
9009a global value address) contains the meta-data to be associated with the
9010root.
9011
9012Semantics:
9013""""""""""
9014
9015At runtime, a call to this intrinsic stores a null pointer into the
9016"ptrloc" location. At compile-time, the code generator generates
9017information to allow the runtime to find the pointer at GC safe points.
9018The '``llvm.gcroot``' intrinsic may only be used in a function which
9019:ref:`specifies a GC algorithm <gc>`.
9020
9021.. _int_gcread:
9022
9023'``llvm.gcread``' Intrinsic
9024^^^^^^^^^^^^^^^^^^^^^^^^^^^
9025
9026Syntax:
9027"""""""
9028
9029::
9030
9031 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9032
9033Overview:
9034"""""""""
9035
9036The '``llvm.gcread``' intrinsic identifies reads of references from heap
9037locations, allowing garbage collector implementations that require read
9038barriers.
9039
9040Arguments:
9041""""""""""
9042
9043The second argument is the address to read from, which should be an
9044address allocated from the garbage collector. The first object is a
9045pointer to the start of the referenced object, if needed by the language
9046runtime (otherwise null).
9047
9048Semantics:
9049""""""""""
9050
9051The '``llvm.gcread``' intrinsic has the same semantics as a load
9052instruction, but may be replaced with substantially more complex code by
9053the garbage collector runtime, as needed. The '``llvm.gcread``'
9054intrinsic may only be used in a function which :ref:`specifies a GC
9055algorithm <gc>`.
9056
9057.. _int_gcwrite:
9058
9059'``llvm.gcwrite``' Intrinsic
9060^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9061
9062Syntax:
9063"""""""
9064
9065::
9066
9067 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9068
9069Overview:
9070"""""""""
9071
9072The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9073locations, allowing garbage collector implementations that require write
9074barriers (such as generational or reference counting collectors).
9075
9076Arguments:
9077""""""""""
9078
9079The first argument is the reference to store, the second is the start of
9080the object to store it to, and the third is the address of the field of
9081Obj to store to. If the runtime does not require a pointer to the
9082object, Obj may be null.
9083
9084Semantics:
9085""""""""""
9086
9087The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9088instruction, but may be replaced with substantially more complex code by
9089the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9090intrinsic may only be used in a function which :ref:`specifies a GC
9091algorithm <gc>`.
9092
9093Code Generator Intrinsics
9094-------------------------
9095
9096These intrinsics are provided by LLVM to expose special features that
9097may only be implemented with code generator support.
9098
9099'``llvm.returnaddress``' Intrinsic
9100^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9101
9102Syntax:
9103"""""""
9104
9105::
9106
9107 declare i8 *@llvm.returnaddress(i32 <level>)
9108
9109Overview:
9110"""""""""
9111
9112The '``llvm.returnaddress``' intrinsic attempts to compute a
9113target-specific value indicating the return address of the current
9114function or one of its callers.
9115
9116Arguments:
9117""""""""""
9118
9119The argument to this intrinsic indicates which function to return the
9120address for. Zero indicates the calling function, one indicates its
9121caller, etc. The argument is **required** to be a constant integer
9122value.
9123
9124Semantics:
9125""""""""""
9126
9127The '``llvm.returnaddress``' intrinsic either returns a pointer
9128indicating the return address of the specified call frame, or zero if it
9129cannot be identified. The value returned by this intrinsic is likely to
9130be incorrect or 0 for arguments other than zero, so it should only be
9131used for debugging purposes.
9132
9133Note that calling this intrinsic does not prevent function inlining or
9134other aggressive transformations, so the value returned may not be that
9135of the obvious source-language caller.
9136
9137'``llvm.frameaddress``' Intrinsic
9138^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9139
9140Syntax:
9141"""""""
9142
9143::
9144
9145 declare i8* @llvm.frameaddress(i32 <level>)
9146
9147Overview:
9148"""""""""
9149
9150The '``llvm.frameaddress``' intrinsic attempts to return the
9151target-specific frame pointer value for the specified stack frame.
9152
9153Arguments:
9154""""""""""
9155
9156The argument to this intrinsic indicates which function to return the
9157frame pointer for. Zero indicates the calling function, one indicates
9158its caller, etc. The argument is **required** to be a constant integer
9159value.
9160
9161Semantics:
9162""""""""""
9163
9164The '``llvm.frameaddress``' intrinsic either returns a pointer
9165indicating the frame address of the specified call frame, or zero if it
9166cannot be identified. The value returned by this intrinsic is likely to
9167be incorrect or 0 for arguments other than zero, so it should only be
9168used for debugging purposes.
9169
9170Note that calling this intrinsic does not prevent function inlining or
9171other aggressive transformations, so the value returned may not be that
9172of the obvious source-language caller.
9173
Reid Kleckner60381792015-07-07 22:25:32 +00009174'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009175^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9176
9177Syntax:
9178"""""""
9179
9180::
9181
Reid Kleckner60381792015-07-07 22:25:32 +00009182 declare void @llvm.localescape(...)
9183 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009184
9185Overview:
9186"""""""""
9187
Reid Kleckner60381792015-07-07 22:25:32 +00009188The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9189allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009190live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009191computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009192
9193Arguments:
9194""""""""""
9195
Reid Kleckner60381792015-07-07 22:25:32 +00009196All arguments to '``llvm.localescape``' must be pointers to static allocas or
9197casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009198once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009199
Reid Kleckner60381792015-07-07 22:25:32 +00009200The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009201bitcasted pointer to a function defined in the current module. The code
9202generator cannot determine the frame allocation offset of functions defined in
9203other modules.
9204
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009205The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9206call frame that is currently live. The return value of '``llvm.localaddress``'
9207is one way to produce such a value, but various runtimes also expose a suitable
9208pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009209
Reid Kleckner60381792015-07-07 22:25:32 +00009210The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9211'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009212
Reid Klecknere9b89312015-01-13 00:48:10 +00009213Semantics:
9214""""""""""
9215
Reid Kleckner60381792015-07-07 22:25:32 +00009216These intrinsics allow a group of functions to share access to a set of local
9217stack allocations of a one parent function. The parent function may call the
9218'``llvm.localescape``' intrinsic once from the function entry block, and the
9219child functions can use '``llvm.localrecover``' to access the escaped allocas.
9220The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9221the escaped allocas are allocated, which would break attempts to use
9222'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009223
Renato Golinc7aea402014-05-06 16:51:25 +00009224.. _int_read_register:
9225.. _int_write_register:
9226
9227'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9228^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9229
9230Syntax:
9231"""""""
9232
9233::
9234
9235 declare i32 @llvm.read_register.i32(metadata)
9236 declare i64 @llvm.read_register.i64(metadata)
9237 declare void @llvm.write_register.i32(metadata, i32 @value)
9238 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009239 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009240
9241Overview:
9242"""""""""
9243
9244The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9245provides access to the named register. The register must be valid on
9246the architecture being compiled to. The type needs to be compatible
9247with the register being read.
9248
9249Semantics:
9250""""""""""
9251
9252The '``llvm.read_register``' intrinsic returns the current value of the
9253register, where possible. The '``llvm.write_register``' intrinsic sets
9254the current value of the register, where possible.
9255
9256This is useful to implement named register global variables that need
9257to always be mapped to a specific register, as is common practice on
9258bare-metal programs including OS kernels.
9259
9260The compiler doesn't check for register availability or use of the used
9261register in surrounding code, including inline assembly. Because of that,
9262allocatable registers are not supported.
9263
9264Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009265architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009266work is needed to support other registers and even more so, allocatable
9267registers.
9268
Sean Silvab084af42012-12-07 10:36:55 +00009269.. _int_stacksave:
9270
9271'``llvm.stacksave``' Intrinsic
9272^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9273
9274Syntax:
9275"""""""
9276
9277::
9278
9279 declare i8* @llvm.stacksave()
9280
9281Overview:
9282"""""""""
9283
9284The '``llvm.stacksave``' intrinsic is used to remember the current state
9285of the function stack, for use with
9286:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9287implementing language features like scoped automatic variable sized
9288arrays in C99.
9289
9290Semantics:
9291""""""""""
9292
9293This intrinsic returns a opaque pointer value that can be passed to
9294:ref:`llvm.stackrestore <int_stackrestore>`. When an
9295``llvm.stackrestore`` intrinsic is executed with a value saved from
9296``llvm.stacksave``, it effectively restores the state of the stack to
9297the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9298practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9299were allocated after the ``llvm.stacksave`` was executed.
9300
9301.. _int_stackrestore:
9302
9303'``llvm.stackrestore``' Intrinsic
9304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9305
9306Syntax:
9307"""""""
9308
9309::
9310
9311 declare void @llvm.stackrestore(i8* %ptr)
9312
9313Overview:
9314"""""""""
9315
9316The '``llvm.stackrestore``' intrinsic is used to restore the state of
9317the function stack to the state it was in when the corresponding
9318:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9319useful for implementing language features like scoped automatic variable
9320sized arrays in C99.
9321
9322Semantics:
9323""""""""""
9324
9325See the description for :ref:`llvm.stacksave <int_stacksave>`.
9326
Yury Gribovd7dbb662015-12-01 11:40:55 +00009327.. _int_get_dynamic_area_offset:
9328
9329'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009331
9332Syntax:
9333"""""""
9334
9335::
9336
9337 declare i32 @llvm.get.dynamic.area.offset.i32()
9338 declare i64 @llvm.get.dynamic.area.offset.i64()
9339
9340 Overview:
9341 """""""""
9342
9343 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9344 get the offset from native stack pointer to the address of the most
9345 recent dynamic alloca on the caller's stack. These intrinsics are
9346 intendend for use in combination with
9347 :ref:`llvm.stacksave <int_stacksave>` to get a
9348 pointer to the most recent dynamic alloca. This is useful, for example,
9349 for AddressSanitizer's stack unpoisoning routines.
9350
9351Semantics:
9352""""""""""
9353
9354 These intrinsics return a non-negative integer value that can be used to
9355 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9356 on the caller's stack. In particular, for targets where stack grows downwards,
9357 adding this offset to the native stack pointer would get the address of the most
9358 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9359 complicated, because substracting this value from stack pointer would get the address
9360 one past the end of the most recent dynamic alloca.
