blob: e8bbcc535f6fb7540639d314676e419a082bb9d9 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
253``extern_weak``
254 The semantics of this linkage follow the ELF object file model: the
255 symbol is weak until linked, if not linked, the symbol becomes null
256 instead of being an undefined reference.
257``linkonce_odr``, ``weak_odr``
258 Some languages allow differing globals to be merged, such as two
259 functions with different semantics. Other languages, such as
260 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000261 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000262 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
263 global will only be merged with equivalent globals. These linkage
264 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000265``external``
266 If none of the above identifiers are used, the global is externally
267 visible, meaning that it participates in linkage and can be used to
268 resolve external symbol references.
269
Sean Silvab084af42012-12-07 10:36:55 +0000270It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000271other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000272
Sean Silvab084af42012-12-07 10:36:55 +0000273.. _callingconv:
274
275Calling Conventions
276-------------------
277
278LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
279:ref:`invokes <i_invoke>` can all have an optional calling convention
280specified for the call. The calling convention of any pair of dynamic
281caller/callee must match, or the behavior of the program is undefined.
282The following calling conventions are supported by LLVM, and more may be
283added in the future:
284
285"``ccc``" - The C calling convention
286 This calling convention (the default if no other calling convention
287 is specified) matches the target C calling conventions. This calling
288 convention supports varargs function calls and tolerates some
289 mismatch in the declared prototype and implemented declaration of
290 the function (as does normal C).
291"``fastcc``" - The fast calling convention
292 This calling convention attempts to make calls as fast as possible
293 (e.g. by passing things in registers). This calling convention
294 allows the target to use whatever tricks it wants to produce fast
295 code for the target, without having to conform to an externally
296 specified ABI (Application Binary Interface). `Tail calls can only
297 be optimized when this, the GHC or the HiPE convention is
298 used. <CodeGenerator.html#id80>`_ This calling convention does not
299 support varargs and requires the prototype of all callees to exactly
300 match the prototype of the function definition.
301"``coldcc``" - The cold calling convention
302 This calling convention attempts to make code in the caller as
303 efficient as possible under the assumption that the call is not
304 commonly executed. As such, these calls often preserve all registers
305 so that the call does not break any live ranges in the caller side.
306 This calling convention does not support varargs and requires the
307 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000308 function definition. Furthermore the inliner doesn't consider such function
309 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000310"``cc 10``" - GHC convention
311 This calling convention has been implemented specifically for use by
312 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
313 It passes everything in registers, going to extremes to achieve this
314 by disabling callee save registers. This calling convention should
315 not be used lightly but only for specific situations such as an
316 alternative to the *register pinning* performance technique often
317 used when implementing functional programming languages. At the
318 moment only X86 supports this convention and it has the following
319 limitations:
320
321 - On *X86-32* only supports up to 4 bit type parameters. No
322 floating point types are supported.
323 - On *X86-64* only supports up to 10 bit type parameters and 6
324 floating point parameters.
325
326 This calling convention supports `tail call
327 optimization <CodeGenerator.html#id80>`_ but requires both the
328 caller and callee are using it.
329"``cc 11``" - The HiPE calling convention
330 This calling convention has been implemented specifically for use by
331 the `High-Performance Erlang
332 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
333 native code compiler of the `Ericsson's Open Source Erlang/OTP
334 system <http://www.erlang.org/download.shtml>`_. It uses more
335 registers for argument passing than the ordinary C calling
336 convention and defines no callee-saved registers. The calling
337 convention properly supports `tail call
338 optimization <CodeGenerator.html#id80>`_ but requires that both the
339 caller and the callee use it. It uses a *register pinning*
340 mechanism, similar to GHC's convention, for keeping frequently
341 accessed runtime components pinned to specific hardware registers.
342 At the moment only X86 supports this convention (both 32 and 64
343 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000344"``webkit_jscc``" - WebKit's JavaScript calling convention
345 This calling convention has been implemented for `WebKit FTL JIT
346 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
347 stack right to left (as cdecl does), and returns a value in the
348 platform's customary return register.
349"``anyregcc``" - Dynamic calling convention for code patching
350 This is a special convention that supports patching an arbitrary code
351 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000352 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000353 allocated. This can currently only be used with calls to
354 llvm.experimental.patchpoint because only this intrinsic records
355 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000356"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 This calling convention attempts to make the code in the caller as
358 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000359 calling convention on how arguments and return values are passed, but it
360 uses a different set of caller/callee-saved registers. This alleviates the
361 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000362 call in the caller. If the arguments are passed in callee-saved registers,
363 then they will be preserved by the callee across the call. This doesn't
364 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000365
366 - On X86-64 the callee preserves all general purpose registers, except for
367 R11. R11 can be used as a scratch register. Floating-point registers
368 (XMMs/YMMs) are not preserved and need to be saved by the caller.
369
370 The idea behind this convention is to support calls to runtime functions
371 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000372 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000373 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000374 registers, which haven't already been saved by the caller. The
375 `PreserveMost` calling convention is very similar to the `cold` calling
376 convention in terms of caller/callee-saved registers, but they are used for
377 different types of function calls. `coldcc` is for function calls that are
378 rarely executed, whereas `preserve_mostcc` function calls are intended to be
379 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
380 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000381
382 This calling convention will be used by a future version of the ObjectiveC
383 runtime and should therefore still be considered experimental at this time.
384 Although this convention was created to optimize certain runtime calls to
385 the ObjectiveC runtime, it is not limited to this runtime and might be used
386 by other runtimes in the future too. The current implementation only
387 supports X86-64, but the intention is to support more architectures in the
388 future.
389"``preserve_allcc``" - The `PreserveAll` calling convention
390 This calling convention attempts to make the code in the caller even less
391 intrusive than the `PreserveMost` calling convention. This calling
392 convention also behaves identical to the `C` calling convention on how
393 arguments and return values are passed, but it uses a different set of
394 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000395 recovering a large register set before and after the call in the caller. If
396 the arguments are passed in callee-saved registers, then they will be
397 preserved by the callee across the call. This doesn't apply for values
398 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000399
400 - On X86-64 the callee preserves all general purpose registers, except for
401 R11. R11 can be used as a scratch register. Furthermore it also preserves
402 all floating-point registers (XMMs/YMMs).
403
404 The idea behind this convention is to support calls to runtime functions
405 that don't need to call out to any other functions.
406
407 This calling convention, like the `PreserveMost` calling convention, will be
408 used by a future version of the ObjectiveC runtime and should be considered
409 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000410"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000411 Clang generates an access function to access C++-style TLS. The access
412 function generally has an entry block, an exit block and an initialization
413 block that is run at the first time. The entry and exit blocks can access
414 a few TLS IR variables, each access will be lowered to a platform-specific
415 sequence.
416
Manman Ren19c7bbe2015-12-04 17:40:13 +0000417 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000418 preserving as many registers as possible (all the registers that are
419 perserved on the fast path, composed of the entry and exit blocks).
420
421 This calling convention behaves identical to the `C` calling convention on
422 how arguments and return values are passed, but it uses a different set of
423 caller/callee-saved registers.
424
425 Given that each platform has its own lowering sequence, hence its own set
426 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000427
428 - On X86-64 the callee preserves all general purpose registers, except for
429 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000430"``swiftcc``" - This calling convention is used for Swift language.
431 - On X86-64 RCX and R8 are available for additional integer returns, and
432 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000433 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000434"``cc <n>``" - Numbered convention
435 Any calling convention may be specified by number, allowing
436 target-specific calling conventions to be used. Target specific
437 calling conventions start at 64.
438
439More calling conventions can be added/defined on an as-needed basis, to
440support Pascal conventions or any other well-known target-independent
441convention.
442
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000443.. _visibilitystyles:
444
Sean Silvab084af42012-12-07 10:36:55 +0000445Visibility Styles
446-----------------
447
448All Global Variables and Functions have one of the following visibility
449styles:
450
451"``default``" - Default style
452 On targets that use the ELF object file format, default visibility
453 means that the declaration is visible to other modules and, in
454 shared libraries, means that the declared entity may be overridden.
455 On Darwin, default visibility means that the declaration is visible
456 to other modules. Default visibility corresponds to "external
457 linkage" in the language.
458"``hidden``" - Hidden style
459 Two declarations of an object with hidden visibility refer to the
460 same object if they are in the same shared object. Usually, hidden
461 visibility indicates that the symbol will not be placed into the
462 dynamic symbol table, so no other module (executable or shared
463 library) can reference it directly.
464"``protected``" - Protected style
465 On ELF, protected visibility indicates that the symbol will be
466 placed in the dynamic symbol table, but that references within the
467 defining module will bind to the local symbol. That is, the symbol
468 cannot be overridden by another module.
469
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000470A symbol with ``internal`` or ``private`` linkage must have ``default``
471visibility.
472
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000473.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000474
Nico Rieck7157bb72014-01-14 15:22:47 +0000475DLL Storage Classes
476-------------------
477
478All Global Variables, Functions and Aliases can have one of the following
479DLL storage class:
480
481``dllimport``
482 "``dllimport``" causes the compiler to reference a function or variable via
483 a global pointer to a pointer that is set up by the DLL exporting the
484 symbol. On Microsoft Windows targets, the pointer name is formed by
485 combining ``__imp_`` and the function or variable name.
486``dllexport``
487 "``dllexport``" causes the compiler to provide a global pointer to a pointer
488 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
489 Microsoft Windows targets, the pointer name is formed by combining
490 ``__imp_`` and the function or variable name. Since this storage class
491 exists for defining a dll interface, the compiler, assembler and linker know
492 it is externally referenced and must refrain from deleting the symbol.
493
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000494.. _tls_model:
495
496Thread Local Storage Models
497---------------------------
498
499A variable may be defined as ``thread_local``, which means that it will
500not be shared by threads (each thread will have a separated copy of the
501variable). Not all targets support thread-local variables. Optionally, a
502TLS model may be specified:
503
504``localdynamic``
505 For variables that are only used within the current shared library.
506``initialexec``
507 For variables in modules that will not be loaded dynamically.
508``localexec``
509 For variables defined in the executable and only used within it.
510
511If no explicit model is given, the "general dynamic" model is used.
512
513The models correspond to the ELF TLS models; see `ELF Handling For
514Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
515more information on under which circumstances the different models may
516be used. The target may choose a different TLS model if the specified
517model is not supported, or if a better choice of model can be made.
518
Sean Silva706fba52015-08-06 22:56:24 +0000519A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000520the alias is accessed. It will not have any effect in the aliasee.
521
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000522For platforms without linker support of ELF TLS model, the -femulated-tls
523flag can be used to generate GCC compatible emulated TLS code.
524
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000525.. _namedtypes:
526
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000527Structure Types
528---------------
Sean Silvab084af42012-12-07 10:36:55 +0000529
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000530LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000531types <t_struct>`. Literal types are uniqued structurally, but identified types
532are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000533to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000534
Sean Silva706fba52015-08-06 22:56:24 +0000535An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000536
537.. code-block:: llvm
538
539 %mytype = type { %mytype*, i32 }
540
Sean Silvaa1190322015-08-06 22:56:48 +0000541Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000542literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000543
544.. _globalvars:
545
546Global Variables
547----------------
548
549Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000550instead of run-time.
551
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000552Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000553
554Global variables in other translation units can also be declared, in which
555case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000556
Bob Wilson85b24f22014-06-12 20:40:33 +0000557Either global variable definitions or declarations may have an explicit section
558to be placed in and may have an optional explicit alignment specified.
559
Michael Gottesman006039c2013-01-31 05:48:48 +0000560A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000561the contents of the variable will **never** be modified (enabling better
562optimization, allowing the global data to be placed in the read-only
563section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000564initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000565variable.
566
567LLVM explicitly allows *declarations* of global variables to be marked
568constant, even if the final definition of the global is not. This
569capability can be used to enable slightly better optimization of the
570program, but requires the language definition to guarantee that
571optimizations based on the 'constantness' are valid for the translation
572units that do not include the definition.
573
574As SSA values, global variables define pointer values that are in scope
575(i.e. they dominate) all basic blocks in the program. Global variables
576always define a pointer to their "content" type because they describe a
577region of memory, and all memory objects in LLVM are accessed through
578pointers.
579
580Global variables can be marked with ``unnamed_addr`` which indicates
581that the address is not significant, only the content. Constants marked
582like this can be merged with other constants if they have the same
583initializer. Note that a constant with significant address *can* be
584merged with a ``unnamed_addr`` constant, the result being a constant
585whose address is significant.
586
587A global variable may be declared to reside in a target-specific
588numbered address space. For targets that support them, address spaces
589may affect how optimizations are performed and/or what target
590instructions are used to access the variable. The default address space
591is zero. The address space qualifier must precede any other attributes.
592
593LLVM allows an explicit section to be specified for globals. If the
594target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000595Additionally, the global can placed in a comdat if the target has the necessary
596support.
Sean Silvab084af42012-12-07 10:36:55 +0000597
Michael Gottesmane743a302013-02-04 03:22:00 +0000598By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000599variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000600initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000601true even for variables potentially accessible from outside the
602module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000603``@llvm.used`` or dllexported variables. This assumption may be suppressed
604by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000605
Sean Silvab084af42012-12-07 10:36:55 +0000606An explicit alignment may be specified for a global, which must be a
607power of 2. If not present, or if the alignment is set to zero, the
608alignment of the global is set by the target to whatever it feels
609convenient. If an explicit alignment is specified, the global is forced
610to have exactly that alignment. Targets and optimizers are not allowed
611to over-align the global if the global has an assigned section. In this
612case, the extra alignment could be observable: for example, code could
613assume that the globals are densely packed in their section and try to
614iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000615iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000616
Nico Rieck7157bb72014-01-14 15:22:47 +0000617Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
618
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000619Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000620:ref:`Thread Local Storage Model <tls_model>`.
621
Nico Rieck7157bb72014-01-14 15:22:47 +0000622Syntax::
623
624 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000625 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000626 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000627 [, section "name"] [, comdat [($name)]]
628 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000629
Sean Silvab084af42012-12-07 10:36:55 +0000630For example, the following defines a global in a numbered address space
631with an initializer, section, and alignment:
632
633.. code-block:: llvm
634
635 @G = addrspace(5) constant float 1.0, section "foo", align 4
636
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000637The following example just declares a global variable
638
639.. code-block:: llvm
640
641 @G = external global i32
642
Sean Silvab084af42012-12-07 10:36:55 +0000643The following example defines a thread-local global with the
644``initialexec`` TLS model:
645
646.. code-block:: llvm
647
648 @G = thread_local(initialexec) global i32 0, align 4
649
650.. _functionstructure:
651
652Functions
653---------
654
655LLVM function definitions consist of the "``define``" keyword, an
656optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000657style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
658an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000659an optional ``unnamed_addr`` attribute, a return type, an optional
660:ref:`parameter attribute <paramattrs>` for the return type, a function
661name, a (possibly empty) argument list (each with optional :ref:`parameter
662attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000663an optional section, an optional alignment,
664an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000665an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000666an optional :ref:`prologue <prologuedata>`,
667an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000668an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000669an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000670
671LLVM function declarations consist of the "``declare``" keyword, an
672optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000673style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
674an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000675an optional ``unnamed_addr`` attribute, a return type, an optional
676:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000677name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000678:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
679and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000680
Bill Wendling6822ecb2013-10-27 05:09:12 +0000681A function definition contains a list of basic blocks, forming the CFG (Control
682Flow Graph) for the function. Each basic block may optionally start with a label
683(giving the basic block a symbol table entry), contains a list of instructions,
684and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
685function return). If an explicit label is not provided, a block is assigned an
686implicit numbered label, using the next value from the same counter as used for
687unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
688entry block does not have an explicit label, it will be assigned label "%0",
689then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000690
691The first basic block in a function is special in two ways: it is
692immediately executed on entrance to the function, and it is not allowed
693to have predecessor basic blocks (i.e. there can not be any branches to
694the entry block of a function). Because the block can have no
695predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
696
697LLVM allows an explicit section to be specified for functions. If the
698target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000699Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000700
701An explicit alignment may be specified for a function. If not present,
702or if the alignment is set to zero, the alignment of the function is set
703by the target to whatever it feels convenient. If an explicit alignment
704is specified, the function is forced to have at least that much
705alignment. All alignments must be a power of 2.
706
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000707If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000708be significant and two identical functions can be merged.
709
710Syntax::
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000713 [cconv] [ret attrs]
714 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000715 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000716 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000717 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000718
Sean Silva706fba52015-08-06 22:56:24 +0000719The argument list is a comma separated sequence of arguments where each
720argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000721
722Syntax::
723
724 <type> [parameter Attrs] [name]
725
726
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000727.. _langref_aliases:
728
Sean Silvab084af42012-12-07 10:36:55 +0000729Aliases
730-------
731
Rafael Espindola64c1e182014-06-03 02:41:57 +0000732Aliases, unlike function or variables, don't create any new data. They
733are just a new symbol and metadata for an existing position.
734
735Aliases have a name and an aliasee that is either a global value or a
736constant expression.
737
Nico Rieck7157bb72014-01-14 15:22:47 +0000738Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000739:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
740<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000741
742Syntax::
743
David Blaikie196582e2015-10-22 01:17:29 +0000744 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000745
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000746The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000747``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000748might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000749
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000750Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000751the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
752to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000753
Rafael Espindola64c1e182014-06-03 02:41:57 +0000754Since aliases are only a second name, some restrictions apply, of which
755some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000756
Rafael Espindola64c1e182014-06-03 02:41:57 +0000757* The expression defining the aliasee must be computable at assembly
758 time. Since it is just a name, no relocations can be used.
759
760* No alias in the expression can be weak as the possibility of the
761 intermediate alias being overridden cannot be represented in an
762 object file.
763
764* No global value in the expression can be a declaration, since that
765 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000766
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000767.. _langref_ifunc:
768
769IFuncs
770-------
771
772IFuncs, like as aliases, don't create any new data or func. They are just a new
773symbol that dynamic linker resolves at runtime by calling a resolver function.
774
775IFuncs have a name and a resolver that is a function called by dynamic linker
776that returns address of another function associated with the name.
777
778IFunc may have an optional :ref:`linkage type <linkage>` and an optional
779:ref:`visibility style <visibility>`.
780
781Syntax::
782
783 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
784
785
David Majnemerdad0a642014-06-27 18:19:56 +0000786.. _langref_comdats:
787
788Comdats
789-------
790
791Comdat IR provides access to COFF and ELF object file COMDAT functionality.
792
Sean Silvaa1190322015-08-06 22:56:48 +0000793Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000794specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000795that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000796aliasee computes to, if any.
797
798Comdats have a selection kind to provide input on how the linker should
799choose between keys in two different object files.
800
801Syntax::
802
803 $<Name> = comdat SelectionKind
804
805The selection kind must be one of the following:
806
807``any``
808 The linker may choose any COMDAT key, the choice is arbitrary.
809``exactmatch``
810 The linker may choose any COMDAT key but the sections must contain the
811 same data.
812``largest``
813 The linker will choose the section containing the largest COMDAT key.
814``noduplicates``
815 The linker requires that only section with this COMDAT key exist.
816``samesize``
817 The linker may choose any COMDAT key but the sections must contain the
818 same amount of data.
819
820Note that the Mach-O platform doesn't support COMDATs and ELF only supports
821``any`` as a selection kind.
822
823Here is an example of a COMDAT group where a function will only be selected if
824the COMDAT key's section is the largest:
825
826.. code-block:: llvm
827
828 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000829 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000830
Rafael Espindola83a362c2015-01-06 22:55:16 +0000831 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000832 ret void
833 }
834
Rafael Espindola83a362c2015-01-06 22:55:16 +0000835As a syntactic sugar the ``$name`` can be omitted if the name is the same as
836the global name:
837
838.. code-block:: llvm
839
840 $foo = comdat any
841 @foo = global i32 2, comdat
842
843
David Majnemerdad0a642014-06-27 18:19:56 +0000844In a COFF object file, this will create a COMDAT section with selection kind
845``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
846and another COMDAT section with selection kind
847``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000848section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000849
850There are some restrictions on the properties of the global object.
851It, or an alias to it, must have the same name as the COMDAT group when
852targeting COFF.
853The contents and size of this object may be used during link-time to determine
854which COMDAT groups get selected depending on the selection kind.
855Because the name of the object must match the name of the COMDAT group, the
856linkage of the global object must not be local; local symbols can get renamed
857if a collision occurs in the symbol table.
858
859The combined use of COMDATS and section attributes may yield surprising results.
860For example:
861
862.. code-block:: llvm
863
864 $foo = comdat any
865 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 @g1 = global i32 42, section "sec", comdat($foo)
867 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000868
869From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000870with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000871COMDAT groups and COMDATs, at the object file level, are represented by
872sections.
873
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000874Note that certain IR constructs like global variables and functions may
875create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000876COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000877in individual sections (e.g. when `-data-sections` or `-function-sections`
878is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000879
Sean Silvab084af42012-12-07 10:36:55 +0000880.. _namedmetadatastructure:
881
882Named Metadata
883--------------
884
885Named metadata is a collection of metadata. :ref:`Metadata
886nodes <metadata>` (but not metadata strings) are the only valid
887operands for a named metadata.
888
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000889#. Named metadata are represented as a string of characters with the
890 metadata prefix. The rules for metadata names are the same as for
891 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
892 are still valid, which allows any character to be part of a name.
893
Sean Silvab084af42012-12-07 10:36:55 +0000894Syntax::
895
896 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000897 !0 = !{!"zero"}
898 !1 = !{!"one"}
899 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000900 ; A named metadata.
901 !name = !{!0, !1, !2}
902
903.. _paramattrs:
904
905Parameter Attributes
906--------------------
907
908The return type and each parameter of a function type may have a set of
909*parameter attributes* associated with them. Parameter attributes are
910used to communicate additional information about the result or
911parameters of a function. Parameter attributes are considered to be part
912of the function, not of the function type, so functions with different
913parameter attributes can have the same function type.
914
915Parameter attributes are simple keywords that follow the type specified.
916If multiple parameter attributes are needed, they are space separated.
917For example:
918
919.. code-block:: llvm
920
921 declare i32 @printf(i8* noalias nocapture, ...)
922 declare i32 @atoi(i8 zeroext)
923 declare signext i8 @returns_signed_char()
924
925Note that any attributes for the function result (``nounwind``,
926``readonly``) come immediately after the argument list.
927
928Currently, only the following parameter attributes are defined:
929
930``zeroext``
931 This indicates to the code generator that the parameter or return
932 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000933 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000934``signext``
935 This indicates to the code generator that the parameter or return
936 value should be sign-extended to the extent required by the target's
937 ABI (which is usually 32-bits) by the caller (for a parameter) or
938 the callee (for a return value).
939``inreg``
940 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000941 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000942 a function call or return (usually, by putting it in a register as
943 opposed to memory, though some targets use it to distinguish between
944 two different kinds of registers). Use of this attribute is
945 target-specific.
946``byval``
947 This indicates that the pointer parameter should really be passed by
948 value to the function. The attribute implies that a hidden copy of
949 the pointee is made between the caller and the callee, so the callee
950 is unable to modify the value in the caller. This attribute is only
951 valid on LLVM pointer arguments. It is generally used to pass
952 structs and arrays by value, but is also valid on pointers to
953 scalars. The copy is considered to belong to the caller not the
954 callee (for example, ``readonly`` functions should not write to
955 ``byval`` parameters). This is not a valid attribute for return
956 values.
957
958 The byval attribute also supports specifying an alignment with the
959 align attribute. It indicates the alignment of the stack slot to
960 form and the known alignment of the pointer specified to the call
961 site. If the alignment is not specified, then the code generator
962 makes a target-specific assumption.
963
Reid Klecknera534a382013-12-19 02:14:12 +0000964.. _attr_inalloca:
965
966``inalloca``
967
Reid Kleckner60d3a832014-01-16 22:59:24 +0000968 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000969 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000970 be a pointer to stack memory produced by an ``alloca`` instruction.
971 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000972 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000973 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000974
Reid Kleckner436c42e2014-01-17 23:58:17 +0000975 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000976 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000977 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000978 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000979 ``inalloca`` attribute also disables LLVM's implicit lowering of
980 large aggregate return values, which means that frontend authors
981 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000982
Reid Kleckner60d3a832014-01-16 22:59:24 +0000983 When the call site is reached, the argument allocation must have
984 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000985 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000986 space after an argument allocation and before its call site, but it
987 must be cleared off with :ref:`llvm.stackrestore
988 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000989
990 See :doc:`InAlloca` for more information on how to use this
991 attribute.
992
Sean Silvab084af42012-12-07 10:36:55 +0000993``sret``
994 This indicates that the pointer parameter specifies the address of a
995 structure that is the return value of the function in the source
996 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000997 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000998 not to trap and to be properly aligned. This may only be applied to
999 the first parameter. This is not a valid attribute for return
1000 values.
Sean Silva1703e702014-04-08 21:06:22 +00001001
Hal Finkelccc70902014-07-22 16:58:55 +00001002``align <n>``
1003 This indicates that the pointer value may be assumed by the optimizer to
1004 have the specified alignment.
1005
1006 Note that this attribute has additional semantics when combined with the
1007 ``byval`` attribute.
1008
Sean Silva1703e702014-04-08 21:06:22 +00001009.. _noalias:
1010
Sean Silvab084af42012-12-07 10:36:55 +00001011``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001012 This indicates that objects accessed via pointer values
1013 :ref:`based <pointeraliasing>` on the argument or return value are not also
1014 accessed, during the execution of the function, via pointer values not
1015 *based* on the argument or return value. The attribute on a return value
1016 also has additional semantics described below. The caller shares the
1017 responsibility with the callee for ensuring that these requirements are met.
1018 For further details, please see the discussion of the NoAlias response in
1019 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001020
1021 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001022 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001023
1024 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001025 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1026 attribute on return values are stronger than the semantics of the attribute
1027 when used on function arguments. On function return values, the ``noalias``
1028 attribute indicates that the function acts like a system memory allocation
1029 function, returning a pointer to allocated storage disjoint from the
1030 storage for any other object accessible to the caller.
1031
Sean Silvab084af42012-12-07 10:36:55 +00001032``nocapture``
1033 This indicates that the callee does not make any copies of the
1034 pointer that outlive the callee itself. This is not a valid
1035 attribute for return values.
1036
1037.. _nest:
1038
1039``nest``
1040 This indicates that the pointer parameter can be excised using the
1041 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001042 attribute for return values and can only be applied to one parameter.
1043
1044``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001045 This indicates that the function always returns the argument as its return
1046 value. This is an optimization hint to the code generator when generating
1047 the caller, allowing tail call optimization and omission of register saves
1048 and restores in some cases; it is not checked or enforced when generating
1049 the callee. The parameter and the function return type must be valid
1050 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1051 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001052
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001053``nonnull``
1054 This indicates that the parameter or return pointer is not null. This
1055 attribute may only be applied to pointer typed parameters. This is not
1056 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001058 is non-null.
1059
Hal Finkelb0407ba2014-07-18 15:51:28 +00001060``dereferenceable(<n>)``
1061 This indicates that the parameter or return pointer is dereferenceable. This
1062 attribute may only be applied to pointer typed parameters. A pointer that
1063 is dereferenceable can be loaded from speculatively without a risk of
1064 trapping. The number of bytes known to be dereferenceable must be provided
1065 in parentheses. It is legal for the number of bytes to be less than the
1066 size of the pointee type. The ``nonnull`` attribute does not imply
1067 dereferenceability (consider a pointer to one element past the end of an
1068 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1069 ``addrspace(0)`` (which is the default address space).
1070
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001071``dereferenceable_or_null(<n>)``
1072 This indicates that the parameter or return value isn't both
1073 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001074 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001075 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1076 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1077 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1078 and in other address spaces ``dereferenceable_or_null(<n>)``
1079 implies that a pointer is at least one of ``dereferenceable(<n>)``
1080 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001081 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001082 pointer typed parameters.
1083
Manman Renf46262e2016-03-29 17:37:21 +00001084``swiftself``
1085 This indicates that the parameter is the self/context parameter. This is not
1086 a valid attribute for return values and can only be applied to one
1087 parameter.
1088
Manman Ren9bfd0d02016-04-01 21:41:15 +00001089``swifterror``
1090 This attribute is motivated to model and optimize Swift error handling. It
1091 can be applied to a parameter with pointer to pointer type or a
1092 pointer-sized alloca. At the call site, the actual argument that corresponds
1093 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca. A
1094 ``swifterror`` value (either the parameter or the alloca) can only be loaded
1095 and stored from, or used as a ``swifterror`` argument. This is not a valid
1096 attribute for return values and can only be applied to one parameter.
1097
1098 These constraints allow the calling convention to optimize access to
1099 ``swifterror`` variables by associating them with a specific register at
1100 call boundaries rather than placing them in memory. Since this does change
1101 the calling convention, a function which uses the ``swifterror`` attribute
1102 on a parameter is not ABI-compatible with one which does not.
1103
1104 These constraints also allow LLVM to assume that a ``swifterror`` argument
1105 does not alias any other memory visible within a function and that a
1106 ``swifterror`` alloca passed as an argument does not escape.
1107
Sean Silvab084af42012-12-07 10:36:55 +00001108.. _gc:
1109
Philip Reamesf80bbff2015-02-25 23:45:20 +00001110Garbage Collector Strategy Names
1111--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001112
Philip Reamesf80bbff2015-02-25 23:45:20 +00001113Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001114string:
1115
1116.. code-block:: llvm
1117
1118 define void @f() gc "name" { ... }
1119
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001120The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001121<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001122strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001123named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001124garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001125which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001126
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001127.. _prefixdata:
1128
1129Prefix Data
1130-----------
1131
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001132Prefix data is data associated with a function which the code
1133generator will emit immediately before the function's entrypoint.
1134The purpose of this feature is to allow frontends to associate
1135language-specific runtime metadata with specific functions and make it
1136available through the function pointer while still allowing the
1137function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001138
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001139To access the data for a given function, a program may bitcast the
1140function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001141index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001142the prefix data. For instance, take the example of a function annotated
1143with a single ``i32``,
1144
1145.. code-block:: llvm
1146
1147 define void @f() prefix i32 123 { ... }
1148
1149The prefix data can be referenced as,
1150
1151.. code-block:: llvm
1152
David Blaikie16a97eb2015-03-04 22:02:58 +00001153 %0 = bitcast void* () @f to i32*
1154 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001155 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001156
1157Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001158of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001159beginning of the prefix data is aligned. This means that if the size
1160of the prefix data is not a multiple of the alignment size, the
1161function's entrypoint will not be aligned. If alignment of the
1162function's entrypoint is desired, padding must be added to the prefix
1163data.
1164
Sean Silvaa1190322015-08-06 22:56:48 +00001165A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001166to the ``available_externally`` linkage in that the data may be used by the
1167optimizers but will not be emitted in the object file.
1168
1169.. _prologuedata:
1170
1171Prologue Data
1172-------------
1173
1174The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1175be inserted prior to the function body. This can be used for enabling
1176function hot-patching and instrumentation.
1177
1178To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001179have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001180bytes which decode to a sequence of machine instructions, valid for the
1181module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001182the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001183the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001184definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001185makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001186
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001187A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001188which encodes the ``nop`` instruction:
1189
1190.. code-block:: llvm
1191
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001192 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001193
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001194Generally prologue data can be formed by encoding a relative branch instruction
1195which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001196x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1197
1198.. code-block:: llvm
1199
1200 %0 = type <{ i8, i8, i8* }>
1201
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001203
Sean Silvaa1190322015-08-06 22:56:48 +00001204A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001205to the ``available_externally`` linkage in that the data may be used by the
1206optimizers but will not be emitted in the object file.
1207
David Majnemer7fddecc2015-06-17 20:52:32 +00001208.. _personalityfn:
1209
1210Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001211--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001212
1213The ``personality`` attribute permits functions to specify what function
1214to use for exception handling.
1215
Bill Wendling63b88192013-02-06 06:52:58 +00001216.. _attrgrp:
1217
1218Attribute Groups
1219----------------
1220
1221Attribute groups are groups of attributes that are referenced by objects within
1222the IR. They are important for keeping ``.ll`` files readable, because a lot of
1223functions will use the same set of attributes. In the degenerative case of a
1224``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1225group will capture the important command line flags used to build that file.
1226
1227An attribute group is a module-level object. To use an attribute group, an
1228object references the attribute group's ID (e.g. ``#37``). An object may refer
1229to more than one attribute group. In that situation, the attributes from the
1230different groups are merged.
1231
1232Here is an example of attribute groups for a function that should always be
1233inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1234
1235.. code-block:: llvm
1236
1237 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001238 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001239
1240 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001241 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001242
1243 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1244 define void @f() #0 #1 { ... }
1245
Sean Silvab084af42012-12-07 10:36:55 +00001246.. _fnattrs:
1247
1248Function Attributes
1249-------------------
1250
1251Function attributes are set to communicate additional information about
1252a function. Function attributes are considered to be part of the
1253function, not of the function type, so functions with different function
1254attributes can have the same function type.
1255
1256Function attributes are simple keywords that follow the type specified.
1257If multiple attributes are needed, they are space separated. For
1258example:
1259
1260.. code-block:: llvm
1261
1262 define void @f() noinline { ... }
1263 define void @f() alwaysinline { ... }
1264 define void @f() alwaysinline optsize { ... }
1265 define void @f() optsize { ... }
1266
Sean Silvab084af42012-12-07 10:36:55 +00001267``alignstack(<n>)``
1268 This attribute indicates that, when emitting the prologue and
1269 epilogue, the backend should forcibly align the stack pointer.
1270 Specify the desired alignment, which must be a power of two, in
1271 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001272``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1273 This attribute indicates that the annotated function will always return at
1274 least a given number of bytes (or null). Its arguments are zero-indexed
1275 parameter numbers; if one argument is provided, then it's assumed that at
1276 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1277 returned pointer. If two are provided, then it's assumed that
1278 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1279 available. The referenced parameters must be integer types. No assumptions
1280 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001281``alwaysinline``
1282 This attribute indicates that the inliner should attempt to inline
1283 this function into callers whenever possible, ignoring any active
1284 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001285``builtin``
1286 This indicates that the callee function at a call site should be
1287 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001288 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001289 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001290 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001291``cold``
1292 This attribute indicates that this function is rarely called. When
1293 computing edge weights, basic blocks post-dominated by a cold
1294 function call are also considered to be cold; and, thus, given low
1295 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001296``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001297 In some parallel execution models, there exist operations that cannot be
1298 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001299 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001300
Justin Lebar58535b12016-02-17 17:46:41 +00001301 The ``convergent`` attribute may appear on functions or call/invoke
1302 instructions. When it appears on a function, it indicates that calls to
1303 this function should not be made control-dependent on additional values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001304 For example, the intrinsic ``llvm.cuda.syncthreads`` is ``convergent``, so
1305 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001306 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001307
Justin Lebar58535b12016-02-17 17:46:41 +00001308 When it appears on a call/invoke, the ``convergent`` attribute indicates
1309 that we should treat the call as though we're calling a convergent
1310 function. This is particularly useful on indirect calls; without this we
1311 may treat such calls as though the target is non-convergent.
1312
1313 The optimizer may remove the ``convergent`` attribute on functions when it
1314 can prove that the function does not execute any convergent operations.
1315 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1316 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001317``inaccessiblememonly``
1318 This attribute indicates that the function may only access memory that
1319 is not accessible by the module being compiled. This is a weaker form
1320 of ``readnone``.
1321``inaccessiblemem_or_argmemonly``
1322 This attribute indicates that the function may only access memory that is
1323 either not accessible by the module being compiled, or is pointed to
1324 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001325``inlinehint``
1326 This attribute indicates that the source code contained a hint that
1327 inlining this function is desirable (such as the "inline" keyword in
1328 C/C++). It is just a hint; it imposes no requirements on the
1329 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001330``jumptable``
1331 This attribute indicates that the function should be added to a
1332 jump-instruction table at code-generation time, and that all address-taken
1333 references to this function should be replaced with a reference to the
1334 appropriate jump-instruction-table function pointer. Note that this creates
1335 a new pointer for the original function, which means that code that depends
1336 on function-pointer identity can break. So, any function annotated with
1337 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001338``minsize``
1339 This attribute suggests that optimization passes and code generator
1340 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001341 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001342 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001343``naked``
1344 This attribute disables prologue / epilogue emission for the
1345 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001346``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001347 This indicates that the callee function at a call site is not recognized as
1348 a built-in function. LLVM will retain the original call and not replace it
1349 with equivalent code based on the semantics of the built-in function, unless
1350 the call site uses the ``builtin`` attribute. This is valid at call sites
1351 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001352``noduplicate``
1353 This attribute indicates that calls to the function cannot be
1354 duplicated. A call to a ``noduplicate`` function may be moved
1355 within its parent function, but may not be duplicated within
1356 its parent function.
1357
1358 A function containing a ``noduplicate`` call may still
1359 be an inlining candidate, provided that the call is not
1360 duplicated by inlining. That implies that the function has
1361 internal linkage and only has one call site, so the original
1362 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001363``noimplicitfloat``
1364 This attributes disables implicit floating point instructions.
1365``noinline``
1366 This attribute indicates that the inliner should never inline this
1367 function in any situation. This attribute may not be used together
1368 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001369``nonlazybind``
1370 This attribute suppresses lazy symbol binding for the function. This
1371 may make calls to the function faster, at the cost of extra program
1372 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001373``noredzone``
1374 This attribute indicates that the code generator should not use a
1375 red zone, even if the target-specific ABI normally permits it.
1376``noreturn``
1377 This function attribute indicates that the function never returns
1378 normally. This produces undefined behavior at runtime if the
1379 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001380``norecurse``
1381 This function attribute indicates that the function does not call itself
1382 either directly or indirectly down any possible call path. This produces
1383 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001384``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001385 This function attribute indicates that the function never raises an
1386 exception. If the function does raise an exception, its runtime
1387 behavior is undefined. However, functions marked nounwind may still
1388 trap or generate asynchronous exceptions. Exception handling schemes
1389 that are recognized by LLVM to handle asynchronous exceptions, such
1390 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001391``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001392 This function attribute indicates that most optimization passes will skip
1393 this function, with the exception of interprocedural optimization passes.
1394 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001395 This attribute cannot be used together with the ``alwaysinline``
1396 attribute; this attribute is also incompatible
1397 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001398
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001399 This attribute requires the ``noinline`` attribute to be specified on
1400 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001401 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001402 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001403``optsize``
1404 This attribute suggests that optimization passes and code generator
1405 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001406 and otherwise do optimizations specifically to reduce code size as
1407 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001408``"patchable-function"``
1409 This attribute tells the code generator that the code
1410 generated for this function needs to follow certain conventions that
1411 make it possible for a runtime function to patch over it later.
1412 The exact effect of this attribute depends on its string value,
1413 for which there currently is one legal possiblity:
1414
1415 * ``"prologue-short-redirect"`` - This style of patchable
1416 function is intended to support patching a function prologue to
1417 redirect control away from the function in a thread safe
1418 manner. It guarantees that the first instruction of the
1419 function will be large enough to accommodate a short jump
1420 instruction, and will be sufficiently aligned to allow being
1421 fully changed via an atomic compare-and-swap instruction.
1422 While the first requirement can be satisfied by inserting large
1423 enough NOP, LLVM can and will try to re-purpose an existing
1424 instruction (i.e. one that would have to be emitted anyway) as
1425 the patchable instruction larger than a short jump.
1426
1427 ``"prologue-short-redirect"`` is currently only supported on
1428 x86-64.
1429
1430 This attribute by itself does not imply restrictions on
1431 inter-procedural optimizations. All of the semantic effects the
1432 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001433``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001434 On a function, this attribute indicates that the function computes its
1435 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001436 without dereferencing any pointer arguments or otherwise accessing
1437 any mutable state (e.g. memory, control registers, etc) visible to
1438 caller functions. It does not write through any pointer arguments
1439 (including ``byval`` arguments) and never changes any state visible
1440 to callers. This means that it cannot unwind exceptions by calling
1441 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001442
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001443 On an argument, this attribute indicates that the function does not
1444 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001445 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001446``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001447 On a function, this attribute indicates that the function does not write
1448 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001449 modify any state (e.g. memory, control registers, etc) visible to
1450 caller functions. It may dereference pointer arguments and read
1451 state that may be set in the caller. A readonly function always
1452 returns the same value (or unwinds an exception identically) when
1453 called with the same set of arguments and global state. It cannot
1454 unwind an exception by calling the ``C++`` exception throwing
1455 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001456
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001457 On an argument, this attribute indicates that the function does not write
1458 through this pointer argument, even though it may write to the memory that
1459 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001460``argmemonly``
1461 This attribute indicates that the only memory accesses inside function are
1462 loads and stores from objects pointed to by its pointer-typed arguments,
1463 with arbitrary offsets. Or in other words, all memory operations in the
1464 function can refer to memory only using pointers based on its function
1465 arguments.
1466 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1467 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001468``returns_twice``
1469 This attribute indicates that this function can return twice. The C
1470 ``setjmp`` is an example of such a function. The compiler disables
1471 some optimizations (like tail calls) in the caller of these
1472 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001473``safestack``
1474 This attribute indicates that
1475 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1476 protection is enabled for this function.
1477
1478 If a function that has a ``safestack`` attribute is inlined into a
1479 function that doesn't have a ``safestack`` attribute or which has an
1480 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1481 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001482``sanitize_address``
1483 This attribute indicates that AddressSanitizer checks
1484 (dynamic address safety analysis) are enabled for this function.
1485``sanitize_memory``
1486 This attribute indicates that MemorySanitizer checks (dynamic detection
1487 of accesses to uninitialized memory) are enabled for this function.
1488``sanitize_thread``
1489 This attribute indicates that ThreadSanitizer checks
1490 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001491``ssp``
1492 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001493 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001494 placed on the stack before the local variables that's checked upon
1495 return from the function to see if it has been overwritten. A
1496 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001497 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001498
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001499 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1500 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1501 - Calls to alloca() with variable sizes or constant sizes greater than
1502 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001503
Josh Magee24c7f062014-02-01 01:36:16 +00001504 Variables that are identified as requiring a protector will be arranged
1505 on the stack such that they are adjacent to the stack protector guard.
1506
Sean Silvab084af42012-12-07 10:36:55 +00001507 If a function that has an ``ssp`` attribute is inlined into a
1508 function that doesn't have an ``ssp`` attribute, then the resulting
1509 function will have an ``ssp`` attribute.
1510``sspreq``
1511 This attribute indicates that the function should *always* emit a
1512 stack smashing protector. This overrides the ``ssp`` function
1513 attribute.
1514
Josh Magee24c7f062014-02-01 01:36:16 +00001515 Variables that are identified as requiring a protector will be arranged
1516 on the stack such that they are adjacent to the stack protector guard.
