blob: c08eb2f548f0b410cd452e47fa77c46d4a59dce0 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
253``extern_weak``
254 The semantics of this linkage follow the ELF object file model: the
255 symbol is weak until linked, if not linked, the symbol becomes null
256 instead of being an undefined reference.
257``linkonce_odr``, ``weak_odr``
258 Some languages allow differing globals to be merged, such as two
259 functions with different semantics. Other languages, such as
260 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000261 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000262 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
263 global will only be merged with equivalent globals. These linkage
264 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000265``external``
266 If none of the above identifiers are used, the global is externally
267 visible, meaning that it participates in linkage and can be used to
268 resolve external symbol references.
269
Sean Silvab084af42012-12-07 10:36:55 +0000270It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000271other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000272
Sean Silvab084af42012-12-07 10:36:55 +0000273.. _callingconv:
274
275Calling Conventions
276-------------------
277
278LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
279:ref:`invokes <i_invoke>` can all have an optional calling convention
280specified for the call. The calling convention of any pair of dynamic
281caller/callee must match, or the behavior of the program is undefined.
282The following calling conventions are supported by LLVM, and more may be
283added in the future:
284
285"``ccc``" - The C calling convention
286 This calling convention (the default if no other calling convention
287 is specified) matches the target C calling conventions. This calling
288 convention supports varargs function calls and tolerates some
289 mismatch in the declared prototype and implemented declaration of
290 the function (as does normal C).
291"``fastcc``" - The fast calling convention
292 This calling convention attempts to make calls as fast as possible
293 (e.g. by passing things in registers). This calling convention
294 allows the target to use whatever tricks it wants to produce fast
295 code for the target, without having to conform to an externally
296 specified ABI (Application Binary Interface). `Tail calls can only
297 be optimized when this, the GHC or the HiPE convention is
298 used. <CodeGenerator.html#id80>`_ This calling convention does not
299 support varargs and requires the prototype of all callees to exactly
300 match the prototype of the function definition.
301"``coldcc``" - The cold calling convention
302 This calling convention attempts to make code in the caller as
303 efficient as possible under the assumption that the call is not
304 commonly executed. As such, these calls often preserve all registers
305 so that the call does not break any live ranges in the caller side.
306 This calling convention does not support varargs and requires the
307 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000308 function definition. Furthermore the inliner doesn't consider such function
309 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000310"``cc 10``" - GHC convention
311 This calling convention has been implemented specifically for use by
312 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
313 It passes everything in registers, going to extremes to achieve this
314 by disabling callee save registers. This calling convention should
315 not be used lightly but only for specific situations such as an
316 alternative to the *register pinning* performance technique often
317 used when implementing functional programming languages. At the
318 moment only X86 supports this convention and it has the following
319 limitations:
320
321 - On *X86-32* only supports up to 4 bit type parameters. No
322 floating point types are supported.
323 - On *X86-64* only supports up to 10 bit type parameters and 6
324 floating point parameters.
325
326 This calling convention supports `tail call
327 optimization <CodeGenerator.html#id80>`_ but requires both the
328 caller and callee are using it.
329"``cc 11``" - The HiPE calling convention
330 This calling convention has been implemented specifically for use by
331 the `High-Performance Erlang
332 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
333 native code compiler of the `Ericsson's Open Source Erlang/OTP
334 system <http://www.erlang.org/download.shtml>`_. It uses more
335 registers for argument passing than the ordinary C calling
336 convention and defines no callee-saved registers. The calling
337 convention properly supports `tail call
338 optimization <CodeGenerator.html#id80>`_ but requires that both the
339 caller and the callee use it. It uses a *register pinning*
340 mechanism, similar to GHC's convention, for keeping frequently
341 accessed runtime components pinned to specific hardware registers.
342 At the moment only X86 supports this convention (both 32 and 64
343 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000344"``webkit_jscc``" - WebKit's JavaScript calling convention
345 This calling convention has been implemented for `WebKit FTL JIT
346 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
347 stack right to left (as cdecl does), and returns a value in the
348 platform's customary return register.
349"``anyregcc``" - Dynamic calling convention for code patching
350 This is a special convention that supports patching an arbitrary code
351 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000352 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000353 allocated. This can currently only be used with calls to
354 llvm.experimental.patchpoint because only this intrinsic records
355 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000356"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 This calling convention attempts to make the code in the caller as
358 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000359 calling convention on how arguments and return values are passed, but it
360 uses a different set of caller/callee-saved registers. This alleviates the
361 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000362 call in the caller. If the arguments are passed in callee-saved registers,
363 then they will be preserved by the callee across the call. This doesn't
364 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000365
366 - On X86-64 the callee preserves all general purpose registers, except for
367 R11. R11 can be used as a scratch register. Floating-point registers
368 (XMMs/YMMs) are not preserved and need to be saved by the caller.
369
370 The idea behind this convention is to support calls to runtime functions
371 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000372 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000373 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000374 registers, which haven't already been saved by the caller. The
375 `PreserveMost` calling convention is very similar to the `cold` calling
376 convention in terms of caller/callee-saved registers, but they are used for
377 different types of function calls. `coldcc` is for function calls that are
378 rarely executed, whereas `preserve_mostcc` function calls are intended to be
379 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
380 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000381
382 This calling convention will be used by a future version of the ObjectiveC
383 runtime and should therefore still be considered experimental at this time.
384 Although this convention was created to optimize certain runtime calls to
385 the ObjectiveC runtime, it is not limited to this runtime and might be used
386 by other runtimes in the future too. The current implementation only
387 supports X86-64, but the intention is to support more architectures in the
388 future.
389"``preserve_allcc``" - The `PreserveAll` calling convention
390 This calling convention attempts to make the code in the caller even less
391 intrusive than the `PreserveMost` calling convention. This calling
392 convention also behaves identical to the `C` calling convention on how
393 arguments and return values are passed, but it uses a different set of
394 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000395 recovering a large register set before and after the call in the caller. If
396 the arguments are passed in callee-saved registers, then they will be
397 preserved by the callee across the call. This doesn't apply for values
398 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000399
400 - On X86-64 the callee preserves all general purpose registers, except for
401 R11. R11 can be used as a scratch register. Furthermore it also preserves
402 all floating-point registers (XMMs/YMMs).
403
404 The idea behind this convention is to support calls to runtime functions
405 that don't need to call out to any other functions.
406
407 This calling convention, like the `PreserveMost` calling convention, will be
408 used by a future version of the ObjectiveC runtime and should be considered
409 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000410"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000411 Clang generates an access function to access C++-style TLS. The access
412 function generally has an entry block, an exit block and an initialization
413 block that is run at the first time. The entry and exit blocks can access
414 a few TLS IR variables, each access will be lowered to a platform-specific
415 sequence.
416
Manman Ren19c7bbe2015-12-04 17:40:13 +0000417 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000418 preserving as many registers as possible (all the registers that are
419 perserved on the fast path, composed of the entry and exit blocks).
420
421 This calling convention behaves identical to the `C` calling convention on
422 how arguments and return values are passed, but it uses a different set of
423 caller/callee-saved registers.
424
425 Given that each platform has its own lowering sequence, hence its own set
426 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000427
428 - On X86-64 the callee preserves all general purpose registers, except for
429 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000430"``swiftcc``" - This calling convention is used for Swift language.
431 - On X86-64 RCX and R8 are available for additional integer returns, and
432 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000433 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000434"``cc <n>``" - Numbered convention
435 Any calling convention may be specified by number, allowing
436 target-specific calling conventions to be used. Target specific
437 calling conventions start at 64.
438
439More calling conventions can be added/defined on an as-needed basis, to
440support Pascal conventions or any other well-known target-independent
441convention.
442
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000443.. _visibilitystyles:
444
Sean Silvab084af42012-12-07 10:36:55 +0000445Visibility Styles
446-----------------
447
448All Global Variables and Functions have one of the following visibility
449styles:
450
451"``default``" - Default style
452 On targets that use the ELF object file format, default visibility
453 means that the declaration is visible to other modules and, in
454 shared libraries, means that the declared entity may be overridden.
455 On Darwin, default visibility means that the declaration is visible
456 to other modules. Default visibility corresponds to "external
457 linkage" in the language.
458"``hidden``" - Hidden style
459 Two declarations of an object with hidden visibility refer to the
460 same object if they are in the same shared object. Usually, hidden
461 visibility indicates that the symbol will not be placed into the
462 dynamic symbol table, so no other module (executable or shared
463 library) can reference it directly.
464"``protected``" - Protected style
465 On ELF, protected visibility indicates that the symbol will be
466 placed in the dynamic symbol table, but that references within the
467 defining module will bind to the local symbol. That is, the symbol
468 cannot be overridden by another module.
469
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000470A symbol with ``internal`` or ``private`` linkage must have ``default``
471visibility.
472
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000473.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000474
Nico Rieck7157bb72014-01-14 15:22:47 +0000475DLL Storage Classes
476-------------------
477
478All Global Variables, Functions and Aliases can have one of the following
479DLL storage class:
480
481``dllimport``
482 "``dllimport``" causes the compiler to reference a function or variable via
483 a global pointer to a pointer that is set up by the DLL exporting the
484 symbol. On Microsoft Windows targets, the pointer name is formed by
485 combining ``__imp_`` and the function or variable name.
486``dllexport``
487 "``dllexport``" causes the compiler to provide a global pointer to a pointer
488 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
489 Microsoft Windows targets, the pointer name is formed by combining
490 ``__imp_`` and the function or variable name. Since this storage class
491 exists for defining a dll interface, the compiler, assembler and linker know
492 it is externally referenced and must refrain from deleting the symbol.
493
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000494.. _tls_model:
495
496Thread Local Storage Models
497---------------------------
498
499A variable may be defined as ``thread_local``, which means that it will
500not be shared by threads (each thread will have a separated copy of the
501variable). Not all targets support thread-local variables. Optionally, a
502TLS model may be specified:
503
504``localdynamic``
505 For variables that are only used within the current shared library.
506``initialexec``
507 For variables in modules that will not be loaded dynamically.
508``localexec``
509 For variables defined in the executable and only used within it.
510
511If no explicit model is given, the "general dynamic" model is used.
512
513The models correspond to the ELF TLS models; see `ELF Handling For
514Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
515more information on under which circumstances the different models may
516be used. The target may choose a different TLS model if the specified
517model is not supported, or if a better choice of model can be made.
518
Sean Silva706fba52015-08-06 22:56:24 +0000519A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000520the alias is accessed. It will not have any effect in the aliasee.
521
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000522For platforms without linker support of ELF TLS model, the -femulated-tls
523flag can be used to generate GCC compatible emulated TLS code.
524
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000525.. _namedtypes:
526
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000527Structure Types
528---------------
Sean Silvab084af42012-12-07 10:36:55 +0000529
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000530LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000531types <t_struct>`. Literal types are uniqued structurally, but identified types
532are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000533to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000534
Sean Silva706fba52015-08-06 22:56:24 +0000535An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000536
537.. code-block:: llvm
538
539 %mytype = type { %mytype*, i32 }
540
Sean Silvaa1190322015-08-06 22:56:48 +0000541Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000542literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000543
544.. _globalvars:
545
546Global Variables
547----------------
548
549Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000550instead of run-time.
551
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000552Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000553
554Global variables in other translation units can also be declared, in which
555case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000556
Bob Wilson85b24f22014-06-12 20:40:33 +0000557Either global variable definitions or declarations may have an explicit section
558to be placed in and may have an optional explicit alignment specified.
559
Michael Gottesman006039c2013-01-31 05:48:48 +0000560A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000561the contents of the variable will **never** be modified (enabling better
562optimization, allowing the global data to be placed in the read-only
563section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000564initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000565variable.
566
567LLVM explicitly allows *declarations* of global variables to be marked
568constant, even if the final definition of the global is not. This
569capability can be used to enable slightly better optimization of the
570program, but requires the language definition to guarantee that
571optimizations based on the 'constantness' are valid for the translation
572units that do not include the definition.
573
574As SSA values, global variables define pointer values that are in scope
575(i.e. they dominate) all basic blocks in the program. Global variables
576always define a pointer to their "content" type because they describe a
577region of memory, and all memory objects in LLVM are accessed through
578pointers.
579
580Global variables can be marked with ``unnamed_addr`` which indicates
581that the address is not significant, only the content. Constants marked
582like this can be merged with other constants if they have the same
583initializer. Note that a constant with significant address *can* be
584merged with a ``unnamed_addr`` constant, the result being a constant
585whose address is significant.
586
587A global variable may be declared to reside in a target-specific
588numbered address space. For targets that support them, address spaces
589may affect how optimizations are performed and/or what target
590instructions are used to access the variable. The default address space
591is zero. The address space qualifier must precede any other attributes.
592
593LLVM allows an explicit section to be specified for globals. If the
594target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000595Additionally, the global can placed in a comdat if the target has the necessary
596support.
Sean Silvab084af42012-12-07 10:36:55 +0000597
Michael Gottesmane743a302013-02-04 03:22:00 +0000598By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000599variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000600initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000601true even for variables potentially accessible from outside the
602module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000603``@llvm.used`` or dllexported variables. This assumption may be suppressed
604by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000605
Sean Silvab084af42012-12-07 10:36:55 +0000606An explicit alignment may be specified for a global, which must be a
607power of 2. If not present, or if the alignment is set to zero, the
608alignment of the global is set by the target to whatever it feels
609convenient. If an explicit alignment is specified, the global is forced
610to have exactly that alignment. Targets and optimizers are not allowed
611to over-align the global if the global has an assigned section. In this
612case, the extra alignment could be observable: for example, code could
613assume that the globals are densely packed in their section and try to
614iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000615iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000616
Nico Rieck7157bb72014-01-14 15:22:47 +0000617Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
618
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000619Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000620:ref:`Thread Local Storage Model <tls_model>`.
621
Nico Rieck7157bb72014-01-14 15:22:47 +0000622Syntax::
623
624 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000625 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000626 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000627 [, section "name"] [, comdat [($name)]]
628 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000629
Sean Silvab084af42012-12-07 10:36:55 +0000630For example, the following defines a global in a numbered address space
631with an initializer, section, and alignment:
632
633.. code-block:: llvm
634
635 @G = addrspace(5) constant float 1.0, section "foo", align 4
636
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000637The following example just declares a global variable
638
639.. code-block:: llvm
640
641 @G = external global i32
642
Sean Silvab084af42012-12-07 10:36:55 +0000643The following example defines a thread-local global with the
644``initialexec`` TLS model:
645
646.. code-block:: llvm
647
648 @G = thread_local(initialexec) global i32 0, align 4
649
650.. _functionstructure:
651
652Functions
653---------
654
655LLVM function definitions consist of the "``define``" keyword, an
656optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000657style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
658an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000659an optional ``unnamed_addr`` attribute, a return type, an optional
660:ref:`parameter attribute <paramattrs>` for the return type, a function
661name, a (possibly empty) argument list (each with optional :ref:`parameter
662attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000663an optional section, an optional alignment,
664an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000665an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000666an optional :ref:`prologue <prologuedata>`,
667an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000668an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000669an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000670
671LLVM function declarations consist of the "``declare``" keyword, an
672optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000673style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
674an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000675an optional ``unnamed_addr`` attribute, a return type, an optional
676:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000677name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000678:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
679and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000680
Bill Wendling6822ecb2013-10-27 05:09:12 +0000681A function definition contains a list of basic blocks, forming the CFG (Control
682Flow Graph) for the function. Each basic block may optionally start with a label
683(giving the basic block a symbol table entry), contains a list of instructions,
684and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
685function return). If an explicit label is not provided, a block is assigned an
686implicit numbered label, using the next value from the same counter as used for
687unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
688entry block does not have an explicit label, it will be assigned label "%0",
689then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000690
691The first basic block in a function is special in two ways: it is
692immediately executed on entrance to the function, and it is not allowed
693to have predecessor basic blocks (i.e. there can not be any branches to
694the entry block of a function). Because the block can have no
695predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
696
697LLVM allows an explicit section to be specified for functions. If the
698target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000699Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000700
701An explicit alignment may be specified for a function. If not present,
702or if the alignment is set to zero, the alignment of the function is set
703by the target to whatever it feels convenient. If an explicit alignment
704is specified, the function is forced to have at least that much
705alignment. All alignments must be a power of 2.
706
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000707If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000708be significant and two identical functions can be merged.
709
710Syntax::
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000713 [cconv] [ret attrs]
714 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000715 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000716 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000717 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000718
Sean Silva706fba52015-08-06 22:56:24 +0000719The argument list is a comma separated sequence of arguments where each
720argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000721
722Syntax::
723
724 <type> [parameter Attrs] [name]
725
726
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000727.. _langref_aliases:
728
Sean Silvab084af42012-12-07 10:36:55 +0000729Aliases
730-------
731
Rafael Espindola64c1e182014-06-03 02:41:57 +0000732Aliases, unlike function or variables, don't create any new data. They
733are just a new symbol and metadata for an existing position.
734
735Aliases have a name and an aliasee that is either a global value or a
736constant expression.
737
Nico Rieck7157bb72014-01-14 15:22:47 +0000738Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000739:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
740<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000741
742Syntax::
743
David Blaikie196582e2015-10-22 01:17:29 +0000744 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000745
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000746The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000747``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000748might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000749
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000750Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000751the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
752to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000753
Rafael Espindola64c1e182014-06-03 02:41:57 +0000754Since aliases are only a second name, some restrictions apply, of which
755some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000756
Rafael Espindola64c1e182014-06-03 02:41:57 +0000757* The expression defining the aliasee must be computable at assembly
758 time. Since it is just a name, no relocations can be used.
759
760* No alias in the expression can be weak as the possibility of the
761 intermediate alias being overridden cannot be represented in an
762 object file.
763
764* No global value in the expression can be a declaration, since that
765 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000766
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000767.. _langref_ifunc:
768
769IFuncs
770-------
771
772IFuncs, like as aliases, don't create any new data or func. They are just a new
773symbol that dynamic linker resolves at runtime by calling a resolver function.
774
775IFuncs have a name and a resolver that is a function called by dynamic linker
776that returns address of another function associated with the name.
777
778IFunc may have an optional :ref:`linkage type <linkage>` and an optional
779:ref:`visibility style <visibility>`.
780
781Syntax::
782
783 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
784
785
David Majnemerdad0a642014-06-27 18:19:56 +0000786.. _langref_comdats:
787
788Comdats
789-------
790
791Comdat IR provides access to COFF and ELF object file COMDAT functionality.
792
Sean Silvaa1190322015-08-06 22:56:48 +0000793Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000794specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000795that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000796aliasee computes to, if any.
797
798Comdats have a selection kind to provide input on how the linker should
799choose between keys in two different object files.
800
801Syntax::
802
803 $<Name> = comdat SelectionKind
804
805The selection kind must be one of the following:
806
807``any``
808 The linker may choose any COMDAT key, the choice is arbitrary.
809``exactmatch``
810 The linker may choose any COMDAT key but the sections must contain the
811 same data.
812``largest``
813 The linker will choose the section containing the largest COMDAT key.
814``noduplicates``
815 The linker requires that only section with this COMDAT key exist.
816``samesize``
817 The linker may choose any COMDAT key but the sections must contain the
818 same amount of data.
819
820Note that the Mach-O platform doesn't support COMDATs and ELF only supports
821``any`` as a selection kind.
822
823Here is an example of a COMDAT group where a function will only be selected if
824the COMDAT key's section is the largest:
825
826.. code-block:: llvm
827
828 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000829 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000830
Rafael Espindola83a362c2015-01-06 22:55:16 +0000831 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000832 ret void
833 }
834
Rafael Espindola83a362c2015-01-06 22:55:16 +0000835As a syntactic sugar the ``$name`` can be omitted if the name is the same as
836the global name:
837
838.. code-block:: llvm
839
840 $foo = comdat any
841 @foo = global i32 2, comdat
842
843
David Majnemerdad0a642014-06-27 18:19:56 +0000844In a COFF object file, this will create a COMDAT section with selection kind
845``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
846and another COMDAT section with selection kind
847``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000848section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000849
850There are some restrictions on the properties of the global object.
851It, or an alias to it, must have the same name as the COMDAT group when
852targeting COFF.
853The contents and size of this object may be used during link-time to determine
854which COMDAT groups get selected depending on the selection kind.
855Because the name of the object must match the name of the COMDAT group, the
856linkage of the global object must not be local; local symbols can get renamed
857if a collision occurs in the symbol table.
858
859The combined use of COMDATS and section attributes may yield surprising results.
860For example:
861
862.. code-block:: llvm
863
864 $foo = comdat any
865 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 @g1 = global i32 42, section "sec", comdat($foo)
867 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000868
869From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000870with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000871COMDAT groups and COMDATs, at the object file level, are represented by
872sections.
873
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000874Note that certain IR constructs like global variables and functions may
875create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000876COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000877in individual sections (e.g. when `-data-sections` or `-function-sections`
878is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000879
Sean Silvab084af42012-12-07 10:36:55 +0000880.. _namedmetadatastructure:
881
882Named Metadata
883--------------
884
885Named metadata is a collection of metadata. :ref:`Metadata
886nodes <metadata>` (but not metadata strings) are the only valid
887operands for a named metadata.
888
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000889#. Named metadata are represented as a string of characters with the
890 metadata prefix. The rules for metadata names are the same as for
891 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
892 are still valid, which allows any character to be part of a name.
893
Sean Silvab084af42012-12-07 10:36:55 +0000894Syntax::
895
896 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000897 !0 = !{!"zero"}
898 !1 = !{!"one"}
899 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000900 ; A named metadata.
901 !name = !{!0, !1, !2}
902
903.. _paramattrs:
904
905Parameter Attributes
906--------------------
907
908The return type and each parameter of a function type may have a set of
909*parameter attributes* associated with them. Parameter attributes are
910used to communicate additional information about the result or
911parameters of a function. Parameter attributes are considered to be part
912of the function, not of the function type, so functions with different
913parameter attributes can have the same function type.
914
915Parameter attributes are simple keywords that follow the type specified.
916If multiple parameter attributes are needed, they are space separated.
917For example:
918
919.. code-block:: llvm
920
921 declare i32 @printf(i8* noalias nocapture, ...)
922 declare i32 @atoi(i8 zeroext)
923 declare signext i8 @returns_signed_char()
924
925Note that any attributes for the function result (``nounwind``,
926``readonly``) come immediately after the argument list.
927
928Currently, only the following parameter attributes are defined:
929
930``zeroext``
931 This indicates to the code generator that the parameter or return
932 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000933 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000934``signext``
935 This indicates to the code generator that the parameter or return
936 value should be sign-extended to the extent required by the target's
937 ABI (which is usually 32-bits) by the caller (for a parameter) or
938 the callee (for a return value).
939``inreg``
940 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000941 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000942 a function call or return (usually, by putting it in a register as
943 opposed to memory, though some targets use it to distinguish between
944 two different kinds of registers). Use of this attribute is
945 target-specific.
946``byval``
947 This indicates that the pointer parameter should really be passed by
948 value to the function. The attribute implies that a hidden copy of
949 the pointee is made between the caller and the callee, so the callee
950 is unable to modify the value in the caller. This attribute is only
951 valid on LLVM pointer arguments. It is generally used to pass
952 structs and arrays by value, but is also valid on pointers to
953 scalars. The copy is considered to belong to the caller not the
954 callee (for example, ``readonly`` functions should not write to
955 ``byval`` parameters). This is not a valid attribute for return
956 values.
957
958 The byval attribute also supports specifying an alignment with the
959 align attribute. It indicates the alignment of the stack slot to
960 form and the known alignment of the pointer specified to the call
961 site. If the alignment is not specified, then the code generator
962 makes a target-specific assumption.
963
Reid Klecknera534a382013-12-19 02:14:12 +0000964.. _attr_inalloca:
965
966``inalloca``
967
Reid Kleckner60d3a832014-01-16 22:59:24 +0000968 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000969 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000970 be a pointer to stack memory produced by an ``alloca`` instruction.
971 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000972 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000973 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000974
Reid Kleckner436c42e2014-01-17 23:58:17 +0000975 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000976 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000977 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000978 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000979 ``inalloca`` attribute also disables LLVM's implicit lowering of
980 large aggregate return values, which means that frontend authors
981 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000982
Reid Kleckner60d3a832014-01-16 22:59:24 +0000983 When the call site is reached, the argument allocation must have
984 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000985 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000986 space after an argument allocation and before its call site, but it
987 must be cleared off with :ref:`llvm.stackrestore
988 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000989
990 See :doc:`InAlloca` for more information on how to use this
991 attribute.
992
Sean Silvab084af42012-12-07 10:36:55 +0000993``sret``
994 This indicates that the pointer parameter specifies the address of a
995 structure that is the return value of the function in the source
996 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000997 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000998 not to trap and to be properly aligned. This may only be applied to
999 the first parameter. This is not a valid attribute for return
1000 values.
Sean Silva1703e702014-04-08 21:06:22 +00001001
Hal Finkelccc70902014-07-22 16:58:55 +00001002``align <n>``
1003 This indicates that the pointer value may be assumed by the optimizer to
1004 have the specified alignment.
1005
1006 Note that this attribute has additional semantics when combined with the
1007 ``byval`` attribute.
1008
Sean Silva1703e702014-04-08 21:06:22 +00001009.. _noalias:
1010
Sean Silvab084af42012-12-07 10:36:55 +00001011``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001012 This indicates that objects accessed via pointer values
1013 :ref:`based <pointeraliasing>` on the argument or return value are not also
1014 accessed, during the execution of the function, via pointer values not
1015 *based* on the argument or return value. The attribute on a return value
1016 also has additional semantics described below. The caller shares the
1017 responsibility with the callee for ensuring that these requirements are met.
1018 For further details, please see the discussion of the NoAlias response in
1019 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001020
1021 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001022 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001023
1024 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001025 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1026 attribute on return values are stronger than the semantics of the attribute
1027 when used on function arguments. On function return values, the ``noalias``
1028 attribute indicates that the function acts like a system memory allocation
1029 function, returning a pointer to allocated storage disjoint from the
1030 storage for any other object accessible to the caller.
1031
Sean Silvab084af42012-12-07 10:36:55 +00001032``nocapture``
1033 This indicates that the callee does not make any copies of the
1034 pointer that outlive the callee itself. This is not a valid
1035 attribute for return values.
1036
1037.. _nest:
1038
1039``nest``
1040 This indicates that the pointer parameter can be excised using the
1041 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001042 attribute for return values and can only be applied to one parameter.
1043
1044``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001045 This indicates that the function always returns the argument as its return
1046 value. This is an optimization hint to the code generator when generating
1047 the caller, allowing tail call optimization and omission of register saves
1048 and restores in some cases; it is not checked or enforced when generating
1049 the callee. The parameter and the function return type must be valid
1050 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1051 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001052
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001053``nonnull``
1054 This indicates that the parameter or return pointer is not null. This
1055 attribute may only be applied to pointer typed parameters. This is not
1056 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001058 is non-null.
1059
Hal Finkelb0407ba2014-07-18 15:51:28 +00001060``dereferenceable(<n>)``
1061 This indicates that the parameter or return pointer is dereferenceable. This
1062 attribute may only be applied to pointer typed parameters. A pointer that
1063 is dereferenceable can be loaded from speculatively without a risk of
1064 trapping. The number of bytes known to be dereferenceable must be provided
1065 in parentheses. It is legal for the number of bytes to be less than the
1066 size of the pointee type. The ``nonnull`` attribute does not imply
1067 dereferenceability (consider a pointer to one element past the end of an
1068 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1069 ``addrspace(0)`` (which is the default address space).
1070
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001071``dereferenceable_or_null(<n>)``
1072 This indicates that the parameter or return value isn't both
1073 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001074 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001075 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1076 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1077 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1078 and in other address spaces ``dereferenceable_or_null(<n>)``
1079 implies that a pointer is at least one of ``dereferenceable(<n>)``
1080 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001081 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001082 pointer typed parameters.
1083
Manman Renf46262e2016-03-29 17:37:21 +00001084``swiftself``
1085 This indicates that the parameter is the self/context parameter. This is not
1086 a valid attribute for return values and can only be applied to one
1087 parameter.
1088
Manman Ren9bfd0d02016-04-01 21:41:15 +00001089``swifterror``
1090 This attribute is motivated to model and optimize Swift error handling. It
1091 can be applied to a parameter with pointer to pointer type or a
1092 pointer-sized alloca. At the call site, the actual argument that corresponds
1093 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca. A
1094 ``swifterror`` value (either the parameter or the alloca) can only be loaded
1095 and stored from, or used as a ``swifterror`` argument. This is not a valid
1096 attribute for return values and can only be applied to one parameter.
1097
1098 These constraints allow the calling convention to optimize access to
1099 ``swifterror`` variables by associating them with a specific register at
1100 call boundaries rather than placing them in memory. Since this does change
1101 the calling convention, a function which uses the ``swifterror`` attribute
1102 on a parameter is not ABI-compatible with one which does not.
1103
1104 These constraints also allow LLVM to assume that a ``swifterror`` argument
1105 does not alias any other memory visible within a function and that a
1106 ``swifterror`` alloca passed as an argument does not escape.
1107
Sean Silvab084af42012-12-07 10:36:55 +00001108.. _gc:
1109
Philip Reamesf80bbff2015-02-25 23:45:20 +00001110Garbage Collector Strategy Names
1111--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001112
Philip Reamesf80bbff2015-02-25 23:45:20 +00001113Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001114string:
1115
1116.. code-block:: llvm
1117
1118 define void @f() gc "name" { ... }
1119
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001120The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001121<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001122strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001123named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001124garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001125which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001126
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001127.. _prefixdata:
1128
1129Prefix Data
1130-----------
1131
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001132Prefix data is data associated with a function which the code
1133generator will emit immediately before the function's entrypoint.
1134The purpose of this feature is to allow frontends to associate
1135language-specific runtime metadata with specific functions and make it
1136available through the function pointer while still allowing the
1137function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001138
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001139To access the data for a given function, a program may bitcast the
1140function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001141index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001142the prefix data. For instance, take the example of a function annotated
1143with a single ``i32``,
1144
1145.. code-block:: llvm
1146
1147 define void @f() prefix i32 123 { ... }
1148
1149The prefix data can be referenced as,
1150
1151.. code-block:: llvm
1152
David Blaikie16a97eb2015-03-04 22:02:58 +00001153 %0 = bitcast void* () @f to i32*
1154 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001155 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001156
1157Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001158of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001159beginning of the prefix data is aligned. This means that if the size
1160of the prefix data is not a multiple of the alignment size, the
1161function's entrypoint will not be aligned. If alignment of the
1162function's entrypoint is desired, padding must be added to the prefix
1163data.
1164
Sean Silvaa1190322015-08-06 22:56:48 +00001165A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001166to the ``available_externally`` linkage in that the data may be used by the
1167optimizers but will not be emitted in the object file.
1168
1169.. _prologuedata:
1170
1171Prologue Data
1172-------------
1173
1174The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1175be inserted prior to the function body. This can be used for enabling
1176function hot-patching and instrumentation.
1177
1178To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001179have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001180bytes which decode to a sequence of machine instructions, valid for the
1181module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001182the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001183the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001184definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001185makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001186
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001187A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001188which encodes the ``nop`` instruction:
1189
1190.. code-block:: llvm
1191
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001192 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001193
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001194Generally prologue data can be formed by encoding a relative branch instruction
1195which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001196x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1197
1198.. code-block:: llvm
1199
1200 %0 = type <{ i8, i8, i8* }>
1201
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001203
Sean Silvaa1190322015-08-06 22:56:48 +00001204A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001205to the ``available_externally`` linkage in that the data may be used by the
1206optimizers but will not be emitted in the object file.
1207
David Majnemer7fddecc2015-06-17 20:52:32 +00001208.. _personalityfn:
1209
1210Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001211--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001212
1213The ``personality`` attribute permits functions to specify what function
1214to use for exception handling.
1215
Bill Wendling63b88192013-02-06 06:52:58 +00001216.. _attrgrp:
1217
1218Attribute Groups
1219----------------
1220
1221Attribute groups are groups of attributes that are referenced by objects within
1222the IR. They are important for keeping ``.ll`` files readable, because a lot of
1223functions will use the same set of attributes. In the degenerative case of a
1224``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1225group will capture the important command line flags used to build that file.
1226
1227An attribute group is a module-level object. To use an attribute group, an
1228object references the attribute group's ID (e.g. ``#37``). An object may refer
1229to more than one attribute group. In that situation, the attributes from the
1230different groups are merged.
1231
1232Here is an example of attribute groups for a function that should always be
1233inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1234
1235.. code-block:: llvm
1236
1237 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001238 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001239
1240 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001241 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001242
1243 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1244 define void @f() #0 #1 { ... }
1245
Sean Silvab084af42012-12-07 10:36:55 +00001246.. _fnattrs:
1247
1248Function Attributes
1249-------------------
1250
1251Function attributes are set to communicate additional information about
1252a function. Function attributes are considered to be part of the
1253function, not of the function type, so functions with different function
1254attributes can have the same function type.
1255
1256Function attributes are simple keywords that follow the type specified.
1257If multiple attributes are needed, they are space separated. For
1258example:
1259
1260.. code-block:: llvm
1261
1262 define void @f() noinline { ... }
1263 define void @f() alwaysinline { ... }
1264 define void @f() alwaysinline optsize { ... }
1265 define void @f() optsize { ... }
1266
Sean Silvab084af42012-12-07 10:36:55 +00001267``alignstack(<n>)``
1268 This attribute indicates that, when emitting the prologue and
1269 epilogue, the backend should forcibly align the stack pointer.
1270 Specify the desired alignment, which must be a power of two, in
1271 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001272``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1273 This attribute indicates that the annotated function will always return at
1274 least a given number of bytes (or null). Its arguments are zero-indexed
1275 parameter numbers; if one argument is provided, then it's assumed that at
1276 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1277 returned pointer. If two are provided, then it's assumed that
1278 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1279 available. The referenced parameters must be integer types. No assumptions
1280 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001281``alwaysinline``
1282 This attribute indicates that the inliner should attempt to inline
1283 this function into callers whenever possible, ignoring any active
1284 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001285``builtin``
1286 This indicates that the callee function at a call site should be
1287 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001288 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001289 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001290 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001291``cold``
1292 This attribute indicates that this function is rarely called. When
1293 computing edge weights, basic blocks post-dominated by a cold
1294 function call are also considered to be cold; and, thus, given low
1295 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001296``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001297 In some parallel execution models, there exist operations that cannot be
1298 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001299 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001300
Justin Lebar58535b12016-02-17 17:46:41 +00001301 The ``convergent`` attribute may appear on functions or call/invoke
1302 instructions. When it appears on a function, it indicates that calls to
1303 this function should not be made control-dependent on additional values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001304 For example, the intrinsic ``llvm.cuda.syncthreads`` is ``convergent``, so
1305 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001306 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001307
Justin Lebar58535b12016-02-17 17:46:41 +00001308 When it appears on a call/invoke, the ``convergent`` attribute indicates
1309 that we should treat the call as though we're calling a convergent
1310 function. This is particularly useful on indirect calls; without this we
1311 may treat such calls as though the target is non-convergent.
1312
1313 The optimizer may remove the ``convergent`` attribute on functions when it
1314 can prove that the function does not execute any convergent operations.
1315 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1316 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001317``inaccessiblememonly``
1318 This attribute indicates that the function may only access memory that
1319 is not accessible by the module being compiled. This is a weaker form
1320 of ``readnone``.
1321``inaccessiblemem_or_argmemonly``
1322 This attribute indicates that the function may only access memory that is
1323 either not accessible by the module being compiled, or is pointed to
1324 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001325``inlinehint``
1326 This attribute indicates that the source code contained a hint that
1327 inlining this function is desirable (such as the "inline" keyword in
1328 C/C++). It is just a hint; it imposes no requirements on the
1329 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001330``jumptable``
1331 This attribute indicates that the function should be added to a
1332 jump-instruction table at code-generation time, and that all address-taken
1333 references to this function should be replaced with a reference to the
1334 appropriate jump-instruction-table function pointer. Note that this creates
1335 a new pointer for the original function, which means that code that depends
1336 on function-pointer identity can break. So, any function annotated with
1337 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001338``minsize``
1339 This attribute suggests that optimization passes and code generator
1340 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001341 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001342 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001343``naked``
1344 This attribute disables prologue / epilogue emission for the
1345 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001346``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001347 This indicates that the callee function at a call site is not recognized as
1348 a built-in function. LLVM will retain the original call and not replace it
1349 with equivalent code based on the semantics of the built-in function, unless
1350 the call site uses the ``builtin`` attribute. This is valid at call sites
1351 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001352``noduplicate``
1353 This attribute indicates that calls to the function cannot be
1354 duplicated. A call to a ``noduplicate`` function may be moved
1355 within its parent function, but may not be duplicated within
1356 its parent function.
1357
1358 A function containing a ``noduplicate`` call may still
1359 be an inlining candidate, provided that the call is not
1360 duplicated by inlining. That implies that the function has
1361 internal linkage and only has one call site, so the original
1362 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001363``noimplicitfloat``
1364 This attributes disables implicit floating point instructions.
1365``noinline``
1366 This attribute indicates that the inliner should never inline this
1367 function in any situation. This attribute may not be used together
1368 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001369``nonlazybind``
1370 This attribute suppresses lazy symbol binding for the function. This
1371 may make calls to the function faster, at the cost of extra program
1372 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001373``noredzone``
1374 This attribute indicates that the code generator should not use a
1375 red zone, even if the target-specific ABI normally permits it.
1376``noreturn``
1377 This function attribute indicates that the function never returns
1378 normally. This produces undefined behavior at runtime if the
1379 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001380``norecurse``
1381 This function attribute indicates that the function does not call itself
1382 either directly or indirectly down any possible call path. This produces
1383 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001384``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001385 This function attribute indicates that the function never raises an
1386 exception. If the function does raise an exception, its runtime
1387 behavior is undefined. However, functions marked nounwind may still
1388 trap or generate asynchronous exceptions. Exception handling schemes
1389 that are recognized by LLVM to handle asynchronous exceptions, such
1390 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001391``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001392 This function attribute indicates that most optimization passes will skip
1393 this function, with the exception of interprocedural optimization passes.
1394 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001395 This attribute cannot be used together with the ``alwaysinline``
1396 attribute; this attribute is also incompatible
1397 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001398
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001399 This attribute requires the ``noinline`` attribute to be specified on
1400 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001401 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001402 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001403``optsize``
1404 This attribute suggests that optimization passes and code generator
1405 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001406 and otherwise do optimizations specifically to reduce code size as
1407 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001408``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001409 On a function, this attribute indicates that the function computes its
1410 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001411 without dereferencing any pointer arguments or otherwise accessing
1412 any mutable state (e.g. memory, control registers, etc) visible to
1413 caller functions. It does not write through any pointer arguments
1414 (including ``byval`` arguments) and never changes any state visible
1415 to callers. This means that it cannot unwind exceptions by calling
1416 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001417
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001418 On an argument, this attribute indicates that the function does not
1419 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001420 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001421``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001422 On a function, this attribute indicates that the function does not write
1423 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001424 modify any state (e.g. memory, control registers, etc) visible to
1425 caller functions. It may dereference pointer arguments and read
1426 state that may be set in the caller. A readonly function always
1427 returns the same value (or unwinds an exception identically) when
1428 called with the same set of arguments and global state. It cannot
1429 unwind an exception by calling the ``C++`` exception throwing
1430 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001431
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001432 On an argument, this attribute indicates that the function does not write
1433 through this pointer argument, even though it may write to the memory that
1434 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001435``argmemonly``
1436 This attribute indicates that the only memory accesses inside function are
1437 loads and stores from objects pointed to by its pointer-typed arguments,
1438 with arbitrary offsets. Or in other words, all memory operations in the
1439 function can refer to memory only using pointers based on its function
1440 arguments.
1441 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1442 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001443``returns_twice``
1444 This attribute indicates that this function can return twice. The C
1445 ``setjmp`` is an example of such a function. The compiler disables
1446 some optimizations (like tail calls) in the caller of these
1447 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001448``safestack``
1449 This attribute indicates that
1450 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1451 protection is enabled for this function.
1452
1453 If a function that has a ``safestack`` attribute is inlined into a
1454 function that doesn't have a ``safestack`` attribute or which has an
1455 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1456 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001457``sanitize_address``
1458 This attribute indicates that AddressSanitizer checks
1459 (dynamic address safety analysis) are enabled for this function.
1460``sanitize_memory``
1461 This attribute indicates that MemorySanitizer checks (dynamic detection
1462 of accesses to uninitialized memory) are enabled for this function.
1463``sanitize_thread``
1464 This attribute indicates that ThreadSanitizer checks
1465 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001466``ssp``
1467 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001468 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001469 placed on the stack before the local variables that's checked upon
1470 return from the function to see if it has been overwritten. A
1471 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001472 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001473
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001474 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1475 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1476 - Calls to alloca() with variable sizes or constant sizes greater than
1477 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001478
Josh Magee24c7f062014-02-01 01:36:16 +00001479 Variables that are identified as requiring a protector will be arranged
1480 on the stack such that they are adjacent to the stack protector guard.
1481
Sean Silvab084af42012-12-07 10:36:55 +00001482 If a function that has an ``ssp`` attribute is inlined into a
1483 function that doesn't have an ``ssp`` attribute, then the resulting
1484 function will have an ``ssp`` attribute.
1485``sspreq``
1486 This attribute indicates that the function should *always* emit a
1487 stack smashing protector. This overrides the ``ssp`` function
1488 attribute.
1489
Josh Magee24c7f062014-02-01 01:36:16 +00001490 Variables that are identified as requiring a protector will be arranged
1491 on the stack such that they are adjacent to the stack protector guard.
1492 The specific layout rules are:
1493
1494 #. Large arrays and structures containing large arrays
1495 (``>= ssp-buffer-size``) are closest to the stack protector.
1496 #. Small arrays and structures containing small arrays
1497 (``< ssp-buffer-size``) are 2nd closest to the protector.
1498 #. Variables that have had their address taken are 3rd closest to the
1499 protector.
1500
Sean Silvab084af42012-12-07 10:36:55 +00001501 If a function that has an ``sspreq`` attribute is inlined into a
1502 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001503 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1504 an ``sspreq`` attribute.
1505``sspstrong``
1506 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001507 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001508 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001509 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001510
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001511 - Arrays of any size and type
1512 - Aggregates containing an array of any size and type.