9361
9362 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9363 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9364 compile-time-known constant value.
9365
9366 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9367 must match the target's generic address space's (address space 0) pointer type.
9368
Sean Silvab084af42012-12-07 10:36:55 +00009369'``llvm.prefetch``' Intrinsic
9370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9371
9372Syntax:
9373"""""""
9374
9375::
9376
9377 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9378
9379Overview:
9380"""""""""
9381
9382The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9383insert a prefetch instruction if supported; otherwise, it is a noop.
9384Prefetches have no effect on the behavior of the program but can change
9385its performance characteristics.
9386
9387Arguments:
9388""""""""""
9389
9390``address`` is the address to be prefetched, ``rw`` is the specifier
9391determining if the fetch should be for a read (0) or write (1), and
9392``locality`` is a temporal locality specifier ranging from (0) - no
9393locality, to (3) - extremely local keep in cache. The ``cache type``
9394specifies whether the prefetch is performed on the data (1) or
9395instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9396arguments must be constant integers.
9397
9398Semantics:
9399""""""""""
9400
9401This intrinsic does not modify the behavior of the program. In
9402particular, prefetches cannot trap and do not produce a value. On
9403targets that support this intrinsic, the prefetch can provide hints to
9404the processor cache for better performance.
9405
9406'``llvm.pcmarker``' Intrinsic
9407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9408
9409Syntax:
9410"""""""
9411
9412::
9413
9414 declare void @llvm.pcmarker(i32 <id>)
9415
9416Overview:
9417"""""""""
9418
9419The '``llvm.pcmarker``' intrinsic is a method to export a Program
9420Counter (PC) in a region of code to simulators and other tools. The
9421method is target specific, but it is expected that the marker will use
9422exported symbols to transmit the PC of the marker. The marker makes no
9423guarantees that it will remain with any specific instruction after
9424optimizations. It is possible that the presence of a marker will inhibit
9425optimizations. The intended use is to be inserted after optimizations to
9426allow correlations of simulation runs.
9427
9428Arguments:
9429""""""""""
9430
9431``id`` is a numerical id identifying the marker.
9432
9433Semantics:
9434""""""""""
9435
9436This intrinsic does not modify the behavior of the program. Backends
9437that do not support this intrinsic may ignore it.
9438
9439'``llvm.readcyclecounter``' Intrinsic
9440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9441
9442Syntax:
9443"""""""
9444
9445::
9446
9447 declare i64 @llvm.readcyclecounter()
9448
9449Overview:
9450"""""""""
9451
9452The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9453counter register (or similar low latency, high accuracy clocks) on those
9454targets that support it. On X86, it should map to RDTSC. On Alpha, it
9455should map to RPCC. As the backing counters overflow quickly (on the
9456order of 9 seconds on alpha), this should only be used for small
9457timings.
9458
9459Semantics:
9460""""""""""
9461
9462When directly supported, reading the cycle counter should not modify any
9463memory. Implementations are allowed to either return a application
9464specific value or a system wide value. On backends without support, this
9465is lowered to a constant 0.
9466
Tim Northoverbc933082013-05-23 19:11:20 +00009467Note that runtime support may be conditional on the privilege-level code is
9468running at and the host platform.
9469
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009470'``llvm.clear_cache``' Intrinsic
9471^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9472
9473Syntax:
9474"""""""
9475
9476::
9477
9478 declare void @llvm.clear_cache(i8*, i8*)
9479
9480Overview:
9481"""""""""
9482
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009483The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9484in the specified range to the execution unit of the processor. On
9485targets with non-unified instruction and data cache, the implementation
9486flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009487
9488Semantics:
9489""""""""""
9490
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009491On platforms with coherent instruction and data caches (e.g. x86), this
9492intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009493cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009494instructions or a system call, if cache flushing requires special
9495privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009496
Sean Silvad02bf3e2014-04-07 22:29:53 +00009497The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009498time library.
Renato Golin93010e62014-03-26 14:01:32 +00009499
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009500This instrinsic does *not* empty the instruction pipeline. Modifications
9501of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009502
Justin Bogner61ba2e32014-12-08 18:02:35 +00009503'``llvm.instrprof_increment``' Intrinsic
9504^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9505
9506Syntax:
9507"""""""
9508
9509::
9510
9511 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9512 i32 <num-counters>, i32 <index>)
9513
9514Overview:
9515"""""""""
9516
9517The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9518frontend for use with instrumentation based profiling. These will be
9519lowered by the ``-instrprof`` pass to generate execution counts of a
9520program at runtime.
9521
9522Arguments:
9523""""""""""
9524
9525The first argument is a pointer to a global variable containing the
9526name of the entity being instrumented. This should generally be the
9527(mangled) function name for a set of counters.
9528
9529The second argument is a hash value that can be used by the consumer
9530of the profile data to detect changes to the instrumented source, and
9531the third is the number of counters associated with ``name``. It is an
9532error if ``hash`` or ``num-counters`` differ between two instances of
9533``instrprof_increment`` that refer to the same name.
9534
9535The last argument refers to which of the counters for ``name`` should
9536be incremented. It should be a value between 0 and ``num-counters``.
9537
9538Semantics:
9539""""""""""
9540
9541This intrinsic represents an increment of a profiling counter. It will
9542cause the ``-instrprof`` pass to generate the appropriate data
9543structures and the code to increment the appropriate value, in a
9544format that can be written out by a compiler runtime and consumed via
9545the ``llvm-profdata`` tool.
9546
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009547'``llvm.instrprof_value_profile``' Intrinsic
9548^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9549
9550Syntax:
9551"""""""
9552
9553::
9554
9555 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9556 i64 <value>, i32 <value_kind>,
9557 i32 <index>)
9558
9559Overview:
9560"""""""""
9561
9562The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9563frontend for use with instrumentation based profiling. This will be
9564lowered by the ``-instrprof`` pass to find out the target values,
9565instrumented expressions take in a program at runtime.
9566
9567Arguments:
9568""""""""""
9569
9570The first argument is a pointer to a global variable containing the
9571name of the entity being instrumented. ``name`` should generally be the
9572(mangled) function name for a set of counters.
9573
9574The second argument is a hash value that can be used by the consumer
9575of the profile data to detect changes to the instrumented source. It
9576is an error if ``hash`` differs between two instances of
9577``llvm.instrprof_*`` that refer to the same name.
9578
9579The third argument is the value of the expression being profiled. The profiled
9580expression's value should be representable as an unsigned 64-bit value. The
9581fourth argument represents the kind of value profiling that is being done. The
9582supported value profiling kinds are enumerated through the
9583``InstrProfValueKind`` type declared in the
9584``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9585index of the instrumented expression within ``name``. It should be >= 0.
9586
9587Semantics:
9588""""""""""
9589
9590This intrinsic represents the point where a call to a runtime routine
9591should be inserted for value profiling of target expressions. ``-instrprof``
9592pass will generate the appropriate data structures and replace the
9593``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9594runtime library with proper arguments.
9595
Sean Silvab084af42012-12-07 10:36:55 +00009596Standard C Library Intrinsics
9597-----------------------------
9598
9599LLVM provides intrinsics for a few important standard C library
9600functions. These intrinsics allow source-language front-ends to pass
9601information about the alignment of the pointer arguments to the code
9602generator, providing opportunity for more efficient code generation.
9603
9604.. _int_memcpy:
9605
9606'``llvm.memcpy``' Intrinsic
9607^^^^^^^^^^^^^^^^^^^^^^^^^^^
9608
9609Syntax:
9610"""""""
9611
9612This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9613integer bit width and for different address spaces. Not all targets
9614support all bit widths however.
9615
9616::
9617
9618 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9619 i32 <len>, i32 <align>, i1 <isvolatile>)
9620 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9621 i64 <len>, i32 <align>, i1 <isvolatile>)
9622
9623Overview:
9624"""""""""
9625
9626The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9627source location to the destination location.
9628
9629Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9630intrinsics do not return a value, takes extra alignment/isvolatile
9631arguments and the pointers can be in specified address spaces.
9632
9633Arguments:
9634""""""""""
9635
9636The first argument is a pointer to the destination, the second is a
9637pointer to the source. The third argument is an integer argument
9638specifying the number of bytes to copy, the fourth argument is the
9639alignment of the source and destination locations, and the fifth is a
9640boolean indicating a volatile access.
9641
9642If the call to this intrinsic has an alignment value that is not 0 or 1,
9643then the caller guarantees that both the source and destination pointers
9644are aligned to that boundary.
9645
9646If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9647a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9648very cleanly specified and it is unwise to depend on it.
9649
9650Semantics:
9651""""""""""
9652
9653The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9654source location to the destination location, which are not allowed to
9655overlap. It copies "len" bytes of memory over. If the argument is known
9656to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009657argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009658
9659'``llvm.memmove``' Intrinsic
9660^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9661
9662Syntax:
9663"""""""
9664
9665This is an overloaded intrinsic. You can use llvm.memmove on any integer
9666bit width and for different address space. Not all targets support all
9667bit widths however.
9668
9669::
9670
9671 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9672 i32 <len>, i32 <align>, i1 <isvolatile>)
9673 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9674 i64 <len>, i32 <align>, i1 <isvolatile>)
9675
9676Overview:
9677"""""""""
9678
9679The '``llvm.memmove.*``' intrinsics move a block of memory from the
9680source location to the destination location. It is similar to the
9681'``llvm.memcpy``' intrinsic but allows the two memory locations to
9682overlap.
9683
9684Note that, unlike the standard libc function, the ``llvm.memmove.*``
9685intrinsics do not return a value, takes extra alignment/isvolatile
9686arguments and the pointers can be in specified address spaces.
9687
9688Arguments:
9689""""""""""
9690
9691The first argument is a pointer to the destination, the second is a
9692pointer to the source. The third argument is an integer argument
9693specifying the number of bytes to copy, the fourth argument is the
9694alignment of the source and destination locations, and the fifth is a
9695boolean indicating a volatile access.
9696
9697If the call to this intrinsic has an alignment value that is not 0 or 1,
9698then the caller guarantees that the source and destination pointers are
9699aligned to that boundary.
9700
9701If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9702is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9703not very cleanly specified and it is unwise to depend on it.
