blob: e9762f69f4008818394bd65ff2e80b437e33eef4 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
253``extern_weak``
254 The semantics of this linkage follow the ELF object file model: the
255 symbol is weak until linked, if not linked, the symbol becomes null
256 instead of being an undefined reference.
257``linkonce_odr``, ``weak_odr``
258 Some languages allow differing globals to be merged, such as two
259 functions with different semantics. Other languages, such as
260 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000261 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000262 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
263 global will only be merged with equivalent globals. These linkage
264 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000265``external``
266 If none of the above identifiers are used, the global is externally
267 visible, meaning that it participates in linkage and can be used to
268 resolve external symbol references.
269
Sean Silvab084af42012-12-07 10:36:55 +0000270It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000271other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000272
Sean Silvab084af42012-12-07 10:36:55 +0000273.. _callingconv:
274
275Calling Conventions
276-------------------
277
278LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
279:ref:`invokes <i_invoke>` can all have an optional calling convention
280specified for the call. The calling convention of any pair of dynamic
281caller/callee must match, or the behavior of the program is undefined.
282The following calling conventions are supported by LLVM, and more may be
283added in the future:
284
285"``ccc``" - The C calling convention
286 This calling convention (the default if no other calling convention
287 is specified) matches the target C calling conventions. This calling
288 convention supports varargs function calls and tolerates some
289 mismatch in the declared prototype and implemented declaration of
290 the function (as does normal C).
291"``fastcc``" - The fast calling convention
292 This calling convention attempts to make calls as fast as possible
293 (e.g. by passing things in registers). This calling convention
294 allows the target to use whatever tricks it wants to produce fast
295 code for the target, without having to conform to an externally
296 specified ABI (Application Binary Interface). `Tail calls can only
297 be optimized when this, the GHC or the HiPE convention is
298 used. <CodeGenerator.html#id80>`_ This calling convention does not
299 support varargs and requires the prototype of all callees to exactly
300 match the prototype of the function definition.
301"``coldcc``" - The cold calling convention
302 This calling convention attempts to make code in the caller as
303 efficient as possible under the assumption that the call is not
304 commonly executed. As such, these calls often preserve all registers
305 so that the call does not break any live ranges in the caller side.
306 This calling convention does not support varargs and requires the
307 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000308 function definition. Furthermore the inliner doesn't consider such function
309 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000310"``cc 10``" - GHC convention
311 This calling convention has been implemented specifically for use by
312 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
313 It passes everything in registers, going to extremes to achieve this
314 by disabling callee save registers. This calling convention should
315 not be used lightly but only for specific situations such as an
316 alternative to the *register pinning* performance technique often
317 used when implementing functional programming languages. At the
318 moment only X86 supports this convention and it has the following
319 limitations:
320
321 - On *X86-32* only supports up to 4 bit type parameters. No
322 floating point types are supported.
323 - On *X86-64* only supports up to 10 bit type parameters and 6
324 floating point parameters.
325
326 This calling convention supports `tail call
327 optimization <CodeGenerator.html#id80>`_ but requires both the
328 caller and callee are using it.
329"``cc 11``" - The HiPE calling convention
330 This calling convention has been implemented specifically for use by
331 the `High-Performance Erlang
332 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
333 native code compiler of the `Ericsson's Open Source Erlang/OTP
334 system <http://www.erlang.org/download.shtml>`_. It uses more
335 registers for argument passing than the ordinary C calling
336 convention and defines no callee-saved registers. The calling
337 convention properly supports `tail call
338 optimization <CodeGenerator.html#id80>`_ but requires that both the
339 caller and the callee use it. It uses a *register pinning*
340 mechanism, similar to GHC's convention, for keeping frequently
341 accessed runtime components pinned to specific hardware registers.
342 At the moment only X86 supports this convention (both 32 and 64
343 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000344"``webkit_jscc``" - WebKit's JavaScript calling convention
345 This calling convention has been implemented for `WebKit FTL JIT
346 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
347 stack right to left (as cdecl does), and returns a value in the
348 platform's customary return register.
349"``anyregcc``" - Dynamic calling convention for code patching
350 This is a special convention that supports patching an arbitrary code
351 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000352 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000353 allocated. This can currently only be used with calls to
354 llvm.experimental.patchpoint because only this intrinsic records
355 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000356"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 This calling convention attempts to make the code in the caller as
358 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000359 calling convention on how arguments and return values are passed, but it
360 uses a different set of caller/callee-saved registers. This alleviates the
361 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000362 call in the caller. If the arguments are passed in callee-saved registers,
363 then they will be preserved by the callee across the call. This doesn't
364 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000365
366 - On X86-64 the callee preserves all general purpose registers, except for
367 R11. R11 can be used as a scratch register. Floating-point registers
368 (XMMs/YMMs) are not preserved and need to be saved by the caller.
369
370 The idea behind this convention is to support calls to runtime functions
371 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000372 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000373 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000374 registers, which haven't already been saved by the caller. The
375 `PreserveMost` calling convention is very similar to the `cold` calling
376 convention in terms of caller/callee-saved registers, but they are used for
377 different types of function calls. `coldcc` is for function calls that are
378 rarely executed, whereas `preserve_mostcc` function calls are intended to be
379 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
380 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000381
382 This calling convention will be used by a future version of the ObjectiveC
383 runtime and should therefore still be considered experimental at this time.
384 Although this convention was created to optimize certain runtime calls to
385 the ObjectiveC runtime, it is not limited to this runtime and might be used
386 by other runtimes in the future too. The current implementation only
387 supports X86-64, but the intention is to support more architectures in the
388 future.
389"``preserve_allcc``" - The `PreserveAll` calling convention
390 This calling convention attempts to make the code in the caller even less
391 intrusive than the `PreserveMost` calling convention. This calling
392 convention also behaves identical to the `C` calling convention on how
393 arguments and return values are passed, but it uses a different set of
394 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000395 recovering a large register set before and after the call in the caller. If
396 the arguments are passed in callee-saved registers, then they will be
397 preserved by the callee across the call. This doesn't apply for values
398 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000399
400 - On X86-64 the callee preserves all general purpose registers, except for
401 R11. R11 can be used as a scratch register. Furthermore it also preserves
402 all floating-point registers (XMMs/YMMs).
403
404 The idea behind this convention is to support calls to runtime functions
405 that don't need to call out to any other functions.
406
407 This calling convention, like the `PreserveMost` calling convention, will be
408 used by a future version of the ObjectiveC runtime and should be considered
409 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000410"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000411 Clang generates an access function to access C++-style TLS. The access
412 function generally has an entry block, an exit block and an initialization
413 block that is run at the first time. The entry and exit blocks can access
414 a few TLS IR variables, each access will be lowered to a platform-specific
415 sequence.
416
Manman Ren19c7bbe2015-12-04 17:40:13 +0000417 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000418 preserving as many registers as possible (all the registers that are
419 perserved on the fast path, composed of the entry and exit blocks).
420
421 This calling convention behaves identical to the `C` calling convention on
422 how arguments and return values are passed, but it uses a different set of
423 caller/callee-saved registers.
424
425 Given that each platform has its own lowering sequence, hence its own set
426 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000427
428 - On X86-64 the callee preserves all general purpose registers, except for
429 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000430"``swiftcc``" - This calling convention is used for Swift language.
431 - On X86-64 RCX and R8 are available for additional integer returns, and
432 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000433 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000434"``cc <n>``" - Numbered convention
435 Any calling convention may be specified by number, allowing
436 target-specific calling conventions to be used. Target specific
437 calling conventions start at 64.
438
439More calling conventions can be added/defined on an as-needed basis, to
440support Pascal conventions or any other well-known target-independent
441convention.
442
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000443.. _visibilitystyles:
444
Sean Silvab084af42012-12-07 10:36:55 +0000445Visibility Styles
446-----------------
447
448All Global Variables and Functions have one of the following visibility
449styles:
450
451"``default``" - Default style
452 On targets that use the ELF object file format, default visibility
453 means that the declaration is visible to other modules and, in
454 shared libraries, means that the declared entity may be overridden.
455 On Darwin, default visibility means that the declaration is visible
456 to other modules. Default visibility corresponds to "external
457 linkage" in the language.
458"``hidden``" - Hidden style
459 Two declarations of an object with hidden visibility refer to the
460 same object if they are in the same shared object. Usually, hidden
461 visibility indicates that the symbol will not be placed into the
462 dynamic symbol table, so no other module (executable or shared
463 library) can reference it directly.
464"``protected``" - Protected style
465 On ELF, protected visibility indicates that the symbol will be
466 placed in the dynamic symbol table, but that references within the
467 defining module will bind to the local symbol. That is, the symbol
468 cannot be overridden by another module.
469
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000470A symbol with ``internal`` or ``private`` linkage must have ``default``
471visibility.
472
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000473.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000474
Nico Rieck7157bb72014-01-14 15:22:47 +0000475DLL Storage Classes
476-------------------
477
478All Global Variables, Functions and Aliases can have one of the following
479DLL storage class:
480
481``dllimport``
482 "``dllimport``" causes the compiler to reference a function or variable via
483 a global pointer to a pointer that is set up by the DLL exporting the
484 symbol. On Microsoft Windows targets, the pointer name is formed by
485 combining ``__imp_`` and the function or variable name.
486``dllexport``
487 "``dllexport``" causes the compiler to provide a global pointer to a pointer
488 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
489 Microsoft Windows targets, the pointer name is formed by combining
490 ``__imp_`` and the function or variable name. Since this storage class
491 exists for defining a dll interface, the compiler, assembler and linker know
492 it is externally referenced and must refrain from deleting the symbol.
493
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000494.. _tls_model:
495
496Thread Local Storage Models
497---------------------------
498
499A variable may be defined as ``thread_local``, which means that it will
500not be shared by threads (each thread will have a separated copy of the
501variable). Not all targets support thread-local variables. Optionally, a
502TLS model may be specified:
503
504``localdynamic``
505 For variables that are only used within the current shared library.
506``initialexec``
507 For variables in modules that will not be loaded dynamically.
508``localexec``
509 For variables defined in the executable and only used within it.
510
511If no explicit model is given, the "general dynamic" model is used.
512
513The models correspond to the ELF TLS models; see `ELF Handling For
514Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
515more information on under which circumstances the different models may
516be used. The target may choose a different TLS model if the specified
517model is not supported, or if a better choice of model can be made.
518
Sean Silva706fba52015-08-06 22:56:24 +0000519A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000520the alias is accessed. It will not have any effect in the aliasee.
521
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000522For platforms without linker support of ELF TLS model, the -femulated-tls
523flag can be used to generate GCC compatible emulated TLS code.
524
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000525.. _namedtypes:
526
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000527Structure Types
528---------------
Sean Silvab084af42012-12-07 10:36:55 +0000529
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000530LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000531types <t_struct>`. Literal types are uniqued structurally, but identified types
532are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000533to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000534
Sean Silva706fba52015-08-06 22:56:24 +0000535An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000536
537.. code-block:: llvm
538
539 %mytype = type { %mytype*, i32 }
540
Sean Silvaa1190322015-08-06 22:56:48 +0000541Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000542literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000543
544.. _globalvars:
545
546Global Variables
547----------------
548
549Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000550instead of run-time.
551
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000552Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000553
554Global variables in other translation units can also be declared, in which
555case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000556
Bob Wilson85b24f22014-06-12 20:40:33 +0000557Either global variable definitions or declarations may have an explicit section
558to be placed in and may have an optional explicit alignment specified.
559
Michael Gottesman006039c2013-01-31 05:48:48 +0000560A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000561the contents of the variable will **never** be modified (enabling better
562optimization, allowing the global data to be placed in the read-only
563section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000564initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000565variable.
566
567LLVM explicitly allows *declarations* of global variables to be marked
568constant, even if the final definition of the global is not. This
569capability can be used to enable slightly better optimization of the
570program, but requires the language definition to guarantee that
571optimizations based on the 'constantness' are valid for the translation
572units that do not include the definition.
573
574As SSA values, global variables define pointer values that are in scope
575(i.e. they dominate) all basic blocks in the program. Global variables
576always define a pointer to their "content" type because they describe a
577region of memory, and all memory objects in LLVM are accessed through
578pointers.
579
580Global variables can be marked with ``unnamed_addr`` which indicates
581that the address is not significant, only the content. Constants marked
582like this can be merged with other constants if they have the same
583initializer. Note that a constant with significant address *can* be
584merged with a ``unnamed_addr`` constant, the result being a constant
585whose address is significant.
586
587A global variable may be declared to reside in a target-specific
588numbered address space. For targets that support them, address spaces
589may affect how optimizations are performed and/or what target
590instructions are used to access the variable. The default address space
591is zero. The address space qualifier must precede any other attributes.
592
593LLVM allows an explicit section to be specified for globals. If the
594target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000595Additionally, the global can placed in a comdat if the target has the necessary
596support.
Sean Silvab084af42012-12-07 10:36:55 +0000597
Michael Gottesmane743a302013-02-04 03:22:00 +0000598By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000599variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000600initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000601true even for variables potentially accessible from outside the
602module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000603``@llvm.used`` or dllexported variables. This assumption may be suppressed
604by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000605
Sean Silvab084af42012-12-07 10:36:55 +0000606An explicit alignment may be specified for a global, which must be a
607power of 2. If not present, or if the alignment is set to zero, the
608alignment of the global is set by the target to whatever it feels
609convenient. If an explicit alignment is specified, the global is forced
610to have exactly that alignment. Targets and optimizers are not allowed
611to over-align the global if the global has an assigned section. In this
612case, the extra alignment could be observable: for example, code could
613assume that the globals are densely packed in their section and try to
614iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000615iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000616
Nico Rieck7157bb72014-01-14 15:22:47 +0000617Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
618
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000619Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000620:ref:`Thread Local Storage Model <tls_model>`.
621
Nico Rieck7157bb72014-01-14 15:22:47 +0000622Syntax::
623
624 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000625 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000626 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000627 [, section "name"] [, comdat [($name)]]
628 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000629
Sean Silvab084af42012-12-07 10:36:55 +0000630For example, the following defines a global in a numbered address space
631with an initializer, section, and alignment:
632
633.. code-block:: llvm
634
635 @G = addrspace(5) constant float 1.0, section "foo", align 4
636
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000637The following example just declares a global variable
638
639.. code-block:: llvm
640
641 @G = external global i32
642
Sean Silvab084af42012-12-07 10:36:55 +0000643The following example defines a thread-local global with the
644``initialexec`` TLS model:
645
646.. code-block:: llvm
647
648 @G = thread_local(initialexec) global i32 0, align 4
649
650.. _functionstructure:
651
652Functions
653---------
654
655LLVM function definitions consist of the "``define``" keyword, an
656optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000657style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
658an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000659an optional ``unnamed_addr`` attribute, a return type, an optional
660:ref:`parameter attribute <paramattrs>` for the return type, a function
661name, a (possibly empty) argument list (each with optional :ref:`parameter
662attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000663an optional section, an optional alignment,
664an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000665an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000666an optional :ref:`prologue <prologuedata>`,
667an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000668an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000669an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000670
671LLVM function declarations consist of the "``declare``" keyword, an
672optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000673style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
674an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000675an optional ``unnamed_addr`` attribute, a return type, an optional
676:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000677name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000678:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
679and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000680
Bill Wendling6822ecb2013-10-27 05:09:12 +0000681A function definition contains a list of basic blocks, forming the CFG (Control
682Flow Graph) for the function. Each basic block may optionally start with a label
683(giving the basic block a symbol table entry), contains a list of instructions,
684and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
685function return). If an explicit label is not provided, a block is assigned an
686implicit numbered label, using the next value from the same counter as used for
687unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
688entry block does not have an explicit label, it will be assigned label "%0",
689then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000690
691The first basic block in a function is special in two ways: it is
692immediately executed on entrance to the function, and it is not allowed
693to have predecessor basic blocks (i.e. there can not be any branches to
694the entry block of a function). Because the block can have no
695predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
696
697LLVM allows an explicit section to be specified for functions. If the
698target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000699Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000700
701An explicit alignment may be specified for a function. If not present,
702or if the alignment is set to zero, the alignment of the function is set
703by the target to whatever it feels convenient. If an explicit alignment
704is specified, the function is forced to have at least that much
705alignment. All alignments must be a power of 2.
706
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000707If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000708be significant and two identical functions can be merged.
709
710Syntax::
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000713 [cconv] [ret attrs]
714 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000715 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000716 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000717 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000718
Sean Silva706fba52015-08-06 22:56:24 +0000719The argument list is a comma separated sequence of arguments where each
720argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000721
722Syntax::
723
724 <type> [parameter Attrs] [name]
725
726
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000727.. _langref_aliases:
728
Sean Silvab084af42012-12-07 10:36:55 +0000729Aliases
730-------
731
Rafael Espindola64c1e182014-06-03 02:41:57 +0000732Aliases, unlike function or variables, don't create any new data. They
733are just a new symbol and metadata for an existing position.
734
735Aliases have a name and an aliasee that is either a global value or a
736constant expression.
737
Nico Rieck7157bb72014-01-14 15:22:47 +0000738Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000739:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
740<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000741
742Syntax::
743
David Blaikie196582e2015-10-22 01:17:29 +0000744 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000745
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000746The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000747``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000748might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000749
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000750Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000751the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
752to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000753
Rafael Espindola64c1e182014-06-03 02:41:57 +0000754Since aliases are only a second name, some restrictions apply, of which
755some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000756
Rafael Espindola64c1e182014-06-03 02:41:57 +0000757* The expression defining the aliasee must be computable at assembly
758 time. Since it is just a name, no relocations can be used.
759
760* No alias in the expression can be weak as the possibility of the
761 intermediate alias being overridden cannot be represented in an
762 object file.
763
764* No global value in the expression can be a declaration, since that
765 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000766
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000767.. _langref_ifunc:
768
769IFuncs
770-------
771
772IFuncs, like as aliases, don't create any new data or func. They are just a new
773symbol that dynamic linker resolves at runtime by calling a resolver function.
774
775IFuncs have a name and a resolver that is a function called by dynamic linker
776that returns address of another function associated with the name.
777
778IFunc may have an optional :ref:`linkage type <linkage>` and an optional
779:ref:`visibility style <visibility>`.
780
781Syntax::
782
783 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
784
785
David Majnemerdad0a642014-06-27 18:19:56 +0000786.. _langref_comdats:
787
788Comdats
789-------
790
791Comdat IR provides access to COFF and ELF object file COMDAT functionality.
792
Sean Silvaa1190322015-08-06 22:56:48 +0000793Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000794specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000795that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000796aliasee computes to, if any.
797
798Comdats have a selection kind to provide input on how the linker should
799choose between keys in two different object files.
800
801Syntax::
802
803 $<Name> = comdat SelectionKind
804
805The selection kind must be one of the following:
806
807``any``
808 The linker may choose any COMDAT key, the choice is arbitrary.
809``exactmatch``
810 The linker may choose any COMDAT key but the sections must contain the
811 same data.
812``largest``
813 The linker will choose the section containing the largest COMDAT key.
814``noduplicates``
815 The linker requires that only section with this COMDAT key exist.
816``samesize``
817 The linker may choose any COMDAT key but the sections must contain the
818 same amount of data.
819
820Note that the Mach-O platform doesn't support COMDATs and ELF only supports
821``any`` as a selection kind.
822
823Here is an example of a COMDAT group where a function will only be selected if
824the COMDAT key's section is the largest:
825
826.. code-block:: llvm
827
828 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000829 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000830
Rafael Espindola83a362c2015-01-06 22:55:16 +0000831 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000832 ret void
833 }
834
Rafael Espindola83a362c2015-01-06 22:55:16 +0000835As a syntactic sugar the ``$name`` can be omitted if the name is the same as
836the global name:
837
838.. code-block:: llvm
839
840 $foo = comdat any
841 @foo = global i32 2, comdat
842
843
David Majnemerdad0a642014-06-27 18:19:56 +0000844In a COFF object file, this will create a COMDAT section with selection kind
845``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
846and another COMDAT section with selection kind
847``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000848section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000849
850There are some restrictions on the properties of the global object.
851It, or an alias to it, must have the same name as the COMDAT group when
852targeting COFF.
853The contents and size of this object may be used during link-time to determine
854which COMDAT groups get selected depending on the selection kind.
855Because the name of the object must match the name of the COMDAT group, the
856linkage of the global object must not be local; local symbols can get renamed
857if a collision occurs in the symbol table.
858
859The combined use of COMDATS and section attributes may yield surprising results.
860For example:
861
862.. code-block:: llvm
863
864 $foo = comdat any
865 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 @g1 = global i32 42, section "sec", comdat($foo)
867 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000868
869From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000870with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000871COMDAT groups and COMDATs, at the object file level, are represented by
872sections.
873
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000874Note that certain IR constructs like global variables and functions may
875create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000876COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000877in individual sections (e.g. when `-data-sections` or `-function-sections`
878is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000879
Sean Silvab084af42012-12-07 10:36:55 +0000880.. _namedmetadatastructure:
881
882Named Metadata
883--------------
884
885Named metadata is a collection of metadata. :ref:`Metadata
886nodes <metadata>` (but not metadata strings) are the only valid
887operands for a named metadata.
888
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000889#. Named metadata are represented as a string of characters with the
890 metadata prefix. The rules for metadata names are the same as for
891 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
892 are still valid, which allows any character to be part of a name.
893
Sean Silvab084af42012-12-07 10:36:55 +0000894Syntax::
895
896 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000897 !0 = !{!"zero"}
898 !1 = !{!"one"}
899 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000900 ; A named metadata.
901 !name = !{!0, !1, !2}
902
903.. _paramattrs:
904
905Parameter Attributes
906--------------------
907
908The return type and each parameter of a function type may have a set of
909*parameter attributes* associated with them. Parameter attributes are
910used to communicate additional information about the result or
911parameters of a function. Parameter attributes are considered to be part
912of the function, not of the function type, so functions with different
913parameter attributes can have the same function type.
914
915Parameter attributes are simple keywords that follow the type specified.
916If multiple parameter attributes are needed, they are space separated.
917For example:
918
919.. code-block:: llvm
920
921 declare i32 @printf(i8* noalias nocapture, ...)
922 declare i32 @atoi(i8 zeroext)
923 declare signext i8 @returns_signed_char()
924
925Note that any attributes for the function result (``nounwind``,
926``readonly``) come immediately after the argument list.
927
928Currently, only the following parameter attributes are defined:
929
930``zeroext``
931 This indicates to the code generator that the parameter or return
932 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000933 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000934``signext``
935 This indicates to the code generator that the parameter or return
936 value should be sign-extended to the extent required by the target's
937 ABI (which is usually 32-bits) by the caller (for a parameter) or
938 the callee (for a return value).
939``inreg``
940 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000941 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000942 a function call or return (usually, by putting it in a register as
943 opposed to memory, though some targets use it to distinguish between
944 two different kinds of registers). Use of this attribute is
945 target-specific.
946``byval``
947 This indicates that the pointer parameter should really be passed by
948 value to the function. The attribute implies that a hidden copy of
949 the pointee is made between the caller and the callee, so the callee
950 is unable to modify the value in the caller. This attribute is only
951 valid on LLVM pointer arguments. It is generally used to pass
952 structs and arrays by value, but is also valid on pointers to
953 scalars. The copy is considered to belong to the caller not the
954 callee (for example, ``readonly`` functions should not write to
955 ``byval`` parameters). This is not a valid attribute for return
956 values.
957
958 The byval attribute also supports specifying an alignment with the
959 align attribute. It indicates the alignment of the stack slot to
960 form and the known alignment of the pointer specified to the call
961 site. If the alignment is not specified, then the code generator
962 makes a target-specific assumption.
963
Reid Klecknera534a382013-12-19 02:14:12 +0000964.. _attr_inalloca:
965
966``inalloca``
967
Reid Kleckner60d3a832014-01-16 22:59:24 +0000968 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000969 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000970 be a pointer to stack memory produced by an ``alloca`` instruction.
971 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000972 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000973 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000974
Reid Kleckner436c42e2014-01-17 23:58:17 +0000975 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000976 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000977 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000978 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000979 ``inalloca`` attribute also disables LLVM's implicit lowering of
980 large aggregate return values, which means that frontend authors
981 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000982
Reid Kleckner60d3a832014-01-16 22:59:24 +0000983 When the call site is reached, the argument allocation must have
984 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000985 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000986 space after an argument allocation and before its call site, but it
987 must be cleared off with :ref:`llvm.stackrestore
988 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000989
990 See :doc:`InAlloca` for more information on how to use this
991 attribute.
992
Sean Silvab084af42012-12-07 10:36:55 +0000993``sret``
994 This indicates that the pointer parameter specifies the address of a
995 structure that is the return value of the function in the source
996 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000997 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000998 not to trap and to be properly aligned. This may only be applied to
999 the first parameter. This is not a valid attribute for return
1000 values.
Sean Silva1703e702014-04-08 21:06:22 +00001001
Hal Finkelccc70902014-07-22 16:58:55 +00001002``align <n>``
1003 This indicates that the pointer value may be assumed by the optimizer to
1004 have the specified alignment.
1005
1006 Note that this attribute has additional semantics when combined with the
1007 ``byval`` attribute.
1008
Sean Silva1703e702014-04-08 21:06:22 +00001009.. _noalias:
1010
Sean Silvab084af42012-12-07 10:36:55 +00001011``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001012 This indicates that objects accessed via pointer values
1013 :ref:`based <pointeraliasing>` on the argument or return value are not also
1014 accessed, during the execution of the function, via pointer values not
1015 *based* on the argument or return value. The attribute on a return value
1016 also has additional semantics described below. The caller shares the
1017 responsibility with the callee for ensuring that these requirements are met.
1018 For further details, please see the discussion of the NoAlias response in
1019 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001020
1021 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001022 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001023
1024 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001025 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1026 attribute on return values are stronger than the semantics of the attribute
1027 when used on function arguments. On function return values, the ``noalias``
1028 attribute indicates that the function acts like a system memory allocation
1029 function, returning a pointer to allocated storage disjoint from the
1030 storage for any other object accessible to the caller.
1031
Sean Silvab084af42012-12-07 10:36:55 +00001032``nocapture``
1033 This indicates that the callee does not make any copies of the
1034 pointer that outlive the callee itself. This is not a valid
1035 attribute for return values.
1036
1037.. _nest:
1038
1039``nest``
1040 This indicates that the pointer parameter can be excised using the
1041 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001042 attribute for return values and can only be applied to one parameter.
1043
1044``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001045 This indicates that the function always returns the argument as its return
1046 value. This is an optimization hint to the code generator when generating
1047 the caller, allowing tail call optimization and omission of register saves
1048 and restores in some cases; it is not checked or enforced when generating
1049 the callee. The parameter and the function return type must be valid
1050 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1051 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001052
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001053``nonnull``
1054 This indicates that the parameter or return pointer is not null. This
1055 attribute may only be applied to pointer typed parameters. This is not
1056 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001058 is non-null.
1059
Hal Finkelb0407ba2014-07-18 15:51:28 +00001060``dereferenceable(<n>)``
1061 This indicates that the parameter or return pointer is dereferenceable. This
1062 attribute may only be applied to pointer typed parameters. A pointer that
1063 is dereferenceable can be loaded from speculatively without a risk of
1064 trapping. The number of bytes known to be dereferenceable must be provided
1065 in parentheses. It is legal for the number of bytes to be less than the
1066 size of the pointee type. The ``nonnull`` attribute does not imply
1067 dereferenceability (consider a pointer to one element past the end of an
1068 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1069 ``addrspace(0)`` (which is the default address space).
1070
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001071``dereferenceable_or_null(<n>)``
1072 This indicates that the parameter or return value isn't both
1073 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001074 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001075 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1076 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1077 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1078 and in other address spaces ``dereferenceable_or_null(<n>)``
1079 implies that a pointer is at least one of ``dereferenceable(<n>)``
1080 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001081 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001082 pointer typed parameters.
1083
Manman Renf46262e2016-03-29 17:37:21 +00001084``swiftself``
1085 This indicates that the parameter is the self/context parameter. This is not
1086 a valid attribute for return values and can only be applied to one
1087 parameter.
1088
Manman Ren9bfd0d02016-04-01 21:41:15 +00001089``swifterror``
1090 This attribute is motivated to model and optimize Swift error handling. It
1091 can be applied to a parameter with pointer to pointer type or a
1092 pointer-sized alloca. At the call site, the actual argument that corresponds
1093 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca. A
1094 ``swifterror`` value (either the parameter or the alloca) can only be loaded
1095 and stored from, or used as a ``swifterror`` argument. This is not a valid
1096 attribute for return values and can only be applied to one parameter.
1097
1098 These constraints allow the calling convention to optimize access to
1099 ``swifterror`` variables by associating them with a specific register at
1100 call boundaries rather than placing them in memory. Since this does change
1101 the calling convention, a function which uses the ``swifterror`` attribute
1102 on a parameter is not ABI-compatible with one which does not.
1103
1104 These constraints also allow LLVM to assume that a ``swifterror`` argument
1105 does not alias any other memory visible within a function and that a
1106 ``swifterror`` alloca passed as an argument does not escape.
1107
Sean Silvab084af42012-12-07 10:36:55 +00001108.. _gc:
1109
Philip Reamesf80bbff2015-02-25 23:45:20 +00001110Garbage Collector Strategy Names
1111--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001112
Philip Reamesf80bbff2015-02-25 23:45:20 +00001113Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001114string:
1115
1116.. code-block:: llvm
1117
1118 define void @f() gc "name" { ... }
1119
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001120The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001121<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001122strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001123named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001124garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001125which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001126
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001127.. _prefixdata:
1128
1129Prefix Data
1130-----------
1131
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001132Prefix data is data associated with a function which the code
1133generator will emit immediately before the function's entrypoint.
1134The purpose of this feature is to allow frontends to associate
1135language-specific runtime metadata with specific functions and make it
1136available through the function pointer while still allowing the
1137function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001138
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001139To access the data for a given function, a program may bitcast the
1140function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001141index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001142the prefix data. For instance, take the example of a function annotated
1143with a single ``i32``,
1144
1145.. code-block:: llvm
1146
1147 define void @f() prefix i32 123 { ... }
1148
1149The prefix data can be referenced as,
1150
1151.. code-block:: llvm
1152
David Blaikie16a97eb2015-03-04 22:02:58 +00001153 %0 = bitcast void* () @f to i32*
1154 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001155 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001156
1157Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001158of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001159beginning of the prefix data is aligned. This means that if the size
1160of the prefix data is not a multiple of the alignment size, the
1161function's entrypoint will not be aligned. If alignment of the
1162function's entrypoint is desired, padding must be added to the prefix
1163data.
1164
Sean Silvaa1190322015-08-06 22:56:48 +00001165A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001166to the ``available_externally`` linkage in that the data may be used by the
1167optimizers but will not be emitted in the object file.
1168
1169.. _prologuedata:
1170
1171Prologue Data
1172-------------
1173
1174The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1175be inserted prior to the function body. This can be used for enabling
1176function hot-patching and instrumentation.
1177
1178To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001179have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001180bytes which decode to a sequence of machine instructions, valid for the
1181module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001182the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001183the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001184definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001185makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001186
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001187A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001188which encodes the ``nop`` instruction:
1189
1190.. code-block:: llvm
1191
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001192 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001193
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001194Generally prologue data can be formed by encoding a relative branch instruction
1195which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001196x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1197
1198.. code-block:: llvm
1199
1200 %0 = type <{ i8, i8, i8* }>
1201
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001203
Sean Silvaa1190322015-08-06 22:56:48 +00001204A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001205to the ``available_externally`` linkage in that the data may be used by the
1206optimizers but will not be emitted in the object file.
1207
David Majnemer7fddecc2015-06-17 20:52:32 +00001208.. _personalityfn:
1209
1210Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001211--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001212
1213The ``personality`` attribute permits functions to specify what function
1214to use for exception handling.
1215
Bill Wendling63b88192013-02-06 06:52:58 +00001216.. _attrgrp:
1217
1218Attribute Groups
1219----------------
1220
1221Attribute groups are groups of attributes that are referenced by objects within
1222the IR. They are important for keeping ``.ll`` files readable, because a lot of
1223functions will use the same set of attributes. In the degenerative case of a
1224``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1225group will capture the important command line flags used to build that file.
1226
1227An attribute group is a module-level object. To use an attribute group, an
1228object references the attribute group's ID (e.g. ``#37``). An object may refer
1229to more than one attribute group. In that situation, the attributes from the
1230different groups are merged.
1231
1232Here is an example of attribute groups for a function that should always be
1233inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1234
1235.. code-block:: llvm
1236
1237 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001238 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001239
1240 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001241 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001242
1243 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1244 define void @f() #0 #1 { ... }
1245
Sean Silvab084af42012-12-07 10:36:55 +00001246.. _fnattrs:
1247
1248Function Attributes
1249-------------------
1250
1251Function attributes are set to communicate additional information about
1252a function. Function attributes are considered to be part of the
1253function, not of the function type, so functions with different function
1254attributes can have the same function type.
1255
1256Function attributes are simple keywords that follow the type specified.
1257If multiple attributes are needed, they are space separated. For
1258example:
1259
1260.. code-block:: llvm
1261
1262 define void @f() noinline { ... }
1263 define void @f() alwaysinline { ... }
1264 define void @f() alwaysinline optsize { ... }
1265 define void @f() optsize { ... }
1266
Sean Silvab084af42012-12-07 10:36:55 +00001267``alignstack(<n>)``
1268 This attribute indicates that, when emitting the prologue and
1269 epilogue, the backend should forcibly align the stack pointer.
1270 Specify the desired alignment, which must be a power of two, in
1271 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001272``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1273 This attribute indicates that the annotated function will always return at
1274 least a given number of bytes (or null). Its arguments are zero-indexed
1275 parameter numbers; if one argument is provided, then it's assumed that at
1276 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1277 returned pointer. If two are provided, then it's assumed that
1278 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1279 available. The referenced parameters must be integer types. No assumptions
1280 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001281``alwaysinline``
1282 This attribute indicates that the inliner should attempt to inline
1283 this function into callers whenever possible, ignoring any active
1284 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001285``builtin``
1286 This indicates that the callee function at a call site should be
1287 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001288 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001289 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001290 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001291``cold``
1292 This attribute indicates that this function is rarely called. When
1293 computing edge weights, basic blocks post-dominated by a cold
1294 function call are also considered to be cold; and, thus, given low
1295 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001296``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001297 In some parallel execution models, there exist operations that cannot be
1298 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001299 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001300
Justin Lebar58535b12016-02-17 17:46:41 +00001301 The ``convergent`` attribute may appear on functions or call/invoke
1302 instructions. When it appears on a function, it indicates that calls to
1303 this function should not be made control-dependent on additional values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001304 For example, the intrinsic ``llvm.cuda.syncthreads`` is ``convergent``, so
1305 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001306 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001307
Justin Lebar58535b12016-02-17 17:46:41 +00001308 When it appears on a call/invoke, the ``convergent`` attribute indicates
1309 that we should treat the call as though we're calling a convergent
1310 function. This is particularly useful on indirect calls; without this we
1311 may treat such calls as though the target is non-convergent.
1312
1313 The optimizer may remove the ``convergent`` attribute on functions when it
1314 can prove that the function does not execute any convergent operations.
1315 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1316 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001317``inaccessiblememonly``
1318 This attribute indicates that the function may only access memory that
1319 is not accessible by the module being compiled. This is a weaker form
1320 of ``readnone``.
1321``inaccessiblemem_or_argmemonly``
1322 This attribute indicates that the function may only access memory that is
1323 either not accessible by the module being compiled, or is pointed to
1324 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001325``inlinehint``
1326 This attribute indicates that the source code contained a hint that
1327 inlining this function is desirable (such as the "inline" keyword in
1328 C/C++). It is just a hint; it imposes no requirements on the
1329 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001330``jumptable``
1331 This attribute indicates that the function should be added to a
1332 jump-instruction table at code-generation time, and that all address-taken
1333 references to this function should be replaced with a reference to the
1334 appropriate jump-instruction-table function pointer. Note that this creates
1335 a new pointer for the original function, which means that code that depends
1336 on function-pointer identity can break. So, any function annotated with
1337 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001338``minsize``
1339 This attribute suggests that optimization passes and code generator
1340 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001341 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001342 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001343``naked``
1344 This attribute disables prologue / epilogue emission for the
1345 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001346``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001347 This indicates that the callee function at a call site is not recognized as
1348 a built-in function. LLVM will retain the original call and not replace it
1349 with equivalent code based on the semantics of the built-in function, unless
1350 the call site uses the ``builtin`` attribute. This is valid at call sites
1351 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001352``noduplicate``
1353 This attribute indicates that calls to the function cannot be
1354 duplicated. A call to a ``noduplicate`` function may be moved
1355 within its parent function, but may not be duplicated within
1356 its parent function.
1357
1358 A function containing a ``noduplicate`` call may still
1359 be an inlining candidate, provided that the call is not
1360 duplicated by inlining. That implies that the function has
1361 internal linkage and only has one call site, so the original
1362 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001363``noimplicitfloat``
1364 This attributes disables implicit floating point instructions.
1365``noinline``
1366 This attribute indicates that the inliner should never inline this
1367 function in any situation. This attribute may not be used together
1368 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001369``nonlazybind``
1370 This attribute suppresses lazy symbol binding for the function. This
1371 may make calls to the function faster, at the cost of extra program
1372 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001373``noredzone``
1374 This attribute indicates that the code generator should not use a
1375 red zone, even if the target-specific ABI normally permits it.
1376``noreturn``
1377 This function attribute indicates that the function never returns
1378 normally. This produces undefined behavior at runtime if the
1379 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001380``norecurse``
1381 This function attribute indicates that the function does not call itself
1382 either directly or indirectly down any possible call path. This produces
1383 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001384``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001385 This function attribute indicates that the function never raises an
1386 exception. If the function does raise an exception, its runtime
1387 behavior is undefined. However, functions marked nounwind may still
1388 trap or generate asynchronous exceptions. Exception handling schemes
1389 that are recognized by LLVM to handle asynchronous exceptions, such
1390 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001391``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001392 This function attribute indicates that most optimization passes will skip
1393 this function, with the exception of interprocedural optimization passes.
1394 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001395 This attribute cannot be used together with the ``alwaysinline``
1396 attribute; this attribute is also incompatible
1397 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001398
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001399 This attribute requires the ``noinline`` attribute to be specified on
1400 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001401 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001402 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001403``optsize``
1404 This attribute suggests that optimization passes and code generator
1405 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001406 and otherwise do optimizations specifically to reduce code size as
1407 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001408``"patchable-function"``
1409 This attribute tells the code generator that the code
1410 generated for this function needs to follow certain conventions that
1411 make it possible for a runtime function to patch over it later.