1513 - Calls to alloca().
1514 - Local variables that have had their address taken.
1515
Josh Magee24c7f062014-02-01 01:36:16 +00001516 Variables that are identified as requiring a protector will be arranged
1517 on the stack such that they are adjacent to the stack protector guard.
1518 The specific layout rules are:
1519
1520 #. Large arrays and structures containing large arrays
1521 (``>= ssp-buffer-size``) are closest to the stack protector.
1522 #. Small arrays and structures containing small arrays
1523 (``< ssp-buffer-size``) are 2nd closest to the protector.
1524 #. Variables that have had their address taken are 3rd closest to the
1525 protector.
1526
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001527 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001528
1529 If a function that has an ``sspstrong`` attribute is inlined into a
1530 function that doesn't have an ``sspstrong`` attribute, then the
1531 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001532``"thunk"``
1533 This attribute indicates that the function will delegate to some other
1534 function with a tail call. The prototype of a thunk should not be used for
1535 optimization purposes. The caller is expected to cast the thunk prototype to
1536 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001537``uwtable``
1538 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001539 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001540 show that no exceptions passes by it. This is normally the case for
1541 the ELF x86-64 abi, but it can be disabled for some compilation
1542 units.
Sean Silvab084af42012-12-07 10:36:55 +00001543
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001544
1545.. _opbundles:
1546
1547Operand Bundles
1548---------------
1549
1550Note: operand bundles are a work in progress, and they should be
1551considered experimental at this time.
1552
1553Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001554with certain LLVM instructions (currently only ``call`` s and
1555``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001556incorrect and will change program semantics.
1557
1558Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001559
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001560 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001561 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1562 bundle operand ::= SSA value
1563 tag ::= string constant
1564
1565Operand bundles are **not** part of a function's signature, and a
1566given function may be called from multiple places with different kinds
1567of operand bundles. This reflects the fact that the operand bundles
1568are conceptually a part of the ``call`` (or ``invoke``), not the
1569callee being dispatched to.
1570
1571Operand bundles are a generic mechanism intended to support
1572runtime-introspection-like functionality for managed languages. While
1573the exact semantics of an operand bundle depend on the bundle tag,
1574there are certain limitations to how much the presence of an operand
1575bundle can influence the semantics of a program. These restrictions
1576are described as the semantics of an "unknown" operand bundle. As
1577long as the behavior of an operand bundle is describable within these
1578restrictions, LLVM does not need to have special knowledge of the
1579operand bundle to not miscompile programs containing it.
1580
David Majnemer34cacb42015-10-22 01:46:38 +00001581- The bundle operands for an unknown operand bundle escape in unknown
1582 ways before control is transferred to the callee or invokee.
1583- Calls and invokes with operand bundles have unknown read / write
1584 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001585 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001586 callsite specific attributes.
1587- An operand bundle at a call site cannot change the implementation
1588 of the called function. Inter-procedural optimizations work as
1589 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001590
Sanjoy Dascdafd842015-11-11 21:38:02 +00001591More specific types of operand bundles are described below.
1592
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001593.. _deopt_opbundles:
1594
Sanjoy Dascdafd842015-11-11 21:38:02 +00001595Deoptimization Operand Bundles
1596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1597
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001598Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001599operand bundle tag. These operand bundles represent an alternate
1600"safe" continuation for the call site they're attached to, and can be
1601used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001602specified call site. There can be at most one ``"deopt"`` operand
1603bundle attached to a call site. Exact details of deoptimization is
1604out of scope for the language reference, but it usually involves
1605rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001606
1607From the compiler's perspective, deoptimization operand bundles make
1608the call sites they're attached to at least ``readonly``. They read
1609through all of their pointer typed operands (even if they're not
1610otherwise escaped) and the entire visible heap. Deoptimization
1611operand bundles do not capture their operands except during
1612deoptimization, in which case control will not be returned to the
1613compiled frame.
1614
Sanjoy Das2d161452015-11-18 06:23:38 +00001615The inliner knows how to inline through calls that have deoptimization
1616operand bundles. Just like inlining through a normal call site
1617involves composing the normal and exceptional continuations, inlining
1618through a call site with a deoptimization operand bundle needs to
1619appropriately compose the "safe" deoptimization continuation. The
1620inliner does this by prepending the parent's deoptimization
1621continuation to every deoptimization continuation in the inlined body.
1622E.g. inlining ``@f`` into ``@g`` in the following example
1623
1624.. code-block:: llvm
1625
1626 define void @f() {
1627 call void @x() ;; no deopt state
1628 call void @y() [ "deopt"(i32 10) ]
1629 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1630 ret void
1631 }
1632
1633 define void @g() {
1634 call void @f() [ "deopt"(i32 20) ]
1635 ret void
1636 }
1637
1638will result in
1639
1640.. code-block:: llvm
1641
1642 define void @g() {
1643 call void @x() ;; still no deopt state
1644 call void @y() [ "deopt"(i32 20, i32 10) ]
1645 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1646 ret void
1647 }
1648
1649It is the frontend's responsibility to structure or encode the
1650deoptimization state in a way that syntactically prepending the
1651caller's deoptimization state to the callee's deoptimization state is
1652semantically equivalent to composing the caller's deoptimization
1653continuation after the callee's deoptimization continuation.
1654
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001655.. _ob_funclet:
1656
David Majnemer3bb88c02015-12-15 21:27:27 +00001657Funclet Operand Bundles
1658^^^^^^^^^^^^^^^^^^^^^^^
1659
1660Funclet operand bundles are characterized by the ``"funclet"``
1661operand bundle tag. These operand bundles indicate that a call site
1662is within a particular funclet. There can be at most one
1663``"funclet"`` operand bundle attached to a call site and it must have
1664exactly one bundle operand.
1665
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001666If any funclet EH pads have been "entered" but not "exited" (per the
1667`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1668it is undefined behavior to execute a ``call`` or ``invoke`` which:
1669
1670* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1671 intrinsic, or
1672* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1673 not-yet-exited funclet EH pad.
1674
1675Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1676executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1677
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001678GC Transition Operand Bundles
1679^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1680
1681GC transition operand bundles are characterized by the
1682``"gc-transition"`` operand bundle tag. These operand bundles mark a
1683call as a transition between a function with one GC strategy to a
1684function with a different GC strategy. If coordinating the transition
1685between GC strategies requires additional code generation at the call
1686site, these bundles may contain any values that are needed by the
1687generated code. For more details, see :ref:`GC Transitions
1688<gc_transition_args>`.
1689
Sean Silvab084af42012-12-07 10:36:55 +00001690.. _moduleasm:
1691
1692Module-Level Inline Assembly
1693----------------------------
1694
1695Modules may contain "module-level inline asm" blocks, which corresponds
1696to the GCC "file scope inline asm" blocks. These blocks are internally
1697concatenated by LLVM and treated as a single unit, but may be separated
1698in the ``.ll`` file if desired. The syntax is very simple:
1699
1700.. code-block:: llvm
1701
1702 module asm "inline asm code goes here"
1703 module asm "more can go here"
1704
1705The strings can contain any character by escaping non-printable
1706characters. The escape sequence used is simply "\\xx" where "xx" is the
1707two digit hex code for the number.
1708
James Y Knightbc832ed2015-07-08 18:08:36 +00001709Note that the assembly string *must* be parseable by LLVM's integrated assembler
1710(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001711
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001712.. _langref_datalayout:
1713
Sean Silvab084af42012-12-07 10:36:55 +00001714Data Layout
1715-----------
1716
1717A module may specify a target specific data layout string that specifies
1718how data is to be laid out in memory. The syntax for the data layout is
1719simply:
1720
1721.. code-block:: llvm
1722
1723 target datalayout = "layout specification"
1724
1725The *layout specification* consists of a list of specifications
1726separated by the minus sign character ('-'). Each specification starts
1727with a letter and may include other information after the letter to
1728define some aspect of the data layout. The specifications accepted are
1729as follows:
1730
1731``E``
1732 Specifies that the target lays out data in big-endian form. That is,
1733 the bits with the most significance have the lowest address
1734 location.
1735``e``
1736 Specifies that the target lays out data in little-endian form. That
1737 is, the bits with the least significance have the lowest address
1738 location.
1739``S<size>``
1740 Specifies the natural alignment of the stack in bits. Alignment
1741 promotion of stack variables is limited to the natural stack
1742 alignment to avoid dynamic stack realignment. The stack alignment
1743 must be a multiple of 8-bits. If omitted, the natural stack
1744 alignment defaults to "unspecified", which does not prevent any
1745 alignment promotions.
1746``p[n]:<size>:<abi>:<pref>``
1747 This specifies the *size* of a pointer and its ``<abi>`` and
1748 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001749 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001750 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001751 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001752``i<size>:<abi>:<pref>``
1753 This specifies the alignment for an integer type of a given bit
1754 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1755``v<size>:<abi>:<pref>``
1756 This specifies the alignment for a vector type of a given bit
1757 ``<size>``.
1758``f<size>:<abi>:<pref>``
1759 This specifies the alignment for a floating point type of a given bit
1760 ``<size>``. Only values of ``<size>`` that are supported by the target
1761 will work. 32 (float) and 64 (double) are supported on all targets; 80
1762 or 128 (different flavors of long double) are also supported on some
1763 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001764``a:<abi>:<pref>``
1765 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001766``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001767 If present, specifies that llvm names are mangled in the output. The
1768 options are
1769
1770 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1771 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1772 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1773 symbols get a ``_`` prefix.
1774 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1775 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001776 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1777 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001778``n<size1>:<size2>:<size3>...``
1779 This specifies a set of native integer widths for the target CPU in
1780 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1781 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1782 this set are considered to support most general arithmetic operations
1783 efficiently.
1784
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001785On every specification that takes a ``<abi>:<pref>``, specifying the
1786``<pref>`` alignment is optional. If omitted, the preceding ``:``
1787should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1788
Sean Silvab084af42012-12-07 10:36:55 +00001789When constructing the data layout for a given target, LLVM starts with a
1790default set of specifications which are then (possibly) overridden by
1791the specifications in the ``datalayout`` keyword. The default
1792specifications are given in this list:
1793
1794- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001795- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1796- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1797 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001798- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001799- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1800- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1801- ``i16:16:16`` - i16 is 16-bit aligned
1802- ``i32:32:32`` - i32 is 32-bit aligned
1803- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1804 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001805- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001806- ``f32:32:32`` - float is 32-bit aligned
1807- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001808- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001809- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1810- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001811- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001812
1813When LLVM is determining the alignment for a given type, it uses the
1814following rules:
1815
1816#. If the type sought is an exact match for one of the specifications,
1817 that specification is used.
1818#. If no match is found, and the type sought is an integer type, then
1819 the smallest integer type that is larger than the bitwidth of the
1820 sought type is used. If none of the specifications are larger than
1821 the bitwidth then the largest integer type is used. For example,
1822 given the default specifications above, the i7 type will use the
1823 alignment of i8 (next largest) while both i65 and i256 will use the
1824 alignment of i64 (largest specified).
1825#. If no match is found, and the type sought is a vector type, then the
1826 largest vector type that is smaller than the sought vector type will
1827 be used as a fall back. This happens because <128 x double> can be
1828 implemented in terms of 64 <2 x double>, for example.
1829
1830The function of the data layout string may not be what you expect.
1831Notably, this is not a specification from the frontend of what alignment
1832the code generator should use.
1833
1834Instead, if specified, the target data layout is required to match what
1835the ultimate *code generator* expects. This string is used by the
1836mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001837what the ultimate code generator uses. There is no way to generate IR
1838that does not embed this target-specific detail into the IR. If you
1839don't specify the string, the default specifications will be used to
1840generate a Data Layout and the optimization phases will operate
1841accordingly and introduce target specificity into the IR with respect to
1842these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001843
Bill Wendling5cc90842013-10-18 23:41:25 +00001844.. _langref_triple:
1845
1846Target Triple
1847-------------
1848
1849A module may specify a target triple string that describes the target
1850host. The syntax for the target triple is simply:
1851
1852.. code-block:: llvm
1853
1854 target triple = "x86_64-apple-macosx10.7.0"
1855
1856The *target triple* string consists of a series of identifiers delimited
1857by the minus sign character ('-'). The canonical forms are:
1858
1859::
1860
1861 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1862 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1863
1864This information is passed along to the backend so that it generates
1865code for the proper architecture. It's possible to override this on the
1866command line with the ``-mtriple`` command line option.
1867
Sean Silvab084af42012-12-07 10:36:55 +00001868.. _pointeraliasing:
1869
1870Pointer Aliasing Rules
1871----------------------
1872
1873Any memory access must be done through a pointer value associated with
1874an address range of the memory access, otherwise the behavior is
1875undefined. Pointer values are associated with address ranges according
1876to the following rules:
1877
1878- A pointer value is associated with the addresses associated with any
1879 value it is *based* on.
1880- An address of a global variable is associated with the address range
1881 of the variable's storage.
1882- The result value of an allocation instruction is associated with the
1883 address range of the allocated storage.
1884- A null pointer in the default address-space is associated with no
1885 address.
1886- An integer constant other than zero or a pointer value returned from
1887 a function not defined within LLVM may be associated with address
1888 ranges allocated through mechanisms other than those provided by
1889 LLVM. Such ranges shall not overlap with any ranges of addresses
1890 allocated by mechanisms provided by LLVM.
1891
1892A pointer value is *based* on another pointer value according to the
1893following rules:
1894
1895- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001896 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001897- The result value of a ``bitcast`` is *based* on the operand of the
1898 ``bitcast``.
1899- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1900 values that contribute (directly or indirectly) to the computation of
1901 the pointer's value.
1902- The "*based* on" relationship is transitive.
1903
1904Note that this definition of *"based"* is intentionally similar to the
1905definition of *"based"* in C99, though it is slightly weaker.
1906
1907LLVM IR does not associate types with memory. The result type of a
1908``load`` merely indicates the size and alignment of the memory from
1909which to load, as well as the interpretation of the value. The first
1910operand type of a ``store`` similarly only indicates the size and
1911alignment of the store.
1912
1913Consequently, type-based alias analysis, aka TBAA, aka
1914``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1915:ref:`Metadata <metadata>` may be used to encode additional information
1916which specialized optimization passes may use to implement type-based
1917alias analysis.
1918
1919.. _volatile:
1920
1921Volatile Memory Accesses
1922------------------------
1923
1924Certain memory accesses, such as :ref:`load <i_load>`'s,
1925:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1926marked ``volatile``. The optimizers must not change the number of
1927volatile operations or change their order of execution relative to other
1928volatile operations. The optimizers *may* change the order of volatile
1929operations relative to non-volatile operations. This is not Java's
1930"volatile" and has no cross-thread synchronization behavior.
1931
Andrew Trick89fc5a62013-01-30 21:19:35 +00001932IR-level volatile loads and stores cannot safely be optimized into
1933llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1934flagged volatile. Likewise, the backend should never split or merge
1935target-legal volatile load/store instructions.
1936
Andrew Trick7e6f9282013-01-31 00:49:39 +00001937.. admonition:: Rationale
1938
1939 Platforms may rely on volatile loads and stores of natively supported
1940 data width to be executed as single instruction. For example, in C
1941 this holds for an l-value of volatile primitive type with native
1942 hardware support, but not necessarily for aggregate types. The
1943 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001944 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001945 do not violate the frontend's contract with the language.
1946
Sean Silvab084af42012-12-07 10:36:55 +00001947.. _memmodel:
1948
1949Memory Model for Concurrent Operations
1950--------------------------------------
1951
1952The LLVM IR does not define any way to start parallel threads of
1953execution or to register signal handlers. Nonetheless, there are
1954platform-specific ways to create them, and we define LLVM IR's behavior
1955in their presence. This model is inspired by the C++0x memory model.
1956
1957For a more informal introduction to this model, see the :doc:`Atomics`.
1958
1959We define a *happens-before* partial order as the least partial order
1960that
1961
1962- Is a superset of single-thread program order, and
1963- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1964 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1965 techniques, like pthread locks, thread creation, thread joining,
1966 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1967 Constraints <ordering>`).
1968
1969Note that program order does not introduce *happens-before* edges
1970between a thread and signals executing inside that thread.
1971
1972Every (defined) read operation (load instructions, memcpy, atomic
1973loads/read-modify-writes, etc.) R reads a series of bytes written by
1974(defined) write operations (store instructions, atomic
1975stores/read-modify-writes, memcpy, etc.). For the purposes of this
1976section, initialized globals are considered to have a write of the
1977initializer which is atomic and happens before any other read or write
1978of the memory in question. For each byte of a read R, R\ :sub:`byte`
1979may see any write to the same byte, except:
1980
1981- If write\ :sub:`1` happens before write\ :sub:`2`, and
1982 write\ :sub:`2` happens before R\ :sub:`byte`, then
1983 R\ :sub:`byte` does not see write\ :sub:`1`.
1984- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1985 R\ :sub:`byte` does not see write\ :sub:`3`.
1986
1987Given that definition, R\ :sub:`byte` is defined as follows:
1988
1989- If R is volatile, the result is target-dependent. (Volatile is
1990 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001991 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001992 like normal memory. It does not generally provide cross-thread
1993 synchronization.)
1994- Otherwise, if there is no write to the same byte that happens before
1995 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1996- Otherwise, if R\ :sub:`byte` may see exactly one write,
1997 R\ :sub:`byte` returns the value written by that write.
1998- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1999 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2000 Memory Ordering Constraints <ordering>` section for additional
2001 constraints on how the choice is made.
2002- Otherwise R\ :sub:`byte` returns ``undef``.
2003
2004R returns the value composed of the series of bytes it read. This
2005implies that some bytes within the value may be ``undef`` **without**
2006the entire value being ``undef``. Note that this only defines the
2007semantics of the operation; it doesn't mean that targets will emit more
2008than one instruction to read the series of bytes.
2009
2010Note that in cases where none of the atomic intrinsics are used, this
2011model places only one restriction on IR transformations on top of what
2012is required for single-threaded execution: introducing a store to a byte
2013which might not otherwise be stored is not allowed in general.
2014(Specifically, in the case where another thread might write to and read
2015from an address, introducing a store can change a load that may see
2016exactly one write into a load that may see multiple writes.)
2017
2018.. _ordering:
2019
2020Atomic Memory Ordering Constraints
2021----------------------------------
2022
2023Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2024:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2025:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002026ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002027the same address they *synchronize with*. These semantics are borrowed
2028from Java and C++0x, but are somewhat more colloquial. If these
2029descriptions aren't precise enough, check those specs (see spec
2030references in the :doc:`atomics guide <Atomics>`).
2031:ref:`fence <i_fence>` instructions treat these orderings somewhat
2032differently since they don't take an address. See that instruction's
2033documentation for details.
2034
2035For a simpler introduction to the ordering constraints, see the
2036:doc:`Atomics`.
2037
2038``unordered``
2039 The set of values that can be read is governed by the happens-before
2040 partial order. A value cannot be read unless some operation wrote
2041 it. This is intended to provide a guarantee strong enough to model
2042 Java's non-volatile shared variables. This ordering cannot be
2043 specified for read-modify-write operations; it is not strong enough
2044 to make them atomic in any interesting way.
2045``monotonic``
2046 In addition to the guarantees of ``unordered``, there is a single
2047 total order for modifications by ``monotonic`` operations on each
2048 address. All modification orders must be compatible with the
2049 happens-before order. There is no guarantee that the modification
2050 orders can be combined to a global total order for the whole program
2051 (and this often will not be possible). The read in an atomic
2052 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2053 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2054 order immediately before the value it writes. If one atomic read
2055 happens before another atomic read of the same address, the later
2056 read must see the same value or a later value in the address's
2057 modification order. This disallows reordering of ``monotonic`` (or
2058 stronger) operations on the same address. If an address is written
2059 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2060 read that address repeatedly, the other threads must eventually see
2061 the write. This corresponds to the C++0x/C1x
2062 ``memory_order_relaxed``.
2063``acquire``
2064 In addition to the guarantees of ``monotonic``, a
2065 *synchronizes-with* edge may be formed with a ``release`` operation.
2066 This is intended to model C++'s ``memory_order_acquire``.
2067``release``
2068 In addition to the guarantees of ``monotonic``, if this operation
2069 writes a value which is subsequently read by an ``acquire``
2070 operation, it *synchronizes-with* that operation. (This isn't a
2071 complete description; see the C++0x definition of a release
2072 sequence.) This corresponds to the C++0x/C1x
2073 ``memory_order_release``.
2074``acq_rel`` (acquire+release)
2075 Acts as both an ``acquire`` and ``release`` operation on its
2076 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2077``seq_cst`` (sequentially consistent)
2078 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002079 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002080 writes), there is a global total order on all
2081 sequentially-consistent operations on all addresses, which is
2082 consistent with the *happens-before* partial order and with the
2083 modification orders of all the affected addresses. Each
2084 sequentially-consistent read sees the last preceding write to the
2085 same address in this global order. This corresponds to the C++0x/C1x
2086 ``memory_order_seq_cst`` and Java volatile.
2087
2088.. _singlethread:
2089
2090If an atomic operation is marked ``singlethread``, it only *synchronizes
2091with* or participates in modification and seq\_cst total orderings with
2092other operations running in the same thread (for example, in signal
2093handlers).
2094
2095.. _fastmath:
2096
2097Fast-Math Flags
2098---------------
2099
2100LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2101:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002102:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2103be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002104
2105``nnan``
2106 No NaNs - Allow optimizations to assume the arguments and result are not
2107 NaN. Such optimizations are required to retain defined behavior over
2108 NaNs, but the value of the result is undefined.
2109
2110``ninf``
2111 No Infs - Allow optimizations to assume the arguments and result are not
2112 +/-Inf. Such optimizations are required to retain defined behavior over
2113 +/-Inf, but the value of the result is undefined.
2114
2115``nsz``
2116 No Signed Zeros - Allow optimizations to treat the sign of a zero
2117 argument or result as insignificant.
2118
2119``arcp``
2120 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2121 argument rather than perform division.
2122
2123``fast``
2124 Fast - Allow algebraically equivalent transformations that may
2125 dramatically change results in floating point (e.g. reassociate). This
2126 flag implies all the others.
2127
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002128.. _uselistorder:
2129
2130Use-list Order Directives
2131-------------------------
2132
2133Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002134order to be recreated. ``<order-indexes>`` is a comma-separated list of
2135indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002136value's use-list is immediately sorted by these indexes.
2137
Sean Silvaa1190322015-08-06 22:56:48 +00002138Use-list directives may appear at function scope or global scope. They are not
2139instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002140function scope, they must appear after the terminator of the final basic block.
2141
2142If basic blocks have their address taken via ``blockaddress()`` expressions,
2143``uselistorder_bb`` can be used to reorder their use-lists from outside their
2144function's scope.
2145
2146:Syntax:
2147
2148::
2149
2150 uselistorder <ty> <value>, { <order-indexes> }
2151 uselistorder_bb @function, %block { <order-indexes> }
2152
2153:Examples:
2154
2155::
2156
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002157 define void @foo(i32 %arg1, i32 %arg2) {
2158 entry:
2159 ; ... instructions ...
2160 bb:
2161 ; ... instructions ...
2162
2163 ; At function scope.
2164 uselistorder i32 %arg1, { 1, 0, 2 }
2165 uselistorder label %bb, { 1, 0 }
2166 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002167
2168 ; At global scope.
2169 uselistorder i32* @global, { 1, 2, 0 }
2170 uselistorder i32 7, { 1, 0 }
2171 uselistorder i32 (i32) @bar, { 1, 0 }
2172 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2173
Sean Silvab084af42012-12-07 10:36:55 +00002174.. _typesystem:
2175
2176Type System
2177===========
2178
2179The LLVM type system is one of the most important features of the
2180intermediate representation. Being typed enables a number of
2181optimizations to be performed on the intermediate representation
2182directly, without having to do extra analyses on the side before the
2183transformation. A strong type system makes it easier to read the
2184generated code and enables novel analyses and transformations that are
2185not feasible to perform on normal three address code representations.
2186
Rafael Espindola08013342013-12-07 19:34:20 +00002187.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002188
Rafael Espindola08013342013-12-07 19:34:20 +00002189Void Type
2190---------
Sean Silvab084af42012-12-07 10:36:55 +00002191
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002192:Overview:
2193
Rafael Espindola08013342013-12-07 19:34:20 +00002194
2195The void type does not represent any value and has no size.
2196
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002197:Syntax:
2198
Rafael Espindola08013342013-12-07 19:34:20 +00002199
2200::
2201
2202 void
Sean Silvab084af42012-12-07 10:36:55 +00002203
2204
Rafael Espindola08013342013-12-07 19:34:20 +00002205.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002206
Rafael Espindola08013342013-12-07 19:34:20 +00002207Function Type
2208-------------
Sean Silvab084af42012-12-07 10:36:55 +00002209
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002210:Overview:
2211
Sean Silvab084af42012-12-07 10:36:55 +00002212
Rafael Espindola08013342013-12-07 19:34:20 +00002213The function type can be thought of as a function signature. It consists of a
2214return type and a list of formal parameter types. The return type of a function
2215type is a void type or first class type --- except for :ref:`label <t_label>`
2216and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002217
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002218:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002219
Rafael Espindola08013342013-12-07 19:34:20 +00002220::
Sean Silvab084af42012-12-07 10:36:55 +00002221
Rafael Espindola08013342013-12-07 19:34:20 +00002222 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002223
Rafael Espindola08013342013-12-07 19:34:20 +00002224...where '``<parameter list>``' is a comma-separated list of type
2225specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002226indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002227argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002228handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002229except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002230
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002231:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002232
Rafael Espindola08013342013-12-07 19:34:20 +00002233+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2234| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2235+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2236| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2237+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2238| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2239+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2240| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2241+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2242
2243.. _t_firstclass:
2244
2245First Class Types
2246-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002247
2248The :ref:`first class <t_firstclass>` types are perhaps the most important.
2249Values of these types are the only ones which can be produced by
2250instructions.
2251
Rafael Espindola08013342013-12-07 19:34:20 +00002252.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002253
Rafael Espindola08013342013-12-07 19:34:20 +00002254Single Value Types
2255^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002256
Rafael Espindola08013342013-12-07 19:34:20 +00002257These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002258
2259.. _t_integer:
2260
2261Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002262""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002263
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002264:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002265
2266The integer type is a very simple type that simply specifies an
2267arbitrary bit width for the integer type desired. Any bit width from 1
2268bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2269
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002270:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002271
2272::
2273
2274 iN
2275
2276The number of bits the integer will occupy is specified by the ``N``
2277value.
2278
2279Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002280*********
Sean Silvab084af42012-12-07 10:36:55 +00002281
2282+----------------+------------------------------------------------+
2283| ``i1`` | a single-bit integer. |
2284+----------------+------------------------------------------------+
2285| ``i32`` | a 32-bit integer. |
2286+----------------+------------------------------------------------+
2287| ``i1942652`` | a really big integer of over 1 million bits. |
2288+----------------+------------------------------------------------+
2289
2290.. _t_floating:
2291
2292Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002293""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002294
2295.. list-table::
2296 :header-rows: 1
2297
2298 * - Type
2299 - Description
2300
2301 * - ``half``
2302 - 16-bit floating point value
2303
2304 * - ``float``
2305 - 32-bit floating point value
2306
2307 * - ``double``
2308 - 64-bit floating point value
2309
2310 * - ``fp128``
2311 - 128-bit floating point value (112-bit mantissa)
2312
2313 * - ``x86_fp80``
2314 - 80-bit floating point value (X87)
2315
2316 * - ``ppc_fp128``
2317 - 128-bit floating point value (two 64-bits)
2318
Reid Kleckner9a16d082014-03-05 02:41:37 +00002319X86_mmx Type
2320""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002323
Reid Kleckner9a16d082014-03-05 02:41:37 +00002324The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002325machine. The operations allowed on it are quite limited: parameters and
2326return values, load and store, and bitcast. User-specified MMX
2327instructions are represented as intrinsic or asm calls with arguments
2328and/or results of this type. There are no arrays, vectors or constants
2329of this type.
2330
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002331:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002332
2333::
2334
Reid Kleckner9a16d082014-03-05 02:41:37 +00002335 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002336
Sean Silvab084af42012-12-07 10:36:55 +00002337
Rafael Espindola08013342013-12-07 19:34:20 +00002338.. _t_pointer:
2339
2340Pointer Type
2341""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002342
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002343:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002344
Rafael Espindola08013342013-12-07 19:34:20 +00002345The pointer type is used to specify memory locations. Pointers are
2346commonly used to reference objects in memory.
2347
2348Pointer types may have an optional address space attribute defining the
2349numbered address space where the pointed-to object resides. The default
2350address space is number zero. The semantics of non-zero address spaces
2351are target-specific.
2352
2353Note that LLVM does not permit pointers to void (``void*``) nor does it
2354permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002355
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002356:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002357
2358::
2359
Rafael Espindola08013342013-12-07 19:34:20 +00002360 <type> *
2361
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002362:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002363
2364+-------------------------+--------------------------------------------------------------------------------------------------------------+
2365| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2366+-------------------------+--------------------------------------------------------------------------------------------------------------+
2367| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2368+-------------------------+--------------------------------------------------------------------------------------------------------------+
2369| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2370+-------------------------+--------------------------------------------------------------------------------------------------------------+
2371
2372.. _t_vector:
2373
2374Vector Type
2375"""""""""""
2376
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002377:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002378
2379A vector type is a simple derived type that represents a vector of
2380elements. Vector types are used when multiple primitive data are
2381operated in parallel using a single instruction (SIMD). A vector type
2382requires a size (number of elements) and an underlying primitive data
2383type. Vector types are considered :ref:`first class <t_firstclass>`.
2384
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002385:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002386
2387::
2388
2389 < <# elements> x <elementtype> >
2390
2391The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002392elementtype may be any integer, floating point or pointer type. Vectors
2393of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002394
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002395:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002396
2397+-------------------+--------------------------------------------------+
2398| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2399+-------------------+--------------------------------------------------+
2400| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2401+-------------------+--------------------------------------------------+
2402| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2403+-------------------+--------------------------------------------------+
2404| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2405+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002406
2407.. _t_label:
2408
2409Label Type
2410^^^^^^^^^^
2411
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002412:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002413
2414The label type represents code labels.
2415
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002416:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002417
2418::
2419
2420 label
2421
David Majnemerb611e3f2015-08-14 05:09:07 +00002422.. _t_token:
2423
2424Token Type
2425^^^^^^^^^^
2426
2427:Overview:
2428
2429The token type is used when a value is associated with an instruction
2430but all uses of the value must not attempt to introspect or obscure it.
2431As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2432:ref:`select <i_select>` of type token.
2433
2434:Syntax:
2435
2436::
2437
2438 token
2439
2440
2441
Sean Silvab084af42012-12-07 10:36:55 +00002442.. _t_metadata:
2443
2444Metadata Type
2445^^^^^^^^^^^^^
2446
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002447:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002448
2449The metadata type represents embedded metadata. No derived types may be
2450created from metadata except for :ref:`function <t_function>` arguments.
2451
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002452:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002453
2454::
2455
2456 metadata
2457
Sean Silvab084af42012-12-07 10:36:55 +00002458.. _t_aggregate:
2459
2460Aggregate Types
2461^^^^^^^^^^^^^^^
2462
2463Aggregate Types are a subset of derived types that can contain multiple
2464member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2465aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2466aggregate types.
2467
2468.. _t_array:
2469
2470Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002471""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002472
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002473:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002474
2475The array type is a very simple derived type that arranges elements
2476sequentially in memory. The array type requires a size (number of
2477elements) and an underlying data type.
2478
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002479:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002480
2481::
2482
2483 [<# elements> x <elementtype>]
2484
2485The number of elements is a constant integer value; ``elementtype`` may
2486be any type with a size.
2487
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002488:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002489
2490+------------------+--------------------------------------+
2491| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2492+------------------+--------------------------------------+
2493| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2494+------------------+--------------------------------------+
2495| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2496+------------------+--------------------------------------+
2497
2498Here are some examples of multidimensional arrays:
2499
2500+-----------------------------+----------------------------------------------------------+
2501| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2502+-----------------------------+----------------------------------------------------------+
2503| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2504+-----------------------------+----------------------------------------------------------+
2505| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2506+-----------------------------+----------------------------------------------------------+
2507
2508There is no restriction on indexing beyond the end of the array implied
2509by a static type (though there are restrictions on indexing beyond the
2510bounds of an allocated object in some cases). This means that
2511single-dimension 'variable sized array' addressing can be implemented in
2512LLVM with a zero length array type. An implementation of 'pascal style
2513arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2514example.
2515
Sean Silvab084af42012-12-07 10:36:55 +00002516.. _t_struct:
2517
2518Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002519""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002520
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002521:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002522
2523The structure type is used to represent a collection of data members
2524together in memory. The elements of a structure may be any type that has
2525a size.
2526
2527Structures in memory are accessed using '``load``' and '``store``' by
2528getting a pointer to a field with the '``getelementptr``' instruction.
2529Structures in registers are accessed using the '``extractvalue``' and
2530'``insertvalue``' instructions.
2531
2532Structures may optionally be "packed" structures, which indicate that
2533the alignment of the struct is one byte, and that there is no padding
2534between the elements. In non-packed structs, padding between field types
2535is inserted as defined by the DataLayout string in the module, which is
2536required to match what the underlying code generator expects.
2537
2538Structures can either be "literal" or "identified". A literal structure
2539is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2540identified types are always defined at the top level with a name.
2541Literal types are uniqued by their contents and can never be recursive
2542or opaque since there is no way to write one. Identified types can be
2543recursive, can be opaqued, and are never uniqued.
2544
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002545:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002546
2547::
2548
2549 %T1 = type { <type list> } ; Identified normal struct type
2550 %T2 = type <{ <type list> }> ; Identified packed struct type
2551
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002552:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002553
2554+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2555| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2556+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002557| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002558+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2559| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2560+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2561
2562.. _t_opaque:
2563
2564Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002565""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002566
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002567:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002568
2569Opaque structure types are used to represent named structure types that
2570do not have a body specified. This corresponds (for example) to the C
2571notion of a forward declared structure.
2572
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002573:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002574
2575::
2576
2577 %X = type opaque
2578 %52 = type opaque
2579
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002580:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002581
2582+--------------+-------------------+
2583| ``opaque`` | An opaque type. |
2584+--------------+-------------------+
2585
Sean Silva1703e702014-04-08 21:06:22 +00002586.. _constants:
2587
Sean Silvab084af42012-12-07 10:36:55 +00002588Constants
2589=========
2590
2591LLVM has several different basic types of constants. This section
2592describes them all and their syntax.
2593
2594Simple Constants
2595----------------
2596
2597**Boolean constants**
2598 The two strings '``true``' and '``false``' are both valid constants
2599 of the ``i1`` type.
2600**Integer constants**
2601 Standard integers (such as '4') are constants of the
2602 :ref:`integer <t_integer>` type. Negative numbers may be used with
2603 integer types.
2604**Floating point constants**
2605 Floating point constants use standard decimal notation (e.g.
2606 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2607 hexadecimal notation (see below). The assembler requires the exact
2608 decimal value of a floating-point constant. For example, the
2609 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2610 decimal in binary. Floating point constants must have a :ref:`floating
2611 point <t_floating>` type.
2612**Null pointer constants**
2613 The identifier '``null``' is recognized as a null pointer constant
2614 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002615**Token constants**
2616 The identifier '``none``' is recognized as an empty token constant
2617 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002618
2619The one non-intuitive notation for constants is the hexadecimal form of
2620floating point constants. For example, the form
2621'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2622than) '``double 4.5e+15``'. The only time hexadecimal floating point
2623constants are required (and the only time that they are generated by the
2624disassembler) is when a floating point constant must be emitted but it
2625cannot be represented as a decimal floating point number in a reasonable
2626number of digits. For example, NaN's, infinities, and other special
2627values are represented in their IEEE hexadecimal format so that assembly
2628and disassembly do not cause any bits to change in the constants.
2629
2630When using the hexadecimal form, constants of types half, float, and
2631double are represented using the 16-digit form shown above (which
2632matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002633must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002634precision, respectively. Hexadecimal format is always used for long
2635double, and there are three forms of long double. The 80-bit format used
2636by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2637128-bit format used by PowerPC (two adjacent doubles) is represented by
2638``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002639represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2640will only work if they match the long double format on your target.
2641The IEEE 16-bit format (half precision) is represented by ``0xH``
2642followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2643(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002644
Reid Kleckner9a16d082014-03-05 02:41:37 +00002645There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002646
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002647.. _complexconstants:
2648
Sean Silvab084af42012-12-07 10:36:55 +00002649Complex Constants
2650-----------------
2651
2652Complex constants are a (potentially recursive) combination of simple
2653constants and smaller complex constants.
2654
2655**Structure constants**
2656 Structure constants are represented with notation similar to
2657 structure type definitions (a comma separated list of elements,
2658 surrounded by braces (``{}``)). For example:
2659 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2660 "``@G = external global i32``". Structure constants must have
2661 :ref:`structure type <t_struct>`, and the number and types of elements
2662 must match those specified by the type.
2663**Array constants**
2664 Array constants are represented with notation similar to array type
2665 definitions (a comma separated list of elements, surrounded by
2666 square brackets (``[]``)). For example:
2667 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2668 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002669 match those specified by the type. As a special case, character array
2670 constants may also be represented as a double-quoted string using the ``c``
2671 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002672**Vector constants**
2673 Vector constants are represented with notation similar to vector
2674 type definitions (a comma separated list of elements, surrounded by
2675 less-than/greater-than's (``<>``)). For example:
2676 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2677 must have :ref:`vector type <t_vector>`, and the number and types of
2678 elements must match those specified by the type.
2679**Zero initialization**
2680 The string '``zeroinitializer``' can be used to zero initialize a
2681 value to zero of *any* type, including scalar and
2682 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2683 having to print large zero initializers (e.g. for large arrays) and
2684 is always exactly equivalent to using explicit zero initializers.
2685**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002686 A metadata node is a constant tuple without types. For example:
2687 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002688 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2689 Unlike other typed constants that are meant to be interpreted as part of
2690 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002691 information such as debug info.
2692
2693Global Variable and Function Addresses
2694--------------------------------------
2695
2696The addresses of :ref:`global variables <globalvars>` and
2697:ref:`functions <functionstructure>` are always implicitly valid
2698(link-time) constants. These constants are explicitly referenced when
2699the :ref:`identifier for the global <identifiers>` is used and always have
2700:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2701file:
2702
2703.. code-block:: llvm
2704
2705 @X = global i32 17
2706 @Y = global i32 42
2707 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2708
2709.. _undefvalues:
2710
2711Undefined Values
2712----------------
2713
2714The string '``undef``' can be used anywhere a constant is expected, and
2715indicates that the user of the value may receive an unspecified
2716bit-pattern. Undefined values may be of any type (other than '``label``'
2717or '``void``') and be used anywhere a constant is permitted.
2718
2719Undefined values are useful because they indicate to the compiler that
2720the program is well defined no matter what value is used. This gives the
2721compiler more freedom to optimize. Here are some examples of
2722(potentially surprising) transformations that are valid (in pseudo IR):
2723
2724.. code-block:: llvm
2725
2726 %A = add %X, undef
2727 %B = sub %X, undef
2728 %C = xor %X, undef
2729 Safe:
2730 %A = undef
2731 %B = undef
2732 %C = undef
2733
2734This is safe because all of the output bits are affected by the undef
2735bits. Any output bit can have a zero or one depending on the input bits.
2736
2737.. code-block:: llvm
2738
2739 %A = or %X, undef
2740 %B = and %X, undef
2741 Safe:
2742 %A = -1
2743 %B = 0
2744 Unsafe:
2745 %A = undef
2746 %B = undef
2747
2748These logical operations have bits that are not always affected by the
2749input. For example, if ``%X`` has a zero bit, then the output of the
2750'``and``' operation will always be a zero for that bit, no matter what
2751the corresponding bit from the '``undef``' is. As such, it is unsafe to
2752optimize or assume that the result of the '``and``' is '``undef``'.
2753However, it is safe to assume that all bits of the '``undef``' could be
27540, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2755all the bits of the '``undef``' operand to the '``or``' could be set,
2756allowing the '``or``' to be folded to -1.
2757
2758.. code-block:: llvm
2759
2760 %A = select undef, %X, %Y
2761 %B = select undef, 42, %Y
2762 %C = select %X, %Y, undef
2763 Safe:
2764 %A = %X (or %Y)
2765 %B = 42 (or %Y)
2766 %C = %Y
2767 Unsafe:
2768 %A = undef
2769 %B = undef
2770 %C = undef
2771
2772This set of examples shows that undefined '``select``' (and conditional
2773branch) conditions can go *either way*, but they have to come from one
2774of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2775both known to have a clear low bit, then ``%A`` would have to have a
2776cleared low bit. However, in the ``%C`` example, the optimizer is
2777allowed to assume that the '``undef``' operand could be the same as
2778``%Y``, allowing the whole '``select``' to be eliminated.
2779
2780.. code-block:: llvm
2781
2782 %A = xor undef, undef
2783
2784 %B = undef
2785 %C = xor %B, %B
2786
2787 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002788 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002789 %F = icmp gte %D, 4
2790
2791 Safe:
2792 %A = undef
2793 %B = undef
2794 %C = undef
2795 %D = undef
2796 %E = undef
2797 %F = undef
2798
2799This example points out that two '``undef``' operands are not
2800necessarily the same. This can be surprising to people (and also matches
2801C semantics) where they assume that "``X^X``" is always zero, even if
2802``X`` is undefined. This isn't true for a number of reasons, but the
2803short answer is that an '``undef``' "variable" can arbitrarily change
2804its value over its "live range". This is true because the variable
2805doesn't actually *have a live range*. Instead, the value is logically
2806read from arbitrary registers that happen to be around when needed, so
2807the value is not necessarily consistent over time. In fact, ``%A`` and
2808``%C`` need to have the same semantics or the core LLVM "replace all
2809uses with" concept would not hold.