1517 The specific layout rules are:
1518
1519 #. Large arrays and structures containing large arrays
1520 (``>= ssp-buffer-size``) are closest to the stack protector.
1521 #. Small arrays and structures containing small arrays
1522 (``< ssp-buffer-size``) are 2nd closest to the protector.
1523 #. Variables that have had their address taken are 3rd closest to the
1524 protector.
1525
Sean Silvab084af42012-12-07 10:36:55 +00001526 If a function that has an ``sspreq`` attribute is inlined into a
1527 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001528 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1529 an ``sspreq`` attribute.
1530``sspstrong``
1531 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001532 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001533 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001534 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001535
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001536 - Arrays of any size and type
1537 - Aggregates containing an array of any size and type.
1538 - Calls to alloca().
1539 - Local variables that have had their address taken.
1540
Josh Magee24c7f062014-02-01 01:36:16 +00001541 Variables that are identified as requiring a protector will be arranged
1542 on the stack such that they are adjacent to the stack protector guard.
1543 The specific layout rules are:
1544
1545 #. Large arrays and structures containing large arrays
1546 (``>= ssp-buffer-size``) are closest to the stack protector.
1547 #. Small arrays and structures containing small arrays
1548 (``< ssp-buffer-size``) are 2nd closest to the protector.
1549 #. Variables that have had their address taken are 3rd closest to the
1550 protector.
1551
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001552 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001553
1554 If a function that has an ``sspstrong`` attribute is inlined into a
1555 function that doesn't have an ``sspstrong`` attribute, then the
1556 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001557``"thunk"``
1558 This attribute indicates that the function will delegate to some other
1559 function with a tail call. The prototype of a thunk should not be used for
1560 optimization purposes. The caller is expected to cast the thunk prototype to
1561 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001562``uwtable``
1563 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001564 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001565 show that no exceptions passes by it. This is normally the case for
1566 the ELF x86-64 abi, but it can be disabled for some compilation
1567 units.
Sean Silvab084af42012-12-07 10:36:55 +00001568
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001569
1570.. _opbundles:
1571
1572Operand Bundles
1573---------------
1574
1575Note: operand bundles are a work in progress, and they should be
1576considered experimental at this time.
1577
1578Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001579with certain LLVM instructions (currently only ``call`` s and
1580``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001581incorrect and will change program semantics.
1582
1583Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001584
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001585 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001586 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1587 bundle operand ::= SSA value
1588 tag ::= string constant
1589
1590Operand bundles are **not** part of a function's signature, and a
1591given function may be called from multiple places with different kinds
1592of operand bundles. This reflects the fact that the operand bundles
1593are conceptually a part of the ``call`` (or ``invoke``), not the
1594callee being dispatched to.
1595
1596Operand bundles are a generic mechanism intended to support
1597runtime-introspection-like functionality for managed languages. While
1598the exact semantics of an operand bundle depend on the bundle tag,
1599there are certain limitations to how much the presence of an operand
1600bundle can influence the semantics of a program. These restrictions
1601are described as the semantics of an "unknown" operand bundle. As
1602long as the behavior of an operand bundle is describable within these
1603restrictions, LLVM does not need to have special knowledge of the
1604operand bundle to not miscompile programs containing it.
1605
David Majnemer34cacb42015-10-22 01:46:38 +00001606- The bundle operands for an unknown operand bundle escape in unknown
1607 ways before control is transferred to the callee or invokee.
1608- Calls and invokes with operand bundles have unknown read / write
1609 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001610 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001611 callsite specific attributes.
1612- An operand bundle at a call site cannot change the implementation
1613 of the called function. Inter-procedural optimizations work as
1614 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001615
Sanjoy Dascdafd842015-11-11 21:38:02 +00001616More specific types of operand bundles are described below.
1617
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001618.. _deopt_opbundles:
1619
Sanjoy Dascdafd842015-11-11 21:38:02 +00001620Deoptimization Operand Bundles
1621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1622
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001623Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001624operand bundle tag. These operand bundles represent an alternate
1625"safe" continuation for the call site they're attached to, and can be
1626used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001627specified call site. There can be at most one ``"deopt"`` operand
1628bundle attached to a call site. Exact details of deoptimization is
1629out of scope for the language reference, but it usually involves
1630rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001631
1632From the compiler's perspective, deoptimization operand bundles make
1633the call sites they're attached to at least ``readonly``. They read
1634through all of their pointer typed operands (even if they're not
1635otherwise escaped) and the entire visible heap. Deoptimization
1636operand bundles do not capture their operands except during
1637deoptimization, in which case control will not be returned to the
1638compiled frame.
1639
Sanjoy Das2d161452015-11-18 06:23:38 +00001640The inliner knows how to inline through calls that have deoptimization
1641operand bundles. Just like inlining through a normal call site
1642involves composing the normal and exceptional continuations, inlining
1643through a call site with a deoptimization operand bundle needs to
1644appropriately compose the "safe" deoptimization continuation. The
1645inliner does this by prepending the parent's deoptimization
1646continuation to every deoptimization continuation in the inlined body.
1647E.g. inlining ``@f`` into ``@g`` in the following example
1648
1649.. code-block:: llvm
1650
1651 define void @f() {
1652 call void @x() ;; no deopt state
1653 call void @y() [ "deopt"(i32 10) ]
1654 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1655 ret void
1656 }
1657
1658 define void @g() {
1659 call void @f() [ "deopt"(i32 20) ]
1660 ret void
1661 }
1662
1663will result in
1664
1665.. code-block:: llvm
1666
1667 define void @g() {
1668 call void @x() ;; still no deopt state
1669 call void @y() [ "deopt"(i32 20, i32 10) ]
1670 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1671 ret void
1672 }
1673
1674It is the frontend's responsibility to structure or encode the
1675deoptimization state in a way that syntactically prepending the
1676caller's deoptimization state to the callee's deoptimization state is
1677semantically equivalent to composing the caller's deoptimization
1678continuation after the callee's deoptimization continuation.
1679
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001680.. _ob_funclet:
1681
David Majnemer3bb88c02015-12-15 21:27:27 +00001682Funclet Operand Bundles
1683^^^^^^^^^^^^^^^^^^^^^^^
1684
1685Funclet operand bundles are characterized by the ``"funclet"``
1686operand bundle tag. These operand bundles indicate that a call site
1687is within a particular funclet. There can be at most one
1688``"funclet"`` operand bundle attached to a call site and it must have
1689exactly one bundle operand.
1690
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001691If any funclet EH pads have been "entered" but not "exited" (per the
1692`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1693it is undefined behavior to execute a ``call`` or ``invoke`` which:
1694
1695* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1696 intrinsic, or
1697* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1698 not-yet-exited funclet EH pad.
1699
1700Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1701executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1702
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001703GC Transition Operand Bundles
1704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1705
1706GC transition operand bundles are characterized by the
1707``"gc-transition"`` operand bundle tag. These operand bundles mark a
1708call as a transition between a function with one GC strategy to a
1709function with a different GC strategy. If coordinating the transition
1710between GC strategies requires additional code generation at the call
1711site, these bundles may contain any values that are needed by the
1712generated code. For more details, see :ref:`GC Transitions
1713<gc_transition_args>`.
1714
Sean Silvab084af42012-12-07 10:36:55 +00001715.. _moduleasm:
1716
1717Module-Level Inline Assembly
1718----------------------------
1719
1720Modules may contain "module-level inline asm" blocks, which corresponds
1721to the GCC "file scope inline asm" blocks. These blocks are internally
1722concatenated by LLVM and treated as a single unit, but may be separated
1723in the ``.ll`` file if desired. The syntax is very simple:
1724
1725.. code-block:: llvm
1726
1727 module asm "inline asm code goes here"
1728 module asm "more can go here"
1729
1730The strings can contain any character by escaping non-printable
1731characters. The escape sequence used is simply "\\xx" where "xx" is the
1732two digit hex code for the number.
1733
James Y Knightbc832ed2015-07-08 18:08:36 +00001734Note that the assembly string *must* be parseable by LLVM's integrated assembler
1735(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001736
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001737.. _langref_datalayout:
1738
Sean Silvab084af42012-12-07 10:36:55 +00001739Data Layout
1740-----------
1741
1742A module may specify a target specific data layout string that specifies
1743how data is to be laid out in memory. The syntax for the data layout is
1744simply:
1745
1746.. code-block:: llvm
1747
1748 target datalayout = "layout specification"
1749
1750The *layout specification* consists of a list of specifications
1751separated by the minus sign character ('-'). Each specification starts
1752with a letter and may include other information after the letter to
1753define some aspect of the data layout. The specifications accepted are
1754as follows:
1755
1756``E``
1757 Specifies that the target lays out data in big-endian form. That is,
1758 the bits with the most significance have the lowest address
1759 location.
1760``e``
1761 Specifies that the target lays out data in little-endian form. That
1762 is, the bits with the least significance have the lowest address
1763 location.
1764``S<size>``
1765 Specifies the natural alignment of the stack in bits. Alignment
1766 promotion of stack variables is limited to the natural stack
1767 alignment to avoid dynamic stack realignment. The stack alignment
1768 must be a multiple of 8-bits. If omitted, the natural stack
1769 alignment defaults to "unspecified", which does not prevent any
1770 alignment promotions.
1771``p[n]:<size>:<abi>:<pref>``
1772 This specifies the *size* of a pointer and its ``<abi>`` and
1773 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001774 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001775 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001776 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001777``i<size>:<abi>:<pref>``
1778 This specifies the alignment for an integer type of a given bit
1779 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1780``v<size>:<abi>:<pref>``
1781 This specifies the alignment for a vector type of a given bit
1782 ``<size>``.
1783``f<size>:<abi>:<pref>``
1784 This specifies the alignment for a floating point type of a given bit
1785 ``<size>``. Only values of ``<size>`` that are supported by the target
1786 will work. 32 (float) and 64 (double) are supported on all targets; 80
1787 or 128 (different flavors of long double) are also supported on some
1788 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001789``a:<abi>:<pref>``
1790 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001791``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001792 If present, specifies that llvm names are mangled in the output. The
1793 options are
1794
1795 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1796 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1797 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1798 symbols get a ``_`` prefix.
1799 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1800 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001801 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1802 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001803``n<size1>:<size2>:<size3>...``
1804 This specifies a set of native integer widths for the target CPU in
1805 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1806 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1807 this set are considered to support most general arithmetic operations
1808 efficiently.
1809
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001810On every specification that takes a ``<abi>:<pref>``, specifying the
1811``<pref>`` alignment is optional. If omitted, the preceding ``:``
1812should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1813
Sean Silvab084af42012-12-07 10:36:55 +00001814When constructing the data layout for a given target, LLVM starts with a
1815default set of specifications which are then (possibly) overridden by
1816the specifications in the ``datalayout`` keyword. The default
1817specifications are given in this list:
1818
1819- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001820- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1821- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1822 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001823- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001824- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1825- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1826- ``i16:16:16`` - i16 is 16-bit aligned
1827- ``i32:32:32`` - i32 is 32-bit aligned
1828- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1829 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001830- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001831- ``f32:32:32`` - float is 32-bit aligned
1832- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001833- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001834- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1835- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001836- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001837
1838When LLVM is determining the alignment for a given type, it uses the
1839following rules:
1840
1841#. If the type sought is an exact match for one of the specifications,
1842 that specification is used.
1843#. If no match is found, and the type sought is an integer type, then
1844 the smallest integer type that is larger than the bitwidth of the
1845 sought type is used. If none of the specifications are larger than
1846 the bitwidth then the largest integer type is used. For example,
1847 given the default specifications above, the i7 type will use the
1848 alignment of i8 (next largest) while both i65 and i256 will use the
1849 alignment of i64 (largest specified).
1850#. If no match is found, and the type sought is a vector type, then the
1851 largest vector type that is smaller than the sought vector type will
1852 be used as a fall back. This happens because <128 x double> can be
1853 implemented in terms of 64 <2 x double>, for example.
1854
1855The function of the data layout string may not be what you expect.
1856Notably, this is not a specification from the frontend of what alignment
1857the code generator should use.
1858
1859Instead, if specified, the target data layout is required to match what
1860the ultimate *code generator* expects. This string is used by the
1861mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001862what the ultimate code generator uses. There is no way to generate IR
1863that does not embed this target-specific detail into the IR. If you
1864don't specify the string, the default specifications will be used to
1865generate a Data Layout and the optimization phases will operate
1866accordingly and introduce target specificity into the IR with respect to
1867these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001868
Bill Wendling5cc90842013-10-18 23:41:25 +00001869.. _langref_triple:
1870
1871Target Triple
1872-------------
1873
1874A module may specify a target triple string that describes the target
1875host. The syntax for the target triple is simply:
1876
1877.. code-block:: llvm
1878
1879 target triple = "x86_64-apple-macosx10.7.0"
1880
1881The *target triple* string consists of a series of identifiers delimited
1882by the minus sign character ('-'). The canonical forms are:
1883
1884::
1885
1886 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1887 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1888
1889This information is passed along to the backend so that it generates
1890code for the proper architecture. It's possible to override this on the
1891command line with the ``-mtriple`` command line option.
1892
Sean Silvab084af42012-12-07 10:36:55 +00001893.. _pointeraliasing:
1894
1895Pointer Aliasing Rules
1896----------------------
1897
1898Any memory access must be done through a pointer value associated with
1899an address range of the memory access, otherwise the behavior is
1900undefined. Pointer values are associated with address ranges according
1901to the following rules:
1902
1903- A pointer value is associated with the addresses associated with any
1904 value it is *based* on.
1905- An address of a global variable is associated with the address range
1906 of the variable's storage.
1907- The result value of an allocation instruction is associated with the
1908 address range of the allocated storage.
1909- A null pointer in the default address-space is associated with no
1910 address.
1911- An integer constant other than zero or a pointer value returned from
1912 a function not defined within LLVM may be associated with address
1913 ranges allocated through mechanisms other than those provided by
1914 LLVM. Such ranges shall not overlap with any ranges of addresses
1915 allocated by mechanisms provided by LLVM.
1916
1917A pointer value is *based* on another pointer value according to the
1918following rules:
1919
1920- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001921 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001922- The result value of a ``bitcast`` is *based* on the operand of the
1923 ``bitcast``.
1924- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1925 values that contribute (directly or indirectly) to the computation of
1926 the pointer's value.
1927- The "*based* on" relationship is transitive.
1928
1929Note that this definition of *"based"* is intentionally similar to the
1930definition of *"based"* in C99, though it is slightly weaker.
1931
1932LLVM IR does not associate types with memory. The result type of a
1933``load`` merely indicates the size and alignment of the memory from
1934which to load, as well as the interpretation of the value. The first
1935operand type of a ``store`` similarly only indicates the size and
1936alignment of the store.
1937
1938Consequently, type-based alias analysis, aka TBAA, aka
1939``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1940:ref:`Metadata <metadata>` may be used to encode additional information
1941which specialized optimization passes may use to implement type-based
1942alias analysis.
1943
1944.. _volatile:
1945
1946Volatile Memory Accesses
1947------------------------
1948
1949Certain memory accesses, such as :ref:`load <i_load>`'s,
1950:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1951marked ``volatile``. The optimizers must not change the number of
1952volatile operations or change their order of execution relative to other
1953volatile operations. The optimizers *may* change the order of volatile
1954operations relative to non-volatile operations. This is not Java's
1955"volatile" and has no cross-thread synchronization behavior.
1956
Andrew Trick89fc5a62013-01-30 21:19:35 +00001957IR-level volatile loads and stores cannot safely be optimized into
1958llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1959flagged volatile. Likewise, the backend should never split or merge
1960target-legal volatile load/store instructions.
1961
Andrew Trick7e6f9282013-01-31 00:49:39 +00001962.. admonition:: Rationale
1963
1964 Platforms may rely on volatile loads and stores of natively supported
1965 data width to be executed as single instruction. For example, in C
1966 this holds for an l-value of volatile primitive type with native
1967 hardware support, but not necessarily for aggregate types. The
1968 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001969 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001970 do not violate the frontend's contract with the language.
1971
Sean Silvab084af42012-12-07 10:36:55 +00001972.. _memmodel:
1973
1974Memory Model for Concurrent Operations
1975--------------------------------------
1976
1977The LLVM IR does not define any way to start parallel threads of
1978execution or to register signal handlers. Nonetheless, there are
1979platform-specific ways to create them, and we define LLVM IR's behavior
1980in their presence. This model is inspired by the C++0x memory model.
1981
1982For a more informal introduction to this model, see the :doc:`Atomics`.
1983
1984We define a *happens-before* partial order as the least partial order
1985that
1986
1987- Is a superset of single-thread program order, and
1988- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1989 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1990 techniques, like pthread locks, thread creation, thread joining,
1991 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1992 Constraints <ordering>`).
1993
1994Note that program order does not introduce *happens-before* edges
1995between a thread and signals executing inside that thread.
1996
1997Every (defined) read operation (load instructions, memcpy, atomic
1998loads/read-modify-writes, etc.) R reads a series of bytes written by
1999(defined) write operations (store instructions, atomic
2000stores/read-modify-writes, memcpy, etc.). For the purposes of this
2001section, initialized globals are considered to have a write of the
2002initializer which is atomic and happens before any other read or write
2003of the memory in question. For each byte of a read R, R\ :sub:`byte`
2004may see any write to the same byte, except:
2005
2006- If write\ :sub:`1` happens before write\ :sub:`2`, and
2007 write\ :sub:`2` happens before R\ :sub:`byte`, then
2008 R\ :sub:`byte` does not see write\ :sub:`1`.
2009- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2010 R\ :sub:`byte` does not see write\ :sub:`3`.
2011
2012Given that definition, R\ :sub:`byte` is defined as follows:
2013
2014- If R is volatile, the result is target-dependent. (Volatile is
2015 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002016 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002017 like normal memory. It does not generally provide cross-thread
2018 synchronization.)
2019- Otherwise, if there is no write to the same byte that happens before
2020 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2021- Otherwise, if R\ :sub:`byte` may see exactly one write,
2022 R\ :sub:`byte` returns the value written by that write.
2023- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2024 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2025 Memory Ordering Constraints <ordering>` section for additional
2026 constraints on how the choice is made.
2027- Otherwise R\ :sub:`byte` returns ``undef``.
2028
2029R returns the value composed of the series of bytes it read. This
2030implies that some bytes within the value may be ``undef`` **without**
2031the entire value being ``undef``. Note that this only defines the
2032semantics of the operation; it doesn't mean that targets will emit more
2033than one instruction to read the series of bytes.
2034
2035Note that in cases where none of the atomic intrinsics are used, this
2036model places only one restriction on IR transformations on top of what
2037is required for single-threaded execution: introducing a store to a byte
2038which might not otherwise be stored is not allowed in general.
2039(Specifically, in the case where another thread might write to and read
2040from an address, introducing a store can change a load that may see
2041exactly one write into a load that may see multiple writes.)
2042
2043.. _ordering:
2044
2045Atomic Memory Ordering Constraints
2046----------------------------------
2047
2048Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2049:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2050:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002051ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002052the same address they *synchronize with*. These semantics are borrowed
2053from Java and C++0x, but are somewhat more colloquial. If these
2054descriptions aren't precise enough, check those specs (see spec
2055references in the :doc:`atomics guide <Atomics>`).
2056:ref:`fence <i_fence>` instructions treat these orderings somewhat
2057differently since they don't take an address. See that instruction's
2058documentation for details.
2059
2060For a simpler introduction to the ordering constraints, see the
2061:doc:`Atomics`.
2062
2063``unordered``
2064 The set of values that can be read is governed by the happens-before
2065 partial order. A value cannot be read unless some operation wrote
2066 it. This is intended to provide a guarantee strong enough to model
2067 Java's non-volatile shared variables. This ordering cannot be
2068 specified for read-modify-write operations; it is not strong enough
2069 to make them atomic in any interesting way.
2070``monotonic``
2071 In addition to the guarantees of ``unordered``, there is a single
2072 total order for modifications by ``monotonic`` operations on each
2073 address. All modification orders must be compatible with the
2074 happens-before order. There is no guarantee that the modification
2075 orders can be combined to a global total order for the whole program
2076 (and this often will not be possible). The read in an atomic
2077 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2078 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2079 order immediately before the value it writes. If one atomic read
2080 happens before another atomic read of the same address, the later
2081 read must see the same value or a later value in the address's
2082 modification order. This disallows reordering of ``monotonic`` (or
2083 stronger) operations on the same address. If an address is written
2084 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2085 read that address repeatedly, the other threads must eventually see
2086 the write. This corresponds to the C++0x/C1x
2087 ``memory_order_relaxed``.
2088``acquire``
2089 In addition to the guarantees of ``monotonic``, a
2090 *synchronizes-with* edge may be formed with a ``release`` operation.
2091 This is intended to model C++'s ``memory_order_acquire``.
2092``release``
2093 In addition to the guarantees of ``monotonic``, if this operation
2094 writes a value which is subsequently read by an ``acquire``
2095 operation, it *synchronizes-with* that operation. (This isn't a
2096 complete description; see the C++0x definition of a release
2097 sequence.) This corresponds to the C++0x/C1x
2098 ``memory_order_release``.
2099``acq_rel`` (acquire+release)
2100 Acts as both an ``acquire`` and ``release`` operation on its
2101 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2102``seq_cst`` (sequentially consistent)
2103 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002104 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002105 writes), there is a global total order on all
2106 sequentially-consistent operations on all addresses, which is
2107 consistent with the *happens-before* partial order and with the
2108 modification orders of all the affected addresses. Each
2109 sequentially-consistent read sees the last preceding write to the
2110 same address in this global order. This corresponds to the C++0x/C1x
2111 ``memory_order_seq_cst`` and Java volatile.
2112
2113.. _singlethread:
2114
2115If an atomic operation is marked ``singlethread``, it only *synchronizes
2116with* or participates in modification and seq\_cst total orderings with
2117other operations running in the same thread (for example, in signal
2118handlers).
2119
2120.. _fastmath:
2121
2122Fast-Math Flags
2123---------------
2124
2125LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2126:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002127:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2128be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002129
2130``nnan``
2131 No NaNs - Allow optimizations to assume the arguments and result are not
2132 NaN. Such optimizations are required to retain defined behavior over
2133 NaNs, but the value of the result is undefined.
2134
2135``ninf``
2136 No Infs - Allow optimizations to assume the arguments and result are not
2137 +/-Inf. Such optimizations are required to retain defined behavior over
2138 +/-Inf, but the value of the result is undefined.
2139
2140``nsz``
2141 No Signed Zeros - Allow optimizations to treat the sign of a zero
2142 argument or result as insignificant.
2143
2144``arcp``
2145 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2146 argument rather than perform division.
2147
2148``fast``
2149 Fast - Allow algebraically equivalent transformations that may
2150 dramatically change results in floating point (e.g. reassociate). This
2151 flag implies all the others.
2152
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002153.. _uselistorder:
2154
2155Use-list Order Directives
2156-------------------------
2157
2158Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002159order to be recreated. ``<order-indexes>`` is a comma-separated list of
2160indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002161value's use-list is immediately sorted by these indexes.
2162
Sean Silvaa1190322015-08-06 22:56:48 +00002163Use-list directives may appear at function scope or global scope. They are not
2164instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002165function scope, they must appear after the terminator of the final basic block.
2166
2167If basic blocks have their address taken via ``blockaddress()`` expressions,
2168``uselistorder_bb`` can be used to reorder their use-lists from outside their
2169function's scope.
2170
2171:Syntax:
2172
2173::
2174
2175 uselistorder <ty> <value>, { <order-indexes> }
2176 uselistorder_bb @function, %block { <order-indexes> }
2177
2178:Examples:
2179
2180::
2181
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002182 define void @foo(i32 %arg1, i32 %arg2) {
2183 entry:
2184 ; ... instructions ...
2185 bb:
2186 ; ... instructions ...
2187
2188 ; At function scope.
2189 uselistorder i32 %arg1, { 1, 0, 2 }
2190 uselistorder label %bb, { 1, 0 }
2191 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002192
2193 ; At global scope.
2194 uselistorder i32* @global, { 1, 2, 0 }
2195 uselistorder i32 7, { 1, 0 }
2196 uselistorder i32 (i32) @bar, { 1, 0 }
2197 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2198
Sean Silvab084af42012-12-07 10:36:55 +00002199.. _typesystem:
2200
2201Type System
2202===========
2203
2204The LLVM type system is one of the most important features of the
2205intermediate representation. Being typed enables a number of
2206optimizations to be performed on the intermediate representation
2207directly, without having to do extra analyses on the side before the
2208transformation. A strong type system makes it easier to read the
2209generated code and enables novel analyses and transformations that are
2210not feasible to perform on normal three address code representations.
2211
Rafael Espindola08013342013-12-07 19:34:20 +00002212.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002213
Rafael Espindola08013342013-12-07 19:34:20 +00002214Void Type
2215---------
Sean Silvab084af42012-12-07 10:36:55 +00002216
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002217:Overview:
2218
Rafael Espindola08013342013-12-07 19:34:20 +00002219
2220The void type does not represent any value and has no size.
2221
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002222:Syntax:
2223
Rafael Espindola08013342013-12-07 19:34:20 +00002224
2225::
2226
2227 void
Sean Silvab084af42012-12-07 10:36:55 +00002228
2229
Rafael Espindola08013342013-12-07 19:34:20 +00002230.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002231
Rafael Espindola08013342013-12-07 19:34:20 +00002232Function Type
2233-------------
Sean Silvab084af42012-12-07 10:36:55 +00002234
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002235:Overview:
2236
Sean Silvab084af42012-12-07 10:36:55 +00002237
Rafael Espindola08013342013-12-07 19:34:20 +00002238The function type can be thought of as a function signature. It consists of a
2239return type and a list of formal parameter types. The return type of a function
2240type is a void type or first class type --- except for :ref:`label <t_label>`
2241and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002242
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002243:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002244
Rafael Espindola08013342013-12-07 19:34:20 +00002245::
Sean Silvab084af42012-12-07 10:36:55 +00002246
Rafael Espindola08013342013-12-07 19:34:20 +00002247 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002248
Rafael Espindola08013342013-12-07 19:34:20 +00002249...where '``<parameter list>``' is a comma-separated list of type
2250specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002251indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002252argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002253handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002254except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002255
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002256:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002257
Rafael Espindola08013342013-12-07 19:34:20 +00002258+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2259| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2260+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2261| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2262+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2263| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2264+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2265| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2266+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2267
2268.. _t_firstclass:
2269
2270First Class Types
2271-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002272
2273The :ref:`first class <t_firstclass>` types are perhaps the most important.
2274Values of these types are the only ones which can be produced by
2275instructions.
2276
Rafael Espindola08013342013-12-07 19:34:20 +00002277.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002278
Rafael Espindola08013342013-12-07 19:34:20 +00002279Single Value Types
2280^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002281
Rafael Espindola08013342013-12-07 19:34:20 +00002282These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002283
2284.. _t_integer:
2285
2286Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002287""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002288
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002289:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002290
2291The integer type is a very simple type that simply specifies an
2292arbitrary bit width for the integer type desired. Any bit width from 1
2293bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2294
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002295:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002296
2297::
2298
2299 iN
2300
2301The number of bits the integer will occupy is specified by the ``N``
2302value.
2303
2304Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002305*********
Sean Silvab084af42012-12-07 10:36:55 +00002306
2307+----------------+------------------------------------------------+
2308| ``i1`` | a single-bit integer. |
2309+----------------+------------------------------------------------+
2310| ``i32`` | a 32-bit integer. |
2311+----------------+------------------------------------------------+
2312| ``i1942652`` | a really big integer of over 1 million bits. |
2313+----------------+------------------------------------------------+
2314
2315.. _t_floating:
2316
2317Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002318""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002319
2320.. list-table::
2321 :header-rows: 1
2322
2323 * - Type
2324 - Description
2325
2326 * - ``half``
2327 - 16-bit floating point value
2328
2329 * - ``float``
2330 - 32-bit floating point value
2331
2332 * - ``double``
2333 - 64-bit floating point value
2334
2335 * - ``fp128``
2336 - 128-bit floating point value (112-bit mantissa)
2337
2338 * - ``x86_fp80``
2339 - 80-bit floating point value (X87)
2340
2341 * - ``ppc_fp128``
2342 - 128-bit floating point value (two 64-bits)
2343
Reid Kleckner9a16d082014-03-05 02:41:37 +00002344X86_mmx Type
2345""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002346
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002347:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002348
Reid Kleckner9a16d082014-03-05 02:41:37 +00002349The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002350machine. The operations allowed on it are quite limited: parameters and
2351return values, load and store, and bitcast. User-specified MMX
2352instructions are represented as intrinsic or asm calls with arguments
2353and/or results of this type. There are no arrays, vectors or constants
2354of this type.
2355
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002356:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002357
2358::
2359
Reid Kleckner9a16d082014-03-05 02:41:37 +00002360 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002361
Sean Silvab084af42012-12-07 10:36:55 +00002362
Rafael Espindola08013342013-12-07 19:34:20 +00002363.. _t_pointer:
2364
2365Pointer Type
2366""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002367
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002368:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002369
Rafael Espindola08013342013-12-07 19:34:20 +00002370The pointer type is used to specify memory locations. Pointers are
2371commonly used to reference objects in memory.
2372
2373Pointer types may have an optional address space attribute defining the
2374numbered address space where the pointed-to object resides. The default
2375address space is number zero. The semantics of non-zero address spaces
2376are target-specific.
2377
2378Note that LLVM does not permit pointers to void (``void*``) nor does it
2379permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002380
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002381:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002382
2383::
2384
Rafael Espindola08013342013-12-07 19:34:20 +00002385 <type> *
2386
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002387:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002388
2389+-------------------------+--------------------------------------------------------------------------------------------------------------+
2390| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2391+-------------------------+--------------------------------------------------------------------------------------------------------------+
2392| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2393+-------------------------+--------------------------------------------------------------------------------------------------------------+
2394| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2395+-------------------------+--------------------------------------------------------------------------------------------------------------+
2396
2397.. _t_vector:
2398
2399Vector Type
2400"""""""""""
2401
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002402:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002403
2404A vector type is a simple derived type that represents a vector of
2405elements. Vector types are used when multiple primitive data are
2406operated in parallel using a single instruction (SIMD). A vector type
2407requires a size (number of elements) and an underlying primitive data
2408type. Vector types are considered :ref:`first class <t_firstclass>`.
2409
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002410:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002411
2412::
2413
2414 < <# elements> x <elementtype> >
2415
2416The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002417elementtype may be any integer, floating point or pointer type. Vectors
2418of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002419
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002420:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002421
2422+-------------------+--------------------------------------------------+
2423| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2424+-------------------+--------------------------------------------------+
2425| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2426+-------------------+--------------------------------------------------+
2427| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2428+-------------------+--------------------------------------------------+
2429| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2430+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002431
2432.. _t_label:
2433
2434Label Type
2435^^^^^^^^^^
2436
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002437:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002438
2439The label type represents code labels.
2440
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002441:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002442
2443::
2444
2445 label
2446
David Majnemerb611e3f2015-08-14 05:09:07 +00002447.. _t_token:
2448
2449Token Type
2450^^^^^^^^^^
2451
2452:Overview:
2453
2454The token type is used when a value is associated with an instruction
2455but all uses of the value must not attempt to introspect or obscure it.
2456As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2457:ref:`select <i_select>` of type token.
2458
2459:Syntax:
2460
2461::
2462
2463 token
2464
2465
2466
Sean Silvab084af42012-12-07 10:36:55 +00002467.. _t_metadata:
2468
2469Metadata Type
2470^^^^^^^^^^^^^
2471
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002472:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002473
2474The metadata type represents embedded metadata. No derived types may be
2475created from metadata except for :ref:`function <t_function>` arguments.
2476
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002477:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002478
2479::
2480
2481 metadata
2482
Sean Silvab084af42012-12-07 10:36:55 +00002483.. _t_aggregate:
2484
2485Aggregate Types
2486^^^^^^^^^^^^^^^
2487
2488Aggregate Types are a subset of derived types that can contain multiple
2489member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2490aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2491aggregate types.
2492
2493.. _t_array:
2494
2495Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002496""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002497
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002498:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002499
2500The array type is a very simple derived type that arranges elements
2501sequentially in memory. The array type requires a size (number of
2502elements) and an underlying data type.
2503
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002504:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002505
2506::
2507
2508 [<# elements> x <elementtype>]
2509
2510The number of elements is a constant integer value; ``elementtype`` may
2511be any type with a size.
2512
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002513:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002514
2515+------------------+--------------------------------------+
2516| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2517+------------------+--------------------------------------+
2518| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2519+------------------+--------------------------------------+
2520| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2521+------------------+--------------------------------------+
2522
2523Here are some examples of multidimensional arrays:
2524
2525+-----------------------------+----------------------------------------------------------+
2526| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2527+-----------------------------+----------------------------------------------------------+
2528| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2529+-----------------------------+----------------------------------------------------------+
2530| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2531+-----------------------------+----------------------------------------------------------+
2532
2533There is no restriction on indexing beyond the end of the array implied
2534by a static type (though there are restrictions on indexing beyond the
2535bounds of an allocated object in some cases). This means that
2536single-dimension 'variable sized array' addressing can be implemented in
2537LLVM with a zero length array type. An implementation of 'pascal style
2538arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2539example.
2540
Sean Silvab084af42012-12-07 10:36:55 +00002541.. _t_struct:
2542
2543Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002544""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002545
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002546:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002547
2548The structure type is used to represent a collection of data members
2549together in memory. The elements of a structure may be any type that has
2550a size.
2551
2552Structures in memory are accessed using '``load``' and '``store``' by
2553getting a pointer to a field with the '``getelementptr``' instruction.
2554Structures in registers are accessed using the '``extractvalue``' and
2555'``insertvalue``' instructions.
2556
2557Structures may optionally be "packed" structures, which indicate that
2558the alignment of the struct is one byte, and that there is no padding
2559between the elements. In non-packed structs, padding between field types
2560is inserted as defined by the DataLayout string in the module, which is
2561required to match what the underlying code generator expects.
2562
2563Structures can either be "literal" or "identified". A literal structure
2564is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2565identified types are always defined at the top level with a name.
2566Literal types are uniqued by their contents and can never be recursive
2567or opaque since there is no way to write one. Identified types can be
2568recursive, can be opaqued, and are never uniqued.
2569
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002570:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002571
2572::
2573
2574 %T1 = type { <type list> } ; Identified normal struct type
2575 %T2 = type <{ <type list> }> ; Identified packed struct type
2576
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002577:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002578
2579+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2580| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2581+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002582| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002583+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2584| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2585+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2586
2587.. _t_opaque:
2588
2589Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002590""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002591
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002592:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002593
2594Opaque structure types are used to represent named structure types that
2595do not have a body specified. This corresponds (for example) to the C
2596notion of a forward declared structure.
2597
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002598:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002599
2600::
2601
2602 %X = type opaque
2603 %52 = type opaque
2604
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002605:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002606
2607+--------------+-------------------+
2608| ``opaque`` | An opaque type. |
2609+--------------+-------------------+
2610
Sean Silva1703e702014-04-08 21:06:22 +00002611.. _constants:
2612
Sean Silvab084af42012-12-07 10:36:55 +00002613Constants
2614=========
2615
2616LLVM has several different basic types of constants. This section
2617describes them all and their syntax.
2618
2619Simple Constants
2620----------------
2621
2622**Boolean constants**
2623 The two strings '``true``' and '``false``' are both valid constants
2624 of the ``i1`` type.
2625**Integer constants**
2626 Standard integers (such as '4') are constants of the
2627 :ref:`integer <t_integer>` type. Negative numbers may be used with
2628 integer types.
2629**Floating point constants**
2630 Floating point constants use standard decimal notation (e.g.
2631 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2632 hexadecimal notation (see below). The assembler requires the exact
2633 decimal value of a floating-point constant. For example, the
2634 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2635 decimal in binary. Floating point constants must have a :ref:`floating
2636 point <t_floating>` type.
2637**Null pointer constants**
2638 The identifier '``null``' is recognized as a null pointer constant
2639 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002640**Token constants**
2641 The identifier '``none``' is recognized as an empty token constant
2642 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002643
2644The one non-intuitive notation for constants is the hexadecimal form of
2645floating point constants. For example, the form
2646'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2647than) '``double 4.5e+15``'. The only time hexadecimal floating point
2648constants are required (and the only time that they are generated by the
2649disassembler) is when a floating point constant must be emitted but it
2650cannot be represented as a decimal floating point number in a reasonable
2651number of digits. For example, NaN's, infinities, and other special
2652values are represented in their IEEE hexadecimal format so that assembly
2653and disassembly do not cause any bits to change in the constants.
2654
2655When using the hexadecimal form, constants of types half, float, and
2656double are represented using the 16-digit form shown above (which
2657matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002658must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002659precision, respectively. Hexadecimal format is always used for long
2660double, and there are three forms of long double. The 80-bit format used
2661by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2662128-bit format used by PowerPC (two adjacent doubles) is represented by
2663``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002664represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2665will only work if they match the long double format on your target.
2666The IEEE 16-bit format (half precision) is represented by ``0xH``
2667followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2668(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002669
Reid Kleckner9a16d082014-03-05 02:41:37 +00002670There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002671
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002672.. _complexconstants:
2673
Sean Silvab084af42012-12-07 10:36:55 +00002674Complex Constants
2675-----------------
2676
2677Complex constants are a (potentially recursive) combination of simple
2678constants and smaller complex constants.
2679
2680**Structure constants**
2681 Structure constants are represented with notation similar to
2682 structure type definitions (a comma separated list of elements,
2683 surrounded by braces (``{}``)). For example:
2684 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2685 "``@G = external global i32``". Structure constants must have
2686 :ref:`structure type <t_struct>`, and the number and types of elements
2687 must match those specified by the type.
2688**Array constants**
2689 Array constants are represented with notation similar to array type
2690 definitions (a comma separated list of elements, surrounded by
2691 square brackets (``[]``)). For example:
2692 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2693 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002694 match those specified by the type. As a special case, character array
2695 constants may also be represented as a double-quoted string using the ``c``
2696 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002697**Vector constants**
2698 Vector constants are represented with notation similar to vector
2699 type definitions (a comma separated list of elements, surrounded by
2700 less-than/greater-than's (``<>``)). For example:
2701 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2702 must have :ref:`vector type <t_vector>`, and the number and types of
2703 elements must match those specified by the type.
2704**Zero initialization**
2705 The string '``zeroinitializer``' can be used to zero initialize a
2706 value to zero of *any* type, including scalar and
2707 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2708 having to print large zero initializers (e.g. for large arrays) and
2709 is always exactly equivalent to using explicit zero initializers.
2710**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002711 A metadata node is a constant tuple without types. For example:
2712 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002713 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2714 Unlike other typed constants that are meant to be interpreted as part of
2715 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002716 information such as debug info.
2717
2718Global Variable and Function Addresses
2719--------------------------------------
2720
2721The addresses of :ref:`global variables <globalvars>` and
2722:ref:`functions <functionstructure>` are always implicitly valid
2723(link-time) constants. These constants are explicitly referenced when
2724the :ref:`identifier for the global <identifiers>` is used and always have
2725:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2726file:
2727
2728.. code-block:: llvm
2729
2730 @X = global i32 17
2731 @Y = global i32 42
2732 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2733
2734.. _undefvalues:
2735
2736Undefined Values
2737----------------
2738
2739The string '``undef``' can be used anywhere a constant is expected, and
2740indicates that the user of the value may receive an unspecified
2741bit-pattern. Undefined values may be of any type (other than '``label``'
2742or '``void``') and be used anywhere a constant is permitted.
2743
2744Undefined values are useful because they indicate to the compiler that
2745the program is well defined no matter what value is used. This gives the
2746compiler more freedom to optimize. Here are some examples of
2747(potentially surprising) transformations that are valid (in pseudo IR):
2748
2749.. code-block:: llvm
2750
2751 %A = add %X, undef
2752 %B = sub %X, undef
2753 %C = xor %X, undef
2754 Safe:
2755 %A = undef
2756 %B = undef
2757 %C = undef
2758
2759This is safe because all of the output bits are affected by the undef
2760bits. Any output bit can have a zero or one depending on the input bits.
2761
2762.. code-block:: llvm
2763
2764 %A = or %X, undef
2765 %B = and %X, undef
2766 Safe:
2767 %A = -1
2768 %B = 0
2769 Unsafe:
2770 %A = undef
2771 %B = undef
2772
2773These logical operations have bits that are not always affected by the
2774input. For example, if ``%X`` has a zero bit, then the output of the
2775'``and``' operation will always be a zero for that bit, no matter what
2776the corresponding bit from the '``undef``' is. As such, it is unsafe to
2777optimize or assume that the result of the '``and``' is '``undef``'.
2778However, it is safe to assume that all bits of the '``undef``' could be
27790, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2780all the bits of the '``undef``' operand to the '``or``' could be set,
2781allowing the '``or``' to be folded to -1.
2782
2783.. code-block:: llvm
2784
2785 %A = select undef, %X, %Y
2786 %B = select undef, 42, %Y
2787 %C = select %X, %Y, undef
2788 Safe:
2789 %A = %X (or %Y)
2790 %B = 42 (or %Y)
2791 %C = %Y
2792 Unsafe:
2793 %A = undef
2794 %B = undef
2795 %C = undef
2796
2797This set of examples shows that undefined '``select``' (and conditional
2798branch) conditions can go *either way*, but they have to come from one
2799of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2800both known to have a clear low bit, then ``%A`` would have to have a
2801cleared low bit. However, in the ``%C`` example, the optimizer is
2802allowed to assume that the '``undef``' operand could be the same as
2803``%Y``, allowing the whole '``select``' to be eliminated.
2804
2805.. code-block:: llvm
2806
2807 %A = xor undef, undef
2808
2809 %B = undef
2810 %C = xor %B, %B
2811
2812 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002813 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002814 %F = icmp gte %D, 4
2815
2816 Safe:
2817 %A = undef
2818 %B = undef
2819 %C = undef
2820 %D = undef
2821 %E = undef
2822 %F = undef
2823
2824This example points out that two '``undef``' operands are not
2825necessarily the same. This can be surprising to people (and also matches
2826C semantics) where they assume that "``X^X``" is always zero, even if
2827``X`` is undefined. This isn't true for a number of reasons, but the
2828short answer is that an '``undef``' "variable" can arbitrarily change
2829its value over its "live range". This is true because the variable
2830doesn't actually *have a live range*. Instead, the value is logically
2831read from arbitrary registers that happen to be around when needed, so
2832the value is not necessarily consistent over time. In fact, ``%A`` and
2833``%C`` need to have the same semantics or the core LLVM "replace all
2834uses with" concept would not hold.