1412 The exact effect of this attribute depends on its string value,
1413 for which there currently is one legal possiblity:
1414
1415 * ``"prologue-short-redirect"`` - This style of patchable
1416 function is intended to support patching a function prologue to
1417 redirect control away from the function in a thread safe
1418 manner. It guarantees that the first instruction of the
1419 function will be large enough to accommodate a short jump
1420 instruction, and will be sufficiently aligned to allow being
1421 fully changed via an atomic compare-and-swap instruction.
1422 While the first requirement can be satisfied by inserting large
1423 enough NOP, LLVM can and will try to re-purpose an existing
1424 instruction (i.e. one that would have to be emitted anyway) as
1425 the patchable instruction larger than a short jump.
1426
1427 ``"prologue-short-redirect"`` is currently only supported on
1428 x86-64.
1429
1430 This attribute by itself does not imply restrictions on
1431 inter-procedural optimizations. All of the semantic effects the
1432 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001433``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001434 On a function, this attribute indicates that the function computes its
1435 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001436 without dereferencing any pointer arguments or otherwise accessing
1437 any mutable state (e.g. memory, control registers, etc) visible to
1438 caller functions. It does not write through any pointer arguments
1439 (including ``byval`` arguments) and never changes any state visible
1440 to callers. This means that it cannot unwind exceptions by calling
1441 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001442
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001443 On an argument, this attribute indicates that the function does not
1444 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001445 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001446``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001447 On a function, this attribute indicates that the function does not write
1448 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001449 modify any state (e.g. memory, control registers, etc) visible to
1450 caller functions. It may dereference pointer arguments and read
1451 state that may be set in the caller. A readonly function always
1452 returns the same value (or unwinds an exception identically) when
1453 called with the same set of arguments and global state. It cannot
1454 unwind an exception by calling the ``C++`` exception throwing
1455 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001456
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001457 On an argument, this attribute indicates that the function does not write
1458 through this pointer argument, even though it may write to the memory that
1459 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001460``argmemonly``
1461 This attribute indicates that the only memory accesses inside function are
1462 loads and stores from objects pointed to by its pointer-typed arguments,
1463 with arbitrary offsets. Or in other words, all memory operations in the
1464 function can refer to memory only using pointers based on its function
1465 arguments.
1466 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1467 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001468``returns_twice``
1469 This attribute indicates that this function can return twice. The C
1470 ``setjmp`` is an example of such a function. The compiler disables
1471 some optimizations (like tail calls) in the caller of these
1472 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001473``safestack``
1474 This attribute indicates that
1475 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1476 protection is enabled for this function.
1477
1478 If a function that has a ``safestack`` attribute is inlined into a
1479 function that doesn't have a ``safestack`` attribute or which has an
1480 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1481 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001482``sanitize_address``
1483 This attribute indicates that AddressSanitizer checks
1484 (dynamic address safety analysis) are enabled for this function.
1485``sanitize_memory``
1486 This attribute indicates that MemorySanitizer checks (dynamic detection
1487 of accesses to uninitialized memory) are enabled for this function.
1488``sanitize_thread``
1489 This attribute indicates that ThreadSanitizer checks
1490 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001491``ssp``
1492 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001493 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001494 placed on the stack before the local variables that's checked upon
1495 return from the function to see if it has been overwritten. A
1496 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001497 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001498
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001499 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1500 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1501 - Calls to alloca() with variable sizes or constant sizes greater than
1502 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001503
Josh Magee24c7f062014-02-01 01:36:16 +00001504 Variables that are identified as requiring a protector will be arranged
1505 on the stack such that they are adjacent to the stack protector guard.
1506
Sean Silvab084af42012-12-07 10:36:55 +00001507 If a function that has an ``ssp`` attribute is inlined into a
1508 function that doesn't have an ``ssp`` attribute, then the resulting
1509 function will have an ``ssp`` attribute.
1510``sspreq``
1511 This attribute indicates that the function should *always* emit a
1512 stack smashing protector. This overrides the ``ssp`` function
1513 attribute.
1514
Josh Magee24c7f062014-02-01 01:36:16 +00001515 Variables that are identified as requiring a protector will be arranged
1516 on the stack such that they are adjacent to the stack protector guard.
1517 The specific layout rules are:
1518
1519 #. Large arrays and structures containing large arrays
1520 (``>= ssp-buffer-size``) are closest to the stack protector.
1521 #. Small arrays and structures containing small arrays
1522 (``< ssp-buffer-size``) are 2nd closest to the protector.
1523 #. Variables that have had their address taken are 3rd closest to the
1524 protector.
1525
Sean Silvab084af42012-12-07 10:36:55 +00001526 If a function that has an ``sspreq`` attribute is inlined into a
1527 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001528 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1529 an ``sspreq`` attribute.
1530``sspstrong``
1531 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001532 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001533 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001534 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001535
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001536 - Arrays of any size and type
1537 - Aggregates containing an array of any size and type.
1538 - Calls to alloca().
1539 - Local variables that have had their address taken.
1540
Josh Magee24c7f062014-02-01 01:36:16 +00001541 Variables that are identified as requiring a protector will be arranged
1542 on the stack such that they are adjacent to the stack protector guard.
1543 The specific layout rules are:
1544
1545 #. Large arrays and structures containing large arrays
1546 (``>= ssp-buffer-size``) are closest to the stack protector.
1547 #. Small arrays and structures containing small arrays
1548 (``< ssp-buffer-size``) are 2nd closest to the protector.
1549 #. Variables that have had their address taken are 3rd closest to the
1550 protector.
1551
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001552 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001553
1554 If a function that has an ``sspstrong`` attribute is inlined into a
1555 function that doesn't have an ``sspstrong`` attribute, then the
1556 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001557``"thunk"``
1558 This attribute indicates that the function will delegate to some other
1559 function with a tail call. The prototype of a thunk should not be used for
1560 optimization purposes. The caller is expected to cast the thunk prototype to
1561 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001562``uwtable``
1563 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001564 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001565 show that no exceptions passes by it. This is normally the case for
1566 the ELF x86-64 abi, but it can be disabled for some compilation
1567 units.
Sean Silvab084af42012-12-07 10:36:55 +00001568
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001569
1570.. _opbundles:
1571
1572Operand Bundles
1573---------------
1574
1575Note: operand bundles are a work in progress, and they should be
1576considered experimental at this time.
1577
1578Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001579with certain LLVM instructions (currently only ``call`` s and
1580``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001581incorrect and will change program semantics.
1582
1583Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001584
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001585 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001586 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1587 bundle operand ::= SSA value
1588 tag ::= string constant
1589
1590Operand bundles are **not** part of a function's signature, and a
1591given function may be called from multiple places with different kinds
1592of operand bundles. This reflects the fact that the operand bundles
1593are conceptually a part of the ``call`` (or ``invoke``), not the
1594callee being dispatched to.
1595
1596Operand bundles are a generic mechanism intended to support
1597runtime-introspection-like functionality for managed languages. While
1598the exact semantics of an operand bundle depend on the bundle tag,
1599there are certain limitations to how much the presence of an operand
1600bundle can influence the semantics of a program. These restrictions
1601are described as the semantics of an "unknown" operand bundle. As
1602long as the behavior of an operand bundle is describable within these
1603restrictions, LLVM does not need to have special knowledge of the
1604operand bundle to not miscompile programs containing it.
1605
David Majnemer34cacb42015-10-22 01:46:38 +00001606- The bundle operands for an unknown operand bundle escape in unknown
1607 ways before control is transferred to the callee or invokee.
1608- Calls and invokes with operand bundles have unknown read / write
1609 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001610 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001611 callsite specific attributes.
1612- An operand bundle at a call site cannot change the implementation
1613 of the called function. Inter-procedural optimizations work as
1614 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001615
Sanjoy Dascdafd842015-11-11 21:38:02 +00001616More specific types of operand bundles are described below.
1617
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001618.. _deopt_opbundles:
1619
Sanjoy Dascdafd842015-11-11 21:38:02 +00001620Deoptimization Operand Bundles
1621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1622
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001623Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001624operand bundle tag. These operand bundles represent an alternate
1625"safe" continuation for the call site they're attached to, and can be
1626used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001627specified call site. There can be at most one ``"deopt"`` operand
1628bundle attached to a call site. Exact details of deoptimization is
1629out of scope for the language reference, but it usually involves
1630rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001631
1632From the compiler's perspective, deoptimization operand bundles make
1633the call sites they're attached to at least ``readonly``. They read
1634through all of their pointer typed operands (even if they're not
1635otherwise escaped) and the entire visible heap. Deoptimization
1636operand bundles do not capture their operands except during
1637deoptimization, in which case control will not be returned to the
1638compiled frame.
1639
Sanjoy Das2d161452015-11-18 06:23:38 +00001640The inliner knows how to inline through calls that have deoptimization
1641operand bundles. Just like inlining through a normal call site
1642involves composing the normal and exceptional continuations, inlining
1643through a call site with a deoptimization operand bundle needs to
1644appropriately compose the "safe" deoptimization continuation. The
1645inliner does this by prepending the parent's deoptimization
1646continuation to every deoptimization continuation in the inlined body.
1647E.g. inlining ``@f`` into ``@g`` in the following example
1648
1649.. code-block:: llvm
1650
1651 define void @f() {
1652 call void @x() ;; no deopt state
1653 call void @y() [ "deopt"(i32 10) ]
1654 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1655 ret void
1656 }
1657
1658 define void @g() {
1659 call void @f() [ "deopt"(i32 20) ]
1660 ret void
1661 }
1662
1663will result in
1664
1665.. code-block:: llvm
1666
1667 define void @g() {
1668 call void @x() ;; still no deopt state
1669 call void @y() [ "deopt"(i32 20, i32 10) ]
1670 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1671 ret void
1672 }
1673
1674It is the frontend's responsibility to structure or encode the
1675deoptimization state in a way that syntactically prepending the
1676caller's deoptimization state to the callee's deoptimization state is
1677semantically equivalent to composing the caller's deoptimization
1678continuation after the callee's deoptimization continuation.
1679
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001680.. _ob_funclet:
1681
David Majnemer3bb88c02015-12-15 21:27:27 +00001682Funclet Operand Bundles
1683^^^^^^^^^^^^^^^^^^^^^^^
1684
1685Funclet operand bundles are characterized by the ``"funclet"``
1686operand bundle tag. These operand bundles indicate that a call site
1687is within a particular funclet. There can be at most one
1688``"funclet"`` operand bundle attached to a call site and it must have
1689exactly one bundle operand.
1690
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001691If any funclet EH pads have been "entered" but not "exited" (per the
1692`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1693it is undefined behavior to execute a ``call`` or ``invoke`` which:
1694
1695* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1696 intrinsic, or
1697* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1698 not-yet-exited funclet EH pad.
1699
1700Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1701executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1702
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001703GC Transition Operand Bundles
1704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1705
1706GC transition operand bundles are characterized by the
1707``"gc-transition"`` operand bundle tag. These operand bundles mark a
1708call as a transition between a function with one GC strategy to a
1709function with a different GC strategy. If coordinating the transition
1710between GC strategies requires additional code generation at the call
1711site, these bundles may contain any values that are needed by the
1712generated code. For more details, see :ref:`GC Transitions
1713<gc_transition_args>`.
1714
Sean Silvab084af42012-12-07 10:36:55 +00001715.. _moduleasm:
1716
1717Module-Level Inline Assembly
1718----------------------------
1719
1720Modules may contain "module-level inline asm" blocks, which corresponds
1721to the GCC "file scope inline asm" blocks. These blocks are internally
1722concatenated by LLVM and treated as a single unit, but may be separated
1723in the ``.ll`` file if desired. The syntax is very simple:
1724
1725.. code-block:: llvm
1726
1727 module asm "inline asm code goes here"
1728 module asm "more can go here"
1729
1730The strings can contain any character by escaping non-printable
1731characters. The escape sequence used is simply "\\xx" where "xx" is the
1732two digit hex code for the number.
1733
James Y Knightbc832ed2015-07-08 18:08:36 +00001734Note that the assembly string *must* be parseable by LLVM's integrated assembler
1735(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001736
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001737.. _langref_datalayout:
1738
Sean Silvab084af42012-12-07 10:36:55 +00001739Data Layout
1740-----------
1741
1742A module may specify a target specific data layout string that specifies
1743how data is to be laid out in memory. The syntax for the data layout is
1744simply:
1745
1746.. code-block:: llvm
1747
1748 target datalayout = "layout specification"
1749
1750The *layout specification* consists of a list of specifications
1751separated by the minus sign character ('-'). Each specification starts
1752with a letter and may include other information after the letter to
1753define some aspect of the data layout. The specifications accepted are
1754as follows:
1755
1756``E``
1757 Specifies that the target lays out data in big-endian form. That is,
1758 the bits with the most significance have the lowest address
1759 location.
1760``e``
1761 Specifies that the target lays out data in little-endian form. That
1762 is, the bits with the least significance have the lowest address
1763 location.
1764``S<size>``
1765 Specifies the natural alignment of the stack in bits. Alignment
1766 promotion of stack variables is limited to the natural stack
1767 alignment to avoid dynamic stack realignment. The stack alignment
1768 must be a multiple of 8-bits. If omitted, the natural stack
1769 alignment defaults to "unspecified", which does not prevent any
1770 alignment promotions.
1771``p[n]:<size>:<abi>:<pref>``
1772 This specifies the *size* of a pointer and its ``<abi>`` and
1773 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001774 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001775 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001776 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001777``i<size>:<abi>:<pref>``
1778 This specifies the alignment for an integer type of a given bit
1779 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1780``v<size>:<abi>:<pref>``
1781 This specifies the alignment for a vector type of a given bit
1782 ``<size>``.
1783``f<size>:<abi>:<pref>``
1784 This specifies the alignment for a floating point type of a given bit
1785 ``<size>``. Only values of ``<size>`` that are supported by the target
1786 will work. 32 (float) and 64 (double) are supported on all targets; 80
1787 or 128 (different flavors of long double) are also supported on some
1788 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001789``a:<abi>:<pref>``
1790 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001791``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001792 If present, specifies that llvm names are mangled in the output. The
1793 options are
1794
1795 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1796 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1797 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1798 symbols get a ``_`` prefix.
1799 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1800 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001801 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1802 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001803``n<size1>:<size2>:<size3>...``
1804 This specifies a set of native integer widths for the target CPU in
1805 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1806 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1807 this set are considered to support most general arithmetic operations
1808 efficiently.
1809
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001810On every specification that takes a ``<abi>:<pref>``, specifying the
1811``<pref>`` alignment is optional. If omitted, the preceding ``:``
1812should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1813
Sean Silvab084af42012-12-07 10:36:55 +00001814When constructing the data layout for a given target, LLVM starts with a
1815default set of specifications which are then (possibly) overridden by
1816the specifications in the ``datalayout`` keyword. The default
1817specifications are given in this list:
1818
1819- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001820- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1821- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1822 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001823- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001824- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1825- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1826- ``i16:16:16`` - i16 is 16-bit aligned
1827- ``i32:32:32`` - i32 is 32-bit aligned
1828- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1829 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001830- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001831- ``f32:32:32`` - float is 32-bit aligned
1832- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001833- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001834- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1835- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001836- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001837
1838When LLVM is determining the alignment for a given type, it uses the
1839following rules:
1840
1841#. If the type sought is an exact match for one of the specifications,
1842 that specification is used.
1843#. If no match is found, and the type sought is an integer type, then
1844 the smallest integer type that is larger than the bitwidth of the
1845 sought type is used. If none of the specifications are larger than
1846 the bitwidth then the largest integer type is used. For example,
1847 given the default specifications above, the i7 type will use the
1848 alignment of i8 (next largest) while both i65 and i256 will use the
1849 alignment of i64 (largest specified).
1850#. If no match is found, and the type sought is a vector type, then the
1851 largest vector type that is smaller than the sought vector type will
1852 be used as a fall back. This happens because <128 x double> can be
1853 implemented in terms of 64 <2 x double>, for example.
1854
1855The function of the data layout string may not be what you expect.
1856Notably, this is not a specification from the frontend of what alignment
1857the code generator should use.
1858
1859Instead, if specified, the target data layout is required to match what
1860the ultimate *code generator* expects. This string is used by the
1861mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001862what the ultimate code generator uses. There is no way to generate IR
1863that does not embed this target-specific detail into the IR. If you
1864don't specify the string, the default specifications will be used to
1865generate a Data Layout and the optimization phases will operate
1866accordingly and introduce target specificity into the IR with respect to
1867these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001868
Bill Wendling5cc90842013-10-18 23:41:25 +00001869.. _langref_triple:
1870
1871Target Triple
1872-------------
1873
1874A module may specify a target triple string that describes the target
1875host. The syntax for the target triple is simply:
1876
1877.. code-block:: llvm
1878
1879 target triple = "x86_64-apple-macosx10.7.0"
1880
1881The *target triple* string consists of a series of identifiers delimited
1882by the minus sign character ('-'). The canonical forms are:
1883
1884::
1885
1886 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1887 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1888
1889This information is passed along to the backend so that it generates
1890code for the proper architecture. It's possible to override this on the
1891command line with the ``-mtriple`` command line option.
1892
Sean Silvab084af42012-12-07 10:36:55 +00001893.. _pointeraliasing:
1894
1895Pointer Aliasing Rules
1896----------------------
1897
1898Any memory access must be done through a pointer value associated with
1899an address range of the memory access, otherwise the behavior is
1900undefined. Pointer values are associated with address ranges according
1901to the following rules:
1902
1903- A pointer value is associated with the addresses associated with any
1904 value it is *based* on.
1905- An address of a global variable is associated with the address range
1906 of the variable's storage.
1907- The result value of an allocation instruction is associated with the
1908 address range of the allocated storage.
1909- A null pointer in the default address-space is associated with no
1910 address.
1911- An integer constant other than zero or a pointer value returned from
1912 a function not defined within LLVM may be associated with address
1913 ranges allocated through mechanisms other than those provided by
1914 LLVM. Such ranges shall not overlap with any ranges of addresses
1915 allocated by mechanisms provided by LLVM.
1916
1917A pointer value is *based* on another pointer value according to the
1918following rules:
1919
1920- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001921 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001922- The result value of a ``bitcast`` is *based* on the operand of the
1923 ``bitcast``.
1924- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1925 values that contribute (directly or indirectly) to the computation of
1926 the pointer's value.
1927- The "*based* on" relationship is transitive.
1928
1929Note that this definition of *"based"* is intentionally similar to the
1930definition of *"based"* in C99, though it is slightly weaker.
1931
1932LLVM IR does not associate types with memory. The result type of a
1933``load`` merely indicates the size and alignment of the memory from
1934which to load, as well as the interpretation of the value. The first
1935operand type of a ``store`` similarly only indicates the size and
1936alignment of the store.
1937
1938Consequently, type-based alias analysis, aka TBAA, aka
1939``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1940:ref:`Metadata <metadata>` may be used to encode additional information
1941which specialized optimization passes may use to implement type-based
1942alias analysis.
1943
1944.. _volatile:
1945
1946Volatile Memory Accesses
1947------------------------
1948
1949Certain memory accesses, such as :ref:`load <i_load>`'s,
1950:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1951marked ``volatile``. The optimizers must not change the number of
1952volatile operations or change their order of execution relative to other
1953volatile operations. The optimizers *may* change the order of volatile
1954operations relative to non-volatile operations. This is not Java's
1955"volatile" and has no cross-thread synchronization behavior.
1956
Andrew Trick89fc5a62013-01-30 21:19:35 +00001957IR-level volatile loads and stores cannot safely be optimized into
1958llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1959flagged volatile. Likewise, the backend should never split or merge
1960target-legal volatile load/store instructions.
1961
Andrew Trick7e6f9282013-01-31 00:49:39 +00001962.. admonition:: Rationale
1963
1964 Platforms may rely on volatile loads and stores of natively supported
1965 data width to be executed as single instruction. For example, in C
1966 this holds for an l-value of volatile primitive type with native
1967 hardware support, but not necessarily for aggregate types. The
1968 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001969 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001970 do not violate the frontend's contract with the language.
1971
Sean Silvab084af42012-12-07 10:36:55 +00001972.. _memmodel:
1973
1974Memory Model for Concurrent Operations
1975--------------------------------------
1976
1977The LLVM IR does not define any way to start parallel threads of
1978execution or to register signal handlers. Nonetheless, there are
1979platform-specific ways to create them, and we define LLVM IR's behavior
1980in their presence. This model is inspired by the C++0x memory model.
1981
1982For a more informal introduction to this model, see the :doc:`Atomics`.
1983
1984We define a *happens-before* partial order as the least partial order
1985that
1986
1987- Is a superset of single-thread program order, and
1988- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1989 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1990 techniques, like pthread locks, thread creation, thread joining,
1991 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1992 Constraints <ordering>`).
1993
1994Note that program order does not introduce *happens-before* edges
1995between a thread and signals executing inside that thread.
1996
1997Every (defined) read operation (load instructions, memcpy, atomic
1998loads/read-modify-writes, etc.) R reads a series of bytes written by
1999(defined) write operations (store instructions, atomic
2000stores/read-modify-writes, memcpy, etc.). For the purposes of this
2001section, initialized globals are considered to have a write of the
2002initializer which is atomic and happens before any other read or write
2003of the memory in question. For each byte of a read R, R\ :sub:`byte`
2004may see any write to the same byte, except:
2005
2006- If write\ :sub:`1` happens before write\ :sub:`2`, and
2007 write\ :sub:`2` happens before R\ :sub:`byte`, then
2008 R\ :sub:`byte` does not see write\ :sub:`1`.
2009- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2010 R\ :sub:`byte` does not see write\ :sub:`3`.
2011
2012Given that definition, R\ :sub:`byte` is defined as follows:
2013
2014- If R is volatile, the result is target-dependent. (Volatile is
2015 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002016 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002017 like normal memory. It does not generally provide cross-thread
2018 synchronization.)
2019- Otherwise, if there is no write to the same byte that happens before
2020 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2021- Otherwise, if R\ :sub:`byte` may see exactly one write,
2022 R\ :sub:`byte` returns the value written by that write.
2023- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2024 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2025 Memory Ordering Constraints <ordering>` section for additional
2026 constraints on how the choice is made.
2027- Otherwise R\ :sub:`byte` returns ``undef``.
2028
2029R returns the value composed of the series of bytes it read. This
2030implies that some bytes within the value may be ``undef`` **without**
2031the entire value being ``undef``. Note that this only defines the
2032semantics of the operation; it doesn't mean that targets will emit more
2033than one instruction to read the series of bytes.
2034
2035Note that in cases where none of the atomic intrinsics are used, this
2036model places only one restriction on IR transformations on top of what
2037is required for single-threaded execution: introducing a store to a byte
2038which might not otherwise be stored is not allowed in general.
2039(Specifically, in the case where another thread might write to and read
2040from an address, introducing a store can change a load that may see
2041exactly one write into a load that may see multiple writes.)
2042
2043.. _ordering:
2044
2045Atomic Memory Ordering Constraints
2046----------------------------------
2047
2048Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2049:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2050:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002051ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002052the same address they *synchronize with*. These semantics are borrowed
2053from Java and C++0x, but are somewhat more colloquial. If these
2054descriptions aren't precise enough, check those specs (see spec
2055references in the :doc:`atomics guide <Atomics>`).
2056:ref:`fence <i_fence>` instructions treat these orderings somewhat
2057differently since they don't take an address. See that instruction's
2058documentation for details.
2059
2060For a simpler introduction to the ordering constraints, see the
2061:doc:`Atomics`.
2062
2063``unordered``
2064 The set of values that can be read is governed by the happens-before
2065 partial order. A value cannot be read unless some operation wrote
2066 it. This is intended to provide a guarantee strong enough to model
2067 Java's non-volatile shared variables. This ordering cannot be
2068 specified for read-modify-write operations; it is not strong enough
2069 to make them atomic in any interesting way.
2070``monotonic``
2071 In addition to the guarantees of ``unordered``, there is a single
2072 total order for modifications by ``monotonic`` operations on each
2073 address. All modification orders must be compatible with the
2074 happens-before order. There is no guarantee that the modification
2075 orders can be combined to a global total order for the whole program
2076 (and this often will not be possible). The read in an atomic
2077 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2078 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2079 order immediately before the value it writes. If one atomic read
2080 happens before another atomic read of the same address, the later
2081 read must see the same value or a later value in the address's
2082 modification order. This disallows reordering of ``monotonic`` (or
2083 stronger) operations on the same address. If an address is written
2084 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2085 read that address repeatedly, the other threads must eventually see
2086 the write. This corresponds to the C++0x/C1x
2087 ``memory_order_relaxed``.
2088``acquire``
2089 In addition to the guarantees of ``monotonic``, a
2090 *synchronizes-with* edge may be formed with a ``release`` operation.
2091 This is intended to model C++'s ``memory_order_acquire``.
2092``release``
2093 In addition to the guarantees of ``monotonic``, if this operation
2094 writes a value which is subsequently read by an ``acquire``
2095 operation, it *synchronizes-with* that operation. (This isn't a
2096 complete description; see the C++0x definition of a release
2097 sequence.) This corresponds to the C++0x/C1x
2098 ``memory_order_release``.
2099``acq_rel`` (acquire+release)
2100 Acts as both an ``acquire`` and ``release`` operation on its
2101 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2102``seq_cst`` (sequentially consistent)
2103 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002104 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002105 writes), there is a global total order on all
2106 sequentially-consistent operations on all addresses, which is
2107 consistent with the *happens-before* partial order and with the
2108 modification orders of all the affected addresses. Each
2109 sequentially-consistent read sees the last preceding write to the
2110 same address in this global order. This corresponds to the C++0x/C1x
2111 ``memory_order_seq_cst`` and Java volatile.
2112
2113.. _singlethread:
2114
2115If an atomic operation is marked ``singlethread``, it only *synchronizes
2116with* or participates in modification and seq\_cst total orderings with
2117other operations running in the same thread (for example, in signal
2118handlers).
2119
2120.. _fastmath:
2121
2122Fast-Math Flags
2123---------------
2124
2125LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2126:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002127:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2128be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002129
2130``nnan``
2131 No NaNs - Allow optimizations to assume the arguments and result are not
2132 NaN. Such optimizations are required to retain defined behavior over
2133 NaNs, but the value of the result is undefined.
2134
2135``ninf``
2136 No Infs - Allow optimizations to assume the arguments and result are not
2137 +/-Inf. Such optimizations are required to retain defined behavior over
2138 +/-Inf, but the value of the result is undefined.
2139
2140``nsz``
2141 No Signed Zeros - Allow optimizations to treat the sign of a zero
2142 argument or result as insignificant.
2143
2144``arcp``
2145 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2146 argument rather than perform division.
2147
2148``fast``
2149 Fast - Allow algebraically equivalent transformations that may
2150 dramatically change results in floating point (e.g. reassociate). This
2151 flag implies all the others.
2152
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002153.. _uselistorder:
2154
2155Use-list Order Directives
2156-------------------------
2157
2158Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002159order to be recreated. ``<order-indexes>`` is a comma-separated list of
2160indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002161value's use-list is immediately sorted by these indexes.
2162
Sean Silvaa1190322015-08-06 22:56:48 +00002163Use-list directives may appear at function scope or global scope. They are not
2164instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002165function scope, they must appear after the terminator of the final basic block.
2166
2167If basic blocks have their address taken via ``blockaddress()`` expressions,
2168``uselistorder_bb`` can be used to reorder their use-lists from outside their
2169function's scope.
2170
2171:Syntax:
2172
2173::
2174
2175 uselistorder <ty> <value>, { <order-indexes> }
2176 uselistorder_bb @function, %block { <order-indexes> }
2177
2178:Examples:
2179
2180::
2181
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002182 define void @foo(i32 %arg1, i32 %arg2) {
2183 entry:
2184 ; ... instructions ...
2185 bb:
2186 ; ... instructions ...
2187
2188 ; At function scope.
2189 uselistorder i32 %arg1, { 1, 0, 2 }
2190 uselistorder label %bb, { 1, 0 }
2191 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002192
2193 ; At global scope.
2194 uselistorder i32* @global, { 1, 2, 0 }
2195 uselistorder i32 7, { 1, 0 }
2196 uselistorder i32 (i32) @bar, { 1, 0 }
2197 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2198
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002199.. _source_filename:
2200
2201Source Filename
2202---------------
2203
2204The *source filename* string is set to the original module identifier,
2205which will be the name of the compiled source file when compiling from
2206source through the clang front end, for example. It is then preserved through
2207the IR and bitcode.
2208
2209This is currently necessary to generate a consistent unique global
2210identifier for local functions used in profile data, which prepends the
2211source file name to the local function name.
2212
2213The syntax for the source file name is simply:
2214
2215.. code-block:: llvm
2216
2217 source_filename = "/path/to/source.c"
2218
Sean Silvab084af42012-12-07 10:36:55 +00002219.. _typesystem:
2220
2221Type System
2222===========
2223
2224The LLVM type system is one of the most important features of the
2225intermediate representation. Being typed enables a number of
2226optimizations to be performed on the intermediate representation
2227directly, without having to do extra analyses on the side before the
2228transformation. A strong type system makes it easier to read the
2229generated code and enables novel analyses and transformations that are
2230not feasible to perform on normal three address code representations.
2231
Rafael Espindola08013342013-12-07 19:34:20 +00002232.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002233
Rafael Espindola08013342013-12-07 19:34:20 +00002234Void Type
2235---------
Sean Silvab084af42012-12-07 10:36:55 +00002236
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002237:Overview:
2238
Rafael Espindola08013342013-12-07 19:34:20 +00002239
2240The void type does not represent any value and has no size.
2241
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002242:Syntax:
2243
Rafael Espindola08013342013-12-07 19:34:20 +00002244
2245::
2246
2247 void
Sean Silvab084af42012-12-07 10:36:55 +00002248
2249
Rafael Espindola08013342013-12-07 19:34:20 +00002250.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002251
Rafael Espindola08013342013-12-07 19:34:20 +00002252Function Type
2253-------------
Sean Silvab084af42012-12-07 10:36:55 +00002254
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002255:Overview:
2256
Sean Silvab084af42012-12-07 10:36:55 +00002257
Rafael Espindola08013342013-12-07 19:34:20 +00002258The function type can be thought of as a function signature. It consists of a
2259return type and a list of formal parameter types. The return type of a function
2260type is a void type or first class type --- except for :ref:`label <t_label>`
2261and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002262
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002263:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002264
Rafael Espindola08013342013-12-07 19:34:20 +00002265::
Sean Silvab084af42012-12-07 10:36:55 +00002266
Rafael Espindola08013342013-12-07 19:34:20 +00002267 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002268
Rafael Espindola08013342013-12-07 19:34:20 +00002269...where '``<parameter list>``' is a comma-separated list of type
2270specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002271indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002272argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002273handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002274except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002275
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002276:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002277
Rafael Espindola08013342013-12-07 19:34:20 +00002278+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2279| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2280+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2281| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2282+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2283| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2284+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2285| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2286+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2287
2288.. _t_firstclass:
2289
2290First Class Types
2291-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002292
2293The :ref:`first class <t_firstclass>` types are perhaps the most important.
2294Values of these types are the only ones which can be produced by
2295instructions.
2296
Rafael Espindola08013342013-12-07 19:34:20 +00002297.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002298
Rafael Espindola08013342013-12-07 19:34:20 +00002299Single Value Types
2300^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002301
Rafael Espindola08013342013-12-07 19:34:20 +00002302These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002303
2304.. _t_integer:
2305
2306Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002307""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002308
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002309:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002310
2311The integer type is a very simple type that simply specifies an
2312arbitrary bit width for the integer type desired. Any bit width from 1
2313bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2314
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002315:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002316
2317::
2318
2319 iN
2320
2321The number of bits the integer will occupy is specified by the ``N``
2322value.
2323
2324Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002325*********
Sean Silvab084af42012-12-07 10:36:55 +00002326
2327+----------------+------------------------------------------------+
2328| ``i1`` | a single-bit integer. |
2329+----------------+------------------------------------------------+
2330| ``i32`` | a 32-bit integer. |
2331+----------------+------------------------------------------------+
2332| ``i1942652`` | a really big integer of over 1 million bits. |
2333+----------------+------------------------------------------------+
2334
2335.. _t_floating:
2336
2337Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002338""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002339
2340.. list-table::
2341 :header-rows: 1
2342
2343 * - Type
2344 - Description
2345
2346 * - ``half``
2347 - 16-bit floating point value
2348
2349 * - ``float``
2350 - 32-bit floating point value
2351
2352 * - ``double``
2353 - 64-bit floating point value
2354
2355 * - ``fp128``
2356 - 128-bit floating point value (112-bit mantissa)
2357
2358 * - ``x86_fp80``
2359 - 80-bit floating point value (X87)
2360
2361 * - ``ppc_fp128``
2362 - 128-bit floating point value (two 64-bits)
2363
Reid Kleckner9a16d082014-03-05 02:41:37 +00002364X86_mmx Type
2365""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002366
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002367:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002368
Reid Kleckner9a16d082014-03-05 02:41:37 +00002369The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002370machine. The operations allowed on it are quite limited: parameters and
2371return values, load and store, and bitcast. User-specified MMX
2372instructions are represented as intrinsic or asm calls with arguments
2373and/or results of this type. There are no arrays, vectors or constants
2374of this type.
2375
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002376:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002377
2378::
2379
Reid Kleckner9a16d082014-03-05 02:41:37 +00002380 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002381
Sean Silvab084af42012-12-07 10:36:55 +00002382
Rafael Espindola08013342013-12-07 19:34:20 +00002383.. _t_pointer:
2384
2385Pointer Type
2386""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002387
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002388:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002389
Rafael Espindola08013342013-12-07 19:34:20 +00002390The pointer type is used to specify memory locations. Pointers are
2391commonly used to reference objects in memory.
2392
2393Pointer types may have an optional address space attribute defining the
2394numbered address space where the pointed-to object resides. The default
2395address space is number zero. The semantics of non-zero address spaces
2396are target-specific.
2397
2398Note that LLVM does not permit pointers to void (``void*``) nor does it
2399permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002400
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002401:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002402
2403::
2404
Rafael Espindola08013342013-12-07 19:34:20 +00002405 <type> *
2406
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002407:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002408
2409+-------------------------+--------------------------------------------------------------------------------------------------------------+
2410| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2411+-------------------------+--------------------------------------------------------------------------------------------------------------+
2412| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2413+-------------------------+--------------------------------------------------------------------------------------------------------------+
2414| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2415+-------------------------+--------------------------------------------------------------------------------------------------------------+
2416
2417.. _t_vector:
2418
2419Vector Type
2420"""""""""""
2421
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002422:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002423
2424A vector type is a simple derived type that represents a vector of
2425elements. Vector types are used when multiple primitive data are
2426operated in parallel using a single instruction (SIMD). A vector type
2427requires a size (number of elements) and an underlying primitive data
2428type. Vector types are considered :ref:`first class <t_firstclass>`.
2429
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002430:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002431
2432::
2433
2434 < <# elements> x <elementtype> >
2435
2436The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002437elementtype may be any integer, floating point or pointer type. Vectors
2438of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002439
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002440:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002441
2442+-------------------+--------------------------------------------------+
2443| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2444+-------------------+--------------------------------------------------+
2445| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2446+-------------------+--------------------------------------------------+
2447| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2448+-------------------+--------------------------------------------------+
2449| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2450+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002451
2452.. _t_label:
2453
2454Label Type
2455^^^^^^^^^^
2456
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002457:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002458
2459The label type represents code labels.
2460
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002461:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002462
2463::
2464
2465 label
2466
David Majnemerb611e3f2015-08-14 05:09:07 +00002467.. _t_token:
2468
2469Token Type
2470^^^^^^^^^^
2471
2472:Overview:
2473
2474The token type is used when a value is associated with an instruction
2475but all uses of the value must not attempt to introspect or obscure it.
2476As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2477:ref:`select <i_select>` of type token.
2478
2479:Syntax:
2480
2481::
2482
2483 token
2484
2485
2486
Sean Silvab084af42012-12-07 10:36:55 +00002487.. _t_metadata:
2488
2489Metadata Type
2490^^^^^^^^^^^^^
2491
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002492:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002493
2494The metadata type represents embedded metadata. No derived types may be
2495created from metadata except for :ref:`function <t_function>` arguments.
2496
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002497:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002498
2499::
2500
2501 metadata
2502
Sean Silvab084af42012-12-07 10:36:55 +00002503.. _t_aggregate:
2504
2505Aggregate Types
2506^^^^^^^^^^^^^^^
2507
2508Aggregate Types are a subset of derived types that can contain multiple
2509member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2510aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2511aggregate types.
2512
2513.. _t_array:
2514
2515Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002516""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002517
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002518:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002519
2520The array type is a very simple derived type that arranges elements
2521sequentially in memory. The array type requires a size (number of
2522elements) and an underlying data type.
2523
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002524:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002525
2526::
2527
2528 [<# elements> x <elementtype>]
2529
2530The number of elements is a constant integer value; ``elementtype`` may
2531be any type with a size.
2532
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002533:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002534
2535+------------------+--------------------------------------+
2536| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2537+------------------+--------------------------------------+
2538| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2539+------------------+--------------------------------------+
2540| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2541+------------------+--------------------------------------+
2542
2543Here are some examples of multidimensional arrays:
2544
2545+-----------------------------+----------------------------------------------------------+
2546| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2547+-----------------------------+----------------------------------------------------------+
2548| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2549+-----------------------------+----------------------------------------------------------+
2550| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2551+-----------------------------+----------------------------------------------------------+
2552
2553There is no restriction on indexing beyond the end of the array implied
2554by a static type (though there are restrictions on indexing beyond the
2555bounds of an allocated object in some cases). This means that
2556single-dimension 'variable sized array' addressing can be implemented in
2557LLVM with a zero length array type. An implementation of 'pascal style
2558arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2559example.
2560
Sean Silvab084af42012-12-07 10:36:55 +00002561.. _t_struct:
2562
2563Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002564""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002565
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002566:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002567
2568The structure type is used to represent a collection of data members
2569together in memory. The elements of a structure may be any type that has
2570a size.
2571
2572Structures in memory are accessed using '``load``' and '``store``' by
2573getting a pointer to a field with the '``getelementptr``' instruction.
2574Structures in registers are accessed using the '``extractvalue``' and
2575'``insertvalue``' instructions.
2576
2577Structures may optionally be "packed" structures, which indicate that
2578the alignment of the struct is one byte, and that there is no padding
2579between the elements. In non-packed structs, padding between field types
2580is inserted as defined by the DataLayout string in the module, which is
2581required to match what the underlying code generator expects.