2810
2811.. code-block:: llvm
2812
2813 %A = fdiv undef, %X
2814 %B = fdiv %X, undef
2815 Safe:
2816 %A = undef
2817 b: unreachable
2818
2819These examples show the crucial difference between an *undefined value*
2820and *undefined behavior*. An undefined value (like '``undef``') is
2821allowed to have an arbitrary bit-pattern. This means that the ``%A``
2822operation can be constant folded to '``undef``', because the '``undef``'
2823could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2824However, in the second example, we can make a more aggressive
2825assumption: because the ``undef`` is allowed to be an arbitrary value,
2826we are allowed to assume that it could be zero. Since a divide by zero
2827has *undefined behavior*, we are allowed to assume that the operation
2828does not execute at all. This allows us to delete the divide and all
2829code after it. Because the undefined operation "can't happen", the
2830optimizer can assume that it occurs in dead code.
2831
2832.. code-block:: llvm
2833
2834 a: store undef -> %X
2835 b: store %X -> undef
2836 Safe:
2837 a: <deleted>
2838 b: unreachable
2839
2840These examples reiterate the ``fdiv`` example: a store *of* an undefined
2841value can be assumed to not have any effect; we can assume that the
2842value is overwritten with bits that happen to match what was already
2843there. However, a store *to* an undefined location could clobber
2844arbitrary memory, therefore, it has undefined behavior.
2845
2846.. _poisonvalues:
2847
2848Poison Values
2849-------------
2850
2851Poison values are similar to :ref:`undef values <undefvalues>`, however
2852they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002853that cannot evoke side effects has nevertheless detected a condition
2854that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002855
2856There is currently no way of representing a poison value in the IR; they
2857only exist when produced by operations such as :ref:`add <i_add>` with
2858the ``nsw`` flag.
2859
2860Poison value behavior is defined in terms of value *dependence*:
2861
2862- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2863- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2864 their dynamic predecessor basic block.
2865- Function arguments depend on the corresponding actual argument values
2866 in the dynamic callers of their functions.
2867- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2868 instructions that dynamically transfer control back to them.
2869- :ref:`Invoke <i_invoke>` instructions depend on the
2870 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2871 call instructions that dynamically transfer control back to them.
2872- Non-volatile loads and stores depend on the most recent stores to all
2873 of the referenced memory addresses, following the order in the IR
2874 (including loads and stores implied by intrinsics such as
2875 :ref:`@llvm.memcpy <int_memcpy>`.)
2876- An instruction with externally visible side effects depends on the
2877 most recent preceding instruction with externally visible side
2878 effects, following the order in the IR. (This includes :ref:`volatile
2879 operations <volatile>`.)
2880- An instruction *control-depends* on a :ref:`terminator
2881 instruction <terminators>` if the terminator instruction has
2882 multiple successors and the instruction is always executed when
2883 control transfers to one of the successors, and may not be executed
2884 when control is transferred to another.
2885- Additionally, an instruction also *control-depends* on a terminator
2886 instruction if the set of instructions it otherwise depends on would
2887 be different if the terminator had transferred control to a different
2888 successor.
2889- Dependence is transitive.
2890
Richard Smith32dbdf62014-07-31 04:25:36 +00002891Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2892with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002893on a poison value has undefined behavior.
2894
2895Here are some examples:
2896
2897.. code-block:: llvm
2898
2899 entry:
2900 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2901 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002902 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002903 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2904
2905 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002906 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002907
2908 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2909
2910 %narrowaddr = bitcast i32* @g to i16*
2911 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002912 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2913 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002914
2915 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2916 br i1 %cmp, label %true, label %end ; Branch to either destination.
2917
2918 true:
2919 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2920 ; it has undefined behavior.
2921 br label %end
2922
2923 end:
2924 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2925 ; Both edges into this PHI are
2926 ; control-dependent on %cmp, so this
2927 ; always results in a poison value.
2928
2929 store volatile i32 0, i32* @g ; This would depend on the store in %true
2930 ; if %cmp is true, or the store in %entry
2931 ; otherwise, so this is undefined behavior.
2932
2933 br i1 %cmp, label %second_true, label %second_end
2934 ; The same branch again, but this time the
2935 ; true block doesn't have side effects.
2936
2937 second_true:
2938 ; No side effects!
2939 ret void
2940
2941 second_end:
2942 store volatile i32 0, i32* @g ; This time, the instruction always depends
2943 ; on the store in %end. Also, it is
2944 ; control-equivalent to %end, so this is
2945 ; well-defined (ignoring earlier undefined
2946 ; behavior in this example).
2947
2948.. _blockaddress:
2949
2950Addresses of Basic Blocks
2951-------------------------
2952
2953``blockaddress(@function, %block)``
2954
2955The '``blockaddress``' constant computes the address of the specified
2956basic block in the specified function, and always has an ``i8*`` type.
2957Taking the address of the entry block is illegal.
2958
2959This value only has defined behavior when used as an operand to the
2960':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2961against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002962undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002963no label is equal to the null pointer. This may be passed around as an
2964opaque pointer sized value as long as the bits are not inspected. This
2965allows ``ptrtoint`` and arithmetic to be performed on these values so
2966long as the original value is reconstituted before the ``indirectbr``
2967instruction.
2968
2969Finally, some targets may provide defined semantics when using the value
2970as the operand to an inline assembly, but that is target specific.
2971
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002972.. _constantexprs:
2973
Sean Silvab084af42012-12-07 10:36:55 +00002974Constant Expressions
2975--------------------
2976
2977Constant expressions are used to allow expressions involving other
2978constants to be used as constants. Constant expressions may be of any
2979:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2980that does not have side effects (e.g. load and call are not supported).
2981The following is the syntax for constant expressions:
2982
2983``trunc (CST to TYPE)``
2984 Truncate a constant to another type. The bit size of CST must be
2985 larger than the bit size of TYPE. Both types must be integers.
2986``zext (CST to TYPE)``
2987 Zero extend a constant to another type. The bit size of CST must be
2988 smaller than the bit size of TYPE. Both types must be integers.
2989``sext (CST to TYPE)``
2990 Sign extend a constant to another type. The bit size of CST must be
2991 smaller than the bit size of TYPE. Both types must be integers.
2992``fptrunc (CST to TYPE)``
2993 Truncate a floating point constant to another floating point type.
2994 The size of CST must be larger than the size of TYPE. Both types
2995 must be floating point.
2996``fpext (CST to TYPE)``
2997 Floating point extend a constant to another type. The size of CST
2998 must be smaller or equal to the size of TYPE. Both types must be
2999 floating point.
3000``fptoui (CST to TYPE)``
3001 Convert a floating point constant to the corresponding unsigned
3002 integer constant. TYPE must be a scalar or vector integer type. CST
3003 must be of scalar or vector floating point type. Both CST and TYPE
3004 must be scalars, or vectors of the same number of elements. If the
3005 value won't fit in the integer type, the results are undefined.
3006``fptosi (CST to TYPE)``
3007 Convert a floating point constant to the corresponding signed
3008 integer constant. TYPE must be a scalar or vector integer type. CST
3009 must be of scalar or vector floating point type. Both CST and TYPE
3010 must be scalars, or vectors of the same number of elements. If the
3011 value won't fit in the integer type, the results are undefined.
3012``uitofp (CST to TYPE)``
3013 Convert an unsigned integer constant to the corresponding floating
3014 point constant. TYPE must be a scalar or vector floating point type.
3015 CST must be of scalar or vector integer type. Both CST and TYPE must
3016 be scalars, or vectors of the same number of elements. If the value
3017 won't fit in the floating point type, the results are undefined.
3018``sitofp (CST to TYPE)``
3019 Convert a signed integer constant to the corresponding floating
3020 point constant. TYPE must be a scalar or vector floating point type.
3021 CST must be of scalar or vector integer type. Both CST and TYPE must
3022 be scalars, or vectors of the same number of elements. If the value
3023 won't fit in the floating point type, the results are undefined.
3024``ptrtoint (CST to TYPE)``
3025 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003026 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003027 pointer type. The ``CST`` value is zero extended, truncated, or
3028 unchanged to make it fit in ``TYPE``.
3029``inttoptr (CST to TYPE)``
3030 Convert an integer constant to a pointer constant. TYPE must be a
3031 pointer type. CST must be of integer type. The CST value is zero
3032 extended, truncated, or unchanged to make it fit in a pointer size.
3033 This one is *really* dangerous!
3034``bitcast (CST to TYPE)``
3035 Convert a constant, CST, to another TYPE. The constraints of the
3036 operands are the same as those for the :ref:`bitcast
3037 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003038``addrspacecast (CST to TYPE)``
3039 Convert a constant pointer or constant vector of pointer, CST, to another
3040 TYPE in a different address space. The constraints of the operands are the
3041 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003042``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003043 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3044 constants. As with the :ref:`getelementptr <i_getelementptr>`
3045 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003046 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003047``select (COND, VAL1, VAL2)``
3048 Perform the :ref:`select operation <i_select>` on constants.
3049``icmp COND (VAL1, VAL2)``
3050 Performs the :ref:`icmp operation <i_icmp>` on constants.
3051``fcmp COND (VAL1, VAL2)``
3052 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3053``extractelement (VAL, IDX)``
3054 Perform the :ref:`extractelement operation <i_extractelement>` on
3055 constants.
3056``insertelement (VAL, ELT, IDX)``
3057 Perform the :ref:`insertelement operation <i_insertelement>` on
3058 constants.
3059``shufflevector (VEC1, VEC2, IDXMASK)``
3060 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3061 constants.
3062``extractvalue (VAL, IDX0, IDX1, ...)``
3063 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3064 constants. The index list is interpreted in a similar manner as
3065 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3066 least one index value must be specified.
3067``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3068 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3069 The index list is interpreted in a similar manner as indices in a
3070 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3071 value must be specified.
3072``OPCODE (LHS, RHS)``
3073 Perform the specified operation of the LHS and RHS constants. OPCODE
3074 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3075 binary <bitwiseops>` operations. The constraints on operands are
3076 the same as those for the corresponding instruction (e.g. no bitwise
3077 operations on floating point values are allowed).
3078
3079Other Values
3080============
3081
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003082.. _inlineasmexprs:
3083
Sean Silvab084af42012-12-07 10:36:55 +00003084Inline Assembler Expressions
3085----------------------------
3086
3087LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003088Inline Assembly <moduleasm>`) through the use of a special value. This value
3089represents the inline assembler as a template string (containing the
3090instructions to emit), a list of operand constraints (stored as a string), a
3091flag that indicates whether or not the inline asm expression has side effects,
3092and a flag indicating whether the function containing the asm needs to align its
3093stack conservatively.
3094
3095The template string supports argument substitution of the operands using "``$``"
3096followed by a number, to indicate substitution of the given register/memory
3097location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3098be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3099operand (See :ref:`inline-asm-modifiers`).
3100
3101A literal "``$``" may be included by using "``$$``" in the template. To include
3102other special characters into the output, the usual "``\XX``" escapes may be
3103used, just as in other strings. Note that after template substitution, the
3104resulting assembly string is parsed by LLVM's integrated assembler unless it is
3105disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3106syntax known to LLVM.
3107
3108LLVM's support for inline asm is modeled closely on the requirements of Clang's
3109GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3110modifier codes listed here are similar or identical to those in GCC's inline asm
3111support. However, to be clear, the syntax of the template and constraint strings
3112described here is *not* the same as the syntax accepted by GCC and Clang, and,
3113while most constraint letters are passed through as-is by Clang, some get
3114translated to other codes when converting from the C source to the LLVM
3115assembly.
3116
3117An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003118
3119.. code-block:: llvm
3120
3121 i32 (i32) asm "bswap $0", "=r,r"
3122
3123Inline assembler expressions may **only** be used as the callee operand
3124of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3125Thus, typically we have:
3126
3127.. code-block:: llvm
3128
3129 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3130
3131Inline asms with side effects not visible in the constraint list must be
3132marked as having side effects. This is done through the use of the
3133'``sideeffect``' keyword, like so:
3134
3135.. code-block:: llvm
3136
3137 call void asm sideeffect "eieio", ""()
3138
3139In some cases inline asms will contain code that will not work unless
3140the stack is aligned in some way, such as calls or SSE instructions on
3141x86, yet will not contain code that does that alignment within the asm.
3142The compiler should make conservative assumptions about what the asm
3143might contain and should generate its usual stack alignment code in the
3144prologue if the '``alignstack``' keyword is present:
3145
3146.. code-block:: llvm
3147
3148 call void asm alignstack "eieio", ""()
3149
3150Inline asms also support using non-standard assembly dialects. The
3151assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3152the inline asm is using the Intel dialect. Currently, ATT and Intel are
3153the only supported dialects. An example is:
3154
3155.. code-block:: llvm
3156
3157 call void asm inteldialect "eieio", ""()
3158
3159If multiple keywords appear the '``sideeffect``' keyword must come
3160first, the '``alignstack``' keyword second and the '``inteldialect``'
3161keyword last.
3162
James Y Knightbc832ed2015-07-08 18:08:36 +00003163Inline Asm Constraint String
3164^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3165
3166The constraint list is a comma-separated string, each element containing one or
3167more constraint codes.
3168
3169For each element in the constraint list an appropriate register or memory
3170operand will be chosen, and it will be made available to assembly template
3171string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3172second, etc.
3173
3174There are three different types of constraints, which are distinguished by a
3175prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3176constraints must always be given in that order: outputs first, then inputs, then
3177clobbers. They cannot be intermingled.
3178
3179There are also three different categories of constraint codes:
3180
3181- Register constraint. This is either a register class, or a fixed physical
3182 register. This kind of constraint will allocate a register, and if necessary,
3183 bitcast the argument or result to the appropriate type.
3184- Memory constraint. This kind of constraint is for use with an instruction
3185 taking a memory operand. Different constraints allow for different addressing
3186 modes used by the target.
3187- Immediate value constraint. This kind of constraint is for an integer or other
3188 immediate value which can be rendered directly into an instruction. The
3189 various target-specific constraints allow the selection of a value in the
3190 proper range for the instruction you wish to use it with.
3191
3192Output constraints
3193""""""""""""""""""
3194
3195Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3196indicates that the assembly will write to this operand, and the operand will
3197then be made available as a return value of the ``asm`` expression. Output
3198constraints do not consume an argument from the call instruction. (Except, see
3199below about indirect outputs).
3200
3201Normally, it is expected that no output locations are written to by the assembly
3202expression until *all* of the inputs have been read. As such, LLVM may assign
3203the same register to an output and an input. If this is not safe (e.g. if the
3204assembly contains two instructions, where the first writes to one output, and
3205the second reads an input and writes to a second output), then the "``&``"
3206modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003207"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003208will not use the same register for any inputs (other than an input tied to this
3209output).
3210
3211Input constraints
3212"""""""""""""""""
3213
3214Input constraints do not have a prefix -- just the constraint codes. Each input
3215constraint will consume one argument from the call instruction. It is not
3216permitted for the asm to write to any input register or memory location (unless
3217that input is tied to an output). Note also that multiple inputs may all be
3218assigned to the same register, if LLVM can determine that they necessarily all
3219contain the same value.
3220
3221Instead of providing a Constraint Code, input constraints may also "tie"
3222themselves to an output constraint, by providing an integer as the constraint
3223string. Tied inputs still consume an argument from the call instruction, and
3224take up a position in the asm template numbering as is usual -- they will simply
3225be constrained to always use the same register as the output they've been tied
3226to. For example, a constraint string of "``=r,0``" says to assign a register for
3227output, and use that register as an input as well (it being the 0'th
3228constraint).
3229
3230It is permitted to tie an input to an "early-clobber" output. In that case, no
3231*other* input may share the same register as the input tied to the early-clobber
3232(even when the other input has the same value).
3233
3234You may only tie an input to an output which has a register constraint, not a
3235memory constraint. Only a single input may be tied to an output.
3236
3237There is also an "interesting" feature which deserves a bit of explanation: if a
3238register class constraint allocates a register which is too small for the value
3239type operand provided as input, the input value will be split into multiple
3240registers, and all of them passed to the inline asm.
3241
3242However, this feature is often not as useful as you might think.
3243
3244Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3245architectures that have instructions which operate on multiple consecutive
3246instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3247SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3248hardware then loads into both the named register, and the next register. This
3249feature of inline asm would not be useful to support that.)
3250
3251A few of the targets provide a template string modifier allowing explicit access
3252to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3253``D``). On such an architecture, you can actually access the second allocated
3254register (yet, still, not any subsequent ones). But, in that case, you're still
3255probably better off simply splitting the value into two separate operands, for
3256clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3257despite existing only for use with this feature, is not really a good idea to
3258use)
3259
3260Indirect inputs and outputs
3261"""""""""""""""""""""""""""
3262
3263Indirect output or input constraints can be specified by the "``*``" modifier
3264(which goes after the "``=``" in case of an output). This indicates that the asm
3265will write to or read from the contents of an *address* provided as an input
3266argument. (Note that in this way, indirect outputs act more like an *input* than
3267an output: just like an input, they consume an argument of the call expression,
3268rather than producing a return value. An indirect output constraint is an
3269"output" only in that the asm is expected to write to the contents of the input
3270memory location, instead of just read from it).
3271
3272This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3273address of a variable as a value.
3274
3275It is also possible to use an indirect *register* constraint, but only on output
3276(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3277value normally, and then, separately emit a store to the address provided as
3278input, after the provided inline asm. (It's not clear what value this
3279functionality provides, compared to writing the store explicitly after the asm
3280statement, and it can only produce worse code, since it bypasses many
3281optimization passes. I would recommend not using it.)
3282
3283
3284Clobber constraints
3285"""""""""""""""""""
3286
3287A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3288consume an input operand, nor generate an output. Clobbers cannot use any of the
3289general constraint code letters -- they may use only explicit register
3290constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3291"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3292memory locations -- not only the memory pointed to by a declared indirect
3293output.
3294
3295
3296Constraint Codes
3297""""""""""""""""
3298After a potential prefix comes constraint code, or codes.
3299
3300A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3301followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3302(e.g. "``{eax}``").
3303
3304The one and two letter constraint codes are typically chosen to be the same as
3305GCC's constraint codes.
3306
3307A single constraint may include one or more than constraint code in it, leaving
3308it up to LLVM to choose which one to use. This is included mainly for
3309compatibility with the translation of GCC inline asm coming from clang.
3310
3311There are two ways to specify alternatives, and either or both may be used in an
3312inline asm constraint list:
3313
33141) Append the codes to each other, making a constraint code set. E.g. "``im``"
3315 or "``{eax}m``". This means "choose any of the options in the set". The
3316 choice of constraint is made independently for each constraint in the
3317 constraint list.
3318
33192) Use "``|``" between constraint code sets, creating alternatives. Every
3320 constraint in the constraint list must have the same number of alternative
3321 sets. With this syntax, the same alternative in *all* of the items in the
3322 constraint list will be chosen together.
3323
3324Putting those together, you might have a two operand constraint string like
3325``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3326operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3327may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3328
3329However, the use of either of the alternatives features is *NOT* recommended, as
3330LLVM is not able to make an intelligent choice about which one to use. (At the
3331point it currently needs to choose, not enough information is available to do so
3332in a smart way.) Thus, it simply tries to make a choice that's most likely to
3333compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3334always choose to use memory, not registers). And, if given multiple registers,
3335or multiple register classes, it will simply choose the first one. (In fact, it
3336doesn't currently even ensure explicitly specified physical registers are
3337unique, so specifying multiple physical registers as alternatives, like
3338``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3339intended.)
3340
3341Supported Constraint Code List
3342""""""""""""""""""""""""""""""
3343
3344The constraint codes are, in general, expected to behave the same way they do in
3345GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3346inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3347and GCC likely indicates a bug in LLVM.
3348
3349Some constraint codes are typically supported by all targets:
3350
3351- ``r``: A register in the target's general purpose register class.
3352- ``m``: A memory address operand. It is target-specific what addressing modes
3353 are supported, typical examples are register, or register + register offset,
3354 or register + immediate offset (of some target-specific size).
3355- ``i``: An integer constant (of target-specific width). Allows either a simple
3356 immediate, or a relocatable value.
3357- ``n``: An integer constant -- *not* including relocatable values.
3358- ``s``: An integer constant, but allowing *only* relocatable values.
3359- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3360 useful to pass a label for an asm branch or call.
3361
3362 .. FIXME: but that surely isn't actually okay to jump out of an asm
3363 block without telling llvm about the control transfer???)
3364
3365- ``{register-name}``: Requires exactly the named physical register.
3366
3367Other constraints are target-specific:
3368
3369AArch64:
3370
3371- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3372- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3373 i.e. 0 to 4095 with optional shift by 12.
3374- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3375 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3376- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3377 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3378- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3379 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3380- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3381 32-bit register. This is a superset of ``K``: in addition to the bitmask
3382 immediate, also allows immediate integers which can be loaded with a single
3383 ``MOVZ`` or ``MOVL`` instruction.
3384- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3385 64-bit register. This is a superset of ``L``.
3386- ``Q``: Memory address operand must be in a single register (no
3387 offsets). (However, LLVM currently does this for the ``m`` constraint as
3388 well.)
3389- ``r``: A 32 or 64-bit integer register (W* or X*).
3390- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3391- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3392
3393AMDGPU:
3394
3395- ``r``: A 32 or 64-bit integer register.
3396- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3397- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3398
3399
3400All ARM modes:
3401
3402- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3403 operand. Treated the same as operand ``m``, at the moment.
3404
3405ARM and ARM's Thumb2 mode:
3406
3407- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3408- ``I``: An immediate integer valid for a data-processing instruction.
3409- ``J``: An immediate integer between -4095 and 4095.
3410- ``K``: An immediate integer whose bitwise inverse is valid for a
3411 data-processing instruction. (Can be used with template modifier "``B``" to
3412 print the inverted value).
3413- ``L``: An immediate integer whose negation is valid for a data-processing
3414 instruction. (Can be used with template modifier "``n``" to print the negated
3415 value).
3416- ``M``: A power of two or a integer between 0 and 32.
3417- ``N``: Invalid immediate constraint.
3418- ``O``: Invalid immediate constraint.
3419- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3420- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3421 as ``r``.
3422- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3423 invalid.
3424- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3425 ``d0-d31``, or ``q0-q15``.
3426- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3427 ``d0-d7``, or ``q0-q3``.
3428- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3429 ``s0-s31``.
3430
3431ARM's Thumb1 mode:
3432
3433- ``I``: An immediate integer between 0 and 255.
3434- ``J``: An immediate integer between -255 and -1.
3435- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3436 some amount.
3437- ``L``: An immediate integer between -7 and 7.
3438- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3439- ``N``: An immediate integer between 0 and 31.
3440- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3441- ``r``: A low 32-bit GPR register (``r0-r7``).
3442- ``l``: A low 32-bit GPR register (``r0-r7``).
3443- ``h``: A high GPR register (``r0-r7``).
3444- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3445 ``d0-d31``, or ``q0-q15``.
3446- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3447 ``d0-d7``, or ``q0-q3``.
3448- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3449 ``s0-s31``.
3450
3451
3452Hexagon:
3453
3454- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3455 at the moment.
3456- ``r``: A 32 or 64-bit register.
3457
3458MSP430:
3459
3460- ``r``: An 8 or 16-bit register.
3461
3462MIPS:
3463
3464- ``I``: An immediate signed 16-bit integer.
3465- ``J``: An immediate integer zero.
3466- ``K``: An immediate unsigned 16-bit integer.
3467- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3468- ``N``: An immediate integer between -65535 and -1.
3469- ``O``: An immediate signed 15-bit integer.
3470- ``P``: An immediate integer between 1 and 65535.
3471- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3472 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3473- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3474 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3475 ``m``.
3476- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3477 ``sc`` instruction on the given subtarget (details vary).
3478- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3479- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003480 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3481 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003482- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3483 ``25``).
3484- ``l``: The ``lo`` register, 32 or 64-bit.
3485- ``x``: Invalid.
3486
3487NVPTX:
3488
3489- ``b``: A 1-bit integer register.
3490- ``c`` or ``h``: A 16-bit integer register.
3491- ``r``: A 32-bit integer register.
3492- ``l`` or ``N``: A 64-bit integer register.
3493- ``f``: A 32-bit float register.
3494- ``d``: A 64-bit float register.
3495
3496
3497PowerPC:
3498
3499- ``I``: An immediate signed 16-bit integer.
3500- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3501- ``K``: An immediate unsigned 16-bit integer.
3502- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3503- ``M``: An immediate integer greater than 31.
3504- ``N``: An immediate integer that is an exact power of 2.
3505- ``O``: The immediate integer constant 0.
3506- ``P``: An immediate integer constant whose negation is a signed 16-bit
3507 constant.
3508- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3509 treated the same as ``m``.
3510- ``r``: A 32 or 64-bit integer register.
3511- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3512 ``R1-R31``).
3513- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3514 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3515- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3516 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3517 altivec vector register (``V0-V31``).
3518
3519 .. FIXME: is this a bug that v accepts QPX registers? I think this
3520 is supposed to only use the altivec vector registers?
3521
3522- ``y``: Condition register (``CR0-CR7``).
3523- ``wc``: An individual CR bit in a CR register.
3524- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3525 register set (overlapping both the floating-point and vector register files).
3526- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3527 set.
3528
3529Sparc:
3530
3531- ``I``: An immediate 13-bit signed integer.
3532- ``r``: A 32-bit integer register.
3533
3534SystemZ:
3535
3536- ``I``: An immediate unsigned 8-bit integer.
3537- ``J``: An immediate unsigned 12-bit integer.
3538- ``K``: An immediate signed 16-bit integer.
3539- ``L``: An immediate signed 20-bit integer.
3540- ``M``: An immediate integer 0x7fffffff.
3541- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3542 ``m``, at the moment.
3543- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3544- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3545 address context evaluates as zero).
3546- ``h``: A 32-bit value in the high part of a 64bit data register
3547 (LLVM-specific)
3548- ``f``: A 32, 64, or 128-bit floating point register.
3549
3550X86:
3551
3552- ``I``: An immediate integer between 0 and 31.
3553- ``J``: An immediate integer between 0 and 64.
3554- ``K``: An immediate signed 8-bit integer.
3555- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3556 0xffffffff.
3557- ``M``: An immediate integer between 0 and 3.
3558- ``N``: An immediate unsigned 8-bit integer.
3559- ``O``: An immediate integer between 0 and 127.
3560- ``e``: An immediate 32-bit signed integer.
3561- ``Z``: An immediate 32-bit unsigned integer.
3562- ``o``, ``v``: Treated the same as ``m``, at the moment.
3563- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3564 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3565 registers, and on X86-64, it is all of the integer registers.
3566- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3567 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3568- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3569- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3570 existed since i386, and can be accessed without the REX prefix.
3571- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3572- ``y``: A 64-bit MMX register, if MMX is enabled.
3573- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3574 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3575 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3576 512-bit vector operand in an AVX512 register, Otherwise, an error.
3577- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3578- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3579 32-bit mode, a 64-bit integer operand will get split into two registers). It
3580 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3581 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3582 you're better off splitting it yourself, before passing it to the asm
3583 statement.
3584
3585XCore:
3586
3587- ``r``: A 32-bit integer register.
3588
3589
3590.. _inline-asm-modifiers:
3591
3592Asm template argument modifiers
3593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3594
3595In the asm template string, modifiers can be used on the operand reference, like
3596"``${0:n}``".
3597
3598The modifiers are, in general, expected to behave the same way they do in
3599GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3600inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3601and GCC likely indicates a bug in LLVM.
3602
3603Target-independent:
3604
Sean Silvaa1190322015-08-06 22:56:48 +00003605- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003606 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3607- ``n``: Negate and print immediate integer constant unadorned, without the
3608 target-specific immediate punctuation (e.g. no ``$`` prefix).
3609- ``l``: Print as an unadorned label, without the target-specific label
3610 punctuation (e.g. no ``$`` prefix).
3611
3612AArch64:
3613
3614- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3615 instead of ``x30``, print ``w30``.
3616- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3617- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3618 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3619 ``v*``.
3620
3621AMDGPU:
3622
3623- ``r``: No effect.
3624
3625ARM:
3626
3627- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3628 register).
3629- ``P``: No effect.
3630- ``q``: No effect.
3631- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3632 as ``d4[1]`` instead of ``s9``)
3633- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3634 prefix.
3635- ``L``: Print the low 16-bits of an immediate integer constant.
3636- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3637 register operands subsequent to the specified one (!), so use carefully.
3638- ``Q``: Print the low-order register of a register-pair, or the low-order
3639 register of a two-register operand.
3640- ``R``: Print the high-order register of a register-pair, or the high-order
3641 register of a two-register operand.
3642- ``H``: Print the second register of a register-pair. (On a big-endian system,
3643 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3644 to ``R``.)
3645
3646 .. FIXME: H doesn't currently support printing the second register
3647 of a two-register operand.
3648
3649- ``e``: Print the low doubleword register of a NEON quad register.
3650- ``f``: Print the high doubleword register of a NEON quad register.
3651- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3652 adornment.
3653
3654Hexagon:
3655
3656- ``L``: Print the second register of a two-register operand. Requires that it
3657 has been allocated consecutively to the first.
3658
3659 .. FIXME: why is it restricted to consecutive ones? And there's
3660 nothing that ensures that happens, is there?
3661
3662- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3663 nothing. Used to print 'addi' vs 'add' instructions.
3664
3665MSP430:
3666
3667No additional modifiers.
3668
3669MIPS:
3670
3671- ``X``: Print an immediate integer as hexadecimal
3672- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3673- ``d``: Print an immediate integer as decimal.
3674- ``m``: Subtract one and print an immediate integer as decimal.
3675- ``z``: Print $0 if an immediate zero, otherwise print normally.
3676- ``L``: Print the low-order register of a two-register operand, or prints the
3677 address of the low-order word of a double-word memory operand.
3678
3679 .. FIXME: L seems to be missing memory operand support.
3680
3681- ``M``: Print the high-order register of a two-register operand, or prints the
3682 address of the high-order word of a double-word memory operand.
3683
3684 .. FIXME: M seems to be missing memory operand support.
3685
3686- ``D``: Print the second register of a two-register operand, or prints the
3687 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3688 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3689 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003690- ``w``: No effect. Provided for compatibility with GCC which requires this
3691 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3692 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003693
3694NVPTX:
3695
3696- ``r``: No effect.
3697
3698PowerPC:
3699
3700- ``L``: Print the second register of a two-register operand. Requires that it
3701 has been allocated consecutively to the first.
3702
3703 .. FIXME: why is it restricted to consecutive ones? And there's
3704 nothing that ensures that happens, is there?
3705
3706- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3707 nothing. Used to print 'addi' vs 'add' instructions.
3708- ``y``: For a memory operand, prints formatter for a two-register X-form
3709 instruction. (Currently always prints ``r0,OPERAND``).
3710- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3711 otherwise. (NOTE: LLVM does not support update form, so this will currently
3712 always print nothing)
3713- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3714 not support indexed form, so this will currently always print nothing)
3715
3716Sparc:
3717
3718- ``r``: No effect.
3719
3720SystemZ:
3721
3722SystemZ implements only ``n``, and does *not* support any of the other
3723target-independent modifiers.
3724
3725X86:
3726
3727- ``c``: Print an unadorned integer or symbol name. (The latter is
3728 target-specific behavior for this typically target-independent modifier).
3729- ``A``: Print a register name with a '``*``' before it.
3730- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3731 operand.
3732- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3733 memory operand.
3734- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3735 operand.
3736- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3737 operand.
3738- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3739 available, otherwise the 32-bit register name; do nothing on a memory operand.
3740- ``n``: Negate and print an unadorned integer, or, for operands other than an
3741 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3742 the operand. (The behavior for relocatable symbol expressions is a
3743 target-specific behavior for this typically target-independent modifier)
3744- ``H``: Print a memory reference with additional offset +8.
3745- ``P``: Print a memory reference or operand for use as the argument of a call
3746 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3747
3748XCore:
3749
3750No additional modifiers.
3751
3752
Sean Silvab084af42012-12-07 10:36:55 +00003753Inline Asm Metadata
3754^^^^^^^^^^^^^^^^^^^
3755
3756The call instructions that wrap inline asm nodes may have a
3757"``!srcloc``" MDNode attached to it that contains a list of constant
3758integers. If present, the code generator will use the integer as the
3759location cookie value when report errors through the ``LLVMContext``
3760error reporting mechanisms. This allows a front-end to correlate backend
3761errors that occur with inline asm back to the source code that produced
3762it. For example:
3763
3764.. code-block:: llvm
3765
3766 call void asm sideeffect "something bad", ""(), !srcloc !42
3767 ...
3768 !42 = !{ i32 1234567 }
3769
3770It is up to the front-end to make sense of the magic numbers it places
3771in the IR. If the MDNode contains multiple constants, the code generator
3772will use the one that corresponds to the line of the asm that the error
3773occurs on.
3774
3775.. _metadata:
3776
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003777Metadata
3778========
Sean Silvab084af42012-12-07 10:36:55 +00003779
3780LLVM IR allows metadata to be attached to instructions in the program
3781that can convey extra information about the code to the optimizers and
3782code generator. One example application of metadata is source-level
3783debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003784
Sean Silvaa1190322015-08-06 22:56:48 +00003785Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003786``call`` instruction, it uses the ``metadata`` type.
3787
3788All metadata are identified in syntax by a exclamation point ('``!``').
3789
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003790.. _metadata-string:
3791
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003792Metadata Nodes and Metadata Strings
3793-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003794
3795A metadata string is a string surrounded by double quotes. It can
3796contain any character by escaping non-printable characters with
3797"``\xx``" where "``xx``" is the two digit hex code. For example:
3798"``!"test\00"``".
3799
3800Metadata nodes are represented with notation similar to structure
3801constants (a comma separated list of elements, surrounded by braces and
3802preceded by an exclamation point). Metadata nodes can have any values as
3803their operand. For example:
3804
3805.. code-block:: llvm
3806
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003807 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003808
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003809Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3810
3811.. code-block:: llvm
3812
3813 !0 = distinct !{!"test\00", i32 10}
3814
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003815``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003816content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003817when metadata operands change.
3818
Sean Silvab084af42012-12-07 10:36:55 +00003819A :ref:`named metadata <namedmetadatastructure>` is a collection of
3820metadata nodes, which can be looked up in the module symbol table. For
3821example:
3822
3823.. code-block:: llvm
3824
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003825 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003826
3827Metadata can be used as function arguments. Here ``llvm.dbg.value``
3828function is using two metadata arguments:
3829
3830.. code-block:: llvm
3831
3832 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3833
Peter Collingbourne50108682015-11-06 02:41:02 +00003834Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3835to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003836
3837.. code-block:: llvm
3838
3839 %indvar.next = add i64 %indvar, 1, !dbg !21
3840
Peter Collingbourne50108682015-11-06 02:41:02 +00003841Metadata can also be attached to a function definition. Here metadata ``!22``
3842is attached to the ``foo`` function using the ``!dbg`` identifier:
3843
3844.. code-block:: llvm
3845
3846 define void @foo() !dbg !22 {
3847 ret void
3848 }
3849
Sean Silvab084af42012-12-07 10:36:55 +00003850More information about specific metadata nodes recognized by the
3851optimizers and code generator is found below.
3852
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003853.. _specialized-metadata:
3854
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003855Specialized Metadata Nodes
3856^^^^^^^^^^^^^^^^^^^^^^^^^^
3857
3858Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003859to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003860order.
3861
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003862These aren't inherently debug info centric, but currently all the specialized
3863metadata nodes are related to debug info.
3864
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003865.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003866
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003867DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003868"""""""""""""
3869
Sean Silvaa1190322015-08-06 22:56:48 +00003870``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003871``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3872fields are tuples containing the debug info to be emitted along with the compile
3873unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003874references to them from instructions).
3875
3876.. code-block:: llvm
3877
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003878 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003879 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003880 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003881 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003882 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003883
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003884Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003885specific compilation unit. File descriptors are defined using this scope.
3886These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003887keep track of subprograms, global variables, type information, and imported
3888entities (declarations and namespaces).
3889
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003890.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003891
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003892DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003893""""""
3894
Sean Silvaa1190322015-08-06 22:56:48 +00003895``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003896
3897.. code-block:: llvm
3898
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003899 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003900
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003901Files are sometimes used in ``scope:`` fields, and are the only valid target
3902for ``file:`` fields.
3903
Michael Kuperstein605308a2015-05-14 10:58:59 +00003904.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003905
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003906DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003907"""""""""""
3908
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003909``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003910``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003911
3912.. code-block:: llvm
3913
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003914 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003915 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003916 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003917
Sean Silvaa1190322015-08-06 22:56:48 +00003918The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003919following:
3920
3921.. code-block:: llvm
3922
3923 DW_ATE_address = 1
3924 DW_ATE_boolean = 2
3925 DW_ATE_float = 4
3926 DW_ATE_signed = 5
3927 DW_ATE_signed_char = 6
3928 DW_ATE_unsigned = 7
3929 DW_ATE_unsigned_char = 8
3930
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003931.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003932
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003933DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003934""""""""""""""""
3935
Sean Silvaa1190322015-08-06 22:56:48 +00003936``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003937refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003938types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003939represents a function with no return value (such as ``void foo() {}`` in C++).
3940
3941.. code-block:: llvm
3942
3943 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3944 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003945 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003946
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003947.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003948
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003949DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003950"""""""""""""
3951
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003952``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003953qualified types.
3954
3955.. code-block:: llvm
3956
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003957 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003958 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003959 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003960 align: 32)
3961
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003962The following ``tag:`` values are valid:
3963
3964.. code-block:: llvm
3965
3966 DW_TAG_formal_parameter = 5
3967 DW_TAG_member = 13
3968 DW_TAG_pointer_type = 15
3969 DW_TAG_reference_type = 16
3970 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00003971 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003972 DW_TAG_ptr_to_member_type = 31
3973 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00003974 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003975 DW_TAG_volatile_type = 53
3976 DW_TAG_restrict_type = 55
3977
3978``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003979<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3980is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003981``DW_TAG_formal_parameter`` is used to define a member which is a formal
3982argument of a subprogram.
3983
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00003984``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
3985field of :ref:`composite types <DICompositeType>` to describe parents and
3986friends.
3987
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003988``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3989
3990``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3991``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3992``baseType:``.
3993
3994Note that the ``void *`` type is expressed as a type derived from NULL.
3995
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003996.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003997
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003998DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003999"""""""""""""""
4000
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004001``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004002structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004003
4004If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00004005identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004006can refer to composite types indirectly via a :ref:`metadata string
4007<metadata-string>` that matches their identifier.
4008
4009.. code-block:: llvm
4010
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004011 !0 = !DIEnumerator(name: "SixKind", value: 7)
4012 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4013 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4014 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004015 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4016 elements: !{!0, !1, !2})
4017
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004018The following ``tag:`` values are valid:
4019
4020.. code-block:: llvm
4021
4022 DW_TAG_array_type = 1
4023 DW_TAG_class_type = 2
4024 DW_TAG_enumeration_type = 4
4025 DW_TAG_structure_type = 19
4026 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004027
4028For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004029descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004030level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004031array type is a native packed vector.
4032
4033For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004034descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004035value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004036``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004037
4038For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4039``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004040<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4041``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4042``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004043
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004044.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004045
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004046DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004047""""""""""
4048
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004049``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004050:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004051
4052.. code-block:: llvm
4053
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004054 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4055 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4056 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004057
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004058.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004059
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004060DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004061""""""""""""
4062
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004063``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4064variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004065
4066.. code-block:: llvm
4067
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004068 !0 = !DIEnumerator(name: "SixKind", value: 7)
4069 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4070 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004071
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004072DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004073"""""""""""""""""""""""
4074
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004075``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004076language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004077:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004078
4079.. code-block:: llvm
4080
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004081 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004082
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004083DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004084""""""""""""""""""""""""
4085
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004086``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004087language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004088but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004089``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004090:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004091
4092.. code-block:: llvm
4093
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004094 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004095
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004096DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004097"""""""""""
4098
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004099``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004100
4101.. code-block:: llvm
4102
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004103 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004104
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004105DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004106""""""""""""""""
4107
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004108``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004109
4110.. code-block:: llvm
4111
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004112 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004113 file: !2, line: 7, type: !3, isLocal: true,
4114 isDefinition: false, variable: i32* @foo,
4115 declaration: !4)
4116
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004117All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004118:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004119
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004120.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004121
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004122DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004123""""""""""""
4124
Peter Collingbourne50108682015-11-06 02:41:02 +00004125``DISubprogram`` nodes represent functions from the source language. A
4126``DISubprogram`` may be attached to a function definition using ``!dbg``
4127metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4128that must be retained, even if their IR counterparts are optimized out of
4129the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004130
4131.. code-block:: llvm
4132
Peter Collingbourne50108682015-11-06 02:41:02 +00004133 define void @_Z3foov() !dbg !0 {
4134 ...
4135 }
4136
4137 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4138 file: !2, line: 7, type: !3, isLocal: true,
4139 isDefinition: false, scopeLine: 8,
4140 containingType: !4,
4141 virtuality: DW_VIRTUALITY_pure_virtual,
4142 virtualIndex: 10, flags: DIFlagPrototyped,
4143 isOptimized: true, templateParams: !5,
4144 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004145
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004146.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004147
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004148DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004149""""""""""""""
4150
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004151``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004152<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004153two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004154fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004155
4156.. code-block:: llvm
4157
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004158 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004159
4160Usually lexical blocks are ``distinct`` to prevent node merging based on
4161operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004162
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004163.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004164
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004165DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004166""""""""""""""""""
4167
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004168``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004169:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004170indicate textual inclusion, or the ``discriminator:`` field can be used to
4171discriminate between control flow within a single block in the source language.
4172
4173.. code-block:: llvm
4174
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004175 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4176 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4177 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004178
Michael Kuperstein605308a2015-05-14 10:58:59 +00004179.. _DILocation:
4180
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004181DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004182""""""""""
4183
Sean Silvaa1190322015-08-06 22:56:48 +00004184``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004185mandatory, and points at an :ref:`DILexicalBlockFile`, an
4186:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004187
4188.. code-block:: llvm
4189
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004190 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004191
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004192.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004193
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004194DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004195"""""""""""""""
4196
Sean Silvaa1190322015-08-06 22:56:48 +00004197``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004198the ``arg:`` field is set to non-zero, then this variable is a subprogram
4199parameter, and it will be included in the ``variables:`` field of its
4200:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004201
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004202.. code-block:: llvm
4203
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004204 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4205 type: !3, flags: DIFlagArtificial)
4206 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4207 type: !3)
4208 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004209
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004210DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004211""""""""""""
4212
Sean Silvaa1190322015-08-06 22:56:48 +00004213``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004214:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4215describe how the referenced LLVM variable relates to the source language
4216variable.