9704
9705Semantics:
9706""""""""""
9707
9708The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9709source location to the destination location, which may overlap. It
9710copies "len" bytes of memory over. If the argument is known to be
9711aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009712otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009713
9714'``llvm.memset.*``' Intrinsics
9715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9716
9717Syntax:
9718"""""""
9719
9720This is an overloaded intrinsic. You can use llvm.memset on any integer
9721bit width and for different address spaces. However, not all targets
9722support all bit widths.
9723
9724::
9725
9726 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9727 i32 <len>, i32 <align>, i1 <isvolatile>)
9728 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9729 i64 <len>, i32 <align>, i1 <isvolatile>)
9730
9731Overview:
9732"""""""""
9733
9734The '``llvm.memset.*``' intrinsics fill a block of memory with a
9735particular byte value.
9736
9737Note that, unlike the standard libc function, the ``llvm.memset``
9738intrinsic does not return a value and takes extra alignment/volatile
9739arguments. Also, the destination can be in an arbitrary address space.
9740
9741Arguments:
9742""""""""""
9743
9744The first argument is a pointer to the destination to fill, the second
9745is the byte value with which to fill it, the third argument is an
9746integer argument specifying the number of bytes to fill, and the fourth
9747argument is the known alignment of the destination location.
9748
9749If the call to this intrinsic has an alignment value that is not 0 or 1,
9750then the caller guarantees that the destination pointer is aligned to
9751that boundary.
9752
9753If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9754a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9755very cleanly specified and it is unwise to depend on it.
9756
9757Semantics:
9758""""""""""
9759
9760The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9761at the destination location. If the argument is known to be aligned to
9762some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009763it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009764
9765'``llvm.sqrt.*``' Intrinsic
9766^^^^^^^^^^^^^^^^^^^^^^^^^^^
9767
9768Syntax:
9769"""""""
9770
9771This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9772floating point or vector of floating point type. Not all targets support
9773all types however.
9774
9775::
9776
9777 declare float @llvm.sqrt.f32(float %Val)
9778 declare double @llvm.sqrt.f64(double %Val)
9779 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9780 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9781 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9782
9783Overview:
9784"""""""""
9785
9786The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9787returning the same value as the libm '``sqrt``' functions would. Unlike
9788``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9789negative numbers other than -0.0 (which allows for better optimization,
9790because there is no need to worry about errno being set).
9791``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9792
9793Arguments:
9794""""""""""
9795
9796The argument and return value are floating point numbers of the same
9797type.
9798
9799Semantics:
9800""""""""""
9801
9802This function returns the sqrt of the specified operand if it is a
9803nonnegative floating point number.
9804
9805'``llvm.powi.*``' Intrinsic
9806^^^^^^^^^^^^^^^^^^^^^^^^^^^
9807
9808Syntax:
9809"""""""
9810
9811This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9812floating point or vector of floating point type. Not all targets support
9813all types however.
9814
9815::
9816
9817 declare float @llvm.powi.f32(float %Val, i32 %power)
9818 declare double @llvm.powi.f64(double %Val, i32 %power)
9819 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9820 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9821 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9822
9823Overview:
9824"""""""""
9825
9826The '``llvm.powi.*``' intrinsics return the first operand raised to the
9827specified (positive or negative) power. The order of evaluation of
9828multiplications is not defined. When a vector of floating point type is
9829used, the second argument remains a scalar integer value.
9830
9831Arguments:
9832""""""""""
9833
9834The second argument is an integer power, and the first is a value to
9835raise to that power.
9836
9837Semantics:
9838""""""""""
9839
9840This function returns the first value raised to the second power with an
9841unspecified sequence of rounding operations.
9842
9843'``llvm.sin.*``' Intrinsic
9844^^^^^^^^^^^^^^^^^^^^^^^^^^
9845
9846Syntax:
9847"""""""
9848
9849This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9850floating point or vector of floating point type. Not all targets support
9851all types however.
9852
9853::
9854
9855 declare float @llvm.sin.f32(float %Val)
9856 declare double @llvm.sin.f64(double %Val)
9857 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9858 declare fp128 @llvm.sin.f128(fp128 %Val)
9859 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9860
9861Overview:
9862"""""""""
9863
9864The '``llvm.sin.*``' intrinsics return the sine of the operand.
9865
9866Arguments:
9867""""""""""
9868
9869The argument and return value are floating point numbers of the same
9870type.
9871
9872Semantics:
9873""""""""""
9874
9875This function returns the sine of the specified operand, returning the
9876same values as the libm ``sin`` functions would, and handles error
9877conditions in the same way.
9878
9879'``llvm.cos.*``' Intrinsic
9880^^^^^^^^^^^^^^^^^^^^^^^^^^
9881
9882Syntax:
9883"""""""
9884
9885This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9886floating point or vector of floating point type. Not all targets support
9887all types however.
9888
9889::
9890
9891 declare float @llvm.cos.f32(float %Val)
9892 declare double @llvm.cos.f64(double %Val)
9893 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9894 declare fp128 @llvm.cos.f128(fp128 %Val)
9895 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9896
9897Overview:
9898"""""""""
9899
9900The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9901
9902Arguments:
9903""""""""""
9904
9905The argument and return value are floating point numbers of the same
9906type.
9907
9908Semantics:
9909""""""""""
9910
9911This function returns the cosine of the specified operand, returning the
9912same values as the libm ``cos`` functions would, and handles error
9913conditions in the same way.
9914
9915'``llvm.pow.*``' Intrinsic
9916^^^^^^^^^^^^^^^^^^^^^^^^^^
9917
9918Syntax:
9919"""""""
9920
9921This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9922floating point or vector of floating point type. Not all targets support
9923all types however.
9924
9925::
9926
9927 declare float @llvm.pow.f32(float %Val, float %Power)
9928 declare double @llvm.pow.f64(double %Val, double %Power)
9929 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9930 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9931 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9932
9933Overview:
9934"""""""""
9935
9936The '``llvm.pow.*``' intrinsics return the first operand raised to the
9937specified (positive or negative) power.
9938
9939Arguments:
9940""""""""""
9941
9942The second argument is a floating point power, and the first is a value
9943to raise to that power.
9944
9945Semantics:
9946""""""""""
9947
9948This function returns the first value raised to the second power,
9949returning the same values as the libm ``pow`` functions would, and
9950handles error conditions in the same way.
9951
9952'``llvm.exp.*``' Intrinsic
9953^^^^^^^^^^^^^^^^^^^^^^^^^^
9954
9955Syntax:
9956"""""""
9957
9958This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9959floating point or vector of floating point type. Not all targets support
9960all types however.
9961
9962::
9963
9964 declare float @llvm.exp.f32(float %Val)
9965 declare double @llvm.exp.f64(double %Val)
9966 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9967 declare fp128 @llvm.exp.f128(fp128 %Val)
9968 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9969
9970Overview:
9971"""""""""
9972
9973The '``llvm.exp.*``' intrinsics perform the exp function.
9974
9975Arguments:
9976""""""""""
9977
9978The argument and return value are floating point numbers of the same
9979type.
9980
9981Semantics:
9982""""""""""
9983
9984This function returns the same values as the libm ``exp`` functions
9985would, and handles error conditions in the same way.
9986
9987'``llvm.exp2.*``' Intrinsic
9988^^^^^^^^^^^^^^^^^^^^^^^^^^^
9989
9990Syntax:
9991"""""""
9992
9993This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9994floating point or vector of floating point type. Not all targets support
9995all types however.
9996
9997::
9998
9999 declare float @llvm.exp2.f32(float %Val)
10000 declare double @llvm.exp2.f64(double %Val)
10001 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10002 declare fp128 @llvm.exp2.f128(fp128 %Val)
10003 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10004
10005Overview:
10006"""""""""
10007
10008The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10009
10010Arguments:
10011""""""""""
10012
10013The argument and return value are floating point numbers of the same
10014type.
10015
10016Semantics:
10017""""""""""
10018
10019This function returns the same values as the libm ``exp2`` functions
10020would, and handles error conditions in the same way.
10021
10022'``llvm.log.*``' Intrinsic
10023^^^^^^^^^^^^^^^^^^^^^^^^^^
10024
10025Syntax:
10026"""""""
10027
10028This is an overloaded intrinsic. You can use ``llvm.log`` on any
10029floating point or vector of floating point type. Not all targets support
10030all types however.
10031
10032::
10033
10034 declare float @llvm.log.f32(float %Val)
10035 declare double @llvm.log.f64(double %Val)
10036 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10037 declare fp128 @llvm.log.f128(fp128 %Val)
10038 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10039
10040Overview:
10041"""""""""
10042
10043The '``llvm.log.*``' intrinsics perform the log function.
10044
10045Arguments:
10046""""""""""
10047
10048The argument and return value are floating point numbers of the same
10049type.
10050
10051Semantics:
10052""""""""""
10053
10054This function returns the same values as the libm ``log`` functions
10055would, and handles error conditions in the same way.
10056
10057'``llvm.log10.*``' Intrinsic
10058^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10059
10060Syntax:
10061"""""""
10062
10063This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10064floating point or vector of floating point type. Not all targets support
10065all types however.
10066
10067::
10068
10069 declare float @llvm.log10.f32(float %Val)
10070 declare double @llvm.log10.f64(double %Val)
10071 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10072 declare fp128 @llvm.log10.f128(fp128 %Val)
10073 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10074
10075Overview:
10076"""""""""
10077
10078The '``llvm.log10.*``' intrinsics perform the log10 function.
10079
10080Arguments:
10081""""""""""
10082
10083The argument and return value are floating point numbers of the same
10084type.
10085
10086Semantics:
10087""""""""""
10088
10089This function returns the same values as the libm ``log10`` functions
10090would, and handles error conditions in the same way.
10091
10092'``llvm.log2.*``' Intrinsic
10093^^^^^^^^^^^^^^^^^^^^^^^^^^^
10094
10095Syntax:
10096"""""""
10097
10098This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10099floating point or vector of floating point type. Not all targets support
10100all types however.
10101
10102::
10103
10104 declare float @llvm.log2.f32(float %Val)
10105 declare double @llvm.log2.f64(double %Val)
10106 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10107 declare fp128 @llvm.log2.f128(fp128 %Val)
10108 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10109
10110Overview:
10111"""""""""
10112
10113The '``llvm.log2.*``' intrinsics perform the log2 function.