2582
2583Structures can either be "literal" or "identified". A literal structure
2584is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2585identified types are always defined at the top level with a name.
2586Literal types are uniqued by their contents and can never be recursive
2587or opaque since there is no way to write one. Identified types can be
2588recursive, can be opaqued, and are never uniqued.
2589
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002590:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002591
2592::
2593
2594 %T1 = type { <type list> } ; Identified normal struct type
2595 %T2 = type <{ <type list> }> ; Identified packed struct type
2596
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002597:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002598
2599+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2600| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2601+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002602| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002603+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2604| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2605+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2606
2607.. _t_opaque:
2608
2609Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002610""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002611
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002612:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002613
2614Opaque structure types are used to represent named structure types that
2615do not have a body specified. This corresponds (for example) to the C
2616notion of a forward declared structure.
2617
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002618:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002619
2620::
2621
2622 %X = type opaque
2623 %52 = type opaque
2624
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002625:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002626
2627+--------------+-------------------+
2628| ``opaque`` | An opaque type. |
2629+--------------+-------------------+
2630
Sean Silva1703e702014-04-08 21:06:22 +00002631.. _constants:
2632
Sean Silvab084af42012-12-07 10:36:55 +00002633Constants
2634=========
2635
2636LLVM has several different basic types of constants. This section
2637describes them all and their syntax.
2638
2639Simple Constants
2640----------------
2641
2642**Boolean constants**
2643 The two strings '``true``' and '``false``' are both valid constants
2644 of the ``i1`` type.
2645**Integer constants**
2646 Standard integers (such as '4') are constants of the
2647 :ref:`integer <t_integer>` type. Negative numbers may be used with
2648 integer types.
2649**Floating point constants**
2650 Floating point constants use standard decimal notation (e.g.
2651 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2652 hexadecimal notation (see below). The assembler requires the exact
2653 decimal value of a floating-point constant. For example, the
2654 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2655 decimal in binary. Floating point constants must have a :ref:`floating
2656 point <t_floating>` type.
2657**Null pointer constants**
2658 The identifier '``null``' is recognized as a null pointer constant
2659 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002660**Token constants**
2661 The identifier '``none``' is recognized as an empty token constant
2662 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002663
2664The one non-intuitive notation for constants is the hexadecimal form of
2665floating point constants. For example, the form
2666'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2667than) '``double 4.5e+15``'. The only time hexadecimal floating point
2668constants are required (and the only time that they are generated by the
2669disassembler) is when a floating point constant must be emitted but it
2670cannot be represented as a decimal floating point number in a reasonable
2671number of digits. For example, NaN's, infinities, and other special
2672values are represented in their IEEE hexadecimal format so that assembly
2673and disassembly do not cause any bits to change in the constants.
2674
2675When using the hexadecimal form, constants of types half, float, and
2676double are represented using the 16-digit form shown above (which
2677matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002678must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002679precision, respectively. Hexadecimal format is always used for long
2680double, and there are three forms of long double. The 80-bit format used
2681by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2682128-bit format used by PowerPC (two adjacent doubles) is represented by
2683``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002684represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2685will only work if they match the long double format on your target.
2686The IEEE 16-bit format (half precision) is represented by ``0xH``
2687followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2688(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002689
Reid Kleckner9a16d082014-03-05 02:41:37 +00002690There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002691
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002692.. _complexconstants:
2693
Sean Silvab084af42012-12-07 10:36:55 +00002694Complex Constants
2695-----------------
2696
2697Complex constants are a (potentially recursive) combination of simple
2698constants and smaller complex constants.
2699
2700**Structure constants**
2701 Structure constants are represented with notation similar to
2702 structure type definitions (a comma separated list of elements,
2703 surrounded by braces (``{}``)). For example:
2704 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2705 "``@G = external global i32``". Structure constants must have
2706 :ref:`structure type <t_struct>`, and the number and types of elements
2707 must match those specified by the type.
2708**Array constants**
2709 Array constants are represented with notation similar to array type
2710 definitions (a comma separated list of elements, surrounded by
2711 square brackets (``[]``)). For example:
2712 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2713 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002714 match those specified by the type. As a special case, character array
2715 constants may also be represented as a double-quoted string using the ``c``
2716 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002717**Vector constants**
2718 Vector constants are represented with notation similar to vector
2719 type definitions (a comma separated list of elements, surrounded by
2720 less-than/greater-than's (``<>``)). For example:
2721 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2722 must have :ref:`vector type <t_vector>`, and the number and types of
2723 elements must match those specified by the type.
2724**Zero initialization**
2725 The string '``zeroinitializer``' can be used to zero initialize a
2726 value to zero of *any* type, including scalar and
2727 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2728 having to print large zero initializers (e.g. for large arrays) and
2729 is always exactly equivalent to using explicit zero initializers.
2730**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002731 A metadata node is a constant tuple without types. For example:
2732 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002733 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2734 Unlike other typed constants that are meant to be interpreted as part of
2735 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002736 information such as debug info.
2737
2738Global Variable and Function Addresses
2739--------------------------------------
2740
2741The addresses of :ref:`global variables <globalvars>` and
2742:ref:`functions <functionstructure>` are always implicitly valid
2743(link-time) constants. These constants are explicitly referenced when
2744the :ref:`identifier for the global <identifiers>` is used and always have
2745:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2746file:
2747
2748.. code-block:: llvm
2749
2750 @X = global i32 17
2751 @Y = global i32 42
2752 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2753
2754.. _undefvalues:
2755
2756Undefined Values
2757----------------
2758
2759The string '``undef``' can be used anywhere a constant is expected, and
2760indicates that the user of the value may receive an unspecified
2761bit-pattern. Undefined values may be of any type (other than '``label``'
2762or '``void``') and be used anywhere a constant is permitted.
2763
2764Undefined values are useful because they indicate to the compiler that
2765the program is well defined no matter what value is used. This gives the
2766compiler more freedom to optimize. Here are some examples of
2767(potentially surprising) transformations that are valid (in pseudo IR):
2768
2769.. code-block:: llvm
2770
2771 %A = add %X, undef
2772 %B = sub %X, undef
2773 %C = xor %X, undef
2774 Safe:
2775 %A = undef
2776 %B = undef
2777 %C = undef
2778
2779This is safe because all of the output bits are affected by the undef
2780bits. Any output bit can have a zero or one depending on the input bits.
2781
2782.. code-block:: llvm
2783
2784 %A = or %X, undef
2785 %B = and %X, undef
2786 Safe:
2787 %A = -1
2788 %B = 0
2789 Unsafe:
2790 %A = undef
2791 %B = undef
2792
2793These logical operations have bits that are not always affected by the
2794input. For example, if ``%X`` has a zero bit, then the output of the
2795'``and``' operation will always be a zero for that bit, no matter what
2796the corresponding bit from the '``undef``' is. As such, it is unsafe to
2797optimize or assume that the result of the '``and``' is '``undef``'.
2798However, it is safe to assume that all bits of the '``undef``' could be
27990, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2800all the bits of the '``undef``' operand to the '``or``' could be set,
2801allowing the '``or``' to be folded to -1.
2802
2803.. code-block:: llvm
2804
2805 %A = select undef, %X, %Y
2806 %B = select undef, 42, %Y
2807 %C = select %X, %Y, undef
2808 Safe:
2809 %A = %X (or %Y)
2810 %B = 42 (or %Y)
2811 %C = %Y
2812 Unsafe:
2813 %A = undef
2814 %B = undef
2815 %C = undef
2816
2817This set of examples shows that undefined '``select``' (and conditional
2818branch) conditions can go *either way*, but they have to come from one
2819of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2820both known to have a clear low bit, then ``%A`` would have to have a
2821cleared low bit. However, in the ``%C`` example, the optimizer is
2822allowed to assume that the '``undef``' operand could be the same as
2823``%Y``, allowing the whole '``select``' to be eliminated.
2824
2825.. code-block:: llvm
2826
2827 %A = xor undef, undef
2828
2829 %B = undef
2830 %C = xor %B, %B
2831
2832 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002833 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002834 %F = icmp gte %D, 4
2835
2836 Safe:
2837 %A = undef
2838 %B = undef
2839 %C = undef
2840 %D = undef
2841 %E = undef
2842 %F = undef
2843
2844This example points out that two '``undef``' operands are not
2845necessarily the same. This can be surprising to people (and also matches
2846C semantics) where they assume that "``X^X``" is always zero, even if
2847``X`` is undefined. This isn't true for a number of reasons, but the
2848short answer is that an '``undef``' "variable" can arbitrarily change
2849its value over its "live range". This is true because the variable
2850doesn't actually *have a live range*. Instead, the value is logically
2851read from arbitrary registers that happen to be around when needed, so
2852the value is not necessarily consistent over time. In fact, ``%A`` and
2853``%C`` need to have the same semantics or the core LLVM "replace all
2854uses with" concept would not hold.
2855
2856.. code-block:: llvm
2857
2858 %A = fdiv undef, %X
2859 %B = fdiv %X, undef
2860 Safe:
2861 %A = undef
2862 b: unreachable
2863
2864These examples show the crucial difference between an *undefined value*
2865and *undefined behavior*. An undefined value (like '``undef``') is
2866allowed to have an arbitrary bit-pattern. This means that the ``%A``
2867operation can be constant folded to '``undef``', because the '``undef``'
2868could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2869However, in the second example, we can make a more aggressive
2870assumption: because the ``undef`` is allowed to be an arbitrary value,
2871we are allowed to assume that it could be zero. Since a divide by zero
2872has *undefined behavior*, we are allowed to assume that the operation
2873does not execute at all. This allows us to delete the divide and all
2874code after it. Because the undefined operation "can't happen", the
2875optimizer can assume that it occurs in dead code.
2876
2877.. code-block:: llvm
2878
2879 a: store undef -> %X
2880 b: store %X -> undef
2881 Safe:
2882 a: <deleted>
2883 b: unreachable
2884
2885These examples reiterate the ``fdiv`` example: a store *of* an undefined
2886value can be assumed to not have any effect; we can assume that the
2887value is overwritten with bits that happen to match what was already
2888there. However, a store *to* an undefined location could clobber
2889arbitrary memory, therefore, it has undefined behavior.
2890
2891.. _poisonvalues:
2892
2893Poison Values
2894-------------
2895
2896Poison values are similar to :ref:`undef values <undefvalues>`, however
2897they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002898that cannot evoke side effects has nevertheless detected a condition
2899that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002900
2901There is currently no way of representing a poison value in the IR; they
2902only exist when produced by operations such as :ref:`add <i_add>` with
2903the ``nsw`` flag.
2904
2905Poison value behavior is defined in terms of value *dependence*:
2906
2907- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2908- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2909 their dynamic predecessor basic block.
2910- Function arguments depend on the corresponding actual argument values
2911 in the dynamic callers of their functions.
2912- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2913 instructions that dynamically transfer control back to them.
2914- :ref:`Invoke <i_invoke>` instructions depend on the
2915 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2916 call instructions that dynamically transfer control back to them.
2917- Non-volatile loads and stores depend on the most recent stores to all
2918 of the referenced memory addresses, following the order in the IR
2919 (including loads and stores implied by intrinsics such as
2920 :ref:`@llvm.memcpy <int_memcpy>`.)
2921- An instruction with externally visible side effects depends on the
2922 most recent preceding instruction with externally visible side
2923 effects, following the order in the IR. (This includes :ref:`volatile
2924 operations <volatile>`.)
2925- An instruction *control-depends* on a :ref:`terminator
2926 instruction <terminators>` if the terminator instruction has
2927 multiple successors and the instruction is always executed when
2928 control transfers to one of the successors, and may not be executed
2929 when control is transferred to another.
2930- Additionally, an instruction also *control-depends* on a terminator
2931 instruction if the set of instructions it otherwise depends on would
2932 be different if the terminator had transferred control to a different
2933 successor.
2934- Dependence is transitive.
2935
Richard Smith32dbdf62014-07-31 04:25:36 +00002936Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2937with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002938on a poison value has undefined behavior.
2939
2940Here are some examples:
2941
2942.. code-block:: llvm
2943
2944 entry:
2945 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2946 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002947 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002948 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2949
2950 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002951 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002952
2953 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2954
2955 %narrowaddr = bitcast i32* @g to i16*
2956 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002957 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2958 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002959
2960 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2961 br i1 %cmp, label %true, label %end ; Branch to either destination.
2962
2963 true:
2964 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2965 ; it has undefined behavior.
2966 br label %end
2967
2968 end:
2969 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2970 ; Both edges into this PHI are
2971 ; control-dependent on %cmp, so this
2972 ; always results in a poison value.
2973
2974 store volatile i32 0, i32* @g ; This would depend on the store in %true
2975 ; if %cmp is true, or the store in %entry
2976 ; otherwise, so this is undefined behavior.
2977
2978 br i1 %cmp, label %second_true, label %second_end
2979 ; The same branch again, but this time the
2980 ; true block doesn't have side effects.
2981
2982 second_true:
2983 ; No side effects!
2984 ret void
2985
2986 second_end:
2987 store volatile i32 0, i32* @g ; This time, the instruction always depends
2988 ; on the store in %end. Also, it is
2989 ; control-equivalent to %end, so this is
2990 ; well-defined (ignoring earlier undefined
2991 ; behavior in this example).
2992
2993.. _blockaddress:
2994
2995Addresses of Basic Blocks
2996-------------------------
2997
2998``blockaddress(@function, %block)``
2999
3000The '``blockaddress``' constant computes the address of the specified
3001basic block in the specified function, and always has an ``i8*`` type.
3002Taking the address of the entry block is illegal.
3003
3004This value only has defined behavior when used as an operand to the
3005':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3006against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003007undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003008no label is equal to the null pointer. This may be passed around as an
3009opaque pointer sized value as long as the bits are not inspected. This
3010allows ``ptrtoint`` and arithmetic to be performed on these values so
3011long as the original value is reconstituted before the ``indirectbr``
3012instruction.
3013
3014Finally, some targets may provide defined semantics when using the value
3015as the operand to an inline assembly, but that is target specific.
3016
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003017.. _constantexprs:
3018
Sean Silvab084af42012-12-07 10:36:55 +00003019Constant Expressions
3020--------------------
3021
3022Constant expressions are used to allow expressions involving other
3023constants to be used as constants. Constant expressions may be of any
3024:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3025that does not have side effects (e.g. load and call are not supported).
3026The following is the syntax for constant expressions:
3027
3028``trunc (CST to TYPE)``
3029 Truncate a constant to another type. The bit size of CST must be
3030 larger than the bit size of TYPE. Both types must be integers.
3031``zext (CST to TYPE)``
3032 Zero extend a constant to another type. The bit size of CST must be
3033 smaller than the bit size of TYPE. Both types must be integers.
3034``sext (CST to TYPE)``
3035 Sign extend a constant to another type. The bit size of CST must be
3036 smaller than the bit size of TYPE. Both types must be integers.
3037``fptrunc (CST to TYPE)``
3038 Truncate a floating point constant to another floating point type.
3039 The size of CST must be larger than the size of TYPE. Both types
3040 must be floating point.
3041``fpext (CST to TYPE)``
3042 Floating point extend a constant to another type. The size of CST
3043 must be smaller or equal to the size of TYPE. Both types must be
3044 floating point.
3045``fptoui (CST to TYPE)``
3046 Convert a floating point constant to the corresponding unsigned
3047 integer constant. TYPE must be a scalar or vector integer type. CST
3048 must be of scalar or vector floating point type. Both CST and TYPE
3049 must be scalars, or vectors of the same number of elements. If the
3050 value won't fit in the integer type, the results are undefined.
3051``fptosi (CST to TYPE)``
3052 Convert a floating point constant to the corresponding signed
3053 integer constant. TYPE must be a scalar or vector integer type. CST
3054 must be of scalar or vector floating point type. Both CST and TYPE
3055 must be scalars, or vectors of the same number of elements. If the
3056 value won't fit in the integer type, the results are undefined.
3057``uitofp (CST to TYPE)``
3058 Convert an unsigned integer constant to the corresponding floating
3059 point constant. TYPE must be a scalar or vector floating point type.
3060 CST must be of scalar or vector integer type. Both CST and TYPE must
3061 be scalars, or vectors of the same number of elements. If the value
3062 won't fit in the floating point type, the results are undefined.
3063``sitofp (CST to TYPE)``
3064 Convert a signed integer constant to the corresponding floating
3065 point constant. TYPE must be a scalar or vector floating point type.
3066 CST must be of scalar or vector integer type. Both CST and TYPE must
3067 be scalars, or vectors of the same number of elements. If the value
3068 won't fit in the floating point type, the results are undefined.
3069``ptrtoint (CST to TYPE)``
3070 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003071 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003072 pointer type. The ``CST`` value is zero extended, truncated, or
3073 unchanged to make it fit in ``TYPE``.
3074``inttoptr (CST to TYPE)``
3075 Convert an integer constant to a pointer constant. TYPE must be a
3076 pointer type. CST must be of integer type. The CST value is zero
3077 extended, truncated, or unchanged to make it fit in a pointer size.
3078 This one is *really* dangerous!
3079``bitcast (CST to TYPE)``
3080 Convert a constant, CST, to another TYPE. The constraints of the
3081 operands are the same as those for the :ref:`bitcast
3082 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003083``addrspacecast (CST to TYPE)``
3084 Convert a constant pointer or constant vector of pointer, CST, to another
3085 TYPE in a different address space. The constraints of the operands are the
3086 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003087``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003088 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3089 constants. As with the :ref:`getelementptr <i_getelementptr>`
3090 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003091 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003092``select (COND, VAL1, VAL2)``
3093 Perform the :ref:`select operation <i_select>` on constants.
3094``icmp COND (VAL1, VAL2)``
3095 Performs the :ref:`icmp operation <i_icmp>` on constants.
3096``fcmp COND (VAL1, VAL2)``
3097 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3098``extractelement (VAL, IDX)``
3099 Perform the :ref:`extractelement operation <i_extractelement>` on
3100 constants.
3101``insertelement (VAL, ELT, IDX)``
3102 Perform the :ref:`insertelement operation <i_insertelement>` on
3103 constants.
3104``shufflevector (VEC1, VEC2, IDXMASK)``
3105 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3106 constants.
3107``extractvalue (VAL, IDX0, IDX1, ...)``
3108 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3109 constants. The index list is interpreted in a similar manner as
3110 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3111 least one index value must be specified.
3112``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3113 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3114 The index list is interpreted in a similar manner as indices in a
3115 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3116 value must be specified.
3117``OPCODE (LHS, RHS)``
3118 Perform the specified operation of the LHS and RHS constants. OPCODE
3119 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3120 binary <bitwiseops>` operations. The constraints on operands are
3121 the same as those for the corresponding instruction (e.g. no bitwise
3122 operations on floating point values are allowed).
3123
3124Other Values
3125============
3126
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003127.. _inlineasmexprs:
3128
Sean Silvab084af42012-12-07 10:36:55 +00003129Inline Assembler Expressions
3130----------------------------
3131
3132LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003133Inline Assembly <moduleasm>`) through the use of a special value. This value
3134represents the inline assembler as a template string (containing the
3135instructions to emit), a list of operand constraints (stored as a string), a
3136flag that indicates whether or not the inline asm expression has side effects,
3137and a flag indicating whether the function containing the asm needs to align its
3138stack conservatively.
3139
3140The template string supports argument substitution of the operands using "``$``"
3141followed by a number, to indicate substitution of the given register/memory
3142location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3143be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3144operand (See :ref:`inline-asm-modifiers`).
3145
3146A literal "``$``" may be included by using "``$$``" in the template. To include
3147other special characters into the output, the usual "``\XX``" escapes may be
3148used, just as in other strings. Note that after template substitution, the
3149resulting assembly string is parsed by LLVM's integrated assembler unless it is
3150disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3151syntax known to LLVM.
3152
3153LLVM's support for inline asm is modeled closely on the requirements of Clang's
3154GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3155modifier codes listed here are similar or identical to those in GCC's inline asm
3156support. However, to be clear, the syntax of the template and constraint strings
3157described here is *not* the same as the syntax accepted by GCC and Clang, and,
3158while most constraint letters are passed through as-is by Clang, some get
3159translated to other codes when converting from the C source to the LLVM
3160assembly.
3161
3162An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003163
3164.. code-block:: llvm
3165
3166 i32 (i32) asm "bswap $0", "=r,r"
3167
3168Inline assembler expressions may **only** be used as the callee operand
3169of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3170Thus, typically we have:
3171
3172.. code-block:: llvm
3173
3174 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3175
3176Inline asms with side effects not visible in the constraint list must be
3177marked as having side effects. This is done through the use of the
3178'``sideeffect``' keyword, like so:
3179
3180.. code-block:: llvm
3181
3182 call void asm sideeffect "eieio", ""()
3183
3184In some cases inline asms will contain code that will not work unless
3185the stack is aligned in some way, such as calls or SSE instructions on
3186x86, yet will not contain code that does that alignment within the asm.
3187The compiler should make conservative assumptions about what the asm
3188might contain and should generate its usual stack alignment code in the
3189prologue if the '``alignstack``' keyword is present:
3190
3191.. code-block:: llvm
3192
3193 call void asm alignstack "eieio", ""()
3194
3195Inline asms also support using non-standard assembly dialects. The
3196assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3197the inline asm is using the Intel dialect. Currently, ATT and Intel are
3198the only supported dialects. An example is:
3199
3200.. code-block:: llvm
3201
3202 call void asm inteldialect "eieio", ""()
3203
3204If multiple keywords appear the '``sideeffect``' keyword must come
3205first, the '``alignstack``' keyword second and the '``inteldialect``'
3206keyword last.
3207
James Y Knightbc832ed2015-07-08 18:08:36 +00003208Inline Asm Constraint String
3209^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3210
3211The constraint list is a comma-separated string, each element containing one or
3212more constraint codes.
3213
3214For each element in the constraint list an appropriate register or memory
3215operand will be chosen, and it will be made available to assembly template
3216string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3217second, etc.
3218
3219There are three different types of constraints, which are distinguished by a
3220prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3221constraints must always be given in that order: outputs first, then inputs, then
3222clobbers. They cannot be intermingled.
3223
3224There are also three different categories of constraint codes:
3225
3226- Register constraint. This is either a register class, or a fixed physical
3227 register. This kind of constraint will allocate a register, and if necessary,
3228 bitcast the argument or result to the appropriate type.
3229- Memory constraint. This kind of constraint is for use with an instruction
3230 taking a memory operand. Different constraints allow for different addressing
3231 modes used by the target.
3232- Immediate value constraint. This kind of constraint is for an integer or other
3233 immediate value which can be rendered directly into an instruction. The
3234 various target-specific constraints allow the selection of a value in the
3235 proper range for the instruction you wish to use it with.
3236
3237Output constraints
3238""""""""""""""""""
3239
3240Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3241indicates that the assembly will write to this operand, and the operand will
3242then be made available as a return value of the ``asm`` expression. Output
3243constraints do not consume an argument from the call instruction. (Except, see
3244below about indirect outputs).
3245
3246Normally, it is expected that no output locations are written to by the assembly
3247expression until *all* of the inputs have been read. As such, LLVM may assign
3248the same register to an output and an input. If this is not safe (e.g. if the
3249assembly contains two instructions, where the first writes to one output, and
3250the second reads an input and writes to a second output), then the "``&``"
3251modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003252"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003253will not use the same register for any inputs (other than an input tied to this
3254output).
3255
3256Input constraints
3257"""""""""""""""""
3258
3259Input constraints do not have a prefix -- just the constraint codes. Each input
3260constraint will consume one argument from the call instruction. It is not
3261permitted for the asm to write to any input register or memory location (unless
3262that input is tied to an output). Note also that multiple inputs may all be
3263assigned to the same register, if LLVM can determine that they necessarily all
3264contain the same value.
3265
3266Instead of providing a Constraint Code, input constraints may also "tie"
3267themselves to an output constraint, by providing an integer as the constraint
3268string. Tied inputs still consume an argument from the call instruction, and
3269take up a position in the asm template numbering as is usual -- they will simply
3270be constrained to always use the same register as the output they've been tied
3271to. For example, a constraint string of "``=r,0``" says to assign a register for
3272output, and use that register as an input as well (it being the 0'th
3273constraint).
3274
3275It is permitted to tie an input to an "early-clobber" output. In that case, no
3276*other* input may share the same register as the input tied to the early-clobber
3277(even when the other input has the same value).
3278
3279You may only tie an input to an output which has a register constraint, not a
3280memory constraint. Only a single input may be tied to an output.
3281
3282There is also an "interesting" feature which deserves a bit of explanation: if a
3283register class constraint allocates a register which is too small for the value
3284type operand provided as input, the input value will be split into multiple
3285registers, and all of them passed to the inline asm.
3286
3287However, this feature is often not as useful as you might think.
3288
3289Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3290architectures that have instructions which operate on multiple consecutive
3291instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3292SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3293hardware then loads into both the named register, and the next register. This
3294feature of inline asm would not be useful to support that.)
3295
3296A few of the targets provide a template string modifier allowing explicit access
3297to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3298``D``). On such an architecture, you can actually access the second allocated
3299register (yet, still, not any subsequent ones). But, in that case, you're still
3300probably better off simply splitting the value into two separate operands, for
3301clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3302despite existing only for use with this feature, is not really a good idea to
3303use)
3304
3305Indirect inputs and outputs
3306"""""""""""""""""""""""""""
3307
3308Indirect output or input constraints can be specified by the "``*``" modifier
3309(which goes after the "``=``" in case of an output). This indicates that the asm
3310will write to or read from the contents of an *address* provided as an input
3311argument. (Note that in this way, indirect outputs act more like an *input* than
3312an output: just like an input, they consume an argument of the call expression,
3313rather than producing a return value. An indirect output constraint is an
3314"output" only in that the asm is expected to write to the contents of the input
3315memory location, instead of just read from it).
3316
3317This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3318address of a variable as a value.
3319
3320It is also possible to use an indirect *register* constraint, but only on output
3321(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3322value normally, and then, separately emit a store to the address provided as
3323input, after the provided inline asm. (It's not clear what value this
3324functionality provides, compared to writing the store explicitly after the asm
3325statement, and it can only produce worse code, since it bypasses many
3326optimization passes. I would recommend not using it.)
3327
3328
3329Clobber constraints
3330"""""""""""""""""""
3331
3332A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3333consume an input operand, nor generate an output. Clobbers cannot use any of the
3334general constraint code letters -- they may use only explicit register
3335constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3336"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3337memory locations -- not only the memory pointed to by a declared indirect
3338output.
3339
3340
3341Constraint Codes
3342""""""""""""""""
3343After a potential prefix comes constraint code, or codes.
3344
3345A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3346followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3347(e.g. "``{eax}``").
3348
3349The one and two letter constraint codes are typically chosen to be the same as
3350GCC's constraint codes.
3351
3352A single constraint may include one or more than constraint code in it, leaving
3353it up to LLVM to choose which one to use. This is included mainly for
3354compatibility with the translation of GCC inline asm coming from clang.
3355
3356There are two ways to specify alternatives, and either or both may be used in an
3357inline asm constraint list:
3358
33591) Append the codes to each other, making a constraint code set. E.g. "``im``"
3360 or "``{eax}m``". This means "choose any of the options in the set". The
3361 choice of constraint is made independently for each constraint in the
3362 constraint list.
3363
33642) Use "``|``" between constraint code sets, creating alternatives. Every
3365 constraint in the constraint list must have the same number of alternative
3366 sets. With this syntax, the same alternative in *all* of the items in the
3367 constraint list will be chosen together.
3368
3369Putting those together, you might have a two operand constraint string like
3370``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3371operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3372may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3373
3374However, the use of either of the alternatives features is *NOT* recommended, as
3375LLVM is not able to make an intelligent choice about which one to use. (At the
3376point it currently needs to choose, not enough information is available to do so
3377in a smart way.) Thus, it simply tries to make a choice that's most likely to
3378compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3379always choose to use memory, not registers). And, if given multiple registers,
3380or multiple register classes, it will simply choose the first one. (In fact, it
3381doesn't currently even ensure explicitly specified physical registers are
3382unique, so specifying multiple physical registers as alternatives, like
3383``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3384intended.)
3385
3386Supported Constraint Code List
3387""""""""""""""""""""""""""""""
3388
3389The constraint codes are, in general, expected to behave the same way they do in
3390GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3391inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3392and GCC likely indicates a bug in LLVM.
3393
3394Some constraint codes are typically supported by all targets:
3395
3396- ``r``: A register in the target's general purpose register class.
3397- ``m``: A memory address operand. It is target-specific what addressing modes
3398 are supported, typical examples are register, or register + register offset,
3399 or register + immediate offset (of some target-specific size).
3400- ``i``: An integer constant (of target-specific width). Allows either a simple
3401 immediate, or a relocatable value.
3402- ``n``: An integer constant -- *not* including relocatable values.
3403- ``s``: An integer constant, but allowing *only* relocatable values.
3404- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3405 useful to pass a label for an asm branch or call.
3406
3407 .. FIXME: but that surely isn't actually okay to jump out of an asm
3408 block without telling llvm about the control transfer???)
3409
3410- ``{register-name}``: Requires exactly the named physical register.
3411
3412Other constraints are target-specific:
3413
3414AArch64:
3415
3416- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3417- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3418 i.e. 0 to 4095 with optional shift by 12.
3419- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3420 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3421- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3422 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3423- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3424 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3425- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3426 32-bit register. This is a superset of ``K``: in addition to the bitmask
3427 immediate, also allows immediate integers which can be loaded with a single
3428 ``MOVZ`` or ``MOVL`` instruction.
3429- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3430 64-bit register. This is a superset of ``L``.
3431- ``Q``: Memory address operand must be in a single register (no
3432 offsets). (However, LLVM currently does this for the ``m`` constraint as
3433 well.)
3434- ``r``: A 32 or 64-bit integer register (W* or X*).
3435- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3436- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3437
3438AMDGPU:
3439
3440- ``r``: A 32 or 64-bit integer register.
3441- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3442- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3443
3444
3445All ARM modes:
3446
3447- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3448 operand. Treated the same as operand ``m``, at the moment.
3449
3450ARM and ARM's Thumb2 mode:
3451
3452- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3453- ``I``: An immediate integer valid for a data-processing instruction.
3454- ``J``: An immediate integer between -4095 and 4095.
3455- ``K``: An immediate integer whose bitwise inverse is valid for a
3456 data-processing instruction. (Can be used with template modifier "``B``" to
3457 print the inverted value).
3458- ``L``: An immediate integer whose negation is valid for a data-processing
3459 instruction. (Can be used with template modifier "``n``" to print the negated
3460 value).
3461- ``M``: A power of two or a integer between 0 and 32.
3462- ``N``: Invalid immediate constraint.
3463- ``O``: Invalid immediate constraint.
3464- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3465- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3466 as ``r``.
3467- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3468 invalid.
3469- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3470 ``d0-d31``, or ``q0-q15``.
3471- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3472 ``d0-d7``, or ``q0-q3``.
3473- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3474 ``s0-s31``.
3475
3476ARM's Thumb1 mode:
3477
3478- ``I``: An immediate integer between 0 and 255.
3479- ``J``: An immediate integer between -255 and -1.
3480- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3481 some amount.
3482- ``L``: An immediate integer between -7 and 7.
3483- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3484- ``N``: An immediate integer between 0 and 31.
3485- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3486- ``r``: A low 32-bit GPR register (``r0-r7``).
3487- ``l``: A low 32-bit GPR register (``r0-r7``).
3488- ``h``: A high GPR register (``r0-r7``).
3489- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3490 ``d0-d31``, or ``q0-q15``.
3491- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3492 ``d0-d7``, or ``q0-q3``.
3493- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3494 ``s0-s31``.
3495
3496
3497Hexagon:
3498
3499- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3500 at the moment.
3501- ``r``: A 32 or 64-bit register.
3502
3503MSP430:
3504
3505- ``r``: An 8 or 16-bit register.
3506
3507MIPS:
3508
3509- ``I``: An immediate signed 16-bit integer.
3510- ``J``: An immediate integer zero.
3511- ``K``: An immediate unsigned 16-bit integer.
3512- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3513- ``N``: An immediate integer between -65535 and -1.
3514- ``O``: An immediate signed 15-bit integer.
3515- ``P``: An immediate integer between 1 and 65535.
3516- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3517 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3518- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3519 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3520 ``m``.
3521- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3522 ``sc`` instruction on the given subtarget (details vary).
3523- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3524- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003525 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3526 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003527- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3528 ``25``).
3529- ``l``: The ``lo`` register, 32 or 64-bit.
3530- ``x``: Invalid.
3531
3532NVPTX:
3533
3534- ``b``: A 1-bit integer register.
3535- ``c`` or ``h``: A 16-bit integer register.
3536- ``r``: A 32-bit integer register.
3537- ``l`` or ``N``: A 64-bit integer register.
3538- ``f``: A 32-bit float register.
3539- ``d``: A 64-bit float register.
3540
3541
3542PowerPC:
3543
3544- ``I``: An immediate signed 16-bit integer.
3545- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3546- ``K``: An immediate unsigned 16-bit integer.
3547- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3548- ``M``: An immediate integer greater than 31.
3549- ``N``: An immediate integer that is an exact power of 2.
3550- ``O``: The immediate integer constant 0.
3551- ``P``: An immediate integer constant whose negation is a signed 16-bit
3552 constant.
3553- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3554 treated the same as ``m``.
3555- ``r``: A 32 or 64-bit integer register.
3556- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3557 ``R1-R31``).
3558- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3559 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3560- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3561 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3562 altivec vector register (``V0-V31``).
3563
3564 .. FIXME: is this a bug that v accepts QPX registers? I think this
3565 is supposed to only use the altivec vector registers?
3566
3567- ``y``: Condition register (``CR0-CR7``).
3568- ``wc``: An individual CR bit in a CR register.
3569- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3570 register set (overlapping both the floating-point and vector register files).
3571- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3572 set.
3573
3574Sparc:
3575
3576- ``I``: An immediate 13-bit signed integer.
3577- ``r``: A 32-bit integer register.
3578
3579SystemZ:
3580
3581- ``I``: An immediate unsigned 8-bit integer.
3582- ``J``: An immediate unsigned 12-bit integer.
3583- ``K``: An immediate signed 16-bit integer.
3584- ``L``: An immediate signed 20-bit integer.
3585- ``M``: An immediate integer 0x7fffffff.
3586- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3587 ``m``, at the moment.
3588- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3589- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3590 address context evaluates as zero).
3591- ``h``: A 32-bit value in the high part of a 64bit data register
3592 (LLVM-specific)
3593- ``f``: A 32, 64, or 128-bit floating point register.
3594
3595X86:
3596
3597- ``I``: An immediate integer between 0 and 31.
3598- ``J``: An immediate integer between 0 and 64.
3599- ``K``: An immediate signed 8-bit integer.
3600- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3601 0xffffffff.
3602- ``M``: An immediate integer between 0 and 3.
3603- ``N``: An immediate unsigned 8-bit integer.
3604- ``O``: An immediate integer between 0 and 127.
3605- ``e``: An immediate 32-bit signed integer.
3606- ``Z``: An immediate 32-bit unsigned integer.
3607- ``o``, ``v``: Treated the same as ``m``, at the moment.
3608- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3609 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3610 registers, and on X86-64, it is all of the integer registers.
3611- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3612 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3613- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3614- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3615 existed since i386, and can be accessed without the REX prefix.
3616- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3617- ``y``: A 64-bit MMX register, if MMX is enabled.
3618- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3619 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3620 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3621 512-bit vector operand in an AVX512 register, Otherwise, an error.
3622- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3623- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3624 32-bit mode, a 64-bit integer operand will get split into two registers). It
3625 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3626 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3627 you're better off splitting it yourself, before passing it to the asm
3628 statement.
3629
3630XCore:
3631
3632- ``r``: A 32-bit integer register.
3633
3634
3635.. _inline-asm-modifiers:
3636
3637Asm template argument modifiers
3638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3639
3640In the asm template string, modifiers can be used on the operand reference, like
3641"``${0:n}``".
3642
3643The modifiers are, in general, expected to behave the same way they do in
3644GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3645inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3646and GCC likely indicates a bug in LLVM.
3647
3648Target-independent:
3649
Sean Silvaa1190322015-08-06 22:56:48 +00003650- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003651 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3652- ``n``: Negate and print immediate integer constant unadorned, without the
3653 target-specific immediate punctuation (e.g. no ``$`` prefix).
3654- ``l``: Print as an unadorned label, without the target-specific label
3655 punctuation (e.g. no ``$`` prefix).
3656
3657AArch64:
3658
3659- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3660 instead of ``x30``, print ``w30``.
3661- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3662- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3663 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3664 ``v*``.
3665
3666AMDGPU:
3667
3668- ``r``: No effect.
3669
3670ARM:
3671
3672- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3673 register).
3674- ``P``: No effect.
3675- ``q``: No effect.
3676- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3677 as ``d4[1]`` instead of ``s9``)
3678- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3679 prefix.
3680- ``L``: Print the low 16-bits of an immediate integer constant.
3681- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3682 register operands subsequent to the specified one (!), so use carefully.
3683- ``Q``: Print the low-order register of a register-pair, or the low-order
3684 register of a two-register operand.
3685- ``R``: Print the high-order register of a register-pair, or the high-order
3686 register of a two-register operand.
3687- ``H``: Print the second register of a register-pair. (On a big-endian system,
3688 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3689 to ``R``.)
3690
3691 .. FIXME: H doesn't currently support printing the second register
3692 of a two-register operand.
3693
3694- ``e``: Print the low doubleword register of a NEON quad register.
3695- ``f``: Print the high doubleword register of a NEON quad register.
3696- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3697 adornment.
3698
3699Hexagon:
3700
3701- ``L``: Print the second register of a two-register operand. Requires that it
3702 has been allocated consecutively to the first.
3703
3704 .. FIXME: why is it restricted to consecutive ones? And there's
3705 nothing that ensures that happens, is there?
3706
3707- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3708 nothing. Used to print 'addi' vs 'add' instructions.
3709
3710MSP430:
3711
3712No additional modifiers.
3713
3714MIPS:
3715
3716- ``X``: Print an immediate integer as hexadecimal
3717- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3718- ``d``: Print an immediate integer as decimal.
3719- ``m``: Subtract one and print an immediate integer as decimal.
3720- ``z``: Print $0 if an immediate zero, otherwise print normally.
3721- ``L``: Print the low-order register of a two-register operand, or prints the
3722 address of the low-order word of a double-word memory operand.
3723
3724 .. FIXME: L seems to be missing memory operand support.
3725
3726- ``M``: Print the high-order register of a two-register operand, or prints the
3727 address of the high-order word of a double-word memory operand.