4217
4218The current supported vocabulary is limited:
4219
4220- ``DW_OP_deref`` dereferences the working expression.
4221- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4222- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4223 here, respectively) of the variable piece from the working expression.
4224
4225.. code-block:: llvm
4226
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004227 !0 = !DIExpression(DW_OP_deref)
4228 !1 = !DIExpression(DW_OP_plus, 3)
4229 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4230 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004231
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004232DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004233""""""""""""""
4234
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004235``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004236
4237.. code-block:: llvm
4238
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004239 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004240 getter: "getFoo", attributes: 7, type: !2)
4241
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004242DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004243""""""""""""""""
4244
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004245``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004246compile unit.
4247
4248.. code-block:: llvm
4249
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004250 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004251 entity: !1, line: 7)
4252
Amjad Abouda9bcf162015-12-10 12:56:35 +00004253DIMacro
4254"""""""
4255
4256``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4257The ``name:`` field is the macro identifier, followed by macro parameters when
4258definining a function-like macro, and the ``value`` field is the token-string
4259used to expand the macro identifier.
4260
4261.. code-block:: llvm
4262
4263 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4264 value: "((x) + 1)")
4265 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4266
4267DIMacroFile
4268"""""""""""
4269
4270``DIMacroFile`` nodes represent inclusion of source files.
4271The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4272appear in the included source file.
4273
4274.. code-block:: llvm
4275
4276 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4277 nodes: !3)
4278
Sean Silvab084af42012-12-07 10:36:55 +00004279'``tbaa``' Metadata
4280^^^^^^^^^^^^^^^^^^^
4281
4282In LLVM IR, memory does not have types, so LLVM's own type system is not
4283suitable for doing TBAA. Instead, metadata is added to the IR to
4284describe a type system of a higher level language. This can be used to
4285implement typical C/C++ TBAA, but it can also be used to implement
4286custom alias analysis behavior for other languages.
4287
4288The current metadata format is very simple. TBAA metadata nodes have up
4289to three fields, e.g.:
4290
4291.. code-block:: llvm
4292
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004293 !0 = !{ !"an example type tree" }
4294 !1 = !{ !"int", !0 }
4295 !2 = !{ !"float", !0 }
4296 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004297
4298The first field is an identity field. It can be any value, usually a
4299metadata string, which uniquely identifies the type. The most important
4300name in the tree is the name of the root node. Two trees with different
4301root node names are entirely disjoint, even if they have leaves with
4302common names.
4303
4304The second field identifies the type's parent node in the tree, or is
4305null or omitted for a root node. A type is considered to alias all of
4306its descendants and all of its ancestors in the tree. Also, a type is
4307considered to alias all types in other trees, so that bitcode produced
4308from multiple front-ends is handled conservatively.
4309
4310If the third field is present, it's an integer which if equal to 1
4311indicates that the type is "constant" (meaning
4312``pointsToConstantMemory`` should return true; see `other useful
4313AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4314
4315'``tbaa.struct``' Metadata
4316^^^^^^^^^^^^^^^^^^^^^^^^^^
4317
4318The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4319aggregate assignment operations in C and similar languages, however it
4320is defined to copy a contiguous region of memory, which is more than
4321strictly necessary for aggregate types which contain holes due to
4322padding. Also, it doesn't contain any TBAA information about the fields
4323of the aggregate.
4324
4325``!tbaa.struct`` metadata can describe which memory subregions in a
4326memcpy are padding and what the TBAA tags of the struct are.
4327
4328The current metadata format is very simple. ``!tbaa.struct`` metadata
4329nodes are a list of operands which are in conceptual groups of three.
4330For each group of three, the first operand gives the byte offset of a
4331field in bytes, the second gives its size in bytes, and the third gives
4332its tbaa tag. e.g.:
4333
4334.. code-block:: llvm
4335
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004336 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004337
4338This describes a struct with two fields. The first is at offset 0 bytes
4339with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4340and has size 4 bytes and has tbaa tag !2.
4341
4342Note that the fields need not be contiguous. In this example, there is a
43434 byte gap between the two fields. This gap represents padding which
4344does not carry useful data and need not be preserved.
4345
Hal Finkel94146652014-07-24 14:25:39 +00004346'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004347^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004348
4349``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4350noalias memory-access sets. This means that some collection of memory access
4351instructions (loads, stores, memory-accessing calls, etc.) that carry
4352``noalias`` metadata can specifically be specified not to alias with some other
4353collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004354Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004355a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004356of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004357subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004358instruction's ``noalias`` list, then the two memory accesses are assumed not to
4359alias.
Hal Finkel94146652014-07-24 14:25:39 +00004360
Hal Finkel029cde62014-07-25 15:50:02 +00004361The metadata identifying each domain is itself a list containing one or two
4362entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004363string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004364self-reference can be used to create globally unique domain names. A
4365descriptive string may optionally be provided as a second list entry.
4366
4367The metadata identifying each scope is also itself a list containing two or
4368three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004369is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004370self-reference can be used to create globally unique scope names. A metadata
4371reference to the scope's domain is the second entry. A descriptive string may
4372optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004373
4374For example,
4375
4376.. code-block:: llvm
4377
Hal Finkel029cde62014-07-25 15:50:02 +00004378 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004379 !0 = !{!0}
4380 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004381
Hal Finkel029cde62014-07-25 15:50:02 +00004382 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004383 !2 = !{!2, !0}
4384 !3 = !{!3, !0}
4385 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004386
Hal Finkel029cde62014-07-25 15:50:02 +00004387 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004388 !5 = !{!4} ; A list containing only scope !4
4389 !6 = !{!4, !3, !2}
4390 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004391
4392 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004393 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004394 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004395
Hal Finkel029cde62014-07-25 15:50:02 +00004396 ; These two instructions also don't alias (for domain !1, the set of scopes
4397 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004398 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004399 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004400
Adam Nemet0a8416f2015-05-11 08:30:28 +00004401 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004402 ; the !noalias list is not a superset of, or equal to, the scopes in the
4403 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004404 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004405 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004406
Sean Silvab084af42012-12-07 10:36:55 +00004407'``fpmath``' Metadata
4408^^^^^^^^^^^^^^^^^^^^^
4409
4410``fpmath`` metadata may be attached to any instruction of floating point
4411type. It can be used to express the maximum acceptable error in the
4412result of that instruction, in ULPs, thus potentially allowing the
4413compiler to use a more efficient but less accurate method of computing
4414it. ULP is defined as follows:
4415
4416 If ``x`` is a real number that lies between two finite consecutive
4417 floating-point numbers ``a`` and ``b``, without being equal to one
4418 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4419 distance between the two non-equal finite floating-point numbers
4420 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4421
4422The metadata node shall consist of a single positive floating point
4423number representing the maximum relative error, for example:
4424
4425.. code-block:: llvm
4426
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004427 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004428
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004429.. _range-metadata:
4430
Sean Silvab084af42012-12-07 10:36:55 +00004431'``range``' Metadata
4432^^^^^^^^^^^^^^^^^^^^
4433
Jingyue Wu37fcb592014-06-19 16:50:16 +00004434``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4435integer types. It expresses the possible ranges the loaded value or the value
4436returned by the called function at this call site is in. The ranges are
4437represented with a flattened list of integers. The loaded value or the value
4438returned is known to be in the union of the ranges defined by each consecutive
4439pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004440
4441- The type must match the type loaded by the instruction.
4442- The pair ``a,b`` represents the range ``[a,b)``.
4443- Both ``a`` and ``b`` are constants.
4444- The range is allowed to wrap.
4445- The range should not represent the full or empty set. That is,
4446 ``a!=b``.
4447
4448In addition, the pairs must be in signed order of the lower bound and
4449they must be non-contiguous.
4450
4451Examples:
4452
4453.. code-block:: llvm
4454
David Blaikiec7aabbb2015-03-04 22:06:14 +00004455 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4456 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004457 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4458 %d = invoke i8 @bar() to label %cont
4459 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004460 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004461 !0 = !{ i8 0, i8 2 }
4462 !1 = !{ i8 255, i8 2 }
4463 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4464 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004465
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004466'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004467^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004468
4469``unpredictable`` metadata may be attached to any branch or switch
4470instruction. It can be used to express the unpredictability of control
4471flow. Similar to the llvm.expect intrinsic, it may be used to alter
4472optimizations related to compare and branch instructions. The metadata
4473is treated as a boolean value; if it exists, it signals that the branch
4474or switch that it is attached to is completely unpredictable.
4475
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004476'``llvm.loop``'
4477^^^^^^^^^^^^^^^
4478
4479It is sometimes useful to attach information to loop constructs. Currently,
4480loop metadata is implemented as metadata attached to the branch instruction
4481in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004482guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004483specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004484
4485The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004486itself to avoid merging it with any other identifier metadata, e.g.,
4487during module linkage or function inlining. That is, each loop should refer
4488to their own identification metadata even if they reside in separate functions.
4489The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004490constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004491
4492.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004493
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004494 !0 = !{!0}
4495 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004496
Mark Heffernan893752a2014-07-18 19:24:51 +00004497The loop identifier metadata can be used to specify additional
4498per-loop metadata. Any operands after the first operand can be treated
4499as user-defined metadata. For example the ``llvm.loop.unroll.count``
4500suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004501
Paul Redmond5fdf8362013-05-28 20:00:34 +00004502.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004503
Paul Redmond5fdf8362013-05-28 20:00:34 +00004504 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4505 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004506 !0 = !{!0, !1}
4507 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004508
Mark Heffernan9d20e422014-07-21 23:11:03 +00004509'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004511
Mark Heffernan9d20e422014-07-21 23:11:03 +00004512Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4513used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004514vectorization width and interleave count. These metadata should be used in
4515conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004516``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4517optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004518it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004519which contains information about loop-carried memory dependencies can be helpful
4520in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004521
Mark Heffernan9d20e422014-07-21 23:11:03 +00004522'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4524
Mark Heffernan9d20e422014-07-21 23:11:03 +00004525This metadata suggests an interleave count to the loop interleaver.
4526The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004527second operand is an integer specifying the interleave count. For
4528example:
4529
4530.. code-block:: llvm
4531
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004532 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004533
Mark Heffernan9d20e422014-07-21 23:11:03 +00004534Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004535multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004536then the interleave count will be determined automatically.
4537
4538'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004539^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004540
4541This metadata selectively enables or disables vectorization for the loop. The
4542first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004543is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000045440 disables vectorization:
4545
4546.. code-block:: llvm
4547
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004548 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4549 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004550
4551'``llvm.loop.vectorize.width``' Metadata
4552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4553
4554This metadata sets the target width of the vectorizer. The first
4555operand is the string ``llvm.loop.vectorize.width`` and the second
4556operand is an integer specifying the width. For example:
4557
4558.. code-block:: llvm
4559
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004560 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004561
4562Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004563vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000045640 or if the loop does not have this metadata the width will be
4565determined automatically.
4566
4567'``llvm.loop.unroll``'
4568^^^^^^^^^^^^^^^^^^^^^^
4569
4570Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4571optimization hints such as the unroll factor. ``llvm.loop.unroll``
4572metadata should be used in conjunction with ``llvm.loop`` loop
4573identification metadata. The ``llvm.loop.unroll`` metadata are only
4574optimization hints and the unrolling will only be performed if the
4575optimizer believes it is safe to do so.
4576
Mark Heffernan893752a2014-07-18 19:24:51 +00004577'``llvm.loop.unroll.count``' Metadata
4578^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4579
4580This metadata suggests an unroll factor to the loop unroller. The
4581first operand is the string ``llvm.loop.unroll.count`` and the second
4582operand is a positive integer specifying the unroll factor. For
4583example:
4584
4585.. code-block:: llvm
4586
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004587 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004588
4589If the trip count of the loop is less than the unroll count the loop
4590will be partially unrolled.
4591
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004592'``llvm.loop.unroll.disable``' Metadata
4593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4594
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004595This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004596which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004597
4598.. code-block:: llvm
4599
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004600 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004601
Kevin Qin715b01e2015-03-09 06:14:18 +00004602'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004604
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004605This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004606operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004607
4608.. code-block:: llvm
4609
4610 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4611
Mark Heffernan89391542015-08-10 17:28:08 +00004612'``llvm.loop.unroll.enable``' Metadata
4613^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4614
4615This metadata suggests that the loop should be fully unrolled if the trip count
4616is known at compile time and partially unrolled if the trip count is not known
4617at compile time. The metadata has a single operand which is the string
4618``llvm.loop.unroll.enable``. For example:
4619
4620.. code-block:: llvm
4621
4622 !0 = !{!"llvm.loop.unroll.enable"}
4623
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004624'``llvm.loop.unroll.full``' Metadata
4625^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4626
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004627This metadata suggests that the loop should be unrolled fully. The
4628metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004629For example:
4630
4631.. code-block:: llvm
4632
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004633 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004634
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004635'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004637
4638This metadata indicates that the loop should not be versioned for the purpose
4639of enabling loop-invariant code motion (LICM). The metadata has a single operand
4640which is the string ``llvm.loop.licm_versioning.disable``. For example:
4641
4642.. code-block:: llvm
4643
4644 !0 = !{!"llvm.loop.licm_versioning.disable"}
4645
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004646'``llvm.mem``'
4647^^^^^^^^^^^^^^^
4648
4649Metadata types used to annotate memory accesses with information helpful
4650for optimizations are prefixed with ``llvm.mem``.
4651
4652'``llvm.mem.parallel_loop_access``' Metadata
4653^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4654
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004655The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4656or metadata containing a list of loop identifiers for nested loops.
4657The metadata is attached to memory accessing instructions and denotes that
4658no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004659with the same loop identifier.
4660
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004661Precisely, given two instructions ``m1`` and ``m2`` that both have the
4662``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4663set of loops associated with that metadata, respectively, then there is no loop
4664carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004665``L2``.
4666
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004667As a special case, if all memory accessing instructions in a loop have
4668``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4669loop has no loop carried memory dependences and is considered to be a parallel
4670loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004671
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004672Note that if not all memory access instructions have such metadata referring to
4673the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004674memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004675safe mechanism, this causes loops that were originally parallel to be considered
4676sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004677insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004678
4679Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004680both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004681metadata types that refer to the same loop identifier metadata.
4682
4683.. code-block:: llvm
4684
4685 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004686 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004687 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004688 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004689 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004690 ...
4691 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004692
4693 for.end:
4694 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004695 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004696
4697It is also possible to have nested parallel loops. In that case the
4698memory accesses refer to a list of loop identifier metadata nodes instead of
4699the loop identifier metadata node directly:
4700
4701.. code-block:: llvm
4702
4703 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004704 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004705 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004706 ...
4707 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004708
4709 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004710 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004711 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004712 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004713 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004714 ...
4715 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004716
4717 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004718 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004719 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004720 ...
4721 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004722
4723 outer.for.end: ; preds = %for.body
4724 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004725 !0 = !{!1, !2} ; a list of loop identifiers
4726 !1 = !{!1} ; an identifier for the inner loop
4727 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004728
Peter Collingbournee6909c82015-02-20 20:30:47 +00004729'``llvm.bitsets``'
4730^^^^^^^^^^^^^^^^^^
4731
4732The ``llvm.bitsets`` global metadata is used to implement
4733:doc:`bitsets <BitSets>`.
4734
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004735'``invariant.group``' Metadata
4736^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4737
4738The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4739The existence of the ``invariant.group`` metadata on the instruction tells
4740the optimizer that every ``load`` and ``store`` to the same pointer operand
4741within the same invariant group can be assumed to load or store the same
4742value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4743when two pointers are considered the same).
4744
4745Examples:
4746
4747.. code-block:: llvm
4748
4749 @unknownPtr = external global i8
4750 ...
4751 %ptr = alloca i8
4752 store i8 42, i8* %ptr, !invariant.group !0
4753 call void @foo(i8* %ptr)
4754
4755 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4756 call void @foo(i8* %ptr)
4757 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4758
4759 %newPtr = call i8* @getPointer(i8* %ptr)
4760 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4761
4762 %unknownValue = load i8, i8* @unknownPtr
4763 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4764
4765 call void @foo(i8* %ptr)
4766 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4767 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4768
4769 ...
4770 declare void @foo(i8*)
4771 declare i8* @getPointer(i8*)
4772 declare i8* @llvm.invariant.group.barrier(i8*)
4773
4774 !0 = !{!"magic ptr"}
4775 !1 = !{!"other ptr"}
4776
4777
4778
Sean Silvab084af42012-12-07 10:36:55 +00004779Module Flags Metadata
4780=====================
4781
4782Information about the module as a whole is difficult to convey to LLVM's
4783subsystems. The LLVM IR isn't sufficient to transmit this information.
4784The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004785this. These flags are in the form of key / value pairs --- much like a
4786dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004787look it up.
4788
4789The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4790Each triplet has the following form:
4791
4792- The first element is a *behavior* flag, which specifies the behavior
4793 when two (or more) modules are merged together, and it encounters two
4794 (or more) metadata with the same ID. The supported behaviors are
4795 described below.
4796- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004797 metadata. Each module may only have one flag entry for each unique ID (not
4798 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004799- The third element is the value of the flag.
4800
4801When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004802``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4803each unique metadata ID string, there will be exactly one entry in the merged
4804modules ``llvm.module.flags`` metadata table, and the value for that entry will
4805be determined by the merge behavior flag, as described below. The only exception
4806is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004807
4808The following behaviors are supported:
4809
4810.. list-table::
4811 :header-rows: 1
4812 :widths: 10 90
4813
4814 * - Value
4815 - Behavior
4816
4817 * - 1
4818 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004819 Emits an error if two values disagree, otherwise the resulting value
4820 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004821
4822 * - 2
4823 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004824 Emits a warning if two values disagree. The result value will be the
4825 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004826
4827 * - 3
4828 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004829 Adds a requirement that another module flag be present and have a
4830 specified value after linking is performed. The value must be a
4831 metadata pair, where the first element of the pair is the ID of the
4832 module flag to be restricted, and the second element of the pair is
4833 the value the module flag should be restricted to. This behavior can
4834 be used to restrict the allowable results (via triggering of an
4835 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004836
4837 * - 4
4838 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004839 Uses the specified value, regardless of the behavior or value of the
4840 other module. If both modules specify **Override**, but the values
4841 differ, an error will be emitted.
4842
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004843 * - 5
4844 - **Append**
4845 Appends the two values, which are required to be metadata nodes.
4846
4847 * - 6
4848 - **AppendUnique**
4849 Appends the two values, which are required to be metadata
4850 nodes. However, duplicate entries in the second list are dropped
4851 during the append operation.
4852
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004853It is an error for a particular unique flag ID to have multiple behaviors,
4854except in the case of **Require** (which adds restrictions on another metadata
4855value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004856
4857An example of module flags:
4858
4859.. code-block:: llvm
4860
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004861 !0 = !{ i32 1, !"foo", i32 1 }
4862 !1 = !{ i32 4, !"bar", i32 37 }
4863 !2 = !{ i32 2, !"qux", i32 42 }
4864 !3 = !{ i32 3, !"qux",
4865 !{
4866 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004867 }
4868 }
4869 !llvm.module.flags = !{ !0, !1, !2, !3 }
4870
4871- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4872 if two or more ``!"foo"`` flags are seen is to emit an error if their
4873 values are not equal.
4874
4875- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4876 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004877 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004878
4879- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4880 behavior if two or more ``!"qux"`` flags are seen is to emit a
4881 warning if their values are not equal.
4882
4883- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4884
4885 ::
4886
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004887 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004888
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004889 The behavior is to emit an error if the ``llvm.module.flags`` does not
4890 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4891 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004892
4893Objective-C Garbage Collection Module Flags Metadata
4894----------------------------------------------------
4895
4896On the Mach-O platform, Objective-C stores metadata about garbage
4897collection in a special section called "image info". The metadata
4898consists of a version number and a bitmask specifying what types of
4899garbage collection are supported (if any) by the file. If two or more
4900modules are linked together their garbage collection metadata needs to
4901be merged rather than appended together.
4902
4903The Objective-C garbage collection module flags metadata consists of the
4904following key-value pairs:
4905
4906.. list-table::
4907 :header-rows: 1
4908 :widths: 30 70
4909
4910 * - Key
4911 - Value
4912
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004913 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004914 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004915
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004916 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004917 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004918 always 0.
4919
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004920 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004921 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004922 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4923 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4924 Objective-C ABI version 2.
4925
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004926 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004927 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004928 not. Valid values are 0, for no garbage collection, and 2, for garbage
4929 collection supported.
4930
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004931 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004932 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004933 If present, its value must be 6. This flag requires that the
4934 ``Objective-C Garbage Collection`` flag have the value 2.
4935
4936Some important flag interactions:
4937
4938- If a module with ``Objective-C Garbage Collection`` set to 0 is
4939 merged with a module with ``Objective-C Garbage Collection`` set to
4940 2, then the resulting module has the
4941 ``Objective-C Garbage Collection`` flag set to 0.
4942- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4943 merged with a module with ``Objective-C GC Only`` set to 6.
4944
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004945Automatic Linker Flags Module Flags Metadata
4946--------------------------------------------
4947
4948Some targets support embedding flags to the linker inside individual object
4949files. Typically this is used in conjunction with language extensions which
4950allow source files to explicitly declare the libraries they depend on, and have
4951these automatically be transmitted to the linker via object files.
4952
4953These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004954using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004955to be ``AppendUnique``, and the value for the key is expected to be a metadata
4956node which should be a list of other metadata nodes, each of which should be a
4957list of metadata strings defining linker options.
4958
4959For example, the following metadata section specifies two separate sets of
4960linker options, presumably to link against ``libz`` and the ``Cocoa``
4961framework::
4962
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004963 !0 = !{ i32 6, !"Linker Options",
4964 !{
4965 !{ !"-lz" },
4966 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004967 !llvm.module.flags = !{ !0 }
4968
4969The metadata encoding as lists of lists of options, as opposed to a collapsed
4970list of options, is chosen so that the IR encoding can use multiple option
4971strings to specify e.g., a single library, while still having that specifier be
4972preserved as an atomic element that can be recognized by a target specific
4973assembly writer or object file emitter.
4974
4975Each individual option is required to be either a valid option for the target's
4976linker, or an option that is reserved by the target specific assembly writer or
4977object file emitter. No other aspect of these options is defined by the IR.
4978
Oliver Stannard5dc29342014-06-20 10:08:11 +00004979C type width Module Flags Metadata
4980----------------------------------
4981
4982The ARM backend emits a section into each generated object file describing the
4983options that it was compiled with (in a compiler-independent way) to prevent
4984linking incompatible objects, and to allow automatic library selection. Some
4985of these options are not visible at the IR level, namely wchar_t width and enum
4986width.
4987
4988To pass this information to the backend, these options are encoded in module
4989flags metadata, using the following key-value pairs:
4990
4991.. list-table::
4992 :header-rows: 1
4993 :widths: 30 70
4994
4995 * - Key
4996 - Value
4997
4998 * - short_wchar
4999 - * 0 --- sizeof(wchar_t) == 4
5000 * 1 --- sizeof(wchar_t) == 2
5001
5002 * - short_enum
5003 - * 0 --- Enums are at least as large as an ``int``.
5004 * 1 --- Enums are stored in the smallest integer type which can
5005 represent all of its values.
5006
5007For example, the following metadata section specifies that the module was
5008compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5009enum is the smallest type which can represent all of its values::
5010
5011 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005012 !0 = !{i32 1, !"short_wchar", i32 1}
5013 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005014
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005015.. _intrinsicglobalvariables:
5016
Sean Silvab084af42012-12-07 10:36:55 +00005017Intrinsic Global Variables
5018==========================
5019
5020LLVM has a number of "magic" global variables that contain data that
5021affect code generation or other IR semantics. These are documented here.
5022All globals of this sort should have a section specified as
5023"``llvm.metadata``". This section and all globals that start with
5024"``llvm.``" are reserved for use by LLVM.
5025
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005026.. _gv_llvmused:
5027
Sean Silvab084af42012-12-07 10:36:55 +00005028The '``llvm.used``' Global Variable
5029-----------------------------------
5030
Rafael Espindola74f2e462013-04-22 14:58:02 +00005031The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005032:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005033pointers to named global variables, functions and aliases which may optionally
5034have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005035use of it is:
5036
5037.. code-block:: llvm
5038
5039 @X = global i8 4
5040 @Y = global i32 123
5041
5042 @llvm.used = appending global [2 x i8*] [
5043 i8* @X,
5044 i8* bitcast (i32* @Y to i8*)
5045 ], section "llvm.metadata"
5046
Rafael Espindola74f2e462013-04-22 14:58:02 +00005047If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5048and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005049symbol that it cannot see (which is why they have to be named). For example, if
5050a variable has internal linkage and no references other than that from the
5051``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5052references from inline asms and other things the compiler cannot "see", and
5053corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005054
5055On some targets, the code generator must emit a directive to the
5056assembler or object file to prevent the assembler and linker from
5057molesting the symbol.
5058
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005059.. _gv_llvmcompilerused:
5060
Sean Silvab084af42012-12-07 10:36:55 +00005061The '``llvm.compiler.used``' Global Variable
5062--------------------------------------------
5063
5064The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5065directive, except that it only prevents the compiler from touching the
5066symbol. On targets that support it, this allows an intelligent linker to
5067optimize references to the symbol without being impeded as it would be
5068by ``@llvm.used``.
5069
5070This is a rare construct that should only be used in rare circumstances,
5071and should not be exposed to source languages.
5072
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005073.. _gv_llvmglobalctors:
5074
Sean Silvab084af42012-12-07 10:36:55 +00005075The '``llvm.global_ctors``' Global Variable
5076-------------------------------------------
5077
5078.. code-block:: llvm
5079
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005080 %0 = type { i32, void ()*, i8* }
5081 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005082
5083The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005084functions, priorities, and an optional associated global or function.
5085The functions referenced by this array will be called in ascending order
5086of priority (i.e. lowest first) when the module is loaded. The order of
5087functions with the same priority is not defined.
5088
5089If the third field is present, non-null, and points to a global variable
5090or function, the initializer function will only run if the associated
5091data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005092
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005093.. _llvmglobaldtors:
5094
Sean Silvab084af42012-12-07 10:36:55 +00005095The '``llvm.global_dtors``' Global Variable
5096-------------------------------------------
5097
5098.. code-block:: llvm
5099
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005100 %0 = type { i32, void ()*, i8* }
5101 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005102
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005103The ``@llvm.global_dtors`` array contains a list of destructor
5104functions, priorities, and an optional associated global or function.
5105The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005106order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005107order of functions with the same priority is not defined.
5108
5109If the third field is present, non-null, and points to a global variable
5110or function, the destructor function will only run if the associated
5111data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005112
5113Instruction Reference
5114=====================
5115
5116The LLVM instruction set consists of several different classifications
5117of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5118instructions <binaryops>`, :ref:`bitwise binary
5119instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5120:ref:`other instructions <otherops>`.
5121
5122.. _terminators:
5123
5124Terminator Instructions
5125-----------------------
5126
5127As mentioned :ref:`previously <functionstructure>`, every basic block in a
5128program ends with a "Terminator" instruction, which indicates which
5129block should be executed after the current block is finished. These
5130terminator instructions typically yield a '``void``' value: they produce
5131control flow, not values (the one exception being the
5132':ref:`invoke <i_invoke>`' instruction).
5133
5134The terminator instructions are: ':ref:`ret <i_ret>`',
5135':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5136':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005137':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005138':ref:`catchret <i_catchret>`',
5139':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005140and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005141
5142.. _i_ret:
5143
5144'``ret``' Instruction
5145^^^^^^^^^^^^^^^^^^^^^
5146
5147Syntax:
5148"""""""
5149
5150::
5151
5152 ret <type> <value> ; Return a value from a non-void function
5153 ret void ; Return from void function
5154
5155Overview:
5156"""""""""
5157
5158The '``ret``' instruction is used to return control flow (and optionally
5159a value) from a function back to the caller.
5160
5161There are two forms of the '``ret``' instruction: one that returns a
5162value and then causes control flow, and one that just causes control
5163flow to occur.
5164
5165Arguments:
5166""""""""""
5167
5168The '``ret``' instruction optionally accepts a single argument, the
5169return value. The type of the return value must be a ':ref:`first
5170class <t_firstclass>`' type.
5171
5172A function is not :ref:`well formed <wellformed>` if it it has a non-void
5173return type and contains a '``ret``' instruction with no return value or
5174a return value with a type that does not match its type, or if it has a
5175void return type and contains a '``ret``' instruction with a return
5176value.
5177
5178Semantics:
5179""""""""""
5180
5181When the '``ret``' instruction is executed, control flow returns back to
5182the calling function's context. If the caller is a
5183":ref:`call <i_call>`" instruction, execution continues at the
5184instruction after the call. If the caller was an
5185":ref:`invoke <i_invoke>`" instruction, execution continues at the
5186beginning of the "normal" destination block. If the instruction returns
5187a value, that value shall set the call or invoke instruction's return
5188value.
5189
5190Example:
5191""""""""
5192
5193.. code-block:: llvm
5194
5195 ret i32 5 ; Return an integer value of 5
5196 ret void ; Return from a void function
5197 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5198
5199.. _i_br:
5200
5201'``br``' Instruction
5202^^^^^^^^^^^^^^^^^^^^
5203
5204Syntax:
5205"""""""
5206
5207::
5208
5209 br i1 <cond>, label <iftrue>, label <iffalse>
5210 br label <dest> ; Unconditional branch
5211
5212Overview:
5213"""""""""
5214
5215The '``br``' instruction is used to cause control flow to transfer to a
5216different basic block in the current function. There are two forms of
5217this instruction, corresponding to a conditional branch and an
5218unconditional branch.
5219
5220Arguments:
5221""""""""""
5222
5223The conditional branch form of the '``br``' instruction takes a single
5224'``i1``' value and two '``label``' values. The unconditional form of the
5225'``br``' instruction takes a single '``label``' value as a target.
5226
5227Semantics:
5228""""""""""
5229
5230Upon execution of a conditional '``br``' instruction, the '``i1``'
5231argument is evaluated. If the value is ``true``, control flows to the
5232'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5233to the '``iffalse``' ``label`` argument.
5234
5235Example:
5236""""""""
5237
5238.. code-block:: llvm
5239
5240 Test:
5241 %cond = icmp eq i32 %a, %b
5242 br i1 %cond, label %IfEqual, label %IfUnequal
5243 IfEqual:
5244 ret i32 1
5245 IfUnequal:
5246 ret i32 0
5247
5248.. _i_switch:
5249
5250'``switch``' Instruction
5251^^^^^^^^^^^^^^^^^^^^^^^^
5252
5253Syntax:
5254"""""""
5255
5256::
5257
5258 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5259
5260Overview:
5261"""""""""
5262
5263The '``switch``' instruction is used to transfer control flow to one of
5264several different places. It is a generalization of the '``br``'
5265instruction, allowing a branch to occur to one of many possible
5266destinations.
5267
5268Arguments:
5269""""""""""
5270
5271The '``switch``' instruction uses three parameters: an integer
5272comparison value '``value``', a default '``label``' destination, and an
5273array of pairs of comparison value constants and '``label``'s. The table
5274is not allowed to contain duplicate constant entries.
5275
5276Semantics:
5277""""""""""
5278
5279The ``switch`` instruction specifies a table of values and destinations.
5280When the '``switch``' instruction is executed, this table is searched
5281for the given value. If the value is found, control flow is transferred
5282to the corresponding destination; otherwise, control flow is transferred
5283to the default destination.
5284
5285Implementation:
5286"""""""""""""""
5287
5288Depending on properties of the target machine and the particular
5289``switch`` instruction, this instruction may be code generated in
5290different ways. For example, it could be generated as a series of
5291chained conditional branches or with a lookup table.
5292
5293Example:
5294""""""""
5295
5296.. code-block:: llvm
5297
5298 ; Emulate a conditional br instruction
5299 %Val = zext i1 %value to i32
5300 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5301
5302 ; Emulate an unconditional br instruction
5303 switch i32 0, label %dest [ ]
5304
5305 ; Implement a jump table:
5306 switch i32 %val, label %otherwise [ i32 0, label %onzero
5307 i32 1, label %onone
5308 i32 2, label %ontwo ]
5309
5310.. _i_indirectbr:
5311
5312'``indirectbr``' Instruction
5313^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5314
5315Syntax:
5316"""""""
5317
5318::
5319
5320 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5321
5322Overview:
5323"""""""""
5324
5325The '``indirectbr``' instruction implements an indirect branch to a
5326label within the current function, whose address is specified by
5327"``address``". Address must be derived from a
5328:ref:`blockaddress <blockaddress>` constant.
5329
5330Arguments:
5331""""""""""
5332
5333The '``address``' argument is the address of the label to jump to. The
5334rest of the arguments indicate the full set of possible destinations
5335that the address may point to. Blocks are allowed to occur multiple
5336times in the destination list, though this isn't particularly useful.
5337
5338This destination list is required so that dataflow analysis has an
5339accurate understanding of the CFG.
5340
5341Semantics:
5342""""""""""
5343
5344Control transfers to the block specified in the address argument. All
5345possible destination blocks must be listed in the label list, otherwise
5346this instruction has undefined behavior. This implies that jumps to
5347labels defined in other functions have undefined behavior as well.
5348
5349Implementation:
5350"""""""""""""""
5351
5352This is typically implemented with a jump through a register.
5353
5354Example:
5355""""""""
5356
5357.. code-block:: llvm
5358
5359 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5360
5361.. _i_invoke:
5362
5363'``invoke``' Instruction
5364^^^^^^^^^^^^^^^^^^^^^^^^
5365
5366Syntax:
5367"""""""
5368
5369::
5370
5371 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005372 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005373
5374Overview:
5375"""""""""
5376
5377The '``invoke``' instruction causes control to transfer to a specified
5378function, with the possibility of control flow transfer to either the
5379'``normal``' label or the '``exception``' label. If the callee function
5380returns with the "``ret``" instruction, control flow will return to the
5381"normal" label. If the callee (or any indirect callees) returns via the
5382":ref:`resume <i_resume>`" instruction or other exception handling
5383mechanism, control is interrupted and continued at the dynamically
5384nearest "exception" label.
5385
5386The '``exception``' label is a `landing
5387pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5388'``exception``' label is required to have the
5389":ref:`landingpad <i_landingpad>`" instruction, which contains the
5390information about the behavior of the program after unwinding happens,
5391as its first non-PHI instruction. The restrictions on the
5392"``landingpad``" instruction's tightly couples it to the "``invoke``"
5393instruction, so that the important information contained within the
5394"``landingpad``" instruction can't be lost through normal code motion.
5395
5396Arguments:
5397""""""""""
5398
5399This instruction requires several arguments:
5400
5401#. The optional "cconv" marker indicates which :ref:`calling
5402 convention <callingconv>` the call should use. If none is
5403 specified, the call defaults to using C calling conventions.
5404#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5405 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5406 are valid here.
5407#. '``ptr to function ty``': shall be the signature of the pointer to
5408 function value being invoked. In most cases, this is a direct
5409 function invocation, but indirect ``invoke``'s are just as possible,
5410 branching off an arbitrary pointer to function value.
5411#. '``function ptr val``': An LLVM value containing a pointer to a
5412 function to be invoked.
5413#. '``function args``': argument list whose types match the function
5414 signature argument types and parameter attributes. All arguments must
5415 be of :ref:`first class <t_firstclass>` type. If the function signature
5416 indicates the function accepts a variable number of arguments, the
5417 extra arguments can be specified.
5418#. '``normal label``': the label reached when the called function
5419 executes a '``ret``' instruction.
5420#. '``exception label``': the label reached when a callee returns via
5421 the :ref:`resume <i_resume>` instruction or other exception handling
5422 mechanism.
5423#. The optional :ref:`function attributes <fnattrs>` list. Only
5424 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5425 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005426#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005427
5428Semantics:
5429""""""""""
5430
5431This instruction is designed to operate as a standard '``call``'
5432instruction in most regards. The primary difference is that it
5433establishes an association with a label, which is used by the runtime
5434library to unwind the stack.
5435
5436This instruction is used in languages with destructors to ensure that
5437proper cleanup is performed in the case of either a ``longjmp`` or a
5438thrown exception. Additionally, this is important for implementation of
5439'``catch``' clauses in high-level languages that support them.
5440
5441For the purposes of the SSA form, the definition of the value returned
5442by the '``invoke``' instruction is deemed to occur on the edge from the
5443current block to the "normal" label. If the callee unwinds then no
5444return value is available.
5445
5446Example:
5447""""""""
5448
5449.. code-block:: llvm
5450
5451 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005452 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005453 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005454 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005455
5456.. _i_resume:
5457
5458'``resume``' Instruction
5459^^^^^^^^^^^^^^^^^^^^^^^^
5460
5461Syntax:
5462"""""""
5463
5464::
5465
5466 resume <type> <value>
5467
5468Overview:
5469"""""""""
5470
5471The '``resume``' instruction is a terminator instruction that has no
5472successors.
5473
5474Arguments:
5475""""""""""
5476
5477The '``resume``' instruction requires one argument, which must have the
5478same type as the result of any '``landingpad``' instruction in the same
5479function.
5480
5481Semantics:
5482""""""""""
5483
5484The '``resume``' instruction resumes propagation of an existing
5485(in-flight) exception whose unwinding was interrupted with a
5486:ref:`landingpad <i_landingpad>` instruction.
5487
5488Example:
5489""""""""
5490
5491.. code-block:: llvm
5492
5493 resume { i8*, i32 } %exn
5494
David Majnemer8a1c45d2015-12-12 05:38:55 +00005495.. _i_catchswitch:
5496
5497'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005499
5500Syntax:
5501"""""""
5502
5503::
5504
5505 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5506 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5507
5508Overview:
5509"""""""""
5510
5511The '``catchswitch``' instruction is used by `LLVM's exception handling system
5512<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5513that may be executed by the :ref:`EH personality routine <personalityfn>`.
5514
5515Arguments:
5516""""""""""
5517
5518The ``parent`` argument is the token of the funclet that contains the
5519``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5520this operand may be the token ``none``.
5521
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005522The ``default`` argument is the label of another basic block beginning with
5523either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5524must be a legal target with respect to the ``parent`` links, as described in
5525the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005526
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005527The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005528:ref:`catchpad <i_catchpad>` instruction.
5529
5530Semantics:
5531""""""""""
5532
5533Executing this instruction transfers control to one of the successors in
5534``handlers``, if appropriate, or continues to unwind via the unwind label if
5535present.
5536
5537The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5538it must be both the first non-phi instruction and last instruction in the basic
5539block. Therefore, it must be the only non-phi instruction in the block.
5540
5541Example:
5542""""""""
5543
5544.. code-block:: llvm
5545
5546 dispatch1:
5547 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5548 dispatch2:
5549 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5550
David Majnemer654e1302015-07-31 17:58:14 +00005551.. _i_catchret:
5552
5553'``catchret``' Instruction
5554^^^^^^^^^^^^^^^^^^^^^^^^^^
5555
5556Syntax:
5557"""""""
5558
5559::
5560
David Majnemer8a1c45d2015-12-12 05:38:55 +00005561 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005562
5563Overview:
5564"""""""""
5565
5566The '``catchret``' instruction is a terminator instruction that has a
5567single successor.
5568
5569
5570Arguments:
5571""""""""""
5572
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005573The first argument to a '``catchret``' indicates which ``catchpad`` it
5574exits. It must be a :ref:`catchpad <i_catchpad>`.
5575The second argument to a '``catchret``' specifies where control will
5576transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005577
5578Semantics:
5579""""""""""
5580
David Majnemer8a1c45d2015-12-12 05:38:55 +00005581The '``catchret``' instruction ends an existing (in-flight) exception whose
5582unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5583:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5584code to, for example, destroy the active exception. Control then transfers to
5585``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005586
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005587The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5588If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5589funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5590the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005591
5592Example:
5593""""""""
5594
5595.. code-block:: llvm
5596
David Majnemer8a1c45d2015-12-12 05:38:55 +00005597 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005598
David Majnemer654e1302015-07-31 17:58:14 +00005599.. _i_cleanupret:
5600
5601'``cleanupret``' Instruction
5602^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5603
5604Syntax:
5605"""""""
5606
5607::
5608
David Majnemer8a1c45d2015-12-12 05:38:55 +00005609 cleanupret from <value> unwind label <continue>
5610 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005611
5612Overview:
5613"""""""""
5614
5615The '``cleanupret``' instruction is a terminator instruction that has
5616an optional successor.
5617
5618
5619Arguments:
5620""""""""""
5621
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005622The '``cleanupret``' instruction requires one argument, which indicates
5623which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005624If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5625funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5626the ``cleanupret``'s behavior is undefined.
5627
5628The '``cleanupret``' instruction also has an optional successor, ``continue``,
5629which must be the label of another basic block beginning with either a
5630``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5631be a legal target with respect to the ``parent`` links, as described in the
5632`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005633
5634Semantics:
5635""""""""""
5636
5637The '``cleanupret``' instruction indicates to the
5638:ref:`personality function <personalityfn>` that one
5639:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5640It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005641
David Majnemer654e1302015-07-31 17:58:14 +00005642Example:
5643""""""""
5644
5645.. code-block:: llvm
5646
David Majnemer8a1c45d2015-12-12 05:38:55 +00005647 cleanupret from %cleanup unwind to caller
5648 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005649
Sean Silvab084af42012-12-07 10:36:55 +00005650.. _i_unreachable:
5651
5652'``unreachable``' Instruction
5653^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5654
5655Syntax:
5656"""""""
5657
5658::
5659
5660 unreachable
5661
5662Overview:
5663"""""""""
5664
5665The '``unreachable``' instruction has no defined semantics. This
5666instruction is used to inform the optimizer that a particular portion of
5667the code is not reachable. This can be used to indicate that the code
5668after a no-return function cannot be reached, and other facts.
5669
5670Semantics:
5671""""""""""
5672
5673The '``unreachable``' instruction has no defined semantics.
5674
5675.. _binaryops:
5676
5677Binary Operations
5678-----------------
5679
5680Binary operators are used to do most of the computation in a program.
5681They require two operands of the same type, execute an operation on
5682them, and produce a single value. The operands might represent multiple
5683data, as is the case with the :ref:`vector <t_vector>` data type. The
5684result value has the same type as its operands.