10114
10115Arguments:
10116""""""""""
10117
10118The argument and return value are floating point numbers of the same
10119type.
10120
10121Semantics:
10122""""""""""
10123
10124This function returns the same values as the libm ``log2`` functions
10125would, and handles error conditions in the same way.
10126
10127'``llvm.fma.*``' Intrinsic
10128^^^^^^^^^^^^^^^^^^^^^^^^^^
10129
10130Syntax:
10131"""""""
10132
10133This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10134floating point or vector of floating point type. Not all targets support
10135all types however.
10136
10137::
10138
10139 declare float @llvm.fma.f32(float %a, float %b, float %c)
10140 declare double @llvm.fma.f64(double %a, double %b, double %c)
10141 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10142 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10143 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10144
10145Overview:
10146"""""""""
10147
10148The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10149operation.
10150
10151Arguments:
10152""""""""""
10153
10154The argument and return value are floating point numbers of the same
10155type.
10156
10157Semantics:
10158""""""""""
10159
10160This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010161would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010162
10163'``llvm.fabs.*``' Intrinsic
10164^^^^^^^^^^^^^^^^^^^^^^^^^^^
10165
10166Syntax:
10167"""""""
10168
10169This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10170floating point or vector of floating point type. Not all targets support
10171all types however.
10172
10173::
10174
10175 declare float @llvm.fabs.f32(float %Val)
10176 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010177 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010178 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010179 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010180
10181Overview:
10182"""""""""
10183
10184The '``llvm.fabs.*``' intrinsics return the absolute value of the
10185operand.
10186
10187Arguments:
10188""""""""""
10189
10190The argument and return value are floating point numbers of the same
10191type.
10192
10193Semantics:
10194""""""""""
10195
10196This function returns the same values as the libm ``fabs`` functions
10197would, and handles error conditions in the same way.
10198
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010199'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010201
10202Syntax:
10203"""""""
10204
10205This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10206floating point or vector of floating point type. Not all targets support
10207all types however.
10208
10209::
10210
Matt Arsenault64313c92014-10-22 18:25:02 +000010211 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10212 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10213 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10214 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10215 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010216
10217Overview:
10218"""""""""
10219
10220The '``llvm.minnum.*``' intrinsics return the minimum of the two
10221arguments.
10222
10223
10224Arguments:
10225""""""""""
10226
10227The arguments and return value are floating point numbers of the same
10228type.
10229
10230Semantics:
10231""""""""""
10232
10233Follows the IEEE-754 semantics for minNum, which also match for libm's
10234fmin.
10235
10236If either operand is a NaN, returns the other non-NaN operand. Returns
10237NaN only if both operands are NaN. If the operands compare equal,
10238returns a value that compares equal to both operands. This means that
10239fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10240
10241'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010243
10244Syntax:
10245"""""""
10246
10247This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10248floating point or vector of floating point type. Not all targets support
10249all types however.
10250
10251::
10252
Matt Arsenault64313c92014-10-22 18:25:02 +000010253 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10254 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10255 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10256 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10257 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010258
10259Overview:
10260"""""""""
10261
10262The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10263arguments.
10264
10265
10266Arguments:
10267""""""""""
10268
10269The arguments and return value are floating point numbers of the same
10270type.
10271
10272Semantics:
10273""""""""""
10274Follows the IEEE-754 semantics for maxNum, which also match for libm's
10275fmax.
10276
10277If either operand is a NaN, returns the other non-NaN operand. Returns
10278NaN only if both operands are NaN. If the operands compare equal,
10279returns a value that compares equal to both operands. This means that
10280fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10281
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010282'``llvm.copysign.*``' Intrinsic
10283^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10284
10285Syntax:
10286"""""""
10287
10288This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10289floating point or vector of floating point type. Not all targets support
10290all types however.
10291
10292::
10293
10294 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10295 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10296 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10297 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10298 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10299
10300Overview:
10301"""""""""
10302
10303The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10304first operand and the sign of the second operand.
10305
10306Arguments:
10307""""""""""
10308
10309The arguments and return value are floating point numbers of the same
10310type.
10311
10312Semantics:
10313""""""""""
10314
10315This function returns the same values as the libm ``copysign``
10316functions would, and handles error conditions in the same way.
10317
Sean Silvab084af42012-12-07 10:36:55 +000010318'``llvm.floor.*``' Intrinsic
10319^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10320
10321Syntax:
10322"""""""
10323
10324This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10325floating point or vector of floating point type. Not all targets support
10326all types however.
10327
10328::
10329
10330 declare float @llvm.floor.f32(float %Val)
10331 declare double @llvm.floor.f64(double %Val)
10332 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10333 declare fp128 @llvm.floor.f128(fp128 %Val)
10334 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10335
10336Overview:
10337"""""""""
10338
10339The '``llvm.floor.*``' intrinsics return the floor of the operand.
10340
10341Arguments:
10342""""""""""
10343
10344The argument and return value are floating point numbers of the same
10345type.
10346
10347Semantics:
10348""""""""""
10349
10350This function returns the same values as the libm ``floor`` functions
10351would, and handles error conditions in the same way.
10352
10353'``llvm.ceil.*``' Intrinsic
10354^^^^^^^^^^^^^^^^^^^^^^^^^^^
10355
10356Syntax:
10357"""""""
10358
10359This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10360floating point or vector of floating point type. Not all targets support
10361all types however.
10362
10363::
10364
10365 declare float @llvm.ceil.f32(float %Val)
10366 declare double @llvm.ceil.f64(double %Val)
10367 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10368 declare fp128 @llvm.ceil.f128(fp128 %Val)
10369 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10370
10371Overview:
10372"""""""""
10373
10374The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10375
10376Arguments:
10377""""""""""
10378
10379The argument and return value are floating point numbers of the same
10380type.
10381
10382Semantics:
10383""""""""""
10384
10385This function returns the same values as the libm ``ceil`` functions
10386would, and handles error conditions in the same way.
10387
10388'``llvm.trunc.*``' Intrinsic
10389^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10390
10391Syntax:
10392"""""""
10393
10394This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10395floating point or vector of floating point type. Not all targets support
10396all types however.
10397
10398::
10399
10400 declare float @llvm.trunc.f32(float %Val)
10401 declare double @llvm.trunc.f64(double %Val)
10402 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10403 declare fp128 @llvm.trunc.f128(fp128 %Val)
10404 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10405
10406Overview:
10407"""""""""
10408
10409The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10410nearest integer not larger in magnitude than the operand.
10411
10412Arguments:
10413""""""""""
10414
10415The argument and return value are floating point numbers of the same
10416type.
10417
10418Semantics:
10419""""""""""
10420
10421This function returns the same values as the libm ``trunc`` functions
10422would, and handles error conditions in the same way.
10423
10424'``llvm.rint.*``' Intrinsic
10425^^^^^^^^^^^^^^^^^^^^^^^^^^^
10426
10427Syntax:
10428"""""""
10429
10430This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10431floating point or vector of floating point type. Not all targets support
10432all types however.
10433
10434::
10435
10436 declare float @llvm.rint.f32(float %Val)
10437 declare double @llvm.rint.f64(double %Val)
10438 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10439 declare fp128 @llvm.rint.f128(fp128 %Val)
10440 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10441
10442Overview:
10443"""""""""
10444
10445The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10446nearest integer. It may raise an inexact floating-point exception if the
10447operand isn't an integer.
10448
10449Arguments:
10450""""""""""
10451
10452The argument and return value are floating point numbers of the same
10453type.
10454
10455Semantics:
10456""""""""""
10457
10458This function returns the same values as the libm ``rint`` functions
10459would, and handles error conditions in the same way.
10460
10461'``llvm.nearbyint.*``' Intrinsic
10462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10463
10464Syntax:
10465"""""""
10466
10467This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10468floating point or vector of floating point type. Not all targets support
10469all types however.
10470
10471::
10472
10473 declare float @llvm.nearbyint.f32(float %Val)
10474 declare double @llvm.nearbyint.f64(double %Val)
10475 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10476 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10477 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10478
10479Overview:
10480"""""""""
10481
10482The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10483nearest integer.
10484
10485Arguments:
10486""""""""""
10487
10488The argument and return value are floating point numbers of the same
10489type.
10490
10491Semantics:
10492""""""""""
10493
10494This function returns the same values as the libm ``nearbyint``
10495functions would, and handles error conditions in the same way.
10496
Hal Finkel171817e2013-08-07 22:49:12 +000010497'``llvm.round.*``' Intrinsic
10498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10499
10500Syntax:
10501"""""""
10502
10503This is an overloaded intrinsic. You can use ``llvm.round`` on any
10504floating point or vector of floating point type. Not all targets support
10505all types however.
10506
10507::
10508
10509 declare float @llvm.round.f32(float %Val)
10510 declare double @llvm.round.f64(double %Val)
10511 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10512 declare fp128 @llvm.round.f128(fp128 %Val)
10513 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10514
10515Overview:
10516"""""""""
10517
10518The '``llvm.round.*``' intrinsics returns the operand rounded to the
10519nearest integer.
10520
10521Arguments:
10522""""""""""
10523
10524The argument and return value are floating point numbers of the same
10525type.
10526
10527Semantics:
10528""""""""""
10529
10530This function returns the same values as the libm ``round``
10531functions would, and handles error conditions in the same way.
10532
Sean Silvab084af42012-12-07 10:36:55 +000010533Bit Manipulation Intrinsics
10534---------------------------
10535
10536LLVM provides intrinsics for a few important bit manipulation
10537operations. These allow efficient code generation for some algorithms.
10538
James Molloy90111f72015-11-12 12:29:09 +000010539'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010541
10542Syntax:
10543"""""""
10544
10545This is an overloaded intrinsic function. You can use bitreverse on any
10546integer type.
10547
10548::
10549
10550 declare i16 @llvm.bitreverse.i16(i16 <id>)
10551 declare i32 @llvm.bitreverse.i32(i32 <id>)
10552 declare i64 @llvm.bitreverse.i64(i64 <id>)
10553
10554Overview:
10555"""""""""
10556
10557The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010558bitpattern of an integer value; for example ``0b10110110`` becomes
10559``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010560
10561Semantics:
10562""""""""""
10563
10564The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10565``M`` in the input moved to bit ``N-M`` in the output.