2835
2836.. code-block:: llvm
2837
2838 %A = fdiv undef, %X
2839 %B = fdiv %X, undef
2840 Safe:
2841 %A = undef
2842 b: unreachable
2843
2844These examples show the crucial difference between an *undefined value*
2845and *undefined behavior*. An undefined value (like '``undef``') is
2846allowed to have an arbitrary bit-pattern. This means that the ``%A``
2847operation can be constant folded to '``undef``', because the '``undef``'
2848could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2849However, in the second example, we can make a more aggressive
2850assumption: because the ``undef`` is allowed to be an arbitrary value,
2851we are allowed to assume that it could be zero. Since a divide by zero
2852has *undefined behavior*, we are allowed to assume that the operation
2853does not execute at all. This allows us to delete the divide and all
2854code after it. Because the undefined operation "can't happen", the
2855optimizer can assume that it occurs in dead code.
2856
2857.. code-block:: llvm
2858
2859 a: store undef -> %X
2860 b: store %X -> undef
2861 Safe:
2862 a: <deleted>
2863 b: unreachable
2864
2865These examples reiterate the ``fdiv`` example: a store *of* an undefined
2866value can be assumed to not have any effect; we can assume that the
2867value is overwritten with bits that happen to match what was already
2868there. However, a store *to* an undefined location could clobber
2869arbitrary memory, therefore, it has undefined behavior.
2870
2871.. _poisonvalues:
2872
2873Poison Values
2874-------------
2875
2876Poison values are similar to :ref:`undef values <undefvalues>`, however
2877they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002878that cannot evoke side effects has nevertheless detected a condition
2879that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002880
2881There is currently no way of representing a poison value in the IR; they
2882only exist when produced by operations such as :ref:`add <i_add>` with
2883the ``nsw`` flag.
2884
2885Poison value behavior is defined in terms of value *dependence*:
2886
2887- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2888- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2889 their dynamic predecessor basic block.
2890- Function arguments depend on the corresponding actual argument values
2891 in the dynamic callers of their functions.
2892- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2893 instructions that dynamically transfer control back to them.
2894- :ref:`Invoke <i_invoke>` instructions depend on the
2895 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2896 call instructions that dynamically transfer control back to them.
2897- Non-volatile loads and stores depend on the most recent stores to all
2898 of the referenced memory addresses, following the order in the IR
2899 (including loads and stores implied by intrinsics such as
2900 :ref:`@llvm.memcpy <int_memcpy>`.)
2901- An instruction with externally visible side effects depends on the
2902 most recent preceding instruction with externally visible side
2903 effects, following the order in the IR. (This includes :ref:`volatile
2904 operations <volatile>`.)
2905- An instruction *control-depends* on a :ref:`terminator
2906 instruction <terminators>` if the terminator instruction has
2907 multiple successors and the instruction is always executed when
2908 control transfers to one of the successors, and may not be executed
2909 when control is transferred to another.
2910- Additionally, an instruction also *control-depends* on a terminator
2911 instruction if the set of instructions it otherwise depends on would
2912 be different if the terminator had transferred control to a different
2913 successor.
2914- Dependence is transitive.
2915
Richard Smith32dbdf62014-07-31 04:25:36 +00002916Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2917with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002918on a poison value has undefined behavior.
2919
2920Here are some examples:
2921
2922.. code-block:: llvm
2923
2924 entry:
2925 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2926 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002927 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002928 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2929
2930 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002931 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002932
2933 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2934
2935 %narrowaddr = bitcast i32* @g to i16*
2936 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002937 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2938 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002939
2940 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2941 br i1 %cmp, label %true, label %end ; Branch to either destination.
2942
2943 true:
2944 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2945 ; it has undefined behavior.
2946 br label %end
2947
2948 end:
2949 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2950 ; Both edges into this PHI are
2951 ; control-dependent on %cmp, so this
2952 ; always results in a poison value.
2953
2954 store volatile i32 0, i32* @g ; This would depend on the store in %true
2955 ; if %cmp is true, or the store in %entry
2956 ; otherwise, so this is undefined behavior.
2957
2958 br i1 %cmp, label %second_true, label %second_end
2959 ; The same branch again, but this time the
2960 ; true block doesn't have side effects.
2961
2962 second_true:
2963 ; No side effects!
2964 ret void
2965
2966 second_end:
2967 store volatile i32 0, i32* @g ; This time, the instruction always depends
2968 ; on the store in %end. Also, it is
2969 ; control-equivalent to %end, so this is
2970 ; well-defined (ignoring earlier undefined
2971 ; behavior in this example).
2972
2973.. _blockaddress:
2974
2975Addresses of Basic Blocks
2976-------------------------
2977
2978``blockaddress(@function, %block)``
2979
2980The '``blockaddress``' constant computes the address of the specified
2981basic block in the specified function, and always has an ``i8*`` type.
2982Taking the address of the entry block is illegal.
2983
2984This value only has defined behavior when used as an operand to the
2985':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2986against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002987undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002988no label is equal to the null pointer. This may be passed around as an
2989opaque pointer sized value as long as the bits are not inspected. This
2990allows ``ptrtoint`` and arithmetic to be performed on these values so
2991long as the original value is reconstituted before the ``indirectbr``
2992instruction.
2993
2994Finally, some targets may provide defined semantics when using the value
2995as the operand to an inline assembly, but that is target specific.
2996
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002997.. _constantexprs:
2998
Sean Silvab084af42012-12-07 10:36:55 +00002999Constant Expressions
3000--------------------
3001
3002Constant expressions are used to allow expressions involving other
3003constants to be used as constants. Constant expressions may be of any
3004:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3005that does not have side effects (e.g. load and call are not supported).
3006The following is the syntax for constant expressions:
3007
3008``trunc (CST to TYPE)``
3009 Truncate a constant to another type. The bit size of CST must be
3010 larger than the bit size of TYPE. Both types must be integers.
3011``zext (CST to TYPE)``
3012 Zero extend a constant to another type. The bit size of CST must be
3013 smaller than the bit size of TYPE. Both types must be integers.
3014``sext (CST to TYPE)``
3015 Sign extend a constant to another type. The bit size of CST must be
3016 smaller than the bit size of TYPE. Both types must be integers.
3017``fptrunc (CST to TYPE)``
3018 Truncate a floating point constant to another floating point type.
3019 The size of CST must be larger than the size of TYPE. Both types
3020 must be floating point.
3021``fpext (CST to TYPE)``
3022 Floating point extend a constant to another type. The size of CST
3023 must be smaller or equal to the size of TYPE. Both types must be
3024 floating point.
3025``fptoui (CST to TYPE)``
3026 Convert a floating point constant to the corresponding unsigned
3027 integer constant. TYPE must be a scalar or vector integer type. CST
3028 must be of scalar or vector floating point type. Both CST and TYPE
3029 must be scalars, or vectors of the same number of elements. If the
3030 value won't fit in the integer type, the results are undefined.
3031``fptosi (CST to TYPE)``
3032 Convert a floating point constant to the corresponding signed
3033 integer constant. TYPE must be a scalar or vector integer type. CST
3034 must be of scalar or vector floating point type. Both CST and TYPE
3035 must be scalars, or vectors of the same number of elements. If the
3036 value won't fit in the integer type, the results are undefined.
3037``uitofp (CST to TYPE)``
3038 Convert an unsigned integer constant to the corresponding floating
3039 point constant. TYPE must be a scalar or vector floating point type.
3040 CST must be of scalar or vector integer type. Both CST and TYPE must
3041 be scalars, or vectors of the same number of elements. If the value
3042 won't fit in the floating point type, the results are undefined.
3043``sitofp (CST to TYPE)``
3044 Convert a signed integer constant to the corresponding floating
3045 point constant. TYPE must be a scalar or vector floating point type.
3046 CST must be of scalar or vector integer type. Both CST and TYPE must
3047 be scalars, or vectors of the same number of elements. If the value
3048 won't fit in the floating point type, the results are undefined.
3049``ptrtoint (CST to TYPE)``
3050 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003051 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003052 pointer type. The ``CST`` value is zero extended, truncated, or
3053 unchanged to make it fit in ``TYPE``.
3054``inttoptr (CST to TYPE)``
3055 Convert an integer constant to a pointer constant. TYPE must be a
3056 pointer type. CST must be of integer type. The CST value is zero
3057 extended, truncated, or unchanged to make it fit in a pointer size.
3058 This one is *really* dangerous!
3059``bitcast (CST to TYPE)``
3060 Convert a constant, CST, to another TYPE. The constraints of the
3061 operands are the same as those for the :ref:`bitcast
3062 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003063``addrspacecast (CST to TYPE)``
3064 Convert a constant pointer or constant vector of pointer, CST, to another
3065 TYPE in a different address space. The constraints of the operands are the
3066 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003067``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003068 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3069 constants. As with the :ref:`getelementptr <i_getelementptr>`
3070 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003071 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003072``select (COND, VAL1, VAL2)``
3073 Perform the :ref:`select operation <i_select>` on constants.
3074``icmp COND (VAL1, VAL2)``
3075 Performs the :ref:`icmp operation <i_icmp>` on constants.
3076``fcmp COND (VAL1, VAL2)``
3077 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3078``extractelement (VAL, IDX)``
3079 Perform the :ref:`extractelement operation <i_extractelement>` on
3080 constants.
3081``insertelement (VAL, ELT, IDX)``
3082 Perform the :ref:`insertelement operation <i_insertelement>` on
3083 constants.
3084``shufflevector (VEC1, VEC2, IDXMASK)``
3085 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3086 constants.
3087``extractvalue (VAL, IDX0, IDX1, ...)``
3088 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3089 constants. The index list is interpreted in a similar manner as
3090 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3091 least one index value must be specified.
3092``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3093 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3094 The index list is interpreted in a similar manner as indices in a
3095 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3096 value must be specified.
3097``OPCODE (LHS, RHS)``
3098 Perform the specified operation of the LHS and RHS constants. OPCODE
3099 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3100 binary <bitwiseops>` operations. The constraints on operands are
3101 the same as those for the corresponding instruction (e.g. no bitwise
3102 operations on floating point values are allowed).
3103
3104Other Values
3105============
3106
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003107.. _inlineasmexprs:
3108
Sean Silvab084af42012-12-07 10:36:55 +00003109Inline Assembler Expressions
3110----------------------------
3111
3112LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003113Inline Assembly <moduleasm>`) through the use of a special value. This value
3114represents the inline assembler as a template string (containing the
3115instructions to emit), a list of operand constraints (stored as a string), a
3116flag that indicates whether or not the inline asm expression has side effects,
3117and a flag indicating whether the function containing the asm needs to align its
3118stack conservatively.
3119
3120The template string supports argument substitution of the operands using "``$``"
3121followed by a number, to indicate substitution of the given register/memory
3122location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3123be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3124operand (See :ref:`inline-asm-modifiers`).
3125
3126A literal "``$``" may be included by using "``$$``" in the template. To include
3127other special characters into the output, the usual "``\XX``" escapes may be
3128used, just as in other strings. Note that after template substitution, the
3129resulting assembly string is parsed by LLVM's integrated assembler unless it is
3130disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3131syntax known to LLVM.
3132
3133LLVM's support for inline asm is modeled closely on the requirements of Clang's
3134GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3135modifier codes listed here are similar or identical to those in GCC's inline asm
3136support. However, to be clear, the syntax of the template and constraint strings
3137described here is *not* the same as the syntax accepted by GCC and Clang, and,
3138while most constraint letters are passed through as-is by Clang, some get
3139translated to other codes when converting from the C source to the LLVM
3140assembly.
3141
3142An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003143
3144.. code-block:: llvm
3145
3146 i32 (i32) asm "bswap $0", "=r,r"
3147
3148Inline assembler expressions may **only** be used as the callee operand
3149of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3150Thus, typically we have:
3151
3152.. code-block:: llvm
3153
3154 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3155
3156Inline asms with side effects not visible in the constraint list must be
3157marked as having side effects. This is done through the use of the
3158'``sideeffect``' keyword, like so:
3159
3160.. code-block:: llvm
3161
3162 call void asm sideeffect "eieio", ""()
3163
3164In some cases inline asms will contain code that will not work unless
3165the stack is aligned in some way, such as calls or SSE instructions on
3166x86, yet will not contain code that does that alignment within the asm.
3167The compiler should make conservative assumptions about what the asm
3168might contain and should generate its usual stack alignment code in the
3169prologue if the '``alignstack``' keyword is present:
3170
3171.. code-block:: llvm
3172
3173 call void asm alignstack "eieio", ""()
3174
3175Inline asms also support using non-standard assembly dialects. The
3176assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3177the inline asm is using the Intel dialect. Currently, ATT and Intel are
3178the only supported dialects. An example is:
3179
3180.. code-block:: llvm
3181
3182 call void asm inteldialect "eieio", ""()
3183
3184If multiple keywords appear the '``sideeffect``' keyword must come
3185first, the '``alignstack``' keyword second and the '``inteldialect``'
3186keyword last.
3187
James Y Knightbc832ed2015-07-08 18:08:36 +00003188Inline Asm Constraint String
3189^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3190
3191The constraint list is a comma-separated string, each element containing one or
3192more constraint codes.
3193
3194For each element in the constraint list an appropriate register or memory
3195operand will be chosen, and it will be made available to assembly template
3196string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3197second, etc.
3198
3199There are three different types of constraints, which are distinguished by a
3200prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3201constraints must always be given in that order: outputs first, then inputs, then
3202clobbers. They cannot be intermingled.
3203
3204There are also three different categories of constraint codes:
3205
3206- Register constraint. This is either a register class, or a fixed physical
3207 register. This kind of constraint will allocate a register, and if necessary,
3208 bitcast the argument or result to the appropriate type.
3209- Memory constraint. This kind of constraint is for use with an instruction
3210 taking a memory operand. Different constraints allow for different addressing
3211 modes used by the target.
3212- Immediate value constraint. This kind of constraint is for an integer or other
3213 immediate value which can be rendered directly into an instruction. The
3214 various target-specific constraints allow the selection of a value in the
3215 proper range for the instruction you wish to use it with.
3216
3217Output constraints
3218""""""""""""""""""
3219
3220Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3221indicates that the assembly will write to this operand, and the operand will
3222then be made available as a return value of the ``asm`` expression. Output
3223constraints do not consume an argument from the call instruction. (Except, see
3224below about indirect outputs).
3225
3226Normally, it is expected that no output locations are written to by the assembly
3227expression until *all* of the inputs have been read. As such, LLVM may assign
3228the same register to an output and an input. If this is not safe (e.g. if the
3229assembly contains two instructions, where the first writes to one output, and
3230the second reads an input and writes to a second output), then the "``&``"
3231modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003232"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003233will not use the same register for any inputs (other than an input tied to this
3234output).
3235
3236Input constraints
3237"""""""""""""""""
3238
3239Input constraints do not have a prefix -- just the constraint codes. Each input
3240constraint will consume one argument from the call instruction. It is not
3241permitted for the asm to write to any input register or memory location (unless
3242that input is tied to an output). Note also that multiple inputs may all be
3243assigned to the same register, if LLVM can determine that they necessarily all
3244contain the same value.
3245
3246Instead of providing a Constraint Code, input constraints may also "tie"
3247themselves to an output constraint, by providing an integer as the constraint
3248string. Tied inputs still consume an argument from the call instruction, and
3249take up a position in the asm template numbering as is usual -- they will simply
3250be constrained to always use the same register as the output they've been tied
3251to. For example, a constraint string of "``=r,0``" says to assign a register for
3252output, and use that register as an input as well (it being the 0'th
3253constraint).
3254
3255It is permitted to tie an input to an "early-clobber" output. In that case, no
3256*other* input may share the same register as the input tied to the early-clobber
3257(even when the other input has the same value).
3258
3259You may only tie an input to an output which has a register constraint, not a
3260memory constraint. Only a single input may be tied to an output.
3261
3262There is also an "interesting" feature which deserves a bit of explanation: if a
3263register class constraint allocates a register which is too small for the value
3264type operand provided as input, the input value will be split into multiple
3265registers, and all of them passed to the inline asm.
3266
3267However, this feature is often not as useful as you might think.
3268
3269Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3270architectures that have instructions which operate on multiple consecutive
3271instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3272SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3273hardware then loads into both the named register, and the next register. This
3274feature of inline asm would not be useful to support that.)
3275
3276A few of the targets provide a template string modifier allowing explicit access
3277to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3278``D``). On such an architecture, you can actually access the second allocated
3279register (yet, still, not any subsequent ones). But, in that case, you're still
3280probably better off simply splitting the value into two separate operands, for
3281clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3282despite existing only for use with this feature, is not really a good idea to
3283use)
3284
3285Indirect inputs and outputs
3286"""""""""""""""""""""""""""
3287
3288Indirect output or input constraints can be specified by the "``*``" modifier
3289(which goes after the "``=``" in case of an output). This indicates that the asm
3290will write to or read from the contents of an *address* provided as an input
3291argument. (Note that in this way, indirect outputs act more like an *input* than
3292an output: just like an input, they consume an argument of the call expression,
3293rather than producing a return value. An indirect output constraint is an
3294"output" only in that the asm is expected to write to the contents of the input
3295memory location, instead of just read from it).
3296
3297This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3298address of a variable as a value.
3299
3300It is also possible to use an indirect *register* constraint, but only on output
3301(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3302value normally, and then, separately emit a store to the address provided as
3303input, after the provided inline asm. (It's not clear what value this
3304functionality provides, compared to writing the store explicitly after the asm
3305statement, and it can only produce worse code, since it bypasses many
3306optimization passes. I would recommend not using it.)
3307
3308
3309Clobber constraints
3310"""""""""""""""""""
3311
3312A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3313consume an input operand, nor generate an output. Clobbers cannot use any of the
3314general constraint code letters -- they may use only explicit register
3315constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3316"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3317memory locations -- not only the memory pointed to by a declared indirect
3318output.
3319
3320
3321Constraint Codes
3322""""""""""""""""
3323After a potential prefix comes constraint code, or codes.
3324
3325A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3326followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3327(e.g. "``{eax}``").
3328
3329The one and two letter constraint codes are typically chosen to be the same as
3330GCC's constraint codes.
3331
3332A single constraint may include one or more than constraint code in it, leaving
3333it up to LLVM to choose which one to use. This is included mainly for
3334compatibility with the translation of GCC inline asm coming from clang.
3335
3336There are two ways to specify alternatives, and either or both may be used in an
3337inline asm constraint list:
3338
33391) Append the codes to each other, making a constraint code set. E.g. "``im``"
3340 or "``{eax}m``". This means "choose any of the options in the set". The
3341 choice of constraint is made independently for each constraint in the
3342 constraint list.
3343
33442) Use "``|``" between constraint code sets, creating alternatives. Every
3345 constraint in the constraint list must have the same number of alternative
3346 sets. With this syntax, the same alternative in *all* of the items in the
3347 constraint list will be chosen together.
3348
3349Putting those together, you might have a two operand constraint string like
3350``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3351operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3352may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3353
3354However, the use of either of the alternatives features is *NOT* recommended, as
3355LLVM is not able to make an intelligent choice about which one to use. (At the
3356point it currently needs to choose, not enough information is available to do so
3357in a smart way.) Thus, it simply tries to make a choice that's most likely to
3358compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3359always choose to use memory, not registers). And, if given multiple registers,
3360or multiple register classes, it will simply choose the first one. (In fact, it
3361doesn't currently even ensure explicitly specified physical registers are
3362unique, so specifying multiple physical registers as alternatives, like
3363``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3364intended.)
3365
3366Supported Constraint Code List
3367""""""""""""""""""""""""""""""
3368
3369The constraint codes are, in general, expected to behave the same way they do in
3370GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3371inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3372and GCC likely indicates a bug in LLVM.
3373
3374Some constraint codes are typically supported by all targets:
3375
3376- ``r``: A register in the target's general purpose register class.
3377- ``m``: A memory address operand. It is target-specific what addressing modes
3378 are supported, typical examples are register, or register + register offset,
3379 or register + immediate offset (of some target-specific size).
3380- ``i``: An integer constant (of target-specific width). Allows either a simple
3381 immediate, or a relocatable value.
3382- ``n``: An integer constant -- *not* including relocatable values.
3383- ``s``: An integer constant, but allowing *only* relocatable values.
3384- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3385 useful to pass a label for an asm branch or call.
3386
3387 .. FIXME: but that surely isn't actually okay to jump out of an asm
3388 block without telling llvm about the control transfer???)
3389
3390- ``{register-name}``: Requires exactly the named physical register.
3391
3392Other constraints are target-specific:
3393
3394AArch64:
3395
3396- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3397- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3398 i.e. 0 to 4095 with optional shift by 12.
3399- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3400 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3401- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3402 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3403- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3404 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3405- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3406 32-bit register. This is a superset of ``K``: in addition to the bitmask
3407 immediate, also allows immediate integers which can be loaded with a single
3408 ``MOVZ`` or ``MOVL`` instruction.
3409- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3410 64-bit register. This is a superset of ``L``.
3411- ``Q``: Memory address operand must be in a single register (no
3412 offsets). (However, LLVM currently does this for the ``m`` constraint as
3413 well.)
3414- ``r``: A 32 or 64-bit integer register (W* or X*).
3415- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3416- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3417
3418AMDGPU:
3419
3420- ``r``: A 32 or 64-bit integer register.
3421- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3422- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3423
3424
3425All ARM modes:
3426
3427- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3428 operand. Treated the same as operand ``m``, at the moment.
3429
3430ARM and ARM's Thumb2 mode:
3431
3432- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3433- ``I``: An immediate integer valid for a data-processing instruction.
3434- ``J``: An immediate integer between -4095 and 4095.
3435- ``K``: An immediate integer whose bitwise inverse is valid for a
3436 data-processing instruction. (Can be used with template modifier "``B``" to
3437 print the inverted value).
3438- ``L``: An immediate integer whose negation is valid for a data-processing
3439 instruction. (Can be used with template modifier "``n``" to print the negated
3440 value).
3441- ``M``: A power of two or a integer between 0 and 32.
3442- ``N``: Invalid immediate constraint.
3443- ``O``: Invalid immediate constraint.
3444- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3445- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3446 as ``r``.
3447- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3448 invalid.
3449- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3450 ``d0-d31``, or ``q0-q15``.
3451- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3452 ``d0-d7``, or ``q0-q3``.
3453- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3454 ``s0-s31``.
3455
3456ARM's Thumb1 mode:
3457
3458- ``I``: An immediate integer between 0 and 255.
3459- ``J``: An immediate integer between -255 and -1.
3460- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3461 some amount.
3462- ``L``: An immediate integer between -7 and 7.
3463- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3464- ``N``: An immediate integer between 0 and 31.
3465- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3466- ``r``: A low 32-bit GPR register (``r0-r7``).
3467- ``l``: A low 32-bit GPR register (``r0-r7``).
3468- ``h``: A high GPR register (``r0-r7``).
3469- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3470 ``d0-d31``, or ``q0-q15``.
3471- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3472 ``d0-d7``, or ``q0-q3``.
3473- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3474 ``s0-s31``.
3475
3476
3477Hexagon:
3478
3479- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3480 at the moment.
3481- ``r``: A 32 or 64-bit register.
3482
3483MSP430:
3484
3485- ``r``: An 8 or 16-bit register.
3486
3487MIPS:
3488
3489- ``I``: An immediate signed 16-bit integer.
3490- ``J``: An immediate integer zero.
3491- ``K``: An immediate unsigned 16-bit integer.
3492- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3493- ``N``: An immediate integer between -65535 and -1.
3494- ``O``: An immediate signed 15-bit integer.
3495- ``P``: An immediate integer between 1 and 65535.
3496- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3497 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3498- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3499 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3500 ``m``.
3501- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3502 ``sc`` instruction on the given subtarget (details vary).
3503- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3504- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003505 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3506 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003507- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3508 ``25``).
3509- ``l``: The ``lo`` register, 32 or 64-bit.
3510- ``x``: Invalid.
3511
3512NVPTX:
3513
3514- ``b``: A 1-bit integer register.
3515- ``c`` or ``h``: A 16-bit integer register.
3516- ``r``: A 32-bit integer register.
3517- ``l`` or ``N``: A 64-bit integer register.
3518- ``f``: A 32-bit float register.
3519- ``d``: A 64-bit float register.
3520
3521
3522PowerPC:
3523
3524- ``I``: An immediate signed 16-bit integer.
3525- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3526- ``K``: An immediate unsigned 16-bit integer.
3527- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3528- ``M``: An immediate integer greater than 31.
3529- ``N``: An immediate integer that is an exact power of 2.
3530- ``O``: The immediate integer constant 0.
3531- ``P``: An immediate integer constant whose negation is a signed 16-bit
3532 constant.
3533- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3534 treated the same as ``m``.
3535- ``r``: A 32 or 64-bit integer register.
3536- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3537 ``R1-R31``).
3538- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3539 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3540- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3541 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3542 altivec vector register (``V0-V31``).
3543
3544 .. FIXME: is this a bug that v accepts QPX registers? I think this
3545 is supposed to only use the altivec vector registers?
3546
3547- ``y``: Condition register (``CR0-CR7``).
3548- ``wc``: An individual CR bit in a CR register.
3549- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3550 register set (overlapping both the floating-point and vector register files).
3551- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3552 set.
3553
3554Sparc:
3555
3556- ``I``: An immediate 13-bit signed integer.
3557- ``r``: A 32-bit integer register.
3558
3559SystemZ:
3560
3561- ``I``: An immediate unsigned 8-bit integer.
3562- ``J``: An immediate unsigned 12-bit integer.
3563- ``K``: An immediate signed 16-bit integer.
3564- ``L``: An immediate signed 20-bit integer.
3565- ``M``: An immediate integer 0x7fffffff.
3566- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3567 ``m``, at the moment.
3568- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3569- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3570 address context evaluates as zero).
3571- ``h``: A 32-bit value in the high part of a 64bit data register
3572 (LLVM-specific)
3573- ``f``: A 32, 64, or 128-bit floating point register.
3574
3575X86:
3576
3577- ``I``: An immediate integer between 0 and 31.
3578- ``J``: An immediate integer between 0 and 64.
3579- ``K``: An immediate signed 8-bit integer.
3580- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3581 0xffffffff.
3582- ``M``: An immediate integer between 0 and 3.
3583- ``N``: An immediate unsigned 8-bit integer.
3584- ``O``: An immediate integer between 0 and 127.
3585- ``e``: An immediate 32-bit signed integer.
3586- ``Z``: An immediate 32-bit unsigned integer.
3587- ``o``, ``v``: Treated the same as ``m``, at the moment.
3588- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3589 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3590 registers, and on X86-64, it is all of the integer registers.
3591- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3592 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3593- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3594- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3595 existed since i386, and can be accessed without the REX prefix.
3596- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3597- ``y``: A 64-bit MMX register, if MMX is enabled.
3598- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3599 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3600 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3601 512-bit vector operand in an AVX512 register, Otherwise, an error.
3602- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3603- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3604 32-bit mode, a 64-bit integer operand will get split into two registers). It
3605 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3606 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3607 you're better off splitting it yourself, before passing it to the asm
3608 statement.
3609
3610XCore:
3611
3612- ``r``: A 32-bit integer register.
3613
3614
3615.. _inline-asm-modifiers:
3616
3617Asm template argument modifiers
3618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3619
3620In the asm template string, modifiers can be used on the operand reference, like
3621"``${0:n}``".
3622
3623The modifiers are, in general, expected to behave the same way they do in
3624GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3625inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3626and GCC likely indicates a bug in LLVM.
3627
3628Target-independent:
3629
Sean Silvaa1190322015-08-06 22:56:48 +00003630- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003631 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3632- ``n``: Negate and print immediate integer constant unadorned, without the
3633 target-specific immediate punctuation (e.g. no ``$`` prefix).
3634- ``l``: Print as an unadorned label, without the target-specific label
3635 punctuation (e.g. no ``$`` prefix).
3636
3637AArch64:
3638
3639- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3640 instead of ``x30``, print ``w30``.
3641- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3642- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3643 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3644 ``v*``.
3645
3646AMDGPU:
3647
3648- ``r``: No effect.
3649
3650ARM:
3651
3652- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3653 register).
3654- ``P``: No effect.
3655- ``q``: No effect.
3656- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3657 as ``d4[1]`` instead of ``s9``)
3658- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3659 prefix.
3660- ``L``: Print the low 16-bits of an immediate integer constant.
3661- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3662 register operands subsequent to the specified one (!), so use carefully.
3663- ``Q``: Print the low-order register of a register-pair, or the low-order
3664 register of a two-register operand.
3665- ``R``: Print the high-order register of a register-pair, or the high-order
3666 register of a two-register operand.
3667- ``H``: Print the second register of a register-pair. (On a big-endian system,
3668 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3669 to ``R``.)
3670
3671 .. FIXME: H doesn't currently support printing the second register
3672 of a two-register operand.
3673
3674- ``e``: Print the low doubleword register of a NEON quad register.
3675- ``f``: Print the high doubleword register of a NEON quad register.
3676- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3677 adornment.
3678
3679Hexagon:
3680
3681- ``L``: Print the second register of a two-register operand. Requires that it
3682 has been allocated consecutively to the first.
3683
3684 .. FIXME: why is it restricted to consecutive ones? And there's
3685 nothing that ensures that happens, is there?
3686
3687- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3688 nothing. Used to print 'addi' vs 'add' instructions.
3689
3690MSP430:
3691
3692No additional modifiers.
3693
3694MIPS:
3695
3696- ``X``: Print an immediate integer as hexadecimal
3697- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3698- ``d``: Print an immediate integer as decimal.
3699- ``m``: Subtract one and print an immediate integer as decimal.
3700- ``z``: Print $0 if an immediate zero, otherwise print normally.
3701- ``L``: Print the low-order register of a two-register operand, or prints the
3702 address of the low-order word of a double-word memory operand.
3703
3704 .. FIXME: L seems to be missing memory operand support.
3705
3706- ``M``: Print the high-order register of a two-register operand, or prints the
3707 address of the high-order word of a double-word memory operand.
3708
3709 .. FIXME: M seems to be missing memory operand support.
3710
3711- ``D``: Print the second register of a two-register operand, or prints the
3712 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3713 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3714 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003715- ``w``: No effect. Provided for compatibility with GCC which requires this
3716 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3717 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003718
3719NVPTX:
3720
3721- ``r``: No effect.
3722
3723PowerPC:
3724
3725- ``L``: Print the second register of a two-register operand. Requires that it
3726 has been allocated consecutively to the first.
3727
3728 .. FIXME: why is it restricted to consecutive ones? And there's
3729 nothing that ensures that happens, is there?
3730
3731- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3732 nothing. Used to print 'addi' vs 'add' instructions.
3733- ``y``: For a memory operand, prints formatter for a two-register X-form
3734 instruction. (Currently always prints ``r0,OPERAND``).
3735- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3736 otherwise. (NOTE: LLVM does not support update form, so this will currently
3737 always print nothing)
3738- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3739 not support indexed form, so this will currently always print nothing)
3740
3741Sparc:
3742
3743- ``r``: No effect.
3744
3745SystemZ:
3746
3747SystemZ implements only ``n``, and does *not* support any of the other
3748target-independent modifiers.
3749
3750X86:
3751
3752- ``c``: Print an unadorned integer or symbol name. (The latter is
3753 target-specific behavior for this typically target-independent modifier).
3754- ``A``: Print a register name with a '``*``' before it.
3755- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3756 operand.
3757- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3758 memory operand.
3759- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3760 operand.
3761- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3762 operand.
3763- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3764 available, otherwise the 32-bit register name; do nothing on a memory operand.
3765- ``n``: Negate and print an unadorned integer, or, for operands other than an
3766 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3767 the operand. (The behavior for relocatable symbol expressions is a
3768 target-specific behavior for this typically target-independent modifier)
3769- ``H``: Print a memory reference with additional offset +8.
3770- ``P``: Print a memory reference or operand for use as the argument of a call
3771 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3772
3773XCore:
3774
3775No additional modifiers.
3776
3777
Sean Silvab084af42012-12-07 10:36:55 +00003778Inline Asm Metadata
3779^^^^^^^^^^^^^^^^^^^
3780
3781The call instructions that wrap inline asm nodes may have a
3782"``!srcloc``" MDNode attached to it that contains a list of constant
3783integers. If present, the code generator will use the integer as the
3784location cookie value when report errors through the ``LLVMContext``
3785error reporting mechanisms. This allows a front-end to correlate backend
3786errors that occur with inline asm back to the source code that produced
3787it. For example:
3788
3789.. code-block:: llvm
3790
3791 call void asm sideeffect "something bad", ""(), !srcloc !42
3792 ...
3793 !42 = !{ i32 1234567 }
3794
3795It is up to the front-end to make sense of the magic numbers it places
3796in the IR. If the MDNode contains multiple constants, the code generator
3797will use the one that corresponds to the line of the asm that the error
3798occurs on.
3799
3800.. _metadata:
3801
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003802Metadata
3803========
Sean Silvab084af42012-12-07 10:36:55 +00003804
3805LLVM IR allows metadata to be attached to instructions in the program
3806that can convey extra information about the code to the optimizers and
3807code generator. One example application of metadata is source-level
3808debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003809
Sean Silvaa1190322015-08-06 22:56:48 +00003810Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003811``call`` instruction, it uses the ``metadata`` type.
3812
3813All metadata are identified in syntax by a exclamation point ('``!``').
3814
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003815.. _metadata-string:
3816
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003817Metadata Nodes and Metadata Strings
3818-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003819
3820A metadata string is a string surrounded by double quotes. It can
3821contain any character by escaping non-printable characters with
3822"``\xx``" where "``xx``" is the two digit hex code. For example:
3823"``!"test\00"``".
3824
3825Metadata nodes are represented with notation similar to structure
3826constants (a comma separated list of elements, surrounded by braces and
3827preceded by an exclamation point). Metadata nodes can have any values as
3828their operand. For example:
3829
3830.. code-block:: llvm
3831
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003832 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003833
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003834Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3835
3836.. code-block:: llvm
3837
3838 !0 = distinct !{!"test\00", i32 10}
3839
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003840``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003841content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003842when metadata operands change.
3843
Sean Silvab084af42012-12-07 10:36:55 +00003844A :ref:`named metadata <namedmetadatastructure>` is a collection of
3845metadata nodes, which can be looked up in the module symbol table. For
3846example:
3847
3848.. code-block:: llvm
3849
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003850 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003851
3852Metadata can be used as function arguments. Here ``llvm.dbg.value``
3853function is using two metadata arguments:
3854
3855.. code-block:: llvm
3856
3857 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3858
Peter Collingbourne50108682015-11-06 02:41:02 +00003859Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3860to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003861
3862.. code-block:: llvm
3863
3864 %indvar.next = add i64 %indvar, 1, !dbg !21
3865
Peter Collingbourne50108682015-11-06 02:41:02 +00003866Metadata can also be attached to a function definition. Here metadata ``!22``
3867is attached to the ``foo`` function using the ``!dbg`` identifier:
3868
3869.. code-block:: llvm
3870
3871 define void @foo() !dbg !22 {
3872 ret void
3873 }
3874
Sean Silvab084af42012-12-07 10:36:55 +00003875More information about specific metadata nodes recognized by the
3876optimizers and code generator is found below.
3877
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003878.. _specialized-metadata:
3879
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003880Specialized Metadata Nodes
3881^^^^^^^^^^^^^^^^^^^^^^^^^^
3882
3883Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003884to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003885order.
3886
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003887These aren't inherently debug info centric, but currently all the specialized
3888metadata nodes are related to debug info.
3889
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003890.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003891
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003892DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003893"""""""""""""
3894
Sean Silvaa1190322015-08-06 22:56:48 +00003895``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003896``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3897fields are tuples containing the debug info to be emitted along with the compile
3898unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003899references to them from instructions).
3900
3901.. code-block:: llvm
3902
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003903 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003904 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003905 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003906 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003907 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003908
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003909Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003910specific compilation unit. File descriptors are defined using this scope.
3911These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003912keep track of subprograms, global variables, type information, and imported
3913entities (declarations and namespaces).
3914
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003915.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003916
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003917DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003918""""""
3919
Sean Silvaa1190322015-08-06 22:56:48 +00003920``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003921
3922.. code-block:: llvm
3923
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003924 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003925
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003926Files are sometimes used in ``scope:`` fields, and are the only valid target
3927for ``file:`` fields.
3928
Michael Kuperstein605308a2015-05-14 10:58:59 +00003929.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003930
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003931DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003932"""""""""""
3933
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003934``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003935``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003936
3937.. code-block:: llvm
3938
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003939 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003940 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003941 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003942
Sean Silvaa1190322015-08-06 22:56:48 +00003943The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003944following:
3945
3946.. code-block:: llvm
3947
3948 DW_ATE_address = 1
3949 DW_ATE_boolean = 2
3950 DW_ATE_float = 4
3951 DW_ATE_signed = 5
3952 DW_ATE_signed_char = 6
3953 DW_ATE_unsigned = 7
3954 DW_ATE_unsigned_char = 8
3955
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003956.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003957
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003958DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003959""""""""""""""""
3960
Sean Silvaa1190322015-08-06 22:56:48 +00003961``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003962refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003963types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003964represents a function with no return value (such as ``void foo() {}`` in C++).
3965
3966.. code-block:: llvm
3967
3968 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3969 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003970 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003971
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003972.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003973
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003974DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003975"""""""""""""
3976
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003977``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003978qualified types.
3979
3980.. code-block:: llvm
3981
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003982 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003983 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003984 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003985 align: 32)
3986
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003987The following ``tag:`` values are valid:
3988
3989.. code-block:: llvm
3990
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003991 DW_TAG_member = 13
3992 DW_TAG_pointer_type = 15
3993 DW_TAG_reference_type = 16
3994 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00003995 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003996 DW_TAG_ptr_to_member_type = 31
3997 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00003998 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003999 DW_TAG_volatile_type = 53
4000 DW_TAG_restrict_type = 55
4001
4002``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004003<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004004``offset:`` is the member's bit offset. If the composite type has a non-empty
4005``identifier:``, then it respects ODR rules. In that case, the ``scope:``
4006reference will be a :ref:`metadata string <metadata-string>`, and the member
4007will be uniqued solely based on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004008
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004009``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4010field of :ref:`composite types <DICompositeType>` to describe parents and
4011friends.
4012
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004013``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4014
4015``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
4016``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
4017``baseType:``.
4018
4019Note that the ``void *`` type is expressed as a type derived from NULL.
4020
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004021.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004022
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004023DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004024"""""""""""""""
4025
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004026``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004027structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004028
4029If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00004030identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004031can refer to composite types indirectly via a :ref:`metadata string
4032<metadata-string>` that matches their identifier.
4033
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004034For a given ``identifier:``, there should only be a single composite type that
4035does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4036together will unique such definitions at parse time via the ``identifier:``
4037field, even if the nodes are ``distinct``.
4038
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004039.. code-block:: llvm
4040
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004041 !0 = !DIEnumerator(name: "SixKind", value: 7)
4042 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4043 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4044 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004045 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4046 elements: !{!0, !1, !2})
4047
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004048The following ``tag:`` values are valid:
4049
4050.. code-block:: llvm
4051
4052 DW_TAG_array_type = 1
4053 DW_TAG_class_type = 2
4054 DW_TAG_enumeration_type = 4
4055 DW_TAG_structure_type = 19
4056 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004057
4058For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004059descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004060level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004061array type is a native packed vector.
4062
4063For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004064descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004065value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004066``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004067
4068For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4069``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004070<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4071``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4072``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004073
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004074.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004075
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004076DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004077""""""""""
4078
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004079``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004080:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004081
4082.. code-block:: llvm
4083
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004084 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4085 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4086 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004087
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004088.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004089
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004090DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004091""""""""""""
4092
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004093``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4094variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004095
4096.. code-block:: llvm
4097
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004098 !0 = !DIEnumerator(name: "SixKind", value: 7)
4099 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4100 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004101
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004102DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004103"""""""""""""""""""""""
4104
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004105``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004106language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004107:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004108
4109.. code-block:: llvm
4110
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004111 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004112
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004113DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004114""""""""""""""""""""""""
4115
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004116``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004117language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004118but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004119``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004120:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004121
4122.. code-block:: llvm
4123
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004124 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004125
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004126DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004127"""""""""""
4128
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004129``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004130
4131.. code-block:: llvm
4132
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004133 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004134
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004135DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004136""""""""""""""""
4137
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004138``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004139
4140.. code-block:: llvm
4141
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004142 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004143 file: !2, line: 7, type: !3, isLocal: true,
4144 isDefinition: false, variable: i32* @foo,
4145 declaration: !4)
4146
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004147All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004148:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004149
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004150.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004151
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004152DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004153""""""""""""
4154
Peter Collingbourne50108682015-11-06 02:41:02 +00004155``DISubprogram`` nodes represent functions from the source language. A
4156``DISubprogram`` may be attached to a function definition using ``!dbg``
4157metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4158that must be retained, even if their IR counterparts are optimized out of
4159the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004160
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004161When ``isDefinition: false``, subprograms describe a declaration in the type
4162tree as opposed to a definition of a funciton. If the scope is a
4163:ref:`metadata string <metadata-string>` then the composite type follows ODR
4164rules, and the subprogram declaration is uniqued based only on its
4165``linkageName:`` and ``scope:``.
4166
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004167.. code-block:: llvm
4168
Peter Collingbourne50108682015-11-06 02:41:02 +00004169 define void @_Z3foov() !dbg !0 {
4170 ...
4171 }
4172
4173 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4174 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004175 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004176 containingType: !4,
4177 virtuality: DW_VIRTUALITY_pure_virtual,
4178 virtualIndex: 10, flags: DIFlagPrototyped,
4179 isOptimized: true, templateParams: !5,
4180 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004181
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004182.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004183
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004184DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004185""""""""""""""
4186
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004187``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004188<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004189two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004190fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004191
4192.. code-block:: llvm
4193
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004194 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004195
4196Usually lexical blocks are ``distinct`` to prevent node merging based on
4197operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004198
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004199.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004200
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004201DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004202""""""""""""""""""
4203
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004204``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004205:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004206indicate textual inclusion, or the ``discriminator:`` field can be used to
4207discriminate between control flow within a single block in the source language.
4208
4209.. code-block:: llvm
4210
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004211 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4212 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4213 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004214
Michael Kuperstein605308a2015-05-14 10:58:59 +00004215.. _DILocation:
4216
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004217DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004218""""""""""
4219
Sean Silvaa1190322015-08-06 22:56:48 +00004220``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004221mandatory, and points at an :ref:`DILexicalBlockFile`, an
4222:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004223
4224.. code-block:: llvm
4225
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004226 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004227
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004228.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004229
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004230DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004231"""""""""""""""
4232
Sean Silvaa1190322015-08-06 22:56:48 +00004233``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004234the ``arg:`` field is set to non-zero, then this variable is a subprogram
4235parameter, and it will be included in the ``variables:`` field of its
4236:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004237
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004238.. code-block:: llvm
4239
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004240 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4241 type: !3, flags: DIFlagArtificial)
4242 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4243 type: !3)
4244 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004245
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004246DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004247""""""""""""
4248
Sean Silvaa1190322015-08-06 22:56:48 +00004249``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004250:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4251describe how the referenced LLVM variable relates to the source language
4252variable.