3728
3729 .. FIXME: M seems to be missing memory operand support.
3730
3731- ``D``: Print the second register of a two-register operand, or prints the
3732 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3733 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3734 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003735- ``w``: No effect. Provided for compatibility with GCC which requires this
3736 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3737 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003738
3739NVPTX:
3740
3741- ``r``: No effect.
3742
3743PowerPC:
3744
3745- ``L``: Print the second register of a two-register operand. Requires that it
3746 has been allocated consecutively to the first.
3747
3748 .. FIXME: why is it restricted to consecutive ones? And there's
3749 nothing that ensures that happens, is there?
3750
3751- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3752 nothing. Used to print 'addi' vs 'add' instructions.
3753- ``y``: For a memory operand, prints formatter for a two-register X-form
3754 instruction. (Currently always prints ``r0,OPERAND``).
3755- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3756 otherwise. (NOTE: LLVM does not support update form, so this will currently
3757 always print nothing)
3758- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3759 not support indexed form, so this will currently always print nothing)
3760
3761Sparc:
3762
3763- ``r``: No effect.
3764
3765SystemZ:
3766
3767SystemZ implements only ``n``, and does *not* support any of the other
3768target-independent modifiers.
3769
3770X86:
3771
3772- ``c``: Print an unadorned integer or symbol name. (The latter is
3773 target-specific behavior for this typically target-independent modifier).
3774- ``A``: Print a register name with a '``*``' before it.
3775- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3776 operand.
3777- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3778 memory operand.
3779- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3780 operand.
3781- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3782 operand.
3783- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3784 available, otherwise the 32-bit register name; do nothing on a memory operand.
3785- ``n``: Negate and print an unadorned integer, or, for operands other than an
3786 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3787 the operand. (The behavior for relocatable symbol expressions is a
3788 target-specific behavior for this typically target-independent modifier)
3789- ``H``: Print a memory reference with additional offset +8.
3790- ``P``: Print a memory reference or operand for use as the argument of a call
3791 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3792
3793XCore:
3794
3795No additional modifiers.
3796
3797
Sean Silvab084af42012-12-07 10:36:55 +00003798Inline Asm Metadata
3799^^^^^^^^^^^^^^^^^^^
3800
3801The call instructions that wrap inline asm nodes may have a
3802"``!srcloc``" MDNode attached to it that contains a list of constant
3803integers. If present, the code generator will use the integer as the
3804location cookie value when report errors through the ``LLVMContext``
3805error reporting mechanisms. This allows a front-end to correlate backend
3806errors that occur with inline asm back to the source code that produced
3807it. For example:
3808
3809.. code-block:: llvm
3810
3811 call void asm sideeffect "something bad", ""(), !srcloc !42
3812 ...
3813 !42 = !{ i32 1234567 }
3814
3815It is up to the front-end to make sense of the magic numbers it places
3816in the IR. If the MDNode contains multiple constants, the code generator
3817will use the one that corresponds to the line of the asm that the error
3818occurs on.
3819
3820.. _metadata:
3821
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003822Metadata
3823========
Sean Silvab084af42012-12-07 10:36:55 +00003824
3825LLVM IR allows metadata to be attached to instructions in the program
3826that can convey extra information about the code to the optimizers and
3827code generator. One example application of metadata is source-level
3828debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003829
Sean Silvaa1190322015-08-06 22:56:48 +00003830Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003831``call`` instruction, it uses the ``metadata`` type.
3832
3833All metadata are identified in syntax by a exclamation point ('``!``').
3834
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003835.. _metadata-string:
3836
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003837Metadata Nodes and Metadata Strings
3838-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003839
3840A metadata string is a string surrounded by double quotes. It can
3841contain any character by escaping non-printable characters with
3842"``\xx``" where "``xx``" is the two digit hex code. For example:
3843"``!"test\00"``".
3844
3845Metadata nodes are represented with notation similar to structure
3846constants (a comma separated list of elements, surrounded by braces and
3847preceded by an exclamation point). Metadata nodes can have any values as
3848their operand. For example:
3849
3850.. code-block:: llvm
3851
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003852 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003853
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003854Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3855
3856.. code-block:: llvm
3857
3858 !0 = distinct !{!"test\00", i32 10}
3859
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003860``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003861content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003862when metadata operands change.
3863
Sean Silvab084af42012-12-07 10:36:55 +00003864A :ref:`named metadata <namedmetadatastructure>` is a collection of
3865metadata nodes, which can be looked up in the module symbol table. For
3866example:
3867
3868.. code-block:: llvm
3869
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003870 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003871
3872Metadata can be used as function arguments. Here ``llvm.dbg.value``
3873function is using two metadata arguments:
3874
3875.. code-block:: llvm
3876
3877 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3878
Peter Collingbourne50108682015-11-06 02:41:02 +00003879Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3880to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003881
3882.. code-block:: llvm
3883
3884 %indvar.next = add i64 %indvar, 1, !dbg !21
3885
Peter Collingbourne50108682015-11-06 02:41:02 +00003886Metadata can also be attached to a function definition. Here metadata ``!22``
3887is attached to the ``foo`` function using the ``!dbg`` identifier:
3888
3889.. code-block:: llvm
3890
3891 define void @foo() !dbg !22 {
3892 ret void
3893 }
3894
Sean Silvab084af42012-12-07 10:36:55 +00003895More information about specific metadata nodes recognized by the
3896optimizers and code generator is found below.
3897
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003898.. _specialized-metadata:
3899
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003900Specialized Metadata Nodes
3901^^^^^^^^^^^^^^^^^^^^^^^^^^
3902
3903Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003904to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003905order.
3906
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003907These aren't inherently debug info centric, but currently all the specialized
3908metadata nodes are related to debug info.
3909
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003910.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003911
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003912DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003913"""""""""""""
3914
Sean Silvaa1190322015-08-06 22:56:48 +00003915``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003916``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3917fields are tuples containing the debug info to be emitted along with the compile
3918unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003919references to them from instructions).
3920
3921.. code-block:: llvm
3922
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003923 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003924 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003925 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003926 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003927 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003928
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003929Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003930specific compilation unit. File descriptors are defined using this scope.
3931These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003932keep track of subprograms, global variables, type information, and imported
3933entities (declarations and namespaces).
3934
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003935.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003936
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003937DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003938""""""
3939
Sean Silvaa1190322015-08-06 22:56:48 +00003940``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003941
3942.. code-block:: llvm
3943
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003944 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003945
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003946Files are sometimes used in ``scope:`` fields, and are the only valid target
3947for ``file:`` fields.
3948
Michael Kuperstein605308a2015-05-14 10:58:59 +00003949.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003950
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003951DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003952"""""""""""
3953
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003954``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003955``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003956
3957.. code-block:: llvm
3958
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003959 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003960 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003961 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003962
Sean Silvaa1190322015-08-06 22:56:48 +00003963The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003964following:
3965
3966.. code-block:: llvm
3967
3968 DW_ATE_address = 1
3969 DW_ATE_boolean = 2
3970 DW_ATE_float = 4
3971 DW_ATE_signed = 5
3972 DW_ATE_signed_char = 6
3973 DW_ATE_unsigned = 7
3974 DW_ATE_unsigned_char = 8
3975
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003976.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003977
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003978DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003979""""""""""""""""
3980
Sean Silvaa1190322015-08-06 22:56:48 +00003981``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003982refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003983types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003984represents a function with no return value (such as ``void foo() {}`` in C++).
3985
3986.. code-block:: llvm
3987
3988 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3989 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003990 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003991
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003992.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003993
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003994DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003995"""""""""""""
3996
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003997``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003998qualified types.
3999
4000.. code-block:: llvm
4001
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004002 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004003 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004004 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004005 align: 32)
4006
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004007The following ``tag:`` values are valid:
4008
4009.. code-block:: llvm
4010
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004011 DW_TAG_member = 13
4012 DW_TAG_pointer_type = 15
4013 DW_TAG_reference_type = 16
4014 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004015 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004016 DW_TAG_ptr_to_member_type = 31
4017 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004018 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004019 DW_TAG_volatile_type = 53
4020 DW_TAG_restrict_type = 55
4021
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004022.. _DIDerivedTypeMember:
4023
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004024``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004025<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004026``offset:`` is the member's bit offset. If the composite type has an ODR
4027``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4028uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004029
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004030``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4031field of :ref:`composite types <DICompositeType>` to describe parents and
4032friends.
4033
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004034``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4035
4036``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
4037``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
4038``baseType:``.
4039
4040Note that the ``void *`` type is expressed as a type derived from NULL.
4041
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004042.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004043
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004044DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004045"""""""""""""""
4046
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004047``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004048structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004049
4050If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004051identifier used for type merging between modules. When specified,
4052:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4053derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4054``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004055
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004056For a given ``identifier:``, there should only be a single composite type that
4057does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4058together will unique such definitions at parse time via the ``identifier:``
4059field, even if the nodes are ``distinct``.
4060
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004061.. code-block:: llvm
4062
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004063 !0 = !DIEnumerator(name: "SixKind", value: 7)
4064 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4065 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4066 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004067 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4068 elements: !{!0, !1, !2})
4069
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004070The following ``tag:`` values are valid:
4071
4072.. code-block:: llvm
4073
4074 DW_TAG_array_type = 1
4075 DW_TAG_class_type = 2
4076 DW_TAG_enumeration_type = 4
4077 DW_TAG_structure_type = 19
4078 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004079
4080For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004081descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004082level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004083array type is a native packed vector.
4084
4085For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004086descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004087value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004088``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004089
4090For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4091``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004092<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4093``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4094``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004095
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004096.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004097
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004098DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004099""""""""""
4100
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004101``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004102:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004103
4104.. code-block:: llvm
4105
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004106 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4107 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4108 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004109
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004110.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004111
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004112DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004113""""""""""""
4114
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004115``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4116variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004117
4118.. code-block:: llvm
4119
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004120 !0 = !DIEnumerator(name: "SixKind", value: 7)
4121 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4122 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004123
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004124DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004125"""""""""""""""""""""""
4126
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004127``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004128language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004129:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004130
4131.. code-block:: llvm
4132
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004133 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004134
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004135DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004136""""""""""""""""""""""""
4137
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004138``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004139language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004140but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004141``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004142:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004143
4144.. code-block:: llvm
4145
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004146 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004147
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004148DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004149"""""""""""
4150
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004151``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004152
4153.. code-block:: llvm
4154
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004155 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004156
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004157DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004158""""""""""""""""
4159
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004160``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004161
4162.. code-block:: llvm
4163
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004164 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004165 file: !2, line: 7, type: !3, isLocal: true,
4166 isDefinition: false, variable: i32* @foo,
4167 declaration: !4)
4168
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004169All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004170:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004171
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004172.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004173
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004174DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004175""""""""""""
4176
Peter Collingbourne50108682015-11-06 02:41:02 +00004177``DISubprogram`` nodes represent functions from the source language. A
4178``DISubprogram`` may be attached to a function definition using ``!dbg``
4179metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4180that must be retained, even if their IR counterparts are optimized out of
4181the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004182
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004183.. _DISubprogramDeclaration:
4184
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004185When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004186tree as opposed to a definition of a function. If the scope is a composite
4187type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4188then the subprogram declaration is uniqued based only on its ``linkageName:``
4189and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004190
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004191.. code-block:: llvm
4192
Peter Collingbourne50108682015-11-06 02:41:02 +00004193 define void @_Z3foov() !dbg !0 {
4194 ...
4195 }
4196
4197 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4198 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004199 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004200 containingType: !4,
4201 virtuality: DW_VIRTUALITY_pure_virtual,
4202 virtualIndex: 10, flags: DIFlagPrototyped,
4203 isOptimized: true, templateParams: !5,
4204 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004205
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004206.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004207
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004208DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004209""""""""""""""
4210
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004211``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004212<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004213two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004214fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004215
4216.. code-block:: llvm
4217
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004218 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004219
4220Usually lexical blocks are ``distinct`` to prevent node merging based on
4221operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004222
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004223.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004224
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004225DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004226""""""""""""""""""
4227
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004228``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004229:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004230indicate textual inclusion, or the ``discriminator:`` field can be used to
4231discriminate between control flow within a single block in the source language.
4232
4233.. code-block:: llvm
4234
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004235 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4236 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4237 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004238
Michael Kuperstein605308a2015-05-14 10:58:59 +00004239.. _DILocation:
4240
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004241DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004242""""""""""
4243
Sean Silvaa1190322015-08-06 22:56:48 +00004244``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004245mandatory, and points at an :ref:`DILexicalBlockFile`, an
4246:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004247
4248.. code-block:: llvm
4249
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004250 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004251
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004252.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004253
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004254DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004255"""""""""""""""
4256
Sean Silvaa1190322015-08-06 22:56:48 +00004257``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004258the ``arg:`` field is set to non-zero, then this variable is a subprogram
4259parameter, and it will be included in the ``variables:`` field of its
4260:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004261
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004262.. code-block:: llvm
4263
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004264 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4265 type: !3, flags: DIFlagArtificial)
4266 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4267 type: !3)
4268 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004270DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004271""""""""""""
4272
Sean Silvaa1190322015-08-06 22:56:48 +00004273``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004274:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4275describe how the referenced LLVM variable relates to the source language
4276variable.
4277
4278The current supported vocabulary is limited:
4279
4280- ``DW_OP_deref`` dereferences the working expression.
4281- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4282- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4283 here, respectively) of the variable piece from the working expression.
4284
4285.. code-block:: llvm
4286
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004287 !0 = !DIExpression(DW_OP_deref)
4288 !1 = !DIExpression(DW_OP_plus, 3)
4289 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4290 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004291
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004292DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004293""""""""""""""
4294
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004295``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004296
4297.. code-block:: llvm
4298
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004299 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004300 getter: "getFoo", attributes: 7, type: !2)
4301
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004302DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004303""""""""""""""""
4304
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004305``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004306compile unit.
4307
4308.. code-block:: llvm
4309
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004310 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004311 entity: !1, line: 7)
4312
Amjad Abouda9bcf162015-12-10 12:56:35 +00004313DIMacro
4314"""""""
4315
4316``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4317The ``name:`` field is the macro identifier, followed by macro parameters when
4318definining a function-like macro, and the ``value`` field is the token-string
4319used to expand the macro identifier.
4320
4321.. code-block:: llvm
4322
4323 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4324 value: "((x) + 1)")
4325 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4326
4327DIMacroFile
4328"""""""""""
4329
4330``DIMacroFile`` nodes represent inclusion of source files.
4331The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4332appear in the included source file.
4333
4334.. code-block:: llvm
4335
4336 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4337 nodes: !3)
4338
Sean Silvab084af42012-12-07 10:36:55 +00004339'``tbaa``' Metadata
4340^^^^^^^^^^^^^^^^^^^
4341
4342In LLVM IR, memory does not have types, so LLVM's own type system is not
4343suitable for doing TBAA. Instead, metadata is added to the IR to
4344describe a type system of a higher level language. This can be used to
4345implement typical C/C++ TBAA, but it can also be used to implement
4346custom alias analysis behavior for other languages.
4347
4348The current metadata format is very simple. TBAA metadata nodes have up
4349to three fields, e.g.:
4350
4351.. code-block:: llvm
4352
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004353 !0 = !{ !"an example type tree" }
4354 !1 = !{ !"int", !0 }
4355 !2 = !{ !"float", !0 }
4356 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004357
4358The first field is an identity field. It can be any value, usually a
4359metadata string, which uniquely identifies the type. The most important
4360name in the tree is the name of the root node. Two trees with different
4361root node names are entirely disjoint, even if they have leaves with
4362common names.
4363
4364The second field identifies the type's parent node in the tree, or is
4365null or omitted for a root node. A type is considered to alias all of
4366its descendants and all of its ancestors in the tree. Also, a type is
4367considered to alias all types in other trees, so that bitcode produced
4368from multiple front-ends is handled conservatively.
4369
4370If the third field is present, it's an integer which if equal to 1
4371indicates that the type is "constant" (meaning
4372``pointsToConstantMemory`` should return true; see `other useful
4373AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4374
4375'``tbaa.struct``' Metadata
4376^^^^^^^^^^^^^^^^^^^^^^^^^^
4377
4378The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4379aggregate assignment operations in C and similar languages, however it
4380is defined to copy a contiguous region of memory, which is more than
4381strictly necessary for aggregate types which contain holes due to
4382padding. Also, it doesn't contain any TBAA information about the fields
4383of the aggregate.
4384
4385``!tbaa.struct`` metadata can describe which memory subregions in a
4386memcpy are padding and what the TBAA tags of the struct are.
4387
4388The current metadata format is very simple. ``!tbaa.struct`` metadata
4389nodes are a list of operands which are in conceptual groups of three.
4390For each group of three, the first operand gives the byte offset of a
4391field in bytes, the second gives its size in bytes, and the third gives
4392its tbaa tag. e.g.:
4393
4394.. code-block:: llvm
4395
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004396 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004397
4398This describes a struct with two fields. The first is at offset 0 bytes
4399with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4400and has size 4 bytes and has tbaa tag !2.
4401
4402Note that the fields need not be contiguous. In this example, there is a
44034 byte gap between the two fields. This gap represents padding which
4404does not carry useful data and need not be preserved.
4405
Hal Finkel94146652014-07-24 14:25:39 +00004406'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004408
4409``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4410noalias memory-access sets. This means that some collection of memory access
4411instructions (loads, stores, memory-accessing calls, etc.) that carry
4412``noalias`` metadata can specifically be specified not to alias with some other
4413collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004414Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004415a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004416of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004417subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004418instruction's ``noalias`` list, then the two memory accesses are assumed not to
4419alias.
Hal Finkel94146652014-07-24 14:25:39 +00004420
Hal Finkel029cde62014-07-25 15:50:02 +00004421The metadata identifying each domain is itself a list containing one or two
4422entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004423string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004424self-reference can be used to create globally unique domain names. A
4425descriptive string may optionally be provided as a second list entry.
4426
4427The metadata identifying each scope is also itself a list containing two or
4428three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004429is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004430self-reference can be used to create globally unique scope names. A metadata
4431reference to the scope's domain is the second entry. A descriptive string may
4432optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004433
4434For example,
4435
4436.. code-block:: llvm
4437
Hal Finkel029cde62014-07-25 15:50:02 +00004438 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004439 !0 = !{!0}
4440 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004441
Hal Finkel029cde62014-07-25 15:50:02 +00004442 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004443 !2 = !{!2, !0}
4444 !3 = !{!3, !0}
4445 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004446
Hal Finkel029cde62014-07-25 15:50:02 +00004447 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004448 !5 = !{!4} ; A list containing only scope !4
4449 !6 = !{!4, !3, !2}
4450 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004451
4452 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004453 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004454 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004455
Hal Finkel029cde62014-07-25 15:50:02 +00004456 ; These two instructions also don't alias (for domain !1, the set of scopes
4457 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004458 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004459 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004460
Adam Nemet0a8416f2015-05-11 08:30:28 +00004461 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004462 ; the !noalias list is not a superset of, or equal to, the scopes in the
4463 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004464 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004465 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004466
Sean Silvab084af42012-12-07 10:36:55 +00004467'``fpmath``' Metadata
4468^^^^^^^^^^^^^^^^^^^^^
4469
4470``fpmath`` metadata may be attached to any instruction of floating point
4471type. It can be used to express the maximum acceptable error in the
4472result of that instruction, in ULPs, thus potentially allowing the
4473compiler to use a more efficient but less accurate method of computing
4474it. ULP is defined as follows:
4475
4476 If ``x`` is a real number that lies between two finite consecutive
4477 floating-point numbers ``a`` and ``b``, without being equal to one
4478 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4479 distance between the two non-equal finite floating-point numbers
4480 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4481
4482The metadata node shall consist of a single positive floating point
4483number representing the maximum relative error, for example:
4484
4485.. code-block:: llvm
4486
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004487 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004488
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004489.. _range-metadata:
4490
Sean Silvab084af42012-12-07 10:36:55 +00004491'``range``' Metadata
4492^^^^^^^^^^^^^^^^^^^^
4493
Jingyue Wu37fcb592014-06-19 16:50:16 +00004494``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4495integer types. It expresses the possible ranges the loaded value or the value
4496returned by the called function at this call site is in. The ranges are
4497represented with a flattened list of integers. The loaded value or the value
4498returned is known to be in the union of the ranges defined by each consecutive
4499pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004500
4501- The type must match the type loaded by the instruction.
4502- The pair ``a,b`` represents the range ``[a,b)``.
4503- Both ``a`` and ``b`` are constants.
4504- The range is allowed to wrap.
4505- The range should not represent the full or empty set. That is,
4506 ``a!=b``.
4507
4508In addition, the pairs must be in signed order of the lower bound and
4509they must be non-contiguous.
4510
4511Examples:
4512
4513.. code-block:: llvm
4514
David Blaikiec7aabbb2015-03-04 22:06:14 +00004515 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4516 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004517 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4518 %d = invoke i8 @bar() to label %cont
4519 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004520 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004521 !0 = !{ i8 0, i8 2 }
4522 !1 = !{ i8 255, i8 2 }
4523 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4524 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004525
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004526'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004527^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004528
4529``unpredictable`` metadata may be attached to any branch or switch
4530instruction. It can be used to express the unpredictability of control
4531flow. Similar to the llvm.expect intrinsic, it may be used to alter
4532optimizations related to compare and branch instructions. The metadata
4533is treated as a boolean value; if it exists, it signals that the branch
4534or switch that it is attached to is completely unpredictable.
4535
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004536'``llvm.loop``'
4537^^^^^^^^^^^^^^^
4538
4539It is sometimes useful to attach information to loop constructs. Currently,
4540loop metadata is implemented as metadata attached to the branch instruction
4541in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004542guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004543specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004544
4545The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004546itself to avoid merging it with any other identifier metadata, e.g.,
4547during module linkage or function inlining. That is, each loop should refer
4548to their own identification metadata even if they reside in separate functions.
4549The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004550constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004551
4552.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004553
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004554 !0 = !{!0}
4555 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004556
Mark Heffernan893752a2014-07-18 19:24:51 +00004557The loop identifier metadata can be used to specify additional
4558per-loop metadata. Any operands after the first operand can be treated
4559as user-defined metadata. For example the ``llvm.loop.unroll.count``
4560suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004561
Paul Redmond5fdf8362013-05-28 20:00:34 +00004562.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004563
Paul Redmond5fdf8362013-05-28 20:00:34 +00004564 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4565 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004566 !0 = !{!0, !1}
4567 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004568
Mark Heffernan9d20e422014-07-21 23:11:03 +00004569'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004571
Mark Heffernan9d20e422014-07-21 23:11:03 +00004572Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4573used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004574vectorization width and interleave count. These metadata should be used in
4575conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004576``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4577optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004578it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004579which contains information about loop-carried memory dependencies can be helpful
4580in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004581
Mark Heffernan9d20e422014-07-21 23:11:03 +00004582'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4584
Mark Heffernan9d20e422014-07-21 23:11:03 +00004585This metadata suggests an interleave count to the loop interleaver.
4586The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004587second operand is an integer specifying the interleave count. For
4588example:
4589
4590.. code-block:: llvm
4591
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004592 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004593
Mark Heffernan9d20e422014-07-21 23:11:03 +00004594Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004595multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004596then the interleave count will be determined automatically.
4597
4598'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004600
4601This metadata selectively enables or disables vectorization for the loop. The
4602first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004603is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000046040 disables vectorization:
4605
4606.. code-block:: llvm
4607
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004608 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4609 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004610
4611'``llvm.loop.vectorize.width``' Metadata
4612^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4613
4614This metadata sets the target width of the vectorizer. The first
4615operand is the string ``llvm.loop.vectorize.width`` and the second
4616operand is an integer specifying the width. For example:
4617
4618.. code-block:: llvm
4619
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004620 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004621
4622Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004623vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000046240 or if the loop does not have this metadata the width will be
4625determined automatically.
4626
4627'``llvm.loop.unroll``'
4628^^^^^^^^^^^^^^^^^^^^^^
4629
4630Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4631optimization hints such as the unroll factor. ``llvm.loop.unroll``
4632metadata should be used in conjunction with ``llvm.loop`` loop
4633identification metadata. The ``llvm.loop.unroll`` metadata are only
4634optimization hints and the unrolling will only be performed if the
4635optimizer believes it is safe to do so.
4636
Mark Heffernan893752a2014-07-18 19:24:51 +00004637'``llvm.loop.unroll.count``' Metadata
4638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4639
4640This metadata suggests an unroll factor to the loop unroller. The
4641first operand is the string ``llvm.loop.unroll.count`` and the second
4642operand is a positive integer specifying the unroll factor. For
4643example:
4644
4645.. code-block:: llvm
4646
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004647 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004648
4649If the trip count of the loop is less than the unroll count the loop
4650will be partially unrolled.
4651
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004652'``llvm.loop.unroll.disable``' Metadata
4653^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4654
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004655This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004656which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004657
4658.. code-block:: llvm
4659
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004660 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004661
Kevin Qin715b01e2015-03-09 06:14:18 +00004662'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004664
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004665This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004666operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004667
4668.. code-block:: llvm
4669
4670 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4671
Mark Heffernan89391542015-08-10 17:28:08 +00004672'``llvm.loop.unroll.enable``' Metadata
4673^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4674
4675This metadata suggests that the loop should be fully unrolled if the trip count
4676is known at compile time and partially unrolled if the trip count is not known
4677at compile time. The metadata has a single operand which is the string
4678``llvm.loop.unroll.enable``. For example:
4679
4680.. code-block:: llvm
4681
4682 !0 = !{!"llvm.loop.unroll.enable"}
4683
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004684'``llvm.loop.unroll.full``' Metadata
4685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4686
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004687This metadata suggests that the loop should be unrolled fully. The
4688metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004689For example:
4690
4691.. code-block:: llvm
4692
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004693 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004694
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004695'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004697
4698This metadata indicates that the loop should not be versioned for the purpose
4699of enabling loop-invariant code motion (LICM). The metadata has a single operand
4700which is the string ``llvm.loop.licm_versioning.disable``. For example:
4701
4702.. code-block:: llvm
4703
4704 !0 = !{!"llvm.loop.licm_versioning.disable"}
4705
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004706'``llvm.mem``'
4707^^^^^^^^^^^^^^^
4708
4709Metadata types used to annotate memory accesses with information helpful
4710for optimizations are prefixed with ``llvm.mem``.
4711
4712'``llvm.mem.parallel_loop_access``' Metadata
4713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4714
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004715The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4716or metadata containing a list of loop identifiers for nested loops.
4717The metadata is attached to memory accessing instructions and denotes that
4718no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004719with the same loop identifier.
4720
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004721Precisely, given two instructions ``m1`` and ``m2`` that both have the
4722``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4723set of loops associated with that metadata, respectively, then there is no loop
4724carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004725``L2``.
4726
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004727As a special case, if all memory accessing instructions in a loop have
4728``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4729loop has no loop carried memory dependences and is considered to be a parallel
4730loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004731
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004732Note that if not all memory access instructions have such metadata referring to
4733the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004734memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004735safe mechanism, this causes loops that were originally parallel to be considered
4736sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004737insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004738
4739Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004740both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004741metadata types that refer to the same loop identifier metadata.
4742
4743.. code-block:: llvm
4744
4745 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004746 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004747 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004748 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004749 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004750 ...
4751 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004752
4753 for.end:
4754 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004755 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004756
4757It is also possible to have nested parallel loops. In that case the
4758memory accesses refer to a list of loop identifier metadata nodes instead of
4759the loop identifier metadata node directly:
4760
4761.. code-block:: llvm
4762
4763 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004764 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004765 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004766 ...
4767 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004768
4769 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004770 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004771 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004772 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004773 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004774 ...
4775 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004776
4777 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004778 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004779 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004780 ...
4781 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004782
4783 outer.for.end: ; preds = %for.body
4784 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004785 !0 = !{!1, !2} ; a list of loop identifiers
4786 !1 = !{!1} ; an identifier for the inner loop
4787 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004788
Peter Collingbournee6909c82015-02-20 20:30:47 +00004789'``llvm.bitsets``'
4790^^^^^^^^^^^^^^^^^^
4791
4792The ``llvm.bitsets`` global metadata is used to implement
4793:doc:`bitsets <BitSets>`.
4794
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004795'``invariant.group``' Metadata
4796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4797
4798The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4799The existence of the ``invariant.group`` metadata on the instruction tells
4800the optimizer that every ``load`` and ``store`` to the same pointer operand
4801within the same invariant group can be assumed to load or store the same
4802value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4803when two pointers are considered the same).
4804
4805Examples:
4806
4807.. code-block:: llvm
4808
4809 @unknownPtr = external global i8
4810 ...
4811 %ptr = alloca i8
4812 store i8 42, i8* %ptr, !invariant.group !0
4813 call void @foo(i8* %ptr)
4814
4815 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4816 call void @foo(i8* %ptr)
4817 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4818
4819 %newPtr = call i8* @getPointer(i8* %ptr)
4820 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4821
4822 %unknownValue = load i8, i8* @unknownPtr
4823 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4824
4825 call void @foo(i8* %ptr)
4826 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4827 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4828
4829 ...
4830 declare void @foo(i8*)
4831 declare i8* @getPointer(i8*)
4832 declare i8* @llvm.invariant.group.barrier(i8*)
4833
4834 !0 = !{!"magic ptr"}
4835 !1 = !{!"other ptr"}
4836
4837
4838
Sean Silvab084af42012-12-07 10:36:55 +00004839Module Flags Metadata
4840=====================
4841
4842Information about the module as a whole is difficult to convey to LLVM's
4843subsystems. The LLVM IR isn't sufficient to transmit this information.
4844The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004845this. These flags are in the form of key / value pairs --- much like a
4846dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004847look it up.
4848
4849The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4850Each triplet has the following form:
4851
4852- The first element is a *behavior* flag, which specifies the behavior
4853 when two (or more) modules are merged together, and it encounters two
4854 (or more) metadata with the same ID. The supported behaviors are
4855 described below.
4856- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004857 metadata. Each module may only have one flag entry for each unique ID (not
4858 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004859- The third element is the value of the flag.
4860
4861When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004862``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4863each unique metadata ID string, there will be exactly one entry in the merged
4864modules ``llvm.module.flags`` metadata table, and the value for that entry will
4865be determined by the merge behavior flag, as described below. The only exception
4866is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004867
4868The following behaviors are supported:
4869
4870.. list-table::
4871 :header-rows: 1
4872 :widths: 10 90
4873
4874 * - Value
4875 - Behavior
4876
4877 * - 1
4878 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004879 Emits an error if two values disagree, otherwise the resulting value
4880 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004881
4882 * - 2
4883 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004884 Emits a warning if two values disagree. The result value will be the
4885 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004886
4887 * - 3
4888 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004889 Adds a requirement that another module flag be present and have a
4890 specified value after linking is performed. The value must be a
4891 metadata pair, where the first element of the pair is the ID of the
4892 module flag to be restricted, and the second element of the pair is
4893 the value the module flag should be restricted to. This behavior can
4894 be used to restrict the allowable results (via triggering of an
4895 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004896
4897 * - 4
4898 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004899 Uses the specified value, regardless of the behavior or value of the
4900 other module. If both modules specify **Override**, but the values
4901 differ, an error will be emitted.
4902
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004903 * - 5
4904 - **Append**
4905 Appends the two values, which are required to be metadata nodes.
4906
4907 * - 6
4908 - **AppendUnique**
4909 Appends the two values, which are required to be metadata
4910 nodes. However, duplicate entries in the second list are dropped
4911 during the append operation.
4912
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004913It is an error for a particular unique flag ID to have multiple behaviors,
4914except in the case of **Require** (which adds restrictions on another metadata
4915value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004916
4917An example of module flags:
4918
4919.. code-block:: llvm
4920
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004921 !0 = !{ i32 1, !"foo", i32 1 }
4922 !1 = !{ i32 4, !"bar", i32 37 }
4923 !2 = !{ i32 2, !"qux", i32 42 }
4924 !3 = !{ i32 3, !"qux",
4925 !{
4926 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004927 }
4928 }
4929 !llvm.module.flags = !{ !0, !1, !2, !3 }
4930
4931- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4932 if two or more ``!"foo"`` flags are seen is to emit an error if their
4933 values are not equal.
4934
4935- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4936 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004937 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004938
4939- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4940 behavior if two or more ``!"qux"`` flags are seen is to emit a
4941 warning if their values are not equal.
4942
4943- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4944
4945 ::
4946
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004947 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004948
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004949 The behavior is to emit an error if the ``llvm.module.flags`` does not
4950 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4951 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004952
4953Objective-C Garbage Collection Module Flags Metadata
4954----------------------------------------------------
4955
4956On the Mach-O platform, Objective-C stores metadata about garbage
4957collection in a special section called "image info". The metadata
4958consists of a version number and a bitmask specifying what types of
4959garbage collection are supported (if any) by the file. If two or more
4960modules are linked together their garbage collection metadata needs to
4961be merged rather than appended together.
4962
4963The Objective-C garbage collection module flags metadata consists of the
4964following key-value pairs:
4965
4966.. list-table::
4967 :header-rows: 1
4968 :widths: 30 70
4969
4970 * - Key
4971 - Value
4972
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004973 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004974 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004975
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004976 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004977 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004978 always 0.
4979
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004980 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004981 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004982 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4983 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4984 Objective-C ABI version 2.
4985
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004986 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004987 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004988 not. Valid values are 0, for no garbage collection, and 2, for garbage
4989 collection supported.
4990
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004991 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004992 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004993 If present, its value must be 6. This flag requires that the
4994 ``Objective-C Garbage Collection`` flag have the value 2.
4995
4996Some important flag interactions:
4997
4998- If a module with ``Objective-C Garbage Collection`` set to 0 is
4999 merged with a module with ``Objective-C Garbage Collection`` set to
5000 2, then the resulting module has the
5001 ``Objective-C Garbage Collection`` flag set to 0.
5002- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5003 merged with a module with ``Objective-C GC Only`` set to 6.
5004
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005005Automatic Linker Flags Module Flags Metadata
5006--------------------------------------------
5007
5008Some targets support embedding flags to the linker inside individual object
5009files. Typically this is used in conjunction with language extensions which
5010allow source files to explicitly declare the libraries they depend on, and have
5011these automatically be transmitted to the linker via object files.
5012
5013These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005014using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005015to be ``AppendUnique``, and the value for the key is expected to be a metadata
5016node which should be a list of other metadata nodes, each of which should be a
5017list of metadata strings defining linker options.
5018
5019For example, the following metadata section specifies two separate sets of
5020linker options, presumably to link against ``libz`` and the ``Cocoa``
5021framework::
5022
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005023 !0 = !{ i32 6, !"Linker Options",
5024 !{
5025 !{ !"-lz" },
5026 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005027 !llvm.module.flags = !{ !0 }
5028
5029The metadata encoding as lists of lists of options, as opposed to a collapsed
5030list of options, is chosen so that the IR encoding can use multiple option
5031strings to specify e.g., a single library, while still having that specifier be
5032preserved as an atomic element that can be recognized by a target specific
5033assembly writer or object file emitter.
5034
5035Each individual option is required to be either a valid option for the target's
5036linker, or an option that is reserved by the target specific assembly writer or
5037object file emitter. No other aspect of these options is defined by the IR.
5038
Oliver Stannard5dc29342014-06-20 10:08:11 +00005039C type width Module Flags Metadata
5040----------------------------------
5041
5042The ARM backend emits a section into each generated object file describing the
5043options that it was compiled with (in a compiler-independent way) to prevent
5044linking incompatible objects, and to allow automatic library selection. Some
5045of these options are not visible at the IR level, namely wchar_t width and enum
5046width.
5047
5048To pass this information to the backend, these options are encoded in module
5049flags metadata, using the following key-value pairs:
5050
5051.. list-table::
5052 :header-rows: 1
5053 :widths: 30 70
5054
5055 * - Key
5056 - Value
5057
5058 * - short_wchar
5059 - * 0 --- sizeof(wchar_t) == 4
5060 * 1 --- sizeof(wchar_t) == 2
5061
5062 * - short_enum
5063 - * 0 --- Enums are at least as large as an ``int``.
5064 * 1 --- Enums are stored in the smallest integer type which can
5065 represent all of its values.
5066
5067For example, the following metadata section specifies that the module was
5068compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5069enum is the smallest type which can represent all of its values::
5070
5071 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005072 !0 = !{i32 1, !"short_wchar", i32 1}
5073 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005074
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005075.. _intrinsicglobalvariables:
5076
Sean Silvab084af42012-12-07 10:36:55 +00005077Intrinsic Global Variables
5078==========================
5079
5080LLVM has a number of "magic" global variables that contain data that
5081affect code generation or other IR semantics. These are documented here.
5082All globals of this sort should have a section specified as
5083"``llvm.metadata``". This section and all globals that start with
5084"``llvm.``" are reserved for use by LLVM.
5085
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005086.. _gv_llvmused:
5087
Sean Silvab084af42012-12-07 10:36:55 +00005088The '``llvm.used``' Global Variable
5089-----------------------------------
5090
Rafael Espindola74f2e462013-04-22 14:58:02 +00005091The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005092:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005093pointers to named global variables, functions and aliases which may optionally
5094have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005095use of it is:
5096
5097.. code-block:: llvm
5098
5099 @X = global i8 4
5100 @Y = global i32 123
5101
5102 @llvm.used = appending global [2 x i8*] [
5103 i8* @X,
5104 i8* bitcast (i32* @Y to i8*)
5105 ], section "llvm.metadata"
5106
Rafael Espindola74f2e462013-04-22 14:58:02 +00005107If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5108and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005109symbol that it cannot see (which is why they have to be named). For example, if
5110a variable has internal linkage and no references other than that from the
5111``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5112references from inline asms and other things the compiler cannot "see", and
5113corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005114
5115On some targets, the code generator must emit a directive to the
5116assembler or object file to prevent the assembler and linker from
5117molesting the symbol.
5118
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005119.. _gv_llvmcompilerused:
5120
Sean Silvab084af42012-12-07 10:36:55 +00005121The '``llvm.compiler.used``' Global Variable
5122--------------------------------------------
5123
5124The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5125directive, except that it only prevents the compiler from touching the
5126symbol. On targets that support it, this allows an intelligent linker to
5127optimize references to the symbol without being impeded as it would be
5128by ``@llvm.used``.
5129
5130This is a rare construct that should only be used in rare circumstances,
5131and should not be exposed to source languages.
5132
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005133.. _gv_llvmglobalctors:
5134
Sean Silvab084af42012-12-07 10:36:55 +00005135The '``llvm.global_ctors``' Global Variable
5136-------------------------------------------
5137
5138.. code-block:: llvm
5139
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005140 %0 = type { i32, void ()*, i8* }
5141 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005142
5143The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005144functions, priorities, and an optional associated global or function.