10566
Sean Silvab084af42012-12-07 10:36:55 +000010567'``llvm.bswap.*``' Intrinsics
10568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10569
10570Syntax:
10571"""""""
10572
10573This is an overloaded intrinsic function. You can use bswap on any
10574integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10575
10576::
10577
10578 declare i16 @llvm.bswap.i16(i16 <id>)
10579 declare i32 @llvm.bswap.i32(i32 <id>)
10580 declare i64 @llvm.bswap.i64(i64 <id>)
10581
10582Overview:
10583"""""""""
10584
10585The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10586values with an even number of bytes (positive multiple of 16 bits).
10587These are useful for performing operations on data that is not in the
10588target's native byte order.
10589
10590Semantics:
10591""""""""""
10592
10593The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10594and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10595intrinsic returns an i32 value that has the four bytes of the input i32
10596swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10597returned i32 will have its bytes in 3, 2, 1, 0 order. The
10598``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10599concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10600respectively).
10601
10602'``llvm.ctpop.*``' Intrinsic
10603^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10604
10605Syntax:
10606"""""""
10607
10608This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10609bit width, or on any vector with integer elements. Not all targets
10610support all bit widths or vector types, however.
10611
10612::
10613
10614 declare i8 @llvm.ctpop.i8(i8 <src>)
10615 declare i16 @llvm.ctpop.i16(i16 <src>)
10616 declare i32 @llvm.ctpop.i32(i32 <src>)
10617 declare i64 @llvm.ctpop.i64(i64 <src>)
10618 declare i256 @llvm.ctpop.i256(i256 <src>)
10619 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10620
10621Overview:
10622"""""""""
10623
10624The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10625in a value.
10626
10627Arguments:
10628""""""""""
10629
10630The only argument is the value to be counted. The argument may be of any
10631integer type, or a vector with integer elements. The return type must
10632match the argument type.
10633
10634Semantics:
10635""""""""""
10636
10637The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10638each element of a vector.
10639
10640'``llvm.ctlz.*``' Intrinsic
10641^^^^^^^^^^^^^^^^^^^^^^^^^^^
10642
10643Syntax:
10644"""""""
10645
10646This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10647integer bit width, or any vector whose elements are integers. Not all
10648targets support all bit widths or vector types, however.
10649
10650::
10651
10652 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10653 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10654 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10655 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10656 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010657 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010658
10659Overview:
10660"""""""""
10661
10662The '``llvm.ctlz``' family of intrinsic functions counts the number of
10663leading zeros in a variable.
10664
10665Arguments:
10666""""""""""
10667
10668The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010669any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010670type must match the first argument type.
10671
10672The second argument must be a constant and is a flag to indicate whether
10673the intrinsic should ensure that a zero as the first argument produces a
10674defined result. Historically some architectures did not provide a
10675defined result for zero values as efficiently, and many algorithms are
10676now predicated on avoiding zero-value inputs.
10677
10678Semantics:
10679""""""""""
10680
10681The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10682zeros in a variable, or within each element of the vector. If
10683``src == 0`` then the result is the size in bits of the type of ``src``
10684if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10685``llvm.ctlz(i32 2) = 30``.
10686
10687'``llvm.cttz.*``' Intrinsic
10688^^^^^^^^^^^^^^^^^^^^^^^^^^^
10689
10690Syntax:
10691"""""""
10692
10693This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10694integer bit width, or any vector of integer elements. Not all targets
10695support all bit widths or vector types, however.
10696
10697::
10698
10699 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10700 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10701 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10702 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10703 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010704 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010705
10706Overview:
10707"""""""""
10708
10709The '``llvm.cttz``' family of intrinsic functions counts the number of
10710trailing zeros.
10711
10712Arguments:
10713""""""""""
10714
10715The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010716any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010717type must match the first argument type.
10718
10719The second argument must be a constant and is a flag to indicate whether
10720the intrinsic should ensure that a zero as the first argument produces a
10721defined result. Historically some architectures did not provide a
10722defined result for zero values as efficiently, and many algorithms are
10723now predicated on avoiding zero-value inputs.
10724
10725Semantics:
10726""""""""""
10727
10728The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10729zeros in a variable, or within each element of a vector. If ``src == 0``
10730then the result is the size in bits of the type of ``src`` if
10731``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10732``llvm.cttz(2) = 1``.
10733
Philip Reames34843ae2015-03-05 05:55:55 +000010734.. _int_overflow:
10735
Sean Silvab084af42012-12-07 10:36:55 +000010736Arithmetic with Overflow Intrinsics
10737-----------------------------------
10738
10739LLVM provides intrinsics for some arithmetic with overflow operations.
10740
10741'``llvm.sadd.with.overflow.*``' Intrinsics
10742^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10743
10744Syntax:
10745"""""""
10746
10747This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10748on any integer bit width.
10749
10750::
10751
10752 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10753 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10754 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10755
10756Overview:
10757"""""""""
10758
10759The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10760a signed addition of the two arguments, and indicate whether an overflow
10761occurred during the signed summation.
10762
10763Arguments:
10764""""""""""
10765
10766The arguments (%a and %b) and the first element of the result structure
10767may be of integer types of any bit width, but they must have the same
10768bit width. The second element of the result structure must be of type
10769``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10770addition.
10771
10772Semantics:
10773""""""""""
10774
10775The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010776a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010777first element of which is the signed summation, and the second element
10778of which is a bit specifying if the signed summation resulted in an
10779overflow.
10780
10781Examples:
10782"""""""""
10783
10784.. code-block:: llvm
10785
10786 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10787 %sum = extractvalue {i32, i1} %res, 0
10788 %obit = extractvalue {i32, i1} %res, 1
10789 br i1 %obit, label %overflow, label %normal
10790
10791'``llvm.uadd.with.overflow.*``' Intrinsics
10792^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10793
10794Syntax:
10795"""""""
10796
10797This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10798on any integer bit width.
10799
10800::
10801
10802 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10803 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10804 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10805
10806Overview:
10807"""""""""
10808
10809The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10810an unsigned addition of the two arguments, and indicate whether a carry
10811occurred during the unsigned summation.
10812
10813Arguments:
10814""""""""""
10815
10816The arguments (%a and %b) and the first element of the result structure
10817may be of integer types of any bit width, but they must have the same
10818bit width. The second element of the result structure must be of type
10819``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10820addition.
10821
10822Semantics:
10823""""""""""
10824
10825The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010826an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010827first element of which is the sum, and the second element of which is a
10828bit specifying if the unsigned summation resulted in a carry.
10829
10830Examples:
10831"""""""""
10832
10833.. code-block:: llvm
10834
10835 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10836 %sum = extractvalue {i32, i1} %res, 0
10837 %obit = extractvalue {i32, i1} %res, 1
10838 br i1 %obit, label %carry, label %normal
10839
10840'``llvm.ssub.with.overflow.*``' Intrinsics
10841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10842
10843Syntax:
10844"""""""
10845
10846This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10847on any integer bit width.
10848
10849::
10850
10851 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10852 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10853 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10854
10855Overview:
10856"""""""""
10857
10858The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10859a signed subtraction of the two arguments, and indicate whether an
10860overflow occurred during the signed subtraction.
10861
10862Arguments:
10863""""""""""
10864
10865The arguments (%a and %b) and the first element of the result structure
10866may be of integer types of any bit width, but they must have the same
10867bit width. The second element of the result structure must be of type
10868``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10869subtraction.
10870
10871Semantics:
10872""""""""""
10873
10874The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010875a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010876first element of which is the subtraction, and the second element of
10877which is a bit specifying if the signed subtraction resulted in an
10878overflow.
10879
10880Examples:
10881"""""""""
10882
10883.. code-block:: llvm
10884
10885 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10886 %sum = extractvalue {i32, i1} %res, 0
10887 %obit = extractvalue {i32, i1} %res, 1
10888 br i1 %obit, label %overflow, label %normal
10889
10890'``llvm.usub.with.overflow.*``' Intrinsics
10891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10892
10893Syntax:
10894"""""""
10895
10896This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10897on any integer bit width.
10898
10899::
10900
10901 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10902 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10903 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10904
10905Overview:
10906"""""""""
10907
10908The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10909an unsigned subtraction of the two arguments, and indicate whether an
10910overflow occurred during the unsigned subtraction.
10911
10912Arguments:
10913""""""""""
10914
10915The arguments (%a and %b) and the first element of the result structure
10916may be of integer types of any bit width, but they must have the same
10917bit width. The second element of the result structure must be of type
10918``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10919subtraction.
10920
10921Semantics:
10922""""""""""
10923
10924The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010925an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010926the first element of which is the subtraction, and the second element of
10927which is a bit specifying if the unsigned subtraction resulted in an
10928overflow.
10929
10930Examples:
10931"""""""""
10932
10933.. code-block:: llvm
10934
10935 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10936 %sum = extractvalue {i32, i1} %res, 0
10937 %obit = extractvalue {i32, i1} %res, 1
10938 br i1 %obit, label %overflow, label %normal
10939
10940'``llvm.smul.with.overflow.*``' Intrinsics
10941^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10942
10943Syntax:
10944"""""""
10945
10946This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10947on any integer bit width.
10948
10949::
10950
10951 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10952 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10953 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10954
10955Overview:
10956"""""""""
10957
10958The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10959a signed multiplication of the two arguments, and indicate whether an
10960overflow occurred during the signed multiplication.
10961
10962Arguments:
10963""""""""""
10964
10965The arguments (%a and %b) and the first element of the result structure
10966may be of integer types of any bit width, but they must have the same
10967bit width. The second element of the result structure must be of type
10968``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10969multiplication.
10970
10971Semantics:
10972""""""""""
10973
10974The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010975a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010976the first element of which is the multiplication, and the second element
10977of which is a bit specifying if the signed multiplication resulted in an
10978overflow.
10979
10980Examples:
10981"""""""""
10982
10983.. code-block:: llvm
10984
10985 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10986 %sum = extractvalue {i32, i1} %res, 0
10987 %obit = extractvalue {i32, i1} %res, 1
10988 br i1 %obit, label %overflow, label %normal
10989
10990'``llvm.umul.with.overflow.*``' Intrinsics
10991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10992
10993Syntax:
10994"""""""
10995
10996This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10997on any integer bit width.