4253
4254The current supported vocabulary is limited:
4255
4256- ``DW_OP_deref`` dereferences the working expression.
4257- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4258- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4259 here, respectively) of the variable piece from the working expression.
4260
4261.. code-block:: llvm
4262
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004263 !0 = !DIExpression(DW_OP_deref)
4264 !1 = !DIExpression(DW_OP_plus, 3)
4265 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4266 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004267
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004268DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269""""""""""""""
4270
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004271``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004272
4273.. code-block:: llvm
4274
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004275 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004276 getter: "getFoo", attributes: 7, type: !2)
4277
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004278DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004279""""""""""""""""
4280
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004281``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004282compile unit.
4283
4284.. code-block:: llvm
4285
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004286 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004287 entity: !1, line: 7)
4288
Amjad Abouda9bcf162015-12-10 12:56:35 +00004289DIMacro
4290"""""""
4291
4292``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4293The ``name:`` field is the macro identifier, followed by macro parameters when
4294definining a function-like macro, and the ``value`` field is the token-string
4295used to expand the macro identifier.
4296
4297.. code-block:: llvm
4298
4299 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4300 value: "((x) + 1)")
4301 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4302
4303DIMacroFile
4304"""""""""""
4305
4306``DIMacroFile`` nodes represent inclusion of source files.
4307The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4308appear in the included source file.
4309
4310.. code-block:: llvm
4311
4312 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4313 nodes: !3)
4314
Sean Silvab084af42012-12-07 10:36:55 +00004315'``tbaa``' Metadata
4316^^^^^^^^^^^^^^^^^^^
4317
4318In LLVM IR, memory does not have types, so LLVM's own type system is not
4319suitable for doing TBAA. Instead, metadata is added to the IR to
4320describe a type system of a higher level language. This can be used to
4321implement typical C/C++ TBAA, but it can also be used to implement
4322custom alias analysis behavior for other languages.
4323
4324The current metadata format is very simple. TBAA metadata nodes have up
4325to three fields, e.g.:
4326
4327.. code-block:: llvm
4328
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004329 !0 = !{ !"an example type tree" }
4330 !1 = !{ !"int", !0 }
4331 !2 = !{ !"float", !0 }
4332 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004333
4334The first field is an identity field. It can be any value, usually a
4335metadata string, which uniquely identifies the type. The most important
4336name in the tree is the name of the root node. Two trees with different
4337root node names are entirely disjoint, even if they have leaves with
4338common names.
4339
4340The second field identifies the type's parent node in the tree, or is
4341null or omitted for a root node. A type is considered to alias all of
4342its descendants and all of its ancestors in the tree. Also, a type is
4343considered to alias all types in other trees, so that bitcode produced
4344from multiple front-ends is handled conservatively.
4345
4346If the third field is present, it's an integer which if equal to 1
4347indicates that the type is "constant" (meaning
4348``pointsToConstantMemory`` should return true; see `other useful
4349AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4350
4351'``tbaa.struct``' Metadata
4352^^^^^^^^^^^^^^^^^^^^^^^^^^
4353
4354The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4355aggregate assignment operations in C and similar languages, however it
4356is defined to copy a contiguous region of memory, which is more than
4357strictly necessary for aggregate types which contain holes due to
4358padding. Also, it doesn't contain any TBAA information about the fields
4359of the aggregate.
4360
4361``!tbaa.struct`` metadata can describe which memory subregions in a
4362memcpy are padding and what the TBAA tags of the struct are.
4363
4364The current metadata format is very simple. ``!tbaa.struct`` metadata
4365nodes are a list of operands which are in conceptual groups of three.
4366For each group of three, the first operand gives the byte offset of a
4367field in bytes, the second gives its size in bytes, and the third gives
4368its tbaa tag. e.g.:
4369
4370.. code-block:: llvm
4371
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004372 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004373
4374This describes a struct with two fields. The first is at offset 0 bytes
4375with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4376and has size 4 bytes and has tbaa tag !2.
4377
4378Note that the fields need not be contiguous. In this example, there is a
43794 byte gap between the two fields. This gap represents padding which
4380does not carry useful data and need not be preserved.
4381
Hal Finkel94146652014-07-24 14:25:39 +00004382'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004383^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004384
4385``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4386noalias memory-access sets. This means that some collection of memory access
4387instructions (loads, stores, memory-accessing calls, etc.) that carry
4388``noalias`` metadata can specifically be specified not to alias with some other
4389collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004390Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004391a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004392of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004393subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004394instruction's ``noalias`` list, then the two memory accesses are assumed not to
4395alias.
Hal Finkel94146652014-07-24 14:25:39 +00004396
Hal Finkel029cde62014-07-25 15:50:02 +00004397The metadata identifying each domain is itself a list containing one or two
4398entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004399string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004400self-reference can be used to create globally unique domain names. A
4401descriptive string may optionally be provided as a second list entry.
4402
4403The metadata identifying each scope is also itself a list containing two or
4404three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004405is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004406self-reference can be used to create globally unique scope names. A metadata
4407reference to the scope's domain is the second entry. A descriptive string may
4408optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004409
4410For example,
4411
4412.. code-block:: llvm
4413
Hal Finkel029cde62014-07-25 15:50:02 +00004414 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004415 !0 = !{!0}
4416 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004417
Hal Finkel029cde62014-07-25 15:50:02 +00004418 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004419 !2 = !{!2, !0}
4420 !3 = !{!3, !0}
4421 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004422
Hal Finkel029cde62014-07-25 15:50:02 +00004423 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004424 !5 = !{!4} ; A list containing only scope !4
4425 !6 = !{!4, !3, !2}
4426 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004427
4428 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004429 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004430 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004431
Hal Finkel029cde62014-07-25 15:50:02 +00004432 ; These two instructions also don't alias (for domain !1, the set of scopes
4433 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004434 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004435 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004436
Adam Nemet0a8416f2015-05-11 08:30:28 +00004437 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004438 ; the !noalias list is not a superset of, or equal to, the scopes in the
4439 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004440 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004441 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004442
Sean Silvab084af42012-12-07 10:36:55 +00004443'``fpmath``' Metadata
4444^^^^^^^^^^^^^^^^^^^^^
4445
4446``fpmath`` metadata may be attached to any instruction of floating point
4447type. It can be used to express the maximum acceptable error in the
4448result of that instruction, in ULPs, thus potentially allowing the
4449compiler to use a more efficient but less accurate method of computing
4450it. ULP is defined as follows:
4451
4452 If ``x`` is a real number that lies between two finite consecutive
4453 floating-point numbers ``a`` and ``b``, without being equal to one
4454 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4455 distance between the two non-equal finite floating-point numbers
4456 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4457
4458The metadata node shall consist of a single positive floating point
4459number representing the maximum relative error, for example:
4460
4461.. code-block:: llvm
4462
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004463 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004464
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004465.. _range-metadata:
4466
Sean Silvab084af42012-12-07 10:36:55 +00004467'``range``' Metadata
4468^^^^^^^^^^^^^^^^^^^^
4469
Jingyue Wu37fcb592014-06-19 16:50:16 +00004470``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4471integer types. It expresses the possible ranges the loaded value or the value
4472returned by the called function at this call site is in. The ranges are
4473represented with a flattened list of integers. The loaded value or the value
4474returned is known to be in the union of the ranges defined by each consecutive
4475pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004476
4477- The type must match the type loaded by the instruction.
4478- The pair ``a,b`` represents the range ``[a,b)``.
4479- Both ``a`` and ``b`` are constants.
4480- The range is allowed to wrap.
4481- The range should not represent the full or empty set. That is,
4482 ``a!=b``.
4483
4484In addition, the pairs must be in signed order of the lower bound and
4485they must be non-contiguous.
4486
4487Examples:
4488
4489.. code-block:: llvm
4490
David Blaikiec7aabbb2015-03-04 22:06:14 +00004491 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4492 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004493 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4494 %d = invoke i8 @bar() to label %cont
4495 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004496 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004497 !0 = !{ i8 0, i8 2 }
4498 !1 = !{ i8 255, i8 2 }
4499 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4500 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004501
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004502'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004503^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004504
4505``unpredictable`` metadata may be attached to any branch or switch
4506instruction. It can be used to express the unpredictability of control
4507flow. Similar to the llvm.expect intrinsic, it may be used to alter
4508optimizations related to compare and branch instructions. The metadata
4509is treated as a boolean value; if it exists, it signals that the branch
4510or switch that it is attached to is completely unpredictable.
4511
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004512'``llvm.loop``'
4513^^^^^^^^^^^^^^^
4514
4515It is sometimes useful to attach information to loop constructs. Currently,
4516loop metadata is implemented as metadata attached to the branch instruction
4517in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004518guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004519specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004520
4521The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004522itself to avoid merging it with any other identifier metadata, e.g.,
4523during module linkage or function inlining. That is, each loop should refer
4524to their own identification metadata even if they reside in separate functions.
4525The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004526constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004527
4528.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004529
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004530 !0 = !{!0}
4531 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004532
Mark Heffernan893752a2014-07-18 19:24:51 +00004533The loop identifier metadata can be used to specify additional
4534per-loop metadata. Any operands after the first operand can be treated
4535as user-defined metadata. For example the ``llvm.loop.unroll.count``
4536suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004537
Paul Redmond5fdf8362013-05-28 20:00:34 +00004538.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004539
Paul Redmond5fdf8362013-05-28 20:00:34 +00004540 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4541 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004542 !0 = !{!0, !1}
4543 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004544
Mark Heffernan9d20e422014-07-21 23:11:03 +00004545'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4546^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004547
Mark Heffernan9d20e422014-07-21 23:11:03 +00004548Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4549used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004550vectorization width and interleave count. These metadata should be used in
4551conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004552``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4553optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004554it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004555which contains information about loop-carried memory dependencies can be helpful
4556in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004557
Mark Heffernan9d20e422014-07-21 23:11:03 +00004558'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4560
Mark Heffernan9d20e422014-07-21 23:11:03 +00004561This metadata suggests an interleave count to the loop interleaver.
4562The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004563second operand is an integer specifying the interleave count. For
4564example:
4565
4566.. code-block:: llvm
4567
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004568 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004569
Mark Heffernan9d20e422014-07-21 23:11:03 +00004570Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004571multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004572then the interleave count will be determined automatically.
4573
4574'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004576
4577This metadata selectively enables or disables vectorization for the loop. The
4578first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004579is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000045800 disables vectorization:
4581
4582.. code-block:: llvm
4583
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004584 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4585 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004586
4587'``llvm.loop.vectorize.width``' Metadata
4588^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4589
4590This metadata sets the target width of the vectorizer. The first
4591operand is the string ``llvm.loop.vectorize.width`` and the second
4592operand is an integer specifying the width. For example:
4593
4594.. code-block:: llvm
4595
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004596 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004597
4598Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004599vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000046000 or if the loop does not have this metadata the width will be
4601determined automatically.
4602
4603'``llvm.loop.unroll``'
4604^^^^^^^^^^^^^^^^^^^^^^
4605
4606Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4607optimization hints such as the unroll factor. ``llvm.loop.unroll``
4608metadata should be used in conjunction with ``llvm.loop`` loop
4609identification metadata. The ``llvm.loop.unroll`` metadata are only
4610optimization hints and the unrolling will only be performed if the
4611optimizer believes it is safe to do so.
4612
Mark Heffernan893752a2014-07-18 19:24:51 +00004613'``llvm.loop.unroll.count``' Metadata
4614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4615
4616This metadata suggests an unroll factor to the loop unroller. The
4617first operand is the string ``llvm.loop.unroll.count`` and the second
4618operand is a positive integer specifying the unroll factor. For
4619example:
4620
4621.. code-block:: llvm
4622
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004623 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004624
4625If the trip count of the loop is less than the unroll count the loop
4626will be partially unrolled.
4627
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004628'``llvm.loop.unroll.disable``' Metadata
4629^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4630
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004631This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004632which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004633
4634.. code-block:: llvm
4635
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004636 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004637
Kevin Qin715b01e2015-03-09 06:14:18 +00004638'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004640
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004641This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004642operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004643
4644.. code-block:: llvm
4645
4646 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4647
Mark Heffernan89391542015-08-10 17:28:08 +00004648'``llvm.loop.unroll.enable``' Metadata
4649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4650
4651This metadata suggests that the loop should be fully unrolled if the trip count
4652is known at compile time and partially unrolled if the trip count is not known
4653at compile time. The metadata has a single operand which is the string
4654``llvm.loop.unroll.enable``. For example:
4655
4656.. code-block:: llvm
4657
4658 !0 = !{!"llvm.loop.unroll.enable"}
4659
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004660'``llvm.loop.unroll.full``' Metadata
4661^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4662
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004663This metadata suggests that the loop should be unrolled fully. The
4664metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004665For example:
4666
4667.. code-block:: llvm
4668
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004669 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004670
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004671'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004672^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004673
4674This metadata indicates that the loop should not be versioned for the purpose
4675of enabling loop-invariant code motion (LICM). The metadata has a single operand
4676which is the string ``llvm.loop.licm_versioning.disable``. For example:
4677
4678.. code-block:: llvm
4679
4680 !0 = !{!"llvm.loop.licm_versioning.disable"}
4681
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004682'``llvm.mem``'
4683^^^^^^^^^^^^^^^
4684
4685Metadata types used to annotate memory accesses with information helpful
4686for optimizations are prefixed with ``llvm.mem``.
4687
4688'``llvm.mem.parallel_loop_access``' Metadata
4689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4690
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004691The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4692or metadata containing a list of loop identifiers for nested loops.
4693The metadata is attached to memory accessing instructions and denotes that
4694no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004695with the same loop identifier.
4696
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004697Precisely, given two instructions ``m1`` and ``m2`` that both have the
4698``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4699set of loops associated with that metadata, respectively, then there is no loop
4700carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004701``L2``.
4702
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004703As a special case, if all memory accessing instructions in a loop have
4704``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4705loop has no loop carried memory dependences and is considered to be a parallel
4706loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004707
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004708Note that if not all memory access instructions have such metadata referring to
4709the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004710memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004711safe mechanism, this causes loops that were originally parallel to be considered
4712sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004713insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004714
4715Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004716both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004717metadata types that refer to the same loop identifier metadata.
4718
4719.. code-block:: llvm
4720
4721 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004722 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004723 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004724 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004725 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004726 ...
4727 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004728
4729 for.end:
4730 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004731 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004732
4733It is also possible to have nested parallel loops. In that case the
4734memory accesses refer to a list of loop identifier metadata nodes instead of
4735the loop identifier metadata node directly:
4736
4737.. code-block:: llvm
4738
4739 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004740 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004741 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004742 ...
4743 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004744
4745 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004746 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004747 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004748 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004749 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004750 ...
4751 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004752
4753 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004754 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004755 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004756 ...
4757 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004758
4759 outer.for.end: ; preds = %for.body
4760 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004761 !0 = !{!1, !2} ; a list of loop identifiers
4762 !1 = !{!1} ; an identifier for the inner loop
4763 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004764
Peter Collingbournee6909c82015-02-20 20:30:47 +00004765'``llvm.bitsets``'
4766^^^^^^^^^^^^^^^^^^
4767
4768The ``llvm.bitsets`` global metadata is used to implement
4769:doc:`bitsets <BitSets>`.
4770
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004771'``invariant.group``' Metadata
4772^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4773
4774The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4775The existence of the ``invariant.group`` metadata on the instruction tells
4776the optimizer that every ``load`` and ``store`` to the same pointer operand
4777within the same invariant group can be assumed to load or store the same
4778value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4779when two pointers are considered the same).
4780
4781Examples:
4782
4783.. code-block:: llvm
4784
4785 @unknownPtr = external global i8
4786 ...
4787 %ptr = alloca i8
4788 store i8 42, i8* %ptr, !invariant.group !0
4789 call void @foo(i8* %ptr)
4790
4791 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4792 call void @foo(i8* %ptr)
4793 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4794
4795 %newPtr = call i8* @getPointer(i8* %ptr)
4796 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4797
4798 %unknownValue = load i8, i8* @unknownPtr
4799 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4800
4801 call void @foo(i8* %ptr)
4802 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4803 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4804
4805 ...
4806 declare void @foo(i8*)
4807 declare i8* @getPointer(i8*)
4808 declare i8* @llvm.invariant.group.barrier(i8*)
4809
4810 !0 = !{!"magic ptr"}
4811 !1 = !{!"other ptr"}
4812
4813
4814
Sean Silvab084af42012-12-07 10:36:55 +00004815Module Flags Metadata
4816=====================
4817
4818Information about the module as a whole is difficult to convey to LLVM's
4819subsystems. The LLVM IR isn't sufficient to transmit this information.
4820The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004821this. These flags are in the form of key / value pairs --- much like a
4822dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004823look it up.
4824
4825The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4826Each triplet has the following form:
4827
4828- The first element is a *behavior* flag, which specifies the behavior
4829 when two (or more) modules are merged together, and it encounters two
4830 (or more) metadata with the same ID. The supported behaviors are
4831 described below.
4832- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004833 metadata. Each module may only have one flag entry for each unique ID (not
4834 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004835- The third element is the value of the flag.
4836
4837When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004838``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4839each unique metadata ID string, there will be exactly one entry in the merged
4840modules ``llvm.module.flags`` metadata table, and the value for that entry will
4841be determined by the merge behavior flag, as described below. The only exception
4842is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004843
4844The following behaviors are supported:
4845
4846.. list-table::
4847 :header-rows: 1
4848 :widths: 10 90
4849
4850 * - Value
4851 - Behavior
4852
4853 * - 1
4854 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004855 Emits an error if two values disagree, otherwise the resulting value
4856 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004857
4858 * - 2
4859 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004860 Emits a warning if two values disagree. The result value will be the
4861 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004862
4863 * - 3
4864 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004865 Adds a requirement that another module flag be present and have a
4866 specified value after linking is performed. The value must be a
4867 metadata pair, where the first element of the pair is the ID of the
4868 module flag to be restricted, and the second element of the pair is
4869 the value the module flag should be restricted to. This behavior can
4870 be used to restrict the allowable results (via triggering of an
4871 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004872
4873 * - 4
4874 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004875 Uses the specified value, regardless of the behavior or value of the
4876 other module. If both modules specify **Override**, but the values
4877 differ, an error will be emitted.
4878
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004879 * - 5
4880 - **Append**
4881 Appends the two values, which are required to be metadata nodes.
4882
4883 * - 6
4884 - **AppendUnique**
4885 Appends the two values, which are required to be metadata
4886 nodes. However, duplicate entries in the second list are dropped
4887 during the append operation.
4888
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004889It is an error for a particular unique flag ID to have multiple behaviors,
4890except in the case of **Require** (which adds restrictions on another metadata
4891value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004892
4893An example of module flags:
4894
4895.. code-block:: llvm
4896
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004897 !0 = !{ i32 1, !"foo", i32 1 }
4898 !1 = !{ i32 4, !"bar", i32 37 }
4899 !2 = !{ i32 2, !"qux", i32 42 }
4900 !3 = !{ i32 3, !"qux",
4901 !{
4902 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004903 }
4904 }
4905 !llvm.module.flags = !{ !0, !1, !2, !3 }
4906
4907- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4908 if two or more ``!"foo"`` flags are seen is to emit an error if their
4909 values are not equal.
4910
4911- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4912 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004913 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004914
4915- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4916 behavior if two or more ``!"qux"`` flags are seen is to emit a
4917 warning if their values are not equal.
4918
4919- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4920
4921 ::
4922
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004923 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004924
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004925 The behavior is to emit an error if the ``llvm.module.flags`` does not
4926 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4927 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004928
4929Objective-C Garbage Collection Module Flags Metadata
4930----------------------------------------------------
4931
4932On the Mach-O platform, Objective-C stores metadata about garbage
4933collection in a special section called "image info". The metadata
4934consists of a version number and a bitmask specifying what types of
4935garbage collection are supported (if any) by the file. If two or more
4936modules are linked together their garbage collection metadata needs to
4937be merged rather than appended together.
4938
4939The Objective-C garbage collection module flags metadata consists of the
4940following key-value pairs:
4941
4942.. list-table::
4943 :header-rows: 1
4944 :widths: 30 70
4945
4946 * - Key
4947 - Value
4948
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004949 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004950 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004951
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004952 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004953 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004954 always 0.
4955
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004956 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004957 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004958 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4959 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4960 Objective-C ABI version 2.
4961
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004962 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004963 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004964 not. Valid values are 0, for no garbage collection, and 2, for garbage
4965 collection supported.
4966
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004967 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004968 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004969 If present, its value must be 6. This flag requires that the
4970 ``Objective-C Garbage Collection`` flag have the value 2.
4971
4972Some important flag interactions:
4973
4974- If a module with ``Objective-C Garbage Collection`` set to 0 is
4975 merged with a module with ``Objective-C Garbage Collection`` set to
4976 2, then the resulting module has the
4977 ``Objective-C Garbage Collection`` flag set to 0.
4978- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4979 merged with a module with ``Objective-C GC Only`` set to 6.
4980
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004981Automatic Linker Flags Module Flags Metadata
4982--------------------------------------------
4983
4984Some targets support embedding flags to the linker inside individual object
4985files. Typically this is used in conjunction with language extensions which
4986allow source files to explicitly declare the libraries they depend on, and have
4987these automatically be transmitted to the linker via object files.
4988
4989These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004990using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004991to be ``AppendUnique``, and the value for the key is expected to be a metadata
4992node which should be a list of other metadata nodes, each of which should be a
4993list of metadata strings defining linker options.
4994
4995For example, the following metadata section specifies two separate sets of
4996linker options, presumably to link against ``libz`` and the ``Cocoa``
4997framework::
4998
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004999 !0 = !{ i32 6, !"Linker Options",
5000 !{
5001 !{ !"-lz" },
5002 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005003 !llvm.module.flags = !{ !0 }
5004
5005The metadata encoding as lists of lists of options, as opposed to a collapsed
5006list of options, is chosen so that the IR encoding can use multiple option
5007strings to specify e.g., a single library, while still having that specifier be
5008preserved as an atomic element that can be recognized by a target specific
5009assembly writer or object file emitter.
5010
5011Each individual option is required to be either a valid option for the target's
5012linker, or an option that is reserved by the target specific assembly writer or
5013object file emitter. No other aspect of these options is defined by the IR.
5014
Oliver Stannard5dc29342014-06-20 10:08:11 +00005015C type width Module Flags Metadata
5016----------------------------------
5017
5018The ARM backend emits a section into each generated object file describing the
5019options that it was compiled with (in a compiler-independent way) to prevent
5020linking incompatible objects, and to allow automatic library selection. Some
5021of these options are not visible at the IR level, namely wchar_t width and enum
5022width.
5023
5024To pass this information to the backend, these options are encoded in module
5025flags metadata, using the following key-value pairs:
5026
5027.. list-table::
5028 :header-rows: 1
5029 :widths: 30 70
5030
5031 * - Key
5032 - Value
5033
5034 * - short_wchar
5035 - * 0 --- sizeof(wchar_t) == 4
5036 * 1 --- sizeof(wchar_t) == 2
5037
5038 * - short_enum
5039 - * 0 --- Enums are at least as large as an ``int``.
5040 * 1 --- Enums are stored in the smallest integer type which can
5041 represent all of its values.
5042
5043For example, the following metadata section specifies that the module was
5044compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5045enum is the smallest type which can represent all of its values::
5046
5047 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005048 !0 = !{i32 1, !"short_wchar", i32 1}
5049 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005050
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005051.. _intrinsicglobalvariables:
5052
Sean Silvab084af42012-12-07 10:36:55 +00005053Intrinsic Global Variables
5054==========================
5055
5056LLVM has a number of "magic" global variables that contain data that
5057affect code generation or other IR semantics. These are documented here.
5058All globals of this sort should have a section specified as
5059"``llvm.metadata``". This section and all globals that start with
5060"``llvm.``" are reserved for use by LLVM.
5061
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005062.. _gv_llvmused:
5063
Sean Silvab084af42012-12-07 10:36:55 +00005064The '``llvm.used``' Global Variable
5065-----------------------------------
5066
Rafael Espindola74f2e462013-04-22 14:58:02 +00005067The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005068:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005069pointers to named global variables, functions and aliases which may optionally
5070have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005071use of it is:
5072
5073.. code-block:: llvm
5074
5075 @X = global i8 4
5076 @Y = global i32 123
5077
5078 @llvm.used = appending global [2 x i8*] [
5079 i8* @X,
5080 i8* bitcast (i32* @Y to i8*)
5081 ], section "llvm.metadata"
5082
Rafael Espindola74f2e462013-04-22 14:58:02 +00005083If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5084and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005085symbol that it cannot see (which is why they have to be named). For example, if
5086a variable has internal linkage and no references other than that from the
5087``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5088references from inline asms and other things the compiler cannot "see", and
5089corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005090
5091On some targets, the code generator must emit a directive to the
5092assembler or object file to prevent the assembler and linker from
5093molesting the symbol.
5094
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005095.. _gv_llvmcompilerused:
5096
Sean Silvab084af42012-12-07 10:36:55 +00005097The '``llvm.compiler.used``' Global Variable
5098--------------------------------------------
5099
5100The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5101directive, except that it only prevents the compiler from touching the
5102symbol. On targets that support it, this allows an intelligent linker to
5103optimize references to the symbol without being impeded as it would be
5104by ``@llvm.used``.
5105
5106This is a rare construct that should only be used in rare circumstances,
5107and should not be exposed to source languages.
5108
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005109.. _gv_llvmglobalctors:
5110
Sean Silvab084af42012-12-07 10:36:55 +00005111The '``llvm.global_ctors``' Global Variable
5112-------------------------------------------
5113
5114.. code-block:: llvm
5115
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005116 %0 = type { i32, void ()*, i8* }
5117 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005118
5119The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005120functions, priorities, and an optional associated global or function.
5121The functions referenced by this array will be called in ascending order
5122of priority (i.e. lowest first) when the module is loaded. The order of
5123functions with the same priority is not defined.
5124
5125If the third field is present, non-null, and points to a global variable
5126or function, the initializer function will only run if the associated
5127data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005128
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005129.. _llvmglobaldtors:
5130
Sean Silvab084af42012-12-07 10:36:55 +00005131The '``llvm.global_dtors``' Global Variable
5132-------------------------------------------
5133
5134.. code-block:: llvm
5135
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005136 %0 = type { i32, void ()*, i8* }
5137 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005138
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005139The ``@llvm.global_dtors`` array contains a list of destructor
5140functions, priorities, and an optional associated global or function.
5141The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005142order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005143order of functions with the same priority is not defined.
5144
5145If the third field is present, non-null, and points to a global variable
5146or function, the destructor function will only run if the associated
5147data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005148
5149Instruction Reference
5150=====================
5151
5152The LLVM instruction set consists of several different classifications
5153of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5154instructions <binaryops>`, :ref:`bitwise binary
5155instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5156:ref:`other instructions <otherops>`.
5157
5158.. _terminators:
5159
5160Terminator Instructions
5161-----------------------
5162
5163As mentioned :ref:`previously <functionstructure>`, every basic block in a
5164program ends with a "Terminator" instruction, which indicates which
5165block should be executed after the current block is finished. These
5166terminator instructions typically yield a '``void``' value: they produce
5167control flow, not values (the one exception being the
5168':ref:`invoke <i_invoke>`' instruction).
5169
5170The terminator instructions are: ':ref:`ret <i_ret>`',
5171':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5172':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005173':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005174':ref:`catchret <i_catchret>`',
5175':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005176and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005177
5178.. _i_ret:
5179
5180'``ret``' Instruction
5181^^^^^^^^^^^^^^^^^^^^^
5182
5183Syntax:
5184"""""""
5185
5186::
5187
5188 ret <type> <value> ; Return a value from a non-void function
5189 ret void ; Return from void function
5190
5191Overview:
5192"""""""""
5193
5194The '``ret``' instruction is used to return control flow (and optionally
5195a value) from a function back to the caller.
5196
5197There are two forms of the '``ret``' instruction: one that returns a
5198value and then causes control flow, and one that just causes control
5199flow to occur.
5200
5201Arguments:
5202""""""""""
5203
5204The '``ret``' instruction optionally accepts a single argument, the
5205return value. The type of the return value must be a ':ref:`first
5206class <t_firstclass>`' type.
5207
5208A function is not :ref:`well formed <wellformed>` if it it has a non-void
5209return type and contains a '``ret``' instruction with no return value or
5210a return value with a type that does not match its type, or if it has a
5211void return type and contains a '``ret``' instruction with a return
5212value.
5213
5214Semantics:
5215""""""""""
5216
5217When the '``ret``' instruction is executed, control flow returns back to
5218the calling function's context. If the caller is a
5219":ref:`call <i_call>`" instruction, execution continues at the
5220instruction after the call. If the caller was an
5221":ref:`invoke <i_invoke>`" instruction, execution continues at the
5222beginning of the "normal" destination block. If the instruction returns
5223a value, that value shall set the call or invoke instruction's return
5224value.
5225
5226Example:
5227""""""""
5228
5229.. code-block:: llvm
5230
5231 ret i32 5 ; Return an integer value of 5
5232 ret void ; Return from a void function
5233 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5234
5235.. _i_br:
5236
5237'``br``' Instruction
5238^^^^^^^^^^^^^^^^^^^^
5239
5240Syntax:
5241"""""""
5242
5243::
5244
5245 br i1 <cond>, label <iftrue>, label <iffalse>
5246 br label <dest> ; Unconditional branch
5247
5248Overview:
5249"""""""""
5250
5251The '``br``' instruction is used to cause control flow to transfer to a
5252different basic block in the current function. There are two forms of
5253this instruction, corresponding to a conditional branch and an
5254unconditional branch.
5255
5256Arguments:
5257""""""""""
5258
5259The conditional branch form of the '``br``' instruction takes a single
5260'``i1``' value and two '``label``' values. The unconditional form of the
5261'``br``' instruction takes a single '``label``' value as a target.
5262
5263Semantics:
5264""""""""""
5265
5266Upon execution of a conditional '``br``' instruction, the '``i1``'
5267argument is evaluated. If the value is ``true``, control flows to the
5268'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5269to the '``iffalse``' ``label`` argument.
5270
5271Example:
5272""""""""
5273
5274.. code-block:: llvm
5275
5276 Test:
5277 %cond = icmp eq i32 %a, %b
5278 br i1 %cond, label %IfEqual, label %IfUnequal
5279 IfEqual:
5280 ret i32 1
5281 IfUnequal:
5282 ret i32 0
5283
5284.. _i_switch:
5285
5286'``switch``' Instruction
5287^^^^^^^^^^^^^^^^^^^^^^^^
5288
5289Syntax:
5290"""""""
5291
5292::
5293
5294 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5295
5296Overview:
5297"""""""""
5298
5299The '``switch``' instruction is used to transfer control flow to one of
5300several different places. It is a generalization of the '``br``'
5301instruction, allowing a branch to occur to one of many possible
5302destinations.
5303
5304Arguments:
5305""""""""""
5306
5307The '``switch``' instruction uses three parameters: an integer
5308comparison value '``value``', a default '``label``' destination, and an
5309array of pairs of comparison value constants and '``label``'s. The table
5310is not allowed to contain duplicate constant entries.
5311
5312Semantics:
5313""""""""""
5314
5315The ``switch`` instruction specifies a table of values and destinations.
5316When the '``switch``' instruction is executed, this table is searched
5317for the given value. If the value is found, control flow is transferred
5318to the corresponding destination; otherwise, control flow is transferred
5319to the default destination.
5320
5321Implementation:
5322"""""""""""""""
5323
5324Depending on properties of the target machine and the particular
5325``switch`` instruction, this instruction may be code generated in
5326different ways. For example, it could be generated as a series of
5327chained conditional branches or with a lookup table.
5328
5329Example:
5330""""""""
5331
5332.. code-block:: llvm
5333
5334 ; Emulate a conditional br instruction
5335 %Val = zext i1 %value to i32
5336 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5337
5338 ; Emulate an unconditional br instruction
5339 switch i32 0, label %dest [ ]
5340
5341 ; Implement a jump table:
5342 switch i32 %val, label %otherwise [ i32 0, label %onzero
5343 i32 1, label %onone
5344 i32 2, label %ontwo ]
5345
5346.. _i_indirectbr:
5347
5348'``indirectbr``' Instruction
5349^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5350
5351Syntax:
5352"""""""
5353
5354::
5355
5356 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5357
5358Overview:
5359"""""""""
5360
5361The '``indirectbr``' instruction implements an indirect branch to a
5362label within the current function, whose address is specified by
5363"``address``". Address must be derived from a
5364:ref:`blockaddress <blockaddress>` constant.
5365
5366Arguments:
5367""""""""""
5368
5369The '``address``' argument is the address of the label to jump to. The
5370rest of the arguments indicate the full set of possible destinations
5371that the address may point to. Blocks are allowed to occur multiple
5372times in the destination list, though this isn't particularly useful.
5373
5374This destination list is required so that dataflow analysis has an
5375accurate understanding of the CFG.
5376
5377Semantics:
5378""""""""""
5379
5380Control transfers to the block specified in the address argument. All
5381possible destination blocks must be listed in the label list, otherwise
5382this instruction has undefined behavior. This implies that jumps to
5383labels defined in other functions have undefined behavior as well.
5384
5385Implementation:
5386"""""""""""""""
5387
5388This is typically implemented with a jump through a register.
5389
5390Example:
5391""""""""
5392
5393.. code-block:: llvm
5394
5395 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5396
5397.. _i_invoke:
5398
5399'``invoke``' Instruction
5400^^^^^^^^^^^^^^^^^^^^^^^^
5401
5402Syntax:
5403"""""""
5404
5405::
5406
5407 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005408 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005409
5410Overview:
5411"""""""""
5412
5413The '``invoke``' instruction causes control to transfer to a specified
5414function, with the possibility of control flow transfer to either the
5415'``normal``' label or the '``exception``' label. If the callee function
5416returns with the "``ret``" instruction, control flow will return to the
5417"normal" label. If the callee (or any indirect callees) returns via the
5418":ref:`resume <i_resume>`" instruction or other exception handling
5419mechanism, control is interrupted and continued at the dynamically
5420nearest "exception" label.
5421
5422The '``exception``' label is a `landing
5423pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5424'``exception``' label is required to have the
5425":ref:`landingpad <i_landingpad>`" instruction, which contains the
5426information about the behavior of the program after unwinding happens,
5427as its first non-PHI instruction. The restrictions on the
5428"``landingpad``" instruction's tightly couples it to the "``invoke``"
5429instruction, so that the important information contained within the
5430"``landingpad``" instruction can't be lost through normal code motion.
5431
5432Arguments:
5433""""""""""
5434
5435This instruction requires several arguments:
5436
5437#. The optional "cconv" marker indicates which :ref:`calling
5438 convention <callingconv>` the call should use. If none is
5439 specified, the call defaults to using C calling conventions.
5440#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5441 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5442 are valid here.
5443#. '``ptr to function ty``': shall be the signature of the pointer to
5444 function value being invoked. In most cases, this is a direct
5445 function invocation, but indirect ``invoke``'s are just as possible,
5446 branching off an arbitrary pointer to function value.
5447#. '``function ptr val``': An LLVM value containing a pointer to a
5448 function to be invoked.
5449#. '``function args``': argument list whose types match the function
5450 signature argument types and parameter attributes. All arguments must
5451 be of :ref:`first class <t_firstclass>` type. If the function signature
5452 indicates the function accepts a variable number of arguments, the
5453 extra arguments can be specified.
5454#. '``normal label``': the label reached when the called function
5455 executes a '``ret``' instruction.
5456#. '``exception label``': the label reached when a callee returns via
5457 the :ref:`resume <i_resume>` instruction or other exception handling
5458 mechanism.
5459#. The optional :ref:`function attributes <fnattrs>` list. Only
5460 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5461 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005462#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005463
5464Semantics:
5465""""""""""
5466
5467This instruction is designed to operate as a standard '``call``'
5468instruction in most regards. The primary difference is that it
5469establishes an association with a label, which is used by the runtime
5470library to unwind the stack.
5471
5472This instruction is used in languages with destructors to ensure that
5473proper cleanup is performed in the case of either a ``longjmp`` or a
5474thrown exception. Additionally, this is important for implementation of
5475'``catch``' clauses in high-level languages that support them.
5476
5477For the purposes of the SSA form, the definition of the value returned
5478by the '``invoke``' instruction is deemed to occur on the edge from the
5479current block to the "normal" label. If the callee unwinds then no
5480return value is available.
5481
5482Example:
5483""""""""
5484
5485.. code-block:: llvm
5486
5487 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005488 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005489 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005490 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005491
5492.. _i_resume:
5493
5494'``resume``' Instruction
5495^^^^^^^^^^^^^^^^^^^^^^^^
5496
5497Syntax:
5498"""""""
5499
5500::
5501
5502 resume <type> <value>
5503
5504Overview:
5505"""""""""
5506
5507The '``resume``' instruction is a terminator instruction that has no
5508successors.
5509
5510Arguments:
5511""""""""""
5512
5513The '``resume``' instruction requires one argument, which must have the
5514same type as the result of any '``landingpad``' instruction in the same
5515function.
5516
5517Semantics:
5518""""""""""
5519
5520The '``resume``' instruction resumes propagation of an existing
5521(in-flight) exception whose unwinding was interrupted with a
5522:ref:`landingpad <i_landingpad>` instruction.
5523
5524Example:
5525""""""""
5526
5527.. code-block:: llvm
5528
5529 resume { i8*, i32 } %exn
5530
David Majnemer8a1c45d2015-12-12 05:38:55 +00005531.. _i_catchswitch:
5532
5533'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005535
5536Syntax:
5537"""""""
5538
5539::
5540
5541 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5542 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5543
5544Overview:
5545"""""""""
5546
5547The '``catchswitch``' instruction is used by `LLVM's exception handling system
5548<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5549that may be executed by the :ref:`EH personality routine <personalityfn>`.
5550
5551Arguments:
5552""""""""""
5553
5554The ``parent`` argument is the token of the funclet that contains the
5555``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5556this operand may be the token ``none``.
5557
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005558The ``default`` argument is the label of another basic block beginning with
5559either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5560must be a legal target with respect to the ``parent`` links, as described in
5561the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005562
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005563The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005564:ref:`catchpad <i_catchpad>` instruction.
5565
5566Semantics:
5567""""""""""
5568
5569Executing this instruction transfers control to one of the successors in
5570``handlers``, if appropriate, or continues to unwind via the unwind label if
5571present.
5572
5573The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5574it must be both the first non-phi instruction and last instruction in the basic
5575block. Therefore, it must be the only non-phi instruction in the block.
5576
5577Example:
5578""""""""
5579
5580.. code-block:: llvm
5581
5582 dispatch1:
5583 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5584 dispatch2:
5585 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5586
David Majnemer654e1302015-07-31 17:58:14 +00005587.. _i_catchret:
5588
5589'``catchret``' Instruction
5590^^^^^^^^^^^^^^^^^^^^^^^^^^
5591
5592Syntax:
5593"""""""
5594
5595::
5596
David Majnemer8a1c45d2015-12-12 05:38:55 +00005597 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005598
5599Overview:
5600"""""""""
5601
5602The '``catchret``' instruction is a terminator instruction that has a
5603single successor.
5604
5605
5606Arguments:
5607""""""""""
5608
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005609The first argument to a '``catchret``' indicates which ``catchpad`` it
5610exits. It must be a :ref:`catchpad <i_catchpad>`.
5611The second argument to a '``catchret``' specifies where control will
5612transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005613
5614Semantics:
5615""""""""""
5616
David Majnemer8a1c45d2015-12-12 05:38:55 +00005617The '``catchret``' instruction ends an existing (in-flight) exception whose
5618unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5619:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5620code to, for example, destroy the active exception. Control then transfers to
5621``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005622
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005623The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5624If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5625funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5626the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005627
5628Example:
5629""""""""
5630
5631.. code-block:: llvm
5632
David Majnemer8a1c45d2015-12-12 05:38:55 +00005633 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005634
David Majnemer654e1302015-07-31 17:58:14 +00005635.. _i_cleanupret:
5636
5637'``cleanupret``' Instruction
5638^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5639
5640Syntax:
5641"""""""
5642
5643::
5644
David Majnemer8a1c45d2015-12-12 05:38:55 +00005645 cleanupret from <value> unwind label <continue>
5646 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005647
5648Overview:
5649"""""""""
5650
5651The '``cleanupret``' instruction is a terminator instruction that has
5652an optional successor.
5653
5654
5655Arguments:
5656""""""""""
5657
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005658The '``cleanupret``' instruction requires one argument, which indicates
5659which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005660If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5661funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5662the ``cleanupret``'s behavior is undefined.
5663
5664The '``cleanupret``' instruction also has an optional successor, ``continue``,
5665which must be the label of another basic block beginning with either a
5666``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5667be a legal target with respect to the ``parent`` links, as described in the
5668`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005669
5670Semantics:
5671""""""""""
5672
5673The '``cleanupret``' instruction indicates to the
5674:ref:`personality function <personalityfn>` that one
5675:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5676It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005677
David Majnemer654e1302015-07-31 17:58:14 +00005678Example:
5679""""""""
5680
5681.. code-block:: llvm
5682
David Majnemer8a1c45d2015-12-12 05:38:55 +00005683 cleanupret from %cleanup unwind to caller
5684 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005685
Sean Silvab084af42012-12-07 10:36:55 +00005686.. _i_unreachable:
5687
5688'``unreachable``' Instruction
5689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5690
5691Syntax:
5692"""""""
5693
5694::
5695
5696 unreachable
5697
5698Overview:
5699"""""""""
5700
5701The '``unreachable``' instruction has no defined semantics. This
5702instruction is used to inform the optimizer that a particular portion of
5703the code is not reachable. This can be used to indicate that the code
5704after a no-return function cannot be reached, and other facts.
5705
5706Semantics:
5707""""""""""
5708
5709The '``unreachable``' instruction has no defined semantics.
5710
5711.. _binaryops:
5712
5713Binary Operations
5714-----------------
5715
5716Binary operators are used to do most of the computation in a program.
5717They require two operands of the same type, execute an operation on
5718them, and produce a single value. The operands might represent multiple
5719data, as is the case with the :ref:`vector <t_vector>` data type. The
5720result value has the same type as its operands.