5145The functions referenced by this array will be called in ascending order
5146of priority (i.e. lowest first) when the module is loaded. The order of
5147functions with the same priority is not defined.
5148
5149If the third field is present, non-null, and points to a global variable
5150or function, the initializer function will only run if the associated
5151data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005152
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005153.. _llvmglobaldtors:
5154
Sean Silvab084af42012-12-07 10:36:55 +00005155The '``llvm.global_dtors``' Global Variable
5156-------------------------------------------
5157
5158.. code-block:: llvm
5159
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005160 %0 = type { i32, void ()*, i8* }
5161 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005162
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005163The ``@llvm.global_dtors`` array contains a list of destructor
5164functions, priorities, and an optional associated global or function.
5165The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005166order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005167order of functions with the same priority is not defined.
5168
5169If the third field is present, non-null, and points to a global variable
5170or function, the destructor function will only run if the associated
5171data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005172
5173Instruction Reference
5174=====================
5175
5176The LLVM instruction set consists of several different classifications
5177of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5178instructions <binaryops>`, :ref:`bitwise binary
5179instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5180:ref:`other instructions <otherops>`.
5181
5182.. _terminators:
5183
5184Terminator Instructions
5185-----------------------
5186
5187As mentioned :ref:`previously <functionstructure>`, every basic block in a
5188program ends with a "Terminator" instruction, which indicates which
5189block should be executed after the current block is finished. These
5190terminator instructions typically yield a '``void``' value: they produce
5191control flow, not values (the one exception being the
5192':ref:`invoke <i_invoke>`' instruction).
5193
5194The terminator instructions are: ':ref:`ret <i_ret>`',
5195':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5196':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005197':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005198':ref:`catchret <i_catchret>`',
5199':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005200and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005201
5202.. _i_ret:
5203
5204'``ret``' Instruction
5205^^^^^^^^^^^^^^^^^^^^^
5206
5207Syntax:
5208"""""""
5209
5210::
5211
5212 ret <type> <value> ; Return a value from a non-void function
5213 ret void ; Return from void function
5214
5215Overview:
5216"""""""""
5217
5218The '``ret``' instruction is used to return control flow (and optionally
5219a value) from a function back to the caller.
5220
5221There are two forms of the '``ret``' instruction: one that returns a
5222value and then causes control flow, and one that just causes control
5223flow to occur.
5224
5225Arguments:
5226""""""""""
5227
5228The '``ret``' instruction optionally accepts a single argument, the
5229return value. The type of the return value must be a ':ref:`first
5230class <t_firstclass>`' type.
5231
5232A function is not :ref:`well formed <wellformed>` if it it has a non-void
5233return type and contains a '``ret``' instruction with no return value or
5234a return value with a type that does not match its type, or if it has a
5235void return type and contains a '``ret``' instruction with a return
5236value.
5237
5238Semantics:
5239""""""""""
5240
5241When the '``ret``' instruction is executed, control flow returns back to
5242the calling function's context. If the caller is a
5243":ref:`call <i_call>`" instruction, execution continues at the
5244instruction after the call. If the caller was an
5245":ref:`invoke <i_invoke>`" instruction, execution continues at the
5246beginning of the "normal" destination block. If the instruction returns
5247a value, that value shall set the call or invoke instruction's return
5248value.
5249
5250Example:
5251""""""""
5252
5253.. code-block:: llvm
5254
5255 ret i32 5 ; Return an integer value of 5
5256 ret void ; Return from a void function
5257 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5258
5259.. _i_br:
5260
5261'``br``' Instruction
5262^^^^^^^^^^^^^^^^^^^^
5263
5264Syntax:
5265"""""""
5266
5267::
5268
5269 br i1 <cond>, label <iftrue>, label <iffalse>
5270 br label <dest> ; Unconditional branch
5271
5272Overview:
5273"""""""""
5274
5275The '``br``' instruction is used to cause control flow to transfer to a
5276different basic block in the current function. There are two forms of
5277this instruction, corresponding to a conditional branch and an
5278unconditional branch.
5279
5280Arguments:
5281""""""""""
5282
5283The conditional branch form of the '``br``' instruction takes a single
5284'``i1``' value and two '``label``' values. The unconditional form of the
5285'``br``' instruction takes a single '``label``' value as a target.
5286
5287Semantics:
5288""""""""""
5289
5290Upon execution of a conditional '``br``' instruction, the '``i1``'
5291argument is evaluated. If the value is ``true``, control flows to the
5292'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5293to the '``iffalse``' ``label`` argument.
5294
5295Example:
5296""""""""
5297
5298.. code-block:: llvm
5299
5300 Test:
5301 %cond = icmp eq i32 %a, %b
5302 br i1 %cond, label %IfEqual, label %IfUnequal
5303 IfEqual:
5304 ret i32 1
5305 IfUnequal:
5306 ret i32 0
5307
5308.. _i_switch:
5309
5310'``switch``' Instruction
5311^^^^^^^^^^^^^^^^^^^^^^^^
5312
5313Syntax:
5314"""""""
5315
5316::
5317
5318 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5319
5320Overview:
5321"""""""""
5322
5323The '``switch``' instruction is used to transfer control flow to one of
5324several different places. It is a generalization of the '``br``'
5325instruction, allowing a branch to occur to one of many possible
5326destinations.
5327
5328Arguments:
5329""""""""""
5330
5331The '``switch``' instruction uses three parameters: an integer
5332comparison value '``value``', a default '``label``' destination, and an
5333array of pairs of comparison value constants and '``label``'s. The table
5334is not allowed to contain duplicate constant entries.
5335
5336Semantics:
5337""""""""""
5338
5339The ``switch`` instruction specifies a table of values and destinations.
5340When the '``switch``' instruction is executed, this table is searched
5341for the given value. If the value is found, control flow is transferred
5342to the corresponding destination; otherwise, control flow is transferred
5343to the default destination.
5344
5345Implementation:
5346"""""""""""""""
5347
5348Depending on properties of the target machine and the particular
5349``switch`` instruction, this instruction may be code generated in
5350different ways. For example, it could be generated as a series of
5351chained conditional branches or with a lookup table.
5352
5353Example:
5354""""""""
5355
5356.. code-block:: llvm
5357
5358 ; Emulate a conditional br instruction
5359 %Val = zext i1 %value to i32
5360 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5361
5362 ; Emulate an unconditional br instruction
5363 switch i32 0, label %dest [ ]
5364
5365 ; Implement a jump table:
5366 switch i32 %val, label %otherwise [ i32 0, label %onzero
5367 i32 1, label %onone
5368 i32 2, label %ontwo ]
5369
5370.. _i_indirectbr:
5371
5372'``indirectbr``' Instruction
5373^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5374
5375Syntax:
5376"""""""
5377
5378::
5379
5380 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5381
5382Overview:
5383"""""""""
5384
5385The '``indirectbr``' instruction implements an indirect branch to a
5386label within the current function, whose address is specified by
5387"``address``". Address must be derived from a
5388:ref:`blockaddress <blockaddress>` constant.
5389
5390Arguments:
5391""""""""""
5392
5393The '``address``' argument is the address of the label to jump to. The
5394rest of the arguments indicate the full set of possible destinations
5395that the address may point to. Blocks are allowed to occur multiple
5396times in the destination list, though this isn't particularly useful.
5397
5398This destination list is required so that dataflow analysis has an
5399accurate understanding of the CFG.
5400
5401Semantics:
5402""""""""""
5403
5404Control transfers to the block specified in the address argument. All
5405possible destination blocks must be listed in the label list, otherwise
5406this instruction has undefined behavior. This implies that jumps to
5407labels defined in other functions have undefined behavior as well.
5408
5409Implementation:
5410"""""""""""""""
5411
5412This is typically implemented with a jump through a register.
5413
5414Example:
5415""""""""
5416
5417.. code-block:: llvm
5418
5419 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5420
5421.. _i_invoke:
5422
5423'``invoke``' Instruction
5424^^^^^^^^^^^^^^^^^^^^^^^^
5425
5426Syntax:
5427"""""""
5428
5429::
5430
5431 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005432 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005433
5434Overview:
5435"""""""""
5436
5437The '``invoke``' instruction causes control to transfer to a specified
5438function, with the possibility of control flow transfer to either the
5439'``normal``' label or the '``exception``' label. If the callee function
5440returns with the "``ret``" instruction, control flow will return to the
5441"normal" label. If the callee (or any indirect callees) returns via the
5442":ref:`resume <i_resume>`" instruction or other exception handling
5443mechanism, control is interrupted and continued at the dynamically
5444nearest "exception" label.
5445
5446The '``exception``' label is a `landing
5447pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5448'``exception``' label is required to have the
5449":ref:`landingpad <i_landingpad>`" instruction, which contains the
5450information about the behavior of the program after unwinding happens,
5451as its first non-PHI instruction. The restrictions on the
5452"``landingpad``" instruction's tightly couples it to the "``invoke``"
5453instruction, so that the important information contained within the
5454"``landingpad``" instruction can't be lost through normal code motion.
5455
5456Arguments:
5457""""""""""
5458
5459This instruction requires several arguments:
5460
5461#. The optional "cconv" marker indicates which :ref:`calling
5462 convention <callingconv>` the call should use. If none is
5463 specified, the call defaults to using C calling conventions.
5464#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5465 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5466 are valid here.
5467#. '``ptr to function ty``': shall be the signature of the pointer to
5468 function value being invoked. In most cases, this is a direct
5469 function invocation, but indirect ``invoke``'s are just as possible,
5470 branching off an arbitrary pointer to function value.
5471#. '``function ptr val``': An LLVM value containing a pointer to a
5472 function to be invoked.
5473#. '``function args``': argument list whose types match the function
5474 signature argument types and parameter attributes. All arguments must
5475 be of :ref:`first class <t_firstclass>` type. If the function signature
5476 indicates the function accepts a variable number of arguments, the
5477 extra arguments can be specified.
5478#. '``normal label``': the label reached when the called function
5479 executes a '``ret``' instruction.
5480#. '``exception label``': the label reached when a callee returns via
5481 the :ref:`resume <i_resume>` instruction or other exception handling
5482 mechanism.
5483#. The optional :ref:`function attributes <fnattrs>` list. Only
5484 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5485 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005486#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005487
5488Semantics:
5489""""""""""
5490
5491This instruction is designed to operate as a standard '``call``'
5492instruction in most regards. The primary difference is that it
5493establishes an association with a label, which is used by the runtime
5494library to unwind the stack.
5495
5496This instruction is used in languages with destructors to ensure that
5497proper cleanup is performed in the case of either a ``longjmp`` or a
5498thrown exception. Additionally, this is important for implementation of
5499'``catch``' clauses in high-level languages that support them.
5500
5501For the purposes of the SSA form, the definition of the value returned
5502by the '``invoke``' instruction is deemed to occur on the edge from the
5503current block to the "normal" label. If the callee unwinds then no
5504return value is available.
5505
5506Example:
5507""""""""
5508
5509.. code-block:: llvm
5510
5511 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005512 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005513 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005514 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005515
5516.. _i_resume:
5517
5518'``resume``' Instruction
5519^^^^^^^^^^^^^^^^^^^^^^^^
5520
5521Syntax:
5522"""""""
5523
5524::
5525
5526 resume <type> <value>
5527
5528Overview:
5529"""""""""
5530
5531The '``resume``' instruction is a terminator instruction that has no
5532successors.
5533
5534Arguments:
5535""""""""""
5536
5537The '``resume``' instruction requires one argument, which must have the
5538same type as the result of any '``landingpad``' instruction in the same
5539function.
5540
5541Semantics:
5542""""""""""
5543
5544The '``resume``' instruction resumes propagation of an existing
5545(in-flight) exception whose unwinding was interrupted with a
5546:ref:`landingpad <i_landingpad>` instruction.
5547
5548Example:
5549""""""""
5550
5551.. code-block:: llvm
5552
5553 resume { i8*, i32 } %exn
5554
David Majnemer8a1c45d2015-12-12 05:38:55 +00005555.. _i_catchswitch:
5556
5557'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005558^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005559
5560Syntax:
5561"""""""
5562
5563::
5564
5565 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5566 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5567
5568Overview:
5569"""""""""
5570
5571The '``catchswitch``' instruction is used by `LLVM's exception handling system
5572<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5573that may be executed by the :ref:`EH personality routine <personalityfn>`.
5574
5575Arguments:
5576""""""""""
5577
5578The ``parent`` argument is the token of the funclet that contains the
5579``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5580this operand may be the token ``none``.
5581
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005582The ``default`` argument is the label of another basic block beginning with
5583either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5584must be a legal target with respect to the ``parent`` links, as described in
5585the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005586
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005587The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005588:ref:`catchpad <i_catchpad>` instruction.
5589
5590Semantics:
5591""""""""""
5592
5593Executing this instruction transfers control to one of the successors in
5594``handlers``, if appropriate, or continues to unwind via the unwind label if
5595present.
5596
5597The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5598it must be both the first non-phi instruction and last instruction in the basic
5599block. Therefore, it must be the only non-phi instruction in the block.
5600
5601Example:
5602""""""""
5603
5604.. code-block:: llvm
5605
5606 dispatch1:
5607 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5608 dispatch2:
5609 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5610
David Majnemer654e1302015-07-31 17:58:14 +00005611.. _i_catchret:
5612
5613'``catchret``' Instruction
5614^^^^^^^^^^^^^^^^^^^^^^^^^^
5615
5616Syntax:
5617"""""""
5618
5619::
5620
David Majnemer8a1c45d2015-12-12 05:38:55 +00005621 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005622
5623Overview:
5624"""""""""
5625
5626The '``catchret``' instruction is a terminator instruction that has a
5627single successor.
5628
5629
5630Arguments:
5631""""""""""
5632
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005633The first argument to a '``catchret``' indicates which ``catchpad`` it
5634exits. It must be a :ref:`catchpad <i_catchpad>`.
5635The second argument to a '``catchret``' specifies where control will
5636transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005637
5638Semantics:
5639""""""""""
5640
David Majnemer8a1c45d2015-12-12 05:38:55 +00005641The '``catchret``' instruction ends an existing (in-flight) exception whose
5642unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5643:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5644code to, for example, destroy the active exception. Control then transfers to
5645``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005646
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005647The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5648If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5649funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5650the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005651
5652Example:
5653""""""""
5654
5655.. code-block:: llvm
5656
David Majnemer8a1c45d2015-12-12 05:38:55 +00005657 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005658
David Majnemer654e1302015-07-31 17:58:14 +00005659.. _i_cleanupret:
5660
5661'``cleanupret``' Instruction
5662^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5663
5664Syntax:
5665"""""""
5666
5667::
5668
David Majnemer8a1c45d2015-12-12 05:38:55 +00005669 cleanupret from <value> unwind label <continue>
5670 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005671
5672Overview:
5673"""""""""
5674
5675The '``cleanupret``' instruction is a terminator instruction that has
5676an optional successor.
5677
5678
5679Arguments:
5680""""""""""
5681
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005682The '``cleanupret``' instruction requires one argument, which indicates
5683which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005684If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5685funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5686the ``cleanupret``'s behavior is undefined.
5687
5688The '``cleanupret``' instruction also has an optional successor, ``continue``,
5689which must be the label of another basic block beginning with either a
5690``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5691be a legal target with respect to the ``parent`` links, as described in the
5692`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005693
5694Semantics:
5695""""""""""
5696
5697The '``cleanupret``' instruction indicates to the
5698:ref:`personality function <personalityfn>` that one
5699:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5700It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005701
David Majnemer654e1302015-07-31 17:58:14 +00005702Example:
5703""""""""
5704
5705.. code-block:: llvm
5706
David Majnemer8a1c45d2015-12-12 05:38:55 +00005707 cleanupret from %cleanup unwind to caller
5708 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005709
Sean Silvab084af42012-12-07 10:36:55 +00005710.. _i_unreachable:
5711
5712'``unreachable``' Instruction
5713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5714
5715Syntax:
5716"""""""
5717
5718::
5719
5720 unreachable
5721
5722Overview:
5723"""""""""
5724
5725The '``unreachable``' instruction has no defined semantics. This
5726instruction is used to inform the optimizer that a particular portion of
5727the code is not reachable. This can be used to indicate that the code
5728after a no-return function cannot be reached, and other facts.
5729
5730Semantics:
5731""""""""""
5732
5733The '``unreachable``' instruction has no defined semantics.
5734
5735.. _binaryops:
5736
5737Binary Operations
5738-----------------
5739
5740Binary operators are used to do most of the computation in a program.
5741They require two operands of the same type, execute an operation on
5742them, and produce a single value. The operands might represent multiple
5743data, as is the case with the :ref:`vector <t_vector>` data type. The
5744result value has the same type as its operands.
5745
5746There are several different binary operators:
5747
5748.. _i_add:
5749
5750'``add``' Instruction
5751^^^^^^^^^^^^^^^^^^^^^
5752
5753Syntax:
5754"""""""
5755
5756::
5757
Tim Northover675a0962014-06-13 14:24:23 +00005758 <result> = add <ty> <op1>, <op2> ; yields ty:result
5759 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5760 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5761 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005762
5763Overview:
5764"""""""""
5765
5766The '``add``' instruction returns the sum of its two operands.
5767
5768Arguments:
5769""""""""""
5770
5771The two arguments to the '``add``' instruction must be
5772:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5773arguments must have identical types.
5774
5775Semantics:
5776""""""""""
5777
5778The value produced is the integer sum of the two operands.
5779
5780If the sum has unsigned overflow, the result returned is the
5781mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5782the result.
5783
5784Because LLVM integers use a two's complement representation, this
5785instruction is appropriate for both signed and unsigned integers.
5786
5787``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5788respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5789result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5790unsigned and/or signed overflow, respectively, occurs.
5791
5792Example:
5793""""""""
5794
5795.. code-block:: llvm
5796
Tim Northover675a0962014-06-13 14:24:23 +00005797 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005798
5799.. _i_fadd:
5800
5801'``fadd``' Instruction
5802^^^^^^^^^^^^^^^^^^^^^^
5803
5804Syntax:
5805"""""""
5806
5807::
5808
Tim Northover675a0962014-06-13 14:24:23 +00005809 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005810
5811Overview:
5812"""""""""
5813
5814The '``fadd``' instruction returns the sum of its two operands.
5815
5816Arguments:
5817""""""""""
5818
5819The two arguments to the '``fadd``' instruction must be :ref:`floating
5820point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5821Both arguments must have identical types.
5822
5823Semantics:
5824""""""""""
5825
5826The value produced is the floating point sum of the two operands. This
5827instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5828which are optimization hints to enable otherwise unsafe floating point
5829optimizations:
5830
5831Example:
5832""""""""
5833
5834.. code-block:: llvm
5835
Tim Northover675a0962014-06-13 14:24:23 +00005836 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005837
5838'``sub``' Instruction
5839^^^^^^^^^^^^^^^^^^^^^
5840
5841Syntax:
5842"""""""
5843
5844::
5845
Tim Northover675a0962014-06-13 14:24:23 +00005846 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5847 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5848 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5849 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005850
5851Overview:
5852"""""""""
5853
5854The '``sub``' instruction returns the difference of its two operands.
5855
5856Note that the '``sub``' instruction is used to represent the '``neg``'
5857instruction present in most other intermediate representations.
5858
5859Arguments:
5860""""""""""
5861
5862The two arguments to the '``sub``' instruction must be
5863:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5864arguments must have identical types.
5865
5866Semantics:
5867""""""""""
5868
5869The value produced is the integer difference of the two operands.
5870
5871If the difference has unsigned overflow, the result returned is the
5872mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5873the result.
5874
5875Because LLVM integers use a two's complement representation, this
5876instruction is appropriate for both signed and unsigned integers.
5877
5878``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5879respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5880result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5881unsigned and/or signed overflow, respectively, occurs.
5882
5883Example:
5884""""""""
5885
5886.. code-block:: llvm
5887
Tim Northover675a0962014-06-13 14:24:23 +00005888 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5889 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005890
5891.. _i_fsub:
5892
5893'``fsub``' Instruction
5894^^^^^^^^^^^^^^^^^^^^^^
5895
5896Syntax:
5897"""""""
5898
5899::
5900
Tim Northover675a0962014-06-13 14:24:23 +00005901 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005902
5903Overview:
5904"""""""""
5905
5906The '``fsub``' instruction returns the difference of its two operands.
5907
5908Note that the '``fsub``' instruction is used to represent the '``fneg``'
5909instruction present in most other intermediate representations.
5910
5911Arguments:
5912""""""""""
5913
5914The two arguments to the '``fsub``' instruction must be :ref:`floating
5915point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5916Both arguments must have identical types.
5917
5918Semantics:
5919""""""""""
5920
5921The value produced is the floating point difference of the two operands.
5922This instruction can also take any number of :ref:`fast-math
5923flags <fastmath>`, which are optimization hints to enable otherwise
5924unsafe floating point optimizations:
5925
5926Example:
5927""""""""
5928
5929.. code-block:: llvm
5930
Tim Northover675a0962014-06-13 14:24:23 +00005931 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5932 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005933
5934'``mul``' Instruction
5935^^^^^^^^^^^^^^^^^^^^^
5936
5937Syntax:
5938"""""""
5939
5940::
5941
Tim Northover675a0962014-06-13 14:24:23 +00005942 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5943 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5944 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5945 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005946
5947Overview:
5948"""""""""
5949
5950The '``mul``' instruction returns the product of its two operands.
5951
5952Arguments:
5953""""""""""
5954
5955The two arguments to the '``mul``' instruction must be
5956:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5957arguments must have identical types.
5958
5959Semantics:
5960""""""""""
5961
5962The value produced is the integer product of the two operands.
5963
5964If the result of the multiplication has unsigned overflow, the result
5965returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5966bit width of the result.
5967
5968Because LLVM integers use a two's complement representation, and the
5969result is the same width as the operands, this instruction returns the
5970correct result for both signed and unsigned integers. If a full product
5971(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5972sign-extended or zero-extended as appropriate to the width of the full
5973product.
5974
5975``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5976respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5977result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5978unsigned and/or signed overflow, respectively, occurs.
5979
5980Example:
5981""""""""
5982
5983.. code-block:: llvm
5984
Tim Northover675a0962014-06-13 14:24:23 +00005985 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005986
5987.. _i_fmul:
5988
5989'``fmul``' Instruction
5990^^^^^^^^^^^^^^^^^^^^^^
5991
5992Syntax:
5993"""""""
5994
5995::
5996
Tim Northover675a0962014-06-13 14:24:23 +00005997 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005998
5999Overview:
6000"""""""""
6001
6002The '``fmul``' instruction returns the product of its two operands.
6003
6004Arguments:
6005""""""""""
6006
6007The two arguments to the '``fmul``' instruction must be :ref:`floating
6008point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6009Both arguments must have identical types.
6010
6011Semantics:
6012""""""""""
6013
6014The value produced is the floating point product of the two operands.
6015This instruction can also take any number of :ref:`fast-math
6016flags <fastmath>`, which are optimization hints to enable otherwise
6017unsafe floating point optimizations:
6018
6019Example:
6020""""""""
6021
6022.. code-block:: llvm
6023
Tim Northover675a0962014-06-13 14:24:23 +00006024 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006025
6026'``udiv``' Instruction
6027^^^^^^^^^^^^^^^^^^^^^^
6028
6029Syntax:
6030"""""""
6031
6032::
6033
Tim Northover675a0962014-06-13 14:24:23 +00006034 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6035 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006036
6037Overview:
6038"""""""""
6039
6040The '``udiv``' instruction returns the quotient of its two operands.
6041
6042Arguments:
6043""""""""""
6044
6045The two arguments to the '``udiv``' instruction must be
6046:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6047arguments must have identical types.
6048
6049Semantics:
6050""""""""""
6051
6052The value produced is the unsigned integer quotient of the two operands.
6053
6054Note that unsigned integer division and signed integer division are
6055distinct operations; for signed integer division, use '``sdiv``'.
6056
6057Division by zero leads to undefined behavior.
6058
6059If the ``exact`` keyword is present, the result value of the ``udiv`` is
6060a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6061such, "((a udiv exact b) mul b) == a").
6062
6063Example:
6064""""""""
6065
6066.. code-block:: llvm
6067
Tim Northover675a0962014-06-13 14:24:23 +00006068 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006069
6070'``sdiv``' Instruction
6071^^^^^^^^^^^^^^^^^^^^^^
6072
6073Syntax:
6074"""""""
6075
6076::
6077
Tim Northover675a0962014-06-13 14:24:23 +00006078 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6079 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006080
6081Overview:
6082"""""""""
6083
6084The '``sdiv``' instruction returns the quotient of its two operands.
6085
6086Arguments:
6087""""""""""
6088
6089The two arguments to the '``sdiv``' instruction must be
6090:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6091arguments must have identical types.
6092
6093Semantics:
6094""""""""""
6095
6096The value produced is the signed integer quotient of the two operands
6097rounded towards zero.
6098
6099Note that signed integer division and unsigned integer division are
6100distinct operations; for unsigned integer division, use '``udiv``'.
6101
6102Division by zero leads to undefined behavior. Overflow also leads to
6103undefined behavior; this is a rare case, but can occur, for example, by
6104doing a 32-bit division of -2147483648 by -1.
6105
6106If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6107a :ref:`poison value <poisonvalues>` if the result would be rounded.
6108
6109Example:
6110""""""""
6111
6112.. code-block:: llvm
6113
Tim Northover675a0962014-06-13 14:24:23 +00006114 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006115
6116.. _i_fdiv:
6117
6118'``fdiv``' Instruction
6119^^^^^^^^^^^^^^^^^^^^^^
6120
6121Syntax:
6122"""""""
6123
6124::
6125
Tim Northover675a0962014-06-13 14:24:23 +00006126 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006127
6128Overview:
6129"""""""""
6130
6131The '``fdiv``' instruction returns the quotient of its two operands.
6132
6133Arguments:
6134""""""""""
6135
6136The two arguments to the '``fdiv``' instruction must be :ref:`floating
6137point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6138Both arguments must have identical types.
6139
6140Semantics:
6141""""""""""
6142
6143The value produced is the floating point quotient of the two operands.
6144This instruction can also take any number of :ref:`fast-math
6145flags <fastmath>`, which are optimization hints to enable otherwise
6146unsafe floating point optimizations:
6147
6148Example:
6149""""""""
6150
6151.. code-block:: llvm
6152
Tim Northover675a0962014-06-13 14:24:23 +00006153 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006154
6155'``urem``' Instruction
6156^^^^^^^^^^^^^^^^^^^^^^
6157
6158Syntax:
6159"""""""
6160
6161::
6162
Tim Northover675a0962014-06-13 14:24:23 +00006163 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006164
6165Overview:
6166"""""""""
6167
6168The '``urem``' instruction returns the remainder from the unsigned
6169division of its two arguments.
6170
6171Arguments:
6172""""""""""
6173
6174The two arguments to the '``urem``' instruction must be
6175:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6176arguments must have identical types.
6177
6178Semantics:
6179""""""""""
6180
6181This instruction returns the unsigned integer *remainder* of a division.
6182This instruction always performs an unsigned division to get the
6183remainder.
6184
6185Note that unsigned integer remainder and signed integer remainder are
6186distinct operations; for signed integer remainder, use '``srem``'.
6187
6188Taking the remainder of a division by zero leads to undefined behavior.
6189
6190Example:
6191""""""""
6192
6193.. code-block:: llvm
6194
Tim Northover675a0962014-06-13 14:24:23 +00006195 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006196
6197'``srem``' Instruction
6198^^^^^^^^^^^^^^^^^^^^^^
6199
6200Syntax:
6201"""""""
6202
6203::
6204
Tim Northover675a0962014-06-13 14:24:23 +00006205 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006206
6207Overview:
6208"""""""""
6209
6210The '``srem``' instruction returns the remainder from the signed
6211division of its two operands. This instruction can also take
6212:ref:`vector <t_vector>` versions of the values in which case the elements
6213must be integers.
6214
6215Arguments:
6216""""""""""
6217
6218The two arguments to the '``srem``' instruction must be
6219:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6220arguments must have identical types.
6221
6222Semantics:
6223""""""""""
6224
6225This instruction returns the *remainder* of a division (where the result
6226is either zero or has the same sign as the dividend, ``op1``), not the
6227*modulo* operator (where the result is either zero or has the same sign
6228as the divisor, ``op2``) of a value. For more information about the
6229difference, see `The Math
6230Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6231table of how this is implemented in various languages, please see
6232`Wikipedia: modulo
6233operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6234
6235Note that signed integer remainder and unsigned integer remainder are
6236distinct operations; for unsigned integer remainder, use '``urem``'.
6237
6238Taking the remainder of a division by zero leads to undefined behavior.
6239Overflow also leads to undefined behavior; this is a rare case, but can
6240occur, for example, by taking the remainder of a 32-bit division of
6241-2147483648 by -1. (The remainder doesn't actually overflow, but this
6242rule lets srem be implemented using instructions that return both the
6243result of the division and the remainder.)
6244
6245Example:
6246""""""""
6247
6248.. code-block:: llvm
6249
Tim Northover675a0962014-06-13 14:24:23 +00006250 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006251
6252.. _i_frem:
6253
6254'``frem``' Instruction
6255^^^^^^^^^^^^^^^^^^^^^^
6256
6257Syntax:
6258"""""""
6259
6260::
6261
Tim Northover675a0962014-06-13 14:24:23 +00006262 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006263
6264Overview:
6265"""""""""
6266
6267The '``frem``' instruction returns the remainder from the division of
6268its two operands.
6269
6270Arguments:
6271""""""""""
6272
6273The two arguments to the '``frem``' instruction must be :ref:`floating
6274point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6275Both arguments must have identical types.
6276
6277Semantics:
6278""""""""""
6279
6280This instruction returns the *remainder* of a division. The remainder
6281has the same sign as the dividend. This instruction can also take any
6282number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6283to enable otherwise unsafe floating point optimizations:
6284
6285Example:
6286""""""""
6287
6288.. code-block:: llvm
6289
Tim Northover675a0962014-06-13 14:24:23 +00006290 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006291
6292.. _bitwiseops:
6293
6294Bitwise Binary Operations
6295-------------------------
6296
6297Bitwise binary operators are used to do various forms of bit-twiddling
6298in a program. They are generally very efficient instructions and can
6299commonly be strength reduced from other instructions. They require two
6300operands of the same type, execute an operation on them, and produce a
6301single value. The resulting value is the same type as its operands.
6302
6303'``shl``' Instruction
6304^^^^^^^^^^^^^^^^^^^^^
6305
6306Syntax:
6307"""""""
6308
6309::
6310
Tim Northover675a0962014-06-13 14:24:23 +00006311 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6312 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6313 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6314 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006315
6316Overview:
6317"""""""""
6318
6319The '``shl``' instruction returns the first operand shifted to the left
6320a specified number of bits.
6321
6322Arguments:
6323""""""""""
6324
6325Both arguments to the '``shl``' instruction must be the same
6326:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6327'``op2``' is treated as an unsigned value.
6328
6329Semantics:
6330""""""""""
6331
6332The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6333where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006334dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006335``op1``, the result is undefined. If the arguments are vectors, each
6336vector element of ``op1`` is shifted by the corresponding shift amount
6337in ``op2``.
6338
6339If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6340value <poisonvalues>` if it shifts out any non-zero bits. If the
6341``nsw`` keyword is present, then the shift produces a :ref:`poison
6342value <poisonvalues>` if it shifts out any bits that disagree with the
6343resultant sign bit. As such, NUW/NSW have the same semantics as they
6344would if the shift were expressed as a mul instruction with the same
6345nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6346
6347Example:
6348""""""""
6349
6350.. code-block:: llvm
6351
Tim Northover675a0962014-06-13 14:24:23 +00006352 <result> = shl i32 4, %var ; yields i32: 4 << %var
6353 <result> = shl i32 4, 2 ; yields i32: 16
6354 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006355 <result> = shl i32 1, 32 ; undefined
6356 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6357
6358'``lshr``' Instruction
6359^^^^^^^^^^^^^^^^^^^^^^
6360
6361Syntax:
6362"""""""
6363
6364::
6365
Tim Northover675a0962014-06-13 14:24:23 +00006366 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6367 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006368
6369Overview:
6370"""""""""
6371
6372The '``lshr``' instruction (logical shift right) returns the first
6373operand shifted to the right a specified number of bits with zero fill.
6374
6375Arguments:
6376""""""""""
6377
6378Both arguments to the '``lshr``' instruction must be the same
6379:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6380'``op2``' is treated as an unsigned value.
6381
6382Semantics:
6383""""""""""
6384
6385This instruction always performs a logical shift right operation. The
6386most significant bits of the result will be filled with zero bits after
6387the shift. If ``op2`` is (statically or dynamically) equal to or larger
6388than the number of bits in ``op1``, the result is undefined. If the
6389arguments are vectors, each vector element of ``op1`` is shifted by the
6390corresponding shift amount in ``op2``.
6391
6392If the ``exact`` keyword is present, the result value of the ``lshr`` is
6393a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6394non-zero.
6395
6396Example:
6397""""""""
6398
6399.. code-block:: llvm
6400
Tim Northover675a0962014-06-13 14:24:23 +00006401 <result> = lshr i32 4, 1 ; yields i32:result = 2
6402 <result> = lshr i32 4, 2 ; yields i32:result = 1
6403 <result> = lshr i8 4, 3 ; yields i8:result = 0
6404 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006405 <result> = lshr i32 1, 32 ; undefined
6406 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6407
6408'``ashr``' Instruction
6409^^^^^^^^^^^^^^^^^^^^^^
6410
6411Syntax:
6412"""""""
6413
6414::
6415
Tim Northover675a0962014-06-13 14:24:23 +00006416 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6417 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006418
6419Overview:
6420"""""""""
6421
6422The '``ashr``' instruction (arithmetic shift right) returns the first
6423operand shifted to the right a specified number of bits with sign
6424extension.
6425
6426Arguments:
6427""""""""""
6428
6429Both arguments to the '``ashr``' instruction must be the same
6430:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6431'``op2``' is treated as an unsigned value.
6432
6433Semantics:
6434""""""""""
6435
6436This instruction always performs an arithmetic shift right operation,
6437The most significant bits of the result will be filled with the sign bit
6438of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6439than the number of bits in ``op1``, the result is undefined. If the
6440arguments are vectors, each vector element of ``op1`` is shifted by the
6441corresponding shift amount in ``op2``.
6442
6443If the ``exact`` keyword is present, the result value of the ``ashr`` is
6444a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6445non-zero.
6446
6447Example:
6448""""""""
6449
6450.. code-block:: llvm
6451
Tim Northover675a0962014-06-13 14:24:23 +00006452 <result> = ashr i32 4, 1 ; yields i32:result = 2
6453 <result> = ashr i32 4, 2 ; yields i32:result = 1
6454 <result> = ashr i8 4, 3 ; yields i8:result = 0
6455 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006456 <result> = ashr i32 1, 32 ; undefined
6457 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6458
6459'``and``' Instruction
6460^^^^^^^^^^^^^^^^^^^^^
6461
6462Syntax:
6463"""""""
6464
6465::
6466
Tim Northover675a0962014-06-13 14:24:23 +00006467 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006468
6469Overview:
6470"""""""""
6471
6472The '``and``' instruction returns the bitwise logical and of its two
6473operands.
6474
6475Arguments:
6476""""""""""
6477
6478The two arguments to the '``and``' instruction must be
6479:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6480arguments must have identical types.
6481
6482Semantics:
6483""""""""""
6484
6485The truth table used for the '``and``' instruction is:
6486
6487+-----+-----+-----+
6488| In0 | In1 | Out |
6489+-----+-----+-----+
6490| 0 | 0 | 0 |
6491+-----+-----+-----+
6492| 0 | 1 | 0 |
6493+-----+-----+-----+
6494| 1 | 0 | 0 |
6495+-----+-----+-----+
6496| 1 | 1 | 1 |
6497+-----+-----+-----+
6498
6499Example:
6500""""""""
6501
6502.. code-block:: llvm
6503
Tim Northover675a0962014-06-13 14:24:23 +00006504 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6505 <result> = and i32 15, 40 ; yields i32:result = 8
6506 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006507
6508'``or``' Instruction
6509^^^^^^^^^^^^^^^^^^^^
6510
6511Syntax:
6512"""""""
6513
6514::
6515
Tim Northover675a0962014-06-13 14:24:23 +00006516 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006517
6518Overview:
6519"""""""""
6520
6521The '``or``' instruction returns the bitwise logical inclusive or of its
6522two operands.
6523
6524Arguments:
6525""""""""""
6526
6527The two arguments to the '``or``' instruction must be
6528:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6529arguments must have identical types.
6530
6531Semantics:
6532""""""""""
6533
6534The truth table used for the '``or``' instruction is:
6535
6536+-----+-----+-----+
6537| In0 | In1 | Out |
6538+-----+-----+-----+
6539| 0 | 0 | 0 |
6540+-----+-----+-----+
6541| 0 | 1 | 1 |
6542+-----+-----+-----+
6543| 1 | 0 | 1 |
6544+-----+-----+-----+
6545| 1 | 1 | 1 |
6546+-----+-----+-----+
6547
6548Example:
6549""""""""
6550
6551::
6552
Tim Northover675a0962014-06-13 14:24:23 +00006553 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6554 <result> = or i32 15, 40 ; yields i32:result = 47
6555 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006556
6557'``xor``' Instruction
6558^^^^^^^^^^^^^^^^^^^^^
6559
6560Syntax:
6561"""""""
6562
6563::
6564
Tim Northover675a0962014-06-13 14:24:23 +00006565 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006566
6567Overview:
6568"""""""""
6569
6570The '``xor``' instruction returns the bitwise logical exclusive or of
6571its two operands. The ``xor`` is used to implement the "one's
6572complement" operation, which is the "~" operator in C.
6573
6574Arguments:
6575""""""""""
6576
6577The two arguments to the '``xor``' instruction must be
6578:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6579arguments must have identical types.
6580
6581Semantics:
6582""""""""""
6583
6584The truth table used for the '``xor``' instruction is:
6585
6586+-----+-----+-----+
6587| In0 | In1 | Out |
6588+-----+-----+-----+
6589| 0 | 0 | 0 |
6590+-----+-----+-----+
6591| 0 | 1 | 1 |
6592+-----+-----+-----+
6593| 1 | 0 | 1 |
6594+-----+-----+-----+
6595| 1 | 1 | 0 |
6596+-----+-----+-----+
6597
6598Example:
6599""""""""
6600
6601.. code-block:: llvm
6602
Tim Northover675a0962014-06-13 14:24:23 +00006603 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6604 <result> = xor i32 15, 40 ; yields i32:result = 39
6605 <result> = xor i32 4, 8 ; yields i32:result = 12
6606 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006607
6608Vector Operations
6609-----------------
6610
6611LLVM supports several instructions to represent vector operations in a
6612target-independent manner. These instructions cover the element-access
6613and vector-specific operations needed to process vectors effectively.