10998
10999::
11000
11001 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11002 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11003 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11004
11005Overview:
11006"""""""""
11007
11008The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11009a unsigned multiplication of the two arguments, and indicate whether an
11010overflow occurred during the unsigned multiplication.
11011
11012Arguments:
11013""""""""""
11014
11015The arguments (%a and %b) and the first element of the result structure
11016may be of integer types of any bit width, but they must have the same
11017bit width. The second element of the result structure must be of type
11018``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11019multiplication.
11020
11021Semantics:
11022""""""""""
11023
11024The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011025an unsigned multiplication of the two arguments. They return a structure ---
11026the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011027element of which is a bit specifying if the unsigned multiplication
11028resulted in an overflow.
11029
11030Examples:
11031"""""""""
11032
11033.. code-block:: llvm
11034
11035 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11036 %sum = extractvalue {i32, i1} %res, 0
11037 %obit = extractvalue {i32, i1} %res, 1
11038 br i1 %obit, label %overflow, label %normal
11039
11040Specialised Arithmetic Intrinsics
11041---------------------------------
11042
Owen Anderson1056a922015-07-11 07:01:27 +000011043'``llvm.canonicalize.*``' Intrinsic
11044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11045
11046Syntax:
11047"""""""
11048
11049::
11050
11051 declare float @llvm.canonicalize.f32(float %a)
11052 declare double @llvm.canonicalize.f64(double %b)
11053
11054Overview:
11055"""""""""
11056
11057The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011058encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011059implementing certain numeric primitives such as frexp. The canonical encoding is
11060defined by IEEE-754-2008 to be:
11061
11062::
11063
11064 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011065 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011066 numbers, infinities, and NaNs, especially in decimal formats.
11067
11068This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011069conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011070according to section 6.2.
11071
11072Examples of non-canonical encodings:
11073
Sean Silvaa1190322015-08-06 22:56:48 +000011074- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011075 converted to a canonical representation per hardware-specific protocol.
11076- Many normal decimal floating point numbers have non-canonical alternative
11077 encodings.
11078- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011079 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011080 a zero of the same sign by this operation.
11081
11082Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11083default exception handling must signal an invalid exception, and produce a
11084quiet NaN result.
11085
11086This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011087that the compiler does not constant fold the operation. Likewise, division by
110881.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011089-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11090
Sean Silvaa1190322015-08-06 22:56:48 +000011091``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011092
11093- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11094- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11095 to ``(x == y)``
11096
11097Additionally, the sign of zero must be conserved:
11098``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11099
11100The payload bits of a NaN must be conserved, with two exceptions.
11101First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011102must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011103usual methods.
11104
11105The canonicalization operation may be optimized away if:
11106
Sean Silvaa1190322015-08-06 22:56:48 +000011107- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011108 floating-point operation that is required by the standard to be canonical.
11109- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011110 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011111
Sean Silvab084af42012-12-07 10:36:55 +000011112'``llvm.fmuladd.*``' Intrinsic
11113^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11114
11115Syntax:
11116"""""""
11117
11118::
11119
11120 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11121 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11122
11123Overview:
11124"""""""""
11125
11126The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011127expressions that can be fused if the code generator determines that (a) the
11128target instruction set has support for a fused operation, and (b) that the
11129fused operation is more efficient than the equivalent, separate pair of mul
11130and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011131
11132Arguments:
11133""""""""""
11134
11135The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11136multiplicands, a and b, and an addend c.
11137
11138Semantics:
11139""""""""""
11140
11141The expression:
11142
11143::
11144
11145 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11146
11147is equivalent to the expression a \* b + c, except that rounding will
11148not be performed between the multiplication and addition steps if the
11149code generator fuses the operations. Fusion is not guaranteed, even if
11150the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011151corresponding llvm.fma.\* intrinsic function should be used
11152instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011153
11154Examples:
11155"""""""""
11156
11157.. code-block:: llvm
11158
Tim Northover675a0962014-06-13 14:24:23 +000011159 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011160
11161Half Precision Floating Point Intrinsics
11162----------------------------------------
11163
11164For most target platforms, half precision floating point is a
11165storage-only format. This means that it is a dense encoding (in memory)
11166but does not support computation in the format.
11167
11168This means that code must first load the half-precision floating point
11169value as an i16, then convert it to float with
11170:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11171then be performed on the float value (including extending to double
11172etc). To store the value back to memory, it is first converted to float
11173if needed, then converted to i16 with
11174:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11175i16 value.
11176
11177.. _int_convert_to_fp16:
11178
11179'``llvm.convert.to.fp16``' Intrinsic
11180^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11181
11182Syntax:
11183"""""""
11184
11185::
11186
Tim Northoverfd7e4242014-07-17 10:51:23 +000011187 declare i16 @llvm.convert.to.fp16.f32(float %a)
11188 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011189
11190Overview:
11191"""""""""
11192
Tim Northoverfd7e4242014-07-17 10:51:23 +000011193The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11194conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011195
11196Arguments:
11197""""""""""
11198
11199The intrinsic function contains single argument - the value to be
11200converted.
11201
11202Semantics:
11203""""""""""
11204
Tim Northoverfd7e4242014-07-17 10:51:23 +000011205The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11206conventional floating point format to half precision floating point format. The
11207return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011208
11209Examples:
11210"""""""""
11211
11212.. code-block:: llvm
11213
Tim Northoverfd7e4242014-07-17 10:51:23 +000011214 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011215 store i16 %res, i16* @x, align 2
11216
11217.. _int_convert_from_fp16:
11218
11219'``llvm.convert.from.fp16``' Intrinsic
11220^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11221
11222Syntax:
11223"""""""
11224
11225::
11226
Tim Northoverfd7e4242014-07-17 10:51:23 +000011227 declare float @llvm.convert.from.fp16.f32(i16 %a)
11228 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011229
11230Overview:
11231"""""""""
11232
11233The '``llvm.convert.from.fp16``' intrinsic function performs a
11234conversion from half precision floating point format to single precision
11235floating point format.
11236
11237Arguments:
11238""""""""""
11239
11240The intrinsic function contains single argument - the value to be
11241converted.
11242
11243Semantics:
11244""""""""""
11245
11246The '``llvm.convert.from.fp16``' intrinsic function performs a
11247conversion from half single precision floating point format to single
11248precision floating point format. The input half-float value is
11249represented by an ``i16`` value.
11250
11251Examples:
11252"""""""""
11253
11254.. code-block:: llvm
11255
David Blaikiec7aabbb2015-03-04 22:06:14 +000011256 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011257 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011258
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011259.. _dbg_intrinsics:
11260
Sean Silvab084af42012-12-07 10:36:55 +000011261Debugger Intrinsics
11262-------------------
11263
11264The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11265prefix), are described in the `LLVM Source Level
11266Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11267document.
11268
11269Exception Handling Intrinsics
11270-----------------------------
11271
11272The LLVM exception handling intrinsics (which all start with
11273``llvm.eh.`` prefix), are described in the `LLVM Exception
11274Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11275
11276.. _int_trampoline:
11277
11278Trampoline Intrinsics
11279---------------------
11280
11281These intrinsics make it possible to excise one parameter, marked with
11282the :ref:`nest <nest>` attribute, from a function. The result is a
11283callable function pointer lacking the nest parameter - the caller does
11284not need to provide a value for it. Instead, the value to use is stored
11285in advance in a "trampoline", a block of memory usually allocated on the
11286stack, which also contains code to splice the nest value into the
11287argument list. This is used to implement the GCC nested function address
11288extension.
11289
11290For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11291then the resulting function pointer has signature ``i32 (i32, i32)*``.
11292It can be created as follows:
11293
11294.. code-block:: llvm
11295
11296 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011297 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011298 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11299 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11300 %fp = bitcast i8* %p to i32 (i32, i32)*
11301
11302The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11303``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11304
11305.. _int_it:
11306
11307'``llvm.init.trampoline``' Intrinsic
11308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11309
11310Syntax:
11311"""""""
11312
11313::
11314
11315 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11316
11317Overview:
11318"""""""""
11319
11320This fills the memory pointed to by ``tramp`` with executable code,
11321turning it into a trampoline.
11322
11323Arguments:
11324""""""""""
11325
11326The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11327pointers. The ``tramp`` argument must point to a sufficiently large and
11328sufficiently aligned block of memory; this memory is written to by the
11329intrinsic. Note that the size and the alignment are target-specific -
11330LLVM currently provides no portable way of determining them, so a
11331front-end that generates this intrinsic needs to have some
11332target-specific knowledge. The ``func`` argument must hold a function
11333bitcast to an ``i8*``.
11334
11335Semantics:
11336""""""""""
11337
11338The block of memory pointed to by ``tramp`` is filled with target
11339dependent code, turning it into a function. Then ``tramp`` needs to be
11340passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11341be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11342function's signature is the same as that of ``func`` with any arguments
11343marked with the ``nest`` attribute removed. At most one such ``nest``
11344argument is allowed, and it must be of pointer type. Calling the new
11345function is equivalent to calling ``func`` with the same argument list,
11346but with ``nval`` used for the missing ``nest`` argument. If, after
11347calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11348modified, then the effect of any later call to the returned function
11349pointer is undefined.
11350
11351.. _int_at:
11352
11353'``llvm.adjust.trampoline``' Intrinsic
11354^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11355
11356Syntax:
11357"""""""
11358
11359::
11360
11361 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11362
11363Overview:
11364"""""""""
11365
11366This performs any required machine-specific adjustment to the address of
11367a trampoline (passed as ``tramp``).
11368
11369Arguments:
11370""""""""""
11371
11372``tramp`` must point to a block of memory which already has trampoline
11373code filled in by a previous call to
11374:ref:`llvm.init.trampoline <int_it>`.
11375
11376Semantics:
11377""""""""""
11378
11379On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011380different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011381intrinsic returns the executable address corresponding to ``tramp``
11382after performing the required machine specific adjustments. The pointer
11383returned can then be :ref:`bitcast and executed <int_trampoline>`.