5721
5722There are several different binary operators:
5723
5724.. _i_add:
5725
5726'``add``' Instruction
5727^^^^^^^^^^^^^^^^^^^^^
5728
5729Syntax:
5730"""""""
5731
5732::
5733
Tim Northover675a0962014-06-13 14:24:23 +00005734 <result> = add <ty> <op1>, <op2> ; yields ty:result
5735 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5736 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5737 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005738
5739Overview:
5740"""""""""
5741
5742The '``add``' instruction returns the sum of its two operands.
5743
5744Arguments:
5745""""""""""
5746
5747The two arguments to the '``add``' instruction must be
5748:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5749arguments must have identical types.
5750
5751Semantics:
5752""""""""""
5753
5754The value produced is the integer sum of the two operands.
5755
5756If the sum has unsigned overflow, the result returned is the
5757mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5758the result.
5759
5760Because LLVM integers use a two's complement representation, this
5761instruction is appropriate for both signed and unsigned integers.
5762
5763``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5764respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5765result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5766unsigned and/or signed overflow, respectively, occurs.
5767
5768Example:
5769""""""""
5770
5771.. code-block:: llvm
5772
Tim Northover675a0962014-06-13 14:24:23 +00005773 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005774
5775.. _i_fadd:
5776
5777'``fadd``' Instruction
5778^^^^^^^^^^^^^^^^^^^^^^
5779
5780Syntax:
5781"""""""
5782
5783::
5784
Tim Northover675a0962014-06-13 14:24:23 +00005785 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005786
5787Overview:
5788"""""""""
5789
5790The '``fadd``' instruction returns the sum of its two operands.
5791
5792Arguments:
5793""""""""""
5794
5795The two arguments to the '``fadd``' instruction must be :ref:`floating
5796point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5797Both arguments must have identical types.
5798
5799Semantics:
5800""""""""""
5801
5802The value produced is the floating point sum of the two operands. This
5803instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5804which are optimization hints to enable otherwise unsafe floating point
5805optimizations:
5806
5807Example:
5808""""""""
5809
5810.. code-block:: llvm
5811
Tim Northover675a0962014-06-13 14:24:23 +00005812 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005813
5814'``sub``' Instruction
5815^^^^^^^^^^^^^^^^^^^^^
5816
5817Syntax:
5818"""""""
5819
5820::
5821
Tim Northover675a0962014-06-13 14:24:23 +00005822 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5823 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5824 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5825 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005826
5827Overview:
5828"""""""""
5829
5830The '``sub``' instruction returns the difference of its two operands.
5831
5832Note that the '``sub``' instruction is used to represent the '``neg``'
5833instruction present in most other intermediate representations.
5834
5835Arguments:
5836""""""""""
5837
5838The two arguments to the '``sub``' instruction must be
5839:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5840arguments must have identical types.
5841
5842Semantics:
5843""""""""""
5844
5845The value produced is the integer difference of the two operands.
5846
5847If the difference has unsigned overflow, the result returned is the
5848mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5849the result.
5850
5851Because LLVM integers use a two's complement representation, this
5852instruction is appropriate for both signed and unsigned integers.
5853
5854``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5855respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5856result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5857unsigned and/or signed overflow, respectively, occurs.
5858
5859Example:
5860""""""""
5861
5862.. code-block:: llvm
5863
Tim Northover675a0962014-06-13 14:24:23 +00005864 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5865 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005866
5867.. _i_fsub:
5868
5869'``fsub``' Instruction
5870^^^^^^^^^^^^^^^^^^^^^^
5871
5872Syntax:
5873"""""""
5874
5875::
5876
Tim Northover675a0962014-06-13 14:24:23 +00005877 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005878
5879Overview:
5880"""""""""
5881
5882The '``fsub``' instruction returns the difference of its two operands.
5883
5884Note that the '``fsub``' instruction is used to represent the '``fneg``'
5885instruction present in most other intermediate representations.
5886
5887Arguments:
5888""""""""""
5889
5890The two arguments to the '``fsub``' instruction must be :ref:`floating
5891point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5892Both arguments must have identical types.
5893
5894Semantics:
5895""""""""""
5896
5897The value produced is the floating point difference of the two operands.
5898This instruction can also take any number of :ref:`fast-math
5899flags <fastmath>`, which are optimization hints to enable otherwise
5900unsafe floating point optimizations:
5901
5902Example:
5903""""""""
5904
5905.. code-block:: llvm
5906
Tim Northover675a0962014-06-13 14:24:23 +00005907 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5908 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005909
5910'``mul``' Instruction
5911^^^^^^^^^^^^^^^^^^^^^
5912
5913Syntax:
5914"""""""
5915
5916::
5917
Tim Northover675a0962014-06-13 14:24:23 +00005918 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5919 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5920 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5921 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005922
5923Overview:
5924"""""""""
5925
5926The '``mul``' instruction returns the product of its two operands.
5927
5928Arguments:
5929""""""""""
5930
5931The two arguments to the '``mul``' instruction must be
5932:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5933arguments must have identical types.
5934
5935Semantics:
5936""""""""""
5937
5938The value produced is the integer product of the two operands.
5939
5940If the result of the multiplication has unsigned overflow, the result
5941returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5942bit width of the result.
5943
5944Because LLVM integers use a two's complement representation, and the
5945result is the same width as the operands, this instruction returns the
5946correct result for both signed and unsigned integers. If a full product
5947(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5948sign-extended or zero-extended as appropriate to the width of the full
5949product.
5950
5951``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5952respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5953result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5954unsigned and/or signed overflow, respectively, occurs.
5955
5956Example:
5957""""""""
5958
5959.. code-block:: llvm
5960
Tim Northover675a0962014-06-13 14:24:23 +00005961 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005962
5963.. _i_fmul:
5964
5965'``fmul``' Instruction
5966^^^^^^^^^^^^^^^^^^^^^^
5967
5968Syntax:
5969"""""""
5970
5971::
5972
Tim Northover675a0962014-06-13 14:24:23 +00005973 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005974
5975Overview:
5976"""""""""
5977
5978The '``fmul``' instruction returns the product of its two operands.
5979
5980Arguments:
5981""""""""""
5982
5983The two arguments to the '``fmul``' instruction must be :ref:`floating
5984point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5985Both arguments must have identical types.
5986
5987Semantics:
5988""""""""""
5989
5990The value produced is the floating point product of the two operands.
5991This instruction can also take any number of :ref:`fast-math
5992flags <fastmath>`, which are optimization hints to enable otherwise
5993unsafe floating point optimizations:
5994
5995Example:
5996""""""""
5997
5998.. code-block:: llvm
5999
Tim Northover675a0962014-06-13 14:24:23 +00006000 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006001
6002'``udiv``' Instruction
6003^^^^^^^^^^^^^^^^^^^^^^
6004
6005Syntax:
6006"""""""
6007
6008::
6009
Tim Northover675a0962014-06-13 14:24:23 +00006010 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6011 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006012
6013Overview:
6014"""""""""
6015
6016The '``udiv``' instruction returns the quotient of its two operands.
6017
6018Arguments:
6019""""""""""
6020
6021The two arguments to the '``udiv``' instruction must be
6022:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6023arguments must have identical types.
6024
6025Semantics:
6026""""""""""
6027
6028The value produced is the unsigned integer quotient of the two operands.
6029
6030Note that unsigned integer division and signed integer division are
6031distinct operations; for signed integer division, use '``sdiv``'.
6032
6033Division by zero leads to undefined behavior.
6034
6035If the ``exact`` keyword is present, the result value of the ``udiv`` is
6036a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6037such, "((a udiv exact b) mul b) == a").
6038
6039Example:
6040""""""""
6041
6042.. code-block:: llvm
6043
Tim Northover675a0962014-06-13 14:24:23 +00006044 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006045
6046'``sdiv``' Instruction
6047^^^^^^^^^^^^^^^^^^^^^^
6048
6049Syntax:
6050"""""""
6051
6052::
6053
Tim Northover675a0962014-06-13 14:24:23 +00006054 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6055 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006056
6057Overview:
6058"""""""""
6059
6060The '``sdiv``' instruction returns the quotient of its two operands.
6061
6062Arguments:
6063""""""""""
6064
6065The two arguments to the '``sdiv``' instruction must be
6066:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6067arguments must have identical types.
6068
6069Semantics:
6070""""""""""
6071
6072The value produced is the signed integer quotient of the two operands
6073rounded towards zero.
6074
6075Note that signed integer division and unsigned integer division are
6076distinct operations; for unsigned integer division, use '``udiv``'.
6077
6078Division by zero leads to undefined behavior. Overflow also leads to
6079undefined behavior; this is a rare case, but can occur, for example, by
6080doing a 32-bit division of -2147483648 by -1.
6081
6082If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6083a :ref:`poison value <poisonvalues>` if the result would be rounded.
6084
6085Example:
6086""""""""
6087
6088.. code-block:: llvm
6089
Tim Northover675a0962014-06-13 14:24:23 +00006090 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006091
6092.. _i_fdiv:
6093
6094'``fdiv``' Instruction
6095^^^^^^^^^^^^^^^^^^^^^^
6096
6097Syntax:
6098"""""""
6099
6100::
6101
Tim Northover675a0962014-06-13 14:24:23 +00006102 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006103
6104Overview:
6105"""""""""
6106
6107The '``fdiv``' instruction returns the quotient of its two operands.
6108
6109Arguments:
6110""""""""""
6111
6112The two arguments to the '``fdiv``' instruction must be :ref:`floating
6113point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6114Both arguments must have identical types.
6115
6116Semantics:
6117""""""""""
6118
6119The value produced is the floating point quotient of the two operands.
6120This instruction can also take any number of :ref:`fast-math
6121flags <fastmath>`, which are optimization hints to enable otherwise
6122unsafe floating point optimizations:
6123
6124Example:
6125""""""""
6126
6127.. code-block:: llvm
6128
Tim Northover675a0962014-06-13 14:24:23 +00006129 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006130
6131'``urem``' Instruction
6132^^^^^^^^^^^^^^^^^^^^^^
6133
6134Syntax:
6135"""""""
6136
6137::
6138
Tim Northover675a0962014-06-13 14:24:23 +00006139 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006140
6141Overview:
6142"""""""""
6143
6144The '``urem``' instruction returns the remainder from the unsigned
6145division of its two arguments.
6146
6147Arguments:
6148""""""""""
6149
6150The two arguments to the '``urem``' instruction must be
6151:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6152arguments must have identical types.
6153
6154Semantics:
6155""""""""""
6156
6157This instruction returns the unsigned integer *remainder* of a division.
6158This instruction always performs an unsigned division to get the
6159remainder.
6160
6161Note that unsigned integer remainder and signed integer remainder are
6162distinct operations; for signed integer remainder, use '``srem``'.
6163
6164Taking the remainder of a division by zero leads to undefined behavior.
6165
6166Example:
6167""""""""
6168
6169.. code-block:: llvm
6170
Tim Northover675a0962014-06-13 14:24:23 +00006171 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006172
6173'``srem``' Instruction
6174^^^^^^^^^^^^^^^^^^^^^^
6175
6176Syntax:
6177"""""""
6178
6179::
6180
Tim Northover675a0962014-06-13 14:24:23 +00006181 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006182
6183Overview:
6184"""""""""
6185
6186The '``srem``' instruction returns the remainder from the signed
6187division of its two operands. This instruction can also take
6188:ref:`vector <t_vector>` versions of the values in which case the elements
6189must be integers.
6190
6191Arguments:
6192""""""""""
6193
6194The two arguments to the '``srem``' instruction must be
6195:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6196arguments must have identical types.
6197
6198Semantics:
6199""""""""""
6200
6201This instruction returns the *remainder* of a division (where the result
6202is either zero or has the same sign as the dividend, ``op1``), not the
6203*modulo* operator (where the result is either zero or has the same sign
6204as the divisor, ``op2``) of a value. For more information about the
6205difference, see `The Math
6206Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6207table of how this is implemented in various languages, please see
6208`Wikipedia: modulo
6209operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6210
6211Note that signed integer remainder and unsigned integer remainder are
6212distinct operations; for unsigned integer remainder, use '``urem``'.
6213
6214Taking the remainder of a division by zero leads to undefined behavior.
6215Overflow also leads to undefined behavior; this is a rare case, but can
6216occur, for example, by taking the remainder of a 32-bit division of
6217-2147483648 by -1. (The remainder doesn't actually overflow, but this
6218rule lets srem be implemented using instructions that return both the
6219result of the division and the remainder.)
6220
6221Example:
6222""""""""
6223
6224.. code-block:: llvm
6225
Tim Northover675a0962014-06-13 14:24:23 +00006226 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006227
6228.. _i_frem:
6229
6230'``frem``' Instruction
6231^^^^^^^^^^^^^^^^^^^^^^
6232
6233Syntax:
6234"""""""
6235
6236::
6237
Tim Northover675a0962014-06-13 14:24:23 +00006238 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006239
6240Overview:
6241"""""""""
6242
6243The '``frem``' instruction returns the remainder from the division of
6244its two operands.
6245
6246Arguments:
6247""""""""""
6248
6249The two arguments to the '``frem``' instruction must be :ref:`floating
6250point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6251Both arguments must have identical types.
6252
6253Semantics:
6254""""""""""
6255
6256This instruction returns the *remainder* of a division. The remainder
6257has the same sign as the dividend. This instruction can also take any
6258number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6259to enable otherwise unsafe floating point optimizations:
6260
6261Example:
6262""""""""
6263
6264.. code-block:: llvm
6265
Tim Northover675a0962014-06-13 14:24:23 +00006266 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006267
6268.. _bitwiseops:
6269
6270Bitwise Binary Operations
6271-------------------------
6272
6273Bitwise binary operators are used to do various forms of bit-twiddling
6274in a program. They are generally very efficient instructions and can
6275commonly be strength reduced from other instructions. They require two
6276operands of the same type, execute an operation on them, and produce a
6277single value. The resulting value is the same type as its operands.
6278
6279'``shl``' Instruction
6280^^^^^^^^^^^^^^^^^^^^^
6281
6282Syntax:
6283"""""""
6284
6285::
6286
Tim Northover675a0962014-06-13 14:24:23 +00006287 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6288 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6289 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6290 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006291
6292Overview:
6293"""""""""
6294
6295The '``shl``' instruction returns the first operand shifted to the left
6296a specified number of bits.
6297
6298Arguments:
6299""""""""""
6300
6301Both arguments to the '``shl``' instruction must be the same
6302:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6303'``op2``' is treated as an unsigned value.
6304
6305Semantics:
6306""""""""""
6307
6308The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6309where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006310dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006311``op1``, the result is undefined. If the arguments are vectors, each
6312vector element of ``op1`` is shifted by the corresponding shift amount
6313in ``op2``.
6314
6315If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6316value <poisonvalues>` if it shifts out any non-zero bits. If the
6317``nsw`` keyword is present, then the shift produces a :ref:`poison
6318value <poisonvalues>` if it shifts out any bits that disagree with the
6319resultant sign bit. As such, NUW/NSW have the same semantics as they
6320would if the shift were expressed as a mul instruction with the same
6321nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6322
6323Example:
6324""""""""
6325
6326.. code-block:: llvm
6327
Tim Northover675a0962014-06-13 14:24:23 +00006328 <result> = shl i32 4, %var ; yields i32: 4 << %var
6329 <result> = shl i32 4, 2 ; yields i32: 16
6330 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006331 <result> = shl i32 1, 32 ; undefined
6332 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6333
6334'``lshr``' Instruction
6335^^^^^^^^^^^^^^^^^^^^^^
6336
6337Syntax:
6338"""""""
6339
6340::
6341
Tim Northover675a0962014-06-13 14:24:23 +00006342 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6343 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006344
6345Overview:
6346"""""""""
6347
6348The '``lshr``' instruction (logical shift right) returns the first
6349operand shifted to the right a specified number of bits with zero fill.
6350
6351Arguments:
6352""""""""""
6353
6354Both arguments to the '``lshr``' instruction must be the same
6355:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6356'``op2``' is treated as an unsigned value.
6357
6358Semantics:
6359""""""""""
6360
6361This instruction always performs a logical shift right operation. The
6362most significant bits of the result will be filled with zero bits after
6363the shift. If ``op2`` is (statically or dynamically) equal to or larger
6364than the number of bits in ``op1``, the result is undefined. If the
6365arguments are vectors, each vector element of ``op1`` is shifted by the
6366corresponding shift amount in ``op2``.
6367
6368If the ``exact`` keyword is present, the result value of the ``lshr`` is
6369a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6370non-zero.
6371
6372Example:
6373""""""""
6374
6375.. code-block:: llvm
6376
Tim Northover675a0962014-06-13 14:24:23 +00006377 <result> = lshr i32 4, 1 ; yields i32:result = 2
6378 <result> = lshr i32 4, 2 ; yields i32:result = 1
6379 <result> = lshr i8 4, 3 ; yields i8:result = 0
6380 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006381 <result> = lshr i32 1, 32 ; undefined
6382 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6383
6384'``ashr``' Instruction
6385^^^^^^^^^^^^^^^^^^^^^^
6386
6387Syntax:
6388"""""""
6389
6390::
6391
Tim Northover675a0962014-06-13 14:24:23 +00006392 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6393 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006394
6395Overview:
6396"""""""""
6397
6398The '``ashr``' instruction (arithmetic shift right) returns the first
6399operand shifted to the right a specified number of bits with sign
6400extension.
6401
6402Arguments:
6403""""""""""
6404
6405Both arguments to the '``ashr``' instruction must be the same
6406:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6407'``op2``' is treated as an unsigned value.
6408
6409Semantics:
6410""""""""""
6411
6412This instruction always performs an arithmetic shift right operation,
6413The most significant bits of the result will be filled with the sign bit
6414of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6415than the number of bits in ``op1``, the result is undefined. If the
6416arguments are vectors, each vector element of ``op1`` is shifted by the
6417corresponding shift amount in ``op2``.
6418
6419If the ``exact`` keyword is present, the result value of the ``ashr`` is
6420a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6421non-zero.
6422
6423Example:
6424""""""""
6425
6426.. code-block:: llvm
6427
Tim Northover675a0962014-06-13 14:24:23 +00006428 <result> = ashr i32 4, 1 ; yields i32:result = 2
6429 <result> = ashr i32 4, 2 ; yields i32:result = 1
6430 <result> = ashr i8 4, 3 ; yields i8:result = 0
6431 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006432 <result> = ashr i32 1, 32 ; undefined
6433 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6434
6435'``and``' Instruction
6436^^^^^^^^^^^^^^^^^^^^^
6437
6438Syntax:
6439"""""""
6440
6441::
6442
Tim Northover675a0962014-06-13 14:24:23 +00006443 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006444
6445Overview:
6446"""""""""
6447
6448The '``and``' instruction returns the bitwise logical and of its two
6449operands.
6450
6451Arguments:
6452""""""""""
6453
6454The two arguments to the '``and``' instruction must be
6455:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6456arguments must have identical types.
6457
6458Semantics:
6459""""""""""
6460
6461The truth table used for the '``and``' instruction is:
6462
6463+-----+-----+-----+
6464| In0 | In1 | Out |
6465+-----+-----+-----+
6466| 0 | 0 | 0 |
6467+-----+-----+-----+
6468| 0 | 1 | 0 |
6469+-----+-----+-----+
6470| 1 | 0 | 0 |
6471+-----+-----+-----+
6472| 1 | 1 | 1 |
6473+-----+-----+-----+
6474
6475Example:
6476""""""""
6477
6478.. code-block:: llvm
6479
Tim Northover675a0962014-06-13 14:24:23 +00006480 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6481 <result> = and i32 15, 40 ; yields i32:result = 8
6482 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006483
6484'``or``' Instruction
6485^^^^^^^^^^^^^^^^^^^^
6486
6487Syntax:
6488"""""""
6489
6490::
6491
Tim Northover675a0962014-06-13 14:24:23 +00006492 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006493
6494Overview:
6495"""""""""
6496
6497The '``or``' instruction returns the bitwise logical inclusive or of its
6498two operands.
6499
6500Arguments:
6501""""""""""
6502
6503The two arguments to the '``or``' instruction must be
6504:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6505arguments must have identical types.
6506
6507Semantics:
6508""""""""""
6509
6510The truth table used for the '``or``' instruction is:
6511
6512+-----+-----+-----+
6513| In0 | In1 | Out |
6514+-----+-----+-----+
6515| 0 | 0 | 0 |
6516+-----+-----+-----+
6517| 0 | 1 | 1 |
6518+-----+-----+-----+
6519| 1 | 0 | 1 |
6520+-----+-----+-----+
6521| 1 | 1 | 1 |
6522+-----+-----+-----+
6523
6524Example:
6525""""""""
6526
6527::
6528
Tim Northover675a0962014-06-13 14:24:23 +00006529 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6530 <result> = or i32 15, 40 ; yields i32:result = 47
6531 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006532
6533'``xor``' Instruction
6534^^^^^^^^^^^^^^^^^^^^^
6535
6536Syntax:
6537"""""""
6538
6539::
6540
Tim Northover675a0962014-06-13 14:24:23 +00006541 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006542
6543Overview:
6544"""""""""
6545
6546The '``xor``' instruction returns the bitwise logical exclusive or of
6547its two operands. The ``xor`` is used to implement the "one's
6548complement" operation, which is the "~" operator in C.
6549
6550Arguments:
6551""""""""""
6552
6553The two arguments to the '``xor``' instruction must be
6554:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6555arguments must have identical types.
6556
6557Semantics:
6558""""""""""
6559
6560The truth table used for the '``xor``' instruction is:
6561
6562+-----+-----+-----+
6563| In0 | In1 | Out |
6564+-----+-----+-----+
6565| 0 | 0 | 0 |
6566+-----+-----+-----+
6567| 0 | 1 | 1 |
6568+-----+-----+-----+
6569| 1 | 0 | 1 |
6570+-----+-----+-----+
6571| 1 | 1 | 0 |
6572+-----+-----+-----+
6573
6574Example:
6575""""""""
6576
6577.. code-block:: llvm
6578
Tim Northover675a0962014-06-13 14:24:23 +00006579 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6580 <result> = xor i32 15, 40 ; yields i32:result = 39
6581 <result> = xor i32 4, 8 ; yields i32:result = 12
6582 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006583
6584Vector Operations
6585-----------------
6586
6587LLVM supports several instructions to represent vector operations in a
6588target-independent manner. These instructions cover the element-access
6589and vector-specific operations needed to process vectors effectively.
6590While LLVM does directly support these vector operations, many
6591sophisticated algorithms will want to use target-specific intrinsics to
6592take full advantage of a specific target.
6593
6594.. _i_extractelement:
6595
6596'``extractelement``' Instruction
6597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6598
6599Syntax:
6600"""""""
6601
6602::
6603
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006604 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006605
6606Overview:
6607"""""""""
6608
6609The '``extractelement``' instruction extracts a single scalar element
6610from a vector at a specified index.
6611
6612Arguments:
6613""""""""""
6614
6615The first operand of an '``extractelement``' instruction is a value of
6616:ref:`vector <t_vector>` type. The second operand is an index indicating
6617the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006618variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006619
6620Semantics:
6621""""""""""
6622
6623The result is a scalar of the same type as the element type of ``val``.
6624Its value is the value at position ``idx`` of ``val``. If ``idx``
6625exceeds the length of ``val``, the results are undefined.
6626
6627Example:
6628""""""""
6629
6630.. code-block:: llvm
6631
6632 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6633
6634.. _i_insertelement:
6635
6636'``insertelement``' Instruction
6637^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6638
6639Syntax:
6640"""""""
6641
6642::
6643
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006644 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006645
6646Overview:
6647"""""""""
6648
6649The '``insertelement``' instruction inserts a scalar element into a
6650vector at a specified index.
6651
6652Arguments:
6653""""""""""
6654
6655The first operand of an '``insertelement``' instruction is a value of
6656:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6657type must equal the element type of the first operand. The third operand
6658is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006659index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006660
6661Semantics:
6662""""""""""
6663
6664The result is a vector of the same type as ``val``. Its element values
6665are those of ``val`` except at position ``idx``, where it gets the value
6666``elt``. If ``idx`` exceeds the length of ``val``, the results are
6667undefined.
6668
6669Example:
6670""""""""
6671
6672.. code-block:: llvm
6673
6674 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6675
6676.. _i_shufflevector:
6677
6678'``shufflevector``' Instruction
6679^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6680
6681Syntax:
6682"""""""
6683
6684::
6685
6686 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6687
6688Overview:
6689"""""""""
6690
6691The '``shufflevector``' instruction constructs a permutation of elements
6692from two input vectors, returning a vector with the same element type as
6693the input and length that is the same as the shuffle mask.
6694
6695Arguments:
6696""""""""""
6697
6698The first two operands of a '``shufflevector``' instruction are vectors
6699with the same type. The third argument is a shuffle mask whose element
6700type is always 'i32'. The result of the instruction is a vector whose
6701length is the same as the shuffle mask and whose element type is the
6702same as the element type of the first two operands.
6703
6704The shuffle mask operand is required to be a constant vector with either
6705constant integer or undef values.
6706
6707Semantics:
6708""""""""""
6709
6710The elements of the two input vectors are numbered from left to right
6711across both of the vectors. The shuffle mask operand specifies, for each
6712element of the result vector, which element of the two input vectors the
6713result element gets. The element selector may be undef (meaning "don't
6714care") and the second operand may be undef if performing a shuffle from
6715only one vector.
6716
6717Example:
6718""""""""
6719
6720.. code-block:: llvm
6721
6722 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6723 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6724 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6725 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6726 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6727 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6728 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6729 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6730
6731Aggregate Operations
6732--------------------
6733
6734LLVM supports several instructions for working with
6735:ref:`aggregate <t_aggregate>` values.
6736
6737.. _i_extractvalue:
6738
6739'``extractvalue``' Instruction
6740^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6741
6742Syntax:
6743"""""""
6744
6745::
6746
6747 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6748
6749Overview:
6750"""""""""
6751
6752The '``extractvalue``' instruction extracts the value of a member field
6753from an :ref:`aggregate <t_aggregate>` value.
6754
6755Arguments:
6756""""""""""
6757
6758The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006759:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006760constant indices to specify which value to extract in a similar manner
6761as indices in a '``getelementptr``' instruction.
6762
6763The major differences to ``getelementptr`` indexing are:
6764
6765- Since the value being indexed is not a pointer, the first index is
6766 omitted and assumed to be zero.
6767- At least one index must be specified.
6768- Not only struct indices but also array indices must be in bounds.
6769
6770Semantics:
6771""""""""""
6772
6773The result is the value at the position in the aggregate specified by
6774the index operands.
6775
6776Example:
6777""""""""
6778
6779.. code-block:: llvm
6780
6781 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6782
6783.. _i_insertvalue:
6784
6785'``insertvalue``' Instruction
6786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6787
6788Syntax:
6789"""""""
6790
6791::
6792
6793 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6794
6795Overview:
6796"""""""""
6797
6798The '``insertvalue``' instruction inserts a value into a member field in
6799an :ref:`aggregate <t_aggregate>` value.
6800
6801Arguments:
6802""""""""""
6803
6804The first operand of an '``insertvalue``' instruction is a value of
6805:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6806a first-class value to insert. The following operands are constant
6807indices indicating the position at which to insert the value in a
6808similar manner as indices in a '``extractvalue``' instruction. The value
6809to insert must have the same type as the value identified by the
6810indices.
6811
6812Semantics:
6813""""""""""
6814
6815The result is an aggregate of the same type as ``val``. Its value is
6816that of ``val`` except that the value at the position specified by the
6817indices is that of ``elt``.
6818
6819Example:
6820""""""""
6821
6822.. code-block:: llvm
6823
6824 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6825 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006826 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006827
6828.. _memoryops:
6829
6830Memory Access and Addressing Operations
6831---------------------------------------
6832
6833A key design point of an SSA-based representation is how it represents
6834memory. In LLVM, no memory locations are in SSA form, which makes things
6835very simple. This section describes how to read, write, and allocate
6836memory in LLVM.
6837
6838.. _i_alloca:
6839
6840'``alloca``' Instruction
6841^^^^^^^^^^^^^^^^^^^^^^^^
6842
6843Syntax:
6844"""""""
6845
6846::
6847
Tim Northover675a0962014-06-13 14:24:23 +00006848 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006849
6850Overview:
6851"""""""""
6852
6853The '``alloca``' instruction allocates memory on the stack frame of the
6854currently executing function, to be automatically released when this
6855function returns to its caller. The object is always allocated in the
6856generic address space (address space zero).
6857
6858Arguments:
6859""""""""""
6860
6861The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6862bytes of memory on the runtime stack, returning a pointer of the
6863appropriate type to the program. If "NumElements" is specified, it is
6864the number of elements allocated, otherwise "NumElements" is defaulted
6865to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006866allocation is guaranteed to be aligned to at least that boundary. The
6867alignment may not be greater than ``1 << 29``. If not specified, or if
6868zero, the target can choose to align the allocation on any convenient
6869boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006870
6871'``type``' may be any sized type.
6872
6873Semantics:
6874""""""""""
6875
6876Memory is allocated; a pointer is returned. The operation is undefined
6877if there is insufficient stack space for the allocation. '``alloca``'d
6878memory is automatically released when the function returns. The
6879'``alloca``' instruction is commonly used to represent automatic
6880variables that must have an address available. When the function returns
6881(either with the ``ret`` or ``resume`` instructions), the memory is
6882reclaimed. Allocating zero bytes is legal, but the result is undefined.
6883The order in which memory is allocated (ie., which way the stack grows)
6884is not specified.
6885
6886Example:
6887""""""""
6888
6889.. code-block:: llvm
6890
Tim Northover675a0962014-06-13 14:24:23 +00006891 %ptr = alloca i32 ; yields i32*:ptr
6892 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6893 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6894 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006895
6896.. _i_load:
6897
6898'``load``' Instruction
6899^^^^^^^^^^^^^^^^^^^^^^
6900
6901Syntax:
6902"""""""
6903
6904::
6905
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006906 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00006907 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006908 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006909 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006910 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006911
6912Overview:
6913"""""""""
6914
6915The '``load``' instruction is used to read from memory.
6916
6917Arguments:
6918""""""""""
6919
Eli Bendersky239a78b2013-04-17 20:17:08 +00006920The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006921from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006922class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6923then the optimizer is not allowed to modify the number or order of
6924execution of this ``load`` with other :ref:`volatile
6925operations <volatile>`.
6926
JF Bastiend1fb5852015-12-17 22:09:19 +00006927If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6928<ordering>` and optional ``singlethread`` argument. The ``release`` and
6929``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
6930produce :ref:`defined <memmodel>` results when they may see multiple atomic
6931stores. The type of the pointee must be an integer, pointer, or floating-point
6932type whose bit width is a power of two greater than or equal to eight and less
6933than or equal to a target-specific size limit. ``align`` must be explicitly
6934specified on atomic loads, and the load has undefined behavior if the alignment
6935is not set to a value which is at least the size in bytes of the
6936pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00006937
6938The optional constant ``align`` argument specifies the alignment of the
6939operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006940or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006941alignment for the target. It is the responsibility of the code emitter
6942to ensure that the alignment information is correct. Overestimating the
6943alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006944may produce less efficient code. An alignment of 1 is always safe. The
6945maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006946
6947The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006948metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006949``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006950metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006951that this load is not expected to be reused in the cache. The code
6952generator may select special instructions to save cache bandwidth, such
6953as the ``MOVNT`` instruction on x86.
6954
6955The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006956metadata name ``<index>`` corresponding to a metadata node with no
6957entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006958instruction tells the optimizer and code generator that the address
6959operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006960Being invariant does not imply that a location is dereferenceable,
6961but it does imply that once the location is known dereferenceable
6962its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006963
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006964The optional ``!invariant.group`` metadata must reference a single metadata name
6965 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6966
Philip Reamescdb72f32014-10-20 22:40:55 +00006967The optional ``!nonnull`` metadata must reference a single
6968metadata name ``<index>`` corresponding to a metadata node with no
6969entries. The existence of the ``!nonnull`` metadata on the
6970instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006971never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006972on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006973to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006974
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006975The optional ``!dereferenceable`` metadata must reference a single metadata
6976name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006977entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006978tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006979The number of bytes known to be dereferenceable is specified by the integer
6980value in the metadata node. This is analogous to the ''dereferenceable''
6981attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006982to loads of a pointer type.
6983
6984The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006985metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6986``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006987instruction tells the optimizer that the value loaded is known to be either
6988dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006989The number of bytes known to be dereferenceable is specified by the integer
6990value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6991attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006992to loads of a pointer type.
6993
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006994The optional ``!align`` metadata must reference a single metadata name
6995``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6996The existence of the ``!align`` metadata on the instruction tells the
6997optimizer that the value loaded is known to be aligned to a boundary specified
6998by the integer value in the metadata node. The alignment must be a power of 2.
6999This is analogous to the ''align'' attribute on parameters and return values.
7000This metadata can only be applied to loads of a pointer type.
7001
Sean Silvab084af42012-12-07 10:36:55 +00007002Semantics:
7003""""""""""
7004
7005The location of memory pointed to is loaded. If the value being loaded
7006is of scalar type then the number of bytes read does not exceed the
7007minimum number of bytes needed to hold all bits of the type. For
7008example, loading an ``i24`` reads at most three bytes. When loading a
7009value of a type like ``i20`` with a size that is not an integral number
7010of bytes, the result is undefined if the value was not originally
7011written using a store of the same type.
7012
7013Examples:
7014"""""""""
7015
7016.. code-block:: llvm
7017
Tim Northover675a0962014-06-13 14:24:23 +00007018 %ptr = alloca i32 ; yields i32*:ptr
7019 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007020 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007021
7022.. _i_store:
7023
7024'``store``' Instruction
7025^^^^^^^^^^^^^^^^^^^^^^^
7026
7027Syntax:
7028"""""""
7029
7030::
7031
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007032 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7033 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007034
7035Overview:
7036"""""""""
7037
7038The '``store``' instruction is used to write to memory.
7039
7040Arguments:
7041""""""""""
7042
Eli Benderskyca380842013-04-17 17:17:20 +00007043There are two arguments to the ``store`` instruction: a value to store
7044and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00007045operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00007046the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00007047then the optimizer is not allowed to modify the number or order of
7048execution of this ``store`` with other :ref:`volatile
7049operations <volatile>`.
7050
JF Bastiend1fb5852015-12-17 22:09:19 +00007051If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7052<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7053``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7054produce :ref:`defined <memmodel>` results when they may see multiple atomic
7055stores. The type of the pointee must be an integer, pointer, or floating-point
7056type whose bit width is a power of two greater than or equal to eight and less
7057than or equal to a target-specific size limit. ``align`` must be explicitly
7058specified on atomic stores, and the store has undefined behavior if the
7059alignment is not set to a value which is at least the size in bytes of the
7060pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007061
Eli Benderskyca380842013-04-17 17:17:20 +00007062The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007063operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007064or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007065alignment for the target. It is the responsibility of the code emitter
7066to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007067alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007068alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007069safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007070
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007071The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007072name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007073value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007074tells the optimizer and code generator that this load is not expected to
7075be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007076instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007077x86.
7078
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007079The optional ``!invariant.group`` metadata must reference a
7080single metadata name ``<index>``. See ``invariant.group`` metadata.
7081
Sean Silvab084af42012-12-07 10:36:55 +00007082Semantics:
7083""""""""""
7084
Eli Benderskyca380842013-04-17 17:17:20 +00007085The contents of memory are updated to contain ``<value>`` at the
7086location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007087of scalar type then the number of bytes written does not exceed the
7088minimum number of bytes needed to hold all bits of the type. For
7089example, storing an ``i24`` writes at most three bytes. When writing a
7090value of a type like ``i20`` with a size that is not an integral number
7091of bytes, it is unspecified what happens to the extra bits that do not
7092belong to the type, but they will typically be overwritten.
7093
7094Example:
7095""""""""
7096
7097.. code-block:: llvm
7098
Tim Northover675a0962014-06-13 14:24:23 +00007099 %ptr = alloca i32 ; yields i32*:ptr
7100 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007101 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007102
7103.. _i_fence:
7104
7105'``fence``' Instruction
7106^^^^^^^^^^^^^^^^^^^^^^^
7107
7108Syntax:
7109"""""""
7110
7111::
7112
Tim Northover675a0962014-06-13 14:24:23 +00007113 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007114
7115Overview:
7116"""""""""
7117
7118The '``fence``' instruction is used to introduce happens-before edges
7119between operations.
7120
7121Arguments:
7122""""""""""
7123
7124'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7125defines what *synchronizes-with* edges they add. They can only be given
7126``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7127
7128Semantics:
7129""""""""""
7130
7131A fence A which has (at least) ``release`` ordering semantics
7132*synchronizes with* a fence B with (at least) ``acquire`` ordering
7133semantics if and only if there exist atomic operations X and Y, both
7134operating on some atomic object M, such that A is sequenced before X, X
7135modifies M (either directly or through some side effect of a sequence
7136headed by X), Y is sequenced before B, and Y observes M. This provides a
7137*happens-before* dependency between A and B. Rather than an explicit
7138``fence``, one (but not both) of the atomic operations X or Y might
7139provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7140still *synchronize-with* the explicit ``fence`` and establish the
7141*happens-before* edge.
7142
7143A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7144``acquire`` and ``release`` semantics specified above, participates in
7145the global program order of other ``seq_cst`` operations and/or fences.
7146
7147The optional ":ref:`singlethread <singlethread>`" argument specifies
7148that the fence only synchronizes with other fences in the same thread.
7149(This is useful for interacting with signal handlers.)
7150
7151Example:
7152""""""""
7153
7154.. code-block:: llvm
7155
Tim Northover675a0962014-06-13 14:24:23 +00007156 fence acquire ; yields void
7157 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007158
7159.. _i_cmpxchg:
7160
7161'``cmpxchg``' Instruction
7162^^^^^^^^^^^^^^^^^^^^^^^^^
7163
7164Syntax:
7165"""""""
7166
7167::
7168
Tim Northover675a0962014-06-13 14:24:23 +00007169 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007170
7171Overview:
7172"""""""""
7173
7174The '``cmpxchg``' instruction is used to atomically modify memory. It
7175loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007176equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007177
7178Arguments:
7179""""""""""
7180
7181There are three arguments to the '``cmpxchg``' instruction: an address
7182to operate on, a value to compare to the value currently be at that
7183address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007184are equal. The type of '<cmp>' must be an integer or pointer type whose
7185bit width is a power of two greater than or equal to eight and less
7186than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7187have the same type, and the type of '<pointer>' must be a pointer to
7188that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7189optimizer is not allowed to modify the number or order of execution of
7190this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007191
Tim Northovere94a5182014-03-11 10:48:52 +00007192The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007193``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7194must be at least ``monotonic``, the ordering constraint on failure must be no
7195stronger than that on success, and the failure ordering cannot be either
7196``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007197
7198The optional "``singlethread``" argument declares that the ``cmpxchg``
7199is only atomic with respect to code (usually signal handlers) running in
7200the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7201respect to all other code in the system.
7202
7203The pointer passed into cmpxchg must have alignment greater than or
7204equal to the size in memory of the operand.
7205
7206Semantics:
7207""""""""""
7208
Tim Northover420a2162014-06-13 14:24:07 +00007209The contents of memory at the location specified by the '``<pointer>``' operand
7210is read and compared to '``<cmp>``'; if the read value is the equal, the
7211'``<new>``' is written. The original value at the location is returned, together
7212with a flag indicating success (true) or failure (false).
7213
7214If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7215permitted: the operation may not write ``<new>`` even if the comparison
7216matched.
7217
7218If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7219if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007220
Tim Northovere94a5182014-03-11 10:48:52 +00007221A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7222identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7223load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007224
7225Example:
7226""""""""
7227
7228.. code-block:: llvm
7229
7230 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007231 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007232 br label %loop
7233
7234 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007235 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007236 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007237 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007238 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7239 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007240 br i1 %success, label %done, label %loop
7241
7242 done:
7243 ...
7244
7245.. _i_atomicrmw:
7246
7247'``atomicrmw``' Instruction
7248^^^^^^^^^^^^^^^^^^^^^^^^^^^
7249
7250Syntax:
7251"""""""
7252
7253::
7254
Tim Northover675a0962014-06-13 14:24:23 +00007255 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007256
7257Overview:
7258"""""""""
7259
7260The '``atomicrmw``' instruction is used to atomically modify memory.
7261
7262Arguments:
7263""""""""""
7264
7265There are three arguments to the '``atomicrmw``' instruction: an
7266operation to apply, an address whose value to modify, an argument to the
7267operation. The operation must be one of the following keywords:
7268
7269- xchg
7270- add
7271- sub
7272- and
7273- nand
7274- or
7275- xor
7276- max
7277- min
7278- umax
7279- umin
7280
7281The type of '<value>' must be an integer type whose bit width is a power
7282of two greater than or equal to eight and less than or equal to a
7283target-specific size limit. The type of the '``<pointer>``' operand must
7284be a pointer to that type. If the ``atomicrmw`` is marked as
7285``volatile``, then the optimizer is not allowed to modify the number or
7286order of execution of this ``atomicrmw`` with other :ref:`volatile
7287operations <volatile>`.
7288
7289Semantics:
7290""""""""""
7291
7292The contents of memory at the location specified by the '``<pointer>``'
7293operand are atomically read, modified, and written back. The original
7294value at the location is returned. The modification is specified by the
7295operation argument:
7296
7297- xchg: ``*ptr = val``
7298- add: ``*ptr = *ptr + val``
7299- sub: ``*ptr = *ptr - val``
7300- and: ``*ptr = *ptr & val``
7301- nand: ``*ptr = ~(*ptr & val)``
7302- or: ``*ptr = *ptr | val``
7303- xor: ``*ptr = *ptr ^ val``
7304- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7305- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7306- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7307 comparison)
7308- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7309 comparison)
7310
7311Example:
7312""""""""
7313
7314.. code-block:: llvm
7315
Tim Northover675a0962014-06-13 14:24:23 +00007316 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007317
7318.. _i_getelementptr:
7319
7320'``getelementptr``' Instruction
7321^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7322
7323Syntax:
7324"""""""
7325
7326::
7327
David Blaikie16a97eb2015-03-04 22:02:58 +00007328 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7329 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7330 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007331
7332Overview:
7333"""""""""
7334
7335The '``getelementptr``' instruction is used to get the address of a
7336subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007337address calculation only and does not access memory. The instruction can also
7338be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007339
7340Arguments:
7341""""""""""
7342
David Blaikie16a97eb2015-03-04 22:02:58 +00007343The first argument is always a type used as the basis for the calculations.
7344The second argument is always a pointer or a vector of pointers, and is the
7345base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007346that indicate which of the elements of the aggregate object are indexed.