5685
5686There are several different binary operators:
5687
5688.. _i_add:
5689
5690'``add``' Instruction
5691^^^^^^^^^^^^^^^^^^^^^
5692
5693Syntax:
5694"""""""
5695
5696::
5697
Tim Northover675a0962014-06-13 14:24:23 +00005698 <result> = add <ty> <op1>, <op2> ; yields ty:result
5699 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5700 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5701 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005702
5703Overview:
5704"""""""""
5705
5706The '``add``' instruction returns the sum of its two operands.
5707
5708Arguments:
5709""""""""""
5710
5711The two arguments to the '``add``' instruction must be
5712:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5713arguments must have identical types.
5714
5715Semantics:
5716""""""""""
5717
5718The value produced is the integer sum of the two operands.
5719
5720If the sum has unsigned overflow, the result returned is the
5721mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5722the result.
5723
5724Because LLVM integers use a two's complement representation, this
5725instruction is appropriate for both signed and unsigned integers.
5726
5727``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5728respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5729result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5730unsigned and/or signed overflow, respectively, occurs.
5731
5732Example:
5733""""""""
5734
5735.. code-block:: llvm
5736
Tim Northover675a0962014-06-13 14:24:23 +00005737 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005738
5739.. _i_fadd:
5740
5741'``fadd``' Instruction
5742^^^^^^^^^^^^^^^^^^^^^^
5743
5744Syntax:
5745"""""""
5746
5747::
5748
Tim Northover675a0962014-06-13 14:24:23 +00005749 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005750
5751Overview:
5752"""""""""
5753
5754The '``fadd``' instruction returns the sum of its two operands.
5755
5756Arguments:
5757""""""""""
5758
5759The two arguments to the '``fadd``' instruction must be :ref:`floating
5760point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5761Both arguments must have identical types.
5762
5763Semantics:
5764""""""""""
5765
5766The value produced is the floating point sum of the two operands. This
5767instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5768which are optimization hints to enable otherwise unsafe floating point
5769optimizations:
5770
5771Example:
5772""""""""
5773
5774.. code-block:: llvm
5775
Tim Northover675a0962014-06-13 14:24:23 +00005776 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005777
5778'``sub``' Instruction
5779^^^^^^^^^^^^^^^^^^^^^
5780
5781Syntax:
5782"""""""
5783
5784::
5785
Tim Northover675a0962014-06-13 14:24:23 +00005786 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5787 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5788 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5789 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005790
5791Overview:
5792"""""""""
5793
5794The '``sub``' instruction returns the difference of its two operands.
5795
5796Note that the '``sub``' instruction is used to represent the '``neg``'
5797instruction present in most other intermediate representations.
5798
5799Arguments:
5800""""""""""
5801
5802The two arguments to the '``sub``' instruction must be
5803:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5804arguments must have identical types.
5805
5806Semantics:
5807""""""""""
5808
5809The value produced is the integer difference of the two operands.
5810
5811If the difference has unsigned overflow, the result returned is the
5812mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5813the result.
5814
5815Because LLVM integers use a two's complement representation, this
5816instruction is appropriate for both signed and unsigned integers.
5817
5818``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5819respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5820result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5821unsigned and/or signed overflow, respectively, occurs.
5822
5823Example:
5824""""""""
5825
5826.. code-block:: llvm
5827
Tim Northover675a0962014-06-13 14:24:23 +00005828 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5829 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005830
5831.. _i_fsub:
5832
5833'``fsub``' Instruction
5834^^^^^^^^^^^^^^^^^^^^^^
5835
5836Syntax:
5837"""""""
5838
5839::
5840
Tim Northover675a0962014-06-13 14:24:23 +00005841 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005842
5843Overview:
5844"""""""""
5845
5846The '``fsub``' instruction returns the difference of its two operands.
5847
5848Note that the '``fsub``' instruction is used to represent the '``fneg``'
5849instruction present in most other intermediate representations.
5850
5851Arguments:
5852""""""""""
5853
5854The two arguments to the '``fsub``' instruction must be :ref:`floating
5855point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5856Both arguments must have identical types.
5857
5858Semantics:
5859""""""""""
5860
5861The value produced is the floating point difference of the two operands.
5862This instruction can also take any number of :ref:`fast-math
5863flags <fastmath>`, which are optimization hints to enable otherwise
5864unsafe floating point optimizations:
5865
5866Example:
5867""""""""
5868
5869.. code-block:: llvm
5870
Tim Northover675a0962014-06-13 14:24:23 +00005871 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5872 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005873
5874'``mul``' Instruction
5875^^^^^^^^^^^^^^^^^^^^^
5876
5877Syntax:
5878"""""""
5879
5880::
5881
Tim Northover675a0962014-06-13 14:24:23 +00005882 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5883 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5884 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5885 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005886
5887Overview:
5888"""""""""
5889
5890The '``mul``' instruction returns the product of its two operands.
5891
5892Arguments:
5893""""""""""
5894
5895The two arguments to the '``mul``' instruction must be
5896:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5897arguments must have identical types.
5898
5899Semantics:
5900""""""""""
5901
5902The value produced is the integer product of the two operands.
5903
5904If the result of the multiplication has unsigned overflow, the result
5905returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5906bit width of the result.
5907
5908Because LLVM integers use a two's complement representation, and the
5909result is the same width as the operands, this instruction returns the
5910correct result for both signed and unsigned integers. If a full product
5911(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5912sign-extended or zero-extended as appropriate to the width of the full
5913product.
5914
5915``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5916respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5917result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5918unsigned and/or signed overflow, respectively, occurs.
5919
5920Example:
5921""""""""
5922
5923.. code-block:: llvm
5924
Tim Northover675a0962014-06-13 14:24:23 +00005925 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005926
5927.. _i_fmul:
5928
5929'``fmul``' Instruction
5930^^^^^^^^^^^^^^^^^^^^^^
5931
5932Syntax:
5933"""""""
5934
5935::
5936
Tim Northover675a0962014-06-13 14:24:23 +00005937 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005938
5939Overview:
5940"""""""""
5941
5942The '``fmul``' instruction returns the product of its two operands.
5943
5944Arguments:
5945""""""""""
5946
5947The two arguments to the '``fmul``' instruction must be :ref:`floating
5948point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5949Both arguments must have identical types.
5950
5951Semantics:
5952""""""""""
5953
5954The value produced is the floating point product of the two operands.
5955This instruction can also take any number of :ref:`fast-math
5956flags <fastmath>`, which are optimization hints to enable otherwise
5957unsafe floating point optimizations:
5958
5959Example:
5960""""""""
5961
5962.. code-block:: llvm
5963
Tim Northover675a0962014-06-13 14:24:23 +00005964 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005965
5966'``udiv``' Instruction
5967^^^^^^^^^^^^^^^^^^^^^^
5968
5969Syntax:
5970"""""""
5971
5972::
5973
Tim Northover675a0962014-06-13 14:24:23 +00005974 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5975 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005976
5977Overview:
5978"""""""""
5979
5980The '``udiv``' instruction returns the quotient of its two operands.
5981
5982Arguments:
5983""""""""""
5984
5985The two arguments to the '``udiv``' instruction must be
5986:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5987arguments must have identical types.
5988
5989Semantics:
5990""""""""""
5991
5992The value produced is the unsigned integer quotient of the two operands.
5993
5994Note that unsigned integer division and signed integer division are
5995distinct operations; for signed integer division, use '``sdiv``'.
5996
5997Division by zero leads to undefined behavior.
5998
5999If the ``exact`` keyword is present, the result value of the ``udiv`` is
6000a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6001such, "((a udiv exact b) mul b) == a").
6002
6003Example:
6004""""""""
6005
6006.. code-block:: llvm
6007
Tim Northover675a0962014-06-13 14:24:23 +00006008 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006009
6010'``sdiv``' Instruction
6011^^^^^^^^^^^^^^^^^^^^^^
6012
6013Syntax:
6014"""""""
6015
6016::
6017
Tim Northover675a0962014-06-13 14:24:23 +00006018 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6019 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006020
6021Overview:
6022"""""""""
6023
6024The '``sdiv``' instruction returns the quotient of its two operands.
6025
6026Arguments:
6027""""""""""
6028
6029The two arguments to the '``sdiv``' instruction must be
6030:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6031arguments must have identical types.
6032
6033Semantics:
6034""""""""""
6035
6036The value produced is the signed integer quotient of the two operands
6037rounded towards zero.
6038
6039Note that signed integer division and unsigned integer division are
6040distinct operations; for unsigned integer division, use '``udiv``'.
6041
6042Division by zero leads to undefined behavior. Overflow also leads to
6043undefined behavior; this is a rare case, but can occur, for example, by
6044doing a 32-bit division of -2147483648 by -1.
6045
6046If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6047a :ref:`poison value <poisonvalues>` if the result would be rounded.
6048
6049Example:
6050""""""""
6051
6052.. code-block:: llvm
6053
Tim Northover675a0962014-06-13 14:24:23 +00006054 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006055
6056.. _i_fdiv:
6057
6058'``fdiv``' Instruction
6059^^^^^^^^^^^^^^^^^^^^^^
6060
6061Syntax:
6062"""""""
6063
6064::
6065
Tim Northover675a0962014-06-13 14:24:23 +00006066 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006067
6068Overview:
6069"""""""""
6070
6071The '``fdiv``' instruction returns the quotient of its two operands.
6072
6073Arguments:
6074""""""""""
6075
6076The two arguments to the '``fdiv``' instruction must be :ref:`floating
6077point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6078Both arguments must have identical types.
6079
6080Semantics:
6081""""""""""
6082
6083The value produced is the floating point quotient of the two operands.
6084This instruction can also take any number of :ref:`fast-math
6085flags <fastmath>`, which are optimization hints to enable otherwise
6086unsafe floating point optimizations:
6087
6088Example:
6089""""""""
6090
6091.. code-block:: llvm
6092
Tim Northover675a0962014-06-13 14:24:23 +00006093 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006094
6095'``urem``' Instruction
6096^^^^^^^^^^^^^^^^^^^^^^
6097
6098Syntax:
6099"""""""
6100
6101::
6102
Tim Northover675a0962014-06-13 14:24:23 +00006103 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006104
6105Overview:
6106"""""""""
6107
6108The '``urem``' instruction returns the remainder from the unsigned
6109division of its two arguments.
6110
6111Arguments:
6112""""""""""
6113
6114The two arguments to the '``urem``' instruction must be
6115:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6116arguments must have identical types.
6117
6118Semantics:
6119""""""""""
6120
6121This instruction returns the unsigned integer *remainder* of a division.
6122This instruction always performs an unsigned division to get the
6123remainder.
6124
6125Note that unsigned integer remainder and signed integer remainder are
6126distinct operations; for signed integer remainder, use '``srem``'.
6127
6128Taking the remainder of a division by zero leads to undefined behavior.
6129
6130Example:
6131""""""""
6132
6133.. code-block:: llvm
6134
Tim Northover675a0962014-06-13 14:24:23 +00006135 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006136
6137'``srem``' Instruction
6138^^^^^^^^^^^^^^^^^^^^^^
6139
6140Syntax:
6141"""""""
6142
6143::
6144
Tim Northover675a0962014-06-13 14:24:23 +00006145 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006146
6147Overview:
6148"""""""""
6149
6150The '``srem``' instruction returns the remainder from the signed
6151division of its two operands. This instruction can also take
6152:ref:`vector <t_vector>` versions of the values in which case the elements
6153must be integers.
6154
6155Arguments:
6156""""""""""
6157
6158The two arguments to the '``srem``' instruction must be
6159:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6160arguments must have identical types.
6161
6162Semantics:
6163""""""""""
6164
6165This instruction returns the *remainder* of a division (where the result
6166is either zero or has the same sign as the dividend, ``op1``), not the
6167*modulo* operator (where the result is either zero or has the same sign
6168as the divisor, ``op2``) of a value. For more information about the
6169difference, see `The Math
6170Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6171table of how this is implemented in various languages, please see
6172`Wikipedia: modulo
6173operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6174
6175Note that signed integer remainder and unsigned integer remainder are
6176distinct operations; for unsigned integer remainder, use '``urem``'.
6177
6178Taking the remainder of a division by zero leads to undefined behavior.
6179Overflow also leads to undefined behavior; this is a rare case, but can
6180occur, for example, by taking the remainder of a 32-bit division of
6181-2147483648 by -1. (The remainder doesn't actually overflow, but this
6182rule lets srem be implemented using instructions that return both the
6183result of the division and the remainder.)
6184
6185Example:
6186""""""""
6187
6188.. code-block:: llvm
6189
Tim Northover675a0962014-06-13 14:24:23 +00006190 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006191
6192.. _i_frem:
6193
6194'``frem``' Instruction
6195^^^^^^^^^^^^^^^^^^^^^^
6196
6197Syntax:
6198"""""""
6199
6200::
6201
Tim Northover675a0962014-06-13 14:24:23 +00006202 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006203
6204Overview:
6205"""""""""
6206
6207The '``frem``' instruction returns the remainder from the division of
6208its two operands.
6209
6210Arguments:
6211""""""""""
6212
6213The two arguments to the '``frem``' instruction must be :ref:`floating
6214point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6215Both arguments must have identical types.
6216
6217Semantics:
6218""""""""""
6219
6220This instruction returns the *remainder* of a division. The remainder
6221has the same sign as the dividend. This instruction can also take any
6222number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6223to enable otherwise unsafe floating point optimizations:
6224
6225Example:
6226""""""""
6227
6228.. code-block:: llvm
6229
Tim Northover675a0962014-06-13 14:24:23 +00006230 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006231
6232.. _bitwiseops:
6233
6234Bitwise Binary Operations
6235-------------------------
6236
6237Bitwise binary operators are used to do various forms of bit-twiddling
6238in a program. They are generally very efficient instructions and can
6239commonly be strength reduced from other instructions. They require two
6240operands of the same type, execute an operation on them, and produce a
6241single value. The resulting value is the same type as its operands.
6242
6243'``shl``' Instruction
6244^^^^^^^^^^^^^^^^^^^^^
6245
6246Syntax:
6247"""""""
6248
6249::
6250
Tim Northover675a0962014-06-13 14:24:23 +00006251 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6252 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6253 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6254 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006255
6256Overview:
6257"""""""""
6258
6259The '``shl``' instruction returns the first operand shifted to the left
6260a specified number of bits.
6261
6262Arguments:
6263""""""""""
6264
6265Both arguments to the '``shl``' instruction must be the same
6266:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6267'``op2``' is treated as an unsigned value.
6268
6269Semantics:
6270""""""""""
6271
6272The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6273where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006274dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006275``op1``, the result is undefined. If the arguments are vectors, each
6276vector element of ``op1`` is shifted by the corresponding shift amount
6277in ``op2``.
6278
6279If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6280value <poisonvalues>` if it shifts out any non-zero bits. If the
6281``nsw`` keyword is present, then the shift produces a :ref:`poison
6282value <poisonvalues>` if it shifts out any bits that disagree with the
6283resultant sign bit. As such, NUW/NSW have the same semantics as they
6284would if the shift were expressed as a mul instruction with the same
6285nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6286
6287Example:
6288""""""""
6289
6290.. code-block:: llvm
6291
Tim Northover675a0962014-06-13 14:24:23 +00006292 <result> = shl i32 4, %var ; yields i32: 4 << %var
6293 <result> = shl i32 4, 2 ; yields i32: 16
6294 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006295 <result> = shl i32 1, 32 ; undefined
6296 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6297
6298'``lshr``' Instruction
6299^^^^^^^^^^^^^^^^^^^^^^
6300
6301Syntax:
6302"""""""
6303
6304::
6305
Tim Northover675a0962014-06-13 14:24:23 +00006306 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6307 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006308
6309Overview:
6310"""""""""
6311
6312The '``lshr``' instruction (logical shift right) returns the first
6313operand shifted to the right a specified number of bits with zero fill.
6314
6315Arguments:
6316""""""""""
6317
6318Both arguments to the '``lshr``' instruction must be the same
6319:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6320'``op2``' is treated as an unsigned value.
6321
6322Semantics:
6323""""""""""
6324
6325This instruction always performs a logical shift right operation. The
6326most significant bits of the result will be filled with zero bits after
6327the shift. If ``op2`` is (statically or dynamically) equal to or larger
6328than the number of bits in ``op1``, the result is undefined. If the
6329arguments are vectors, each vector element of ``op1`` is shifted by the
6330corresponding shift amount in ``op2``.
6331
6332If the ``exact`` keyword is present, the result value of the ``lshr`` is
6333a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6334non-zero.
6335
6336Example:
6337""""""""
6338
6339.. code-block:: llvm
6340
Tim Northover675a0962014-06-13 14:24:23 +00006341 <result> = lshr i32 4, 1 ; yields i32:result = 2
6342 <result> = lshr i32 4, 2 ; yields i32:result = 1
6343 <result> = lshr i8 4, 3 ; yields i8:result = 0
6344 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006345 <result> = lshr i32 1, 32 ; undefined
6346 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6347
6348'``ashr``' Instruction
6349^^^^^^^^^^^^^^^^^^^^^^
6350
6351Syntax:
6352"""""""
6353
6354::
6355
Tim Northover675a0962014-06-13 14:24:23 +00006356 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6357 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006358
6359Overview:
6360"""""""""
6361
6362The '``ashr``' instruction (arithmetic shift right) returns the first
6363operand shifted to the right a specified number of bits with sign
6364extension.
6365
6366Arguments:
6367""""""""""
6368
6369Both arguments to the '``ashr``' instruction must be the same
6370:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6371'``op2``' is treated as an unsigned value.
6372
6373Semantics:
6374""""""""""
6375
6376This instruction always performs an arithmetic shift right operation,
6377The most significant bits of the result will be filled with the sign bit
6378of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6379than the number of bits in ``op1``, the result is undefined. If the
6380arguments are vectors, each vector element of ``op1`` is shifted by the
6381corresponding shift amount in ``op2``.
6382
6383If the ``exact`` keyword is present, the result value of the ``ashr`` is
6384a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6385non-zero.
6386
6387Example:
6388""""""""
6389
6390.. code-block:: llvm
6391
Tim Northover675a0962014-06-13 14:24:23 +00006392 <result> = ashr i32 4, 1 ; yields i32:result = 2
6393 <result> = ashr i32 4, 2 ; yields i32:result = 1
6394 <result> = ashr i8 4, 3 ; yields i8:result = 0
6395 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006396 <result> = ashr i32 1, 32 ; undefined
6397 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6398
6399'``and``' Instruction
6400^^^^^^^^^^^^^^^^^^^^^
6401
6402Syntax:
6403"""""""
6404
6405::
6406
Tim Northover675a0962014-06-13 14:24:23 +00006407 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006408
6409Overview:
6410"""""""""
6411
6412The '``and``' instruction returns the bitwise logical and of its two
6413operands.
6414
6415Arguments:
6416""""""""""
6417
6418The two arguments to the '``and``' instruction must be
6419:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6420arguments must have identical types.
6421
6422Semantics:
6423""""""""""
6424
6425The truth table used for the '``and``' instruction is:
6426
6427+-----+-----+-----+
6428| In0 | In1 | Out |
6429+-----+-----+-----+
6430| 0 | 0 | 0 |
6431+-----+-----+-----+
6432| 0 | 1 | 0 |
6433+-----+-----+-----+
6434| 1 | 0 | 0 |
6435+-----+-----+-----+
6436| 1 | 1 | 1 |
6437+-----+-----+-----+
6438
6439Example:
6440""""""""
6441
6442.. code-block:: llvm
6443
Tim Northover675a0962014-06-13 14:24:23 +00006444 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6445 <result> = and i32 15, 40 ; yields i32:result = 8
6446 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006447
6448'``or``' Instruction
6449^^^^^^^^^^^^^^^^^^^^
6450
6451Syntax:
6452"""""""
6453
6454::
6455
Tim Northover675a0962014-06-13 14:24:23 +00006456 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006457
6458Overview:
6459"""""""""
6460
6461The '``or``' instruction returns the bitwise logical inclusive or of its
6462two operands.
6463
6464Arguments:
6465""""""""""
6466
6467The two arguments to the '``or``' instruction must be
6468:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6469arguments must have identical types.
6470
6471Semantics:
6472""""""""""
6473
6474The truth table used for the '``or``' instruction is:
6475
6476+-----+-----+-----+
6477| In0 | In1 | Out |
6478+-----+-----+-----+
6479| 0 | 0 | 0 |
6480+-----+-----+-----+
6481| 0 | 1 | 1 |
6482+-----+-----+-----+
6483| 1 | 0 | 1 |
6484+-----+-----+-----+
6485| 1 | 1 | 1 |
6486+-----+-----+-----+
6487
6488Example:
6489""""""""
6490
6491::
6492
Tim Northover675a0962014-06-13 14:24:23 +00006493 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6494 <result> = or i32 15, 40 ; yields i32:result = 47
6495 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006496
6497'``xor``' Instruction
6498^^^^^^^^^^^^^^^^^^^^^
6499
6500Syntax:
6501"""""""
6502
6503::
6504
Tim Northover675a0962014-06-13 14:24:23 +00006505 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006506
6507Overview:
6508"""""""""
6509
6510The '``xor``' instruction returns the bitwise logical exclusive or of
6511its two operands. The ``xor`` is used to implement the "one's
6512complement" operation, which is the "~" operator in C.
6513
6514Arguments:
6515""""""""""
6516
6517The two arguments to the '``xor``' instruction must be
6518:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6519arguments must have identical types.
6520
6521Semantics:
6522""""""""""
6523
6524The truth table used for the '``xor``' instruction is:
6525
6526+-----+-----+-----+
6527| In0 | In1 | Out |
6528+-----+-----+-----+
6529| 0 | 0 | 0 |
6530+-----+-----+-----+
6531| 0 | 1 | 1 |
6532+-----+-----+-----+
6533| 1 | 0 | 1 |
6534+-----+-----+-----+
6535| 1 | 1 | 0 |
6536+-----+-----+-----+
6537
6538Example:
6539""""""""
6540
6541.. code-block:: llvm
6542
Tim Northover675a0962014-06-13 14:24:23 +00006543 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6544 <result> = xor i32 15, 40 ; yields i32:result = 39
6545 <result> = xor i32 4, 8 ; yields i32:result = 12
6546 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006547
6548Vector Operations
6549-----------------
6550
6551LLVM supports several instructions to represent vector operations in a
6552target-independent manner. These instructions cover the element-access
6553and vector-specific operations needed to process vectors effectively.
6554While LLVM does directly support these vector operations, many
6555sophisticated algorithms will want to use target-specific intrinsics to
6556take full advantage of a specific target.
6557
6558.. _i_extractelement:
6559
6560'``extractelement``' Instruction
6561^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6562
6563Syntax:
6564"""""""
6565
6566::
6567
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006568 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006569
6570Overview:
6571"""""""""
6572
6573The '``extractelement``' instruction extracts a single scalar element
6574from a vector at a specified index.
6575
6576Arguments:
6577""""""""""
6578
6579The first operand of an '``extractelement``' instruction is a value of
6580:ref:`vector <t_vector>` type. The second operand is an index indicating
6581the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006582variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006583
6584Semantics:
6585""""""""""
6586
6587The result is a scalar of the same type as the element type of ``val``.
6588Its value is the value at position ``idx`` of ``val``. If ``idx``
6589exceeds the length of ``val``, the results are undefined.
6590
6591Example:
6592""""""""
6593
6594.. code-block:: llvm
6595
6596 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6597
6598.. _i_insertelement:
6599
6600'``insertelement``' Instruction
6601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6602
6603Syntax:
6604"""""""
6605
6606::
6607
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006608 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006609
6610Overview:
6611"""""""""
6612
6613The '``insertelement``' instruction inserts a scalar element into a
6614vector at a specified index.
6615
6616Arguments:
6617""""""""""
6618
6619The first operand of an '``insertelement``' instruction is a value of
6620:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6621type must equal the element type of the first operand. The third operand
6622is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006623index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006624
6625Semantics:
6626""""""""""
6627
6628The result is a vector of the same type as ``val``. Its element values
6629are those of ``val`` except at position ``idx``, where it gets the value
6630``elt``. If ``idx`` exceeds the length of ``val``, the results are
6631undefined.
6632
6633Example:
6634""""""""
6635
6636.. code-block:: llvm
6637
6638 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6639
6640.. _i_shufflevector:
6641
6642'``shufflevector``' Instruction
6643^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6644
6645Syntax:
6646"""""""
6647
6648::
6649
6650 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6651
6652Overview:
6653"""""""""
6654
6655The '``shufflevector``' instruction constructs a permutation of elements
6656from two input vectors, returning a vector with the same element type as
6657the input and length that is the same as the shuffle mask.
6658
6659Arguments:
6660""""""""""
6661
6662The first two operands of a '``shufflevector``' instruction are vectors
6663with the same type. The third argument is a shuffle mask whose element
6664type is always 'i32'. The result of the instruction is a vector whose
6665length is the same as the shuffle mask and whose element type is the
6666same as the element type of the first two operands.
6667
6668The shuffle mask operand is required to be a constant vector with either
6669constant integer or undef values.
6670
6671Semantics:
6672""""""""""
6673
6674The elements of the two input vectors are numbered from left to right
6675across both of the vectors. The shuffle mask operand specifies, for each
6676element of the result vector, which element of the two input vectors the
6677result element gets. The element selector may be undef (meaning "don't
6678care") and the second operand may be undef if performing a shuffle from
6679only one vector.
6680
6681Example:
6682""""""""
6683
6684.. code-block:: llvm
6685
6686 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6687 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6688 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6689 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6690 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6691 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6692 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6693 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6694
6695Aggregate Operations
6696--------------------
6697
6698LLVM supports several instructions for working with
6699:ref:`aggregate <t_aggregate>` values.
6700
6701.. _i_extractvalue:
6702
6703'``extractvalue``' Instruction
6704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6705
6706Syntax:
6707"""""""
6708
6709::
6710
6711 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6712
6713Overview:
6714"""""""""
6715
6716The '``extractvalue``' instruction extracts the value of a member field
6717from an :ref:`aggregate <t_aggregate>` value.
6718
6719Arguments:
6720""""""""""
6721
6722The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006723:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006724constant indices to specify which value to extract in a similar manner
6725as indices in a '``getelementptr``' instruction.
6726
6727The major differences to ``getelementptr`` indexing are:
6728
6729- Since the value being indexed is not a pointer, the first index is
6730 omitted and assumed to be zero.
6731- At least one index must be specified.
6732- Not only struct indices but also array indices must be in bounds.
6733
6734Semantics:
6735""""""""""
6736
6737The result is the value at the position in the aggregate specified by
6738the index operands.
6739
6740Example:
6741""""""""
6742
6743.. code-block:: llvm
6744
6745 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6746
6747.. _i_insertvalue:
6748
6749'``insertvalue``' Instruction
6750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6751
6752Syntax:
6753"""""""
6754
6755::
6756
6757 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6758
6759Overview:
6760"""""""""
6761
6762The '``insertvalue``' instruction inserts a value into a member field in
6763an :ref:`aggregate <t_aggregate>` value.
6764
6765Arguments:
6766""""""""""
6767
6768The first operand of an '``insertvalue``' instruction is a value of
6769:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6770a first-class value to insert. The following operands are constant
6771indices indicating the position at which to insert the value in a
6772similar manner as indices in a '``extractvalue``' instruction. The value
6773to insert must have the same type as the value identified by the
6774indices.
6775
6776Semantics:
6777""""""""""
6778
6779The result is an aggregate of the same type as ``val``. Its value is
6780that of ``val`` except that the value at the position specified by the
6781indices is that of ``elt``.
6782
6783Example:
6784""""""""
6785
6786.. code-block:: llvm
6787
6788 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6789 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006790 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006791
6792.. _memoryops:
6793
6794Memory Access and Addressing Operations
6795---------------------------------------
6796
6797A key design point of an SSA-based representation is how it represents
6798memory. In LLVM, no memory locations are in SSA form, which makes things
6799very simple. This section describes how to read, write, and allocate
6800memory in LLVM.
6801
6802.. _i_alloca:
6803
6804'``alloca``' Instruction
6805^^^^^^^^^^^^^^^^^^^^^^^^
6806
6807Syntax:
6808"""""""
6809
6810::
6811
Tim Northover675a0962014-06-13 14:24:23 +00006812 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006813
6814Overview:
6815"""""""""
6816
6817The '``alloca``' instruction allocates memory on the stack frame of the
6818currently executing function, to be automatically released when this
6819function returns to its caller. The object is always allocated in the
6820generic address space (address space zero).
6821
6822Arguments:
6823""""""""""
6824
6825The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6826bytes of memory on the runtime stack, returning a pointer of the
6827appropriate type to the program. If "NumElements" is specified, it is
6828the number of elements allocated, otherwise "NumElements" is defaulted
6829to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006830allocation is guaranteed to be aligned to at least that boundary. The
6831alignment may not be greater than ``1 << 29``. If not specified, or if
6832zero, the target can choose to align the allocation on any convenient
6833boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006834
6835'``type``' may be any sized type.
6836
6837Semantics:
6838""""""""""
6839
6840Memory is allocated; a pointer is returned. The operation is undefined
6841if there is insufficient stack space for the allocation. '``alloca``'d
6842memory is automatically released when the function returns. The
6843'``alloca``' instruction is commonly used to represent automatic
6844variables that must have an address available. When the function returns
6845(either with the ``ret`` or ``resume`` instructions), the memory is
6846reclaimed. Allocating zero bytes is legal, but the result is undefined.
6847The order in which memory is allocated (ie., which way the stack grows)
6848is not specified.
6849
6850Example:
6851""""""""
6852
6853.. code-block:: llvm
6854
Tim Northover675a0962014-06-13 14:24:23 +00006855 %ptr = alloca i32 ; yields i32*:ptr
6856 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6857 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6858 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006859
6860.. _i_load:
6861
6862'``load``' Instruction
6863^^^^^^^^^^^^^^^^^^^^^^
6864
6865Syntax:
6866"""""""
6867
6868::
6869
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006870 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00006871 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006872 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006873 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006874 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006875
6876Overview:
6877"""""""""
6878
6879The '``load``' instruction is used to read from memory.
6880
6881Arguments:
6882""""""""""
6883
Eli Bendersky239a78b2013-04-17 20:17:08 +00006884The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006885from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006886class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6887then the optimizer is not allowed to modify the number or order of
6888execution of this ``load`` with other :ref:`volatile
6889operations <volatile>`.
6890
JF Bastiend1fb5852015-12-17 22:09:19 +00006891If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6892<ordering>` and optional ``singlethread`` argument. The ``release`` and
6893``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
6894produce :ref:`defined <memmodel>` results when they may see multiple atomic
6895stores. The type of the pointee must be an integer, pointer, or floating-point
6896type whose bit width is a power of two greater than or equal to eight and less
6897than or equal to a target-specific size limit. ``align`` must be explicitly
6898specified on atomic loads, and the load has undefined behavior if the alignment
6899is not set to a value which is at least the size in bytes of the
6900pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00006901
6902The optional constant ``align`` argument specifies the alignment of the
6903operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006904or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006905alignment for the target. It is the responsibility of the code emitter
6906to ensure that the alignment information is correct. Overestimating the
6907alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006908may produce less efficient code. An alignment of 1 is always safe. The
6909maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006910
6911The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006912metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006913``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006914metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006915that this load is not expected to be reused in the cache. The code
6916generator may select special instructions to save cache bandwidth, such
6917as the ``MOVNT`` instruction on x86.
6918
6919The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006920metadata name ``<index>`` corresponding to a metadata node with no
6921entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006922instruction tells the optimizer and code generator that the address
6923operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006924Being invariant does not imply that a location is dereferenceable,
6925but it does imply that once the location is known dereferenceable
6926its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006927
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006928The optional ``!invariant.group`` metadata must reference a single metadata name
6929 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6930
Philip Reamescdb72f32014-10-20 22:40:55 +00006931The optional ``!nonnull`` metadata must reference a single
6932metadata name ``<index>`` corresponding to a metadata node with no
6933entries. The existence of the ``!nonnull`` metadata on the
6934instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006935never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006936on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006937to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006938
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006939The optional ``!dereferenceable`` metadata must reference a single metadata
6940name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006941entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006942tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006943The number of bytes known to be dereferenceable is specified by the integer
6944value in the metadata node. This is analogous to the ''dereferenceable''
6945attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006946to loads of a pointer type.
6947
6948The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006949metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6950``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006951instruction tells the optimizer that the value loaded is known to be either
6952dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006953The number of bytes known to be dereferenceable is specified by the integer
6954value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6955attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006956to loads of a pointer type.
6957
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006958The optional ``!align`` metadata must reference a single metadata name
6959``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6960The existence of the ``!align`` metadata on the instruction tells the
6961optimizer that the value loaded is known to be aligned to a boundary specified
6962by the integer value in the metadata node. The alignment must be a power of 2.
6963This is analogous to the ''align'' attribute on parameters and return values.
6964This metadata can only be applied to loads of a pointer type.
6965
Sean Silvab084af42012-12-07 10:36:55 +00006966Semantics:
6967""""""""""
6968
6969The location of memory pointed to is loaded. If the value being loaded
6970is of scalar type then the number of bytes read does not exceed the
6971minimum number of bytes needed to hold all bits of the type. For
6972example, loading an ``i24`` reads at most three bytes. When loading a
6973value of a type like ``i20`` with a size that is not an integral number
6974of bytes, the result is undefined if the value was not originally
6975written using a store of the same type.
6976
6977Examples:
6978"""""""""
6979
6980.. code-block:: llvm
6981
Tim Northover675a0962014-06-13 14:24:23 +00006982 %ptr = alloca i32 ; yields i32*:ptr
6983 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006984 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006985
6986.. _i_store:
6987
6988'``store``' Instruction
6989^^^^^^^^^^^^^^^^^^^^^^^
6990
6991Syntax:
6992"""""""
6993
6994::
6995
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006996 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6997 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006998
6999Overview:
7000"""""""""
7001
7002The '``store``' instruction is used to write to memory.
7003
7004Arguments:
7005""""""""""
7006
Eli Benderskyca380842013-04-17 17:17:20 +00007007There are two arguments to the ``store`` instruction: a value to store
7008and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00007009operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00007010the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00007011then the optimizer is not allowed to modify the number or order of
7012execution of this ``store`` with other :ref:`volatile
7013operations <volatile>`.
7014
JF Bastiend1fb5852015-12-17 22:09:19 +00007015If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7016<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7017``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7018produce :ref:`defined <memmodel>` results when they may see multiple atomic
7019stores. The type of the pointee must be an integer, pointer, or floating-point
7020type whose bit width is a power of two greater than or equal to eight and less
7021than or equal to a target-specific size limit. ``align`` must be explicitly
7022specified on atomic stores, and the store has undefined behavior if the
7023alignment is not set to a value which is at least the size in bytes of the
7024pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007025
Eli Benderskyca380842013-04-17 17:17:20 +00007026The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007027operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007028or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007029alignment for the target. It is the responsibility of the code emitter
7030to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007031alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007032alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007033safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007034
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007035The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007036name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007037value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007038tells the optimizer and code generator that this load is not expected to
7039be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007040instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007041x86.
7042
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007043The optional ``!invariant.group`` metadata must reference a
7044single metadata name ``<index>``. See ``invariant.group`` metadata.
7045
Sean Silvab084af42012-12-07 10:36:55 +00007046Semantics:
7047""""""""""
7048
Eli Benderskyca380842013-04-17 17:17:20 +00007049The contents of memory are updated to contain ``<value>`` at the
7050location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007051of scalar type then the number of bytes written does not exceed the
7052minimum number of bytes needed to hold all bits of the type. For
7053example, storing an ``i24`` writes at most three bytes. When writing a
7054value of a type like ``i20`` with a size that is not an integral number
7055of bytes, it is unspecified what happens to the extra bits that do not
7056belong to the type, but they will typically be overwritten.
7057
7058Example:
7059""""""""
7060
7061.. code-block:: llvm
7062
Tim Northover675a0962014-06-13 14:24:23 +00007063 %ptr = alloca i32 ; yields i32*:ptr
7064 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007065 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007066
7067.. _i_fence:
7068
7069'``fence``' Instruction
7070^^^^^^^^^^^^^^^^^^^^^^^
7071
7072Syntax:
7073"""""""
7074
7075::
7076
Tim Northover675a0962014-06-13 14:24:23 +00007077 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007078
7079Overview:
7080"""""""""
7081
7082The '``fence``' instruction is used to introduce happens-before edges
7083between operations.
7084
7085Arguments:
7086""""""""""
7087
7088'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7089defines what *synchronizes-with* edges they add. They can only be given
7090``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7091
7092Semantics:
7093""""""""""
7094
7095A fence A which has (at least) ``release`` ordering semantics
7096*synchronizes with* a fence B with (at least) ``acquire`` ordering
7097semantics if and only if there exist atomic operations X and Y, both
7098operating on some atomic object M, such that A is sequenced before X, X
7099modifies M (either directly or through some side effect of a sequence
7100headed by X), Y is sequenced before B, and Y observes M. This provides a
7101*happens-before* dependency between A and B. Rather than an explicit
7102``fence``, one (but not both) of the atomic operations X or Y might
7103provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7104still *synchronize-with* the explicit ``fence`` and establish the
7105*happens-before* edge.
7106
7107A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7108``acquire`` and ``release`` semantics specified above, participates in
7109the global program order of other ``seq_cst`` operations and/or fences.
7110
7111The optional ":ref:`singlethread <singlethread>`" argument specifies
7112that the fence only synchronizes with other fences in the same thread.
7113(This is useful for interacting with signal handlers.)
7114
7115Example:
7116""""""""
7117
7118.. code-block:: llvm
7119
Tim Northover675a0962014-06-13 14:24:23 +00007120 fence acquire ; yields void
7121 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007122
7123.. _i_cmpxchg:
7124
7125'``cmpxchg``' Instruction
7126^^^^^^^^^^^^^^^^^^^^^^^^^
7127
7128Syntax:
7129"""""""
7130
7131::
7132
Tim Northover675a0962014-06-13 14:24:23 +00007133 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007134
7135Overview:
7136"""""""""
7137
7138The '``cmpxchg``' instruction is used to atomically modify memory. It
7139loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007140equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007141
7142Arguments:
7143""""""""""
7144
7145There are three arguments to the '``cmpxchg``' instruction: an address
7146to operate on, a value to compare to the value currently be at that
7147address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007148are equal. The type of '<cmp>' must be an integer or pointer type whose
7149bit width is a power of two greater than or equal to eight and less
7150than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7151have the same type, and the type of '<pointer>' must be a pointer to
7152that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7153optimizer is not allowed to modify the number or order of execution of
7154this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007155
Tim Northovere94a5182014-03-11 10:48:52 +00007156The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007157``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7158must be at least ``monotonic``, the ordering constraint on failure must be no
7159stronger than that on success, and the failure ordering cannot be either
7160``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007161
7162The optional "``singlethread``" argument declares that the ``cmpxchg``
7163is only atomic with respect to code (usually signal handlers) running in
7164the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7165respect to all other code in the system.
7166
7167The pointer passed into cmpxchg must have alignment greater than or
7168equal to the size in memory of the operand.
7169
7170Semantics:
7171""""""""""
7172
Tim Northover420a2162014-06-13 14:24:07 +00007173The contents of memory at the location specified by the '``<pointer>``' operand
7174is read and compared to '``<cmp>``'; if the read value is the equal, the
7175'``<new>``' is written. The original value at the location is returned, together
7176with a flag indicating success (true) or failure (false).
7177
7178If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7179permitted: the operation may not write ``<new>`` even if the comparison
7180matched.
7181
7182If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7183if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007184
Tim Northovere94a5182014-03-11 10:48:52 +00007185A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7186identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7187load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007188
7189Example:
7190""""""""
7191
7192.. code-block:: llvm
7193
7194 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007195 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007196 br label %loop
7197
7198 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007199 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007200 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007201 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007202 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7203 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007204 br i1 %success, label %done, label %loop
7205
7206 done:
7207 ...
7208
7209.. _i_atomicrmw:
7210
7211'``atomicrmw``' Instruction
7212^^^^^^^^^^^^^^^^^^^^^^^^^^^
7213
7214Syntax:
7215"""""""
7216
7217::
7218
Tim Northover675a0962014-06-13 14:24:23 +00007219 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007220
7221Overview:
7222"""""""""
7223
7224The '``atomicrmw``' instruction is used to atomically modify memory.
7225
7226Arguments:
7227""""""""""
7228
7229There are three arguments to the '``atomicrmw``' instruction: an
7230operation to apply, an address whose value to modify, an argument to the
7231operation. The operation must be one of the following keywords:
7232
7233- xchg
7234- add
7235- sub
7236- and
7237- nand
7238- or
7239- xor
7240- max
7241- min
7242- umax
7243- umin
7244
7245The type of '<value>' must be an integer type whose bit width is a power
7246of two greater than or equal to eight and less than or equal to a
7247target-specific size limit. The type of the '``<pointer>``' operand must
7248be a pointer to that type. If the ``atomicrmw`` is marked as
7249``volatile``, then the optimizer is not allowed to modify the number or
7250order of execution of this ``atomicrmw`` with other :ref:`volatile
7251operations <volatile>`.
7252
7253Semantics:
7254""""""""""
7255
7256The contents of memory at the location specified by the '``<pointer>``'
7257operand are atomically read, modified, and written back. The original
7258value at the location is returned. The modification is specified by the
7259operation argument:
7260
7261- xchg: ``*ptr = val``
7262- add: ``*ptr = *ptr + val``
7263- sub: ``*ptr = *ptr - val``
7264- and: ``*ptr = *ptr & val``
7265- nand: ``*ptr = ~(*ptr & val)``
7266- or: ``*ptr = *ptr | val``
7267- xor: ``*ptr = *ptr ^ val``
7268- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7269- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7270- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7271 comparison)
7272- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7273 comparison)
7274
7275Example:
7276""""""""
7277
7278.. code-block:: llvm
7279
Tim Northover675a0962014-06-13 14:24:23 +00007280 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007281
7282.. _i_getelementptr:
7283
7284'``getelementptr``' Instruction
7285^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7286
7287Syntax:
7288"""""""
7289
7290::
7291
David Blaikie16a97eb2015-03-04 22:02:58 +00007292 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7293 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7294 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007295
7296Overview:
7297"""""""""
7298
7299The '``getelementptr``' instruction is used to get the address of a
7300subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007301address calculation only and does not access memory. The instruction can also
7302be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007303
7304Arguments:
7305""""""""""
7306
David Blaikie16a97eb2015-03-04 22:02:58 +00007307The first argument is always a type used as the basis for the calculations.