11384
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011385.. _int_mload_mstore:
11386
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011387Masked Vector Load and Store Intrinsics
11388---------------------------------------
11389
11390LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11391
11392.. _int_mload:
11393
11394'``llvm.masked.load.*``' Intrinsics
11395^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11396
11397Syntax:
11398"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011399This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011400
11401::
11402
Matthias Braun68bb2932016-03-22 20:24:34 +000011403 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11404 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011405 ;; The data is a vector of pointers to double
Matthias Braun68bb2932016-03-22 20:24:34 +000011406 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011407 ;; The data is a vector of function pointers
Matthias Braun68bb2932016-03-22 20:24:34 +000011408 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011409
11410Overview:
11411"""""""""
11412
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011413Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011414
11415
11416Arguments:
11417""""""""""
11418
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011419The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011420
11421
11422Semantics:
11423""""""""""
11424
11425The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11426The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11427
11428
11429::
11430
Matthias Braun68bb2932016-03-22 20:24:34 +000011431 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011432
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011433 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011434 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011435 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011436
11437.. _int_mstore:
11438
11439'``llvm.masked.store.*``' Intrinsics
11440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11441
11442Syntax:
11443"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011444This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011445
11446::
11447
Matthias Braun68bb2932016-03-22 20:24:34 +000011448 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11449 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011450 ;; The data is a vector of pointers to double
Matthias Braun68bb2932016-03-22 20:24:34 +000011451 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011452 ;; The data is a vector of function pointers
Matthias Braun68bb2932016-03-22 20:24:34 +000011453 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011454
11455Overview:
11456"""""""""
11457
11458Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11459
11460Arguments:
11461""""""""""
11462
11463The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11464
11465
11466Semantics:
11467""""""""""
11468
11469The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11470The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11471
11472::
11473
Matthias Braun68bb2932016-03-22 20:24:34 +000011474 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011475
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011476 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011477 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011478 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11479 store <16 x float> %res, <16 x float>* %ptr, align 4
11480
11481
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011482Masked Vector Gather and Scatter Intrinsics
11483-------------------------------------------
11484
11485LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11486
11487.. _int_mgather:
11488
11489'``llvm.masked.gather.*``' Intrinsics
11490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11491
11492Syntax:
11493"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011494This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011495
11496::
11497
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011498 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11499 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11500 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011501
11502Overview:
11503"""""""""
11504
11505Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11506
11507
11508Arguments:
11509""""""""""
11510
11511The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11512
11513
11514Semantics:
11515""""""""""
11516
11517The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11518The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11519
11520
11521::
11522
11523 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11524
11525 ;; The gather with all-true mask is equivalent to the following instruction sequence
11526 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11527 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11528 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11529 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11530
11531 %val0 = load double, double* %ptr0, align 8
11532 %val1 = load double, double* %ptr1, align 8
11533 %val2 = load double, double* %ptr2, align 8
11534 %val3 = load double, double* %ptr3, align 8
11535
11536 %vec0 = insertelement <4 x double>undef, %val0, 0
11537 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11538 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11539 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11540
11541.. _int_mscatter:
11542
11543'``llvm.masked.scatter.*``' Intrinsics
11544^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11545
11546Syntax:
11547"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011548This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011549
11550::
11551
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011552 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11553 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11554 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011555
11556Overview:
11557"""""""""
11558
11559Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11560
11561Arguments:
11562""""""""""
11563
11564The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11565
11566
11567Semantics:
11568""""""""""
11569
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011570The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011571
11572::
11573
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011574 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011575 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11576
11577 ;; It is equivalent to a list of scalar stores
11578 %val0 = extractelement <8 x i32> %value, i32 0
11579 %val1 = extractelement <8 x i32> %value, i32 1
11580 ..
11581 %val7 = extractelement <8 x i32> %value, i32 7
11582 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11583 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11584 ..
11585 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11586 ;; Note: the order of the following stores is important when they overlap:
11587 store i32 %val0, i32* %ptr0, align 4
11588 store i32 %val1, i32* %ptr1, align 4
11589 ..
11590 store i32 %val7, i32* %ptr7, align 4
11591
11592
Sean Silvab084af42012-12-07 10:36:55 +000011593Memory Use Markers
11594------------------
11595
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011596This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011597memory objects and ranges where variables are immutable.
11598
Reid Klecknera534a382013-12-19 02:14:12 +000011599.. _int_lifestart:
11600
Sean Silvab084af42012-12-07 10:36:55 +000011601'``llvm.lifetime.start``' Intrinsic
11602^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11603
11604Syntax:
11605"""""""
11606
11607::
11608
11609 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11610
11611Overview:
11612"""""""""
11613
11614The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11615object's lifetime.
11616
11617Arguments:
11618""""""""""
11619
11620The first argument is a constant integer representing the size of the
11621object, or -1 if it is variable sized. The second argument is a pointer
11622to the object.
11623
11624Semantics:
11625""""""""""
11626
11627This intrinsic indicates that before this point in the code, the value
11628of the memory pointed to by ``ptr`` is dead. This means that it is known
11629to never be used and has an undefined value. A load from the pointer
11630that precedes this intrinsic can be replaced with ``'undef'``.
11631
Reid Klecknera534a382013-12-19 02:14:12 +000011632.. _int_lifeend:
11633
Sean Silvab084af42012-12-07 10:36:55 +000011634'``llvm.lifetime.end``' Intrinsic
11635^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11636
11637Syntax:
11638"""""""
11639
11640::
11641
11642 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11643
11644Overview:
11645"""""""""
11646
11647The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11648object's lifetime.
11649
11650Arguments:
11651""""""""""
11652
11653The first argument is a constant integer representing the size of the
11654object, or -1 if it is variable sized. The second argument is a pointer
11655to the object.
11656
11657Semantics:
11658""""""""""
11659
11660This intrinsic indicates that after this point in the code, the value of
11661the memory pointed to by ``ptr`` is dead. This means that it is known to
11662never be used and has an undefined value. Any stores into the memory
11663object following this intrinsic may be removed as dead.
11664
11665'``llvm.invariant.start``' Intrinsic
11666^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11667
11668Syntax:
11669"""""""
11670
11671::
11672
11673 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11674
11675Overview:
11676"""""""""
11677
11678The '``llvm.invariant.start``' intrinsic specifies that the contents of
11679a memory object will not change.
11680
11681Arguments:
11682""""""""""
11683
11684The first argument is a constant integer representing the size of the
11685object, or -1 if it is variable sized. The second argument is a pointer
11686to the object.
11687
11688Semantics:
11689""""""""""
11690
11691This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11692the return value, the referenced memory location is constant and
11693unchanging.
11694
11695'``llvm.invariant.end``' Intrinsic
11696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11697
11698Syntax:
11699"""""""
11700
11701::
11702
11703 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11704
11705Overview:
11706"""""""""
11707
11708The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11709memory object are mutable.
11710
11711Arguments:
11712""""""""""
11713
11714The first argument is the matching ``llvm.invariant.start`` intrinsic.
11715The second argument is a constant integer representing the size of the
11716object, or -1 if it is variable sized and the third argument is a
11717pointer to the object.
11718
11719Semantics:
11720""""""""""
11721
11722This intrinsic indicates that the memory is mutable again.
11723
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011724'``llvm.invariant.group.barrier``' Intrinsic
11725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11726
11727Syntax:
11728"""""""
11729
11730::
11731
11732 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11733
11734Overview:
11735"""""""""
11736
11737The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11738established by invariant.group metadata no longer holds, to obtain a new pointer
11739value that does not carry the invariant information.
11740
11741
11742Arguments:
11743""""""""""
11744
11745The ``llvm.invariant.group.barrier`` takes only one argument, which is
11746the pointer to the memory for which the ``invariant.group`` no longer holds.
11747
11748Semantics:
11749""""""""""
11750
11751Returns another pointer that aliases its argument but which is considered different
11752for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11753
Sean Silvab084af42012-12-07 10:36:55 +000011754General Intrinsics
11755------------------
11756
11757This class of intrinsics is designed to be generic and has no specific
11758purpose.
11759
11760'``llvm.var.annotation``' Intrinsic
11761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11762
11763Syntax:
11764"""""""
11765
11766::
11767
11768 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11769
11770Overview:
11771"""""""""
11772
11773The '``llvm.var.annotation``' intrinsic.
11774
11775Arguments:
11776""""""""""
11777
11778The first argument is a pointer to a value, the second is a pointer to a
11779global string, the third is a pointer to a global string which is the
11780source file name, and the last argument is the line number.
11781
11782Semantics:
11783""""""""""
11784
11785This intrinsic allows annotation of local variables with arbitrary
11786strings. This can be useful for special purpose optimizations that want
11787to look for these annotations. These have no other defined use; they are
11788ignored by code generation and optimization.
11789
Michael Gottesman88d18832013-03-26 00:34:27 +000011790'``llvm.ptr.annotation.*``' Intrinsic
11791^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11792
11793Syntax:
11794"""""""
11795
11796This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11797pointer to an integer of any width. *NOTE* you must specify an address space for
11798the pointer. The identifier for the default address space is the integer
11799'``0``'.
11800
11801::
11802
11803 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11804 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11805 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11806 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11807 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11808
11809Overview:
11810"""""""""
11811
11812The '``llvm.ptr.annotation``' intrinsic.
11813
11814Arguments:
11815""""""""""
11816
11817The first argument is a pointer to an integer value of arbitrary bitwidth
11818(result of some expression), the second is a pointer to a global string, the
11819third is a pointer to a global string which is the source file name, and the
11820last argument is the line number. It returns the value of the first argument.
11821
11822Semantics:
11823""""""""""
11824
11825This intrinsic allows annotation of a pointer to an integer with arbitrary
11826strings. This can be useful for special purpose optimizations that want to look
11827for these annotations. These have no other defined use; they are ignored by code
11828generation and optimization.
11829
Sean Silvab084af42012-12-07 10:36:55 +000011830'``llvm.annotation.*``' Intrinsic
11831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11832
11833Syntax:
11834"""""""
11835
11836This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11837any integer bit width.
11838
11839::
11840
11841 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11842 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11843 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11844 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11845 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11846
11847Overview:
11848"""""""""
11849
11850The '``llvm.annotation``' intrinsic.
11851
11852Arguments:
11853""""""""""
11854
11855The first argument is an integer value (result of some expression), the
11856second is a pointer to a global string, the third is a pointer to a
11857global string which is the source file name, and the last argument is
11858the line number. It returns the value of the first argument.