6614While LLVM does directly support these vector operations, many
6615sophisticated algorithms will want to use target-specific intrinsics to
6616take full advantage of a specific target.
6617
6618.. _i_extractelement:
6619
6620'``extractelement``' Instruction
6621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6622
6623Syntax:
6624"""""""
6625
6626::
6627
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006628 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006629
6630Overview:
6631"""""""""
6632
6633The '``extractelement``' instruction extracts a single scalar element
6634from a vector at a specified index.
6635
6636Arguments:
6637""""""""""
6638
6639The first operand of an '``extractelement``' instruction is a value of
6640:ref:`vector <t_vector>` type. The second operand is an index indicating
6641the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006642variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006643
6644Semantics:
6645""""""""""
6646
6647The result is a scalar of the same type as the element type of ``val``.
6648Its value is the value at position ``idx`` of ``val``. If ``idx``
6649exceeds the length of ``val``, the results are undefined.
6650
6651Example:
6652""""""""
6653
6654.. code-block:: llvm
6655
6656 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6657
6658.. _i_insertelement:
6659
6660'``insertelement``' Instruction
6661^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6662
6663Syntax:
6664"""""""
6665
6666::
6667
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006668 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006669
6670Overview:
6671"""""""""
6672
6673The '``insertelement``' instruction inserts a scalar element into a
6674vector at a specified index.
6675
6676Arguments:
6677""""""""""
6678
6679The first operand of an '``insertelement``' instruction is a value of
6680:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6681type must equal the element type of the first operand. The third operand
6682is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006683index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006684
6685Semantics:
6686""""""""""
6687
6688The result is a vector of the same type as ``val``. Its element values
6689are those of ``val`` except at position ``idx``, where it gets the value
6690``elt``. If ``idx`` exceeds the length of ``val``, the results are
6691undefined.
6692
6693Example:
6694""""""""
6695
6696.. code-block:: llvm
6697
6698 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6699
6700.. _i_shufflevector:
6701
6702'``shufflevector``' Instruction
6703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6704
6705Syntax:
6706"""""""
6707
6708::
6709
6710 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6711
6712Overview:
6713"""""""""
6714
6715The '``shufflevector``' instruction constructs a permutation of elements
6716from two input vectors, returning a vector with the same element type as
6717the input and length that is the same as the shuffle mask.
6718
6719Arguments:
6720""""""""""
6721
6722The first two operands of a '``shufflevector``' instruction are vectors
6723with the same type. The third argument is a shuffle mask whose element
6724type is always 'i32'. The result of the instruction is a vector whose
6725length is the same as the shuffle mask and whose element type is the
6726same as the element type of the first two operands.
6727
6728The shuffle mask operand is required to be a constant vector with either
6729constant integer or undef values.
6730
6731Semantics:
6732""""""""""
6733
6734The elements of the two input vectors are numbered from left to right
6735across both of the vectors. The shuffle mask operand specifies, for each
6736element of the result vector, which element of the two input vectors the
6737result element gets. The element selector may be undef (meaning "don't
6738care") and the second operand may be undef if performing a shuffle from
6739only one vector.
6740
6741Example:
6742""""""""
6743
6744.. code-block:: llvm
6745
6746 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6747 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6748 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6749 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6750 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6751 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6752 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6753 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6754
6755Aggregate Operations
6756--------------------
6757
6758LLVM supports several instructions for working with
6759:ref:`aggregate <t_aggregate>` values.
6760
6761.. _i_extractvalue:
6762
6763'``extractvalue``' Instruction
6764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6765
6766Syntax:
6767"""""""
6768
6769::
6770
6771 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6772
6773Overview:
6774"""""""""
6775
6776The '``extractvalue``' instruction extracts the value of a member field
6777from an :ref:`aggregate <t_aggregate>` value.
6778
6779Arguments:
6780""""""""""
6781
6782The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006783:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006784constant indices to specify which value to extract in a similar manner
6785as indices in a '``getelementptr``' instruction.
6786
6787The major differences to ``getelementptr`` indexing are:
6788
6789- Since the value being indexed is not a pointer, the first index is
6790 omitted and assumed to be zero.
6791- At least one index must be specified.
6792- Not only struct indices but also array indices must be in bounds.
6793
6794Semantics:
6795""""""""""
6796
6797The result is the value at the position in the aggregate specified by
6798the index operands.
6799
6800Example:
6801""""""""
6802
6803.. code-block:: llvm
6804
6805 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6806
6807.. _i_insertvalue:
6808
6809'``insertvalue``' Instruction
6810^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6811
6812Syntax:
6813"""""""
6814
6815::
6816
6817 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6818
6819Overview:
6820"""""""""
6821
6822The '``insertvalue``' instruction inserts a value into a member field in
6823an :ref:`aggregate <t_aggregate>` value.
6824
6825Arguments:
6826""""""""""
6827
6828The first operand of an '``insertvalue``' instruction is a value of
6829:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6830a first-class value to insert. The following operands are constant
6831indices indicating the position at which to insert the value in a
6832similar manner as indices in a '``extractvalue``' instruction. The value
6833to insert must have the same type as the value identified by the
6834indices.
6835
6836Semantics:
6837""""""""""
6838
6839The result is an aggregate of the same type as ``val``. Its value is
6840that of ``val`` except that the value at the position specified by the
6841indices is that of ``elt``.
6842
6843Example:
6844""""""""
6845
6846.. code-block:: llvm
6847
6848 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6849 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006850 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006851
6852.. _memoryops:
6853
6854Memory Access and Addressing Operations
6855---------------------------------------
6856
6857A key design point of an SSA-based representation is how it represents
6858memory. In LLVM, no memory locations are in SSA form, which makes things
6859very simple. This section describes how to read, write, and allocate
6860memory in LLVM.
6861
6862.. _i_alloca:
6863
6864'``alloca``' Instruction
6865^^^^^^^^^^^^^^^^^^^^^^^^
6866
6867Syntax:
6868"""""""
6869
6870::
6871
Tim Northover675a0962014-06-13 14:24:23 +00006872 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006873
6874Overview:
6875"""""""""
6876
6877The '``alloca``' instruction allocates memory on the stack frame of the
6878currently executing function, to be automatically released when this
6879function returns to its caller. The object is always allocated in the
6880generic address space (address space zero).
6881
6882Arguments:
6883""""""""""
6884
6885The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6886bytes of memory on the runtime stack, returning a pointer of the
6887appropriate type to the program. If "NumElements" is specified, it is
6888the number of elements allocated, otherwise "NumElements" is defaulted
6889to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006890allocation is guaranteed to be aligned to at least that boundary. The
6891alignment may not be greater than ``1 << 29``. If not specified, or if
6892zero, the target can choose to align the allocation on any convenient
6893boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006894
6895'``type``' may be any sized type.
6896
6897Semantics:
6898""""""""""
6899
6900Memory is allocated; a pointer is returned. The operation is undefined
6901if there is insufficient stack space for the allocation. '``alloca``'d
6902memory is automatically released when the function returns. The
6903'``alloca``' instruction is commonly used to represent automatic
6904variables that must have an address available. When the function returns
6905(either with the ``ret`` or ``resume`` instructions), the memory is
6906reclaimed. Allocating zero bytes is legal, but the result is undefined.
6907The order in which memory is allocated (ie., which way the stack grows)
6908is not specified.
6909
6910Example:
6911""""""""
6912
6913.. code-block:: llvm
6914
Tim Northover675a0962014-06-13 14:24:23 +00006915 %ptr = alloca i32 ; yields i32*:ptr
6916 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6917 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6918 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006919
6920.. _i_load:
6921
6922'``load``' Instruction
6923^^^^^^^^^^^^^^^^^^^^^^
6924
6925Syntax:
6926"""""""
6927
6928::
6929
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006930 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00006931 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006932 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006933 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006934 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006935
6936Overview:
6937"""""""""
6938
6939The '``load``' instruction is used to read from memory.
6940
6941Arguments:
6942""""""""""
6943
Eli Bendersky239a78b2013-04-17 20:17:08 +00006944The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006945from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006946class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6947then the optimizer is not allowed to modify the number or order of
6948execution of this ``load`` with other :ref:`volatile
6949operations <volatile>`.
6950
JF Bastiend1fb5852015-12-17 22:09:19 +00006951If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6952<ordering>` and optional ``singlethread`` argument. The ``release`` and
6953``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
6954produce :ref:`defined <memmodel>` results when they may see multiple atomic
6955stores. The type of the pointee must be an integer, pointer, or floating-point
6956type whose bit width is a power of two greater than or equal to eight and less
6957than or equal to a target-specific size limit. ``align`` must be explicitly
6958specified on atomic loads, and the load has undefined behavior if the alignment
6959is not set to a value which is at least the size in bytes of the
6960pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00006961
6962The optional constant ``align`` argument specifies the alignment of the
6963operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006964or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006965alignment for the target. It is the responsibility of the code emitter
6966to ensure that the alignment information is correct. Overestimating the
6967alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006968may produce less efficient code. An alignment of 1 is always safe. The
6969maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006970
6971The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006972metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006973``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006974metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006975that this load is not expected to be reused in the cache. The code
6976generator may select special instructions to save cache bandwidth, such
6977as the ``MOVNT`` instruction on x86.
6978
6979The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006980metadata name ``<index>`` corresponding to a metadata node with no
6981entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006982instruction tells the optimizer and code generator that the address
6983operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006984Being invariant does not imply that a location is dereferenceable,
6985but it does imply that once the location is known dereferenceable
6986its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006987
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006988The optional ``!invariant.group`` metadata must reference a single metadata name
6989 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6990
Philip Reamescdb72f32014-10-20 22:40:55 +00006991The optional ``!nonnull`` metadata must reference a single
6992metadata name ``<index>`` corresponding to a metadata node with no
6993entries. The existence of the ``!nonnull`` metadata on the
6994instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006995never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006996on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006997to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006998
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006999The optional ``!dereferenceable`` metadata must reference a single metadata
7000name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007001entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007002tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007003The number of bytes known to be dereferenceable is specified by the integer
7004value in the metadata node. This is analogous to the ''dereferenceable''
7005attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007006to loads of a pointer type.
7007
7008The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007009metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7010``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007011instruction tells the optimizer that the value loaded is known to be either
7012dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007013The number of bytes known to be dereferenceable is specified by the integer
7014value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7015attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007016to loads of a pointer type.
7017
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007018The optional ``!align`` metadata must reference a single metadata name
7019``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7020The existence of the ``!align`` metadata on the instruction tells the
7021optimizer that the value loaded is known to be aligned to a boundary specified
7022by the integer value in the metadata node. The alignment must be a power of 2.
7023This is analogous to the ''align'' attribute on parameters and return values.
7024This metadata can only be applied to loads of a pointer type.
7025
Sean Silvab084af42012-12-07 10:36:55 +00007026Semantics:
7027""""""""""
7028
7029The location of memory pointed to is loaded. If the value being loaded
7030is of scalar type then the number of bytes read does not exceed the
7031minimum number of bytes needed to hold all bits of the type. For
7032example, loading an ``i24`` reads at most three bytes. When loading a
7033value of a type like ``i20`` with a size that is not an integral number
7034of bytes, the result is undefined if the value was not originally
7035written using a store of the same type.
7036
7037Examples:
7038"""""""""
7039
7040.. code-block:: llvm
7041
Tim Northover675a0962014-06-13 14:24:23 +00007042 %ptr = alloca i32 ; yields i32*:ptr
7043 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007044 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007045
7046.. _i_store:
7047
7048'``store``' Instruction
7049^^^^^^^^^^^^^^^^^^^^^^^
7050
7051Syntax:
7052"""""""
7053
7054::
7055
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007056 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7057 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007058
7059Overview:
7060"""""""""
7061
7062The '``store``' instruction is used to write to memory.
7063
7064Arguments:
7065""""""""""
7066
Eli Benderskyca380842013-04-17 17:17:20 +00007067There are two arguments to the ``store`` instruction: a value to store
7068and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00007069operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00007070the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00007071then the optimizer is not allowed to modify the number or order of
7072execution of this ``store`` with other :ref:`volatile
7073operations <volatile>`.
7074
JF Bastiend1fb5852015-12-17 22:09:19 +00007075If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7076<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7077``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7078produce :ref:`defined <memmodel>` results when they may see multiple atomic
7079stores. The type of the pointee must be an integer, pointer, or floating-point
7080type whose bit width is a power of two greater than or equal to eight and less
7081than or equal to a target-specific size limit. ``align`` must be explicitly
7082specified on atomic stores, and the store has undefined behavior if the
7083alignment is not set to a value which is at least the size in bytes of the
7084pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007085
Eli Benderskyca380842013-04-17 17:17:20 +00007086The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007087operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007088or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007089alignment for the target. It is the responsibility of the code emitter
7090to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007091alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007092alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007093safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007094
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007095The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007096name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007097value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007098tells the optimizer and code generator that this load is not expected to
7099be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007100instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007101x86.
7102
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007103The optional ``!invariant.group`` metadata must reference a
7104single metadata name ``<index>``. See ``invariant.group`` metadata.
7105
Sean Silvab084af42012-12-07 10:36:55 +00007106Semantics:
7107""""""""""
7108
Eli Benderskyca380842013-04-17 17:17:20 +00007109The contents of memory are updated to contain ``<value>`` at the
7110location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007111of scalar type then the number of bytes written does not exceed the
7112minimum number of bytes needed to hold all bits of the type. For
7113example, storing an ``i24`` writes at most three bytes. When writing a
7114value of a type like ``i20`` with a size that is not an integral number
7115of bytes, it is unspecified what happens to the extra bits that do not
7116belong to the type, but they will typically be overwritten.
7117
7118Example:
7119""""""""
7120
7121.. code-block:: llvm
7122
Tim Northover675a0962014-06-13 14:24:23 +00007123 %ptr = alloca i32 ; yields i32*:ptr
7124 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007125 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007126
7127.. _i_fence:
7128
7129'``fence``' Instruction
7130^^^^^^^^^^^^^^^^^^^^^^^
7131
7132Syntax:
7133"""""""
7134
7135::
7136
Tim Northover675a0962014-06-13 14:24:23 +00007137 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007138
7139Overview:
7140"""""""""
7141
7142The '``fence``' instruction is used to introduce happens-before edges
7143between operations.
7144
7145Arguments:
7146""""""""""
7147
7148'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7149defines what *synchronizes-with* edges they add. They can only be given
7150``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7151
7152Semantics:
7153""""""""""
7154
7155A fence A which has (at least) ``release`` ordering semantics
7156*synchronizes with* a fence B with (at least) ``acquire`` ordering
7157semantics if and only if there exist atomic operations X and Y, both
7158operating on some atomic object M, such that A is sequenced before X, X
7159modifies M (either directly or through some side effect of a sequence
7160headed by X), Y is sequenced before B, and Y observes M. This provides a
7161*happens-before* dependency between A and B. Rather than an explicit
7162``fence``, one (but not both) of the atomic operations X or Y might
7163provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7164still *synchronize-with* the explicit ``fence`` and establish the
7165*happens-before* edge.
7166
7167A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7168``acquire`` and ``release`` semantics specified above, participates in
7169the global program order of other ``seq_cst`` operations and/or fences.
7170
7171The optional ":ref:`singlethread <singlethread>`" argument specifies
7172that the fence only synchronizes with other fences in the same thread.
7173(This is useful for interacting with signal handlers.)
7174
7175Example:
7176""""""""
7177
7178.. code-block:: llvm
7179
Tim Northover675a0962014-06-13 14:24:23 +00007180 fence acquire ; yields void
7181 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007182
7183.. _i_cmpxchg:
7184
7185'``cmpxchg``' Instruction
7186^^^^^^^^^^^^^^^^^^^^^^^^^
7187
7188Syntax:
7189"""""""
7190
7191::
7192
Tim Northover675a0962014-06-13 14:24:23 +00007193 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007194
7195Overview:
7196"""""""""
7197
7198The '``cmpxchg``' instruction is used to atomically modify memory. It
7199loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007200equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007201
7202Arguments:
7203""""""""""
7204
7205There are three arguments to the '``cmpxchg``' instruction: an address
7206to operate on, a value to compare to the value currently be at that
7207address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007208are equal. The type of '<cmp>' must be an integer or pointer type whose
7209bit width is a power of two greater than or equal to eight and less
7210than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7211have the same type, and the type of '<pointer>' must be a pointer to
7212that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7213optimizer is not allowed to modify the number or order of execution of
7214this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007215
Tim Northovere94a5182014-03-11 10:48:52 +00007216The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007217``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7218must be at least ``monotonic``, the ordering constraint on failure must be no
7219stronger than that on success, and the failure ordering cannot be either
7220``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007221
7222The optional "``singlethread``" argument declares that the ``cmpxchg``
7223is only atomic with respect to code (usually signal handlers) running in
7224the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7225respect to all other code in the system.
7226
7227The pointer passed into cmpxchg must have alignment greater than or
7228equal to the size in memory of the operand.
7229
7230Semantics:
7231""""""""""
7232
Tim Northover420a2162014-06-13 14:24:07 +00007233The contents of memory at the location specified by the '``<pointer>``' operand
7234is read and compared to '``<cmp>``'; if the read value is the equal, the
7235'``<new>``' is written. The original value at the location is returned, together
7236with a flag indicating success (true) or failure (false).
7237
7238If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7239permitted: the operation may not write ``<new>`` even if the comparison
7240matched.
7241
7242If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7243if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007244
Tim Northovere94a5182014-03-11 10:48:52 +00007245A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7246identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7247load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007248
7249Example:
7250""""""""
7251
7252.. code-block:: llvm
7253
7254 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007255 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007256 br label %loop
7257
7258 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007259 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007260 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007261 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007262 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7263 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007264 br i1 %success, label %done, label %loop
7265
7266 done:
7267 ...
7268
7269.. _i_atomicrmw:
7270
7271'``atomicrmw``' Instruction
7272^^^^^^^^^^^^^^^^^^^^^^^^^^^
7273
7274Syntax:
7275"""""""
7276
7277::
7278
Tim Northover675a0962014-06-13 14:24:23 +00007279 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007280
7281Overview:
7282"""""""""
7283
7284The '``atomicrmw``' instruction is used to atomically modify memory.
7285
7286Arguments:
7287""""""""""
7288
7289There are three arguments to the '``atomicrmw``' instruction: an
7290operation to apply, an address whose value to modify, an argument to the
7291operation. The operation must be one of the following keywords:
7292
7293- xchg
7294- add
7295- sub
7296- and
7297- nand
7298- or
7299- xor
7300- max
7301- min
7302- umax
7303- umin
7304
7305The type of '<value>' must be an integer type whose bit width is a power
7306of two greater than or equal to eight and less than or equal to a
7307target-specific size limit. The type of the '``<pointer>``' operand must
7308be a pointer to that type. If the ``atomicrmw`` is marked as
7309``volatile``, then the optimizer is not allowed to modify the number or
7310order of execution of this ``atomicrmw`` with other :ref:`volatile
7311operations <volatile>`.
7312
7313Semantics:
7314""""""""""
7315
7316The contents of memory at the location specified by the '``<pointer>``'
7317operand are atomically read, modified, and written back. The original
7318value at the location is returned. The modification is specified by the
7319operation argument:
7320
7321- xchg: ``*ptr = val``
7322- add: ``*ptr = *ptr + val``
7323- sub: ``*ptr = *ptr - val``
7324- and: ``*ptr = *ptr & val``
7325- nand: ``*ptr = ~(*ptr & val)``
7326- or: ``*ptr = *ptr | val``
7327- xor: ``*ptr = *ptr ^ val``
7328- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7329- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7330- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7331 comparison)
7332- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7333 comparison)
7334
7335Example:
7336""""""""
7337
7338.. code-block:: llvm
7339
Tim Northover675a0962014-06-13 14:24:23 +00007340 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007341
7342.. _i_getelementptr:
7343
7344'``getelementptr``' Instruction
7345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7346
7347Syntax:
7348"""""""
7349
7350::
7351
David Blaikie16a97eb2015-03-04 22:02:58 +00007352 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7353 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7354 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007355
7356Overview:
7357"""""""""
7358
7359The '``getelementptr``' instruction is used to get the address of a
7360subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007361address calculation only and does not access memory. The instruction can also
7362be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007363
7364Arguments:
7365""""""""""
7366
David Blaikie16a97eb2015-03-04 22:02:58 +00007367The first argument is always a type used as the basis for the calculations.
7368The second argument is always a pointer or a vector of pointers, and is the
7369base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007370that indicate which of the elements of the aggregate object are indexed.
7371The interpretation of each index is dependent on the type being indexed
7372into. The first index always indexes the pointer value given as the
7373first argument, the second index indexes a value of the type pointed to
7374(not necessarily the value directly pointed to, since the first index
7375can be non-zero), etc. The first type indexed into must be a pointer
7376value, subsequent types can be arrays, vectors, and structs. Note that
7377subsequent types being indexed into can never be pointers, since that
7378would require loading the pointer before continuing calculation.
7379
7380The type of each index argument depends on the type it is indexing into.
7381When indexing into a (optionally packed) structure, only ``i32`` integer
7382**constants** are allowed (when using a vector of indices they must all
7383be the **same** ``i32`` integer constant). When indexing into an array,
7384pointer or vector, integers of any width are allowed, and they are not
7385required to be constant. These integers are treated as signed values
7386where relevant.
7387
7388For example, let's consider a C code fragment and how it gets compiled
7389to LLVM:
7390
7391.. code-block:: c
7392
7393 struct RT {
7394 char A;
7395 int B[10][20];
7396 char C;
7397 };
7398 struct ST {
7399 int X;
7400 double Y;
7401 struct RT Z;
7402 };
7403
7404 int *foo(struct ST *s) {
7405 return &s[1].Z.B[5][13];
7406 }
7407
7408The LLVM code generated by Clang is:
7409
7410.. code-block:: llvm
7411
7412 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7413 %struct.ST = type { i32, double, %struct.RT }
7414
7415 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7416 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007417 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007418 ret i32* %arrayidx
7419 }
7420
7421Semantics:
7422""""""""""
7423
7424In the example above, the first index is indexing into the
7425'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7426= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7427indexes into the third element of the structure, yielding a
7428'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7429structure. The third index indexes into the second element of the
7430structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7431dimensions of the array are subscripted into, yielding an '``i32``'
7432type. The '``getelementptr``' instruction returns a pointer to this
7433element, thus computing a value of '``i32*``' type.
7434
7435Note that it is perfectly legal to index partially through a structure,
7436returning a pointer to an inner element. Because of this, the LLVM code
7437for the given testcase is equivalent to:
7438
7439.. code-block:: llvm
7440
7441 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007442 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7443 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7444 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7445 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7446 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007447 ret i32* %t5
7448 }
7449
7450If the ``inbounds`` keyword is present, the result value of the
7451``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7452pointer is not an *in bounds* address of an allocated object, or if any
7453of the addresses that would be formed by successive addition of the
7454offsets implied by the indices to the base address with infinitely
7455precise signed arithmetic are not an *in bounds* address of that
7456allocated object. The *in bounds* addresses for an allocated object are
7457all the addresses that point into the object, plus the address one byte
7458past the end. In cases where the base is a vector of pointers the
7459``inbounds`` keyword applies to each of the computations element-wise.
7460
7461If the ``inbounds`` keyword is not present, the offsets are added to the
7462base address with silently-wrapping two's complement arithmetic. If the
7463offsets have a different width from the pointer, they are sign-extended
7464or truncated to the width of the pointer. The result value of the
7465``getelementptr`` may be outside the object pointed to by the base
7466pointer. The result value may not necessarily be used to access memory
7467though, even if it happens to point into allocated storage. See the
7468:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7469information.
7470
7471The getelementptr instruction is often confusing. For some more insight
7472into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7473
7474Example:
7475""""""""
7476
7477.. code-block:: llvm
7478
7479 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007480 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007481 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007482 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007483 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007484 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007485 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007486 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007487
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007488Vector of pointers:
7489"""""""""""""""""""
7490
7491The ``getelementptr`` returns a vector of pointers, instead of a single address,
7492when one or more of its arguments is a vector. In such cases, all vector
7493arguments should have the same number of elements, and every scalar argument
7494will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007495
7496.. code-block:: llvm
7497
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007498 ; All arguments are vectors:
7499 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7500 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007501
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007502 ; Add the same scalar offset to each pointer of a vector:
7503 ; A[i] = ptrs[i] + offset*sizeof(i8)
7504 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007505
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007506 ; Add distinct offsets to the same pointer:
7507 ; A[i] = ptr + offsets[i]*sizeof(i8)
7508 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007509
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007510 ; In all cases described above the type of the result is <4 x i8*>
7511
7512The two following instructions are equivalent:
7513
7514.. code-block:: llvm
7515
7516 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7517 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7518 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7519 <4 x i32> %ind4,
7520 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007521
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007522 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7523 i32 2, i32 1, <4 x i32> %ind4, i64 13
7524
7525Let's look at the C code, where the vector version of ``getelementptr``
7526makes sense:
7527
7528.. code-block:: c
7529
7530 // Let's assume that we vectorize the following loop:
7531 double *A, B; int *C;
7532 for (int i = 0; i < size; ++i) {
7533 A[i] = B[C[i]];
7534 }
7535
7536.. code-block:: llvm
7537
7538 ; get pointers for 8 elements from array B
7539 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7540 ; load 8 elements from array B into A
7541 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7542 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007543
7544Conversion Operations
7545---------------------
7546
7547The instructions in this category are the conversion instructions
7548(casting) which all take a single operand and a type. They perform
7549various bit conversions on the operand.
7550
7551'``trunc .. to``' Instruction
7552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7553
7554Syntax:
7555"""""""
7556
7557::
7558
7559 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7560
7561Overview:
7562"""""""""
7563
7564The '``trunc``' instruction truncates its operand to the type ``ty2``.
7565
7566Arguments:
7567""""""""""
7568
7569The '``trunc``' instruction takes a value to trunc, and a type to trunc
7570it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7571of the same number of integers. The bit size of the ``value`` must be
7572larger than the bit size of the destination type, ``ty2``. Equal sized
7573types are not allowed.
7574
7575Semantics:
7576""""""""""
7577
7578The '``trunc``' instruction truncates the high order bits in ``value``
7579and converts the remaining bits to ``ty2``. Since the source size must
7580be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7581It will always truncate bits.
7582
7583Example:
7584""""""""
7585
7586.. code-block:: llvm
7587
7588 %X = trunc i32 257 to i8 ; yields i8:1
7589 %Y = trunc i32 123 to i1 ; yields i1:true
7590 %Z = trunc i32 122 to i1 ; yields i1:false
7591 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7592
7593'``zext .. to``' Instruction
7594^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7595
7596Syntax:
7597"""""""
7598
7599::
7600
7601 <result> = zext <ty> <value> to <ty2> ; yields ty2
7602
7603Overview:
7604"""""""""
7605
7606The '``zext``' instruction zero extends its operand to type ``ty2``.
7607
7608Arguments:
7609""""""""""
7610
7611The '``zext``' instruction takes a value to cast, and a type to cast it
7612to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7613the same number of integers. The bit size of the ``value`` must be
7614smaller than the bit size of the destination type, ``ty2``.
7615
7616Semantics:
7617""""""""""
7618
7619The ``zext`` fills the high order bits of the ``value`` with zero bits
7620until it reaches the size of the destination type, ``ty2``.
7621
7622When zero extending from i1, the result will always be either 0 or 1.
7623
7624Example:
7625""""""""
7626
7627.. code-block:: llvm
7628
7629 %X = zext i32 257 to i64 ; yields i64:257
7630 %Y = zext i1 true to i32 ; yields i32:1
7631 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7632
7633'``sext .. to``' Instruction
7634^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7635
7636Syntax:
7637"""""""
7638
7639::
7640
7641 <result> = sext <ty> <value> to <ty2> ; yields ty2
7642
7643Overview:
7644"""""""""
7645
7646The '``sext``' sign extends ``value`` to the type ``ty2``.
7647
7648Arguments:
7649""""""""""
7650
7651The '``sext``' instruction takes a value to cast, and a type to cast it
7652to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7653the same number of integers. The bit size of the ``value`` must be
7654smaller than the bit size of the destination type, ``ty2``.
7655
7656Semantics:
7657""""""""""
7658
7659The '``sext``' instruction performs a sign extension by copying the sign
7660bit (highest order bit) of the ``value`` until it reaches the bit size
7661of the type ``ty2``.
7662
7663When sign extending from i1, the extension always results in -1 or 0.
7664
7665Example:
7666""""""""
7667
7668.. code-block:: llvm
7669
7670 %X = sext i8 -1 to i16 ; yields i16 :65535
7671 %Y = sext i1 true to i32 ; yields i32:-1
7672 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7673
7674'``fptrunc .. to``' Instruction
7675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7676
7677Syntax:
7678"""""""
7679
7680::
7681
7682 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7683
7684Overview:
7685"""""""""
7686
7687The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7688
7689Arguments:
7690""""""""""
7691
7692The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7693value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7694The size of ``value`` must be larger than the size of ``ty2``. This
7695implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7696
7697Semantics:
7698""""""""""
7699
Dan Liew50456fb2015-09-03 18:43:56 +00007700The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007701:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007702point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7703destination type, ``ty2``, then the results are undefined. If the cast produces
7704an inexact result, how rounding is performed (e.g. truncation, also known as
7705round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007706
7707Example:
7708""""""""
7709
7710.. code-block:: llvm
7711
7712 %X = fptrunc double 123.0 to float ; yields float:123.0
7713 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7714
7715'``fpext .. to``' Instruction
7716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7717
7718Syntax:
7719"""""""
7720
7721::
7722
7723 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7724
7725Overview:
7726"""""""""
7727
7728The '``fpext``' extends a floating point ``value`` to a larger floating
7729point value.
7730
7731Arguments:
7732""""""""""
7733
7734The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7735``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7736to. The source type must be smaller than the destination type.
7737
7738Semantics:
7739""""""""""
7740
7741The '``fpext``' instruction extends the ``value`` from a smaller
7742:ref:`floating point <t_floating>` type to a larger :ref:`floating
7743point <t_floating>` type. The ``fpext`` cannot be used to make a
7744*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7745*no-op cast* for a floating point cast.
7746
7747Example:
7748""""""""
7749
7750.. code-block:: llvm
7751
7752 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7753 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7754
7755'``fptoui .. to``' Instruction
7756^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7757
7758Syntax:
7759"""""""
7760
7761::
7762
7763 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7764
7765Overview:
7766"""""""""
7767
7768The '``fptoui``' converts a floating point ``value`` to its unsigned
7769integer equivalent of type ``ty2``.
7770
7771Arguments:
7772""""""""""
7773
7774The '``fptoui``' instruction takes a value to cast, which must be a
7775scalar or vector :ref:`floating point <t_floating>` value, and a type to
7776cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7777``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7778type with the same number of elements as ``ty``
7779
7780Semantics:
7781""""""""""
7782
7783The '``fptoui``' instruction converts its :ref:`floating
7784point <t_floating>` operand into the nearest (rounding towards zero)
7785unsigned integer value. If the value cannot fit in ``ty2``, the results
7786are undefined.
7787
7788Example:
7789""""""""
7790
7791.. code-block:: llvm
7792
7793 %X = fptoui double 123.0 to i32 ; yields i32:123
7794 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7795 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7796
7797'``fptosi .. to``' Instruction
7798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7799
7800Syntax:
7801"""""""
7802
7803::
7804
7805 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7806
7807Overview:
7808"""""""""
7809
7810The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7811``value`` to type ``ty2``.
7812
7813Arguments:
7814""""""""""
7815
7816The '``fptosi``' instruction takes a value to cast, which must be a
7817scalar or vector :ref:`floating point <t_floating>` value, and a type to
7818cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7819``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7820type with the same number of elements as ``ty``
7821
7822Semantics:
7823""""""""""
7824
7825The '``fptosi``' instruction converts its :ref:`floating
7826point <t_floating>` operand into the nearest (rounding towards zero)
7827signed integer value. If the value cannot fit in ``ty2``, the results
7828are undefined.
7829
7830Example:
7831""""""""
7832
7833.. code-block:: llvm
7834
7835 %X = fptosi double -123.0 to i32 ; yields i32:-123
7836 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7837 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7838
7839'``uitofp .. to``' Instruction
7840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7841
7842Syntax:
7843"""""""
7844
7845::
7846
7847 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7848
7849Overview:
7850"""""""""
7851
7852The '``uitofp``' instruction regards ``value`` as an unsigned integer
7853and converts that value to the ``ty2`` type.
7854
7855Arguments:
7856""""""""""
7857
7858The '``uitofp``' instruction takes a value to cast, which must be a
7859scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7860``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7861``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7862type with the same number of elements as ``ty``
7863
7864Semantics:
7865""""""""""
7866
7867The '``uitofp``' instruction interprets its operand as an unsigned
7868integer quantity and converts it to the corresponding floating point
7869value. If the value cannot fit in the floating point value, the results
7870are undefined.
7871
7872Example:
7873""""""""
7874
7875.. code-block:: llvm
7876
7877 %X = uitofp i32 257 to float ; yields float:257.0
7878 %Y = uitofp i8 -1 to double ; yields double:255.0
7879
7880'``sitofp .. to``' Instruction
7881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7882
7883Syntax:
7884"""""""
7885
7886::
7887
7888 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7889
7890Overview:
7891"""""""""
7892
7893The '``sitofp``' instruction regards ``value`` as a signed integer and
7894converts that value to the ``ty2`` type.
7895
7896Arguments:
7897""""""""""
7898
7899The '``sitofp``' instruction takes a value to cast, which must be a
7900scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7901``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7902``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7903type with the same number of elements as ``ty``
7904
7905Semantics:
7906""""""""""
7907
7908The '``sitofp``' instruction interprets its operand as a signed integer
7909quantity and converts it to the corresponding floating point value. If
7910the value cannot fit in the floating point value, the results are
7911undefined.
7912
7913Example:
7914""""""""
7915
7916.. code-block:: llvm
7917
7918 %X = sitofp i32 257 to float ; yields float:257.0
7919 %Y = sitofp i8 -1 to double ; yields double:-1.0
7920
7921.. _i_ptrtoint:
7922
7923'``ptrtoint .. to``' Instruction
7924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7925
7926Syntax:
7927"""""""
7928
7929::
7930
7931 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7932
7933Overview:
7934"""""""""
7935
7936The '``ptrtoint``' instruction converts the pointer or a vector of
7937pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7938
7939Arguments:
7940""""""""""
7941
7942The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007943a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007944type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7945a vector of integers type.
7946
7947Semantics:
7948""""""""""
7949
7950The '``ptrtoint``' instruction converts ``value`` to integer type
7951``ty2`` by interpreting the pointer value as an integer and either
7952truncating or zero extending that value to the size of the integer type.
7953If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7954``value`` is larger than ``ty2`` then a truncation is done. If they are
7955the same size, then nothing is done (*no-op cast*) other than a type
7956change.
7957
7958Example:
7959""""""""
7960
7961.. code-block:: llvm
7962
7963 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7964 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7965 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7966
7967.. _i_inttoptr:
7968
7969'``inttoptr .. to``' Instruction
7970^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7971
7972Syntax:
7973"""""""
7974
7975::
7976
7977 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7978
7979Overview:
7980"""""""""
7981
7982The '``inttoptr``' instruction converts an integer ``value`` to a
7983pointer type, ``ty2``.
7984
7985Arguments:
7986""""""""""
7987
7988The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7989cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7990type.
7991
7992Semantics:
7993""""""""""
7994
7995The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7996applying either a zero extension or a truncation depending on the size
7997of the integer ``value``. If ``value`` is larger than the size of a
7998pointer then a truncation is done. If ``value`` is smaller than the size
7999of a pointer then a zero extension is done. If they are the same size,
8000nothing is done (*no-op cast*).
8001
8002Example:
8003""""""""
8004
8005.. code-block:: llvm
8006
8007 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8008 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8009 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8010 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8011
8012.. _i_bitcast:
8013
8014'``bitcast .. to``' Instruction
8015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8016
8017Syntax:
8018"""""""
8019
8020::
8021
8022 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8023
8024Overview:
8025"""""""""
8026
8027The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8028changing any bits.
8029
8030Arguments:
8031""""""""""
8032
8033The '``bitcast``' instruction takes a value to cast, which must be a
8034non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008035also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8036bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008037identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008038also be a pointer of the same size. This instruction supports bitwise
8039conversion of vectors to integers and to vectors of other types (as
8040long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008041
8042Semantics:
8043""""""""""
8044
Matt Arsenault24b49c42013-07-31 17:49:08 +00008045The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8046is always a *no-op cast* because no bits change with this
8047conversion. The conversion is done as if the ``value`` had been stored
8048to memory and read back as type ``ty2``. Pointer (or vector of
8049pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008050pointers) types with the same address space through this instruction.
8051To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8052or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008053
8054Example:
8055""""""""
8056
8057.. code-block:: llvm
8058
8059 %X = bitcast i8 255 to i8 ; yields i8 :-1
8060 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8061 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8062 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8063
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008064.. _i_addrspacecast:
8065
8066'``addrspacecast .. to``' Instruction
8067^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8068
8069Syntax:
8070"""""""
8071
8072::
8073
8074 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8075
8076Overview:
8077"""""""""
8078
8079The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8080address space ``n`` to type ``pty2`` in address space ``m``.
8081
8082Arguments:
8083""""""""""
8084
8085The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8086to cast and a pointer type to cast it to, which must have a different
8087address space.
8088
8089Semantics:
8090""""""""""
8091
8092The '``addrspacecast``' instruction converts the pointer value
8093``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008094value modification, depending on the target and the address space
8095pair. Pointer conversions within the same address space must be
8096performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008097conversion is legal then both result and operand refer to the same memory
8098location.
8099
8100Example:
8101""""""""
8102
8103.. code-block:: llvm
8104
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008105 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8106 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8107 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008108
Sean Silvab084af42012-12-07 10:36:55 +00008109.. _otherops:
8110
8111Other Operations
8112----------------
8113
8114The instructions in this category are the "miscellaneous" instructions,
8115which defy better classification.