7308The second argument is always a pointer or a vector of pointers, and is the
7309base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007310that indicate which of the elements of the aggregate object are indexed.
7311The interpretation of each index is dependent on the type being indexed
7312into. The first index always indexes the pointer value given as the
7313first argument, the second index indexes a value of the type pointed to
7314(not necessarily the value directly pointed to, since the first index
7315can be non-zero), etc. The first type indexed into must be a pointer
7316value, subsequent types can be arrays, vectors, and structs. Note that
7317subsequent types being indexed into can never be pointers, since that
7318would require loading the pointer before continuing calculation.
7319
7320The type of each index argument depends on the type it is indexing into.
7321When indexing into a (optionally packed) structure, only ``i32`` integer
7322**constants** are allowed (when using a vector of indices they must all
7323be the **same** ``i32`` integer constant). When indexing into an array,
7324pointer or vector, integers of any width are allowed, and they are not
7325required to be constant. These integers are treated as signed values
7326where relevant.
7327
7328For example, let's consider a C code fragment and how it gets compiled
7329to LLVM:
7330
7331.. code-block:: c
7332
7333 struct RT {
7334 char A;
7335 int B[10][20];
7336 char C;
7337 };
7338 struct ST {
7339 int X;
7340 double Y;
7341 struct RT Z;
7342 };
7343
7344 int *foo(struct ST *s) {
7345 return &s[1].Z.B[5][13];
7346 }
7347
7348The LLVM code generated by Clang is:
7349
7350.. code-block:: llvm
7351
7352 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7353 %struct.ST = type { i32, double, %struct.RT }
7354
7355 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7356 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007357 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007358 ret i32* %arrayidx
7359 }
7360
7361Semantics:
7362""""""""""
7363
7364In the example above, the first index is indexing into the
7365'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7366= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7367indexes into the third element of the structure, yielding a
7368'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7369structure. The third index indexes into the second element of the
7370structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7371dimensions of the array are subscripted into, yielding an '``i32``'
7372type. The '``getelementptr``' instruction returns a pointer to this
7373element, thus computing a value of '``i32*``' type.
7374
7375Note that it is perfectly legal to index partially through a structure,
7376returning a pointer to an inner element. Because of this, the LLVM code
7377for the given testcase is equivalent to:
7378
7379.. code-block:: llvm
7380
7381 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007382 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7383 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7384 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7385 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7386 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007387 ret i32* %t5
7388 }
7389
7390If the ``inbounds`` keyword is present, the result value of the
7391``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7392pointer is not an *in bounds* address of an allocated object, or if any
7393of the addresses that would be formed by successive addition of the
7394offsets implied by the indices to the base address with infinitely
7395precise signed arithmetic are not an *in bounds* address of that
7396allocated object. The *in bounds* addresses for an allocated object are
7397all the addresses that point into the object, plus the address one byte
7398past the end. In cases where the base is a vector of pointers the
7399``inbounds`` keyword applies to each of the computations element-wise.
7400
7401If the ``inbounds`` keyword is not present, the offsets are added to the
7402base address with silently-wrapping two's complement arithmetic. If the
7403offsets have a different width from the pointer, they are sign-extended
7404or truncated to the width of the pointer. The result value of the
7405``getelementptr`` may be outside the object pointed to by the base
7406pointer. The result value may not necessarily be used to access memory
7407though, even if it happens to point into allocated storage. See the
7408:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7409information.
7410
7411The getelementptr instruction is often confusing. For some more insight
7412into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7413
7414Example:
7415""""""""
7416
7417.. code-block:: llvm
7418
7419 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007420 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007421 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007422 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007423 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007424 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007425 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007426 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007427
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007428Vector of pointers:
7429"""""""""""""""""""
7430
7431The ``getelementptr`` returns a vector of pointers, instead of a single address,
7432when one or more of its arguments is a vector. In such cases, all vector
7433arguments should have the same number of elements, and every scalar argument
7434will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007435
7436.. code-block:: llvm
7437
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007438 ; All arguments are vectors:
7439 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7440 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007441
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007442 ; Add the same scalar offset to each pointer of a vector:
7443 ; A[i] = ptrs[i] + offset*sizeof(i8)
7444 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007445
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007446 ; Add distinct offsets to the same pointer:
7447 ; A[i] = ptr + offsets[i]*sizeof(i8)
7448 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007449
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007450 ; In all cases described above the type of the result is <4 x i8*>
7451
7452The two following instructions are equivalent:
7453
7454.. code-block:: llvm
7455
7456 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7457 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7458 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7459 <4 x i32> %ind4,
7460 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007461
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007462 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7463 i32 2, i32 1, <4 x i32> %ind4, i64 13
7464
7465Let's look at the C code, where the vector version of ``getelementptr``
7466makes sense:
7467
7468.. code-block:: c
7469
7470 // Let's assume that we vectorize the following loop:
7471 double *A, B; int *C;
7472 for (int i = 0; i < size; ++i) {
7473 A[i] = B[C[i]];
7474 }
7475
7476.. code-block:: llvm
7477
7478 ; get pointers for 8 elements from array B
7479 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7480 ; load 8 elements from array B into A
7481 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7482 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007483
7484Conversion Operations
7485---------------------
7486
7487The instructions in this category are the conversion instructions
7488(casting) which all take a single operand and a type. They perform
7489various bit conversions on the operand.
7490
7491'``trunc .. to``' Instruction
7492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7493
7494Syntax:
7495"""""""
7496
7497::
7498
7499 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7500
7501Overview:
7502"""""""""
7503
7504The '``trunc``' instruction truncates its operand to the type ``ty2``.
7505
7506Arguments:
7507""""""""""
7508
7509The '``trunc``' instruction takes a value to trunc, and a type to trunc
7510it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7511of the same number of integers. The bit size of the ``value`` must be
7512larger than the bit size of the destination type, ``ty2``. Equal sized
7513types are not allowed.
7514
7515Semantics:
7516""""""""""
7517
7518The '``trunc``' instruction truncates the high order bits in ``value``
7519and converts the remaining bits to ``ty2``. Since the source size must
7520be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7521It will always truncate bits.
7522
7523Example:
7524""""""""
7525
7526.. code-block:: llvm
7527
7528 %X = trunc i32 257 to i8 ; yields i8:1
7529 %Y = trunc i32 123 to i1 ; yields i1:true
7530 %Z = trunc i32 122 to i1 ; yields i1:false
7531 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7532
7533'``zext .. to``' Instruction
7534^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7535
7536Syntax:
7537"""""""
7538
7539::
7540
7541 <result> = zext <ty> <value> to <ty2> ; yields ty2
7542
7543Overview:
7544"""""""""
7545
7546The '``zext``' instruction zero extends its operand to type ``ty2``.
7547
7548Arguments:
7549""""""""""
7550
7551The '``zext``' instruction takes a value to cast, and a type to cast it
7552to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7553the same number of integers. The bit size of the ``value`` must be
7554smaller than the bit size of the destination type, ``ty2``.
7555
7556Semantics:
7557""""""""""
7558
7559The ``zext`` fills the high order bits of the ``value`` with zero bits
7560until it reaches the size of the destination type, ``ty2``.
7561
7562When zero extending from i1, the result will always be either 0 or 1.
7563
7564Example:
7565""""""""
7566
7567.. code-block:: llvm
7568
7569 %X = zext i32 257 to i64 ; yields i64:257
7570 %Y = zext i1 true to i32 ; yields i32:1
7571 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7572
7573'``sext .. to``' Instruction
7574^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7575
7576Syntax:
7577"""""""
7578
7579::
7580
7581 <result> = sext <ty> <value> to <ty2> ; yields ty2
7582
7583Overview:
7584"""""""""
7585
7586The '``sext``' sign extends ``value`` to the type ``ty2``.
7587
7588Arguments:
7589""""""""""
7590
7591The '``sext``' instruction takes a value to cast, and a type to cast it
7592to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7593the same number of integers. The bit size of the ``value`` must be
7594smaller than the bit size of the destination type, ``ty2``.
7595
7596Semantics:
7597""""""""""
7598
7599The '``sext``' instruction performs a sign extension by copying the sign
7600bit (highest order bit) of the ``value`` until it reaches the bit size
7601of the type ``ty2``.
7602
7603When sign extending from i1, the extension always results in -1 or 0.
7604
7605Example:
7606""""""""
7607
7608.. code-block:: llvm
7609
7610 %X = sext i8 -1 to i16 ; yields i16 :65535
7611 %Y = sext i1 true to i32 ; yields i32:-1
7612 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7613
7614'``fptrunc .. to``' Instruction
7615^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7616
7617Syntax:
7618"""""""
7619
7620::
7621
7622 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7623
7624Overview:
7625"""""""""
7626
7627The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7628
7629Arguments:
7630""""""""""
7631
7632The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7633value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7634The size of ``value`` must be larger than the size of ``ty2``. This
7635implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7636
7637Semantics:
7638""""""""""
7639
Dan Liew50456fb2015-09-03 18:43:56 +00007640The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007641:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007642point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7643destination type, ``ty2``, then the results are undefined. If the cast produces
7644an inexact result, how rounding is performed (e.g. truncation, also known as
7645round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007646
7647Example:
7648""""""""
7649
7650.. code-block:: llvm
7651
7652 %X = fptrunc double 123.0 to float ; yields float:123.0
7653 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7654
7655'``fpext .. to``' Instruction
7656^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7657
7658Syntax:
7659"""""""
7660
7661::
7662
7663 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7664
7665Overview:
7666"""""""""
7667
7668The '``fpext``' extends a floating point ``value`` to a larger floating
7669point value.
7670
7671Arguments:
7672""""""""""
7673
7674The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7675``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7676to. The source type must be smaller than the destination type.
7677
7678Semantics:
7679""""""""""
7680
7681The '``fpext``' instruction extends the ``value`` from a smaller
7682:ref:`floating point <t_floating>` type to a larger :ref:`floating
7683point <t_floating>` type. The ``fpext`` cannot be used to make a
7684*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7685*no-op cast* for a floating point cast.
7686
7687Example:
7688""""""""
7689
7690.. code-block:: llvm
7691
7692 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7693 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7694
7695'``fptoui .. to``' Instruction
7696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7697
7698Syntax:
7699"""""""
7700
7701::
7702
7703 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7704
7705Overview:
7706"""""""""
7707
7708The '``fptoui``' converts a floating point ``value`` to its unsigned
7709integer equivalent of type ``ty2``.
7710
7711Arguments:
7712""""""""""
7713
7714The '``fptoui``' instruction takes a value to cast, which must be a
7715scalar or vector :ref:`floating point <t_floating>` value, and a type to
7716cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7717``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7718type with the same number of elements as ``ty``
7719
7720Semantics:
7721""""""""""
7722
7723The '``fptoui``' instruction converts its :ref:`floating
7724point <t_floating>` operand into the nearest (rounding towards zero)
7725unsigned integer value. If the value cannot fit in ``ty2``, the results
7726are undefined.
7727
7728Example:
7729""""""""
7730
7731.. code-block:: llvm
7732
7733 %X = fptoui double 123.0 to i32 ; yields i32:123
7734 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7735 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7736
7737'``fptosi .. to``' Instruction
7738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7739
7740Syntax:
7741"""""""
7742
7743::
7744
7745 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7746
7747Overview:
7748"""""""""
7749
7750The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7751``value`` to type ``ty2``.
7752
7753Arguments:
7754""""""""""
7755
7756The '``fptosi``' instruction takes a value to cast, which must be a
7757scalar or vector :ref:`floating point <t_floating>` value, and a type to
7758cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7759``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7760type with the same number of elements as ``ty``
7761
7762Semantics:
7763""""""""""
7764
7765The '``fptosi``' instruction converts its :ref:`floating
7766point <t_floating>` operand into the nearest (rounding towards zero)
7767signed integer value. If the value cannot fit in ``ty2``, the results
7768are undefined.
7769
7770Example:
7771""""""""
7772
7773.. code-block:: llvm
7774
7775 %X = fptosi double -123.0 to i32 ; yields i32:-123
7776 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7777 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7778
7779'``uitofp .. to``' Instruction
7780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7781
7782Syntax:
7783"""""""
7784
7785::
7786
7787 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7788
7789Overview:
7790"""""""""
7791
7792The '``uitofp``' instruction regards ``value`` as an unsigned integer
7793and converts that value to the ``ty2`` type.
7794
7795Arguments:
7796""""""""""
7797
7798The '``uitofp``' instruction takes a value to cast, which must be a
7799scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7800``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7801``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7802type with the same number of elements as ``ty``
7803
7804Semantics:
7805""""""""""
7806
7807The '``uitofp``' instruction interprets its operand as an unsigned
7808integer quantity and converts it to the corresponding floating point
7809value. If the value cannot fit in the floating point value, the results
7810are undefined.
7811
7812Example:
7813""""""""
7814
7815.. code-block:: llvm
7816
7817 %X = uitofp i32 257 to float ; yields float:257.0
7818 %Y = uitofp i8 -1 to double ; yields double:255.0
7819
7820'``sitofp .. to``' Instruction
7821^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7822
7823Syntax:
7824"""""""
7825
7826::
7827
7828 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7829
7830Overview:
7831"""""""""
7832
7833The '``sitofp``' instruction regards ``value`` as a signed integer and
7834converts that value to the ``ty2`` type.
7835
7836Arguments:
7837""""""""""
7838
7839The '``sitofp``' instruction takes a value to cast, which must be a
7840scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7841``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7842``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7843type with the same number of elements as ``ty``
7844
7845Semantics:
7846""""""""""
7847
7848The '``sitofp``' instruction interprets its operand as a signed integer
7849quantity and converts it to the corresponding floating point value. If
7850the value cannot fit in the floating point value, the results are
7851undefined.
7852
7853Example:
7854""""""""
7855
7856.. code-block:: llvm
7857
7858 %X = sitofp i32 257 to float ; yields float:257.0
7859 %Y = sitofp i8 -1 to double ; yields double:-1.0
7860
7861.. _i_ptrtoint:
7862
7863'``ptrtoint .. to``' Instruction
7864^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7865
7866Syntax:
7867"""""""
7868
7869::
7870
7871 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7872
7873Overview:
7874"""""""""
7875
7876The '``ptrtoint``' instruction converts the pointer or a vector of
7877pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7878
7879Arguments:
7880""""""""""
7881
7882The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007883a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007884type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7885a vector of integers type.
7886
7887Semantics:
7888""""""""""
7889
7890The '``ptrtoint``' instruction converts ``value`` to integer type
7891``ty2`` by interpreting the pointer value as an integer and either
7892truncating or zero extending that value to the size of the integer type.
7893If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7894``value`` is larger than ``ty2`` then a truncation is done. If they are
7895the same size, then nothing is done (*no-op cast*) other than a type
7896change.
7897
7898Example:
7899""""""""
7900
7901.. code-block:: llvm
7902
7903 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7904 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7905 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7906
7907.. _i_inttoptr:
7908
7909'``inttoptr .. to``' Instruction
7910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7911
7912Syntax:
7913"""""""
7914
7915::
7916
7917 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7918
7919Overview:
7920"""""""""
7921
7922The '``inttoptr``' instruction converts an integer ``value`` to a
7923pointer type, ``ty2``.
7924
7925Arguments:
7926""""""""""
7927
7928The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7929cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7930type.
7931
7932Semantics:
7933""""""""""
7934
7935The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7936applying either a zero extension or a truncation depending on the size
7937of the integer ``value``. If ``value`` is larger than the size of a
7938pointer then a truncation is done. If ``value`` is smaller than the size
7939of a pointer then a zero extension is done. If they are the same size,
7940nothing is done (*no-op cast*).
7941
7942Example:
7943""""""""
7944
7945.. code-block:: llvm
7946
7947 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7948 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7949 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7950 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7951
7952.. _i_bitcast:
7953
7954'``bitcast .. to``' Instruction
7955^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7956
7957Syntax:
7958"""""""
7959
7960::
7961
7962 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7963
7964Overview:
7965"""""""""
7966
7967The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7968changing any bits.
7969
7970Arguments:
7971""""""""""
7972
7973The '``bitcast``' instruction takes a value to cast, which must be a
7974non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007975also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7976bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007977identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007978also be a pointer of the same size. This instruction supports bitwise
7979conversion of vectors to integers and to vectors of other types (as
7980long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007981
7982Semantics:
7983""""""""""
7984
Matt Arsenault24b49c42013-07-31 17:49:08 +00007985The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7986is always a *no-op cast* because no bits change with this
7987conversion. The conversion is done as if the ``value`` had been stored
7988to memory and read back as type ``ty2``. Pointer (or vector of
7989pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007990pointers) types with the same address space through this instruction.
7991To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7992or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007993
7994Example:
7995""""""""
7996
7997.. code-block:: llvm
7998
7999 %X = bitcast i8 255 to i8 ; yields i8 :-1
8000 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8001 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8002 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8003
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008004.. _i_addrspacecast:
8005
8006'``addrspacecast .. to``' Instruction
8007^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8008
8009Syntax:
8010"""""""
8011
8012::
8013
8014 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8015
8016Overview:
8017"""""""""
8018
8019The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8020address space ``n`` to type ``pty2`` in address space ``m``.
8021
8022Arguments:
8023""""""""""
8024
8025The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8026to cast and a pointer type to cast it to, which must have a different
8027address space.
8028
8029Semantics:
8030""""""""""
8031
8032The '``addrspacecast``' instruction converts the pointer value
8033``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008034value modification, depending on the target and the address space
8035pair. Pointer conversions within the same address space must be
8036performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008037conversion is legal then both result and operand refer to the same memory
8038location.
8039
8040Example:
8041""""""""
8042
8043.. code-block:: llvm
8044
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008045 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8046 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8047 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008048
Sean Silvab084af42012-12-07 10:36:55 +00008049.. _otherops:
8050
8051Other Operations
8052----------------
8053
8054The instructions in this category are the "miscellaneous" instructions,
8055which defy better classification.
8056
8057.. _i_icmp:
8058
8059'``icmp``' Instruction
8060^^^^^^^^^^^^^^^^^^^^^^
8061
8062Syntax:
8063"""""""
8064
8065::
8066
Tim Northover675a0962014-06-13 14:24:23 +00008067 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008068
8069Overview:
8070"""""""""
8071
8072The '``icmp``' instruction returns a boolean value or a vector of
8073boolean values based on comparison of its two integer, integer vector,
8074pointer, or pointer vector operands.
8075
8076Arguments:
8077""""""""""
8078
8079The '``icmp``' instruction takes three operands. The first operand is
8080the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008081not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008082
8083#. ``eq``: equal
8084#. ``ne``: not equal
8085#. ``ugt``: unsigned greater than
8086#. ``uge``: unsigned greater or equal
8087#. ``ult``: unsigned less than
8088#. ``ule``: unsigned less or equal
8089#. ``sgt``: signed greater than
8090#. ``sge``: signed greater or equal
8091#. ``slt``: signed less than
8092#. ``sle``: signed less or equal
8093
8094The remaining two arguments must be :ref:`integer <t_integer>` or
8095:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8096must also be identical types.
8097
8098Semantics:
8099""""""""""
8100
8101The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8102code given as ``cond``. The comparison performed always yields either an
8103:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8104
8105#. ``eq``: yields ``true`` if the operands are equal, ``false``
8106 otherwise. No sign interpretation is necessary or performed.
8107#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8108 otherwise. No sign interpretation is necessary or performed.
8109#. ``ugt``: interprets the operands as unsigned values and yields
8110 ``true`` if ``op1`` is greater than ``op2``.
8111#. ``uge``: interprets the operands as unsigned values and yields
8112 ``true`` if ``op1`` is greater than or equal to ``op2``.
8113#. ``ult``: interprets the operands as unsigned values and yields
8114 ``true`` if ``op1`` is less than ``op2``.
8115#. ``ule``: interprets the operands as unsigned values and yields
8116 ``true`` if ``op1`` is less than or equal to ``op2``.
8117#. ``sgt``: interprets the operands as signed values and yields ``true``
8118 if ``op1`` is greater than ``op2``.
8119#. ``sge``: interprets the operands as signed values and yields ``true``
8120 if ``op1`` is greater than or equal to ``op2``.
8121#. ``slt``: interprets the operands as signed values and yields ``true``
8122 if ``op1`` is less than ``op2``.
8123#. ``sle``: interprets the operands as signed values and yields ``true``
8124 if ``op1`` is less than or equal to ``op2``.
8125
8126If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8127are compared as if they were integers.
8128
8129If the operands are integer vectors, then they are compared element by
8130element. The result is an ``i1`` vector with the same number of elements
8131as the values being compared. Otherwise, the result is an ``i1``.
8132
8133Example:
8134""""""""
8135
8136.. code-block:: llvm
8137
8138 <result> = icmp eq i32 4, 5 ; yields: result=false
8139 <result> = icmp ne float* %X, %X ; yields: result=false
8140 <result> = icmp ult i16 4, 5 ; yields: result=true
8141 <result> = icmp sgt i16 4, 5 ; yields: result=false
8142 <result> = icmp ule i16 -4, 5 ; yields: result=false
8143 <result> = icmp sge i16 4, 5 ; yields: result=false
8144
8145Note that the code generator does not yet support vector types with the
8146``icmp`` instruction.
8147
8148.. _i_fcmp:
8149
8150'``fcmp``' Instruction
8151^^^^^^^^^^^^^^^^^^^^^^
8152
8153Syntax:
8154"""""""
8155
8156::
8157
James Molloy88eb5352015-07-10 12:52:00 +00008158 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008159
8160Overview:
8161"""""""""
8162
8163The '``fcmp``' instruction returns a boolean value or vector of boolean
8164values based on comparison of its operands.
8165
8166If the operands are floating point scalars, then the result type is a
8167boolean (:ref:`i1 <t_integer>`).
8168
8169If the operands are floating point vectors, then the result type is a
8170vector of boolean with the same number of elements as the operands being
8171compared.
8172
8173Arguments:
8174""""""""""
8175
8176The '``fcmp``' instruction takes three operands. The first operand is
8177the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008178not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008179
8180#. ``false``: no comparison, always returns false
8181#. ``oeq``: ordered and equal
8182#. ``ogt``: ordered and greater than
8183#. ``oge``: ordered and greater than or equal
8184#. ``olt``: ordered and less than
8185#. ``ole``: ordered and less than or equal
8186#. ``one``: ordered and not equal
8187#. ``ord``: ordered (no nans)
8188#. ``ueq``: unordered or equal
8189#. ``ugt``: unordered or greater than
8190#. ``uge``: unordered or greater than or equal
8191#. ``ult``: unordered or less than
8192#. ``ule``: unordered or less than or equal
8193#. ``une``: unordered or not equal
8194#. ``uno``: unordered (either nans)
8195#. ``true``: no comparison, always returns true
8196
8197*Ordered* means that neither operand is a QNAN while *unordered* means
8198that either operand may be a QNAN.
8199
8200Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8201point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8202type. They must have identical types.
8203
8204Semantics:
8205""""""""""
8206
8207The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8208condition code given as ``cond``. If the operands are vectors, then the
8209vectors are compared element by element. Each comparison performed
8210always yields an :ref:`i1 <t_integer>` result, as follows:
8211
8212#. ``false``: always yields ``false``, regardless of operands.
8213#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8214 is equal to ``op2``.
8215#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8216 is greater than ``op2``.
8217#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8218 is greater than or equal to ``op2``.
8219#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8220 is less than ``op2``.
8221#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8222 is less than or equal to ``op2``.
8223#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8224 is not equal to ``op2``.
8225#. ``ord``: yields ``true`` if both operands are not a QNAN.
8226#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8227 equal to ``op2``.
8228#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8229 greater than ``op2``.
8230#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8231 greater than or equal to ``op2``.
8232#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8233 less than ``op2``.
8234#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8235 less than or equal to ``op2``.
8236#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8237 not equal to ``op2``.
8238#. ``uno``: yields ``true`` if either operand is a QNAN.
8239#. ``true``: always yields ``true``, regardless of operands.
8240
James Molloy88eb5352015-07-10 12:52:00 +00008241The ``fcmp`` instruction can also optionally take any number of
8242:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8243otherwise unsafe floating point optimizations.
8244
8245Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8246only flags that have any effect on its semantics are those that allow
8247assumptions to be made about the values of input arguments; namely
8248``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8249
Sean Silvab084af42012-12-07 10:36:55 +00008250Example:
8251""""""""
8252
8253.. code-block:: llvm
8254
8255 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8256 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8257 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8258 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8259
8260Note that the code generator does not yet support vector types with the
8261``fcmp`` instruction.
8262
8263.. _i_phi:
8264
8265'``phi``' Instruction
8266^^^^^^^^^^^^^^^^^^^^^
8267
8268Syntax:
8269"""""""
8270
8271::
8272
8273 <result> = phi <ty> [ <val0>, <label0>], ...
8274
8275Overview:
8276"""""""""
8277
8278The '``phi``' instruction is used to implement the φ node in the SSA
8279graph representing the function.
8280
8281Arguments:
8282""""""""""
8283
8284The type of the incoming values is specified with the first type field.
8285After this, the '``phi``' instruction takes a list of pairs as
8286arguments, with one pair for each predecessor basic block of the current
8287block. Only values of :ref:`first class <t_firstclass>` type may be used as
8288the value arguments to the PHI node. Only labels may be used as the
8289label arguments.
8290
8291There must be no non-phi instructions between the start of a basic block
8292and the PHI instructions: i.e. PHI instructions must be first in a basic
8293block.
8294
8295For the purposes of the SSA form, the use of each incoming value is
8296deemed to occur on the edge from the corresponding predecessor block to
8297the current block (but after any definition of an '``invoke``'
8298instruction's return value on the same edge).
8299
8300Semantics:
8301""""""""""
8302
8303At runtime, the '``phi``' instruction logically takes on the value
8304specified by the pair corresponding to the predecessor basic block that
8305executed just prior to the current block.
8306
8307Example:
8308""""""""
8309
8310.. code-block:: llvm
8311
8312 Loop: ; Infinite loop that counts from 0 on up...
8313 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8314 %nextindvar = add i32 %indvar, 1
8315 br label %Loop
8316
8317.. _i_select:
8318
8319'``select``' Instruction
8320^^^^^^^^^^^^^^^^^^^^^^^^
8321
8322Syntax:
8323"""""""
8324
8325::
8326
8327 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8328
8329 selty is either i1 or {<N x i1>}
8330
8331Overview:
8332"""""""""
8333
8334The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008335condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008336
8337Arguments:
8338""""""""""
8339
8340The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8341values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008342class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008343
8344Semantics:
8345""""""""""
8346
8347If the condition is an i1 and it evaluates to 1, the instruction returns
8348the first value argument; otherwise, it returns the second value
8349argument.
8350
8351If the condition is a vector of i1, then the value arguments must be
8352vectors of the same size, and the selection is done element by element.
8353
David Majnemer40a0b592015-03-03 22:45:47 +00008354If the condition is an i1 and the value arguments are vectors of the
8355same size, then an entire vector is selected.
8356
Sean Silvab084af42012-12-07 10:36:55 +00008357Example:
8358""""""""
8359
8360.. code-block:: llvm
8361
8362 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8363
8364.. _i_call:
8365
8366'``call``' Instruction
8367^^^^^^^^^^^^^^^^^^^^^^
8368
8369Syntax:
8370"""""""
8371
8372::
8373
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008374 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008375 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008376
8377Overview:
8378"""""""""
8379
8380The '``call``' instruction represents a simple function call.
8381
8382Arguments:
8383""""""""""
8384
8385This instruction requires several arguments:
8386
Reid Kleckner5772b772014-04-24 20:14:34 +00008387#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008388 should perform tail call optimization. The ``tail`` marker is a hint that
8389 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008390 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008391 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008392
8393 #. The call will not cause unbounded stack growth if it is part of a
8394 recursive cycle in the call graph.
8395 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8396 forwarded in place.
8397
8398 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008399 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008400 rules:
8401
8402 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8403 or a pointer bitcast followed by a ret instruction.
8404 - The ret instruction must return the (possibly bitcasted) value
8405 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008406 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008407 parameters or return types may differ in pointee type, but not
8408 in address space.
8409 - The calling conventions of the caller and callee must match.
8410 - All ABI-impacting function attributes, such as sret, byval, inreg,
8411 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008412 - The callee must be varargs iff the caller is varargs. Bitcasting a
8413 non-varargs function to the appropriate varargs type is legal so
8414 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008415
8416 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8417 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008418
8419 - Caller and callee both have the calling convention ``fastcc``.
8420 - The call is in tail position (ret immediately follows call and ret
8421 uses value of call or is void).
8422 - Option ``-tailcallopt`` is enabled, or
8423 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008424 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008425 met. <CodeGenerator.html#tailcallopt>`_
8426
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008427#. The optional ``notail`` marker indicates that the optimizers should not add
8428 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8429 call optimization from being performed on the call.
8430
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008431#. The optional ``fast-math flags`` marker indicates that the call has one or more
8432 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8433 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8434 for calls that return a floating-point scalar or vector type.
8435
Sean Silvab084af42012-12-07 10:36:55 +00008436#. The optional "cconv" marker indicates which :ref:`calling
8437 convention <callingconv>` the call should use. If none is
8438 specified, the call defaults to using C calling conventions. The
8439 calling convention of the call must match the calling convention of
8440 the target function, or else the behavior is undefined.
8441#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8442 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8443 are valid here.
8444#. '``ty``': the type of the call instruction itself which is also the
8445 type of the return value. Functions that return no value are marked
8446 ``void``.
8447#. '``fnty``': shall be the signature of the pointer to function value
8448 being invoked. The argument types must match the types implied by
8449 this signature. This type can be omitted if the function is not
8450 varargs and if the function type does not return a pointer to a
8451 function.
8452#. '``fnptrval``': An LLVM value containing a pointer to a function to
8453 be invoked. In most cases, this is a direct function invocation, but
8454 indirect ``call``'s are just as possible, calling an arbitrary pointer
8455 to function value.
8456#. '``function args``': argument list whose types match the function
8457 signature argument types and parameter attributes. All arguments must
8458 be of :ref:`first class <t_firstclass>` type. If the function signature
8459 indicates the function accepts a variable number of arguments, the
8460 extra arguments can be specified.
8461#. The optional :ref:`function attributes <fnattrs>` list. Only
8462 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8463 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008464#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008465
8466Semantics:
8467""""""""""
8468
8469The '``call``' instruction is used to cause control flow to transfer to
8470a specified function, with its incoming arguments bound to the specified
8471values. Upon a '``ret``' instruction in the called function, control
8472flow continues with the instruction after the function call, and the
8473return value of the function is bound to the result argument.
8474
8475Example:
8476""""""""
8477
8478.. code-block:: llvm
8479
8480 %retval = call i32 @test(i32 %argc)
8481 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8482 %X = tail call i32 @foo() ; yields i32
8483 %Y = tail call fastcc i32 @foo() ; yields i32
8484 call void %foo(i8 97 signext)
8485
8486 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008487 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008488 %gr = extractvalue %struct.A %r, 0 ; yields i32
8489 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8490 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8491 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8492
8493llvm treats calls to some functions with names and arguments that match
8494the standard C99 library as being the C99 library functions, and may
8495perform optimizations or generate code for them under that assumption.
8496This is something we'd like to change in the future to provide better
8497support for freestanding environments and non-C-based languages.
8498
8499.. _i_va_arg:
8500
8501'``va_arg``' Instruction
8502^^^^^^^^^^^^^^^^^^^^^^^^
8503
8504Syntax:
8505"""""""
8506
8507::
8508
8509 <resultval> = va_arg <va_list*> <arglist>, <argty>
8510
8511Overview:
8512"""""""""
8513
8514The '``va_arg``' instruction is used to access arguments passed through
8515the "variable argument" area of a function call. It is used to implement
8516the ``va_arg`` macro in C.
8517
8518Arguments:
8519""""""""""
8520
8521This instruction takes a ``va_list*`` value and the type of the
8522argument. It returns a value of the specified argument type and
8523increments the ``va_list`` to point to the next argument. The actual
8524type of ``va_list`` is target specific.
8525
8526Semantics:
8527""""""""""
8528
8529The '``va_arg``' instruction loads an argument of the specified type
8530from the specified ``va_list`` and causes the ``va_list`` to point to
8531the next argument. For more information, see the variable argument
8532handling :ref:`Intrinsic Functions <int_varargs>`.
8533
8534It is legal for this instruction to be called in a function which does
8535not take a variable number of arguments, for example, the ``vfprintf``
8536function.
8537
8538``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8539function <intrinsics>` because it takes a type as an argument.
8540
8541Example:
8542""""""""
8543
8544See the :ref:`variable argument processing <int_varargs>` section.
8545
8546Note that the code generator does not yet fully support va\_arg on many
8547targets. Also, it does not currently support va\_arg with aggregate
8548types on any target.
8549
8550.. _i_landingpad:
8551
8552'``landingpad``' Instruction
8553^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8554
8555Syntax:
8556"""""""
8557
8558::
8559
David Majnemer7fddecc2015-06-17 20:52:32 +00008560 <resultval> = landingpad <resultty> <clause>+
8561 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008562
8563 <clause> := catch <type> <value>
8564 <clause> := filter <array constant type> <array constant>
8565
8566Overview:
8567"""""""""
8568
8569The '``landingpad``' instruction is used by `LLVM's exception handling
8570system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008571is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008572code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008573defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008574re-entry to the function. The ``resultval`` has the type ``resultty``.
8575
8576Arguments:
8577""""""""""
8578
David Majnemer7fddecc2015-06-17 20:52:32 +00008579The optional
Sean Silvab084af42012-12-07 10:36:55 +00008580``cleanup`` flag indicates that the landing pad block is a cleanup.
8581
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008582A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008583contains the global variable representing the "type" that may be caught
8584or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8585clause takes an array constant as its argument. Use
8586"``[0 x i8**] undef``" for a filter which cannot throw. The
8587'``landingpad``' instruction must contain *at least* one ``clause`` or
8588the ``cleanup`` flag.
8589
8590Semantics:
8591""""""""""
8592
8593The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008594:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008595therefore the "result type" of the ``landingpad`` instruction. As with
8596calling conventions, how the personality function results are
8597represented in LLVM IR is target specific.
8598
8599The clauses are applied in order from top to bottom. If two
8600``landingpad`` instructions are merged together through inlining, the
8601clauses from the calling function are appended to the list of clauses.
8602When the call stack is being unwound due to an exception being thrown,
8603the exception is compared against each ``clause`` in turn. If it doesn't
8604match any of the clauses, and the ``cleanup`` flag is not set, then
8605unwinding continues further up the call stack.
8606
8607The ``landingpad`` instruction has several restrictions:
8608
8609- A landing pad block is a basic block which is the unwind destination
8610 of an '``invoke``' instruction.
8611- A landing pad block must have a '``landingpad``' instruction as its
8612 first non-PHI instruction.
8613- There can be only one '``landingpad``' instruction within the landing
8614 pad block.
8615- A basic block that is not a landing pad block may not include a
8616 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008617
8618Example:
8619""""""""
8620
8621.. code-block:: llvm
8622
8623 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008624 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008625 catch i8** @_ZTIi
8626 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008627 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008628 cleanup
8629 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008630 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008631 catch i8** @_ZTIi
8632 filter [1 x i8**] [@_ZTId]
8633
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008634.. _i_catchpad:
8635
8636'``catchpad``' Instruction
8637^^^^^^^^^^^^^^^^^^^^^^^^^^
8638
8639Syntax:
8640"""""""
8641
8642::
8643
8644 <resultval> = catchpad within <catchswitch> [<args>*]
8645
8646Overview:
8647"""""""""
8648
8649The '``catchpad``' instruction is used by `LLVM's exception handling
8650system <ExceptionHandling.html#overview>`_ to specify that a basic block
8651begins a catch handler --- one where a personality routine attempts to transfer
8652control to catch an exception.
8653
8654Arguments:
8655""""""""""
8656
8657The ``catchswitch`` operand must always be a token produced by a
8658:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8659ensures that each ``catchpad`` has exactly one predecessor block, and it always
8660terminates in a ``catchswitch``.
8661
8662The ``args`` correspond to whatever information the personality routine
8663requires to know if this is an appropriate handler for the exception. Control
8664will transfer to the ``catchpad`` if this is the first appropriate handler for
8665the exception.
8666
8667The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8668``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8669pads.
8670
8671Semantics:
8672""""""""""
8673
8674When the call stack is being unwound due to an exception being thrown, the
8675exception is compared against the ``args``. If it doesn't match, control will
8676not reach the ``catchpad`` instruction. The representation of ``args`` is
8677entirely target and personality function-specific.
8678
8679Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8680instruction must be the first non-phi of its parent basic block.
8681
8682The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8683instructions is described in the
8684`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8685
8686When a ``catchpad`` has been "entered" but not yet "exited" (as
8687described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8688it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8689that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8690
8691Example:
8692""""""""
8693
8694.. code-block:: llvm
8695
8696 dispatch:
8697 %cs = catchswitch within none [label %handler0] unwind to caller
8698 ;; A catch block which can catch an integer.
8699 handler0:
8700 %tok = catchpad within %cs [i8** @_ZTIi]
8701
David Majnemer654e1302015-07-31 17:58:14 +00008702.. _i_cleanuppad:
8703
8704'``cleanuppad``' Instruction
8705^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8706
8707Syntax:
8708"""""""
8709
8710::
8711
David Majnemer8a1c45d2015-12-12 05:38:55 +00008712 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008713
8714Overview:
8715"""""""""
8716
8717The '``cleanuppad``' instruction is used by `LLVM's exception handling
8718system <ExceptionHandling.html#overview>`_ to specify that a basic block
8719is a cleanup block --- one where a personality routine attempts to
8720transfer control to run cleanup actions.
8721The ``args`` correspond to whatever additional
8722information the :ref:`personality function <personalityfn>` requires to
8723execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008724The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008725match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8726The ``parent`` argument is the token of the funclet that contains the
8727``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8728this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008729
8730Arguments:
8731""""""""""
8732
8733The instruction takes a list of arbitrary values which are interpreted
8734by the :ref:`personality function <personalityfn>`.
8735
8736Semantics:
8737""""""""""
8738
David Majnemer654e1302015-07-31 17:58:14 +00008739When the call stack is being unwound due to an exception being thrown,
8740the :ref:`personality function <personalityfn>` transfers control to the
8741``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008742As with calling conventions, how the personality function results are
8743represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008744
8745The ``cleanuppad`` instruction has several restrictions:
8746
8747- A cleanup block is a basic block which is the unwind destination of
8748 an exceptional instruction.
8749- A cleanup block must have a '``cleanuppad``' instruction as its
8750 first non-PHI instruction.
8751- There can be only one '``cleanuppad``' instruction within the
8752 cleanup block.
8753- A basic block that is not a cleanup block may not include a
8754 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008755
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008756When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8757described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8758it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8759that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008760
David Majnemer654e1302015-07-31 17:58:14 +00008761Example:
8762""""""""
8763
8764.. code-block:: llvm
8765
David Majnemer8a1c45d2015-12-12 05:38:55 +00008766 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008767
Sean Silvab084af42012-12-07 10:36:55 +00008768.. _intrinsics:
8769
8770Intrinsic Functions
8771===================
8772
8773LLVM supports the notion of an "intrinsic function". These functions
8774have well known names and semantics and are required to follow certain
8775restrictions. Overall, these intrinsics represent an extension mechanism
8776for the LLVM language that does not require changing all of the
8777transformations in LLVM when adding to the language (or the bitcode
8778reader/writer, the parser, etc...).
8779
8780Intrinsic function names must all start with an "``llvm.``" prefix. This
8781prefix is reserved in LLVM for intrinsic names; thus, function names may
8782not begin with this prefix. Intrinsic functions must always be external
8783functions: you cannot define the body of intrinsic functions. Intrinsic
8784functions may only be used in call or invoke instructions: it is illegal
8785to take the address of an intrinsic function. Additionally, because
8786intrinsic functions are part of the LLVM language, it is required if any
8787are added that they be documented here.
8788
8789Some intrinsic functions can be overloaded, i.e., the intrinsic
8790represents a family of functions that perform the same operation but on
8791different data types. Because LLVM can represent over 8 million
8792different integer types, overloading is used commonly to allow an
8793intrinsic function to operate on any integer type. One or more of the
8794argument types or the result type can be overloaded to accept any
8795integer type. Argument types may also be defined as exactly matching a
8796previous argument's type or the result type. This allows an intrinsic
8797function which accepts multiple arguments, but needs all of them to be
8798of the same type, to only be overloaded with respect to a single
8799argument or the result.
8800
8801Overloaded intrinsics will have the names of its overloaded argument
8802types encoded into its function name, each preceded by a period. Only
8803those types which are overloaded result in a name suffix. Arguments
8804whose type is matched against another type do not. For example, the
8805``llvm.ctpop`` function can take an integer of any width and returns an
8806integer of exactly the same integer width. This leads to a family of
8807functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8808``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8809overloaded, and only one type suffix is required. Because the argument's
8810type is matched against the return type, it does not require its own
8811name suffix.
8812
8813To learn how to add an intrinsic function, please see the `Extending
8814LLVM Guide <ExtendingLLVM.html>`_.
8815
8816.. _int_varargs:
8817
8818Variable Argument Handling Intrinsics
8819-------------------------------------
8820
8821Variable argument support is defined in LLVM with the
8822:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8823functions. These functions are related to the similarly named macros
8824defined in the ``<stdarg.h>`` header file.
8825
8826All of these functions operate on arguments that use a target-specific
8827value type "``va_list``". The LLVM assembly language reference manual
8828does not define what this type is, so all transformations should be
8829prepared to handle these functions regardless of the type used.
8830
8831This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8832variable argument handling intrinsic functions are used.
8833
8834.. code-block:: llvm
8835
Tim Northoverab60bb92014-11-02 01:21:51 +00008836 ; This struct is different for every platform. For most platforms,
8837 ; it is merely an i8*.