7347The interpretation of each index is dependent on the type being indexed
7348into. The first index always indexes the pointer value given as the
7349first argument, the second index indexes a value of the type pointed to
7350(not necessarily the value directly pointed to, since the first index
7351can be non-zero), etc. The first type indexed into must be a pointer
7352value, subsequent types can be arrays, vectors, and structs. Note that
7353subsequent types being indexed into can never be pointers, since that
7354would require loading the pointer before continuing calculation.
7355
7356The type of each index argument depends on the type it is indexing into.
7357When indexing into a (optionally packed) structure, only ``i32`` integer
7358**constants** are allowed (when using a vector of indices they must all
7359be the **same** ``i32`` integer constant). When indexing into an array,
7360pointer or vector, integers of any width are allowed, and they are not
7361required to be constant. These integers are treated as signed values
7362where relevant.
7363
7364For example, let's consider a C code fragment and how it gets compiled
7365to LLVM:
7366
7367.. code-block:: c
7368
7369 struct RT {
7370 char A;
7371 int B[10][20];
7372 char C;
7373 };
7374 struct ST {
7375 int X;
7376 double Y;
7377 struct RT Z;
7378 };
7379
7380 int *foo(struct ST *s) {
7381 return &s[1].Z.B[5][13];
7382 }
7383
7384The LLVM code generated by Clang is:
7385
7386.. code-block:: llvm
7387
7388 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7389 %struct.ST = type { i32, double, %struct.RT }
7390
7391 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7392 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007393 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007394 ret i32* %arrayidx
7395 }
7396
7397Semantics:
7398""""""""""
7399
7400In the example above, the first index is indexing into the
7401'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7402= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7403indexes into the third element of the structure, yielding a
7404'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7405structure. The third index indexes into the second element of the
7406structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7407dimensions of the array are subscripted into, yielding an '``i32``'
7408type. The '``getelementptr``' instruction returns a pointer to this
7409element, thus computing a value of '``i32*``' type.
7410
7411Note that it is perfectly legal to index partially through a structure,
7412returning a pointer to an inner element. Because of this, the LLVM code
7413for the given testcase is equivalent to:
7414
7415.. code-block:: llvm
7416
7417 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007418 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7419 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7420 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7421 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7422 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007423 ret i32* %t5
7424 }
7425
7426If the ``inbounds`` keyword is present, the result value of the
7427``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7428pointer is not an *in bounds* address of an allocated object, or if any
7429of the addresses that would be formed by successive addition of the
7430offsets implied by the indices to the base address with infinitely
7431precise signed arithmetic are not an *in bounds* address of that
7432allocated object. The *in bounds* addresses for an allocated object are
7433all the addresses that point into the object, plus the address one byte
7434past the end. In cases where the base is a vector of pointers the
7435``inbounds`` keyword applies to each of the computations element-wise.
7436
7437If the ``inbounds`` keyword is not present, the offsets are added to the
7438base address with silently-wrapping two's complement arithmetic. If the
7439offsets have a different width from the pointer, they are sign-extended
7440or truncated to the width of the pointer. The result value of the
7441``getelementptr`` may be outside the object pointed to by the base
7442pointer. The result value may not necessarily be used to access memory
7443though, even if it happens to point into allocated storage. See the
7444:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7445information.
7446
7447The getelementptr instruction is often confusing. For some more insight
7448into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7449
7450Example:
7451""""""""
7452
7453.. code-block:: llvm
7454
7455 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007456 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007457 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007458 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007459 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007460 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007461 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007462 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007463
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007464Vector of pointers:
7465"""""""""""""""""""
7466
7467The ``getelementptr`` returns a vector of pointers, instead of a single address,
7468when one or more of its arguments is a vector. In such cases, all vector
7469arguments should have the same number of elements, and every scalar argument
7470will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007471
7472.. code-block:: llvm
7473
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007474 ; All arguments are vectors:
7475 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7476 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007477
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007478 ; Add the same scalar offset to each pointer of a vector:
7479 ; A[i] = ptrs[i] + offset*sizeof(i8)
7480 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007481
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007482 ; Add distinct offsets to the same pointer:
7483 ; A[i] = ptr + offsets[i]*sizeof(i8)
7484 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007485
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007486 ; In all cases described above the type of the result is <4 x i8*>
7487
7488The two following instructions are equivalent:
7489
7490.. code-block:: llvm
7491
7492 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7493 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7494 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7495 <4 x i32> %ind4,
7496 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007497
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007498 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7499 i32 2, i32 1, <4 x i32> %ind4, i64 13
7500
7501Let's look at the C code, where the vector version of ``getelementptr``
7502makes sense:
7503
7504.. code-block:: c
7505
7506 // Let's assume that we vectorize the following loop:
7507 double *A, B; int *C;
7508 for (int i = 0; i < size; ++i) {
7509 A[i] = B[C[i]];
7510 }
7511
7512.. code-block:: llvm
7513
7514 ; get pointers for 8 elements from array B
7515 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7516 ; load 8 elements from array B into A
7517 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7518 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007519
7520Conversion Operations
7521---------------------
7522
7523The instructions in this category are the conversion instructions
7524(casting) which all take a single operand and a type. They perform
7525various bit conversions on the operand.
7526
7527'``trunc .. to``' Instruction
7528^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7529
7530Syntax:
7531"""""""
7532
7533::
7534
7535 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7536
7537Overview:
7538"""""""""
7539
7540The '``trunc``' instruction truncates its operand to the type ``ty2``.
7541
7542Arguments:
7543""""""""""
7544
7545The '``trunc``' instruction takes a value to trunc, and a type to trunc
7546it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7547of the same number of integers. The bit size of the ``value`` must be
7548larger than the bit size of the destination type, ``ty2``. Equal sized
7549types are not allowed.
7550
7551Semantics:
7552""""""""""
7553
7554The '``trunc``' instruction truncates the high order bits in ``value``
7555and converts the remaining bits to ``ty2``. Since the source size must
7556be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7557It will always truncate bits.
7558
7559Example:
7560""""""""
7561
7562.. code-block:: llvm
7563
7564 %X = trunc i32 257 to i8 ; yields i8:1
7565 %Y = trunc i32 123 to i1 ; yields i1:true
7566 %Z = trunc i32 122 to i1 ; yields i1:false
7567 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7568
7569'``zext .. to``' Instruction
7570^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7571
7572Syntax:
7573"""""""
7574
7575::
7576
7577 <result> = zext <ty> <value> to <ty2> ; yields ty2
7578
7579Overview:
7580"""""""""
7581
7582The '``zext``' instruction zero extends its operand to type ``ty2``.
7583
7584Arguments:
7585""""""""""
7586
7587The '``zext``' instruction takes a value to cast, and a type to cast it
7588to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7589the same number of integers. The bit size of the ``value`` must be
7590smaller than the bit size of the destination type, ``ty2``.
7591
7592Semantics:
7593""""""""""
7594
7595The ``zext`` fills the high order bits of the ``value`` with zero bits
7596until it reaches the size of the destination type, ``ty2``.
7597
7598When zero extending from i1, the result will always be either 0 or 1.
7599
7600Example:
7601""""""""
7602
7603.. code-block:: llvm
7604
7605 %X = zext i32 257 to i64 ; yields i64:257
7606 %Y = zext i1 true to i32 ; yields i32:1
7607 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7608
7609'``sext .. to``' Instruction
7610^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7611
7612Syntax:
7613"""""""
7614
7615::
7616
7617 <result> = sext <ty> <value> to <ty2> ; yields ty2
7618
7619Overview:
7620"""""""""
7621
7622The '``sext``' sign extends ``value`` to the type ``ty2``.
7623
7624Arguments:
7625""""""""""
7626
7627The '``sext``' instruction takes a value to cast, and a type to cast it
7628to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7629the same number of integers. The bit size of the ``value`` must be
7630smaller than the bit size of the destination type, ``ty2``.
7631
7632Semantics:
7633""""""""""
7634
7635The '``sext``' instruction performs a sign extension by copying the sign
7636bit (highest order bit) of the ``value`` until it reaches the bit size
7637of the type ``ty2``.
7638
7639When sign extending from i1, the extension always results in -1 or 0.
7640
7641Example:
7642""""""""
7643
7644.. code-block:: llvm
7645
7646 %X = sext i8 -1 to i16 ; yields i16 :65535
7647 %Y = sext i1 true to i32 ; yields i32:-1
7648 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7649
7650'``fptrunc .. to``' Instruction
7651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7652
7653Syntax:
7654"""""""
7655
7656::
7657
7658 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7659
7660Overview:
7661"""""""""
7662
7663The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7664
7665Arguments:
7666""""""""""
7667
7668The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7669value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7670The size of ``value`` must be larger than the size of ``ty2``. This
7671implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7672
7673Semantics:
7674""""""""""
7675
Dan Liew50456fb2015-09-03 18:43:56 +00007676The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007677:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007678point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7679destination type, ``ty2``, then the results are undefined. If the cast produces
7680an inexact result, how rounding is performed (e.g. truncation, also known as
7681round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007682
7683Example:
7684""""""""
7685
7686.. code-block:: llvm
7687
7688 %X = fptrunc double 123.0 to float ; yields float:123.0
7689 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7690
7691'``fpext .. to``' Instruction
7692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7693
7694Syntax:
7695"""""""
7696
7697::
7698
7699 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7700
7701Overview:
7702"""""""""
7703
7704The '``fpext``' extends a floating point ``value`` to a larger floating
7705point value.
7706
7707Arguments:
7708""""""""""
7709
7710The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7711``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7712to. The source type must be smaller than the destination type.
7713
7714Semantics:
7715""""""""""
7716
7717The '``fpext``' instruction extends the ``value`` from a smaller
7718:ref:`floating point <t_floating>` type to a larger :ref:`floating
7719point <t_floating>` type. The ``fpext`` cannot be used to make a
7720*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7721*no-op cast* for a floating point cast.
7722
7723Example:
7724""""""""
7725
7726.. code-block:: llvm
7727
7728 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7729 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7730
7731'``fptoui .. to``' Instruction
7732^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7733
7734Syntax:
7735"""""""
7736
7737::
7738
7739 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7740
7741Overview:
7742"""""""""
7743
7744The '``fptoui``' converts a floating point ``value`` to its unsigned
7745integer equivalent of type ``ty2``.
7746
7747Arguments:
7748""""""""""
7749
7750The '``fptoui``' instruction takes a value to cast, which must be a
7751scalar or vector :ref:`floating point <t_floating>` value, and a type to
7752cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7753``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7754type with the same number of elements as ``ty``
7755
7756Semantics:
7757""""""""""
7758
7759The '``fptoui``' instruction converts its :ref:`floating
7760point <t_floating>` operand into the nearest (rounding towards zero)
7761unsigned integer value. If the value cannot fit in ``ty2``, the results
7762are undefined.
7763
7764Example:
7765""""""""
7766
7767.. code-block:: llvm
7768
7769 %X = fptoui double 123.0 to i32 ; yields i32:123
7770 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7771 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7772
7773'``fptosi .. to``' Instruction
7774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7775
7776Syntax:
7777"""""""
7778
7779::
7780
7781 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7782
7783Overview:
7784"""""""""
7785
7786The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7787``value`` to type ``ty2``.
7788
7789Arguments:
7790""""""""""
7791
7792The '``fptosi``' instruction takes a value to cast, which must be a
7793scalar or vector :ref:`floating point <t_floating>` value, and a type to
7794cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7795``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7796type with the same number of elements as ``ty``
7797
7798Semantics:
7799""""""""""
7800
7801The '``fptosi``' instruction converts its :ref:`floating
7802point <t_floating>` operand into the nearest (rounding towards zero)
7803signed integer value. If the value cannot fit in ``ty2``, the results
7804are undefined.
7805
7806Example:
7807""""""""
7808
7809.. code-block:: llvm
7810
7811 %X = fptosi double -123.0 to i32 ; yields i32:-123
7812 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7813 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7814
7815'``uitofp .. to``' Instruction
7816^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7817
7818Syntax:
7819"""""""
7820
7821::
7822
7823 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7824
7825Overview:
7826"""""""""
7827
7828The '``uitofp``' instruction regards ``value`` as an unsigned integer
7829and converts that value to the ``ty2`` type.
7830
7831Arguments:
7832""""""""""
7833
7834The '``uitofp``' instruction takes a value to cast, which must be a
7835scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7836``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7837``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7838type with the same number of elements as ``ty``
7839
7840Semantics:
7841""""""""""
7842
7843The '``uitofp``' instruction interprets its operand as an unsigned
7844integer quantity and converts it to the corresponding floating point
7845value. If the value cannot fit in the floating point value, the results
7846are undefined.
7847
7848Example:
7849""""""""
7850
7851.. code-block:: llvm
7852
7853 %X = uitofp i32 257 to float ; yields float:257.0
7854 %Y = uitofp i8 -1 to double ; yields double:255.0
7855
7856'``sitofp .. to``' Instruction
7857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7858
7859Syntax:
7860"""""""
7861
7862::
7863
7864 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7865
7866Overview:
7867"""""""""
7868
7869The '``sitofp``' instruction regards ``value`` as a signed integer and
7870converts that value to the ``ty2`` type.
7871
7872Arguments:
7873""""""""""
7874
7875The '``sitofp``' instruction takes a value to cast, which must be a
7876scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7877``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7878``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7879type with the same number of elements as ``ty``
7880
7881Semantics:
7882""""""""""
7883
7884The '``sitofp``' instruction interprets its operand as a signed integer
7885quantity and converts it to the corresponding floating point value. If
7886the value cannot fit in the floating point value, the results are
7887undefined.
7888
7889Example:
7890""""""""
7891
7892.. code-block:: llvm
7893
7894 %X = sitofp i32 257 to float ; yields float:257.0
7895 %Y = sitofp i8 -1 to double ; yields double:-1.0
7896
7897.. _i_ptrtoint:
7898
7899'``ptrtoint .. to``' Instruction
7900^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7901
7902Syntax:
7903"""""""
7904
7905::
7906
7907 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7908
7909Overview:
7910"""""""""
7911
7912The '``ptrtoint``' instruction converts the pointer or a vector of
7913pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7914
7915Arguments:
7916""""""""""
7917
7918The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007919a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007920type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7921a vector of integers type.
7922
7923Semantics:
7924""""""""""
7925
7926The '``ptrtoint``' instruction converts ``value`` to integer type
7927``ty2`` by interpreting the pointer value as an integer and either
7928truncating or zero extending that value to the size of the integer type.
7929If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7930``value`` is larger than ``ty2`` then a truncation is done. If they are
7931the same size, then nothing is done (*no-op cast*) other than a type
7932change.
7933
7934Example:
7935""""""""
7936
7937.. code-block:: llvm
7938
7939 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7940 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7941 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7942
7943.. _i_inttoptr:
7944
7945'``inttoptr .. to``' Instruction
7946^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7947
7948Syntax:
7949"""""""
7950
7951::
7952
7953 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7954
7955Overview:
7956"""""""""
7957
7958The '``inttoptr``' instruction converts an integer ``value`` to a
7959pointer type, ``ty2``.
7960
7961Arguments:
7962""""""""""
7963
7964The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7965cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7966type.
7967
7968Semantics:
7969""""""""""
7970
7971The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7972applying either a zero extension or a truncation depending on the size
7973of the integer ``value``. If ``value`` is larger than the size of a
7974pointer then a truncation is done. If ``value`` is smaller than the size
7975of a pointer then a zero extension is done. If they are the same size,
7976nothing is done (*no-op cast*).
7977
7978Example:
7979""""""""
7980
7981.. code-block:: llvm
7982
7983 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7984 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7985 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7986 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7987
7988.. _i_bitcast:
7989
7990'``bitcast .. to``' Instruction
7991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7992
7993Syntax:
7994"""""""
7995
7996::
7997
7998 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7999
8000Overview:
8001"""""""""
8002
8003The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8004changing any bits.
8005
8006Arguments:
8007""""""""""
8008
8009The '``bitcast``' instruction takes a value to cast, which must be a
8010non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008011also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8012bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008013identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008014also be a pointer of the same size. This instruction supports bitwise
8015conversion of vectors to integers and to vectors of other types (as
8016long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008017
8018Semantics:
8019""""""""""
8020
Matt Arsenault24b49c42013-07-31 17:49:08 +00008021The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8022is always a *no-op cast* because no bits change with this
8023conversion. The conversion is done as if the ``value`` had been stored
8024to memory and read back as type ``ty2``. Pointer (or vector of
8025pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008026pointers) types with the same address space through this instruction.
8027To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8028or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008029
8030Example:
8031""""""""
8032
8033.. code-block:: llvm
8034
8035 %X = bitcast i8 255 to i8 ; yields i8 :-1
8036 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8037 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8038 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8039
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008040.. _i_addrspacecast:
8041
8042'``addrspacecast .. to``' Instruction
8043^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8044
8045Syntax:
8046"""""""
8047
8048::
8049
8050 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8051
8052Overview:
8053"""""""""
8054
8055The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8056address space ``n`` to type ``pty2`` in address space ``m``.
8057
8058Arguments:
8059""""""""""
8060
8061The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8062to cast and a pointer type to cast it to, which must have a different
8063address space.
8064
8065Semantics:
8066""""""""""
8067
8068The '``addrspacecast``' instruction converts the pointer value
8069``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008070value modification, depending on the target and the address space
8071pair. Pointer conversions within the same address space must be
8072performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008073conversion is legal then both result and operand refer to the same memory
8074location.
8075
8076Example:
8077""""""""
8078
8079.. code-block:: llvm
8080
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008081 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8082 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8083 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008084
Sean Silvab084af42012-12-07 10:36:55 +00008085.. _otherops:
8086
8087Other Operations
8088----------------
8089
8090The instructions in this category are the "miscellaneous" instructions,
8091which defy better classification.
8092
8093.. _i_icmp:
8094
8095'``icmp``' Instruction
8096^^^^^^^^^^^^^^^^^^^^^^
8097
8098Syntax:
8099"""""""
8100
8101::
8102
Tim Northover675a0962014-06-13 14:24:23 +00008103 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008104
8105Overview:
8106"""""""""
8107
8108The '``icmp``' instruction returns a boolean value or a vector of
8109boolean values based on comparison of its two integer, integer vector,
8110pointer, or pointer vector operands.
8111
8112Arguments:
8113""""""""""
8114
8115The '``icmp``' instruction takes three operands. The first operand is
8116the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008117not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008118
8119#. ``eq``: equal
8120#. ``ne``: not equal
8121#. ``ugt``: unsigned greater than
8122#. ``uge``: unsigned greater or equal
8123#. ``ult``: unsigned less than
8124#. ``ule``: unsigned less or equal
8125#. ``sgt``: signed greater than
8126#. ``sge``: signed greater or equal
8127#. ``slt``: signed less than
8128#. ``sle``: signed less or equal
8129
8130The remaining two arguments must be :ref:`integer <t_integer>` or
8131:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8132must also be identical types.
8133
8134Semantics:
8135""""""""""
8136
8137The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8138code given as ``cond``. The comparison performed always yields either an
8139:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8140
8141#. ``eq``: yields ``true`` if the operands are equal, ``false``
8142 otherwise. No sign interpretation is necessary or performed.
8143#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8144 otherwise. No sign interpretation is necessary or performed.
8145#. ``ugt``: interprets the operands as unsigned values and yields
8146 ``true`` if ``op1`` is greater than ``op2``.
8147#. ``uge``: interprets the operands as unsigned values and yields
8148 ``true`` if ``op1`` is greater than or equal to ``op2``.
8149#. ``ult``: interprets the operands as unsigned values and yields
8150 ``true`` if ``op1`` is less than ``op2``.
8151#. ``ule``: interprets the operands as unsigned values and yields
8152 ``true`` if ``op1`` is less than or equal to ``op2``.
8153#. ``sgt``: interprets the operands as signed values and yields ``true``
8154 if ``op1`` is greater than ``op2``.
8155#. ``sge``: interprets the operands as signed values and yields ``true``
8156 if ``op1`` is greater than or equal to ``op2``.
8157#. ``slt``: interprets the operands as signed values and yields ``true``
8158 if ``op1`` is less than ``op2``.
8159#. ``sle``: interprets the operands as signed values and yields ``true``
8160 if ``op1`` is less than or equal to ``op2``.
8161
8162If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8163are compared as if they were integers.
8164
8165If the operands are integer vectors, then they are compared element by
8166element. The result is an ``i1`` vector with the same number of elements
8167as the values being compared. Otherwise, the result is an ``i1``.
8168
8169Example:
8170""""""""
8171
8172.. code-block:: llvm
8173
8174 <result> = icmp eq i32 4, 5 ; yields: result=false
8175 <result> = icmp ne float* %X, %X ; yields: result=false
8176 <result> = icmp ult i16 4, 5 ; yields: result=true
8177 <result> = icmp sgt i16 4, 5 ; yields: result=false
8178 <result> = icmp ule i16 -4, 5 ; yields: result=false
8179 <result> = icmp sge i16 4, 5 ; yields: result=false
8180
8181Note that the code generator does not yet support vector types with the
8182``icmp`` instruction.
8183
8184.. _i_fcmp:
8185
8186'``fcmp``' Instruction
8187^^^^^^^^^^^^^^^^^^^^^^
8188
8189Syntax:
8190"""""""
8191
8192::
8193
James Molloy88eb5352015-07-10 12:52:00 +00008194 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008195
8196Overview:
8197"""""""""
8198
8199The '``fcmp``' instruction returns a boolean value or vector of boolean
8200values based on comparison of its operands.
8201
8202If the operands are floating point scalars, then the result type is a
8203boolean (:ref:`i1 <t_integer>`).
8204
8205If the operands are floating point vectors, then the result type is a
8206vector of boolean with the same number of elements as the operands being
8207compared.
8208
8209Arguments:
8210""""""""""
8211
8212The '``fcmp``' instruction takes three operands. The first operand is
8213the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008214not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008215
8216#. ``false``: no comparison, always returns false
8217#. ``oeq``: ordered and equal
8218#. ``ogt``: ordered and greater than
8219#. ``oge``: ordered and greater than or equal
8220#. ``olt``: ordered and less than
8221#. ``ole``: ordered and less than or equal
8222#. ``one``: ordered and not equal
8223#. ``ord``: ordered (no nans)
8224#. ``ueq``: unordered or equal
8225#. ``ugt``: unordered or greater than
8226#. ``uge``: unordered or greater than or equal
8227#. ``ult``: unordered or less than
8228#. ``ule``: unordered or less than or equal
8229#. ``une``: unordered or not equal
8230#. ``uno``: unordered (either nans)
8231#. ``true``: no comparison, always returns true
8232
8233*Ordered* means that neither operand is a QNAN while *unordered* means
8234that either operand may be a QNAN.
8235
8236Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8237point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8238type. They must have identical types.
8239
8240Semantics:
8241""""""""""
8242
8243The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8244condition code given as ``cond``. If the operands are vectors, then the
8245vectors are compared element by element. Each comparison performed
8246always yields an :ref:`i1 <t_integer>` result, as follows:
8247
8248#. ``false``: always yields ``false``, regardless of operands.
8249#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8250 is equal to ``op2``.
8251#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8252 is greater than ``op2``.
8253#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8254 is greater than or equal to ``op2``.
8255#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8256 is less than ``op2``.
8257#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8258 is less than or equal to ``op2``.
8259#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8260 is not equal to ``op2``.
8261#. ``ord``: yields ``true`` if both operands are not a QNAN.
8262#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8263 equal to ``op2``.
8264#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8265 greater than ``op2``.
8266#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8267 greater than or equal to ``op2``.
8268#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8269 less than ``op2``.
8270#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8271 less than or equal to ``op2``.
8272#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8273 not equal to ``op2``.
8274#. ``uno``: yields ``true`` if either operand is a QNAN.
8275#. ``true``: always yields ``true``, regardless of operands.
8276
James Molloy88eb5352015-07-10 12:52:00 +00008277The ``fcmp`` instruction can also optionally take any number of
8278:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8279otherwise unsafe floating point optimizations.
8280
8281Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8282only flags that have any effect on its semantics are those that allow
8283assumptions to be made about the values of input arguments; namely
8284``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8285
Sean Silvab084af42012-12-07 10:36:55 +00008286Example:
8287""""""""
8288
8289.. code-block:: llvm
8290
8291 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8292 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8293 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8294 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8295
8296Note that the code generator does not yet support vector types with the
8297``fcmp`` instruction.
8298
8299.. _i_phi:
8300
8301'``phi``' Instruction
8302^^^^^^^^^^^^^^^^^^^^^
8303
8304Syntax:
8305"""""""
8306
8307::
8308
8309 <result> = phi <ty> [ <val0>, <label0>], ...
8310
8311Overview:
8312"""""""""
8313
8314The '``phi``' instruction is used to implement the φ node in the SSA
8315graph representing the function.
8316
8317Arguments:
8318""""""""""
8319
8320The type of the incoming values is specified with the first type field.
8321After this, the '``phi``' instruction takes a list of pairs as
8322arguments, with one pair for each predecessor basic block of the current
8323block. Only values of :ref:`first class <t_firstclass>` type may be used as
8324the value arguments to the PHI node. Only labels may be used as the
8325label arguments.
8326
8327There must be no non-phi instructions between the start of a basic block
8328and the PHI instructions: i.e. PHI instructions must be first in a basic
8329block.
8330
8331For the purposes of the SSA form, the use of each incoming value is
8332deemed to occur on the edge from the corresponding predecessor block to
8333the current block (but after any definition of an '``invoke``'
8334instruction's return value on the same edge).
8335
8336Semantics:
8337""""""""""
8338
8339At runtime, the '``phi``' instruction logically takes on the value
8340specified by the pair corresponding to the predecessor basic block that
8341executed just prior to the current block.
8342
8343Example:
8344""""""""
8345
8346.. code-block:: llvm
8347
8348 Loop: ; Infinite loop that counts from 0 on up...
8349 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8350 %nextindvar = add i32 %indvar, 1
8351 br label %Loop
8352
8353.. _i_select:
8354
8355'``select``' Instruction
8356^^^^^^^^^^^^^^^^^^^^^^^^
8357
8358Syntax:
8359"""""""
8360
8361::
8362
8363 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8364
8365 selty is either i1 or {<N x i1>}
8366
8367Overview:
8368"""""""""
8369
8370The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008371condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008372
8373Arguments:
8374""""""""""
8375
8376The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8377values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008378class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008379
8380Semantics:
8381""""""""""
8382
8383If the condition is an i1 and it evaluates to 1, the instruction returns
8384the first value argument; otherwise, it returns the second value
8385argument.
8386
8387If the condition is a vector of i1, then the value arguments must be
8388vectors of the same size, and the selection is done element by element.
8389
David Majnemer40a0b592015-03-03 22:45:47 +00008390If the condition is an i1 and the value arguments are vectors of the
8391same size, then an entire vector is selected.
8392
Sean Silvab084af42012-12-07 10:36:55 +00008393Example:
8394""""""""
8395
8396.. code-block:: llvm
8397
8398 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8399
8400.. _i_call:
8401
8402'``call``' Instruction
8403^^^^^^^^^^^^^^^^^^^^^^
8404
8405Syntax:
8406"""""""
8407
8408::
8409
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008410 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008411 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008412
8413Overview:
8414"""""""""
8415
8416The '``call``' instruction represents a simple function call.
8417
8418Arguments:
8419""""""""""
8420
8421This instruction requires several arguments:
8422
Reid Kleckner5772b772014-04-24 20:14:34 +00008423#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008424 should perform tail call optimization. The ``tail`` marker is a hint that
8425 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008426 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008427 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008428
8429 #. The call will not cause unbounded stack growth if it is part of a
8430 recursive cycle in the call graph.
8431 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8432 forwarded in place.
8433
8434 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008435 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008436 rules:
8437
8438 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8439 or a pointer bitcast followed by a ret instruction.
8440 - The ret instruction must return the (possibly bitcasted) value
8441 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008442 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008443 parameters or return types may differ in pointee type, but not
8444 in address space.
8445 - The calling conventions of the caller and callee must match.
8446 - All ABI-impacting function attributes, such as sret, byval, inreg,
8447 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008448 - The callee must be varargs iff the caller is varargs. Bitcasting a
8449 non-varargs function to the appropriate varargs type is legal so
8450 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008451
8452 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8453 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008454
8455 - Caller and callee both have the calling convention ``fastcc``.
8456 - The call is in tail position (ret immediately follows call and ret
8457 uses value of call or is void).
8458 - Option ``-tailcallopt`` is enabled, or
8459 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008460 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008461 met. <CodeGenerator.html#tailcallopt>`_
8462
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008463#. The optional ``notail`` marker indicates that the optimizers should not add
8464 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8465 call optimization from being performed on the call.
8466
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008467#. The optional ``fast-math flags`` marker indicates that the call has one or more
8468 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8469 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8470 for calls that return a floating-point scalar or vector type.
8471
Sean Silvab084af42012-12-07 10:36:55 +00008472#. The optional "cconv" marker indicates which :ref:`calling
8473 convention <callingconv>` the call should use. If none is
8474 specified, the call defaults to using C calling conventions. The
8475 calling convention of the call must match the calling convention of
8476 the target function, or else the behavior is undefined.
8477#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8478 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8479 are valid here.
8480#. '``ty``': the type of the call instruction itself which is also the
8481 type of the return value. Functions that return no value are marked
8482 ``void``.
8483#. '``fnty``': shall be the signature of the pointer to function value
8484 being invoked. The argument types must match the types implied by
8485 this signature. This type can be omitted if the function is not
8486 varargs and if the function type does not return a pointer to a
8487 function.
8488#. '``fnptrval``': An LLVM value containing a pointer to a function to
8489 be invoked. In most cases, this is a direct function invocation, but
8490 indirect ``call``'s are just as possible, calling an arbitrary pointer
8491 to function value.
8492#. '``function args``': argument list whose types match the function
8493 signature argument types and parameter attributes. All arguments must
8494 be of :ref:`first class <t_firstclass>` type. If the function signature
8495 indicates the function accepts a variable number of arguments, the
8496 extra arguments can be specified.
8497#. The optional :ref:`function attributes <fnattrs>` list. Only
8498 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8499 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008500#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008501
8502Semantics:
8503""""""""""
8504
8505The '``call``' instruction is used to cause control flow to transfer to
8506a specified function, with its incoming arguments bound to the specified
8507values. Upon a '``ret``' instruction in the called function, control
8508flow continues with the instruction after the function call, and the
8509return value of the function is bound to the result argument.
8510
8511Example:
8512""""""""
8513
8514.. code-block:: llvm
8515
8516 %retval = call i32 @test(i32 %argc)
8517 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8518 %X = tail call i32 @foo() ; yields i32
8519 %Y = tail call fastcc i32 @foo() ; yields i32
8520 call void %foo(i8 97 signext)
8521
8522 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008523 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008524 %gr = extractvalue %struct.A %r, 0 ; yields i32
8525 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8526 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8527 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8528
8529llvm treats calls to some functions with names and arguments that match
8530the standard C99 library as being the C99 library functions, and may
8531perform optimizations or generate code for them under that assumption.
8532This is something we'd like to change in the future to provide better
8533support for freestanding environments and non-C-based languages.
8534
8535.. _i_va_arg:
8536
8537'``va_arg``' Instruction
8538^^^^^^^^^^^^^^^^^^^^^^^^
8539
8540Syntax:
8541"""""""
8542
8543::
8544
8545 <resultval> = va_arg <va_list*> <arglist>, <argty>
8546
8547Overview:
8548"""""""""
8549
8550The '``va_arg``' instruction is used to access arguments passed through
8551the "variable argument" area of a function call. It is used to implement
8552the ``va_arg`` macro in C.
8553
8554Arguments:
8555""""""""""
8556
8557This instruction takes a ``va_list*`` value and the type of the
8558argument. It returns a value of the specified argument type and
8559increments the ``va_list`` to point to the next argument. The actual
8560type of ``va_list`` is target specific.
8561
8562Semantics:
8563""""""""""
8564
8565The '``va_arg``' instruction loads an argument of the specified type
8566from the specified ``va_list`` and causes the ``va_list`` to point to
8567the next argument. For more information, see the variable argument
8568handling :ref:`Intrinsic Functions <int_varargs>`.
8569
8570It is legal for this instruction to be called in a function which does
8571not take a variable number of arguments, for example, the ``vfprintf``
8572function.
8573
8574``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8575function <intrinsics>` because it takes a type as an argument.
8576
8577Example:
8578""""""""
8579
8580See the :ref:`variable argument processing <int_varargs>` section.
8581
8582Note that the code generator does not yet fully support va\_arg on many
8583targets. Also, it does not currently support va\_arg with aggregate
8584types on any target.
8585
8586.. _i_landingpad:
8587
8588'``landingpad``' Instruction
8589^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8590
8591Syntax:
8592"""""""
8593
8594::
8595
David Majnemer7fddecc2015-06-17 20:52:32 +00008596 <resultval> = landingpad <resultty> <clause>+
8597 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008598
8599 <clause> := catch <type> <value>
8600 <clause> := filter <array constant type> <array constant>
8601
8602Overview:
8603"""""""""
8604
8605The '``landingpad``' instruction is used by `LLVM's exception handling
8606system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008607is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008608code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008609defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008610re-entry to the function. The ``resultval`` has the type ``resultty``.
8611
8612Arguments:
8613""""""""""
8614
David Majnemer7fddecc2015-06-17 20:52:32 +00008615The optional
Sean Silvab084af42012-12-07 10:36:55 +00008616``cleanup`` flag indicates that the landing pad block is a cleanup.
8617
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008618A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008619contains the global variable representing the "type" that may be caught
8620or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8621clause takes an array constant as its argument. Use
8622"``[0 x i8**] undef``" for a filter which cannot throw. The
8623'``landingpad``' instruction must contain *at least* one ``clause`` or
8624the ``cleanup`` flag.
8625
8626Semantics:
8627""""""""""
8628
8629The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008630:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008631therefore the "result type" of the ``landingpad`` instruction. As with
8632calling conventions, how the personality function results are
8633represented in LLVM IR is target specific.
8634
8635The clauses are applied in order from top to bottom. If two
8636``landingpad`` instructions are merged together through inlining, the
8637clauses from the calling function are appended to the list of clauses.
8638When the call stack is being unwound due to an exception being thrown,
8639the exception is compared against each ``clause`` in turn. If it doesn't
8640match any of the clauses, and the ``cleanup`` flag is not set, then
8641unwinding continues further up the call stack.
8642
8643The ``landingpad`` instruction has several restrictions:
8644
8645- A landing pad block is a basic block which is the unwind destination
8646 of an '``invoke``' instruction.
8647- A landing pad block must have a '``landingpad``' instruction as its
8648 first non-PHI instruction.
8649- There can be only one '``landingpad``' instruction within the landing
8650 pad block.
8651- A basic block that is not a landing pad block may not include a
8652 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008653
8654Example:
8655""""""""
8656
8657.. code-block:: llvm
8658
8659 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008660 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008661 catch i8** @_ZTIi
8662 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008663 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008664 cleanup
8665 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008666 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008667 catch i8** @_ZTIi
8668 filter [1 x i8**] [@_ZTId]
8669
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008670.. _i_catchpad:
8671
8672'``catchpad``' Instruction
8673^^^^^^^^^^^^^^^^^^^^^^^^^^
8674
8675Syntax:
8676"""""""
8677
8678::
8679
8680 <resultval> = catchpad within <catchswitch> [<args>*]
8681
8682Overview:
8683"""""""""
8684
8685The '``catchpad``' instruction is used by `LLVM's exception handling
8686system <ExceptionHandling.html#overview>`_ to specify that a basic block
8687begins a catch handler --- one where a personality routine attempts to transfer
8688control to catch an exception.
8689
8690Arguments:
8691""""""""""
8692
8693The ``catchswitch`` operand must always be a token produced by a
8694:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8695ensures that each ``catchpad`` has exactly one predecessor block, and it always
8696terminates in a ``catchswitch``.
8697
8698The ``args`` correspond to whatever information the personality routine
8699requires to know if this is an appropriate handler for the exception. Control
8700will transfer to the ``catchpad`` if this is the first appropriate handler for
8701the exception.
8702
8703The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8704``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8705pads.
8706
8707Semantics:
8708""""""""""
8709
8710When the call stack is being unwound due to an exception being thrown, the
8711exception is compared against the ``args``. If it doesn't match, control will
8712not reach the ``catchpad`` instruction. The representation of ``args`` is
8713entirely target and personality function-specific.
8714
8715Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8716instruction must be the first non-phi of its parent basic block.
8717
8718The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8719instructions is described in the
8720`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8721
8722When a ``catchpad`` has been "entered" but not yet "exited" (as
8723described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8724it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8725that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8726
8727Example:
8728""""""""
8729
8730.. code-block:: llvm
8731
8732 dispatch:
8733 %cs = catchswitch within none [label %handler0] unwind to caller
8734 ;; A catch block which can catch an integer.
8735 handler0:
8736 %tok = catchpad within %cs [i8** @_ZTIi]
8737
David Majnemer654e1302015-07-31 17:58:14 +00008738.. _i_cleanuppad:
8739
8740'``cleanuppad``' Instruction
8741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8742
8743Syntax:
8744"""""""
8745
8746::
8747
David Majnemer8a1c45d2015-12-12 05:38:55 +00008748 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008749
8750Overview:
8751"""""""""
8752
8753The '``cleanuppad``' instruction is used by `LLVM's exception handling
8754system <ExceptionHandling.html#overview>`_ to specify that a basic block
8755is a cleanup block --- one where a personality routine attempts to
8756transfer control to run cleanup actions.
8757The ``args`` correspond to whatever additional
8758information the :ref:`personality function <personalityfn>` requires to
8759execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008760The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008761match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8762The ``parent`` argument is the token of the funclet that contains the
8763``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8764this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008765
8766Arguments:
8767""""""""""
8768
8769The instruction takes a list of arbitrary values which are interpreted
8770by the :ref:`personality function <personalityfn>`.
8771
8772Semantics:
8773""""""""""
8774
David Majnemer654e1302015-07-31 17:58:14 +00008775When the call stack is being unwound due to an exception being thrown,
8776the :ref:`personality function <personalityfn>` transfers control to the
8777``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008778As with calling conventions, how the personality function results are
8779represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008780
8781The ``cleanuppad`` instruction has several restrictions:
8782
8783- A cleanup block is a basic block which is the unwind destination of
8784 an exceptional instruction.
8785- A cleanup block must have a '``cleanuppad``' instruction as its
8786 first non-PHI instruction.
8787- There can be only one '``cleanuppad``' instruction within the
8788 cleanup block.
8789- A basic block that is not a cleanup block may not include a
8790 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008791
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008792When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8793described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8794it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8795that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008796
David Majnemer654e1302015-07-31 17:58:14 +00008797Example:
8798""""""""
8799
8800.. code-block:: llvm
8801
David Majnemer8a1c45d2015-12-12 05:38:55 +00008802 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008803
Sean Silvab084af42012-12-07 10:36:55 +00008804.. _intrinsics:
8805
8806Intrinsic Functions
8807===================
8808
8809LLVM supports the notion of an "intrinsic function". These functions
8810have well known names and semantics and are required to follow certain
8811restrictions. Overall, these intrinsics represent an extension mechanism
8812for the LLVM language that does not require changing all of the
8813transformations in LLVM when adding to the language (or the bitcode
8814reader/writer, the parser, etc...).
8815
8816Intrinsic function names must all start with an "``llvm.``" prefix. This
8817prefix is reserved in LLVM for intrinsic names; thus, function names may
8818not begin with this prefix. Intrinsic functions must always be external
8819functions: you cannot define the body of intrinsic functions. Intrinsic
8820functions may only be used in call or invoke instructions: it is illegal
8821to take the address of an intrinsic function. Additionally, because
8822intrinsic functions are part of the LLVM language, it is required if any
8823are added that they be documented here.
8824
8825Some intrinsic functions can be overloaded, i.e., the intrinsic
8826represents a family of functions that perform the same operation but on
8827different data types. Because LLVM can represent over 8 million
8828different integer types, overloading is used commonly to allow an
8829intrinsic function to operate on any integer type. One or more of the
8830argument types or the result type can be overloaded to accept any
8831integer type. Argument types may also be defined as exactly matching a
8832previous argument's type or the result type. This allows an intrinsic
8833function which accepts multiple arguments, but needs all of them to be
8834of the same type, to only be overloaded with respect to a single
8835argument or the result.
8836
8837Overloaded intrinsics will have the names of its overloaded argument
8838types encoded into its function name, each preceded by a period. Only
8839those types which are overloaded result in a name suffix. Arguments
8840whose type is matched against another type do not. For example, the
8841``llvm.ctpop`` function can take an integer of any width and returns an
8842integer of exactly the same integer width. This leads to a family of
8843functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8844``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8845overloaded, and only one type suffix is required. Because the argument's
8846type is matched against the return type, it does not require its own
8847name suffix.
8848
8849To learn how to add an intrinsic function, please see the `Extending
8850LLVM Guide <ExtendingLLVM.html>`_.
8851
8852.. _int_varargs:
8853
8854Variable Argument Handling Intrinsics
8855-------------------------------------
8856
8857Variable argument support is defined in LLVM with the
8858:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8859functions. These functions are related to the similarly named macros
8860defined in the ``<stdarg.h>`` header file.
8861
8862All of these functions operate on arguments that use a target-specific
8863value type "``va_list``". The LLVM assembly language reference manual
8864does not define what this type is, so all transformations should be
8865prepared to handle these functions regardless of the type used.
8866
8867This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8868variable argument handling intrinsic functions are used.
8869
8870.. code-block:: llvm
8871
Tim Northoverab60bb92014-11-02 01:21:51 +00008872 ; This struct is different for every platform. For most platforms,
8873 ; it is merely an i8*.
8874 %struct.va_list = type { i8* }
8875
8876 ; For Unix x86_64 platforms, va_list is the following struct:
8877 ; %struct.va_list = type { i32, i32, i8*, i8* }
8878
Sean Silvab084af42012-12-07 10:36:55 +00008879 define i32 @test(i32 %X, ...) {
8880 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008881 %ap = alloca %struct.va_list
8882 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008883 call void @llvm.va_start(i8* %ap2)
8884
8885 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008886 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008887
8888 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8889 %aq = alloca i8*
8890 %aq2 = bitcast i8** %aq to i8*
8891 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8892 call void @llvm.va_end(i8* %aq2)
8893
8894 ; Stop processing of arguments.
8895 call void @llvm.va_end(i8* %ap2)
8896 ret i32 %tmp
8897 }
8898
8899 declare void @llvm.va_start(i8*)
8900 declare void @llvm.va_copy(i8*, i8*)
8901 declare void @llvm.va_end(i8*)
8902
8903.. _int_va_start:
8904
8905'``llvm.va_start``' Intrinsic
8906^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8907
8908Syntax:
8909"""""""
8910
8911::
8912
Nick Lewycky04f6de02013-09-11 22:04:52 +00008913 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008914
8915Overview:
8916"""""""""
8917
8918The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8919subsequent use by ``va_arg``.