8116
8117.. _i_icmp:
8118
8119'``icmp``' Instruction
8120^^^^^^^^^^^^^^^^^^^^^^
8121
8122Syntax:
8123"""""""
8124
8125::
8126
Tim Northover675a0962014-06-13 14:24:23 +00008127 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008128
8129Overview:
8130"""""""""
8131
8132The '``icmp``' instruction returns a boolean value or a vector of
8133boolean values based on comparison of its two integer, integer vector,
8134pointer, or pointer vector operands.
8135
8136Arguments:
8137""""""""""
8138
8139The '``icmp``' instruction takes three operands. The first operand is
8140the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008141not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008142
8143#. ``eq``: equal
8144#. ``ne``: not equal
8145#. ``ugt``: unsigned greater than
8146#. ``uge``: unsigned greater or equal
8147#. ``ult``: unsigned less than
8148#. ``ule``: unsigned less or equal
8149#. ``sgt``: signed greater than
8150#. ``sge``: signed greater or equal
8151#. ``slt``: signed less than
8152#. ``sle``: signed less or equal
8153
8154The remaining two arguments must be :ref:`integer <t_integer>` or
8155:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8156must also be identical types.
8157
8158Semantics:
8159""""""""""
8160
8161The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8162code given as ``cond``. The comparison performed always yields either an
8163:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8164
8165#. ``eq``: yields ``true`` if the operands are equal, ``false``
8166 otherwise. No sign interpretation is necessary or performed.
8167#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8168 otherwise. No sign interpretation is necessary or performed.
8169#. ``ugt``: interprets the operands as unsigned values and yields
8170 ``true`` if ``op1`` is greater than ``op2``.
8171#. ``uge``: interprets the operands as unsigned values and yields
8172 ``true`` if ``op1`` is greater than or equal to ``op2``.
8173#. ``ult``: interprets the operands as unsigned values and yields
8174 ``true`` if ``op1`` is less than ``op2``.
8175#. ``ule``: interprets the operands as unsigned values and yields
8176 ``true`` if ``op1`` is less than or equal to ``op2``.
8177#. ``sgt``: interprets the operands as signed values and yields ``true``
8178 if ``op1`` is greater than ``op2``.
8179#. ``sge``: interprets the operands as signed values and yields ``true``
8180 if ``op1`` is greater than or equal to ``op2``.
8181#. ``slt``: interprets the operands as signed values and yields ``true``
8182 if ``op1`` is less than ``op2``.
8183#. ``sle``: interprets the operands as signed values and yields ``true``
8184 if ``op1`` is less than or equal to ``op2``.
8185
8186If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8187are compared as if they were integers.
8188
8189If the operands are integer vectors, then they are compared element by
8190element. The result is an ``i1`` vector with the same number of elements
8191as the values being compared. Otherwise, the result is an ``i1``.
8192
8193Example:
8194""""""""
8195
8196.. code-block:: llvm
8197
8198 <result> = icmp eq i32 4, 5 ; yields: result=false
8199 <result> = icmp ne float* %X, %X ; yields: result=false
8200 <result> = icmp ult i16 4, 5 ; yields: result=true
8201 <result> = icmp sgt i16 4, 5 ; yields: result=false
8202 <result> = icmp ule i16 -4, 5 ; yields: result=false
8203 <result> = icmp sge i16 4, 5 ; yields: result=false
8204
8205Note that the code generator does not yet support vector types with the
8206``icmp`` instruction.
8207
8208.. _i_fcmp:
8209
8210'``fcmp``' Instruction
8211^^^^^^^^^^^^^^^^^^^^^^
8212
8213Syntax:
8214"""""""
8215
8216::
8217
James Molloy88eb5352015-07-10 12:52:00 +00008218 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008219
8220Overview:
8221"""""""""
8222
8223The '``fcmp``' instruction returns a boolean value or vector of boolean
8224values based on comparison of its operands.
8225
8226If the operands are floating point scalars, then the result type is a
8227boolean (:ref:`i1 <t_integer>`).
8228
8229If the operands are floating point vectors, then the result type is a
8230vector of boolean with the same number of elements as the operands being
8231compared.
8232
8233Arguments:
8234""""""""""
8235
8236The '``fcmp``' instruction takes three operands. The first operand is
8237the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008238not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008239
8240#. ``false``: no comparison, always returns false
8241#. ``oeq``: ordered and equal
8242#. ``ogt``: ordered and greater than
8243#. ``oge``: ordered and greater than or equal
8244#. ``olt``: ordered and less than
8245#. ``ole``: ordered and less than or equal
8246#. ``one``: ordered and not equal
8247#. ``ord``: ordered (no nans)
8248#. ``ueq``: unordered or equal
8249#. ``ugt``: unordered or greater than
8250#. ``uge``: unordered or greater than or equal
8251#. ``ult``: unordered or less than
8252#. ``ule``: unordered or less than or equal
8253#. ``une``: unordered or not equal
8254#. ``uno``: unordered (either nans)
8255#. ``true``: no comparison, always returns true
8256
8257*Ordered* means that neither operand is a QNAN while *unordered* means
8258that either operand may be a QNAN.
8259
8260Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8261point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8262type. They must have identical types.
8263
8264Semantics:
8265""""""""""
8266
8267The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8268condition code given as ``cond``. If the operands are vectors, then the
8269vectors are compared element by element. Each comparison performed
8270always yields an :ref:`i1 <t_integer>` result, as follows:
8271
8272#. ``false``: always yields ``false``, regardless of operands.
8273#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8274 is equal to ``op2``.
8275#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8276 is greater than ``op2``.
8277#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8278 is greater than or equal to ``op2``.
8279#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8280 is less than ``op2``.
8281#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8282 is less than or equal to ``op2``.
8283#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8284 is not equal to ``op2``.
8285#. ``ord``: yields ``true`` if both operands are not a QNAN.
8286#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8287 equal to ``op2``.
8288#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8289 greater than ``op2``.
8290#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8291 greater than or equal to ``op2``.
8292#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8293 less than ``op2``.
8294#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8295 less than or equal to ``op2``.
8296#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8297 not equal to ``op2``.
8298#. ``uno``: yields ``true`` if either operand is a QNAN.
8299#. ``true``: always yields ``true``, regardless of operands.
8300
James Molloy88eb5352015-07-10 12:52:00 +00008301The ``fcmp`` instruction can also optionally take any number of
8302:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8303otherwise unsafe floating point optimizations.
8304
8305Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8306only flags that have any effect on its semantics are those that allow
8307assumptions to be made about the values of input arguments; namely
8308``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8309
Sean Silvab084af42012-12-07 10:36:55 +00008310Example:
8311""""""""
8312
8313.. code-block:: llvm
8314
8315 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8316 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8317 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8318 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8319
8320Note that the code generator does not yet support vector types with the
8321``fcmp`` instruction.
8322
8323.. _i_phi:
8324
8325'``phi``' Instruction
8326^^^^^^^^^^^^^^^^^^^^^
8327
8328Syntax:
8329"""""""
8330
8331::
8332
8333 <result> = phi <ty> [ <val0>, <label0>], ...
8334
8335Overview:
8336"""""""""
8337
8338The '``phi``' instruction is used to implement the φ node in the SSA
8339graph representing the function.
8340
8341Arguments:
8342""""""""""
8343
8344The type of the incoming values is specified with the first type field.
8345After this, the '``phi``' instruction takes a list of pairs as
8346arguments, with one pair for each predecessor basic block of the current
8347block. Only values of :ref:`first class <t_firstclass>` type may be used as
8348the value arguments to the PHI node. Only labels may be used as the
8349label arguments.
8350
8351There must be no non-phi instructions between the start of a basic block
8352and the PHI instructions: i.e. PHI instructions must be first in a basic
8353block.
8354
8355For the purposes of the SSA form, the use of each incoming value is
8356deemed to occur on the edge from the corresponding predecessor block to
8357the current block (but after any definition of an '``invoke``'
8358instruction's return value on the same edge).
8359
8360Semantics:
8361""""""""""
8362
8363At runtime, the '``phi``' instruction logically takes on the value
8364specified by the pair corresponding to the predecessor basic block that
8365executed just prior to the current block.
8366
8367Example:
8368""""""""
8369
8370.. code-block:: llvm
8371
8372 Loop: ; Infinite loop that counts from 0 on up...
8373 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8374 %nextindvar = add i32 %indvar, 1
8375 br label %Loop
8376
8377.. _i_select:
8378
8379'``select``' Instruction
8380^^^^^^^^^^^^^^^^^^^^^^^^
8381
8382Syntax:
8383"""""""
8384
8385::
8386
8387 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8388
8389 selty is either i1 or {<N x i1>}
8390
8391Overview:
8392"""""""""
8393
8394The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008395condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008396
8397Arguments:
8398""""""""""
8399
8400The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8401values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008402class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008403
8404Semantics:
8405""""""""""
8406
8407If the condition is an i1 and it evaluates to 1, the instruction returns
8408the first value argument; otherwise, it returns the second value
8409argument.
8410
8411If the condition is a vector of i1, then the value arguments must be
8412vectors of the same size, and the selection is done element by element.
8413
David Majnemer40a0b592015-03-03 22:45:47 +00008414If the condition is an i1 and the value arguments are vectors of the
8415same size, then an entire vector is selected.
8416
Sean Silvab084af42012-12-07 10:36:55 +00008417Example:
8418""""""""
8419
8420.. code-block:: llvm
8421
8422 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8423
8424.. _i_call:
8425
8426'``call``' Instruction
8427^^^^^^^^^^^^^^^^^^^^^^
8428
8429Syntax:
8430"""""""
8431
8432::
8433
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008434 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008435 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008436
8437Overview:
8438"""""""""
8439
8440The '``call``' instruction represents a simple function call.
8441
8442Arguments:
8443""""""""""
8444
8445This instruction requires several arguments:
8446
Reid Kleckner5772b772014-04-24 20:14:34 +00008447#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008448 should perform tail call optimization. The ``tail`` marker is a hint that
8449 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008450 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008451 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008452
8453 #. The call will not cause unbounded stack growth if it is part of a
8454 recursive cycle in the call graph.
8455 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8456 forwarded in place.
8457
8458 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008459 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008460 rules:
8461
8462 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8463 or a pointer bitcast followed by a ret instruction.
8464 - The ret instruction must return the (possibly bitcasted) value
8465 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008466 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008467 parameters or return types may differ in pointee type, but not
8468 in address space.
8469 - The calling conventions of the caller and callee must match.
8470 - All ABI-impacting function attributes, such as sret, byval, inreg,
8471 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008472 - The callee must be varargs iff the caller is varargs. Bitcasting a
8473 non-varargs function to the appropriate varargs type is legal so
8474 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008475
8476 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8477 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008478
8479 - Caller and callee both have the calling convention ``fastcc``.
8480 - The call is in tail position (ret immediately follows call and ret
8481 uses value of call or is void).
8482 - Option ``-tailcallopt`` is enabled, or
8483 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008484 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008485 met. <CodeGenerator.html#tailcallopt>`_
8486
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008487#. The optional ``notail`` marker indicates that the optimizers should not add
8488 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8489 call optimization from being performed on the call.
8490
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008491#. The optional ``fast-math flags`` marker indicates that the call has one or more
8492 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8493 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8494 for calls that return a floating-point scalar or vector type.
8495
Sean Silvab084af42012-12-07 10:36:55 +00008496#. The optional "cconv" marker indicates which :ref:`calling
8497 convention <callingconv>` the call should use. If none is
8498 specified, the call defaults to using C calling conventions. The
8499 calling convention of the call must match the calling convention of
8500 the target function, or else the behavior is undefined.
8501#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8502 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8503 are valid here.
8504#. '``ty``': the type of the call instruction itself which is also the
8505 type of the return value. Functions that return no value are marked
8506 ``void``.
8507#. '``fnty``': shall be the signature of the pointer to function value
8508 being invoked. The argument types must match the types implied by
8509 this signature. This type can be omitted if the function is not
8510 varargs and if the function type does not return a pointer to a
8511 function.
8512#. '``fnptrval``': An LLVM value containing a pointer to a function to
8513 be invoked. In most cases, this is a direct function invocation, but
8514 indirect ``call``'s are just as possible, calling an arbitrary pointer
8515 to function value.
8516#. '``function args``': argument list whose types match the function
8517 signature argument types and parameter attributes. All arguments must
8518 be of :ref:`first class <t_firstclass>` type. If the function signature
8519 indicates the function accepts a variable number of arguments, the
8520 extra arguments can be specified.
8521#. The optional :ref:`function attributes <fnattrs>` list. Only
8522 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8523 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008524#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008525
8526Semantics:
8527""""""""""
8528
8529The '``call``' instruction is used to cause control flow to transfer to
8530a specified function, with its incoming arguments bound to the specified
8531values. Upon a '``ret``' instruction in the called function, control
8532flow continues with the instruction after the function call, and the
8533return value of the function is bound to the result argument.
8534
8535Example:
8536""""""""
8537
8538.. code-block:: llvm
8539
8540 %retval = call i32 @test(i32 %argc)
8541 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8542 %X = tail call i32 @foo() ; yields i32
8543 %Y = tail call fastcc i32 @foo() ; yields i32
8544 call void %foo(i8 97 signext)
8545
8546 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008547 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008548 %gr = extractvalue %struct.A %r, 0 ; yields i32
8549 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8550 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8551 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8552
8553llvm treats calls to some functions with names and arguments that match
8554the standard C99 library as being the C99 library functions, and may
8555perform optimizations or generate code for them under that assumption.
8556This is something we'd like to change in the future to provide better
8557support for freestanding environments and non-C-based languages.
8558
8559.. _i_va_arg:
8560
8561'``va_arg``' Instruction
8562^^^^^^^^^^^^^^^^^^^^^^^^
8563
8564Syntax:
8565"""""""
8566
8567::
8568
8569 <resultval> = va_arg <va_list*> <arglist>, <argty>
8570
8571Overview:
8572"""""""""
8573
8574The '``va_arg``' instruction is used to access arguments passed through
8575the "variable argument" area of a function call. It is used to implement
8576the ``va_arg`` macro in C.
8577
8578Arguments:
8579""""""""""
8580
8581This instruction takes a ``va_list*`` value and the type of the
8582argument. It returns a value of the specified argument type and
8583increments the ``va_list`` to point to the next argument. The actual
8584type of ``va_list`` is target specific.
8585
8586Semantics:
8587""""""""""
8588
8589The '``va_arg``' instruction loads an argument of the specified type
8590from the specified ``va_list`` and causes the ``va_list`` to point to
8591the next argument. For more information, see the variable argument
8592handling :ref:`Intrinsic Functions <int_varargs>`.
8593
8594It is legal for this instruction to be called in a function which does
8595not take a variable number of arguments, for example, the ``vfprintf``
8596function.
8597
8598``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8599function <intrinsics>` because it takes a type as an argument.
8600
8601Example:
8602""""""""
8603
8604See the :ref:`variable argument processing <int_varargs>` section.
8605
8606Note that the code generator does not yet fully support va\_arg on many
8607targets. Also, it does not currently support va\_arg with aggregate
8608types on any target.
8609
8610.. _i_landingpad:
8611
8612'``landingpad``' Instruction
8613^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8614
8615Syntax:
8616"""""""
8617
8618::
8619
David Majnemer7fddecc2015-06-17 20:52:32 +00008620 <resultval> = landingpad <resultty> <clause>+
8621 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008622
8623 <clause> := catch <type> <value>
8624 <clause> := filter <array constant type> <array constant>
8625
8626Overview:
8627"""""""""
8628
8629The '``landingpad``' instruction is used by `LLVM's exception handling
8630system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008631is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008632code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008633defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008634re-entry to the function. The ``resultval`` has the type ``resultty``.
8635
8636Arguments:
8637""""""""""
8638
David Majnemer7fddecc2015-06-17 20:52:32 +00008639The optional
Sean Silvab084af42012-12-07 10:36:55 +00008640``cleanup`` flag indicates that the landing pad block is a cleanup.
8641
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008642A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008643contains the global variable representing the "type" that may be caught
8644or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8645clause takes an array constant as its argument. Use
8646"``[0 x i8**] undef``" for a filter which cannot throw. The
8647'``landingpad``' instruction must contain *at least* one ``clause`` or
8648the ``cleanup`` flag.
8649
8650Semantics:
8651""""""""""
8652
8653The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008654:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008655therefore the "result type" of the ``landingpad`` instruction. As with
8656calling conventions, how the personality function results are
8657represented in LLVM IR is target specific.
8658
8659The clauses are applied in order from top to bottom. If two
8660``landingpad`` instructions are merged together through inlining, the
8661clauses from the calling function are appended to the list of clauses.
8662When the call stack is being unwound due to an exception being thrown,
8663the exception is compared against each ``clause`` in turn. If it doesn't
8664match any of the clauses, and the ``cleanup`` flag is not set, then
8665unwinding continues further up the call stack.
8666
8667The ``landingpad`` instruction has several restrictions:
8668
8669- A landing pad block is a basic block which is the unwind destination
8670 of an '``invoke``' instruction.
8671- A landing pad block must have a '``landingpad``' instruction as its
8672 first non-PHI instruction.
8673- There can be only one '``landingpad``' instruction within the landing
8674 pad block.
8675- A basic block that is not a landing pad block may not include a
8676 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008677
8678Example:
8679""""""""
8680
8681.. code-block:: llvm
8682
8683 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008684 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008685 catch i8** @_ZTIi
8686 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008687 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008688 cleanup
8689 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008690 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008691 catch i8** @_ZTIi
8692 filter [1 x i8**] [@_ZTId]
8693
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008694.. _i_catchpad:
8695
8696'``catchpad``' Instruction
8697^^^^^^^^^^^^^^^^^^^^^^^^^^
8698
8699Syntax:
8700"""""""
8701
8702::
8703
8704 <resultval> = catchpad within <catchswitch> [<args>*]
8705
8706Overview:
8707"""""""""
8708
8709The '``catchpad``' instruction is used by `LLVM's exception handling
8710system <ExceptionHandling.html#overview>`_ to specify that a basic block
8711begins a catch handler --- one where a personality routine attempts to transfer
8712control to catch an exception.
8713
8714Arguments:
8715""""""""""
8716
8717The ``catchswitch`` operand must always be a token produced by a
8718:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8719ensures that each ``catchpad`` has exactly one predecessor block, and it always
8720terminates in a ``catchswitch``.
8721
8722The ``args`` correspond to whatever information the personality routine
8723requires to know if this is an appropriate handler for the exception. Control
8724will transfer to the ``catchpad`` if this is the first appropriate handler for
8725the exception.
8726
8727The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8728``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8729pads.
8730
8731Semantics:
8732""""""""""
8733
8734When the call stack is being unwound due to an exception being thrown, the
8735exception is compared against the ``args``. If it doesn't match, control will
8736not reach the ``catchpad`` instruction. The representation of ``args`` is
8737entirely target and personality function-specific.
8738
8739Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8740instruction must be the first non-phi of its parent basic block.
8741
8742The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8743instructions is described in the
8744`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8745
8746When a ``catchpad`` has been "entered" but not yet "exited" (as
8747described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8748it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8749that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8750
8751Example:
8752""""""""
8753
8754.. code-block:: llvm
8755
8756 dispatch:
8757 %cs = catchswitch within none [label %handler0] unwind to caller
8758 ;; A catch block which can catch an integer.
8759 handler0:
8760 %tok = catchpad within %cs [i8** @_ZTIi]
8761
David Majnemer654e1302015-07-31 17:58:14 +00008762.. _i_cleanuppad:
8763
8764'``cleanuppad``' Instruction
8765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8766
8767Syntax:
8768"""""""
8769
8770::
8771
David Majnemer8a1c45d2015-12-12 05:38:55 +00008772 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008773
8774Overview:
8775"""""""""
8776
8777The '``cleanuppad``' instruction is used by `LLVM's exception handling
8778system <ExceptionHandling.html#overview>`_ to specify that a basic block
8779is a cleanup block --- one where a personality routine attempts to
8780transfer control to run cleanup actions.
8781The ``args`` correspond to whatever additional
8782information the :ref:`personality function <personalityfn>` requires to
8783execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008784The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008785match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8786The ``parent`` argument is the token of the funclet that contains the
8787``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8788this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008789
8790Arguments:
8791""""""""""
8792
8793The instruction takes a list of arbitrary values which are interpreted
8794by the :ref:`personality function <personalityfn>`.
8795
8796Semantics:
8797""""""""""
8798
David Majnemer654e1302015-07-31 17:58:14 +00008799When the call stack is being unwound due to an exception being thrown,
8800the :ref:`personality function <personalityfn>` transfers control to the
8801``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008802As with calling conventions, how the personality function results are
8803represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008804
8805The ``cleanuppad`` instruction has several restrictions:
8806
8807- A cleanup block is a basic block which is the unwind destination of
8808 an exceptional instruction.
8809- A cleanup block must have a '``cleanuppad``' instruction as its
8810 first non-PHI instruction.
8811- There can be only one '``cleanuppad``' instruction within the
8812 cleanup block.
8813- A basic block that is not a cleanup block may not include a
8814 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008815
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008816When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8817described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8818it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8819that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008820
David Majnemer654e1302015-07-31 17:58:14 +00008821Example:
8822""""""""
8823
8824.. code-block:: llvm
8825
David Majnemer8a1c45d2015-12-12 05:38:55 +00008826 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008827
Sean Silvab084af42012-12-07 10:36:55 +00008828.. _intrinsics:
8829
8830Intrinsic Functions
8831===================
8832
8833LLVM supports the notion of an "intrinsic function". These functions
8834have well known names and semantics and are required to follow certain
8835restrictions. Overall, these intrinsics represent an extension mechanism
8836for the LLVM language that does not require changing all of the
8837transformations in LLVM when adding to the language (or the bitcode
8838reader/writer, the parser, etc...).
8839
8840Intrinsic function names must all start with an "``llvm.``" prefix. This
8841prefix is reserved in LLVM for intrinsic names; thus, function names may
8842not begin with this prefix. Intrinsic functions must always be external
8843functions: you cannot define the body of intrinsic functions. Intrinsic
8844functions may only be used in call or invoke instructions: it is illegal
8845to take the address of an intrinsic function. Additionally, because
8846intrinsic functions are part of the LLVM language, it is required if any
8847are added that they be documented here.
8848
8849Some intrinsic functions can be overloaded, i.e., the intrinsic
8850represents a family of functions that perform the same operation but on
8851different data types. Because LLVM can represent over 8 million
8852different integer types, overloading is used commonly to allow an
8853intrinsic function to operate on any integer type. One or more of the
8854argument types or the result type can be overloaded to accept any
8855integer type. Argument types may also be defined as exactly matching a
8856previous argument's type or the result type. This allows an intrinsic
8857function which accepts multiple arguments, but needs all of them to be
8858of the same type, to only be overloaded with respect to a single
8859argument or the result.
8860
8861Overloaded intrinsics will have the names of its overloaded argument
8862types encoded into its function name, each preceded by a period. Only
8863those types which are overloaded result in a name suffix. Arguments
8864whose type is matched against another type do not. For example, the
8865``llvm.ctpop`` function can take an integer of any width and returns an
8866integer of exactly the same integer width. This leads to a family of
8867functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8868``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8869overloaded, and only one type suffix is required. Because the argument's
8870type is matched against the return type, it does not require its own
8871name suffix.
8872
8873To learn how to add an intrinsic function, please see the `Extending
8874LLVM Guide <ExtendingLLVM.html>`_.
8875
8876.. _int_varargs:
8877
8878Variable Argument Handling Intrinsics
8879-------------------------------------
8880
8881Variable argument support is defined in LLVM with the
8882:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8883functions. These functions are related to the similarly named macros
8884defined in the ``<stdarg.h>`` header file.
8885
8886All of these functions operate on arguments that use a target-specific
8887value type "``va_list``". The LLVM assembly language reference manual
8888does not define what this type is, so all transformations should be
8889prepared to handle these functions regardless of the type used.
8890
8891This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8892variable argument handling intrinsic functions are used.
8893
8894.. code-block:: llvm
8895
Tim Northoverab60bb92014-11-02 01:21:51 +00008896 ; This struct is different for every platform. For most platforms,
8897 ; it is merely an i8*.
8898 %struct.va_list = type { i8* }
8899
8900 ; For Unix x86_64 platforms, va_list is the following struct:
8901 ; %struct.va_list = type { i32, i32, i8*, i8* }
8902
Sean Silvab084af42012-12-07 10:36:55 +00008903 define i32 @test(i32 %X, ...) {
8904 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008905 %ap = alloca %struct.va_list
8906 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008907 call void @llvm.va_start(i8* %ap2)
8908
8909 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008910 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008911
8912 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8913 %aq = alloca i8*
8914 %aq2 = bitcast i8** %aq to i8*
8915 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8916 call void @llvm.va_end(i8* %aq2)
8917
8918 ; Stop processing of arguments.
8919 call void @llvm.va_end(i8* %ap2)
8920 ret i32 %tmp
8921 }
8922
8923 declare void @llvm.va_start(i8*)
8924 declare void @llvm.va_copy(i8*, i8*)
8925 declare void @llvm.va_end(i8*)
8926
8927.. _int_va_start:
8928
8929'``llvm.va_start``' Intrinsic
8930^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8931
8932Syntax:
8933"""""""
8934
8935::
8936
Nick Lewycky04f6de02013-09-11 22:04:52 +00008937 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008938
8939Overview:
8940"""""""""
8941
8942The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8943subsequent use by ``va_arg``.
8944
8945Arguments:
8946""""""""""
8947
8948The argument is a pointer to a ``va_list`` element to initialize.
8949
8950Semantics:
8951""""""""""
8952
8953The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8954available in C. In a target-dependent way, it initializes the
8955``va_list`` element to which the argument points, so that the next call
8956to ``va_arg`` will produce the first variable argument passed to the
8957function. Unlike the C ``va_start`` macro, this intrinsic does not need
8958to know the last argument of the function as the compiler can figure
8959that out.
8960
8961'``llvm.va_end``' Intrinsic
8962^^^^^^^^^^^^^^^^^^^^^^^^^^^
8963
8964Syntax:
8965"""""""
8966
8967::
8968
8969 declare void @llvm.va_end(i8* <arglist>)
8970
8971Overview:
8972"""""""""
8973
8974The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8975initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8976
8977Arguments:
8978""""""""""
8979
8980The argument is a pointer to a ``va_list`` to destroy.
8981
8982Semantics:
8983""""""""""
8984
8985The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8986available in C. In a target-dependent way, it destroys the ``va_list``
8987element to which the argument points. Calls to
8988:ref:`llvm.va_start <int_va_start>` and
8989:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8990``llvm.va_end``.
8991
8992.. _int_va_copy:
8993
8994'``llvm.va_copy``' Intrinsic
8995^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8996
8997Syntax:
8998"""""""
8999
9000::
9001
9002 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9003
9004Overview:
9005"""""""""
9006
9007The '``llvm.va_copy``' intrinsic copies the current argument position
9008from the source argument list to the destination argument list.
9009
9010Arguments:
9011""""""""""
9012
9013The first argument is a pointer to a ``va_list`` element to initialize.
9014The second argument is a pointer to a ``va_list`` element to copy from.
9015
9016Semantics:
9017""""""""""
9018
9019The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9020available in C. In a target-dependent way, it copies the source
9021``va_list`` element into the destination ``va_list`` element. This
9022intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9023arbitrarily complex and require, for example, memory allocation.
9024
9025Accurate Garbage Collection Intrinsics
9026--------------------------------------
9027
Philip Reamesc5b0f562015-02-25 23:52:06 +00009028LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009029(GC) requires the frontend to generate code containing appropriate intrinsic
9030calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009031intrinsics in a manner which is appropriate for the target collector.
9032
Sean Silvab084af42012-12-07 10:36:55 +00009033These intrinsics allow identification of :ref:`GC roots on the
9034stack <int_gcroot>`, as well as garbage collector implementations that
9035require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009036Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009037these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009038details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009039
Philip Reamesf80bbff2015-02-25 23:45:20 +00009040Experimental Statepoint Intrinsics
9041^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9042
9043LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009044collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009045to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009046:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009047differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009048<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009049described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009050
9051.. _int_gcroot:
9052
9053'``llvm.gcroot``' Intrinsic
9054^^^^^^^^^^^^^^^^^^^^^^^^^^^
9055
9056Syntax:
9057"""""""
9058
9059::
9060
9061 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9062
9063Overview:
9064"""""""""
9065
9066The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9067the code generator, and allows some metadata to be associated with it.
9068
9069Arguments:
9070""""""""""
9071
9072The first argument specifies the address of a stack object that contains
9073the root pointer. The second pointer (which must be either a constant or
9074a global value address) contains the meta-data to be associated with the
9075root.
9076
9077Semantics:
9078""""""""""
9079
9080At runtime, a call to this intrinsic stores a null pointer into the
9081"ptrloc" location. At compile-time, the code generator generates
9082information to allow the runtime to find the pointer at GC safe points.
9083The '``llvm.gcroot``' intrinsic may only be used in a function which
9084:ref:`specifies a GC algorithm <gc>`.
9085
9086.. _int_gcread:
9087
9088'``llvm.gcread``' Intrinsic
9089^^^^^^^^^^^^^^^^^^^^^^^^^^^
9090
9091Syntax:
9092"""""""
9093
9094::
9095
9096 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9097
9098Overview:
9099"""""""""
9100
9101The '``llvm.gcread``' intrinsic identifies reads of references from heap
9102locations, allowing garbage collector implementations that require read
9103barriers.
9104
9105Arguments:
9106""""""""""
9107
9108The second argument is the address to read from, which should be an
9109address allocated from the garbage collector. The first object is a
9110pointer to the start of the referenced object, if needed by the language
9111runtime (otherwise null).
9112
9113Semantics:
9114""""""""""
9115
9116The '``llvm.gcread``' intrinsic has the same semantics as a load
9117instruction, but may be replaced with substantially more complex code by
9118the garbage collector runtime, as needed. The '``llvm.gcread``'
9119intrinsic may only be used in a function which :ref:`specifies a GC
9120algorithm <gc>`.
9121
9122.. _int_gcwrite:
9123
9124'``llvm.gcwrite``' Intrinsic
9125^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9126
9127Syntax:
9128"""""""
9129
9130::
9131
9132 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9133
9134Overview:
9135"""""""""
9136
9137The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9138locations, allowing garbage collector implementations that require write
9139barriers (such as generational or reference counting collectors).
9140
9141Arguments:
9142""""""""""
9143
9144The first argument is the reference to store, the second is the start of
9145the object to store it to, and the third is the address of the field of
9146Obj to store to. If the runtime does not require a pointer to the
9147object, Obj may be null.
9148
9149Semantics:
9150""""""""""
9151
9152The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9153instruction, but may be replaced with substantially more complex code by
9154the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9155intrinsic may only be used in a function which :ref:`specifies a GC
9156algorithm <gc>`.
9157
9158Code Generator Intrinsics
9159-------------------------
9160
9161These intrinsics are provided by LLVM to expose special features that
9162may only be implemented with code generator support.
9163
9164'``llvm.returnaddress``' Intrinsic
9165^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9166
9167Syntax:
9168"""""""
9169
9170::
9171
9172 declare i8 *@llvm.returnaddress(i32 <level>)
9173
9174Overview:
9175"""""""""
9176
9177The '``llvm.returnaddress``' intrinsic attempts to compute a
9178target-specific value indicating the return address of the current
9179function or one of its callers.
9180
9181Arguments:
9182""""""""""
9183
9184The argument to this intrinsic indicates which function to return the
9185address for. Zero indicates the calling function, one indicates its
9186caller, etc. The argument is **required** to be a constant integer
9187value.
9188
9189Semantics:
9190""""""""""
9191
9192The '``llvm.returnaddress``' intrinsic either returns a pointer
9193indicating the return address of the specified call frame, or zero if it
9194cannot be identified. The value returned by this intrinsic is likely to
9195be incorrect or 0 for arguments other than zero, so it should only be
9196used for debugging purposes.
9197
9198Note that calling this intrinsic does not prevent function inlining or
9199other aggressive transformations, so the value returned may not be that
9200of the obvious source-language caller.
9201
9202'``llvm.frameaddress``' Intrinsic
9203^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9204
9205Syntax:
9206"""""""
9207
9208::
9209
9210 declare i8* @llvm.frameaddress(i32 <level>)
9211
9212Overview:
9213"""""""""
9214
9215The '``llvm.frameaddress``' intrinsic attempts to return the
9216target-specific frame pointer value for the specified stack frame.
9217
9218Arguments:
9219""""""""""
9220
9221The argument to this intrinsic indicates which function to return the
9222frame pointer for. Zero indicates the calling function, one indicates
9223its caller, etc. The argument is **required** to be a constant integer
9224value.
9225
9226Semantics:
9227""""""""""
9228
9229The '``llvm.frameaddress``' intrinsic either returns a pointer
9230indicating the frame address of the specified call frame, or zero if it
9231cannot be identified. The value returned by this intrinsic is likely to
9232be incorrect or 0 for arguments other than zero, so it should only be
9233used for debugging purposes.
9234
9235Note that calling this intrinsic does not prevent function inlining or
9236other aggressive transformations, so the value returned may not be that
9237of the obvious source-language caller.
9238
Reid Kleckner60381792015-07-07 22:25:32 +00009239'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009240^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9241
9242Syntax:
9243"""""""
9244
9245::
9246
Reid Kleckner60381792015-07-07 22:25:32 +00009247 declare void @llvm.localescape(...)
9248 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009249
9250Overview:
9251"""""""""
9252
Reid Kleckner60381792015-07-07 22:25:32 +00009253The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9254allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009255live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009256computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009257
9258Arguments:
9259""""""""""
9260
Reid Kleckner60381792015-07-07 22:25:32 +00009261All arguments to '``llvm.localescape``' must be pointers to static allocas or
9262casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009263once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009264
Reid Kleckner60381792015-07-07 22:25:32 +00009265The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009266bitcasted pointer to a function defined in the current module. The code
9267generator cannot determine the frame allocation offset of functions defined in
9268other modules.
9269
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009270The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9271call frame that is currently live. The return value of '``llvm.localaddress``'
9272is one way to produce such a value, but various runtimes also expose a suitable
9273pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009274
Reid Kleckner60381792015-07-07 22:25:32 +00009275The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9276'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009277
Reid Klecknere9b89312015-01-13 00:48:10 +00009278Semantics:
9279""""""""""
9280
Reid Kleckner60381792015-07-07 22:25:32 +00009281These intrinsics allow a group of functions to share access to a set of local
9282stack allocations of a one parent function. The parent function may call the
9283'``llvm.localescape``' intrinsic once from the function entry block, and the
9284child functions can use '``llvm.localrecover``' to access the escaped allocas.
9285The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9286the escaped allocas are allocated, which would break attempts to use
9287'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009288
Renato Golinc7aea402014-05-06 16:51:25 +00009289.. _int_read_register:
9290.. _int_write_register:
9291
9292'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9293^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9294
9295Syntax:
9296"""""""
9297
9298::
9299
9300 declare i32 @llvm.read_register.i32(metadata)
9301 declare i64 @llvm.read_register.i64(metadata)
9302 declare void @llvm.write_register.i32(metadata, i32 @value)
9303 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009304 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009305
9306Overview:
9307"""""""""
9308
9309The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9310provides access to the named register. The register must be valid on
9311the architecture being compiled to. The type needs to be compatible
9312with the register being read.
9313
9314Semantics:
9315""""""""""
9316
9317The '``llvm.read_register``' intrinsic returns the current value of the
9318register, where possible. The '``llvm.write_register``' intrinsic sets
9319the current value of the register, where possible.
9320
9321This is useful to implement named register global variables that need
9322to always be mapped to a specific register, as is common practice on
9323bare-metal programs including OS kernels.
9324
9325The compiler doesn't check for register availability or use of the used
9326register in surrounding code, including inline assembly. Because of that,
9327allocatable registers are not supported.
9328
9329Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009330architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009331work is needed to support other registers and even more so, allocatable
9332registers.
9333
Sean Silvab084af42012-12-07 10:36:55 +00009334.. _int_stacksave:
9335
9336'``llvm.stacksave``' Intrinsic
9337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9338
9339Syntax:
9340"""""""
9341
9342::
9343
9344 declare i8* @llvm.stacksave()
9345
9346Overview:
9347"""""""""
9348
9349The '``llvm.stacksave``' intrinsic is used to remember the current state
9350of the function stack, for use with
9351:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9352implementing language features like scoped automatic variable sized
9353arrays in C99.
9354
9355Semantics:
9356""""""""""
9357
9358This intrinsic returns a opaque pointer value that can be passed to
9359:ref:`llvm.stackrestore <int_stackrestore>`. When an
9360``llvm.stackrestore`` intrinsic is executed with a value saved from
9361``llvm.stacksave``, it effectively restores the state of the stack to
9362the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9363practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9364were allocated after the ``llvm.stacksave`` was executed.
9365
9366.. _int_stackrestore:
9367
9368'``llvm.stackrestore``' Intrinsic
9369^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9370
9371Syntax:
9372"""""""
9373
9374::
9375
9376 declare void @llvm.stackrestore(i8* %ptr)
9377
9378Overview:
9379"""""""""
9380
9381The '``llvm.stackrestore``' intrinsic is used to restore the state of
9382the function stack to the state it was in when the corresponding
9383:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9384useful for implementing language features like scoped automatic variable
9385sized arrays in C99.
9386
9387Semantics:
9388""""""""""
9389
9390See the description for :ref:`llvm.stacksave <int_stacksave>`.
9391
Yury Gribovd7dbb662015-12-01 11:40:55 +00009392.. _int_get_dynamic_area_offset:
9393
9394'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009395^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009396
9397Syntax:
9398"""""""
9399
9400::
9401
9402 declare i32 @llvm.get.dynamic.area.offset.i32()
9403 declare i64 @llvm.get.dynamic.area.offset.i64()
9404
9405 Overview:
9406 """""""""
9407
9408 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9409 get the offset from native stack pointer to the address of the most
9410 recent dynamic alloca on the caller's stack. These intrinsics are
9411 intendend for use in combination with
9412 :ref:`llvm.stacksave <int_stacksave>` to get a
9413 pointer to the most recent dynamic alloca. This is useful, for example,
9414 for AddressSanitizer's stack unpoisoning routines.
9415
9416Semantics:
9417""""""""""
9418
9419 These intrinsics return a non-negative integer value that can be used to
9420 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9421 on the caller's stack. In particular, for targets where stack grows downwards,
9422 adding this offset to the native stack pointer would get the address of the most
9423 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9424 complicated, because substracting this value from stack pointer would get the address
9425 one past the end of the most recent dynamic alloca.
9426
9427 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9428 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9429 compile-time-known constant value.
9430
9431 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9432 must match the target's generic address space's (address space 0) pointer type.