8838 %struct.va_list = type { i8* }
8839
8840 ; For Unix x86_64 platforms, va_list is the following struct:
8841 ; %struct.va_list = type { i32, i32, i8*, i8* }
8842
Sean Silvab084af42012-12-07 10:36:55 +00008843 define i32 @test(i32 %X, ...) {
8844 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008845 %ap = alloca %struct.va_list
8846 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008847 call void @llvm.va_start(i8* %ap2)
8848
8849 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008850 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008851
8852 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8853 %aq = alloca i8*
8854 %aq2 = bitcast i8** %aq to i8*
8855 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8856 call void @llvm.va_end(i8* %aq2)
8857
8858 ; Stop processing of arguments.
8859 call void @llvm.va_end(i8* %ap2)
8860 ret i32 %tmp
8861 }
8862
8863 declare void @llvm.va_start(i8*)
8864 declare void @llvm.va_copy(i8*, i8*)
8865 declare void @llvm.va_end(i8*)
8866
8867.. _int_va_start:
8868
8869'``llvm.va_start``' Intrinsic
8870^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8871
8872Syntax:
8873"""""""
8874
8875::
8876
Nick Lewycky04f6de02013-09-11 22:04:52 +00008877 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008878
8879Overview:
8880"""""""""
8881
8882The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8883subsequent use by ``va_arg``.
8884
8885Arguments:
8886""""""""""
8887
8888The argument is a pointer to a ``va_list`` element to initialize.
8889
8890Semantics:
8891""""""""""
8892
8893The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8894available in C. In a target-dependent way, it initializes the
8895``va_list`` element to which the argument points, so that the next call
8896to ``va_arg`` will produce the first variable argument passed to the
8897function. Unlike the C ``va_start`` macro, this intrinsic does not need
8898to know the last argument of the function as the compiler can figure
8899that out.
8900
8901'``llvm.va_end``' Intrinsic
8902^^^^^^^^^^^^^^^^^^^^^^^^^^^
8903
8904Syntax:
8905"""""""
8906
8907::
8908
8909 declare void @llvm.va_end(i8* <arglist>)
8910
8911Overview:
8912"""""""""
8913
8914The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8915initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8916
8917Arguments:
8918""""""""""
8919
8920The argument is a pointer to a ``va_list`` to destroy.
8921
8922Semantics:
8923""""""""""
8924
8925The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8926available in C. In a target-dependent way, it destroys the ``va_list``
8927element to which the argument points. Calls to
8928:ref:`llvm.va_start <int_va_start>` and
8929:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8930``llvm.va_end``.
8931
8932.. _int_va_copy:
8933
8934'``llvm.va_copy``' Intrinsic
8935^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8936
8937Syntax:
8938"""""""
8939
8940::
8941
8942 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8943
8944Overview:
8945"""""""""
8946
8947The '``llvm.va_copy``' intrinsic copies the current argument position
8948from the source argument list to the destination argument list.
8949
8950Arguments:
8951""""""""""
8952
8953The first argument is a pointer to a ``va_list`` element to initialize.
8954The second argument is a pointer to a ``va_list`` element to copy from.
8955
8956Semantics:
8957""""""""""
8958
8959The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8960available in C. In a target-dependent way, it copies the source
8961``va_list`` element into the destination ``va_list`` element. This
8962intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8963arbitrarily complex and require, for example, memory allocation.
8964
8965Accurate Garbage Collection Intrinsics
8966--------------------------------------
8967
Philip Reamesc5b0f562015-02-25 23:52:06 +00008968LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008969(GC) requires the frontend to generate code containing appropriate intrinsic
8970calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008971intrinsics in a manner which is appropriate for the target collector.
8972
Sean Silvab084af42012-12-07 10:36:55 +00008973These intrinsics allow identification of :ref:`GC roots on the
8974stack <int_gcroot>`, as well as garbage collector implementations that
8975require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008976Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008977these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008978details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008979
Philip Reamesf80bbff2015-02-25 23:45:20 +00008980Experimental Statepoint Intrinsics
8981^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8982
8983LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008984collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008985to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008986:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008987differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008988<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008989described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008990
8991.. _int_gcroot:
8992
8993'``llvm.gcroot``' Intrinsic
8994^^^^^^^^^^^^^^^^^^^^^^^^^^^
8995
8996Syntax:
8997"""""""
8998
8999::
9000
9001 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9002
9003Overview:
9004"""""""""
9005
9006The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9007the code generator, and allows some metadata to be associated with it.
9008
9009Arguments:
9010""""""""""
9011
9012The first argument specifies the address of a stack object that contains
9013the root pointer. The second pointer (which must be either a constant or
9014a global value address) contains the meta-data to be associated with the
9015root.
9016
9017Semantics:
9018""""""""""
9019
9020At runtime, a call to this intrinsic stores a null pointer into the
9021"ptrloc" location. At compile-time, the code generator generates
9022information to allow the runtime to find the pointer at GC safe points.
9023The '``llvm.gcroot``' intrinsic may only be used in a function which
9024:ref:`specifies a GC algorithm <gc>`.
9025
9026.. _int_gcread:
9027
9028'``llvm.gcread``' Intrinsic
9029^^^^^^^^^^^^^^^^^^^^^^^^^^^
9030
9031Syntax:
9032"""""""
9033
9034::
9035
9036 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9037
9038Overview:
9039"""""""""
9040
9041The '``llvm.gcread``' intrinsic identifies reads of references from heap
9042locations, allowing garbage collector implementations that require read
9043barriers.
9044
9045Arguments:
9046""""""""""
9047
9048The second argument is the address to read from, which should be an
9049address allocated from the garbage collector. The first object is a
9050pointer to the start of the referenced object, if needed by the language
9051runtime (otherwise null).
9052
9053Semantics:
9054""""""""""
9055
9056The '``llvm.gcread``' intrinsic has the same semantics as a load
9057instruction, but may be replaced with substantially more complex code by
9058the garbage collector runtime, as needed. The '``llvm.gcread``'
9059intrinsic may only be used in a function which :ref:`specifies a GC
9060algorithm <gc>`.
9061
9062.. _int_gcwrite:
9063
9064'``llvm.gcwrite``' Intrinsic
9065^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9066
9067Syntax:
9068"""""""
9069
9070::
9071
9072 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9073
9074Overview:
9075"""""""""
9076
9077The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9078locations, allowing garbage collector implementations that require write
9079barriers (such as generational or reference counting collectors).
9080
9081Arguments:
9082""""""""""
9083
9084The first argument is the reference to store, the second is the start of
9085the object to store it to, and the third is the address of the field of
9086Obj to store to. If the runtime does not require a pointer to the
9087object, Obj may be null.
9088
9089Semantics:
9090""""""""""
9091
9092The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9093instruction, but may be replaced with substantially more complex code by
9094the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9095intrinsic may only be used in a function which :ref:`specifies a GC
9096algorithm <gc>`.
9097
9098Code Generator Intrinsics
9099-------------------------
9100
9101These intrinsics are provided by LLVM to expose special features that
9102may only be implemented with code generator support.
9103
9104'``llvm.returnaddress``' Intrinsic
9105^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9106
9107Syntax:
9108"""""""
9109
9110::
9111
9112 declare i8 *@llvm.returnaddress(i32 <level>)
9113
9114Overview:
9115"""""""""
9116
9117The '``llvm.returnaddress``' intrinsic attempts to compute a
9118target-specific value indicating the return address of the current
9119function or one of its callers.
9120
9121Arguments:
9122""""""""""
9123
9124The argument to this intrinsic indicates which function to return the
9125address for. Zero indicates the calling function, one indicates its
9126caller, etc. The argument is **required** to be a constant integer
9127value.
9128
9129Semantics:
9130""""""""""
9131
9132The '``llvm.returnaddress``' intrinsic either returns a pointer
9133indicating the return address of the specified call frame, or zero if it
9134cannot be identified. The value returned by this intrinsic is likely to
9135be incorrect or 0 for arguments other than zero, so it should only be
9136used for debugging purposes.
9137
9138Note that calling this intrinsic does not prevent function inlining or
9139other aggressive transformations, so the value returned may not be that
9140of the obvious source-language caller.
9141
9142'``llvm.frameaddress``' Intrinsic
9143^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9144
9145Syntax:
9146"""""""
9147
9148::
9149
9150 declare i8* @llvm.frameaddress(i32 <level>)
9151
9152Overview:
9153"""""""""
9154
9155The '``llvm.frameaddress``' intrinsic attempts to return the
9156target-specific frame pointer value for the specified stack frame.
9157
9158Arguments:
9159""""""""""
9160
9161The argument to this intrinsic indicates which function to return the
9162frame pointer for. Zero indicates the calling function, one indicates
9163its caller, etc. The argument is **required** to be a constant integer
9164value.
9165
9166Semantics:
9167""""""""""
9168
9169The '``llvm.frameaddress``' intrinsic either returns a pointer
9170indicating the frame address of the specified call frame, or zero if it
9171cannot be identified. The value returned by this intrinsic is likely to
9172be incorrect or 0 for arguments other than zero, so it should only be
9173used for debugging purposes.
9174
9175Note that calling this intrinsic does not prevent function inlining or
9176other aggressive transformations, so the value returned may not be that
9177of the obvious source-language caller.
9178
Reid Kleckner60381792015-07-07 22:25:32 +00009179'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009180^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9181
9182Syntax:
9183"""""""
9184
9185::
9186
Reid Kleckner60381792015-07-07 22:25:32 +00009187 declare void @llvm.localescape(...)
9188 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009189
9190Overview:
9191"""""""""
9192
Reid Kleckner60381792015-07-07 22:25:32 +00009193The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9194allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009195live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009196computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009197
9198Arguments:
9199""""""""""
9200
Reid Kleckner60381792015-07-07 22:25:32 +00009201All arguments to '``llvm.localescape``' must be pointers to static allocas or
9202casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009203once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009204
Reid Kleckner60381792015-07-07 22:25:32 +00009205The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009206bitcasted pointer to a function defined in the current module. The code
9207generator cannot determine the frame allocation offset of functions defined in
9208other modules.
9209
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009210The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9211call frame that is currently live. The return value of '``llvm.localaddress``'
9212is one way to produce such a value, but various runtimes also expose a suitable
9213pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009214
Reid Kleckner60381792015-07-07 22:25:32 +00009215The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9216'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009217
Reid Klecknere9b89312015-01-13 00:48:10 +00009218Semantics:
9219""""""""""
9220
Reid Kleckner60381792015-07-07 22:25:32 +00009221These intrinsics allow a group of functions to share access to a set of local
9222stack allocations of a one parent function. The parent function may call the
9223'``llvm.localescape``' intrinsic once from the function entry block, and the
9224child functions can use '``llvm.localrecover``' to access the escaped allocas.
9225The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9226the escaped allocas are allocated, which would break attempts to use
9227'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009228
Renato Golinc7aea402014-05-06 16:51:25 +00009229.. _int_read_register:
9230.. _int_write_register:
9231
9232'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9234
9235Syntax:
9236"""""""
9237
9238::
9239
9240 declare i32 @llvm.read_register.i32(metadata)
9241 declare i64 @llvm.read_register.i64(metadata)
9242 declare void @llvm.write_register.i32(metadata, i32 @value)
9243 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009244 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009245
9246Overview:
9247"""""""""
9248
9249The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9250provides access to the named register. The register must be valid on
9251the architecture being compiled to. The type needs to be compatible
9252with the register being read.
9253
9254Semantics:
9255""""""""""
9256
9257The '``llvm.read_register``' intrinsic returns the current value of the
9258register, where possible. The '``llvm.write_register``' intrinsic sets
9259the current value of the register, where possible.
9260
9261This is useful to implement named register global variables that need
9262to always be mapped to a specific register, as is common practice on
9263bare-metal programs including OS kernels.
9264
9265The compiler doesn't check for register availability or use of the used
9266register in surrounding code, including inline assembly. Because of that,
9267allocatable registers are not supported.
9268
9269Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009270architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009271work is needed to support other registers and even more so, allocatable
9272registers.
9273
Sean Silvab084af42012-12-07 10:36:55 +00009274.. _int_stacksave:
9275
9276'``llvm.stacksave``' Intrinsic
9277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9278
9279Syntax:
9280"""""""
9281
9282::
9283
9284 declare i8* @llvm.stacksave()
9285
9286Overview:
9287"""""""""
9288
9289The '``llvm.stacksave``' intrinsic is used to remember the current state
9290of the function stack, for use with
9291:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9292implementing language features like scoped automatic variable sized
9293arrays in C99.
9294
9295Semantics:
9296""""""""""
9297
9298This intrinsic returns a opaque pointer value that can be passed to
9299:ref:`llvm.stackrestore <int_stackrestore>`. When an
9300``llvm.stackrestore`` intrinsic is executed with a value saved from
9301``llvm.stacksave``, it effectively restores the state of the stack to
9302the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9303practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9304were allocated after the ``llvm.stacksave`` was executed.
9305
9306.. _int_stackrestore:
9307
9308'``llvm.stackrestore``' Intrinsic
9309^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9310
9311Syntax:
9312"""""""
9313
9314::
9315
9316 declare void @llvm.stackrestore(i8* %ptr)
9317
9318Overview:
9319"""""""""
9320
9321The '``llvm.stackrestore``' intrinsic is used to restore the state of
9322the function stack to the state it was in when the corresponding
9323:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9324useful for implementing language features like scoped automatic variable
9325sized arrays in C99.
9326
9327Semantics:
9328""""""""""
9329
9330See the description for :ref:`llvm.stacksave <int_stacksave>`.
9331
Yury Gribovd7dbb662015-12-01 11:40:55 +00009332.. _int_get_dynamic_area_offset:
9333
9334'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009335^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009336
9337Syntax:
9338"""""""
9339
9340::
9341
9342 declare i32 @llvm.get.dynamic.area.offset.i32()
9343 declare i64 @llvm.get.dynamic.area.offset.i64()
9344
9345 Overview:
9346 """""""""
9347
9348 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9349 get the offset from native stack pointer to the address of the most
9350 recent dynamic alloca on the caller's stack. These intrinsics are
9351 intendend for use in combination with
9352 :ref:`llvm.stacksave <int_stacksave>` to get a
9353 pointer to the most recent dynamic alloca. This is useful, for example,
9354 for AddressSanitizer's stack unpoisoning routines.
9355
9356Semantics:
9357""""""""""
9358
9359 These intrinsics return a non-negative integer value that can be used to
9360 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9361 on the caller's stack. In particular, for targets where stack grows downwards,
9362 adding this offset to the native stack pointer would get the address of the most
9363 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9364 complicated, because substracting this value from stack pointer would get the address
9365 one past the end of the most recent dynamic alloca.
9366
9367 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9368 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9369 compile-time-known constant value.
9370
9371 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9372 must match the target's generic address space's (address space 0) pointer type.
9373
Sean Silvab084af42012-12-07 10:36:55 +00009374'``llvm.prefetch``' Intrinsic
9375^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9376
9377Syntax:
9378"""""""
9379
9380::
9381
9382 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9383
9384Overview:
9385"""""""""
9386
9387The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9388insert a prefetch instruction if supported; otherwise, it is a noop.
9389Prefetches have no effect on the behavior of the program but can change
9390its performance characteristics.
9391
9392Arguments:
9393""""""""""
9394
9395``address`` is the address to be prefetched, ``rw`` is the specifier
9396determining if the fetch should be for a read (0) or write (1), and
9397``locality`` is a temporal locality specifier ranging from (0) - no
9398locality, to (3) - extremely local keep in cache. The ``cache type``
9399specifies whether the prefetch is performed on the data (1) or
9400instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9401arguments must be constant integers.
9402
9403Semantics:
9404""""""""""
9405
9406This intrinsic does not modify the behavior of the program. In
9407particular, prefetches cannot trap and do not produce a value. On
9408targets that support this intrinsic, the prefetch can provide hints to
9409the processor cache for better performance.
9410
9411'``llvm.pcmarker``' Intrinsic
9412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9413
9414Syntax:
9415"""""""
9416
9417::
9418
9419 declare void @llvm.pcmarker(i32 <id>)
9420
9421Overview:
9422"""""""""
9423
9424The '``llvm.pcmarker``' intrinsic is a method to export a Program
9425Counter (PC) in a region of code to simulators and other tools. The
9426method is target specific, but it is expected that the marker will use
9427exported symbols to transmit the PC of the marker. The marker makes no
9428guarantees that it will remain with any specific instruction after
9429optimizations. It is possible that the presence of a marker will inhibit
9430optimizations. The intended use is to be inserted after optimizations to
9431allow correlations of simulation runs.
9432
9433Arguments:
9434""""""""""
9435
9436``id`` is a numerical id identifying the marker.
9437
9438Semantics:
9439""""""""""
9440
9441This intrinsic does not modify the behavior of the program. Backends
9442that do not support this intrinsic may ignore it.
9443
9444'``llvm.readcyclecounter``' Intrinsic
9445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9446
9447Syntax:
9448"""""""
9449
9450::
9451
9452 declare i64 @llvm.readcyclecounter()
9453
9454Overview:
9455"""""""""
9456
9457The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9458counter register (or similar low latency, high accuracy clocks) on those
9459targets that support it. On X86, it should map to RDTSC. On Alpha, it
9460should map to RPCC. As the backing counters overflow quickly (on the
9461order of 9 seconds on alpha), this should only be used for small
9462timings.
9463
9464Semantics:
9465""""""""""
9466
9467When directly supported, reading the cycle counter should not modify any
9468memory. Implementations are allowed to either return a application
9469specific value or a system wide value. On backends without support, this
9470is lowered to a constant 0.
9471
Tim Northoverbc933082013-05-23 19:11:20 +00009472Note that runtime support may be conditional on the privilege-level code is
9473running at and the host platform.
9474
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009475'``llvm.clear_cache``' Intrinsic
9476^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9477
9478Syntax:
9479"""""""
9480
9481::
9482
9483 declare void @llvm.clear_cache(i8*, i8*)
9484
9485Overview:
9486"""""""""
9487
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009488The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9489in the specified range to the execution unit of the processor. On
9490targets with non-unified instruction and data cache, the implementation
9491flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009492
9493Semantics:
9494""""""""""
9495
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009496On platforms with coherent instruction and data caches (e.g. x86), this
9497intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009498cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009499instructions or a system call, if cache flushing requires special
9500privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009501
Sean Silvad02bf3e2014-04-07 22:29:53 +00009502The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009503time library.
Renato Golin93010e62014-03-26 14:01:32 +00009504
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009505This instrinsic does *not* empty the instruction pipeline. Modifications
9506of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009507
Justin Bogner61ba2e32014-12-08 18:02:35 +00009508'``llvm.instrprof_increment``' Intrinsic
9509^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9510
9511Syntax:
9512"""""""
9513
9514::
9515
9516 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9517 i32 <num-counters>, i32 <index>)
9518
9519Overview:
9520"""""""""
9521
9522The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9523frontend for use with instrumentation based profiling. These will be
9524lowered by the ``-instrprof`` pass to generate execution counts of a
9525program at runtime.
9526
9527Arguments:
9528""""""""""
9529
9530The first argument is a pointer to a global variable containing the
9531name of the entity being instrumented. This should generally be the
9532(mangled) function name for a set of counters.
9533
9534The second argument is a hash value that can be used by the consumer
9535of the profile data to detect changes to the instrumented source, and
9536the third is the number of counters associated with ``name``. It is an
9537error if ``hash`` or ``num-counters`` differ between two instances of
9538``instrprof_increment`` that refer to the same name.
9539
9540The last argument refers to which of the counters for ``name`` should
9541be incremented. It should be a value between 0 and ``num-counters``.
9542
9543Semantics:
9544""""""""""
9545
9546This intrinsic represents an increment of a profiling counter. It will
9547cause the ``-instrprof`` pass to generate the appropriate data
9548structures and the code to increment the appropriate value, in a
9549format that can be written out by a compiler runtime and consumed via
9550the ``llvm-profdata`` tool.
9551
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009552'``llvm.instrprof_value_profile``' Intrinsic
9553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9554
9555Syntax:
9556"""""""
9557
9558::
9559
9560 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9561 i64 <value>, i32 <value_kind>,
9562 i32 <index>)
9563
9564Overview:
9565"""""""""
9566
9567The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9568frontend for use with instrumentation based profiling. This will be
9569lowered by the ``-instrprof`` pass to find out the target values,
9570instrumented expressions take in a program at runtime.
9571
9572Arguments:
9573""""""""""
9574
9575The first argument is a pointer to a global variable containing the
9576name of the entity being instrumented. ``name`` should generally be the
9577(mangled) function name for a set of counters.
9578
9579The second argument is a hash value that can be used by the consumer
9580of the profile data to detect changes to the instrumented source. It
9581is an error if ``hash`` differs between two instances of
9582``llvm.instrprof_*`` that refer to the same name.
9583
9584The third argument is the value of the expression being profiled. The profiled
9585expression's value should be representable as an unsigned 64-bit value. The
9586fourth argument represents the kind of value profiling that is being done. The
9587supported value profiling kinds are enumerated through the
9588``InstrProfValueKind`` type declared in the
9589``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9590index of the instrumented expression within ``name``. It should be >= 0.
9591
9592Semantics:
9593""""""""""
9594
9595This intrinsic represents the point where a call to a runtime routine
9596should be inserted for value profiling of target expressions. ``-instrprof``
9597pass will generate the appropriate data structures and replace the
9598``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9599runtime library with proper arguments.
9600
Sean Silvab084af42012-12-07 10:36:55 +00009601Standard C Library Intrinsics
9602-----------------------------
9603
9604LLVM provides intrinsics for a few important standard C library
9605functions. These intrinsics allow source-language front-ends to pass
9606information about the alignment of the pointer arguments to the code
9607generator, providing opportunity for more efficient code generation.
9608
9609.. _int_memcpy:
9610
9611'``llvm.memcpy``' Intrinsic
9612^^^^^^^^^^^^^^^^^^^^^^^^^^^
9613
9614Syntax:
9615"""""""
9616
9617This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9618integer bit width and for different address spaces. Not all targets
9619support all bit widths however.
9620
9621::
9622
9623 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9624 i32 <len>, i32 <align>, i1 <isvolatile>)
9625 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9626 i64 <len>, i32 <align>, i1 <isvolatile>)
9627
9628Overview:
9629"""""""""
9630
9631The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9632source location to the destination location.
9633
9634Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9635intrinsics do not return a value, takes extra alignment/isvolatile
9636arguments and the pointers can be in specified address spaces.
9637
9638Arguments:
9639""""""""""
9640
9641The first argument is a pointer to the destination, the second is a
9642pointer to the source. The third argument is an integer argument
9643specifying the number of bytes to copy, the fourth argument is the
9644alignment of the source and destination locations, and the fifth is a
9645boolean indicating a volatile access.
9646
9647If the call to this intrinsic has an alignment value that is not 0 or 1,
9648then the caller guarantees that both the source and destination pointers
9649are aligned to that boundary.
9650
9651If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9652a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9653very cleanly specified and it is unwise to depend on it.
9654
9655Semantics:
9656""""""""""
9657
9658The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9659source location to the destination location, which are not allowed to
9660overlap. It copies "len" bytes of memory over. If the argument is known
9661to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009662argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009663
9664'``llvm.memmove``' Intrinsic
9665^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9666
9667Syntax:
9668"""""""
9669
9670This is an overloaded intrinsic. You can use llvm.memmove on any integer
9671bit width and for different address space. Not all targets support all
9672bit widths however.
9673
9674::
9675
9676 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9677 i32 <len>, i32 <align>, i1 <isvolatile>)
9678 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9679 i64 <len>, i32 <align>, i1 <isvolatile>)
9680
9681Overview:
9682"""""""""
9683
9684The '``llvm.memmove.*``' intrinsics move a block of memory from the
9685source location to the destination location. It is similar to the
9686'``llvm.memcpy``' intrinsic but allows the two memory locations to
9687overlap.
9688
9689Note that, unlike the standard libc function, the ``llvm.memmove.*``
9690intrinsics do not return a value, takes extra alignment/isvolatile
9691arguments and the pointers can be in specified address spaces.
9692
9693Arguments:
9694""""""""""
9695
9696The first argument is a pointer to the destination, the second is a
9697pointer to the source. The third argument is an integer argument
9698specifying the number of bytes to copy, the fourth argument is the
9699alignment of the source and destination locations, and the fifth is a
9700boolean indicating a volatile access.
9701
9702If the call to this intrinsic has an alignment value that is not 0 or 1,
9703then the caller guarantees that the source and destination pointers are
9704aligned to that boundary.
9705
9706If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9707is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9708not very cleanly specified and it is unwise to depend on it.
9709
9710Semantics:
9711""""""""""
9712
9713The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9714source location to the destination location, which may overlap. It
9715copies "len" bytes of memory over. If the argument is known to be
9716aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009717otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009718
9719'``llvm.memset.*``' Intrinsics
9720^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9721
9722Syntax:
9723"""""""
9724
9725This is an overloaded intrinsic. You can use llvm.memset on any integer
9726bit width and for different address spaces. However, not all targets
9727support all bit widths.
9728
9729::
9730
9731 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9732 i32 <len>, i32 <align>, i1 <isvolatile>)
9733 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9734 i64 <len>, i32 <align>, i1 <isvolatile>)
9735
9736Overview:
9737"""""""""
9738
9739The '``llvm.memset.*``' intrinsics fill a block of memory with a
9740particular byte value.
9741
9742Note that, unlike the standard libc function, the ``llvm.memset``
9743intrinsic does not return a value and takes extra alignment/volatile
9744arguments. Also, the destination can be in an arbitrary address space.
9745
9746Arguments:
9747""""""""""
9748
9749The first argument is a pointer to the destination to fill, the second
9750is the byte value with which to fill it, the third argument is an
9751integer argument specifying the number of bytes to fill, and the fourth
9752argument is the known alignment of the destination location.
9753
9754If the call to this intrinsic has an alignment value that is not 0 or 1,
9755then the caller guarantees that the destination pointer is aligned to
9756that boundary.
9757
9758If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9759a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9760very cleanly specified and it is unwise to depend on it.
9761
9762Semantics:
9763""""""""""
9764
9765The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9766at the destination location. If the argument is known to be aligned to
9767some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009768it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009769
9770'``llvm.sqrt.*``' Intrinsic
9771^^^^^^^^^^^^^^^^^^^^^^^^^^^
9772
9773Syntax:
9774"""""""
9775
9776This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9777floating point or vector of floating point type. Not all targets support
9778all types however.
9779
9780::
9781
9782 declare float @llvm.sqrt.f32(float %Val)
9783 declare double @llvm.sqrt.f64(double %Val)
9784 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9785 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9786 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9787
9788Overview:
9789"""""""""
9790
9791The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9792returning the same value as the libm '``sqrt``' functions would. Unlike
9793``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9794negative numbers other than -0.0 (which allows for better optimization,
9795because there is no need to worry about errno being set).
9796``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9797
9798Arguments:
9799""""""""""
9800
9801The argument and return value are floating point numbers of the same
9802type.
9803
9804Semantics:
9805""""""""""
9806
9807This function returns the sqrt of the specified operand if it is a
9808nonnegative floating point number.
9809
9810'``llvm.powi.*``' Intrinsic
9811^^^^^^^^^^^^^^^^^^^^^^^^^^^
9812
9813Syntax:
9814"""""""
9815
9816This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9817floating point or vector of floating point type. Not all targets support
9818all types however.
9819
9820::
9821
9822 declare float @llvm.powi.f32(float %Val, i32 %power)
9823 declare double @llvm.powi.f64(double %Val, i32 %power)
9824 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9825 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9826 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9827
9828Overview:
9829"""""""""
9830
9831The '``llvm.powi.*``' intrinsics return the first operand raised to the
9832specified (positive or negative) power. The order of evaluation of
9833multiplications is not defined. When a vector of floating point type is
9834used, the second argument remains a scalar integer value.
9835
9836Arguments:
9837""""""""""
9838
9839The second argument is an integer power, and the first is a value to
9840raise to that power.
9841
9842Semantics:
9843""""""""""
9844
9845This function returns the first value raised to the second power with an
9846unspecified sequence of rounding operations.
9847
9848'``llvm.sin.*``' Intrinsic
9849^^^^^^^^^^^^^^^^^^^^^^^^^^
9850
9851Syntax:
9852"""""""
9853
9854This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9855floating point or vector of floating point type. Not all targets support
9856all types however.
9857
9858::
9859
9860 declare float @llvm.sin.f32(float %Val)
9861 declare double @llvm.sin.f64(double %Val)
9862 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9863 declare fp128 @llvm.sin.f128(fp128 %Val)
9864 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9865
9866Overview:
9867"""""""""
9868
9869The '``llvm.sin.*``' intrinsics return the sine of the operand.
9870
9871Arguments:
9872""""""""""
9873
9874The argument and return value are floating point numbers of the same
9875type.
9876
9877Semantics:
9878""""""""""
9879
9880This function returns the sine of the specified operand, returning the
9881same values as the libm ``sin`` functions would, and handles error
9882conditions in the same way.
9883
9884'``llvm.cos.*``' Intrinsic
9885^^^^^^^^^^^^^^^^^^^^^^^^^^
9886
9887Syntax:
9888"""""""
9889
9890This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9891floating point or vector of floating point type. Not all targets support
9892all types however.
9893
9894::
9895
9896 declare float @llvm.cos.f32(float %Val)
9897 declare double @llvm.cos.f64(double %Val)
9898 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9899 declare fp128 @llvm.cos.f128(fp128 %Val)
9900 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9901
9902Overview:
9903"""""""""
9904
9905The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9906
9907Arguments:
9908""""""""""
9909
9910The argument and return value are floating point numbers of the same
9911type.
9912
9913Semantics:
9914""""""""""
9915
9916This function returns the cosine of the specified operand, returning the
9917same values as the libm ``cos`` functions would, and handles error
9918conditions in the same way.
9919
9920'``llvm.pow.*``' Intrinsic
9921^^^^^^^^^^^^^^^^^^^^^^^^^^
9922
9923Syntax:
9924"""""""
9925
9926This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9927floating point or vector of floating point type. Not all targets support
9928all types however.
9929
9930::
9931
9932 declare float @llvm.pow.f32(float %Val, float %Power)
9933 declare double @llvm.pow.f64(double %Val, double %Power)
9934 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9935 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9936 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9937
9938Overview:
9939"""""""""
9940
9941The '``llvm.pow.*``' intrinsics return the first operand raised to the
9942specified (positive or negative) power.
9943
9944Arguments:
9945""""""""""
9946
9947The second argument is a floating point power, and the first is a value
9948to raise to that power.
9949
9950Semantics:
9951""""""""""
9952
9953This function returns the first value raised to the second power,
9954returning the same values as the libm ``pow`` functions would, and
9955handles error conditions in the same way.
9956
9957'``llvm.exp.*``' Intrinsic
9958^^^^^^^^^^^^^^^^^^^^^^^^^^
9959
9960Syntax:
9961"""""""
9962
9963This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9964floating point or vector of floating point type. Not all targets support
9965all types however.
9966
9967::
9968
9969 declare float @llvm.exp.f32(float %Val)
9970 declare double @llvm.exp.f64(double %Val)
9971 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9972 declare fp128 @llvm.exp.f128(fp128 %Val)
9973 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9974
9975Overview:
9976"""""""""
9977
9978The '``llvm.exp.*``' intrinsics perform the exp function.
9979
9980Arguments:
9981""""""""""
9982
9983The argument and return value are floating point numbers of the same
9984type.
9985
9986Semantics:
9987""""""""""
9988
9989This function returns the same values as the libm ``exp`` functions
9990would, and handles error conditions in the same way.
9991
9992'``llvm.exp2.*``' Intrinsic
9993^^^^^^^^^^^^^^^^^^^^^^^^^^^
9994
9995Syntax:
9996"""""""
9997
9998This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9999floating point or vector of floating point type. Not all targets support
10000all types however.
10001
10002::
10003
10004 declare float @llvm.exp2.f32(float %Val)
10005 declare double @llvm.exp2.f64(double %Val)
10006 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10007 declare fp128 @llvm.exp2.f128(fp128 %Val)
10008 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10009
10010Overview:
10011"""""""""
10012
10013The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10014
10015Arguments:
10016""""""""""
10017
10018The argument and return value are floating point numbers of the same
10019type.
10020
10021Semantics:
10022""""""""""
10023
10024This function returns the same values as the libm ``exp2`` functions
10025would, and handles error conditions in the same way.
10026
10027'``llvm.log.*``' Intrinsic
10028^^^^^^^^^^^^^^^^^^^^^^^^^^
10029
10030Syntax:
10031"""""""
10032
10033This is an overloaded intrinsic. You can use ``llvm.log`` on any
10034floating point or vector of floating point type. Not all targets support
10035all types however.
10036
10037::
10038
10039 declare float @llvm.log.f32(float %Val)
10040 declare double @llvm.log.f64(double %Val)
10041 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10042 declare fp128 @llvm.log.f128(fp128 %Val)
10043 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10044
10045Overview:
10046"""""""""
10047
10048The '``llvm.log.*``' intrinsics perform the log function.
10049
10050Arguments:
10051""""""""""
10052
10053The argument and return value are floating point numbers of the same
10054type.
10055
10056Semantics:
10057""""""""""
10058
10059This function returns the same values as the libm ``log`` functions
10060would, and handles error conditions in the same way.
10061
10062'``llvm.log10.*``' Intrinsic
10063^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10064
10065Syntax:
10066"""""""
10067
10068This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10069floating point or vector of floating point type. Not all targets support
10070all types however.
10071
10072::
10073
10074 declare float @llvm.log10.f32(float %Val)
10075 declare double @llvm.log10.f64(double %Val)
10076 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10077 declare fp128 @llvm.log10.f128(fp128 %Val)
10078 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10079
10080Overview:
10081"""""""""
10082
10083The '``llvm.log10.*``' intrinsics perform the log10 function.
10084
10085Arguments:
10086""""""""""
10087
10088The argument and return value are floating point numbers of the same
10089type.
10090
10091Semantics:
10092""""""""""
10093
10094This function returns the same values as the libm ``log10`` functions
10095would, and handles error conditions in the same way.
10096
10097'``llvm.log2.*``' Intrinsic
10098^^^^^^^^^^^^^^^^^^^^^^^^^^^
10099
10100Syntax:
10101"""""""
10102
10103This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10104floating point or vector of floating point type. Not all targets support
10105all types however.
10106
10107::
10108
10109 declare float @llvm.log2.f32(float %Val)
10110 declare double @llvm.log2.f64(double %Val)
10111 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10112 declare fp128 @llvm.log2.f128(fp128 %Val)
10113 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10114
10115Overview:
10116"""""""""
10117
10118The '``llvm.log2.*``' intrinsics perform the log2 function.
10119
10120Arguments:
10121""""""""""
10122
10123The argument and return value are floating point numbers of the same
10124type.
10125
10126Semantics:
10127""""""""""
10128
10129This function returns the same values as the libm ``log2`` functions
10130would, and handles error conditions in the same way.
10131
10132'``llvm.fma.*``' Intrinsic
10133^^^^^^^^^^^^^^^^^^^^^^^^^^
10134
10135Syntax:
10136"""""""
10137
10138This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10139floating point or vector of floating point type. Not all targets support
10140all types however.
10141
10142::
10143
10144 declare float @llvm.fma.f32(float %a, float %b, float %c)
10145 declare double @llvm.fma.f64(double %a, double %b, double %c)
10146 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10147 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10148 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10149
10150Overview:
10151"""""""""
10152
10153The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10154operation.
10155
10156Arguments:
10157""""""""""
10158
10159The argument and return value are floating point numbers of the same
10160type.
10161
10162Semantics:
10163""""""""""
10164
10165This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010166would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010167
10168'``llvm.fabs.*``' Intrinsic
10169^^^^^^^^^^^^^^^^^^^^^^^^^^^
10170
10171Syntax:
10172"""""""
10173
10174This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10175floating point or vector of floating point type. Not all targets support
10176all types however.
10177
10178::
10179
10180 declare float @llvm.fabs.f32(float %Val)
10181 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010182 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010183 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010184 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010185
10186Overview:
10187"""""""""
10188
10189The '``llvm.fabs.*``' intrinsics return the absolute value of the
10190operand.
10191
10192Arguments:
10193""""""""""
10194
10195The argument and return value are floating point numbers of the same
10196type.
10197
10198Semantics:
10199""""""""""
10200
10201This function returns the same values as the libm ``fabs`` functions
10202would, and handles error conditions in the same way.
10203
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010204'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010206
10207Syntax:
10208"""""""
10209
10210This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10211floating point or vector of floating point type. Not all targets support
10212all types however.
10213
10214::
10215
Matt Arsenault64313c92014-10-22 18:25:02 +000010216 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10217 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10218 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10219 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10220 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010221
10222Overview:
10223"""""""""
10224
10225The '``llvm.minnum.*``' intrinsics return the minimum of the two
10226arguments.
10227
10228
10229Arguments:
10230""""""""""
10231
10232The arguments and return value are floating point numbers of the same
10233type.
10234
10235Semantics:
10236""""""""""
10237
10238Follows the IEEE-754 semantics for minNum, which also match for libm's
10239fmin.
10240
10241If either operand is a NaN, returns the other non-NaN operand. Returns
10242NaN only if both operands are NaN. If the operands compare equal,
10243returns a value that compares equal to both operands. This means that
10244fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10245
10246'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010247^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010248
10249Syntax:
10250"""""""
10251
10252This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10253floating point or vector of floating point type. Not all targets support
10254all types however.
10255
10256::
10257
Matt Arsenault64313c92014-10-22 18:25:02 +000010258 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10259 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10260 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10261 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10262 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010263
10264Overview:
10265"""""""""
10266
10267The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10268arguments.
10269
10270
10271Arguments:
10272""""""""""
10273
10274The arguments and return value are floating point numbers of the same
10275type.
10276
10277Semantics:
10278""""""""""
10279Follows the IEEE-754 semantics for maxNum, which also match for libm's
10280fmax.
10281
10282If either operand is a NaN, returns the other non-NaN operand. Returns
10283NaN only if both operands are NaN. If the operands compare equal,
10284returns a value that compares equal to both operands. This means that
10285fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10286
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010287'``llvm.copysign.*``' Intrinsic
10288^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10289
10290Syntax:
10291"""""""
10292
10293This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10294floating point or vector of floating point type. Not all targets support
10295all types however.
10296
10297::
10298
10299 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10300 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10301 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10302 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10303 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10304
10305Overview:
10306"""""""""
10307
10308The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10309first operand and the sign of the second operand.
10310
10311Arguments:
10312""""""""""
10313
10314The arguments and return value are floating point numbers of the same
10315type.
10316
10317Semantics:
10318""""""""""
10319
10320This function returns the same values as the libm ``copysign``
10321functions would, and handles error conditions in the same way.
10322
Sean Silvab084af42012-12-07 10:36:55 +000010323'``llvm.floor.*``' Intrinsic
10324^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10325
10326Syntax:
10327"""""""
10328
10329This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10330floating point or vector of floating point type. Not all targets support
10331all types however.
10332
10333::
10334
10335 declare float @llvm.floor.f32(float %Val)
10336 declare double @llvm.floor.f64(double %Val)
10337 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10338 declare fp128 @llvm.floor.f128(fp128 %Val)
10339 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10340
10341Overview:
10342"""""""""
10343
10344The '``llvm.floor.*``' intrinsics return the floor of the operand.
10345
10346Arguments:
10347""""""""""
10348
10349The argument and return value are floating point numbers of the same
10350type.
10351
10352Semantics:
10353""""""""""
10354
10355This function returns the same values as the libm ``floor`` functions
10356would, and handles error conditions in the same way.
10357
10358'``llvm.ceil.*``' Intrinsic
10359^^^^^^^^^^^^^^^^^^^^^^^^^^^
10360
10361Syntax:
10362"""""""
10363
10364This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10365floating point or vector of floating point type. Not all targets support
10366all types however.
10367
10368::
10369
10370 declare float @llvm.ceil.f32(float %Val)
10371 declare double @llvm.ceil.f64(double %Val)
10372 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10373 declare fp128 @llvm.ceil.f128(fp128 %Val)
10374 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10375
10376Overview:
10377"""""""""
10378
10379The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10380
10381Arguments:
10382""""""""""
10383
10384The argument and return value are floating point numbers of the same
10385type.
10386
10387Semantics:
10388""""""""""
10389
10390This function returns the same values as the libm ``ceil`` functions
10391would, and handles error conditions in the same way.
10392
10393'``llvm.trunc.*``' Intrinsic
10394^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10395
10396Syntax:
10397"""""""
10398
10399This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10400floating point or vector of floating point type. Not all targets support
10401all types however.
10402
10403::
10404
10405 declare float @llvm.trunc.f32(float %Val)
10406 declare double @llvm.trunc.f64(double %Val)
10407 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10408 declare fp128 @llvm.trunc.f128(fp128 %Val)
10409 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10410
10411Overview:
10412"""""""""
10413
10414The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10415nearest integer not larger in magnitude than the operand.
10416
10417Arguments:
10418""""""""""
10419
10420The argument and return value are floating point numbers of the same
10421type.
10422
10423Semantics:
10424""""""""""
10425
10426This function returns the same values as the libm ``trunc`` functions
10427would, and handles error conditions in the same way.
10428
10429'``llvm.rint.*``' Intrinsic
10430^^^^^^^^^^^^^^^^^^^^^^^^^^^
10431
10432Syntax:
10433"""""""
10434
10435This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10436floating point or vector of floating point type. Not all targets support
10437all types however.
10438
10439::
10440
10441 declare float @llvm.rint.f32(float %Val)
10442 declare double @llvm.rint.f64(double %Val)
10443 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10444 declare fp128 @llvm.rint.f128(fp128 %Val)
10445 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10446
10447Overview:
10448"""""""""
10449
10450The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10451nearest integer. It may raise an inexact floating-point exception if the
10452operand isn't an integer.
10453
10454Arguments:
10455""""""""""
10456
10457The argument and return value are floating point numbers of the same
10458type.
10459
10460Semantics:
10461""""""""""
10462
10463This function returns the same values as the libm ``rint`` functions
10464would, and handles error conditions in the same way.
10465
10466'``llvm.nearbyint.*``' Intrinsic
10467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10468
10469Syntax:
10470"""""""
10471
10472This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10473floating point or vector of floating point type. Not all targets support
10474all types however.
10475
10476::
10477
10478 declare float @llvm.nearbyint.f32(float %Val)
10479 declare double @llvm.nearbyint.f64(double %Val)
10480 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10481 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10482 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10483
10484Overview:
10485"""""""""
10486
10487The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10488nearest integer.