11859
11860Semantics:
11861""""""""""
11862
11863This intrinsic allows annotations to be put on arbitrary expressions
11864with arbitrary strings. This can be useful for special purpose
11865optimizations that want to look for these annotations. These have no
11866other defined use; they are ignored by code generation and optimization.
11867
11868'``llvm.trap``' Intrinsic
11869^^^^^^^^^^^^^^^^^^^^^^^^^
11870
11871Syntax:
11872"""""""
11873
11874::
11875
11876 declare void @llvm.trap() noreturn nounwind
11877
11878Overview:
11879"""""""""
11880
11881The '``llvm.trap``' intrinsic.
11882
11883Arguments:
11884""""""""""
11885
11886None.
11887
11888Semantics:
11889""""""""""
11890
11891This intrinsic is lowered to the target dependent trap instruction. If
11892the target does not have a trap instruction, this intrinsic will be
11893lowered to a call of the ``abort()`` function.
11894
11895'``llvm.debugtrap``' Intrinsic
11896^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11897
11898Syntax:
11899"""""""
11900
11901::
11902
11903 declare void @llvm.debugtrap() nounwind
11904
11905Overview:
11906"""""""""
11907
11908The '``llvm.debugtrap``' intrinsic.
11909
11910Arguments:
11911""""""""""
11912
11913None.
11914
11915Semantics:
11916""""""""""
11917
11918This intrinsic is lowered to code which is intended to cause an
11919execution trap with the intention of requesting the attention of a
11920debugger.
11921
11922'``llvm.stackprotector``' Intrinsic
11923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11924
11925Syntax:
11926"""""""
11927
11928::
11929
11930 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11931
11932Overview:
11933"""""""""
11934
11935The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11936onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11937is placed on the stack before local variables.
11938
11939Arguments:
11940""""""""""
11941
11942The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11943The first argument is the value loaded from the stack guard
11944``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11945enough space to hold the value of the guard.
11946
11947Semantics:
11948""""""""""
11949
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011950This intrinsic causes the prologue/epilogue inserter to force the position of
11951the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11952to ensure that if a local variable on the stack is overwritten, it will destroy
11953the value of the guard. When the function exits, the guard on the stack is
11954checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11955different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11956calling the ``__stack_chk_fail()`` function.
11957
Sean Silvab084af42012-12-07 10:36:55 +000011958'``llvm.objectsize``' Intrinsic
11959^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11960
11961Syntax:
11962"""""""
11963
11964::
11965
11966 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11967 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11968
11969Overview:
11970"""""""""
11971
11972The ``llvm.objectsize`` intrinsic is designed to provide information to
11973the optimizers to determine at compile time whether a) an operation
11974(like memcpy) will overflow a buffer that corresponds to an object, or
11975b) that a runtime check for overflow isn't necessary. An object in this
11976context means an allocation of a specific class, structure, array, or
11977other object.
11978
11979Arguments:
11980""""""""""
11981
11982The ``llvm.objectsize`` intrinsic takes two arguments. The first
11983argument is a pointer to or into the ``object``. The second argument is
11984a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11985or -1 (if false) when the object size is unknown. The second argument
11986only accepts constants.
11987
11988Semantics:
11989""""""""""
11990
11991The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11992the size of the object concerned. If the size cannot be determined at
11993compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11994on the ``min`` argument).
11995
11996'``llvm.expect``' Intrinsic
11997^^^^^^^^^^^^^^^^^^^^^^^^^^^
11998
11999Syntax:
12000"""""""
12001
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012002This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12003integer bit width.
12004
Sean Silvab084af42012-12-07 10:36:55 +000012005::
12006
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012007 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012008 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12009 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12010
12011Overview:
12012"""""""""
12013
12014The ``llvm.expect`` intrinsic provides information about expected (the
12015most probable) value of ``val``, which can be used by optimizers.
12016
12017Arguments:
12018""""""""""
12019
12020The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12021a value. The second argument is an expected value, this needs to be a
12022constant value, variables are not allowed.
12023
12024Semantics:
12025""""""""""
12026
12027This intrinsic is lowered to the ``val``.
12028
Philip Reamese0e90832015-04-26 22:23:12 +000012029.. _int_assume:
12030
Hal Finkel93046912014-07-25 21:13:35 +000012031'``llvm.assume``' Intrinsic
12032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12033
12034Syntax:
12035"""""""
12036
12037::
12038
12039 declare void @llvm.assume(i1 %cond)
12040
12041Overview:
12042"""""""""
12043
12044The ``llvm.assume`` allows the optimizer to assume that the provided
12045condition is true. This information can then be used in simplifying other parts
12046of the code.
12047
12048Arguments:
12049""""""""""
12050
12051The condition which the optimizer may assume is always true.
12052
12053Semantics:
12054""""""""""
12055
12056The intrinsic allows the optimizer to assume that the provided condition is
12057always true whenever the control flow reaches the intrinsic call. No code is
12058generated for this intrinsic, and instructions that contribute only to the
12059provided condition are not used for code generation. If the condition is
12060violated during execution, the behavior is undefined.
12061
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012062Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012063used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12064only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012065if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012066sufficient overall improvement in code quality. For this reason,
12067``llvm.assume`` should not be used to document basic mathematical invariants
12068that the optimizer can otherwise deduce or facts that are of little use to the
12069optimizer.
12070
Peter Collingbournee6909c82015-02-20 20:30:47 +000012071.. _bitset.test:
12072
12073'``llvm.bitset.test``' Intrinsic
12074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12075
12076Syntax:
12077"""""""
12078
12079::
12080
12081 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12082
12083
12084Arguments:
12085""""""""""
12086
12087The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012088metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012089
12090Overview:
12091"""""""""
12092
12093The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12094member of the given bitset.
12095
Sean Silvab084af42012-12-07 10:36:55 +000012096'``llvm.donothing``' Intrinsic
12097^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12098
12099Syntax:
12100"""""""
12101
12102::
12103
12104 declare void @llvm.donothing() nounwind readnone
12105
12106Overview:
12107"""""""""
12108
Juergen Ributzkac9161192014-10-23 22:36:13 +000012109The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012110three intrinsics (besides ``llvm.experimental.patchpoint`` and
12111``llvm.experimental.gc.statepoint``) that can be called with an invoke
12112instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012113
12114Arguments:
12115""""""""""
12116
12117None.
12118
12119Semantics:
12120""""""""""
12121
12122This intrinsic does nothing, and it's removed by optimizers and ignored
12123by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012124
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012125'``llvm.experimental.deoptimize``' Intrinsic
12126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12127
12128Syntax:
12129"""""""
12130
12131::
12132
12133 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12134
12135Overview:
12136"""""""""
12137
12138This intrinsic, together with :ref:`deoptimization operand bundles
12139<deopt_opbundles>`, allow frontends to express transfer of control and
12140frame-local state from the currently executing (typically more specialized,
12141hence faster) version of a function into another (typically more generic, hence
12142slower) version.
12143
12144In languages with a fully integrated managed runtime like Java and JavaScript
12145this intrinsic can be used to implement "uncommon trap" or "side exit" like
12146functionality. In unmanaged languages like C and C++, this intrinsic can be
12147used to represent the slow paths of specialized functions.
12148
12149
12150Arguments:
12151""""""""""
12152
12153The intrinsic takes an arbitrary number of arguments, whose meaning is
12154decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12155
12156Semantics:
12157""""""""""
12158
12159The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12160deoptimization continuation (denoted using a :ref:`deoptimization
12161operand bundle <deopt_opbundles>`) and returns the value returned by
12162the deoptimization continuation. Defining the semantic properties of
12163the continuation itself is out of scope of the language reference --
12164as far as LLVM is concerned, the deoptimization continuation can
12165invoke arbitrary side effects, including reading from and writing to
12166the entire heap.
12167
12168Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12169continue execution to the end of the physical frame containing them, so all
12170calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12171
12172 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12173 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12174 - The ``ret`` instruction must return the value produced by the
12175 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12176
12177Note that the above restrictions imply that the return type for a call to
12178``@llvm.experimental.deoptimize`` will match the return type of its immediate
12179caller.
12180
12181The inliner composes the ``"deopt"`` continuations of the caller into the
12182``"deopt"`` continuations present in the inlinee, and also updates calls to this
12183intrinsic to return directly from the frame of the function it inlined into.
12184
12185.. _deoptimize_lowering:
12186
12187Lowering:
12188"""""""""
12189
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012190Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12191symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12192ensure that this symbol is defined). The call arguments to
12193``@llvm.experimental.deoptimize`` are lowered as if they were formal
12194arguments of the specified types, and not as varargs.
12195
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012196
Sanjoy Das021de052016-03-31 00:18:46 +000012197'``llvm.experimental.guard``' Intrinsic
12198^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12199
12200Syntax:
12201"""""""
12202
12203::
12204
12205 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12206
12207Overview:
12208"""""""""
12209
12210This intrinsic, together with :ref:`deoptimization operand bundles
12211<deopt_opbundles>`, allows frontends to express guards or checks on
12212optimistic assumptions made during compilation. The semantics of
12213``@llvm.experimental.guard`` is defined in terms of
12214``@llvm.experimental.deoptimize`` -- its body is defined to be
12215equivalent to:
12216
12217.. code-block:: llvm
12218
12219 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12220 %realPred = and i1 %pred, undef
12221 br i1 %realPred, label %continue, label %leave
12222
12223 leave:
12224 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12225 ret void
12226
12227 continue:
12228 ret void
12229 }
12230
12231In words, ``@llvm.experimental.guard`` executes the attached
12232``"deopt"`` continuation if (but **not** only if) its first argument
12233is ``false``. Since the optimizer is allowed to replace the ``undef``
12234with an arbitrary value, it can optimize guard to fail "spuriously",
12235i.e. without the original condition being false (hence the "not only
12236if"); and this allows for "check widening" type optimizations.
12237
12238``@llvm.experimental.guard`` cannot be invoked.
12239
12240
Andrew Trick5e029ce2013-12-24 02:57:25 +000012241Stack Map Intrinsics
12242--------------------
12243
12244LLVM provides experimental intrinsics to support runtime patching
12245mechanisms commonly desired in dynamic language JITs. These intrinsics
12246are described in :doc:`StackMaps`.