8920
8921Arguments:
8922""""""""""
8923
8924The argument is a pointer to a ``va_list`` element to initialize.
8925
8926Semantics:
8927""""""""""
8928
8929The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8930available in C. In a target-dependent way, it initializes the
8931``va_list`` element to which the argument points, so that the next call
8932to ``va_arg`` will produce the first variable argument passed to the
8933function. Unlike the C ``va_start`` macro, this intrinsic does not need
8934to know the last argument of the function as the compiler can figure
8935that out.
8936
8937'``llvm.va_end``' Intrinsic
8938^^^^^^^^^^^^^^^^^^^^^^^^^^^
8939
8940Syntax:
8941"""""""
8942
8943::
8944
8945 declare void @llvm.va_end(i8* <arglist>)
8946
8947Overview:
8948"""""""""
8949
8950The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8951initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8952
8953Arguments:
8954""""""""""
8955
8956The argument is a pointer to a ``va_list`` to destroy.
8957
8958Semantics:
8959""""""""""
8960
8961The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8962available in C. In a target-dependent way, it destroys the ``va_list``
8963element to which the argument points. Calls to
8964:ref:`llvm.va_start <int_va_start>` and
8965:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8966``llvm.va_end``.
8967
8968.. _int_va_copy:
8969
8970'``llvm.va_copy``' Intrinsic
8971^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8972
8973Syntax:
8974"""""""
8975
8976::
8977
8978 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8979
8980Overview:
8981"""""""""
8982
8983The '``llvm.va_copy``' intrinsic copies the current argument position
8984from the source argument list to the destination argument list.
8985
8986Arguments:
8987""""""""""
8988
8989The first argument is a pointer to a ``va_list`` element to initialize.
8990The second argument is a pointer to a ``va_list`` element to copy from.
8991
8992Semantics:
8993""""""""""
8994
8995The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8996available in C. In a target-dependent way, it copies the source
8997``va_list`` element into the destination ``va_list`` element. This
8998intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8999arbitrarily complex and require, for example, memory allocation.
9000
9001Accurate Garbage Collection Intrinsics
9002--------------------------------------
9003
Philip Reamesc5b0f562015-02-25 23:52:06 +00009004LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009005(GC) requires the frontend to generate code containing appropriate intrinsic
9006calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009007intrinsics in a manner which is appropriate for the target collector.
9008
Sean Silvab084af42012-12-07 10:36:55 +00009009These intrinsics allow identification of :ref:`GC roots on the
9010stack <int_gcroot>`, as well as garbage collector implementations that
9011require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009012Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009013these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009014details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009015
Philip Reamesf80bbff2015-02-25 23:45:20 +00009016Experimental Statepoint Intrinsics
9017^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9018
9019LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009020collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009021to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009022:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009023differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009024<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009025described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009026
9027.. _int_gcroot:
9028
9029'``llvm.gcroot``' Intrinsic
9030^^^^^^^^^^^^^^^^^^^^^^^^^^^
9031
9032Syntax:
9033"""""""
9034
9035::
9036
9037 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9038
9039Overview:
9040"""""""""
9041
9042The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9043the code generator, and allows some metadata to be associated with it.
9044
9045Arguments:
9046""""""""""
9047
9048The first argument specifies the address of a stack object that contains
9049the root pointer. The second pointer (which must be either a constant or
9050a global value address) contains the meta-data to be associated with the
9051root.
9052
9053Semantics:
9054""""""""""
9055
9056At runtime, a call to this intrinsic stores a null pointer into the
9057"ptrloc" location. At compile-time, the code generator generates
9058information to allow the runtime to find the pointer at GC safe points.
9059The '``llvm.gcroot``' intrinsic may only be used in a function which
9060:ref:`specifies a GC algorithm <gc>`.
9061
9062.. _int_gcread:
9063
9064'``llvm.gcread``' Intrinsic
9065^^^^^^^^^^^^^^^^^^^^^^^^^^^
9066
9067Syntax:
9068"""""""
9069
9070::
9071
9072 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9073
9074Overview:
9075"""""""""
9076
9077The '``llvm.gcread``' intrinsic identifies reads of references from heap
9078locations, allowing garbage collector implementations that require read
9079barriers.
9080
9081Arguments:
9082""""""""""
9083
9084The second argument is the address to read from, which should be an
9085address allocated from the garbage collector. The first object is a
9086pointer to the start of the referenced object, if needed by the language
9087runtime (otherwise null).
9088
9089Semantics:
9090""""""""""
9091
9092The '``llvm.gcread``' intrinsic has the same semantics as a load
9093instruction, but may be replaced with substantially more complex code by
9094the garbage collector runtime, as needed. The '``llvm.gcread``'
9095intrinsic may only be used in a function which :ref:`specifies a GC
9096algorithm <gc>`.
9097
9098.. _int_gcwrite:
9099
9100'``llvm.gcwrite``' Intrinsic
9101^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9102
9103Syntax:
9104"""""""
9105
9106::
9107
9108 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9109
9110Overview:
9111"""""""""
9112
9113The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9114locations, allowing garbage collector implementations that require write
9115barriers (such as generational or reference counting collectors).
9116
9117Arguments:
9118""""""""""
9119
9120The first argument is the reference to store, the second is the start of
9121the object to store it to, and the third is the address of the field of
9122Obj to store to. If the runtime does not require a pointer to the
9123object, Obj may be null.
9124
9125Semantics:
9126""""""""""
9127
9128The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9129instruction, but may be replaced with substantially more complex code by
9130the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9131intrinsic may only be used in a function which :ref:`specifies a GC
9132algorithm <gc>`.
9133
9134Code Generator Intrinsics
9135-------------------------
9136
9137These intrinsics are provided by LLVM to expose special features that
9138may only be implemented with code generator support.
9139
9140'``llvm.returnaddress``' Intrinsic
9141^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9142
9143Syntax:
9144"""""""
9145
9146::
9147
9148 declare i8 *@llvm.returnaddress(i32 <level>)
9149
9150Overview:
9151"""""""""
9152
9153The '``llvm.returnaddress``' intrinsic attempts to compute a
9154target-specific value indicating the return address of the current
9155function or one of its callers.
9156
9157Arguments:
9158""""""""""
9159
9160The argument to this intrinsic indicates which function to return the
9161address for. Zero indicates the calling function, one indicates its
9162caller, etc. The argument is **required** to be a constant integer
9163value.
9164
9165Semantics:
9166""""""""""
9167
9168The '``llvm.returnaddress``' intrinsic either returns a pointer
9169indicating the return address of the specified call frame, or zero if it
9170cannot be identified. The value returned by this intrinsic is likely to
9171be incorrect or 0 for arguments other than zero, so it should only be
9172used for debugging purposes.
9173
9174Note that calling this intrinsic does not prevent function inlining or
9175other aggressive transformations, so the value returned may not be that
9176of the obvious source-language caller.
9177
9178'``llvm.frameaddress``' Intrinsic
9179^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9180
9181Syntax:
9182"""""""
9183
9184::
9185
9186 declare i8* @llvm.frameaddress(i32 <level>)
9187
9188Overview:
9189"""""""""
9190
9191The '``llvm.frameaddress``' intrinsic attempts to return the
9192target-specific frame pointer value for the specified stack frame.
9193
9194Arguments:
9195""""""""""
9196
9197The argument to this intrinsic indicates which function to return the
9198frame pointer for. Zero indicates the calling function, one indicates
9199its caller, etc. The argument is **required** to be a constant integer
9200value.
9201
9202Semantics:
9203""""""""""
9204
9205The '``llvm.frameaddress``' intrinsic either returns a pointer
9206indicating the frame address of the specified call frame, or zero if it
9207cannot be identified. The value returned by this intrinsic is likely to
9208be incorrect or 0 for arguments other than zero, so it should only be
9209used for debugging purposes.
9210
9211Note that calling this intrinsic does not prevent function inlining or
9212other aggressive transformations, so the value returned may not be that
9213of the obvious source-language caller.
9214
Reid Kleckner60381792015-07-07 22:25:32 +00009215'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009216^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9217
9218Syntax:
9219"""""""
9220
9221::
9222
Reid Kleckner60381792015-07-07 22:25:32 +00009223 declare void @llvm.localescape(...)
9224 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009225
9226Overview:
9227"""""""""
9228
Reid Kleckner60381792015-07-07 22:25:32 +00009229The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9230allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009231live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009232computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009233
9234Arguments:
9235""""""""""
9236
Reid Kleckner60381792015-07-07 22:25:32 +00009237All arguments to '``llvm.localescape``' must be pointers to static allocas or
9238casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009239once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009240
Reid Kleckner60381792015-07-07 22:25:32 +00009241The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009242bitcasted pointer to a function defined in the current module. The code
9243generator cannot determine the frame allocation offset of functions defined in
9244other modules.
9245
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009246The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9247call frame that is currently live. The return value of '``llvm.localaddress``'
9248is one way to produce such a value, but various runtimes also expose a suitable
9249pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009250
Reid Kleckner60381792015-07-07 22:25:32 +00009251The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9252'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009253
Reid Klecknere9b89312015-01-13 00:48:10 +00009254Semantics:
9255""""""""""
9256
Reid Kleckner60381792015-07-07 22:25:32 +00009257These intrinsics allow a group of functions to share access to a set of local
9258stack allocations of a one parent function. The parent function may call the
9259'``llvm.localescape``' intrinsic once from the function entry block, and the
9260child functions can use '``llvm.localrecover``' to access the escaped allocas.
9261The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9262the escaped allocas are allocated, which would break attempts to use
9263'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009264
Renato Golinc7aea402014-05-06 16:51:25 +00009265.. _int_read_register:
9266.. _int_write_register:
9267
9268'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9269^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9270
9271Syntax:
9272"""""""
9273
9274::
9275
9276 declare i32 @llvm.read_register.i32(metadata)
9277 declare i64 @llvm.read_register.i64(metadata)
9278 declare void @llvm.write_register.i32(metadata, i32 @value)
9279 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009280 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009281
9282Overview:
9283"""""""""
9284
9285The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9286provides access to the named register. The register must be valid on
9287the architecture being compiled to. The type needs to be compatible
9288with the register being read.
9289
9290Semantics:
9291""""""""""
9292
9293The '``llvm.read_register``' intrinsic returns the current value of the
9294register, where possible. The '``llvm.write_register``' intrinsic sets
9295the current value of the register, where possible.
9296
9297This is useful to implement named register global variables that need
9298to always be mapped to a specific register, as is common practice on
9299bare-metal programs including OS kernels.
9300
9301The compiler doesn't check for register availability or use of the used
9302register in surrounding code, including inline assembly. Because of that,
9303allocatable registers are not supported.
9304
9305Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009306architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009307work is needed to support other registers and even more so, allocatable
9308registers.
9309
Sean Silvab084af42012-12-07 10:36:55 +00009310.. _int_stacksave:
9311
9312'``llvm.stacksave``' Intrinsic
9313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9314
9315Syntax:
9316"""""""
9317
9318::
9319
9320 declare i8* @llvm.stacksave()
9321
9322Overview:
9323"""""""""
9324
9325The '``llvm.stacksave``' intrinsic is used to remember the current state
9326of the function stack, for use with
9327:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9328implementing language features like scoped automatic variable sized
9329arrays in C99.
9330
9331Semantics:
9332""""""""""
9333
9334This intrinsic returns a opaque pointer value that can be passed to
9335:ref:`llvm.stackrestore <int_stackrestore>`. When an
9336``llvm.stackrestore`` intrinsic is executed with a value saved from
9337``llvm.stacksave``, it effectively restores the state of the stack to
9338the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9339practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9340were allocated after the ``llvm.stacksave`` was executed.
9341
9342.. _int_stackrestore:
9343
9344'``llvm.stackrestore``' Intrinsic
9345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9346
9347Syntax:
9348"""""""
9349
9350::
9351
9352 declare void @llvm.stackrestore(i8* %ptr)
9353
9354Overview:
9355"""""""""
9356
9357The '``llvm.stackrestore``' intrinsic is used to restore the state of
9358the function stack to the state it was in when the corresponding
9359:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9360useful for implementing language features like scoped automatic variable
9361sized arrays in C99.
9362
9363Semantics:
9364""""""""""
9365
9366See the description for :ref:`llvm.stacksave <int_stacksave>`.
9367
Yury Gribovd7dbb662015-12-01 11:40:55 +00009368.. _int_get_dynamic_area_offset:
9369
9370'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009371^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009372
9373Syntax:
9374"""""""
9375
9376::
9377
9378 declare i32 @llvm.get.dynamic.area.offset.i32()
9379 declare i64 @llvm.get.dynamic.area.offset.i64()
9380
9381 Overview:
9382 """""""""
9383
9384 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9385 get the offset from native stack pointer to the address of the most
9386 recent dynamic alloca on the caller's stack. These intrinsics are
9387 intendend for use in combination with
9388 :ref:`llvm.stacksave <int_stacksave>` to get a
9389 pointer to the most recent dynamic alloca. This is useful, for example,
9390 for AddressSanitizer's stack unpoisoning routines.
9391
9392Semantics:
9393""""""""""
9394
9395 These intrinsics return a non-negative integer value that can be used to
9396 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9397 on the caller's stack. In particular, for targets where stack grows downwards,
9398 adding this offset to the native stack pointer would get the address of the most
9399 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9400 complicated, because substracting this value from stack pointer would get the address
9401 one past the end of the most recent dynamic alloca.
9402
9403 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9404 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9405 compile-time-known constant value.
9406
9407 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9408 must match the target's generic address space's (address space 0) pointer type.
9409
Sean Silvab084af42012-12-07 10:36:55 +00009410'``llvm.prefetch``' Intrinsic
9411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9412
9413Syntax:
9414"""""""
9415
9416::
9417
9418 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9419
9420Overview:
9421"""""""""
9422
9423The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9424insert a prefetch instruction if supported; otherwise, it is a noop.
9425Prefetches have no effect on the behavior of the program but can change
9426its performance characteristics.
9427
9428Arguments:
9429""""""""""
9430
9431``address`` is the address to be prefetched, ``rw`` is the specifier
9432determining if the fetch should be for a read (0) or write (1), and
9433``locality`` is a temporal locality specifier ranging from (0) - no
9434locality, to (3) - extremely local keep in cache. The ``cache type``
9435specifies whether the prefetch is performed on the data (1) or
9436instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9437arguments must be constant integers.
9438
9439Semantics:
9440""""""""""
9441
9442This intrinsic does not modify the behavior of the program. In
9443particular, prefetches cannot trap and do not produce a value. On
9444targets that support this intrinsic, the prefetch can provide hints to
9445the processor cache for better performance.
9446
9447'``llvm.pcmarker``' Intrinsic
9448^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9449
9450Syntax:
9451"""""""
9452
9453::
9454
9455 declare void @llvm.pcmarker(i32 <id>)
9456
9457Overview:
9458"""""""""
9459
9460The '``llvm.pcmarker``' intrinsic is a method to export a Program
9461Counter (PC) in a region of code to simulators and other tools. The
9462method is target specific, but it is expected that the marker will use
9463exported symbols to transmit the PC of the marker. The marker makes no
9464guarantees that it will remain with any specific instruction after
9465optimizations. It is possible that the presence of a marker will inhibit
9466optimizations. The intended use is to be inserted after optimizations to
9467allow correlations of simulation runs.
9468
9469Arguments:
9470""""""""""
9471
9472``id`` is a numerical id identifying the marker.
9473
9474Semantics:
9475""""""""""
9476
9477This intrinsic does not modify the behavior of the program. Backends
9478that do not support this intrinsic may ignore it.
9479
9480'``llvm.readcyclecounter``' Intrinsic
9481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9482
9483Syntax:
9484"""""""
9485
9486::
9487
9488 declare i64 @llvm.readcyclecounter()
9489
9490Overview:
9491"""""""""
9492
9493The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9494counter register (or similar low latency, high accuracy clocks) on those
9495targets that support it. On X86, it should map to RDTSC. On Alpha, it
9496should map to RPCC. As the backing counters overflow quickly (on the
9497order of 9 seconds on alpha), this should only be used for small
9498timings.
9499
9500Semantics:
9501""""""""""
9502
9503When directly supported, reading the cycle counter should not modify any
9504memory. Implementations are allowed to either return a application
9505specific value or a system wide value. On backends without support, this
9506is lowered to a constant 0.
9507
Tim Northoverbc933082013-05-23 19:11:20 +00009508Note that runtime support may be conditional on the privilege-level code is
9509running at and the host platform.
9510
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009511'``llvm.clear_cache``' Intrinsic
9512^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9513
9514Syntax:
9515"""""""
9516
9517::
9518
9519 declare void @llvm.clear_cache(i8*, i8*)
9520
9521Overview:
9522"""""""""
9523
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009524The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9525in the specified range to the execution unit of the processor. On
9526targets with non-unified instruction and data cache, the implementation
9527flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009528
9529Semantics:
9530""""""""""
9531
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009532On platforms with coherent instruction and data caches (e.g. x86), this
9533intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009534cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009535instructions or a system call, if cache flushing requires special
9536privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009537
Sean Silvad02bf3e2014-04-07 22:29:53 +00009538The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009539time library.
Renato Golin93010e62014-03-26 14:01:32 +00009540
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009541This instrinsic does *not* empty the instruction pipeline. Modifications
9542of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009543
Justin Bogner61ba2e32014-12-08 18:02:35 +00009544'``llvm.instrprof_increment``' Intrinsic
9545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9546
9547Syntax:
9548"""""""
9549
9550::
9551
9552 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9553 i32 <num-counters>, i32 <index>)
9554
9555Overview:
9556"""""""""
9557
9558The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9559frontend for use with instrumentation based profiling. These will be
9560lowered by the ``-instrprof`` pass to generate execution counts of a
9561program at runtime.
9562
9563Arguments:
9564""""""""""
9565
9566The first argument is a pointer to a global variable containing the
9567name of the entity being instrumented. This should generally be the
9568(mangled) function name for a set of counters.
9569
9570The second argument is a hash value that can be used by the consumer
9571of the profile data to detect changes to the instrumented source, and
9572the third is the number of counters associated with ``name``. It is an
9573error if ``hash`` or ``num-counters`` differ between two instances of
9574``instrprof_increment`` that refer to the same name.
9575
9576The last argument refers to which of the counters for ``name`` should
9577be incremented. It should be a value between 0 and ``num-counters``.
9578
9579Semantics:
9580""""""""""
9581
9582This intrinsic represents an increment of a profiling counter. It will
9583cause the ``-instrprof`` pass to generate the appropriate data
9584structures and the code to increment the appropriate value, in a
9585format that can be written out by a compiler runtime and consumed via
9586the ``llvm-profdata`` tool.
9587
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009588'``llvm.instrprof_value_profile``' Intrinsic
9589^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9590
9591Syntax:
9592"""""""
9593
9594::
9595
9596 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9597 i64 <value>, i32 <value_kind>,
9598 i32 <index>)
9599
9600Overview:
9601"""""""""
9602
9603The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9604frontend for use with instrumentation based profiling. This will be
9605lowered by the ``-instrprof`` pass to find out the target values,
9606instrumented expressions take in a program at runtime.
9607
9608Arguments:
9609""""""""""
9610
9611The first argument is a pointer to a global variable containing the
9612name of the entity being instrumented. ``name`` should generally be the
9613(mangled) function name for a set of counters.
9614
9615The second argument is a hash value that can be used by the consumer
9616of the profile data to detect changes to the instrumented source. It
9617is an error if ``hash`` differs between two instances of
9618``llvm.instrprof_*`` that refer to the same name.
9619
9620The third argument is the value of the expression being profiled. The profiled
9621expression's value should be representable as an unsigned 64-bit value. The
9622fourth argument represents the kind of value profiling that is being done. The
9623supported value profiling kinds are enumerated through the
9624``InstrProfValueKind`` type declared in the
9625``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9626index of the instrumented expression within ``name``. It should be >= 0.
9627
9628Semantics:
9629""""""""""
9630
9631This intrinsic represents the point where a call to a runtime routine
9632should be inserted for value profiling of target expressions. ``-instrprof``
9633pass will generate the appropriate data structures and replace the
9634``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9635runtime library with proper arguments.
9636
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009637'``llvm.thread.pointer``' Intrinsic
9638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9639
9640Syntax:
9641"""""""
9642
9643::
9644
9645 declare i8* @llvm.thread.pointer()
9646
9647Overview:
9648"""""""""
9649
9650The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9651pointer.
9652
9653Semantics:
9654""""""""""
9655
9656The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9657for the current thread. The exact semantics of this value are target
9658specific: it may point to the start of TLS area, to the end, or somewhere
9659in the middle. Depending on the target, this intrinsic may read a register,
9660call a helper function, read from an alternate memory space, or perform
9661other operations necessary to locate the TLS area. Not all targets support
9662this intrinsic.
9663
Sean Silvab084af42012-12-07 10:36:55 +00009664Standard C Library Intrinsics
9665-----------------------------
9666
9667LLVM provides intrinsics for a few important standard C library
9668functions. These intrinsics allow source-language front-ends to pass
9669information about the alignment of the pointer arguments to the code
9670generator, providing opportunity for more efficient code generation.
9671
9672.. _int_memcpy:
9673
9674'``llvm.memcpy``' Intrinsic
9675^^^^^^^^^^^^^^^^^^^^^^^^^^^
9676
9677Syntax:
9678"""""""
9679
9680This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9681integer bit width and for different address spaces. Not all targets
9682support all bit widths however.
9683
9684::
9685
9686 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9687 i32 <len>, i32 <align>, i1 <isvolatile>)
9688 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9689 i64 <len>, i32 <align>, i1 <isvolatile>)
9690
9691Overview:
9692"""""""""
9693
9694The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9695source location to the destination location.
9696
9697Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9698intrinsics do not return a value, takes extra alignment/isvolatile
9699arguments and the pointers can be in specified address spaces.
9700
9701Arguments:
9702""""""""""
9703
9704The first argument is a pointer to the destination, the second is a
9705pointer to the source. The third argument is an integer argument
9706specifying the number of bytes to copy, the fourth argument is the
9707alignment of the source and destination locations, and the fifth is a
9708boolean indicating a volatile access.
9709
9710If the call to this intrinsic has an alignment value that is not 0 or 1,
9711then the caller guarantees that both the source and destination pointers
9712are aligned to that boundary.
9713
9714If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9715a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9716very cleanly specified and it is unwise to depend on it.
9717
9718Semantics:
9719""""""""""
9720
9721The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9722source location to the destination location, which are not allowed to
9723overlap. It copies "len" bytes of memory over. If the argument is known
9724to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009725argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009726
9727'``llvm.memmove``' Intrinsic
9728^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9729
9730Syntax:
9731"""""""
9732
9733This is an overloaded intrinsic. You can use llvm.memmove on any integer
9734bit width and for different address space. Not all targets support all
9735bit widths however.
9736
9737::
9738
9739 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9740 i32 <len>, i32 <align>, i1 <isvolatile>)
9741 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9742 i64 <len>, i32 <align>, i1 <isvolatile>)
9743
9744Overview:
9745"""""""""
9746
9747The '``llvm.memmove.*``' intrinsics move a block of memory from the
9748source location to the destination location. It is similar to the
9749'``llvm.memcpy``' intrinsic but allows the two memory locations to
9750overlap.
9751
9752Note that, unlike the standard libc function, the ``llvm.memmove.*``
9753intrinsics do not return a value, takes extra alignment/isvolatile
9754arguments and the pointers can be in specified address spaces.
9755
9756Arguments:
9757""""""""""
9758
9759The first argument is a pointer to the destination, the second is a
9760pointer to the source. The third argument is an integer argument
9761specifying the number of bytes to copy, the fourth argument is the
9762alignment of the source and destination locations, and the fifth is a
9763boolean indicating a volatile access.
9764
9765If the call to this intrinsic has an alignment value that is not 0 or 1,
9766then the caller guarantees that the source and destination pointers are
9767aligned to that boundary.
9768
9769If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9770is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9771not very cleanly specified and it is unwise to depend on it.
9772
9773Semantics:
9774""""""""""
9775
9776The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9777source location to the destination location, which may overlap. It
9778copies "len" bytes of memory over. If the argument is known to be
9779aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009780otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009781
9782'``llvm.memset.*``' Intrinsics
9783^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9784
9785Syntax:
9786"""""""
9787
9788This is an overloaded intrinsic. You can use llvm.memset on any integer
9789bit width and for different address spaces. However, not all targets
9790support all bit widths.
9791
9792::
9793
9794 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9795 i32 <len>, i32 <align>, i1 <isvolatile>)
9796 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9797 i64 <len>, i32 <align>, i1 <isvolatile>)
9798
9799Overview:
9800"""""""""
9801
9802The '``llvm.memset.*``' intrinsics fill a block of memory with a
9803particular byte value.
9804
9805Note that, unlike the standard libc function, the ``llvm.memset``
9806intrinsic does not return a value and takes extra alignment/volatile
9807arguments. Also, the destination can be in an arbitrary address space.
9808
9809Arguments:
9810""""""""""
9811
9812The first argument is a pointer to the destination to fill, the second
9813is the byte value with which to fill it, the third argument is an
9814integer argument specifying the number of bytes to fill, and the fourth
9815argument is the known alignment of the destination location.
9816
9817If the call to this intrinsic has an alignment value that is not 0 or 1,
9818then the caller guarantees that the destination pointer is aligned to
9819that boundary.
9820
9821If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9822a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9823very cleanly specified and it is unwise to depend on it.
9824
9825Semantics:
9826""""""""""
9827
9828The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9829at the destination location. If the argument is known to be aligned to
9830some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009831it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009832
9833'``llvm.sqrt.*``' Intrinsic
9834^^^^^^^^^^^^^^^^^^^^^^^^^^^
9835
9836Syntax:
9837"""""""
9838
9839This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9840floating point or vector of floating point type. Not all targets support
9841all types however.
9842
9843::
9844
9845 declare float @llvm.sqrt.f32(float %Val)
9846 declare double @llvm.sqrt.f64(double %Val)
9847 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9848 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9849 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9850
9851Overview:
9852"""""""""
9853
9854The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9855returning the same value as the libm '``sqrt``' functions would. Unlike
9856``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9857negative numbers other than -0.0 (which allows for better optimization,
9858because there is no need to worry about errno being set).
9859``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9860
9861Arguments:
9862""""""""""
9863
9864The argument and return value are floating point numbers of the same
9865type.
9866
9867Semantics:
9868""""""""""
9869
9870This function returns the sqrt of the specified operand if it is a
9871nonnegative floating point number.
9872
9873'``llvm.powi.*``' Intrinsic
9874^^^^^^^^^^^^^^^^^^^^^^^^^^^
9875
9876Syntax:
9877"""""""
9878
9879This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9880floating point or vector of floating point type. Not all targets support
9881all types however.
9882
9883::
9884
9885 declare float @llvm.powi.f32(float %Val, i32 %power)
9886 declare double @llvm.powi.f64(double %Val, i32 %power)
9887 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9888 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9889 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9890
9891Overview:
9892"""""""""
9893
9894The '``llvm.powi.*``' intrinsics return the first operand raised to the
9895specified (positive or negative) power. The order of evaluation of
9896multiplications is not defined. When a vector of floating point type is
9897used, the second argument remains a scalar integer value.
9898
9899Arguments:
9900""""""""""
9901
9902The second argument is an integer power, and the first is a value to
9903raise to that power.
9904
9905Semantics:
9906""""""""""
9907
9908This function returns the first value raised to the second power with an
9909unspecified sequence of rounding operations.
9910
9911'``llvm.sin.*``' Intrinsic
9912^^^^^^^^^^^^^^^^^^^^^^^^^^
9913
9914Syntax:
9915"""""""
9916
9917This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9918floating point or vector of floating point type. Not all targets support
9919all types however.
9920
9921::
9922
9923 declare float @llvm.sin.f32(float %Val)
9924 declare double @llvm.sin.f64(double %Val)
9925 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9926 declare fp128 @llvm.sin.f128(fp128 %Val)
9927 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9928
9929Overview:
9930"""""""""
9931
9932The '``llvm.sin.*``' intrinsics return the sine of the operand.
9933
9934Arguments:
9935""""""""""
9936
9937The argument and return value are floating point numbers of the same
9938type.
9939
9940Semantics:
9941""""""""""
9942
9943This function returns the sine of the specified operand, returning the
9944same values as the libm ``sin`` functions would, and handles error
9945conditions in the same way.
9946
9947'``llvm.cos.*``' Intrinsic
9948^^^^^^^^^^^^^^^^^^^^^^^^^^
9949
9950Syntax:
9951"""""""
9952
9953This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9954floating point or vector of floating point type. Not all targets support
9955all types however.
9956
9957::
9958
9959 declare float @llvm.cos.f32(float %Val)
9960 declare double @llvm.cos.f64(double %Val)
9961 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9962 declare fp128 @llvm.cos.f128(fp128 %Val)
9963 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9964
9965Overview:
9966"""""""""
9967
9968The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9969
9970Arguments:
9971""""""""""
9972
9973The argument and return value are floating point numbers of the same
9974type.
9975
9976Semantics:
9977""""""""""
9978
9979This function returns the cosine of the specified operand, returning the
9980same values as the libm ``cos`` functions would, and handles error
9981conditions in the same way.
9982
9983'``llvm.pow.*``' Intrinsic
9984^^^^^^^^^^^^^^^^^^^^^^^^^^
9985
9986Syntax:
9987"""""""
9988
9989This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9990floating point or vector of floating point type. Not all targets support
9991all types however.
9992
9993::
9994
9995 declare float @llvm.pow.f32(float %Val, float %Power)
9996 declare double @llvm.pow.f64(double %Val, double %Power)
9997 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9998 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9999 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10000
10001Overview:
10002"""""""""
10003
10004The '``llvm.pow.*``' intrinsics return the first operand raised to the
10005specified (positive or negative) power.
10006
10007Arguments:
10008""""""""""
10009
10010The second argument is a floating point power, and the first is a value
10011to raise to that power.
10012
10013Semantics:
10014""""""""""
10015
10016This function returns the first value raised to the second power,
10017returning the same values as the libm ``pow`` functions would, and
10018handles error conditions in the same way.
10019
10020'``llvm.exp.*``' Intrinsic
10021^^^^^^^^^^^^^^^^^^^^^^^^^^
10022
10023Syntax:
10024"""""""
10025
10026This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10027floating point or vector of floating point type. Not all targets support
10028all types however.
10029
10030::
10031
10032 declare float @llvm.exp.f32(float %Val)
10033 declare double @llvm.exp.f64(double %Val)
10034 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10035 declare fp128 @llvm.exp.f128(fp128 %Val)
10036 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10037
10038Overview:
10039"""""""""
10040
10041The '``llvm.exp.*``' intrinsics perform the exp function.
10042
10043Arguments:
10044""""""""""
10045
10046The argument and return value are floating point numbers of the same
10047type.
10048
10049Semantics:
10050""""""""""
10051
10052This function returns the same values as the libm ``exp`` functions
10053would, and handles error conditions in the same way.
10054
10055'``llvm.exp2.*``' Intrinsic
10056^^^^^^^^^^^^^^^^^^^^^^^^^^^
10057
10058Syntax:
10059"""""""
10060
10061This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10062floating point or vector of floating point type. Not all targets support
10063all types however.
10064
10065::
10066
10067 declare float @llvm.exp2.f32(float %Val)
10068 declare double @llvm.exp2.f64(double %Val)
10069 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10070 declare fp128 @llvm.exp2.f128(fp128 %Val)
10071 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10072
10073Overview:
10074"""""""""
10075
10076The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10077
10078Arguments:
10079""""""""""
10080
10081The argument and return value are floating point numbers of the same
10082type.
10083
10084Semantics:
10085""""""""""
10086
10087This function returns the same values as the libm ``exp2`` functions
10088would, and handles error conditions in the same way.
10089
10090'``llvm.log.*``' Intrinsic
10091^^^^^^^^^^^^^^^^^^^^^^^^^^
10092
10093Syntax:
10094"""""""
10095
10096This is an overloaded intrinsic. You can use ``llvm.log`` on any
10097floating point or vector of floating point type. Not all targets support
10098all types however.
10099
10100::
10101
10102 declare float @llvm.log.f32(float %Val)
10103 declare double @llvm.log.f64(double %Val)
10104 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10105 declare fp128 @llvm.log.f128(fp128 %Val)
10106 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10107
10108Overview:
10109"""""""""
10110
10111The '``llvm.log.*``' intrinsics perform the log function.
10112
10113Arguments:
10114""""""""""
10115
10116The argument and return value are floating point numbers of the same
10117type.
10118
10119Semantics:
10120""""""""""
10121
10122This function returns the same values as the libm ``log`` functions
10123would, and handles error conditions in the same way.
10124
10125'``llvm.log10.*``' Intrinsic
10126^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10127
10128Syntax:
10129"""""""
10130
10131This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10132floating point or vector of floating point type. Not all targets support
10133all types however.
10134
10135::
10136
10137 declare float @llvm.log10.f32(float %Val)
10138 declare double @llvm.log10.f64(double %Val)
10139 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10140 declare fp128 @llvm.log10.f128(fp128 %Val)
10141 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10142
10143Overview:
10144"""""""""
10145
10146The '``llvm.log10.*``' intrinsics perform the log10 function.
10147
10148Arguments:
10149""""""""""
10150
10151The argument and return value are floating point numbers of the same
10152type.
10153
10154Semantics:
10155""""""""""
10156
10157This function returns the same values as the libm ``log10`` functions
10158would, and handles error conditions in the same way.
10159
10160'``llvm.log2.*``' Intrinsic
10161^^^^^^^^^^^^^^^^^^^^^^^^^^^
10162
10163Syntax:
10164"""""""
10165
10166This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10167floating point or vector of floating point type. Not all targets support
10168all types however.
10169
10170::
10171
10172 declare float @llvm.log2.f32(float %Val)
10173 declare double @llvm.log2.f64(double %Val)
10174 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10175 declare fp128 @llvm.log2.f128(fp128 %Val)
10176 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10177
10178Overview:
10179"""""""""
10180
10181The '``llvm.log2.*``' intrinsics perform the log2 function.
10182
10183Arguments:
10184""""""""""
10185
10186The argument and return value are floating point numbers of the same
10187type.
10188
10189Semantics:
10190""""""""""
10191
10192This function returns the same values as the libm ``log2`` functions
10193would, and handles error conditions in the same way.
10194
10195'``llvm.fma.*``' Intrinsic
10196^^^^^^^^^^^^^^^^^^^^^^^^^^
10197
10198Syntax:
10199"""""""
10200
10201This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10202floating point or vector of floating point type. Not all targets support
10203all types however.
10204
10205::
10206
10207 declare float @llvm.fma.f32(float %a, float %b, float %c)
10208 declare double @llvm.fma.f64(double %a, double %b, double %c)
10209 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10210 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10211 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10212
10213Overview:
10214"""""""""
10215
10216The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10217operation.
10218
10219Arguments:
10220""""""""""
10221
10222The argument and return value are floating point numbers of the same
10223type.
10224
10225Semantics:
10226""""""""""
10227
10228This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010229would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010230
10231'``llvm.fabs.*``' Intrinsic
10232^^^^^^^^^^^^^^^^^^^^^^^^^^^
10233
10234Syntax:
10235"""""""
10236
10237This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10238floating point or vector of floating point type. Not all targets support
10239all types however.
10240
10241::
10242
10243 declare float @llvm.fabs.f32(float %Val)
10244 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010245 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010246 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010247 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010248
10249Overview:
10250"""""""""
10251
10252The '``llvm.fabs.*``' intrinsics return the absolute value of the
10253operand.
10254
10255Arguments:
10256""""""""""
10257
10258The argument and return value are floating point numbers of the same
10259type.
10260
10261Semantics:
10262""""""""""
10263
10264This function returns the same values as the libm ``fabs`` functions
10265would, and handles error conditions in the same way.
10266
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010267'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010269
10270Syntax:
10271"""""""
10272
10273This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10274floating point or vector of floating point type. Not all targets support
10275all types however.
10276
10277::
10278
Matt Arsenault64313c92014-10-22 18:25:02 +000010279 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10280 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10281 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10282 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10283 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010284
10285Overview:
10286"""""""""
10287
10288The '``llvm.minnum.*``' intrinsics return the minimum of the two
10289arguments.
10290
10291
10292Arguments:
10293""""""""""
10294
10295The arguments and return value are floating point numbers of the same
10296type.
10297
10298Semantics:
10299""""""""""
10300
10301Follows the IEEE-754 semantics for minNum, which also match for libm's
10302fmin.
10303
10304If either operand is a NaN, returns the other non-NaN operand. Returns
10305NaN only if both operands are NaN. If the operands compare equal,
10306returns a value that compares equal to both operands. This means that
10307fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10308
10309'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010311
10312Syntax:
10313"""""""
10314
10315This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10316floating point or vector of floating point type. Not all targets support
10317all types however.
10318
10319::
10320
Matt Arsenault64313c92014-10-22 18:25:02 +000010321 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10322 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10323 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10324 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10325 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010326
10327Overview:
10328"""""""""
10329
10330The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10331arguments.
10332
10333
10334Arguments:
10335""""""""""
10336
10337The arguments and return value are floating point numbers of the same
10338type.
10339
10340Semantics:
10341""""""""""
10342Follows the IEEE-754 semantics for maxNum, which also match for libm's
10343fmax.
10344
10345If either operand is a NaN, returns the other non-NaN operand. Returns
10346NaN only if both operands are NaN. If the operands compare equal,
10347returns a value that compares equal to both operands. This means that
10348fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10349
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010350'``llvm.copysign.*``' Intrinsic
10351^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10352
10353Syntax:
10354"""""""
10355
10356This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10357floating point or vector of floating point type. Not all targets support
10358all types however.
10359
10360::
10361
10362 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10363 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10364 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10365 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10366 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10367
10368Overview:
10369"""""""""
10370
10371The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10372first operand and the sign of the second operand.
10373
10374Arguments:
10375""""""""""
10376
10377The arguments and return value are floating point numbers of the same
10378type.
10379
10380Semantics:
10381""""""""""
10382
10383This function returns the same values as the libm ``copysign``
10384functions would, and handles error conditions in the same way.
10385
Sean Silvab084af42012-12-07 10:36:55 +000010386'``llvm.floor.*``' Intrinsic
10387^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10388
10389Syntax:
10390"""""""
10391
10392This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10393floating point or vector of floating point type. Not all targets support
10394all types however.
10395
10396::
10397
10398 declare float @llvm.floor.f32(float %Val)
10399 declare double @llvm.floor.f64(double %Val)
10400 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10401 declare fp128 @llvm.floor.f128(fp128 %Val)
10402 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10403
10404Overview:
10405"""""""""
10406
10407The '``llvm.floor.*``' intrinsics return the floor of the operand.
10408
10409Arguments:
10410""""""""""
10411
10412The argument and return value are floating point numbers of the same
10413type.
10414
10415Semantics:
10416""""""""""
10417
10418This function returns the same values as the libm ``floor`` functions
10419would, and handles error conditions in the same way.
10420
10421'``llvm.ceil.*``' Intrinsic
10422^^^^^^^^^^^^^^^^^^^^^^^^^^^
10423
10424Syntax:
10425"""""""
10426
10427This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10428floating point or vector of floating point type. Not all targets support
10429all types however.
10430
10431::
10432
10433 declare float @llvm.ceil.f32(float %Val)
10434 declare double @llvm.ceil.f64(double %Val)
10435 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10436 declare fp128 @llvm.ceil.f128(fp128 %Val)
10437 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10438
10439Overview:
10440"""""""""
10441
10442The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10443
10444Arguments:
10445""""""""""
10446
10447The argument and return value are floating point numbers of the same
10448type.
10449
10450Semantics:
10451""""""""""
10452
10453This function returns the same values as the libm ``ceil`` functions
10454would, and handles error conditions in the same way.
10455
10456'``llvm.trunc.*``' Intrinsic
10457^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10458
10459Syntax:
10460"""""""
10461
10462This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10463floating point or vector of floating point type. Not all targets support
10464all types however.
10465
10466::
10467
10468 declare float @llvm.trunc.f32(float %Val)
10469 declare double @llvm.trunc.f64(double %Val)
10470 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10471 declare fp128 @llvm.trunc.f128(fp128 %Val)
10472 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10473
10474Overview:
10475"""""""""
10476
10477The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10478nearest integer not larger in magnitude than the operand.
10479
10480Arguments:
10481""""""""""
10482
10483The argument and return value are floating point numbers of the same
10484type.
10485
10486Semantics:
10487""""""""""
10488
10489This function returns the same values as the libm ``trunc`` functions
10490would, and handles error conditions in the same way.
10491
10492'``llvm.rint.*``' Intrinsic
10493^^^^^^^^^^^^^^^^^^^^^^^^^^^
10494
10495Syntax:
10496"""""""
10497
10498This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10499floating point or vector of floating point type. Not all targets support
10500all types however.
10501
10502::
10503
10504 declare float @llvm.rint.f32(float %Val)
10505 declare double @llvm.rint.f64(double %Val)
10506 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10507 declare fp128 @llvm.rint.f128(fp128 %Val)
10508 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10509
10510Overview:
10511"""""""""
10512
10513The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10514nearest integer. It may raise an inexact floating-point exception if the
10515operand isn't an integer.
10516
10517Arguments:
10518""""""""""
10519
10520The argument and return value are floating point numbers of the same
10521type.
10522
10523Semantics:
10524""""""""""
10525
10526This function returns the same values as the libm ``rint`` functions
10527would, and handles error conditions in the same way.
10528
10529'``llvm.nearbyint.*``' Intrinsic
10530^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10531
10532Syntax:
10533"""""""
10534
10535This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10536floating point or vector of floating point type. Not all targets support
10537all types however.
10538
10539::
10540
10541 declare float @llvm.nearbyint.f32(float %Val)
10542 declare double @llvm.nearbyint.f64(double %Val)
10543 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10544 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10545 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10546
10547Overview:
10548"""""""""
10549
10550The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10551nearest integer.
10552
10553Arguments:
10554""""""""""
10555
10556The argument and return value are floating point numbers of the same
10557type.
10558
10559Semantics:
10560""""""""""
10561
10562This function returns the same values as the libm ``nearbyint``
10563functions would, and handles error conditions in the same way.
10564
Hal Finkel171817e2013-08-07 22:49:12 +000010565'``llvm.round.*``' Intrinsic
10566^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10567
10568Syntax:
10569"""""""
10570
10571This is an overloaded intrinsic. You can use ``llvm.round`` on any
10572floating point or vector of floating point type. Not all targets support
10573all types however.