10489
10490Arguments:
10491""""""""""
10492
10493The argument and return value are floating point numbers of the same
10494type.
10495
10496Semantics:
10497""""""""""
10498
10499This function returns the same values as the libm ``nearbyint``
10500functions would, and handles error conditions in the same way.
10501
Hal Finkel171817e2013-08-07 22:49:12 +000010502'``llvm.round.*``' Intrinsic
10503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10504
10505Syntax:
10506"""""""
10507
10508This is an overloaded intrinsic. You can use ``llvm.round`` on any
10509floating point or vector of floating point type. Not all targets support
10510all types however.
10511
10512::
10513
10514 declare float @llvm.round.f32(float %Val)
10515 declare double @llvm.round.f64(double %Val)
10516 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10517 declare fp128 @llvm.round.f128(fp128 %Val)
10518 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10519
10520Overview:
10521"""""""""
10522
10523The '``llvm.round.*``' intrinsics returns the operand rounded to the
10524nearest integer.
10525
10526Arguments:
10527""""""""""
10528
10529The argument and return value are floating point numbers of the same
10530type.
10531
10532Semantics:
10533""""""""""
10534
10535This function returns the same values as the libm ``round``
10536functions would, and handles error conditions in the same way.
10537
Sean Silvab084af42012-12-07 10:36:55 +000010538Bit Manipulation Intrinsics
10539---------------------------
10540
10541LLVM provides intrinsics for a few important bit manipulation
10542operations. These allow efficient code generation for some algorithms.
10543
James Molloy90111f72015-11-12 12:29:09 +000010544'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010546
10547Syntax:
10548"""""""
10549
10550This is an overloaded intrinsic function. You can use bitreverse on any
10551integer type.
10552
10553::
10554
10555 declare i16 @llvm.bitreverse.i16(i16 <id>)
10556 declare i32 @llvm.bitreverse.i32(i32 <id>)
10557 declare i64 @llvm.bitreverse.i64(i64 <id>)
10558
10559Overview:
10560"""""""""
10561
10562The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010563bitpattern of an integer value; for example ``0b10110110`` becomes
10564``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010565
10566Semantics:
10567""""""""""
10568
10569The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10570``M`` in the input moved to bit ``N-M`` in the output.
10571
Sean Silvab084af42012-12-07 10:36:55 +000010572'``llvm.bswap.*``' Intrinsics
10573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10574
10575Syntax:
10576"""""""
10577
10578This is an overloaded intrinsic function. You can use bswap on any
10579integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10580
10581::
10582
10583 declare i16 @llvm.bswap.i16(i16 <id>)
10584 declare i32 @llvm.bswap.i32(i32 <id>)
10585 declare i64 @llvm.bswap.i64(i64 <id>)
10586
10587Overview:
10588"""""""""
10589
10590The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10591values with an even number of bytes (positive multiple of 16 bits).
10592These are useful for performing operations on data that is not in the
10593target's native byte order.
10594
10595Semantics:
10596""""""""""
10597
10598The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10599and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10600intrinsic returns an i32 value that has the four bytes of the input i32
10601swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10602returned i32 will have its bytes in 3, 2, 1, 0 order. The
10603``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10604concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10605respectively).
10606
10607'``llvm.ctpop.*``' Intrinsic
10608^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10609
10610Syntax:
10611"""""""
10612
10613This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10614bit width, or on any vector with integer elements. Not all targets
10615support all bit widths or vector types, however.
10616
10617::
10618
10619 declare i8 @llvm.ctpop.i8(i8 <src>)
10620 declare i16 @llvm.ctpop.i16(i16 <src>)
10621 declare i32 @llvm.ctpop.i32(i32 <src>)
10622 declare i64 @llvm.ctpop.i64(i64 <src>)
10623 declare i256 @llvm.ctpop.i256(i256 <src>)
10624 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10625
10626Overview:
10627"""""""""
10628
10629The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10630in a value.
10631
10632Arguments:
10633""""""""""
10634
10635The only argument is the value to be counted. The argument may be of any
10636integer type, or a vector with integer elements. The return type must
10637match the argument type.
10638
10639Semantics:
10640""""""""""
10641
10642The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10643each element of a vector.
10644
10645'``llvm.ctlz.*``' Intrinsic
10646^^^^^^^^^^^^^^^^^^^^^^^^^^^
10647
10648Syntax:
10649"""""""
10650
10651This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10652integer bit width, or any vector whose elements are integers. Not all
10653targets support all bit widths or vector types, however.
10654
10655::
10656
10657 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10658 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10659 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10660 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10661 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010662 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010663
10664Overview:
10665"""""""""
10666
10667The '``llvm.ctlz``' family of intrinsic functions counts the number of
10668leading zeros in a variable.
10669
10670Arguments:
10671""""""""""
10672
10673The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010674any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010675type must match the first argument type.
10676
10677The second argument must be a constant and is a flag to indicate whether
10678the intrinsic should ensure that a zero as the first argument produces a
10679defined result. Historically some architectures did not provide a
10680defined result for zero values as efficiently, and many algorithms are
10681now predicated on avoiding zero-value inputs.
10682
10683Semantics:
10684""""""""""
10685
10686The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10687zeros in a variable, or within each element of the vector. If
10688``src == 0`` then the result is the size in bits of the type of ``src``
10689if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10690``llvm.ctlz(i32 2) = 30``.
10691
10692'``llvm.cttz.*``' Intrinsic
10693^^^^^^^^^^^^^^^^^^^^^^^^^^^
10694
10695Syntax:
10696"""""""
10697
10698This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10699integer bit width, or any vector of integer elements. Not all targets
10700support all bit widths or vector types, however.
10701
10702::
10703
10704 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10705 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10706 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10707 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10708 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010709 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010710
10711Overview:
10712"""""""""
10713
10714The '``llvm.cttz``' family of intrinsic functions counts the number of
10715trailing zeros.
10716
10717Arguments:
10718""""""""""
10719
10720The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010721any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010722type must match the first argument type.
10723
10724The second argument must be a constant and is a flag to indicate whether
10725the intrinsic should ensure that a zero as the first argument produces a
10726defined result. Historically some architectures did not provide a
10727defined result for zero values as efficiently, and many algorithms are
10728now predicated on avoiding zero-value inputs.
10729
10730Semantics:
10731""""""""""
10732
10733The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10734zeros in a variable, or within each element of a vector. If ``src == 0``
10735then the result is the size in bits of the type of ``src`` if
10736``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10737``llvm.cttz(2) = 1``.
10738
Philip Reames34843ae2015-03-05 05:55:55 +000010739.. _int_overflow:
10740
Sean Silvab084af42012-12-07 10:36:55 +000010741Arithmetic with Overflow Intrinsics
10742-----------------------------------
10743
10744LLVM provides intrinsics for some arithmetic with overflow operations.
10745
10746'``llvm.sadd.with.overflow.*``' Intrinsics
10747^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10748
10749Syntax:
10750"""""""
10751
10752This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10753on any integer bit width.
10754
10755::
10756
10757 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10758 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10759 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10760
10761Overview:
10762"""""""""
10763
10764The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10765a signed addition of the two arguments, and indicate whether an overflow
10766occurred during the signed summation.
10767
10768Arguments:
10769""""""""""
10770
10771The arguments (%a and %b) and the first element of the result structure
10772may be of integer types of any bit width, but they must have the same
10773bit width. The second element of the result structure must be of type
10774``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10775addition.
10776
10777Semantics:
10778""""""""""
10779
10780The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010781a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010782first element of which is the signed summation, and the second element
10783of which is a bit specifying if the signed summation resulted in an
10784overflow.
10785
10786Examples:
10787"""""""""
10788
10789.. code-block:: llvm
10790
10791 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10792 %sum = extractvalue {i32, i1} %res, 0
10793 %obit = extractvalue {i32, i1} %res, 1
10794 br i1 %obit, label %overflow, label %normal
10795
10796'``llvm.uadd.with.overflow.*``' Intrinsics
10797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10798
10799Syntax:
10800"""""""
10801
10802This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10803on any integer bit width.
10804
10805::
10806
10807 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10808 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10809 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10810
10811Overview:
10812"""""""""
10813
10814The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10815an unsigned addition of the two arguments, and indicate whether a carry
10816occurred during the unsigned summation.
10817
10818Arguments:
10819""""""""""
10820
10821The arguments (%a and %b) and the first element of the result structure
10822may be of integer types of any bit width, but they must have the same
10823bit width. The second element of the result structure must be of type
10824``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10825addition.
10826
10827Semantics:
10828""""""""""
10829
10830The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010831an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010832first element of which is the sum, and the second element of which is a
10833bit specifying if the unsigned summation resulted in a carry.
10834
10835Examples:
10836"""""""""
10837
10838.. code-block:: llvm
10839
10840 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10841 %sum = extractvalue {i32, i1} %res, 0
10842 %obit = extractvalue {i32, i1} %res, 1
10843 br i1 %obit, label %carry, label %normal
10844
10845'``llvm.ssub.with.overflow.*``' Intrinsics
10846^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10847
10848Syntax:
10849"""""""
10850
10851This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10852on any integer bit width.
10853
10854::
10855
10856 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10857 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10858 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10859
10860Overview:
10861"""""""""
10862
10863The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10864a signed subtraction of the two arguments, and indicate whether an
10865overflow occurred during the signed subtraction.
10866
10867Arguments:
10868""""""""""
10869
10870The arguments (%a and %b) and the first element of the result structure
10871may be of integer types of any bit width, but they must have the same
10872bit width. The second element of the result structure must be of type
10873``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10874subtraction.
10875
10876Semantics:
10877""""""""""
10878
10879The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010880a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010881first element of which is the subtraction, and the second element of
10882which is a bit specifying if the signed subtraction resulted in an
10883overflow.
10884
10885Examples:
10886"""""""""
10887
10888.. code-block:: llvm
10889
10890 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10891 %sum = extractvalue {i32, i1} %res, 0
10892 %obit = extractvalue {i32, i1} %res, 1
10893 br i1 %obit, label %overflow, label %normal
10894
10895'``llvm.usub.with.overflow.*``' Intrinsics
10896^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10897
10898Syntax:
10899"""""""
10900
10901This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10902on any integer bit width.
10903
10904::
10905
10906 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10907 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10908 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10909
10910Overview:
10911"""""""""
10912
10913The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10914an unsigned subtraction of the two arguments, and indicate whether an
10915overflow occurred during the unsigned subtraction.
10916
10917Arguments:
10918""""""""""
10919
10920The arguments (%a and %b) and the first element of the result structure
10921may be of integer types of any bit width, but they must have the same
10922bit width. The second element of the result structure must be of type
10923``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10924subtraction.
10925
10926Semantics:
10927""""""""""
10928
10929The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010930an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010931the first element of which is the subtraction, and the second element of
10932which is a bit specifying if the unsigned subtraction resulted in an
10933overflow.
10934
10935Examples:
10936"""""""""
10937
10938.. code-block:: llvm
10939
10940 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10941 %sum = extractvalue {i32, i1} %res, 0
10942 %obit = extractvalue {i32, i1} %res, 1
10943 br i1 %obit, label %overflow, label %normal
10944
10945'``llvm.smul.with.overflow.*``' Intrinsics
10946^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10947
10948Syntax:
10949"""""""
10950
10951This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10952on any integer bit width.
10953
10954::
10955
10956 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10957 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10958 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10959
10960Overview:
10961"""""""""
10962
10963The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10964a signed multiplication of the two arguments, and indicate whether an
10965overflow occurred during the signed multiplication.
10966
10967Arguments:
10968""""""""""
10969
10970The arguments (%a and %b) and the first element of the result structure
10971may be of integer types of any bit width, but they must have the same
10972bit width. The second element of the result structure must be of type
10973``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10974multiplication.
10975
10976Semantics:
10977""""""""""
10978
10979The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010980a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010981the first element of which is the multiplication, and the second element
10982of which is a bit specifying if the signed multiplication resulted in an
10983overflow.
10984
10985Examples:
10986"""""""""
10987
10988.. code-block:: llvm
10989
10990 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10991 %sum = extractvalue {i32, i1} %res, 0
10992 %obit = extractvalue {i32, i1} %res, 1
10993 br i1 %obit, label %overflow, label %normal
10994
10995'``llvm.umul.with.overflow.*``' Intrinsics
10996^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10997
10998Syntax:
10999"""""""
11000
11001This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11002on any integer bit width.
11003
11004::
11005
11006 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11007 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11008 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11009
11010Overview:
11011"""""""""
11012
11013The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11014a unsigned multiplication of the two arguments, and indicate whether an
11015overflow occurred during the unsigned multiplication.
11016
11017Arguments:
11018""""""""""
11019
11020The arguments (%a and %b) and the first element of the result structure
11021may be of integer types of any bit width, but they must have the same
11022bit width. The second element of the result structure must be of type
11023``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11024multiplication.
11025
11026Semantics:
11027""""""""""
11028
11029The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011030an unsigned multiplication of the two arguments. They return a structure ---
11031the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011032element of which is a bit specifying if the unsigned multiplication
11033resulted in an overflow.
11034
11035Examples:
11036"""""""""
11037
11038.. code-block:: llvm
11039
11040 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11041 %sum = extractvalue {i32, i1} %res, 0
11042 %obit = extractvalue {i32, i1} %res, 1
11043 br i1 %obit, label %overflow, label %normal
11044
11045Specialised Arithmetic Intrinsics
11046---------------------------------
11047
Owen Anderson1056a922015-07-11 07:01:27 +000011048'``llvm.canonicalize.*``' Intrinsic
11049^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11050
11051Syntax:
11052"""""""
11053
11054::
11055
11056 declare float @llvm.canonicalize.f32(float %a)
11057 declare double @llvm.canonicalize.f64(double %b)
11058
11059Overview:
11060"""""""""
11061
11062The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011063encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011064implementing certain numeric primitives such as frexp. The canonical encoding is
11065defined by IEEE-754-2008 to be:
11066
11067::
11068
11069 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011070 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011071 numbers, infinities, and NaNs, especially in decimal formats.
11072
11073This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011074conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011075according to section 6.2.
11076
11077Examples of non-canonical encodings:
11078
Sean Silvaa1190322015-08-06 22:56:48 +000011079- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011080 converted to a canonical representation per hardware-specific protocol.
11081- Many normal decimal floating point numbers have non-canonical alternative
11082 encodings.
11083- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011084 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011085 a zero of the same sign by this operation.
11086
11087Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11088default exception handling must signal an invalid exception, and produce a
11089quiet NaN result.
11090
11091This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011092that the compiler does not constant fold the operation. Likewise, division by
110931.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011094-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11095
Sean Silvaa1190322015-08-06 22:56:48 +000011096``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011097
11098- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11099- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11100 to ``(x == y)``
11101
11102Additionally, the sign of zero must be conserved:
11103``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11104
11105The payload bits of a NaN must be conserved, with two exceptions.
11106First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011107must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011108usual methods.
11109
11110The canonicalization operation may be optimized away if:
11111
Sean Silvaa1190322015-08-06 22:56:48 +000011112- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011113 floating-point operation that is required by the standard to be canonical.
11114- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011115 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011116
Sean Silvab084af42012-12-07 10:36:55 +000011117'``llvm.fmuladd.*``' Intrinsic
11118^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11119
11120Syntax:
11121"""""""
11122
11123::
11124
11125 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11126 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11127
11128Overview:
11129"""""""""
11130
11131The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011132expressions that can be fused if the code generator determines that (a) the
11133target instruction set has support for a fused operation, and (b) that the
11134fused operation is more efficient than the equivalent, separate pair of mul
11135and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011136
11137Arguments:
11138""""""""""
11139
11140The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11141multiplicands, a and b, and an addend c.
11142
11143Semantics:
11144""""""""""
11145
11146The expression:
11147
11148::
11149
11150 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11151
11152is equivalent to the expression a \* b + c, except that rounding will
11153not be performed between the multiplication and addition steps if the
11154code generator fuses the operations. Fusion is not guaranteed, even if
11155the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011156corresponding llvm.fma.\* intrinsic function should be used
11157instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011158
11159Examples:
11160"""""""""
11161
11162.. code-block:: llvm
11163
Tim Northover675a0962014-06-13 14:24:23 +000011164 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011165
11166Half Precision Floating Point Intrinsics
11167----------------------------------------
11168
11169For most target platforms, half precision floating point is a
11170storage-only format. This means that it is a dense encoding (in memory)
11171but does not support computation in the format.
11172
11173This means that code must first load the half-precision floating point
11174value as an i16, then convert it to float with
11175:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11176then be performed on the float value (including extending to double
11177etc). To store the value back to memory, it is first converted to float
11178if needed, then converted to i16 with
11179:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11180i16 value.
11181
11182.. _int_convert_to_fp16:
11183
11184'``llvm.convert.to.fp16``' Intrinsic
11185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11186
11187Syntax:
11188"""""""
11189
11190::
11191
Tim Northoverfd7e4242014-07-17 10:51:23 +000011192 declare i16 @llvm.convert.to.fp16.f32(float %a)
11193 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011194
11195Overview:
11196"""""""""
11197
Tim Northoverfd7e4242014-07-17 10:51:23 +000011198The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11199conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011200
11201Arguments:
11202""""""""""
11203
11204The intrinsic function contains single argument - the value to be
11205converted.
11206
11207Semantics:
11208""""""""""
11209
Tim Northoverfd7e4242014-07-17 10:51:23 +000011210The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11211conventional floating point format to half precision floating point format. The
11212return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011213
11214Examples:
11215"""""""""
11216
11217.. code-block:: llvm
11218
Tim Northoverfd7e4242014-07-17 10:51:23 +000011219 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011220 store i16 %res, i16* @x, align 2
11221
11222.. _int_convert_from_fp16:
11223
11224'``llvm.convert.from.fp16``' Intrinsic
11225^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11226
11227Syntax:
11228"""""""
11229
11230::
11231
Tim Northoverfd7e4242014-07-17 10:51:23 +000011232 declare float @llvm.convert.from.fp16.f32(i16 %a)
11233 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011234
11235Overview:
11236"""""""""
11237
11238The '``llvm.convert.from.fp16``' intrinsic function performs a
11239conversion from half precision floating point format to single precision
11240floating point format.
11241
11242Arguments:
11243""""""""""
11244
11245The intrinsic function contains single argument - the value to be
11246converted.
11247
11248Semantics:
11249""""""""""
11250
11251The '``llvm.convert.from.fp16``' intrinsic function performs a
11252conversion from half single precision floating point format to single
11253precision floating point format. The input half-float value is
11254represented by an ``i16`` value.
11255
11256Examples:
11257"""""""""
11258
11259.. code-block:: llvm
11260
David Blaikiec7aabbb2015-03-04 22:06:14 +000011261 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011262 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011263
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011264.. _dbg_intrinsics:
11265
Sean Silvab084af42012-12-07 10:36:55 +000011266Debugger Intrinsics
11267-------------------
11268
11269The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11270prefix), are described in the `LLVM Source Level
11271Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11272document.
11273
11274Exception Handling Intrinsics
11275-----------------------------
11276
11277The LLVM exception handling intrinsics (which all start with
11278``llvm.eh.`` prefix), are described in the `LLVM Exception
11279Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11280
11281.. _int_trampoline:
11282
11283Trampoline Intrinsics
11284---------------------
11285
11286These intrinsics make it possible to excise one parameter, marked with
11287the :ref:`nest <nest>` attribute, from a function. The result is a
11288callable function pointer lacking the nest parameter - the caller does
11289not need to provide a value for it. Instead, the value to use is stored
11290in advance in a "trampoline", a block of memory usually allocated on the
11291stack, which also contains code to splice the nest value into the
11292argument list. This is used to implement the GCC nested function address
11293extension.
11294
11295For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11296then the resulting function pointer has signature ``i32 (i32, i32)*``.
11297It can be created as follows:
11298
11299.. code-block:: llvm
11300
11301 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011302 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011303 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11304 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11305 %fp = bitcast i8* %p to i32 (i32, i32)*
11306
11307The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11308``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11309
11310.. _int_it:
11311
11312'``llvm.init.trampoline``' Intrinsic
11313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11314
11315Syntax:
11316"""""""
11317
11318::
11319
11320 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11321
11322Overview:
11323"""""""""
11324
11325This fills the memory pointed to by ``tramp`` with executable code,
11326turning it into a trampoline.
11327
11328Arguments:
11329""""""""""
11330
11331The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11332pointers. The ``tramp`` argument must point to a sufficiently large and
11333sufficiently aligned block of memory; this memory is written to by the
11334intrinsic. Note that the size and the alignment are target-specific -
11335LLVM currently provides no portable way of determining them, so a
11336front-end that generates this intrinsic needs to have some
11337target-specific knowledge. The ``func`` argument must hold a function
11338bitcast to an ``i8*``.
11339
11340Semantics:
11341""""""""""
11342
11343The block of memory pointed to by ``tramp`` is filled with target
11344dependent code, turning it into a function. Then ``tramp`` needs to be
11345passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11346be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11347function's signature is the same as that of ``func`` with any arguments
11348marked with the ``nest`` attribute removed. At most one such ``nest``
11349argument is allowed, and it must be of pointer type. Calling the new
11350function is equivalent to calling ``func`` with the same argument list,
11351but with ``nval`` used for the missing ``nest`` argument. If, after
11352calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11353modified, then the effect of any later call to the returned function
11354pointer is undefined.
11355
11356.. _int_at:
11357
11358'``llvm.adjust.trampoline``' Intrinsic
11359^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11360
11361Syntax:
11362"""""""
11363
11364::
11365
11366 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11367
11368Overview:
11369"""""""""
11370
11371This performs any required machine-specific adjustment to the address of
11372a trampoline (passed as ``tramp``).
11373
11374Arguments:
11375""""""""""
11376
11377``tramp`` must point to a block of memory which already has trampoline
11378code filled in by a previous call to
11379:ref:`llvm.init.trampoline <int_it>`.
11380
11381Semantics:
11382""""""""""
11383
11384On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011385different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011386intrinsic returns the executable address corresponding to ``tramp``
11387after performing the required machine specific adjustments. The pointer
11388returned can then be :ref:`bitcast and executed <int_trampoline>`.
11389
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011390.. _int_mload_mstore:
11391
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011392Masked Vector Load and Store Intrinsics
11393---------------------------------------
11394
11395LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11396
11397.. _int_mload:
11398
11399'``llvm.masked.load.*``' Intrinsics
11400^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11401
11402Syntax:
11403"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011404This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011405
11406::
11407
Adam Nemet7aab6482016-04-14 08:47:17 +000011408 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11409 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011410 ;; The data is a vector of pointers to double
Adam Nemet7aab6482016-04-14 08:47:17 +000011411 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011412 ;; The data is a vector of function pointers
Adam Nemet7aab6482016-04-14 08:47:17 +000011413 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011414
11415Overview:
11416"""""""""
11417
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011418Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011419
11420
11421Arguments:
11422""""""""""
11423
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011424The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011425
11426
11427Semantics:
11428""""""""""
11429
11430The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11431The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11432
11433
11434::
11435
Adam Nemet7aab6482016-04-14 08:47:17 +000011436 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011437
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011438 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011439 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011440 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011441
11442.. _int_mstore:
11443
11444'``llvm.masked.store.*``' Intrinsics
11445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11446
11447Syntax:
11448"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011449This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011450
11451::
11452
Adam Nemet7aab6482016-04-14 08:47:17 +000011453 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11454 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011455 ;; The data is a vector of pointers to double
Adam Nemet7aab6482016-04-14 08:47:17 +000011456 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011457 ;; The data is a vector of function pointers
Adam Nemet7aab6482016-04-14 08:47:17 +000011458 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011459
11460Overview:
11461"""""""""
11462
11463Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11464
11465Arguments:
11466""""""""""
11467
11468The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11469
11470
11471Semantics:
11472""""""""""
11473
11474The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11475The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11476
11477::
11478
Adam Nemet7aab6482016-04-14 08:47:17 +000011479 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011480
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011481 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011482 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011483 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11484 store <16 x float> %res, <16 x float>* %ptr, align 4
11485
11486
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011487Masked Vector Gather and Scatter Intrinsics
11488-------------------------------------------
11489
11490LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11491
11492.. _int_mgather:
11493
11494'``llvm.masked.gather.*``' Intrinsics
11495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11496
11497Syntax:
11498"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011499This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011500
11501::
11502
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011503 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11504 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11505 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011506
11507Overview:
11508"""""""""
11509
11510Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11511
11512
11513Arguments:
11514""""""""""
11515
11516The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11517
11518
11519Semantics:
11520""""""""""
11521
11522The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11523The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11524
11525
11526::
11527
11528 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11529
11530 ;; The gather with all-true mask is equivalent to the following instruction sequence
11531 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11532 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11533 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11534 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11535
11536 %val0 = load double, double* %ptr0, align 8
11537 %val1 = load double, double* %ptr1, align 8
11538 %val2 = load double, double* %ptr2, align 8
11539 %val3 = load double, double* %ptr3, align 8
11540
11541 %vec0 = insertelement <4 x double>undef, %val0, 0
11542 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11543 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11544 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11545
11546.. _int_mscatter:
11547
11548'``llvm.masked.scatter.*``' Intrinsics
11549^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11550
11551Syntax:
11552"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011553This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011554
11555::
11556
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011557 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11558 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11559 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011560
11561Overview:
11562"""""""""
11563
11564Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11565
11566Arguments:
11567""""""""""
11568
11569The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11570
11571
11572Semantics:
11573""""""""""
11574
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011575The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011576
11577::
11578
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011579 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011580 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11581
11582 ;; It is equivalent to a list of scalar stores
11583 %val0 = extractelement <8 x i32> %value, i32 0
11584 %val1 = extractelement <8 x i32> %value, i32 1
11585 ..
11586 %val7 = extractelement <8 x i32> %value, i32 7
11587 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11588 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11589 ..
11590 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11591 ;; Note: the order of the following stores is important when they overlap:
11592 store i32 %val0, i32* %ptr0, align 4
11593 store i32 %val1, i32* %ptr1, align 4
11594 ..
11595 store i32 %val7, i32* %ptr7, align 4
11596
11597
Sean Silvab084af42012-12-07 10:36:55 +000011598Memory Use Markers
11599------------------
11600
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011601This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011602memory objects and ranges where variables are immutable.
11603
Reid Klecknera534a382013-12-19 02:14:12 +000011604.. _int_lifestart:
11605
Sean Silvab084af42012-12-07 10:36:55 +000011606'``llvm.lifetime.start``' Intrinsic
11607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11608
11609Syntax:
11610"""""""
11611
11612::
11613
11614 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11615
11616Overview:
11617"""""""""
11618
11619The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11620object's lifetime.
11621
11622Arguments:
11623""""""""""
11624
11625The first argument is a constant integer representing the size of the
11626object, or -1 if it is variable sized. The second argument is a pointer
11627to the object.
11628
11629Semantics:
11630""""""""""
11631
11632This intrinsic indicates that before this point in the code, the value
11633of the memory pointed to by ``ptr`` is dead. This means that it is known
11634to never be used and has an undefined value. A load from the pointer
11635that precedes this intrinsic can be replaced with ``'undef'``.
11636
Reid Klecknera534a382013-12-19 02:14:12 +000011637.. _int_lifeend:
11638
Sean Silvab084af42012-12-07 10:36:55 +000011639'``llvm.lifetime.end``' Intrinsic
11640^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11641
11642Syntax:
11643"""""""
11644
11645::
11646
11647 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11648
11649Overview:
11650"""""""""
11651
11652The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11653object's lifetime.
11654
11655Arguments:
11656""""""""""
11657
11658The first argument is a constant integer representing the size of the
11659object, or -1 if it is variable sized. The second argument is a pointer
11660to the object.
11661
11662Semantics:
11663""""""""""
11664
11665This intrinsic indicates that after this point in the code, the value of
11666the memory pointed to by ``ptr`` is dead. This means that it is known to
11667never be used and has an undefined value. Any stores into the memory
11668object following this intrinsic may be removed as dead.
11669
11670'``llvm.invariant.start``' Intrinsic
11671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11672
11673Syntax:
11674"""""""
11675
11676::
11677
11678 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11679
11680Overview:
11681"""""""""
11682
11683The '``llvm.invariant.start``' intrinsic specifies that the contents of
11684a memory object will not change.
11685
11686Arguments:
11687""""""""""
11688
11689The first argument is a constant integer representing the size of the
11690object, or -1 if it is variable sized. The second argument is a pointer
11691to the object.
11692
11693Semantics:
11694""""""""""
11695
11696This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11697the return value, the referenced memory location is constant and
11698unchanging.
11699
11700'``llvm.invariant.end``' Intrinsic
11701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11702
11703Syntax:
11704"""""""
11705
11706::
11707
11708 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11709
11710Overview:
11711"""""""""
11712
11713The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11714memory object are mutable.
11715
11716Arguments:
11717""""""""""
11718
11719The first argument is the matching ``llvm.invariant.start`` intrinsic.
11720The second argument is a constant integer representing the size of the
11721object, or -1 if it is variable sized and the third argument is a
11722pointer to the object.
11723
11724Semantics:
11725""""""""""
11726
11727This intrinsic indicates that the memory is mutable again.
11728
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011729'``llvm.invariant.group.barrier``' Intrinsic
11730^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11731
11732Syntax:
11733"""""""
11734
11735::
11736
11737 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11738
11739Overview:
11740"""""""""
11741
11742The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11743established by invariant.group metadata no longer holds, to obtain a new pointer
11744value that does not carry the invariant information.
11745
11746
11747Arguments:
11748""""""""""
11749
11750The ``llvm.invariant.group.barrier`` takes only one argument, which is
11751the pointer to the memory for which the ``invariant.group`` no longer holds.
11752
11753Semantics:
11754""""""""""
11755
11756Returns another pointer that aliases its argument but which is considered different
11757for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11758
Sean Silvab084af42012-12-07 10:36:55 +000011759General Intrinsics
11760------------------
11761
11762This class of intrinsics is designed to be generic and has no specific
11763purpose.
11764
11765'``llvm.var.annotation``' Intrinsic
11766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11767
11768Syntax:
11769"""""""
11770
11771::
11772
11773 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11774
11775Overview:
11776"""""""""
11777
11778The '``llvm.var.annotation``' intrinsic.
11779
11780Arguments:
11781""""""""""
11782
11783The first argument is a pointer to a value, the second is a pointer to a
11784global string, the third is a pointer to a global string which is the
11785source file name, and the last argument is the line number.
11786
11787Semantics:
11788""""""""""
11789
11790This intrinsic allows annotation of local variables with arbitrary
11791strings. This can be useful for special purpose optimizations that want
11792to look for these annotations. These have no other defined use; they are
11793ignored by code generation and optimization.
11794
Michael Gottesman88d18832013-03-26 00:34:27 +000011795'``llvm.ptr.annotation.*``' Intrinsic
11796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11797
11798Syntax:
11799"""""""
11800
11801This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11802pointer to an integer of any width. *NOTE* you must specify an address space for
11803the pointer. The identifier for the default address space is the integer
11804'``0``'.
11805
11806::
11807
11808 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11809 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11810 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11811 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11812 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11813
11814Overview:
11815"""""""""
11816
11817The '``llvm.ptr.annotation``' intrinsic.
11818
11819Arguments:
11820""""""""""
11821
11822The first argument is a pointer to an integer value of arbitrary bitwidth
11823(result of some expression), the second is a pointer to a global string, the
11824third is a pointer to a global string which is the source file name, and the
11825last argument is the line number. It returns the value of the first argument.
11826
11827Semantics:
11828""""""""""
11829
11830This intrinsic allows annotation of a pointer to an integer with arbitrary
11831strings. This can be useful for special purpose optimizations that want to look
11832for these annotations. These have no other defined use; they are ignored by code
11833generation and optimization.
11834
Sean Silvab084af42012-12-07 10:36:55 +000011835'``llvm.annotation.*``' Intrinsic
11836^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11837
11838Syntax:
11839"""""""
11840
11841This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11842any integer bit width.
11843
11844::
11845
11846 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11847 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11848 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11849 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11850 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11851
11852Overview:
11853"""""""""
11854
11855The '``llvm.annotation``' intrinsic.
11856
11857Arguments:
11858""""""""""
11859
11860The first argument is an integer value (result of some expression), the
11861second is a pointer to a global string, the third is a pointer to a
11862global string which is the source file name, and the last argument is
11863the line number. It returns the value of the first argument.
11864
11865Semantics:
11866""""""""""
11867
11868This intrinsic allows annotations to be put on arbitrary expressions
11869with arbitrary strings. This can be useful for special purpose
11870optimizations that want to look for these annotations. These have no
11871other defined use; they are ignored by code generation and optimization.
11872
11873'``llvm.trap``' Intrinsic
11874^^^^^^^^^^^^^^^^^^^^^^^^^
11875
11876Syntax:
11877"""""""
11878
11879::
11880
11881 declare void @llvm.trap() noreturn nounwind
11882
11883Overview:
11884"""""""""
11885
11886The '``llvm.trap``' intrinsic.
11887
11888Arguments:
11889""""""""""
11890
11891None.
11892
11893Semantics:
11894""""""""""
11895
11896This intrinsic is lowered to the target dependent trap instruction. If
11897the target does not have a trap instruction, this intrinsic will be
11898lowered to a call of the ``abort()`` function.
11899
11900'``llvm.debugtrap``' Intrinsic
11901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11902
11903Syntax:
11904"""""""
11905
11906::
11907
11908 declare void @llvm.debugtrap() nounwind
11909
11910Overview:
11911"""""""""
11912
11913The '``llvm.debugtrap``' intrinsic.
11914
11915Arguments:
11916""""""""""
11917
11918None.
11919
11920Semantics:
11921""""""""""
11922
11923This intrinsic is lowered to code which is intended to cause an
11924execution trap with the intention of requesting the attention of a
11925debugger.
11926
11927'``llvm.stackprotector``' Intrinsic
11928^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11929
11930Syntax:
11931"""""""
11932
11933::
11934
11935 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11936
11937Overview:
11938"""""""""
11939
11940The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11941onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11942is placed on the stack before local variables.
11943
11944Arguments:
11945""""""""""
11946
11947The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11948The first argument is the value loaded from the stack guard
11949``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11950enough space to hold the value of the guard.
11951
11952Semantics:
11953""""""""""
11954
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011955This intrinsic causes the prologue/epilogue inserter to force the position of
11956the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11957to ensure that if a local variable on the stack is overwritten, it will destroy
11958the value of the guard. When the function exits, the guard on the stack is
11959checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11960different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11961calling the ``__stack_chk_fail()`` function.
11962
Sean Silvab084af42012-12-07 10:36:55 +000011963'``llvm.objectsize``' Intrinsic
11964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11965
11966Syntax:
11967"""""""
11968
11969::
11970
11971 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11972 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11973
11974Overview:
11975"""""""""
11976
11977The ``llvm.objectsize`` intrinsic is designed to provide information to
11978the optimizers to determine at compile time whether a) an operation
11979(like memcpy) will overflow a buffer that corresponds to an object, or
11980b) that a runtime check for overflow isn't necessary. An object in this
11981context means an allocation of a specific class, structure, array, or
11982other object.
11983
11984Arguments:
11985""""""""""
11986
11987The ``llvm.objectsize`` intrinsic takes two arguments. The first
11988argument is a pointer to or into the ``object``. The second argument is
11989a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11990or -1 (if false) when the object size is unknown. The second argument
11991only accepts constants.
11992
11993Semantics:
11994""""""""""
11995
11996The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11997the size of the object concerned. If the size cannot be determined at
11998compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11999on the ``min`` argument).
12000
12001'``llvm.expect``' Intrinsic
12002^^^^^^^^^^^^^^^^^^^^^^^^^^^
12003
12004Syntax:
12005"""""""
12006
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012007This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12008integer bit width.
12009
Sean Silvab084af42012-12-07 10:36:55 +000012010::
12011
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012012 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012013 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12014 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12015
12016Overview:
12017"""""""""
12018
12019The ``llvm.expect`` intrinsic provides information about expected (the
12020most probable) value of ``val``, which can be used by optimizers.
12021
12022Arguments:
12023""""""""""
12024
12025The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12026a value. The second argument is an expected value, this needs to be a
12027constant value, variables are not allowed.
12028
12029Semantics:
12030""""""""""
12031
12032This intrinsic is lowered to the ``val``.
12033
Philip Reamese0e90832015-04-26 22:23:12 +000012034.. _int_assume:
12035
Hal Finkel93046912014-07-25 21:13:35 +000012036'``llvm.assume``' Intrinsic
12037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12038
12039Syntax:
12040"""""""
12041
12042::
12043
12044 declare void @llvm.assume(i1 %cond)
12045
12046Overview:
12047"""""""""
12048
12049The ``llvm.assume`` allows the optimizer to assume that the provided
12050condition is true. This information can then be used in simplifying other parts
12051of the code.
12052
12053Arguments:
12054""""""""""
12055
12056The condition which the optimizer may assume is always true.
12057
12058Semantics:
12059""""""""""
12060
12061The intrinsic allows the optimizer to assume that the provided condition is
12062always true whenever the control flow reaches the intrinsic call. No code is
12063generated for this intrinsic, and instructions that contribute only to the
12064provided condition are not used for code generation. If the condition is
12065violated during execution, the behavior is undefined.
12066
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012067Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012068used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12069only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012070if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012071sufficient overall improvement in code quality. For this reason,
12072``llvm.assume`` should not be used to document basic mathematical invariants
12073that the optimizer can otherwise deduce or facts that are of little use to the
12074optimizer.
12075
Peter Collingbournee6909c82015-02-20 20:30:47 +000012076.. _bitset.test:
12077
12078'``llvm.bitset.test``' Intrinsic
12079^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12080
12081Syntax:
12082"""""""
12083
12084::
12085
12086 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12087
12088
12089Arguments:
12090""""""""""
12091
12092The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012093metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012094
12095Overview:
12096"""""""""
12097
12098The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12099member of the given bitset.
12100
Sean Silvab084af42012-12-07 10:36:55 +000012101'``llvm.donothing``' Intrinsic
12102^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12103
12104Syntax:
12105"""""""
12106
12107::
12108
12109 declare void @llvm.donothing() nounwind readnone
12110
12111Overview:
12112"""""""""
12113
Juergen Ributzkac9161192014-10-23 22:36:13 +000012114The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012115three intrinsics (besides ``llvm.experimental.patchpoint`` and
12116``llvm.experimental.gc.statepoint``) that can be called with an invoke
12117instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012118
12119Arguments:
12120""""""""""
12121
12122None.
12123
12124Semantics:
12125""""""""""
12126
12127This intrinsic does nothing, and it's removed by optimizers and ignored
12128by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012129
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012130'``llvm.experimental.deoptimize``' Intrinsic
12131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12132
12133Syntax:
12134"""""""
12135
12136::
12137
12138 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12139
12140Overview:
12141"""""""""
12142
12143This intrinsic, together with :ref:`deoptimization operand bundles
12144<deopt_opbundles>`, allow frontends to express transfer of control and
12145frame-local state from the currently executing (typically more specialized,
12146hence faster) version of a function into another (typically more generic, hence
12147slower) version.
12148
12149In languages with a fully integrated managed runtime like Java and JavaScript
12150this intrinsic can be used to implement "uncommon trap" or "side exit" like
12151functionality. In unmanaged languages like C and C++, this intrinsic can be
12152used to represent the slow paths of specialized functions.
12153
12154
12155Arguments:
12156""""""""""
12157
12158The intrinsic takes an arbitrary number of arguments, whose meaning is
12159decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12160
12161Semantics:
12162""""""""""
12163
12164The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12165deoptimization continuation (denoted using a :ref:`deoptimization
12166operand bundle <deopt_opbundles>`) and returns the value returned by
12167the deoptimization continuation. Defining the semantic properties of
12168the continuation itself is out of scope of the language reference --
12169as far as LLVM is concerned, the deoptimization continuation can
12170invoke arbitrary side effects, including reading from and writing to
12171the entire heap.
12172
12173Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12174continue execution to the end of the physical frame containing them, so all
12175calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12176
12177 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12178 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12179 - The ``ret`` instruction must return the value produced by the
12180 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12181
12182Note that the above restrictions imply that the return type for a call to
12183``@llvm.experimental.deoptimize`` will match the return type of its immediate
12184caller.
12185
12186The inliner composes the ``"deopt"`` continuations of the caller into the
12187``"deopt"`` continuations present in the inlinee, and also updates calls to this
12188intrinsic to return directly from the frame of the function it inlined into.
12189
12190.. _deoptimize_lowering:
12191
12192Lowering:
12193"""""""""
12194
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012195Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12196symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12197ensure that this symbol is defined). The call arguments to
12198``@llvm.experimental.deoptimize`` are lowered as if they were formal
12199arguments of the specified types, and not as varargs.
12200
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012201
Sanjoy Das021de052016-03-31 00:18:46 +000012202'``llvm.experimental.guard``' Intrinsic
12203^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12204
12205Syntax:
12206"""""""
12207
12208::
12209
12210 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12211
12212Overview:
12213"""""""""
12214
12215This intrinsic, together with :ref:`deoptimization operand bundles
12216<deopt_opbundles>`, allows frontends to express guards or checks on
12217optimistic assumptions made during compilation. The semantics of
12218``@llvm.experimental.guard`` is defined in terms of
12219``@llvm.experimental.deoptimize`` -- its body is defined to be
12220equivalent to:
12221
12222.. code-block:: llvm
12223
12224 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12225 %realPred = and i1 %pred, undef
12226 br i1 %realPred, label %continue, label %leave
12227
12228 leave:
12229 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12230 ret void
12231
12232 continue:
12233 ret void
12234 }
12235
12236In words, ``@llvm.experimental.guard`` executes the attached
12237``"deopt"`` continuation if (but **not** only if) its first argument
12238is ``false``. Since the optimizer is allowed to replace the ``undef``
12239with an arbitrary value, it can optimize guard to fail "spuriously",
12240i.e. without the original condition being false (hence the "not only
12241if"); and this allows for "check widening" type optimizations.
12242
12243``@llvm.experimental.guard`` cannot be invoked.
12244
12245
Andrew Trick5e029ce2013-12-24 02:57:25 +000012246Stack Map Intrinsics
12247--------------------
12248
12249LLVM provides experimental intrinsics to support runtime patching
12250mechanisms commonly desired in dynamic language JITs. These intrinsics
12251are described in :doc:`StackMaps`.