10574
10575::
10576
10577 declare float @llvm.round.f32(float %Val)
10578 declare double @llvm.round.f64(double %Val)
10579 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10580 declare fp128 @llvm.round.f128(fp128 %Val)
10581 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10582
10583Overview:
10584"""""""""
10585
10586The '``llvm.round.*``' intrinsics returns the operand rounded to the
10587nearest integer.
10588
10589Arguments:
10590""""""""""
10591
10592The argument and return value are floating point numbers of the same
10593type.
10594
10595Semantics:
10596""""""""""
10597
10598This function returns the same values as the libm ``round``
10599functions would, and handles error conditions in the same way.
10600
Sean Silvab084af42012-12-07 10:36:55 +000010601Bit Manipulation Intrinsics
10602---------------------------
10603
10604LLVM provides intrinsics for a few important bit manipulation
10605operations. These allow efficient code generation for some algorithms.
10606
James Molloy90111f72015-11-12 12:29:09 +000010607'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010609
10610Syntax:
10611"""""""
10612
10613This is an overloaded intrinsic function. You can use bitreverse on any
10614integer type.
10615
10616::
10617
10618 declare i16 @llvm.bitreverse.i16(i16 <id>)
10619 declare i32 @llvm.bitreverse.i32(i32 <id>)
10620 declare i64 @llvm.bitreverse.i64(i64 <id>)
10621
10622Overview:
10623"""""""""
10624
10625The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010626bitpattern of an integer value; for example ``0b10110110`` becomes
10627``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010628
10629Semantics:
10630""""""""""
10631
10632The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10633``M`` in the input moved to bit ``N-M`` in the output.
10634
Sean Silvab084af42012-12-07 10:36:55 +000010635'``llvm.bswap.*``' Intrinsics
10636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10637
10638Syntax:
10639"""""""
10640
10641This is an overloaded intrinsic function. You can use bswap on any
10642integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10643
10644::
10645
10646 declare i16 @llvm.bswap.i16(i16 <id>)
10647 declare i32 @llvm.bswap.i32(i32 <id>)
10648 declare i64 @llvm.bswap.i64(i64 <id>)
10649
10650Overview:
10651"""""""""
10652
10653The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10654values with an even number of bytes (positive multiple of 16 bits).
10655These are useful for performing operations on data that is not in the
10656target's native byte order.
10657
10658Semantics:
10659""""""""""
10660
10661The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10662and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10663intrinsic returns an i32 value that has the four bytes of the input i32
10664swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10665returned i32 will have its bytes in 3, 2, 1, 0 order. The
10666``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10667concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10668respectively).
10669
10670'``llvm.ctpop.*``' Intrinsic
10671^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10672
10673Syntax:
10674"""""""
10675
10676This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10677bit width, or on any vector with integer elements. Not all targets
10678support all bit widths or vector types, however.
10679
10680::
10681
10682 declare i8 @llvm.ctpop.i8(i8 <src>)
10683 declare i16 @llvm.ctpop.i16(i16 <src>)
10684 declare i32 @llvm.ctpop.i32(i32 <src>)
10685 declare i64 @llvm.ctpop.i64(i64 <src>)
10686 declare i256 @llvm.ctpop.i256(i256 <src>)
10687 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10688
10689Overview:
10690"""""""""
10691
10692The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10693in a value.
10694
10695Arguments:
10696""""""""""
10697
10698The only argument is the value to be counted. The argument may be of any
10699integer type, or a vector with integer elements. The return type must
10700match the argument type.
10701
10702Semantics:
10703""""""""""
10704
10705The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10706each element of a vector.
10707
10708'``llvm.ctlz.*``' Intrinsic
10709^^^^^^^^^^^^^^^^^^^^^^^^^^^
10710
10711Syntax:
10712"""""""
10713
10714This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10715integer bit width, or any vector whose elements are integers. Not all
10716targets support all bit widths or vector types, however.
10717
10718::
10719
10720 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10721 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10722 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10723 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10724 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010725 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010726
10727Overview:
10728"""""""""
10729
10730The '``llvm.ctlz``' family of intrinsic functions counts the number of
10731leading zeros in a variable.
10732
10733Arguments:
10734""""""""""
10735
10736The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010737any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010738type must match the first argument type.
10739
10740The second argument must be a constant and is a flag to indicate whether
10741the intrinsic should ensure that a zero as the first argument produces a
10742defined result. Historically some architectures did not provide a
10743defined result for zero values as efficiently, and many algorithms are
10744now predicated on avoiding zero-value inputs.
10745
10746Semantics:
10747""""""""""
10748
10749The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10750zeros in a variable, or within each element of the vector. If
10751``src == 0`` then the result is the size in bits of the type of ``src``
10752if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10753``llvm.ctlz(i32 2) = 30``.
10754
10755'``llvm.cttz.*``' Intrinsic
10756^^^^^^^^^^^^^^^^^^^^^^^^^^^
10757
10758Syntax:
10759"""""""
10760
10761This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10762integer bit width, or any vector of integer elements. Not all targets
10763support all bit widths or vector types, however.
10764
10765::
10766
10767 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10768 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10769 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10770 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10771 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010772 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010773
10774Overview:
10775"""""""""
10776
10777The '``llvm.cttz``' family of intrinsic functions counts the number of
10778trailing zeros.
10779
10780Arguments:
10781""""""""""
10782
10783The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010784any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010785type must match the first argument type.
10786
10787The second argument must be a constant and is a flag to indicate whether
10788the intrinsic should ensure that a zero as the first argument produces a
10789defined result. Historically some architectures did not provide a
10790defined result for zero values as efficiently, and many algorithms are
10791now predicated on avoiding zero-value inputs.
10792
10793Semantics:
10794""""""""""
10795
10796The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10797zeros in a variable, or within each element of a vector. If ``src == 0``
10798then the result is the size in bits of the type of ``src`` if
10799``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10800``llvm.cttz(2) = 1``.
10801
Philip Reames34843ae2015-03-05 05:55:55 +000010802.. _int_overflow:
10803
Sean Silvab084af42012-12-07 10:36:55 +000010804Arithmetic with Overflow Intrinsics
10805-----------------------------------
10806
10807LLVM provides intrinsics for some arithmetic with overflow operations.
10808
10809'``llvm.sadd.with.overflow.*``' Intrinsics
10810^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10811
10812Syntax:
10813"""""""
10814
10815This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10816on any integer bit width.
10817
10818::
10819
10820 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10821 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10822 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10823
10824Overview:
10825"""""""""
10826
10827The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10828a signed addition of the two arguments, and indicate whether an overflow
10829occurred during the signed summation.
10830
10831Arguments:
10832""""""""""
10833
10834The arguments (%a and %b) and the first element of the result structure
10835may be of integer types of any bit width, but they must have the same
10836bit width. The second element of the result structure must be of type
10837``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10838addition.
10839
10840Semantics:
10841""""""""""
10842
10843The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010844a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010845first element of which is the signed summation, and the second element
10846of which is a bit specifying if the signed summation resulted in an
10847overflow.
10848
10849Examples:
10850"""""""""
10851
10852.. code-block:: llvm
10853
10854 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10855 %sum = extractvalue {i32, i1} %res, 0
10856 %obit = extractvalue {i32, i1} %res, 1
10857 br i1 %obit, label %overflow, label %normal
10858
10859'``llvm.uadd.with.overflow.*``' Intrinsics
10860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10861
10862Syntax:
10863"""""""
10864
10865This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10866on any integer bit width.
10867
10868::
10869
10870 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10871 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10872 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10873
10874Overview:
10875"""""""""
10876
10877The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10878an unsigned addition of the two arguments, and indicate whether a carry
10879occurred during the unsigned summation.
10880
10881Arguments:
10882""""""""""
10883
10884The arguments (%a and %b) and the first element of the result structure
10885may be of integer types of any bit width, but they must have the same
10886bit width. The second element of the result structure must be of type
10887``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10888addition.
10889
10890Semantics:
10891""""""""""
10892
10893The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010894an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010895first element of which is the sum, and the second element of which is a
10896bit specifying if the unsigned summation resulted in a carry.
10897
10898Examples:
10899"""""""""
10900
10901.. code-block:: llvm
10902
10903 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10904 %sum = extractvalue {i32, i1} %res, 0
10905 %obit = extractvalue {i32, i1} %res, 1
10906 br i1 %obit, label %carry, label %normal
10907
10908'``llvm.ssub.with.overflow.*``' Intrinsics
10909^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10910
10911Syntax:
10912"""""""
10913
10914This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10915on any integer bit width.
10916
10917::
10918
10919 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10920 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10921 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10922
10923Overview:
10924"""""""""
10925
10926The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10927a signed subtraction of the two arguments, and indicate whether an
10928overflow occurred during the signed subtraction.
10929
10930Arguments:
10931""""""""""
10932
10933The arguments (%a and %b) and the first element of the result structure
10934may be of integer types of any bit width, but they must have the same
10935bit width. The second element of the result structure must be of type
10936``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10937subtraction.
10938
10939Semantics:
10940""""""""""
10941
10942The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010943a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010944first element of which is the subtraction, and the second element of
10945which is a bit specifying if the signed subtraction resulted in an
10946overflow.
10947
10948Examples:
10949"""""""""
10950
10951.. code-block:: llvm
10952
10953 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10954 %sum = extractvalue {i32, i1} %res, 0
10955 %obit = extractvalue {i32, i1} %res, 1
10956 br i1 %obit, label %overflow, label %normal
10957
10958'``llvm.usub.with.overflow.*``' Intrinsics
10959^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10960
10961Syntax:
10962"""""""
10963
10964This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10965on any integer bit width.
10966
10967::
10968
10969 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10970 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10971 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10972
10973Overview:
10974"""""""""
10975
10976The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10977an unsigned subtraction of the two arguments, and indicate whether an
10978overflow occurred during the unsigned subtraction.
10979
10980Arguments:
10981""""""""""
10982
10983The arguments (%a and %b) and the first element of the result structure
10984may be of integer types of any bit width, but they must have the same
10985bit width. The second element of the result structure must be of type
10986``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10987subtraction.
10988
10989Semantics:
10990""""""""""
10991
10992The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010993an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010994the first element of which is the subtraction, and the second element of
10995which is a bit specifying if the unsigned subtraction resulted in an
10996overflow.
10997
10998Examples:
10999"""""""""
11000
11001.. code-block:: llvm
11002
11003 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11004 %sum = extractvalue {i32, i1} %res, 0
11005 %obit = extractvalue {i32, i1} %res, 1
11006 br i1 %obit, label %overflow, label %normal
11007
11008'``llvm.smul.with.overflow.*``' Intrinsics
11009^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11010
11011Syntax:
11012"""""""
11013
11014This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11015on any integer bit width.
11016
11017::
11018
11019 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11020 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11021 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11022
11023Overview:
11024"""""""""
11025
11026The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11027a signed multiplication of the two arguments, and indicate whether an
11028overflow occurred during the signed multiplication.
11029
11030Arguments:
11031""""""""""
11032
11033The arguments (%a and %b) and the first element of the result structure
11034may be of integer types of any bit width, but they must have the same
11035bit width. The second element of the result structure must be of type
11036``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11037multiplication.
11038
11039Semantics:
11040""""""""""
11041
11042The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011043a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011044the first element of which is the multiplication, and the second element
11045of which is a bit specifying if the signed multiplication resulted in an
11046overflow.
11047
11048Examples:
11049"""""""""
11050
11051.. code-block:: llvm
11052
11053 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11054 %sum = extractvalue {i32, i1} %res, 0
11055 %obit = extractvalue {i32, i1} %res, 1
11056 br i1 %obit, label %overflow, label %normal
11057
11058'``llvm.umul.with.overflow.*``' Intrinsics
11059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11060
11061Syntax:
11062"""""""
11063
11064This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11065on any integer bit width.
11066
11067::
11068
11069 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11070 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11071 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11072
11073Overview:
11074"""""""""
11075
11076The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11077a unsigned multiplication of the two arguments, and indicate whether an
11078overflow occurred during the unsigned multiplication.
11079
11080Arguments:
11081""""""""""
11082
11083The arguments (%a and %b) and the first element of the result structure
11084may be of integer types of any bit width, but they must have the same
11085bit width. The second element of the result structure must be of type
11086``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11087multiplication.
11088
11089Semantics:
11090""""""""""
11091
11092The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011093an unsigned multiplication of the two arguments. They return a structure ---
11094the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011095element of which is a bit specifying if the unsigned multiplication
11096resulted in an overflow.
11097
11098Examples:
11099"""""""""
11100
11101.. code-block:: llvm
11102
11103 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11104 %sum = extractvalue {i32, i1} %res, 0
11105 %obit = extractvalue {i32, i1} %res, 1
11106 br i1 %obit, label %overflow, label %normal
11107
11108Specialised Arithmetic Intrinsics
11109---------------------------------
11110
Owen Anderson1056a922015-07-11 07:01:27 +000011111'``llvm.canonicalize.*``' Intrinsic
11112^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11113
11114Syntax:
11115"""""""
11116
11117::
11118
11119 declare float @llvm.canonicalize.f32(float %a)
11120 declare double @llvm.canonicalize.f64(double %b)
11121
11122Overview:
11123"""""""""
11124
11125The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011126encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011127implementing certain numeric primitives such as frexp. The canonical encoding is
11128defined by IEEE-754-2008 to be:
11129
11130::
11131
11132 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011133 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011134 numbers, infinities, and NaNs, especially in decimal formats.
11135
11136This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011137conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011138according to section 6.2.
11139
11140Examples of non-canonical encodings:
11141
Sean Silvaa1190322015-08-06 22:56:48 +000011142- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011143 converted to a canonical representation per hardware-specific protocol.
11144- Many normal decimal floating point numbers have non-canonical alternative
11145 encodings.
11146- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011147 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011148 a zero of the same sign by this operation.
11149
11150Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11151default exception handling must signal an invalid exception, and produce a
11152quiet NaN result.
11153
11154This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011155that the compiler does not constant fold the operation. Likewise, division by
111561.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011157-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11158
Sean Silvaa1190322015-08-06 22:56:48 +000011159``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011160
11161- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11162- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11163 to ``(x == y)``
11164
11165Additionally, the sign of zero must be conserved:
11166``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11167
11168The payload bits of a NaN must be conserved, with two exceptions.
11169First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011170must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011171usual methods.
11172
11173The canonicalization operation may be optimized away if:
11174
Sean Silvaa1190322015-08-06 22:56:48 +000011175- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011176 floating-point operation that is required by the standard to be canonical.
11177- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011178 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011179
Sean Silvab084af42012-12-07 10:36:55 +000011180'``llvm.fmuladd.*``' Intrinsic
11181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11182
11183Syntax:
11184"""""""
11185
11186::
11187
11188 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11189 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11190
11191Overview:
11192"""""""""
11193
11194The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011195expressions that can be fused if the code generator determines that (a) the
11196target instruction set has support for a fused operation, and (b) that the
11197fused operation is more efficient than the equivalent, separate pair of mul
11198and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011199
11200Arguments:
11201""""""""""
11202
11203The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11204multiplicands, a and b, and an addend c.
11205
11206Semantics:
11207""""""""""
11208
11209The expression:
11210
11211::
11212
11213 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11214
11215is equivalent to the expression a \* b + c, except that rounding will
11216not be performed between the multiplication and addition steps if the
11217code generator fuses the operations. Fusion is not guaranteed, even if
11218the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011219corresponding llvm.fma.\* intrinsic function should be used
11220instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011221
11222Examples:
11223"""""""""
11224
11225.. code-block:: llvm
11226
Tim Northover675a0962014-06-13 14:24:23 +000011227 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011228
11229Half Precision Floating Point Intrinsics
11230----------------------------------------
11231
11232For most target platforms, half precision floating point is a
11233storage-only format. This means that it is a dense encoding (in memory)
11234but does not support computation in the format.
11235
11236This means that code must first load the half-precision floating point
11237value as an i16, then convert it to float with
11238:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11239then be performed on the float value (including extending to double
11240etc). To store the value back to memory, it is first converted to float
11241if needed, then converted to i16 with
11242:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11243i16 value.
11244
11245.. _int_convert_to_fp16:
11246
11247'``llvm.convert.to.fp16``' Intrinsic
11248^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11249
11250Syntax:
11251"""""""
11252
11253::
11254
Tim Northoverfd7e4242014-07-17 10:51:23 +000011255 declare i16 @llvm.convert.to.fp16.f32(float %a)
11256 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011257
11258Overview:
11259"""""""""
11260
Tim Northoverfd7e4242014-07-17 10:51:23 +000011261The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11262conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011263
11264Arguments:
11265""""""""""
11266
11267The intrinsic function contains single argument - the value to be
11268converted.
11269
11270Semantics:
11271""""""""""
11272
Tim Northoverfd7e4242014-07-17 10:51:23 +000011273The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11274conventional floating point format to half precision floating point format. The
11275return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011276
11277Examples:
11278"""""""""
11279
11280.. code-block:: llvm
11281
Tim Northoverfd7e4242014-07-17 10:51:23 +000011282 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011283 store i16 %res, i16* @x, align 2
11284
11285.. _int_convert_from_fp16:
11286
11287'``llvm.convert.from.fp16``' Intrinsic
11288^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11289
11290Syntax:
11291"""""""
11292
11293::
11294
Tim Northoverfd7e4242014-07-17 10:51:23 +000011295 declare float @llvm.convert.from.fp16.f32(i16 %a)
11296 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011297
11298Overview:
11299"""""""""
11300
11301The '``llvm.convert.from.fp16``' intrinsic function performs a
11302conversion from half precision floating point format to single precision
11303floating point format.
11304
11305Arguments:
11306""""""""""
11307
11308The intrinsic function contains single argument - the value to be
11309converted.
11310
11311Semantics:
11312""""""""""
11313
11314The '``llvm.convert.from.fp16``' intrinsic function performs a
11315conversion from half single precision floating point format to single
11316precision floating point format. The input half-float value is
11317represented by an ``i16`` value.
11318
11319Examples:
11320"""""""""
11321
11322.. code-block:: llvm
11323
David Blaikiec7aabbb2015-03-04 22:06:14 +000011324 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011325 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011326
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011327.. _dbg_intrinsics:
11328
Sean Silvab084af42012-12-07 10:36:55 +000011329Debugger Intrinsics
11330-------------------
11331
11332The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11333prefix), are described in the `LLVM Source Level
11334Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11335document.
11336
11337Exception Handling Intrinsics
11338-----------------------------
11339
11340The LLVM exception handling intrinsics (which all start with
11341``llvm.eh.`` prefix), are described in the `LLVM Exception
11342Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11343
11344.. _int_trampoline:
11345
11346Trampoline Intrinsics
11347---------------------
11348
11349These intrinsics make it possible to excise one parameter, marked with
11350the :ref:`nest <nest>` attribute, from a function. The result is a
11351callable function pointer lacking the nest parameter - the caller does
11352not need to provide a value for it. Instead, the value to use is stored
11353in advance in a "trampoline", a block of memory usually allocated on the
11354stack, which also contains code to splice the nest value into the
11355argument list. This is used to implement the GCC nested function address
11356extension.
11357
11358For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11359then the resulting function pointer has signature ``i32 (i32, i32)*``.
11360It can be created as follows:
11361
11362.. code-block:: llvm
11363
11364 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011365 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011366 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11367 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11368 %fp = bitcast i8* %p to i32 (i32, i32)*
11369
11370The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11371``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11372
11373.. _int_it:
11374
11375'``llvm.init.trampoline``' Intrinsic
11376^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11377
11378Syntax:
11379"""""""
11380
11381::
11382
11383 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11384
11385Overview:
11386"""""""""
11387
11388This fills the memory pointed to by ``tramp`` with executable code,
11389turning it into a trampoline.
11390
11391Arguments:
11392""""""""""
11393
11394The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11395pointers. The ``tramp`` argument must point to a sufficiently large and
11396sufficiently aligned block of memory; this memory is written to by the
11397intrinsic. Note that the size and the alignment are target-specific -
11398LLVM currently provides no portable way of determining them, so a
11399front-end that generates this intrinsic needs to have some
11400target-specific knowledge. The ``func`` argument must hold a function
11401bitcast to an ``i8*``.
11402
11403Semantics:
11404""""""""""
11405
11406The block of memory pointed to by ``tramp`` is filled with target
11407dependent code, turning it into a function. Then ``tramp`` needs to be
11408passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11409be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11410function's signature is the same as that of ``func`` with any arguments
11411marked with the ``nest`` attribute removed. At most one such ``nest``
11412argument is allowed, and it must be of pointer type. Calling the new
11413function is equivalent to calling ``func`` with the same argument list,
11414but with ``nval`` used for the missing ``nest`` argument. If, after
11415calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11416modified, then the effect of any later call to the returned function
11417pointer is undefined.
11418
11419.. _int_at:
11420
11421'``llvm.adjust.trampoline``' Intrinsic
11422^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11423
11424Syntax:
11425"""""""
11426
11427::
11428
11429 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11430
11431Overview:
11432"""""""""
11433
11434This performs any required machine-specific adjustment to the address of
11435a trampoline (passed as ``tramp``).
11436
11437Arguments:
11438""""""""""
11439
11440``tramp`` must point to a block of memory which already has trampoline
11441code filled in by a previous call to
11442:ref:`llvm.init.trampoline <int_it>`.
11443
11444Semantics:
11445""""""""""
11446
11447On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011448different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011449intrinsic returns the executable address corresponding to ``tramp``
11450after performing the required machine specific adjustments. The pointer
11451returned can then be :ref:`bitcast and executed <int_trampoline>`.
11452
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011453.. _int_mload_mstore:
11454
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011455Masked Vector Load and Store Intrinsics
11456---------------------------------------
11457
11458LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11459
11460.. _int_mload:
11461
11462'``llvm.masked.load.*``' Intrinsics
11463^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11464
11465Syntax:
11466"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011467This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011468
11469::
11470
Adam Nemet7aab6482016-04-14 08:47:17 +000011471 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11472 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011473 ;; The data is a vector of pointers to double
Adam Nemet7aab6482016-04-14 08:47:17 +000011474 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011475 ;; The data is a vector of function pointers
Adam Nemet7aab6482016-04-14 08:47:17 +000011476 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011477
11478Overview:
11479"""""""""
11480
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011481Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011482
11483
11484Arguments:
11485""""""""""
11486
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011487The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011488
11489
11490Semantics:
11491""""""""""
11492
11493The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11494The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11495
11496
11497::
11498
Adam Nemet7aab6482016-04-14 08:47:17 +000011499 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011500
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011501 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011502 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011503 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011504
11505.. _int_mstore:
11506
11507'``llvm.masked.store.*``' Intrinsics
11508^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11509
11510Syntax:
11511"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011512This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011513
11514::
11515
Adam Nemet7aab6482016-04-14 08:47:17 +000011516 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11517 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011518 ;; The data is a vector of pointers to double
Adam Nemet7aab6482016-04-14 08:47:17 +000011519 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011520 ;; The data is a vector of function pointers
Adam Nemet7aab6482016-04-14 08:47:17 +000011521 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011522
11523Overview:
11524"""""""""
11525
11526Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11527
11528Arguments:
11529""""""""""
11530
11531The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11532
11533
11534Semantics:
11535""""""""""
11536
11537The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11538The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11539
11540::
11541
Adam Nemet7aab6482016-04-14 08:47:17 +000011542 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011543
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011544 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011545 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011546 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11547 store <16 x float> %res, <16 x float>* %ptr, align 4
11548
11549
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011550Masked Vector Gather and Scatter Intrinsics
11551-------------------------------------------
11552
11553LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11554
11555.. _int_mgather:
11556
11557'``llvm.masked.gather.*``' Intrinsics
11558^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11559
11560Syntax:
11561"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011562This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011563
11564::
11565
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011566 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11567 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11568 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011569
11570Overview:
11571"""""""""
11572
11573Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11574
11575
11576Arguments:
11577""""""""""
11578
11579The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11580
11581
11582Semantics:
11583""""""""""
11584
11585The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11586The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11587
11588
11589::
11590
11591 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11592
11593 ;; The gather with all-true mask is equivalent to the following instruction sequence
11594 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11595 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11596 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11597 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11598
11599 %val0 = load double, double* %ptr0, align 8
11600 %val1 = load double, double* %ptr1, align 8
11601 %val2 = load double, double* %ptr2, align 8
11602 %val3 = load double, double* %ptr3, align 8
11603
11604 %vec0 = insertelement <4 x double>undef, %val0, 0
11605 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11606 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11607 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11608
11609.. _int_mscatter:
11610
11611'``llvm.masked.scatter.*``' Intrinsics
11612^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11613
11614Syntax:
11615"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011616This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011617
11618::
11619
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011620 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11621 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11622 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011623
11624Overview:
11625"""""""""
11626
11627Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11628
11629Arguments:
11630""""""""""
11631
11632The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11633
11634
11635Semantics:
11636""""""""""
11637
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011638The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011639
11640::
11641
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011642 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011643 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11644
11645 ;; It is equivalent to a list of scalar stores
11646 %val0 = extractelement <8 x i32> %value, i32 0
11647 %val1 = extractelement <8 x i32> %value, i32 1
11648 ..
11649 %val7 = extractelement <8 x i32> %value, i32 7
11650 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11651 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11652 ..
11653 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11654 ;; Note: the order of the following stores is important when they overlap:
11655 store i32 %val0, i32* %ptr0, align 4
11656 store i32 %val1, i32* %ptr1, align 4
11657 ..
11658 store i32 %val7, i32* %ptr7, align 4
11659
11660
Sean Silvab084af42012-12-07 10:36:55 +000011661Memory Use Markers
11662------------------
11663
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011664This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011665memory objects and ranges where variables are immutable.
11666
Reid Klecknera534a382013-12-19 02:14:12 +000011667.. _int_lifestart:
11668
Sean Silvab084af42012-12-07 10:36:55 +000011669'``llvm.lifetime.start``' Intrinsic
11670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11671
11672Syntax:
11673"""""""
11674
11675::
11676
11677 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11678
11679Overview:
11680"""""""""
11681
11682The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11683object's lifetime.
11684
11685Arguments:
11686""""""""""
11687
11688The first argument is a constant integer representing the size of the
11689object, or -1 if it is variable sized. The second argument is a pointer
11690to the object.
11691
11692Semantics:
11693""""""""""
11694
11695This intrinsic indicates that before this point in the code, the value
11696of the memory pointed to by ``ptr`` is dead. This means that it is known
11697to never be used and has an undefined value. A load from the pointer
11698that precedes this intrinsic can be replaced with ``'undef'``.
11699
Reid Klecknera534a382013-12-19 02:14:12 +000011700.. _int_lifeend:
11701
Sean Silvab084af42012-12-07 10:36:55 +000011702'``llvm.lifetime.end``' Intrinsic
11703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11704
11705Syntax:
11706"""""""
11707
11708::
11709
11710 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11711
11712Overview:
11713"""""""""
11714
11715The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11716object's lifetime.
11717
11718Arguments:
11719""""""""""
11720
11721The first argument is a constant integer representing the size of the
11722object, or -1 if it is variable sized. The second argument is a pointer
11723to the object.
11724
11725Semantics:
11726""""""""""
11727
11728This intrinsic indicates that after this point in the code, the value of
11729the memory pointed to by ``ptr`` is dead. This means that it is known to
11730never be used and has an undefined value. Any stores into the memory
11731object following this intrinsic may be removed as dead.
11732
11733'``llvm.invariant.start``' Intrinsic
11734^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11735
11736Syntax:
11737"""""""
11738
11739::
11740
11741 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11742
11743Overview:
11744"""""""""
11745
11746The '``llvm.invariant.start``' intrinsic specifies that the contents of
11747a memory object will not change.
11748
11749Arguments:
11750""""""""""
11751
11752The first argument is a constant integer representing the size of the
11753object, or -1 if it is variable sized. The second argument is a pointer
11754to the object.
11755
11756Semantics:
11757""""""""""
11758
11759This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11760the return value, the referenced memory location is constant and
11761unchanging.
11762
11763'``llvm.invariant.end``' Intrinsic
11764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11765
11766Syntax:
11767"""""""
11768
11769::
11770
11771 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11772
11773Overview:
11774"""""""""
11775
11776The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11777memory object are mutable.
11778
11779Arguments:
11780""""""""""
11781
11782The first argument is the matching ``llvm.invariant.start`` intrinsic.
11783The second argument is a constant integer representing the size of the
11784object, or -1 if it is variable sized and the third argument is a
11785pointer to the object.
11786
11787Semantics:
11788""""""""""
11789
11790This intrinsic indicates that the memory is mutable again.
11791
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011792'``llvm.invariant.group.barrier``' Intrinsic
11793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11794
11795Syntax:
11796"""""""
11797
11798::
11799
11800 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11801
11802Overview:
11803"""""""""
11804
11805The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11806established by invariant.group metadata no longer holds, to obtain a new pointer
11807value that does not carry the invariant information.
11808
11809
11810Arguments:
11811""""""""""
11812
11813The ``llvm.invariant.group.barrier`` takes only one argument, which is
11814the pointer to the memory for which the ``invariant.group`` no longer holds.
11815
11816Semantics:
11817""""""""""
11818
11819Returns another pointer that aliases its argument but which is considered different
11820for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11821
Sean Silvab084af42012-12-07 10:36:55 +000011822General Intrinsics
11823------------------
11824
11825This class of intrinsics is designed to be generic and has no specific
11826purpose.
11827
11828'``llvm.var.annotation``' Intrinsic
11829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11830
11831Syntax:
11832"""""""
11833
11834::
11835
11836 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11837
11838Overview:
11839"""""""""
11840
11841The '``llvm.var.annotation``' intrinsic.
11842
11843Arguments:
11844""""""""""
11845
11846The first argument is a pointer to a value, the second is a pointer to a
11847global string, the third is a pointer to a global string which is the
11848source file name, and the last argument is the line number.
11849
11850Semantics:
11851""""""""""
11852
11853This intrinsic allows annotation of local variables with arbitrary
11854strings. This can be useful for special purpose optimizations that want
11855to look for these annotations. These have no other defined use; they are
11856ignored by code generation and optimization.
11857
Michael Gottesman88d18832013-03-26 00:34:27 +000011858'``llvm.ptr.annotation.*``' Intrinsic
11859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11860
11861Syntax:
11862"""""""
11863
11864This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11865pointer to an integer of any width. *NOTE* you must specify an address space for
11866the pointer. The identifier for the default address space is the integer
11867'``0``'.
11868
11869::
11870
11871 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11872 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11873 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11874 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11875 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11876
11877Overview:
11878"""""""""
11879
11880The '``llvm.ptr.annotation``' intrinsic.
11881
11882Arguments:
11883""""""""""
11884
11885The first argument is a pointer to an integer value of arbitrary bitwidth
11886(result of some expression), the second is a pointer to a global string, the
11887third is a pointer to a global string which is the source file name, and the
11888last argument is the line number. It returns the value of the first argument.
11889
11890Semantics:
11891""""""""""
11892
11893This intrinsic allows annotation of a pointer to an integer with arbitrary
11894strings. This can be useful for special purpose optimizations that want to look
11895for these annotations. These have no other defined use; they are ignored by code
11896generation and optimization.
11897
Sean Silvab084af42012-12-07 10:36:55 +000011898'``llvm.annotation.*``' Intrinsic
11899^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11900
11901Syntax:
11902"""""""
11903
11904This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11905any integer bit width.
11906
11907::
11908
11909 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11910 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11911 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11912 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11913 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11914
11915Overview:
11916"""""""""
11917
11918The '``llvm.annotation``' intrinsic.
11919
11920Arguments:
11921""""""""""
11922
11923The first argument is an integer value (result of some expression), the
11924second is a pointer to a global string, the third is a pointer to a
11925global string which is the source file name, and the last argument is
11926the line number. It returns the value of the first argument.
11927
11928Semantics:
11929""""""""""
11930
11931This intrinsic allows annotations to be put on arbitrary expressions
11932with arbitrary strings. This can be useful for special purpose
11933optimizations that want to look for these annotations. These have no
11934other defined use; they are ignored by code generation and optimization.
11935
11936'``llvm.trap``' Intrinsic
11937^^^^^^^^^^^^^^^^^^^^^^^^^
11938
11939Syntax:
11940"""""""
11941
11942::
11943
11944 declare void @llvm.trap() noreturn nounwind
11945
11946Overview:
11947"""""""""
11948
11949The '``llvm.trap``' intrinsic.
11950
11951Arguments:
11952""""""""""
11953
11954None.
11955
11956Semantics:
11957""""""""""
11958
11959This intrinsic is lowered to the target dependent trap instruction. If
11960the target does not have a trap instruction, this intrinsic will be
11961lowered to a call of the ``abort()`` function.
11962
11963'``llvm.debugtrap``' Intrinsic
11964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11965
11966Syntax:
11967"""""""
11968
11969::
11970
11971 declare void @llvm.debugtrap() nounwind
11972
11973Overview:
11974"""""""""
11975
11976The '``llvm.debugtrap``' intrinsic.
11977
11978Arguments:
11979""""""""""
11980
11981None.
11982
11983Semantics:
11984""""""""""
11985
11986This intrinsic is lowered to code which is intended to cause an
11987execution trap with the intention of requesting the attention of a
11988debugger.
11989
11990'``llvm.stackprotector``' Intrinsic
11991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11992
11993Syntax:
11994"""""""
11995
11996::
11997
11998 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11999
12000Overview:
12001"""""""""
12002
12003The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12004onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12005is placed on the stack before local variables.
12006
12007Arguments:
12008""""""""""
12009
12010The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12011The first argument is the value loaded from the stack guard
12012``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12013enough space to hold the value of the guard.
12014
12015Semantics:
12016""""""""""
12017
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012018This intrinsic causes the prologue/epilogue inserter to force the position of
12019the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12020to ensure that if a local variable on the stack is overwritten, it will destroy
12021the value of the guard. When the function exits, the guard on the stack is
12022checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12023different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12024calling the ``__stack_chk_fail()`` function.
12025
Tim Shene885d5e2016-04-19 19:40:37 +000012026'``llvm.stackguard``' Intrinsic
12027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12028
12029Syntax:
12030"""""""
12031
12032::
12033
12034 declare i8* @llvm.stackguard()
12035
12036Overview:
12037"""""""""
12038
12039The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12040
12041It should not be generated by frontends, since it is only for internal usage.
12042The reason why we create this intrinsic is that we still support IR form Stack
12043Protector in FastISel.
12044
12045Arguments:
12046""""""""""
12047
12048None.
12049
12050Semantics:
12051""""""""""
12052
12053On some platforms, the value returned by this intrinsic remains unchanged
12054between loads in the same thread. On other platforms, it returns the same
12055global variable value, if any, e.g. ``@__stack_chk_guard``.
12056
12057Currently some platforms have IR-level customized stack guard loading (e.g.
12058X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12059in the future.
12060
Sean Silvab084af42012-12-07 10:36:55 +000012061'``llvm.objectsize``' Intrinsic
12062^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12063
12064Syntax:
12065"""""""
12066
12067::
12068
12069 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12070 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12071
12072Overview:
12073"""""""""
12074
12075The ``llvm.objectsize`` intrinsic is designed to provide information to
12076the optimizers to determine at compile time whether a) an operation
12077(like memcpy) will overflow a buffer that corresponds to an object, or
12078b) that a runtime check for overflow isn't necessary. An object in this
12079context means an allocation of a specific class, structure, array, or
12080other object.
12081
12082Arguments:
12083""""""""""
12084
12085The ``llvm.objectsize`` intrinsic takes two arguments. The first
12086argument is a pointer to or into the ``object``. The second argument is
12087a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12088or -1 (if false) when the object size is unknown. The second argument
12089only accepts constants.
12090
12091Semantics:
12092""""""""""
12093
12094The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12095the size of the object concerned. If the size cannot be determined at
12096compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12097on the ``min`` argument).
12098
12099'``llvm.expect``' Intrinsic
12100^^^^^^^^^^^^^^^^^^^^^^^^^^^
12101
12102Syntax:
12103"""""""
12104
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012105This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12106integer bit width.
12107
Sean Silvab084af42012-12-07 10:36:55 +000012108::
12109
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012110 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012111 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12112 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12113
12114Overview:
12115"""""""""
12116
12117The ``llvm.expect`` intrinsic provides information about expected (the
12118most probable) value of ``val``, which can be used by optimizers.
12119
12120Arguments:
12121""""""""""
12122
12123The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12124a value. The second argument is an expected value, this needs to be a
12125constant value, variables are not allowed.
12126
12127Semantics:
12128""""""""""
12129
12130This intrinsic is lowered to the ``val``.
12131
Philip Reamese0e90832015-04-26 22:23:12 +000012132.. _int_assume:
12133
Hal Finkel93046912014-07-25 21:13:35 +000012134'``llvm.assume``' Intrinsic
12135^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12136
12137Syntax:
12138"""""""
12139
12140::
12141
12142 declare void @llvm.assume(i1 %cond)
12143
12144Overview:
12145"""""""""
12146
12147The ``llvm.assume`` allows the optimizer to assume that the provided
12148condition is true. This information can then be used in simplifying other parts
12149of the code.
12150
12151Arguments:
12152""""""""""
12153
12154The condition which the optimizer may assume is always true.
12155
12156Semantics:
12157""""""""""
12158
12159The intrinsic allows the optimizer to assume that the provided condition is
12160always true whenever the control flow reaches the intrinsic call. No code is
12161generated for this intrinsic, and instructions that contribute only to the
12162provided condition are not used for code generation. If the condition is
12163violated during execution, the behavior is undefined.
12164
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012165Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012166used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12167only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012168if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012169sufficient overall improvement in code quality. For this reason,
12170``llvm.assume`` should not be used to document basic mathematical invariants
12171that the optimizer can otherwise deduce or facts that are of little use to the
12172optimizer.
12173
Peter Collingbournee6909c82015-02-20 20:30:47 +000012174.. _bitset.test:
12175
12176'``llvm.bitset.test``' Intrinsic
12177^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12178
12179Syntax:
12180"""""""
12181
12182::
12183
12184 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12185
12186
12187Arguments:
12188""""""""""
12189
12190The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012191metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012192
12193Overview:
12194"""""""""
12195
12196The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12197member of the given bitset.
12198
Sean Silvab084af42012-12-07 10:36:55 +000012199'``llvm.donothing``' Intrinsic
12200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12201
12202Syntax:
12203"""""""
12204
12205::
12206
12207 declare void @llvm.donothing() nounwind readnone
12208
12209Overview:
12210"""""""""
12211
Juergen Ributzkac9161192014-10-23 22:36:13 +000012212The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012213three intrinsics (besides ``llvm.experimental.patchpoint`` and
12214``llvm.experimental.gc.statepoint``) that can be called with an invoke
12215instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012216
12217Arguments:
12218""""""""""
12219
12220None.
12221
12222Semantics:
12223""""""""""
12224
12225This intrinsic does nothing, and it's removed by optimizers and ignored
12226by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012227
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012228'``llvm.experimental.deoptimize``' Intrinsic
12229^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12230
12231Syntax:
12232"""""""
12233
12234::
12235
12236 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12237
12238Overview:
12239"""""""""
12240
12241This intrinsic, together with :ref:`deoptimization operand bundles
12242<deopt_opbundles>`, allow frontends to express transfer of control and
12243frame-local state from the currently executing (typically more specialized,
12244hence faster) version of a function into another (typically more generic, hence
12245slower) version.
12246
12247In languages with a fully integrated managed runtime like Java and JavaScript
12248this intrinsic can be used to implement "uncommon trap" or "side exit" like
12249functionality. In unmanaged languages like C and C++, this intrinsic can be
12250used to represent the slow paths of specialized functions.
12251
12252
12253Arguments:
12254""""""""""
12255
12256The intrinsic takes an arbitrary number of arguments, whose meaning is
12257decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12258
12259Semantics:
12260""""""""""
12261
12262The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12263deoptimization continuation (denoted using a :ref:`deoptimization
12264operand bundle <deopt_opbundles>`) and returns the value returned by
12265the deoptimization continuation. Defining the semantic properties of
12266the continuation itself is out of scope of the language reference --
12267as far as LLVM is concerned, the deoptimization continuation can
12268invoke arbitrary side effects, including reading from and writing to
12269the entire heap.
12270
12271Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12272continue execution to the end of the physical frame containing them, so all
12273calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12274
12275 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12276 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12277 - The ``ret`` instruction must return the value produced by the
12278 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12279
12280Note that the above restrictions imply that the return type for a call to
12281``@llvm.experimental.deoptimize`` will match the return type of its immediate
12282caller.
12283
12284The inliner composes the ``"deopt"`` continuations of the caller into the
12285``"deopt"`` continuations present in the inlinee, and also updates calls to this
12286intrinsic to return directly from the frame of the function it inlined into.
12287
12288.. _deoptimize_lowering:
12289
12290Lowering:
12291"""""""""
12292
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012293Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12294symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12295ensure that this symbol is defined). The call arguments to
12296``@llvm.experimental.deoptimize`` are lowered as if they were formal
12297arguments of the specified types, and not as varargs.
12298
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012299
Sanjoy Das021de052016-03-31 00:18:46 +000012300'``llvm.experimental.guard``' Intrinsic
12301^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12302
12303Syntax:
12304"""""""
12305
12306::
12307
12308 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12309
12310Overview:
12311"""""""""
12312
12313This intrinsic, together with :ref:`deoptimization operand bundles
12314<deopt_opbundles>`, allows frontends to express guards or checks on
12315optimistic assumptions made during compilation. The semantics of
12316``@llvm.experimental.guard`` is defined in terms of
12317``@llvm.experimental.deoptimize`` -- its body is defined to be
12318equivalent to:
12319
12320.. code-block:: llvm
12321
12322 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12323 %realPred = and i1 %pred, undef
12324 br i1 %realPred, label %continue, label %leave
12325
12326 leave:
12327 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12328 ret void
12329
12330 continue:
12331 ret void
12332 }
12333
12334In words, ``@llvm.experimental.guard`` executes the attached
12335``"deopt"`` continuation if (but **not** only if) its first argument
12336is ``false``. Since the optimizer is allowed to replace the ``undef``
12337with an arbitrary value, it can optimize guard to fail "spuriously",
12338i.e. without the original condition being false (hence the "not only
12339if"); and this allows for "check widening" type optimizations.
12340
12341``@llvm.experimental.guard`` cannot be invoked.
12342
12343
Andrew Trick5e029ce2013-12-24 02:57:25 +000012344Stack Map Intrinsics
12345--------------------
12346
12347LLVM provides experimental intrinsics to support runtime patching
12348mechanisms commonly desired in dynamic language JITs. These intrinsics
12349are described in :doc:`StackMaps`.