9433
Sean Silvab084af42012-12-07 10:36:55 +00009434'``llvm.prefetch``' Intrinsic
9435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9436
9437Syntax:
9438"""""""
9439
9440::
9441
9442 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9443
9444Overview:
9445"""""""""
9446
9447The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9448insert a prefetch instruction if supported; otherwise, it is a noop.
9449Prefetches have no effect on the behavior of the program but can change
9450its performance characteristics.
9451
9452Arguments:
9453""""""""""
9454
9455``address`` is the address to be prefetched, ``rw`` is the specifier
9456determining if the fetch should be for a read (0) or write (1), and
9457``locality`` is a temporal locality specifier ranging from (0) - no
9458locality, to (3) - extremely local keep in cache. The ``cache type``
9459specifies whether the prefetch is performed on the data (1) or
9460instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9461arguments must be constant integers.
9462
9463Semantics:
9464""""""""""
9465
9466This intrinsic does not modify the behavior of the program. In
9467particular, prefetches cannot trap and do not produce a value. On
9468targets that support this intrinsic, the prefetch can provide hints to
9469the processor cache for better performance.
9470
9471'``llvm.pcmarker``' Intrinsic
9472^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9473
9474Syntax:
9475"""""""
9476
9477::
9478
9479 declare void @llvm.pcmarker(i32 <id>)
9480
9481Overview:
9482"""""""""
9483
9484The '``llvm.pcmarker``' intrinsic is a method to export a Program
9485Counter (PC) in a region of code to simulators and other tools. The
9486method is target specific, but it is expected that the marker will use
9487exported symbols to transmit the PC of the marker. The marker makes no
9488guarantees that it will remain with any specific instruction after
9489optimizations. It is possible that the presence of a marker will inhibit
9490optimizations. The intended use is to be inserted after optimizations to
9491allow correlations of simulation runs.
9492
9493Arguments:
9494""""""""""
9495
9496``id`` is a numerical id identifying the marker.
9497
9498Semantics:
9499""""""""""
9500
9501This intrinsic does not modify the behavior of the program. Backends
9502that do not support this intrinsic may ignore it.
9503
9504'``llvm.readcyclecounter``' Intrinsic
9505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9506
9507Syntax:
9508"""""""
9509
9510::
9511
9512 declare i64 @llvm.readcyclecounter()
9513
9514Overview:
9515"""""""""
9516
9517The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9518counter register (or similar low latency, high accuracy clocks) on those
9519targets that support it. On X86, it should map to RDTSC. On Alpha, it
9520should map to RPCC. As the backing counters overflow quickly (on the
9521order of 9 seconds on alpha), this should only be used for small
9522timings.
9523
9524Semantics:
9525""""""""""
9526
9527When directly supported, reading the cycle counter should not modify any
9528memory. Implementations are allowed to either return a application
9529specific value or a system wide value. On backends without support, this
9530is lowered to a constant 0.
9531
Tim Northoverbc933082013-05-23 19:11:20 +00009532Note that runtime support may be conditional on the privilege-level code is
9533running at and the host platform.
9534
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009535'``llvm.clear_cache``' Intrinsic
9536^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9537
9538Syntax:
9539"""""""
9540
9541::
9542
9543 declare void @llvm.clear_cache(i8*, i8*)
9544
9545Overview:
9546"""""""""
9547
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009548The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9549in the specified range to the execution unit of the processor. On
9550targets with non-unified instruction and data cache, the implementation
9551flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009552
9553Semantics:
9554""""""""""
9555
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009556On platforms with coherent instruction and data caches (e.g. x86), this
9557intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009558cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009559instructions or a system call, if cache flushing requires special
9560privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009561
Sean Silvad02bf3e2014-04-07 22:29:53 +00009562The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009563time library.
Renato Golin93010e62014-03-26 14:01:32 +00009564
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009565This instrinsic does *not* empty the instruction pipeline. Modifications
9566of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009567
Justin Bogner61ba2e32014-12-08 18:02:35 +00009568'``llvm.instrprof_increment``' Intrinsic
9569^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9570
9571Syntax:
9572"""""""
9573
9574::
9575
9576 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9577 i32 <num-counters>, i32 <index>)
9578
9579Overview:
9580"""""""""
9581
9582The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9583frontend for use with instrumentation based profiling. These will be
9584lowered by the ``-instrprof`` pass to generate execution counts of a
9585program at runtime.
9586
9587Arguments:
9588""""""""""
9589
9590The first argument is a pointer to a global variable containing the
9591name of the entity being instrumented. This should generally be the
9592(mangled) function name for a set of counters.
9593
9594The second argument is a hash value that can be used by the consumer
9595of the profile data to detect changes to the instrumented source, and
9596the third is the number of counters associated with ``name``. It is an
9597error if ``hash`` or ``num-counters`` differ between two instances of
9598``instrprof_increment`` that refer to the same name.
9599
9600The last argument refers to which of the counters for ``name`` should
9601be incremented. It should be a value between 0 and ``num-counters``.
9602
9603Semantics:
9604""""""""""
9605
9606This intrinsic represents an increment of a profiling counter. It will
9607cause the ``-instrprof`` pass to generate the appropriate data
9608structures and the code to increment the appropriate value, in a
9609format that can be written out by a compiler runtime and consumed via
9610the ``llvm-profdata`` tool.
9611
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009612'``llvm.instrprof_value_profile``' Intrinsic
9613^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9614
9615Syntax:
9616"""""""
9617
9618::
9619
9620 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9621 i64 <value>, i32 <value_kind>,
9622 i32 <index>)
9623
9624Overview:
9625"""""""""
9626
9627The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9628frontend for use with instrumentation based profiling. This will be
9629lowered by the ``-instrprof`` pass to find out the target values,
9630instrumented expressions take in a program at runtime.
9631
9632Arguments:
9633""""""""""
9634
9635The first argument is a pointer to a global variable containing the
9636name of the entity being instrumented. ``name`` should generally be the
9637(mangled) function name for a set of counters.
9638
9639The second argument is a hash value that can be used by the consumer
9640of the profile data to detect changes to the instrumented source. It
9641is an error if ``hash`` differs between two instances of
9642``llvm.instrprof_*`` that refer to the same name.
9643
9644The third argument is the value of the expression being profiled. The profiled
9645expression's value should be representable as an unsigned 64-bit value. The
9646fourth argument represents the kind of value profiling that is being done. The
9647supported value profiling kinds are enumerated through the
9648``InstrProfValueKind`` type declared in the
9649``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9650index of the instrumented expression within ``name``. It should be >= 0.
9651
9652Semantics:
9653""""""""""
9654
9655This intrinsic represents the point where a call to a runtime routine
9656should be inserted for value profiling of target expressions. ``-instrprof``
9657pass will generate the appropriate data structures and replace the
9658``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9659runtime library with proper arguments.
9660
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009661'``llvm.thread.pointer``' Intrinsic
9662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9663
9664Syntax:
9665"""""""
9666
9667::
9668
9669 declare i8* @llvm.thread.pointer()
9670
9671Overview:
9672"""""""""
9673
9674The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9675pointer.
9676
9677Semantics:
9678""""""""""
9679
9680The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9681for the current thread. The exact semantics of this value are target
9682specific: it may point to the start of TLS area, to the end, or somewhere
9683in the middle. Depending on the target, this intrinsic may read a register,
9684call a helper function, read from an alternate memory space, or perform
9685other operations necessary to locate the TLS area. Not all targets support
9686this intrinsic.
9687
Sean Silvab084af42012-12-07 10:36:55 +00009688Standard C Library Intrinsics
9689-----------------------------
9690
9691LLVM provides intrinsics for a few important standard C library
9692functions. These intrinsics allow source-language front-ends to pass
9693information about the alignment of the pointer arguments to the code
9694generator, providing opportunity for more efficient code generation.
9695
9696.. _int_memcpy:
9697
9698'``llvm.memcpy``' Intrinsic
9699^^^^^^^^^^^^^^^^^^^^^^^^^^^
9700
9701Syntax:
9702"""""""
9703
9704This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9705integer bit width and for different address spaces. Not all targets
9706support all bit widths however.
9707
9708::
9709
9710 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9711 i32 <len>, i32 <align>, i1 <isvolatile>)
9712 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9713 i64 <len>, i32 <align>, i1 <isvolatile>)
9714
9715Overview:
9716"""""""""
9717
9718The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9719source location to the destination location.
9720
9721Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9722intrinsics do not return a value, takes extra alignment/isvolatile
9723arguments and the pointers can be in specified address spaces.
9724
9725Arguments:
9726""""""""""
9727
9728The first argument is a pointer to the destination, the second is a
9729pointer to the source. The third argument is an integer argument
9730specifying the number of bytes to copy, the fourth argument is the
9731alignment of the source and destination locations, and the fifth is a
9732boolean indicating a volatile access.
9733
9734If the call to this intrinsic has an alignment value that is not 0 or 1,
9735then the caller guarantees that both the source and destination pointers
9736are aligned to that boundary.
9737
9738If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9739a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9740very cleanly specified and it is unwise to depend on it.
9741
9742Semantics:
9743""""""""""
9744
9745The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9746source location to the destination location, which are not allowed to
9747overlap. It copies "len" bytes of memory over. If the argument is known
9748to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009749argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009750
9751'``llvm.memmove``' Intrinsic
9752^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9753
9754Syntax:
9755"""""""
9756
9757This is an overloaded intrinsic. You can use llvm.memmove on any integer
9758bit width and for different address space. Not all targets support all
9759bit widths however.
9760
9761::
9762
9763 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9764 i32 <len>, i32 <align>, i1 <isvolatile>)
9765 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9766 i64 <len>, i32 <align>, i1 <isvolatile>)
9767
9768Overview:
9769"""""""""
9770
9771The '``llvm.memmove.*``' intrinsics move a block of memory from the
9772source location to the destination location. It is similar to the
9773'``llvm.memcpy``' intrinsic but allows the two memory locations to
9774overlap.
9775
9776Note that, unlike the standard libc function, the ``llvm.memmove.*``
9777intrinsics do not return a value, takes extra alignment/isvolatile
9778arguments and the pointers can be in specified address spaces.
9779
9780Arguments:
9781""""""""""
9782
9783The first argument is a pointer to the destination, the second is a
9784pointer to the source. The third argument is an integer argument
9785specifying the number of bytes to copy, the fourth argument is the
9786alignment of the source and destination locations, and the fifth is a
9787boolean indicating a volatile access.
9788
9789If the call to this intrinsic has an alignment value that is not 0 or 1,
9790then the caller guarantees that the source and destination pointers are
9791aligned to that boundary.
9792
9793If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9794is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9795not very cleanly specified and it is unwise to depend on it.
9796
9797Semantics:
9798""""""""""
9799
9800The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9801source location to the destination location, which may overlap. It
9802copies "len" bytes of memory over. If the argument is known to be
9803aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009804otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009805
9806'``llvm.memset.*``' Intrinsics
9807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9808
9809Syntax:
9810"""""""
9811
9812This is an overloaded intrinsic. You can use llvm.memset on any integer
9813bit width and for different address spaces. However, not all targets
9814support all bit widths.
9815
9816::
9817
9818 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9819 i32 <len>, i32 <align>, i1 <isvolatile>)
9820 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9821 i64 <len>, i32 <align>, i1 <isvolatile>)
9822
9823Overview:
9824"""""""""
9825
9826The '``llvm.memset.*``' intrinsics fill a block of memory with a
9827particular byte value.
9828
9829Note that, unlike the standard libc function, the ``llvm.memset``
9830intrinsic does not return a value and takes extra alignment/volatile
9831arguments. Also, the destination can be in an arbitrary address space.
9832
9833Arguments:
9834""""""""""
9835
9836The first argument is a pointer to the destination to fill, the second
9837is the byte value with which to fill it, the third argument is an
9838integer argument specifying the number of bytes to fill, and the fourth
9839argument is the known alignment of the destination location.
9840
9841If the call to this intrinsic has an alignment value that is not 0 or 1,
9842then the caller guarantees that the destination pointer is aligned to
9843that boundary.
9844
9845If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9846a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9847very cleanly specified and it is unwise to depend on it.
9848
9849Semantics:
9850""""""""""
9851
9852The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9853at the destination location. If the argument is known to be aligned to
9854some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009855it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009856
9857'``llvm.sqrt.*``' Intrinsic
9858^^^^^^^^^^^^^^^^^^^^^^^^^^^
9859
9860Syntax:
9861"""""""
9862
9863This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9864floating point or vector of floating point type. Not all targets support
9865all types however.
9866
9867::
9868
9869 declare float @llvm.sqrt.f32(float %Val)
9870 declare double @llvm.sqrt.f64(double %Val)
9871 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9872 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9873 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9874
9875Overview:
9876"""""""""
9877
9878The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9879returning the same value as the libm '``sqrt``' functions would. Unlike
9880``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9881negative numbers other than -0.0 (which allows for better optimization,
9882because there is no need to worry about errno being set).
9883``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9884
9885Arguments:
9886""""""""""
9887
9888The argument and return value are floating point numbers of the same
9889type.
9890
9891Semantics:
9892""""""""""
9893
9894This function returns the sqrt of the specified operand if it is a
9895nonnegative floating point number.
9896
9897'``llvm.powi.*``' Intrinsic
9898^^^^^^^^^^^^^^^^^^^^^^^^^^^
9899
9900Syntax:
9901"""""""
9902
9903This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9904floating point or vector of floating point type. Not all targets support
9905all types however.
9906
9907::
9908
9909 declare float @llvm.powi.f32(float %Val, i32 %power)
9910 declare double @llvm.powi.f64(double %Val, i32 %power)
9911 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9912 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9913 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9914
9915Overview:
9916"""""""""
9917
9918The '``llvm.powi.*``' intrinsics return the first operand raised to the
9919specified (positive or negative) power. The order of evaluation of
9920multiplications is not defined. When a vector of floating point type is
9921used, the second argument remains a scalar integer value.
9922
9923Arguments:
9924""""""""""
9925
9926The second argument is an integer power, and the first is a value to
9927raise to that power.
9928
9929Semantics:
9930""""""""""
9931
9932This function returns the first value raised to the second power with an
9933unspecified sequence of rounding operations.
9934
9935'``llvm.sin.*``' Intrinsic
9936^^^^^^^^^^^^^^^^^^^^^^^^^^
9937
9938Syntax:
9939"""""""
9940
9941This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9942floating point or vector of floating point type. Not all targets support
9943all types however.
9944
9945::
9946
9947 declare float @llvm.sin.f32(float %Val)
9948 declare double @llvm.sin.f64(double %Val)
9949 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9950 declare fp128 @llvm.sin.f128(fp128 %Val)
9951 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9952
9953Overview:
9954"""""""""
9955
9956The '``llvm.sin.*``' intrinsics return the sine of the operand.
9957
9958Arguments:
9959""""""""""
9960
9961The argument and return value are floating point numbers of the same
9962type.
9963
9964Semantics:
9965""""""""""
9966
9967This function returns the sine of the specified operand, returning the
9968same values as the libm ``sin`` functions would, and handles error
9969conditions in the same way.
9970
9971'``llvm.cos.*``' Intrinsic
9972^^^^^^^^^^^^^^^^^^^^^^^^^^
9973
9974Syntax:
9975"""""""
9976
9977This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9978floating point or vector of floating point type. Not all targets support
9979all types however.
9980
9981::
9982
9983 declare float @llvm.cos.f32(float %Val)
9984 declare double @llvm.cos.f64(double %Val)
9985 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9986 declare fp128 @llvm.cos.f128(fp128 %Val)
9987 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9988
9989Overview:
9990"""""""""
9991
9992The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9993
9994Arguments:
9995""""""""""
9996
9997The argument and return value are floating point numbers of the same
9998type.
9999
10000Semantics:
10001""""""""""
10002
10003This function returns the cosine of the specified operand, returning the
10004same values as the libm ``cos`` functions would, and handles error
10005conditions in the same way.
10006
10007'``llvm.pow.*``' Intrinsic
10008^^^^^^^^^^^^^^^^^^^^^^^^^^
10009
10010Syntax:
10011"""""""
10012
10013This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10014floating point or vector of floating point type. Not all targets support
10015all types however.
10016
10017::
10018
10019 declare float @llvm.pow.f32(float %Val, float %Power)
10020 declare double @llvm.pow.f64(double %Val, double %Power)
10021 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10022 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10023 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10024
10025Overview:
10026"""""""""
10027
10028The '``llvm.pow.*``' intrinsics return the first operand raised to the
10029specified (positive or negative) power.
10030
10031Arguments:
10032""""""""""
10033
10034The second argument is a floating point power, and the first is a value
10035to raise to that power.
10036
10037Semantics:
10038""""""""""
10039
10040This function returns the first value raised to the second power,
10041returning the same values as the libm ``pow`` functions would, and
10042handles error conditions in the same way.
10043
10044'``llvm.exp.*``' Intrinsic
10045^^^^^^^^^^^^^^^^^^^^^^^^^^
10046
10047Syntax:
10048"""""""
10049
10050This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10051floating point or vector of floating point type. Not all targets support
10052all types however.
10053
10054::
10055
10056 declare float @llvm.exp.f32(float %Val)
10057 declare double @llvm.exp.f64(double %Val)
10058 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10059 declare fp128 @llvm.exp.f128(fp128 %Val)
10060 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10061
10062Overview:
10063"""""""""
10064
10065The '``llvm.exp.*``' intrinsics perform the exp function.
10066
10067Arguments:
10068""""""""""
10069
10070The argument and return value are floating point numbers of the same
10071type.
10072
10073Semantics:
10074""""""""""
10075
10076This function returns the same values as the libm ``exp`` functions
10077would, and handles error conditions in the same way.
10078
10079'``llvm.exp2.*``' Intrinsic
10080^^^^^^^^^^^^^^^^^^^^^^^^^^^
10081
10082Syntax:
10083"""""""
10084
10085This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10086floating point or vector of floating point type. Not all targets support
10087all types however.
10088
10089::
10090
10091 declare float @llvm.exp2.f32(float %Val)
10092 declare double @llvm.exp2.f64(double %Val)
10093 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10094 declare fp128 @llvm.exp2.f128(fp128 %Val)
10095 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10096
10097Overview:
10098"""""""""
10099
10100The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10101
10102Arguments:
10103""""""""""
10104
10105The argument and return value are floating point numbers of the same
10106type.
10107
10108Semantics:
10109""""""""""
10110
10111This function returns the same values as the libm ``exp2`` functions
10112would, and handles error conditions in the same way.
10113
10114'``llvm.log.*``' Intrinsic
10115^^^^^^^^^^^^^^^^^^^^^^^^^^
10116
10117Syntax:
10118"""""""
10119
10120This is an overloaded intrinsic. You can use ``llvm.log`` on any
10121floating point or vector of floating point type. Not all targets support
10122all types however.
10123
10124::
10125
10126 declare float @llvm.log.f32(float %Val)
10127 declare double @llvm.log.f64(double %Val)
10128 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10129 declare fp128 @llvm.log.f128(fp128 %Val)
10130 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10131
10132Overview:
10133"""""""""
10134
10135The '``llvm.log.*``' intrinsics perform the log function.
10136
10137Arguments:
10138""""""""""
10139
10140The argument and return value are floating point numbers of the same
10141type.
10142
10143Semantics:
10144""""""""""
10145
10146This function returns the same values as the libm ``log`` functions
10147would, and handles error conditions in the same way.
10148
10149'``llvm.log10.*``' Intrinsic
10150^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10151
10152Syntax:
10153"""""""
10154
10155This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10156floating point or vector of floating point type. Not all targets support
10157all types however.
10158
10159::
10160
10161 declare float @llvm.log10.f32(float %Val)
10162 declare double @llvm.log10.f64(double %Val)
10163 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10164 declare fp128 @llvm.log10.f128(fp128 %Val)
10165 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10166
10167Overview:
10168"""""""""
10169
10170The '``llvm.log10.*``' intrinsics perform the log10 function.
10171
10172Arguments:
10173""""""""""
10174
10175The argument and return value are floating point numbers of the same
10176type.
10177
10178Semantics:
10179""""""""""
10180
10181This function returns the same values as the libm ``log10`` functions
10182would, and handles error conditions in the same way.
10183
10184'``llvm.log2.*``' Intrinsic
10185^^^^^^^^^^^^^^^^^^^^^^^^^^^
10186
10187Syntax:
10188"""""""
10189
10190This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10191floating point or vector of floating point type. Not all targets support
10192all types however.
10193
10194::
10195
10196 declare float @llvm.log2.f32(float %Val)
10197 declare double @llvm.log2.f64(double %Val)
10198 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10199 declare fp128 @llvm.log2.f128(fp128 %Val)
10200 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10201
10202Overview:
10203"""""""""
10204
10205The '``llvm.log2.*``' intrinsics perform the log2 function.
10206
10207Arguments:
10208""""""""""
10209
10210The argument and return value are floating point numbers of the same
10211type.
10212
10213Semantics:
10214""""""""""
10215
10216This function returns the same values as the libm ``log2`` functions
10217would, and handles error conditions in the same way.
10218
10219'``llvm.fma.*``' Intrinsic
10220^^^^^^^^^^^^^^^^^^^^^^^^^^
10221
10222Syntax:
10223"""""""
10224
10225This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10226floating point or vector of floating point type. Not all targets support
10227all types however.
10228
10229::
10230
10231 declare float @llvm.fma.f32(float %a, float %b, float %c)
10232 declare double @llvm.fma.f64(double %a, double %b, double %c)
10233 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10234 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10235 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10236
10237Overview:
10238"""""""""
10239
10240The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10241operation.
10242
10243Arguments:
10244""""""""""
10245
10246The argument and return value are floating point numbers of the same
10247type.
10248
10249Semantics:
10250""""""""""
10251
10252This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010253would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010254
10255'``llvm.fabs.*``' Intrinsic
10256^^^^^^^^^^^^^^^^^^^^^^^^^^^
10257
10258Syntax:
10259"""""""
10260
10261This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10262floating point or vector of floating point type. Not all targets support
10263all types however.
10264
10265::
10266
10267 declare float @llvm.fabs.f32(float %Val)
10268 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010269 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010270 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010271 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010272
10273Overview:
10274"""""""""
10275
10276The '``llvm.fabs.*``' intrinsics return the absolute value of the
10277operand.
10278
10279Arguments:
10280""""""""""
10281
10282The argument and return value are floating point numbers of the same
10283type.
10284
10285Semantics:
10286""""""""""
10287
10288This function returns the same values as the libm ``fabs`` functions
10289would, and handles error conditions in the same way.
10290
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010291'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010293
10294Syntax:
10295"""""""
10296
10297This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10298floating point or vector of floating point type. Not all targets support
10299all types however.
10300
10301::
10302
Matt Arsenault64313c92014-10-22 18:25:02 +000010303 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10304 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10305 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10306 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10307 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010308
10309Overview:
10310"""""""""
10311
10312The '``llvm.minnum.*``' intrinsics return the minimum of the two
10313arguments.
10314
10315
10316Arguments:
10317""""""""""
10318
10319The arguments and return value are floating point numbers of the same
10320type.
10321
10322Semantics:
10323""""""""""
10324
10325Follows the IEEE-754 semantics for minNum, which also match for libm's
10326fmin.
10327
10328If either operand is a NaN, returns the other non-NaN operand. Returns
10329NaN only if both operands are NaN. If the operands compare equal,
10330returns a value that compares equal to both operands. This means that
10331fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10332
10333'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010335
10336Syntax:
10337"""""""
10338
10339This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10340floating point or vector of floating point type. Not all targets support
10341all types however.
10342
10343::
10344
Matt Arsenault64313c92014-10-22 18:25:02 +000010345 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10346 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10347 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10348 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10349 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010350
10351Overview:
10352"""""""""
10353
10354The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10355arguments.
10356
10357
10358Arguments:
10359""""""""""
10360
10361The arguments and return value are floating point numbers of the same
10362type.
10363
10364Semantics:
10365""""""""""
10366Follows the IEEE-754 semantics for maxNum, which also match for libm's
10367fmax.
10368
10369If either operand is a NaN, returns the other non-NaN operand. Returns
10370NaN only if both operands are NaN. If the operands compare equal,
10371returns a value that compares equal to both operands. This means that
10372fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10373
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010374'``llvm.copysign.*``' Intrinsic
10375^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10376
10377Syntax:
10378"""""""
10379
10380This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10381floating point or vector of floating point type. Not all targets support
10382all types however.
10383
10384::
10385
10386 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10387 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10388 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10389 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10390 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10391
10392Overview:
10393"""""""""
10394
10395The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10396first operand and the sign of the second operand.
10397
10398Arguments:
10399""""""""""
10400
10401The arguments and return value are floating point numbers of the same
10402type.
10403
10404Semantics:
10405""""""""""
10406
10407This function returns the same values as the libm ``copysign``
10408functions would, and handles error conditions in the same way.
10409
Sean Silvab084af42012-12-07 10:36:55 +000010410'``llvm.floor.*``' Intrinsic
10411^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10412
10413Syntax:
10414"""""""
10415
10416This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10417floating point or vector of floating point type. Not all targets support
10418all types however.
10419
10420::
10421
10422 declare float @llvm.floor.f32(float %Val)
10423 declare double @llvm.floor.f64(double %Val)
10424 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10425 declare fp128 @llvm.floor.f128(fp128 %Val)
10426 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10427
10428Overview:
10429"""""""""
10430
10431The '``llvm.floor.*``' intrinsics return the floor of the operand.
10432
10433Arguments:
10434""""""""""
10435
10436The argument and return value are floating point numbers of the same
10437type.
10438
10439Semantics:
10440""""""""""
10441
10442This function returns the same values as the libm ``floor`` functions
10443would, and handles error conditions in the same way.
10444
10445'``llvm.ceil.*``' Intrinsic
10446^^^^^^^^^^^^^^^^^^^^^^^^^^^
10447
10448Syntax:
10449"""""""
10450
10451This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10452floating point or vector of floating point type. Not all targets support
10453all types however.
10454
10455::
10456
10457 declare float @llvm.ceil.f32(float %Val)
10458 declare double @llvm.ceil.f64(double %Val)
10459 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10460 declare fp128 @llvm.ceil.f128(fp128 %Val)
10461 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10462
10463Overview:
10464"""""""""
10465
10466The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10467
10468Arguments:
10469""""""""""
10470
10471The argument and return value are floating point numbers of the same
10472type.
10473
10474Semantics:
10475""""""""""
10476
10477This function returns the same values as the libm ``ceil`` functions
10478would, and handles error conditions in the same way.
10479
10480'``llvm.trunc.*``' Intrinsic
10481^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10482
10483Syntax:
10484"""""""
10485
10486This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10487floating point or vector of floating point type. Not all targets support
10488all types however.
10489
10490::
10491
10492 declare float @llvm.trunc.f32(float %Val)
10493 declare double @llvm.trunc.f64(double %Val)
10494 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10495 declare fp128 @llvm.trunc.f128(fp128 %Val)
10496 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10497
10498Overview:
10499"""""""""
10500
10501The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10502nearest integer not larger in magnitude than the operand.
10503
10504Arguments:
10505""""""""""
10506
10507The argument and return value are floating point numbers of the same
10508type.
10509
10510Semantics:
10511""""""""""
10512
10513This function returns the same values as the libm ``trunc`` functions
10514would, and handles error conditions in the same way.
10515
10516'``llvm.rint.*``' Intrinsic
10517^^^^^^^^^^^^^^^^^^^^^^^^^^^
10518
10519Syntax:
10520"""""""
10521
10522This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10523floating point or vector of floating point type. Not all targets support
10524all types however.
10525
10526::
10527
10528 declare float @llvm.rint.f32(float %Val)
10529 declare double @llvm.rint.f64(double %Val)
10530 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10531 declare fp128 @llvm.rint.f128(fp128 %Val)
10532 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10533
10534Overview:
10535"""""""""
10536
10537The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10538nearest integer. It may raise an inexact floating-point exception if the
10539operand isn't an integer.
10540
10541Arguments:
10542""""""""""
10543
10544The argument and return value are floating point numbers of the same
10545type.
10546
10547Semantics:
10548""""""""""
10549
10550This function returns the same values as the libm ``rint`` functions
10551would, and handles error conditions in the same way.
10552
10553'``llvm.nearbyint.*``' Intrinsic
10554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10555
10556Syntax:
10557"""""""
10558
10559This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10560floating point or vector of floating point type. Not all targets support
10561all types however.
10562
10563::
10564
10565 declare float @llvm.nearbyint.f32(float %Val)
10566 declare double @llvm.nearbyint.f64(double %Val)
10567 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10568 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10569 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10570
10571Overview:
10572"""""""""
10573
10574The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10575nearest integer.
10576
10577Arguments:
10578""""""""""
10579
10580The argument and return value are floating point numbers of the same
10581type.
10582
10583Semantics:
10584""""""""""
10585
10586This function returns the same values as the libm ``nearbyint``
10587functions would, and handles error conditions in the same way.
10588
Hal Finkel171817e2013-08-07 22:49:12 +000010589'``llvm.round.*``' Intrinsic
10590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10591
10592Syntax:
10593"""""""
10594
10595This is an overloaded intrinsic. You can use ``llvm.round`` on any
10596floating point or vector of floating point type. Not all targets support
10597all types however.
10598
10599::
10600
10601 declare float @llvm.round.f32(float %Val)
10602 declare double @llvm.round.f64(double %Val)
10603 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10604 declare fp128 @llvm.round.f128(fp128 %Val)
10605 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10606
10607Overview:
10608"""""""""
10609
10610The '``llvm.round.*``' intrinsics returns the operand rounded to the
10611nearest integer.
10612
10613Arguments:
10614""""""""""
10615
10616The argument and return value are floating point numbers of the same
10617type.
10618
10619Semantics:
10620""""""""""
10621
10622This function returns the same values as the libm ``round``
10623functions would, and handles error conditions in the same way.
10624
Sean Silvab084af42012-12-07 10:36:55 +000010625Bit Manipulation Intrinsics
10626---------------------------
10627
10628LLVM provides intrinsics for a few important bit manipulation
10629operations. These allow efficient code generation for some algorithms.
10630
James Molloy90111f72015-11-12 12:29:09 +000010631'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010632^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010633
10634Syntax:
10635"""""""
10636
10637This is an overloaded intrinsic function. You can use bitreverse on any
10638integer type.
10639
10640::
10641
10642 declare i16 @llvm.bitreverse.i16(i16 <id>)
10643 declare i32 @llvm.bitreverse.i32(i32 <id>)
10644 declare i64 @llvm.bitreverse.i64(i64 <id>)
10645
10646Overview:
10647"""""""""
10648
10649The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010650bitpattern of an integer value; for example ``0b10110110`` becomes
10651``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010652
10653Semantics:
10654""""""""""
10655
10656The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10657``M`` in the input moved to bit ``N-M`` in the output.
10658
Sean Silvab084af42012-12-07 10:36:55 +000010659'``llvm.bswap.*``' Intrinsics
10660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10661
10662Syntax:
10663"""""""
10664
10665This is an overloaded intrinsic function. You can use bswap on any
10666integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10667
10668::
10669
10670 declare i16 @llvm.bswap.i16(i16 <id>)
10671 declare i32 @llvm.bswap.i32(i32 <id>)
10672 declare i64 @llvm.bswap.i64(i64 <id>)
10673
10674Overview:
10675"""""""""
10676
10677The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10678values with an even number of bytes (positive multiple of 16 bits).
10679These are useful for performing operations on data that is not in the
10680target's native byte order.
10681
10682Semantics:
10683""""""""""
10684
10685The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10686and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10687intrinsic returns an i32 value that has the four bytes of the input i32
10688swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10689returned i32 will have its bytes in 3, 2, 1, 0 order. The
10690``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10691concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10692respectively).
10693
10694'``llvm.ctpop.*``' Intrinsic
10695^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10696
10697Syntax:
10698"""""""
10699
10700This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10701bit width, or on any vector with integer elements. Not all targets
10702support all bit widths or vector types, however.
10703
10704::
10705
10706 declare i8 @llvm.ctpop.i8(i8 <src>)
10707 declare i16 @llvm.ctpop.i16(i16 <src>)
10708 declare i32 @llvm.ctpop.i32(i32 <src>)
10709 declare i64 @llvm.ctpop.i64(i64 <src>)
10710 declare i256 @llvm.ctpop.i256(i256 <src>)
10711 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10712
10713Overview:
10714"""""""""
10715
10716The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10717in a value.
10718
10719Arguments:
10720""""""""""
10721
10722The only argument is the value to be counted. The argument may be of any
10723integer type, or a vector with integer elements. The return type must
10724match the argument type.
10725
10726Semantics:
10727""""""""""
10728
10729The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10730each element of a vector.
10731
10732'``llvm.ctlz.*``' Intrinsic
10733^^^^^^^^^^^^^^^^^^^^^^^^^^^
10734
10735Syntax:
10736"""""""
10737
10738This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10739integer bit width, or any vector whose elements are integers. Not all
10740targets support all bit widths or vector types, however.
10741
10742::
10743
10744 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10745 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10746 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10747 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10748 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010749 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010750
10751Overview:
10752"""""""""
10753
10754The '``llvm.ctlz``' family of intrinsic functions counts the number of
10755leading zeros in a variable.
10756
10757Arguments:
10758""""""""""
10759
10760The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010761any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010762type must match the first argument type.
10763
10764The second argument must be a constant and is a flag to indicate whether
10765the intrinsic should ensure that a zero as the first argument produces a
10766defined result. Historically some architectures did not provide a
10767defined result for zero values as efficiently, and many algorithms are
10768now predicated on avoiding zero-value inputs.
10769
10770Semantics:
10771""""""""""
10772
10773The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10774zeros in a variable, or within each element of the vector. If
10775``src == 0`` then the result is the size in bits of the type of ``src``
10776if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10777``llvm.ctlz(i32 2) = 30``.
10778
10779'``llvm.cttz.*``' Intrinsic
10780^^^^^^^^^^^^^^^^^^^^^^^^^^^
10781
10782Syntax:
10783"""""""
10784
10785This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10786integer bit width, or any vector of integer elements. Not all targets
10787support all bit widths or vector types, however.
10788
10789::
10790
10791 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10792 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10793 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10794 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10795 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010796 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010797
10798Overview:
10799"""""""""
10800
10801The '``llvm.cttz``' family of intrinsic functions counts the number of
10802trailing zeros.
10803
10804Arguments:
10805""""""""""
10806
10807The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010808any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010809type must match the first argument type.
10810
10811The second argument must be a constant and is a flag to indicate whether
10812the intrinsic should ensure that a zero as the first argument produces a
10813defined result. Historically some architectures did not provide a
10814defined result for zero values as efficiently, and many algorithms are
10815now predicated on avoiding zero-value inputs.
10816
10817Semantics:
10818""""""""""
10819
10820The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10821zeros in a variable, or within each element of a vector. If ``src == 0``
10822then the result is the size in bits of the type of ``src`` if
10823``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10824``llvm.cttz(2) = 1``.
10825
Philip Reames34843ae2015-03-05 05:55:55 +000010826.. _int_overflow:
10827
Sean Silvab084af42012-12-07 10:36:55 +000010828Arithmetic with Overflow Intrinsics
10829-----------------------------------
10830
10831LLVM provides intrinsics for some arithmetic with overflow operations.
10832
10833'``llvm.sadd.with.overflow.*``' Intrinsics
10834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10835
10836Syntax:
10837"""""""
10838
10839This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10840on any integer bit width.
10841
10842::
10843
10844 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10845 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10846 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10847
10848Overview:
10849"""""""""
10850
10851The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10852a signed addition of the two arguments, and indicate whether an overflow
10853occurred during the signed summation.
10854
10855Arguments:
10856""""""""""
10857
10858The arguments (%a and %b) and the first element of the result structure
10859may be of integer types of any bit width, but they must have the same
10860bit width. The second element of the result structure must be of type
10861``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10862addition.
10863
10864Semantics:
10865""""""""""
10866
10867The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010868a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010869first element of which is the signed summation, and the second element
10870of which is a bit specifying if the signed summation resulted in an
10871overflow.
10872
10873Examples:
10874"""""""""
10875
10876.. code-block:: llvm
10877
10878 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10879 %sum = extractvalue {i32, i1} %res, 0
10880 %obit = extractvalue {i32, i1} %res, 1
10881 br i1 %obit, label %overflow, label %normal
10882
10883'``llvm.uadd.with.overflow.*``' Intrinsics
10884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10885
10886Syntax:
10887"""""""
10888
10889This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10890on any integer bit width.
10891
10892::
10893
10894 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10895 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10896 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10897
10898Overview:
10899"""""""""
10900
10901The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10902an unsigned addition of the two arguments, and indicate whether a carry
10903occurred during the unsigned summation.
10904
10905Arguments:
10906""""""""""
10907
10908The arguments (%a and %b) and the first element of the result structure
10909may be of integer types of any bit width, but they must have the same
10910bit width. The second element of the result structure must be of type
10911``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10912addition.
10913
10914Semantics:
10915""""""""""
10916
10917The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010918an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010919first element of which is the sum, and the second element of which is a
10920bit specifying if the unsigned summation resulted in a carry.
10921
10922Examples:
10923"""""""""
10924
10925.. code-block:: llvm
10926
10927 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10928 %sum = extractvalue {i32, i1} %res, 0
10929 %obit = extractvalue {i32, i1} %res, 1
10930 br i1 %obit, label %carry, label %normal
10931
10932'``llvm.ssub.with.overflow.*``' Intrinsics
10933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10934
10935Syntax:
10936"""""""
10937
10938This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10939on any integer bit width.
10940
10941::
10942
10943 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10944 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10945 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10946
10947Overview:
10948"""""""""
10949
10950The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10951a signed subtraction of the two arguments, and indicate whether an
10952overflow occurred during the signed subtraction.
10953
10954Arguments:
10955""""""""""
10956
10957The arguments (%a and %b) and the first element of the result structure
10958may be of integer types of any bit width, but they must have the same
10959bit width. The second element of the result structure must be of type
10960``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10961subtraction.
10962
10963Semantics:
10964""""""""""
10965
10966The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010967a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010968first element of which is the subtraction, and the second element of
10969which is a bit specifying if the signed subtraction resulted in an
10970overflow.
10971
10972Examples:
10973"""""""""
10974
10975.. code-block:: llvm
10976
10977 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10978 %sum = extractvalue {i32, i1} %res, 0
10979 %obit = extractvalue {i32, i1} %res, 1
10980 br i1 %obit, label %overflow, label %normal
10981
10982'``llvm.usub.with.overflow.*``' Intrinsics
10983^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10984
10985Syntax:
10986"""""""
10987
10988This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10989on any integer bit width.
10990
10991::
10992
10993 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10994 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10995 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10996
10997Overview:
10998"""""""""
10999
11000The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11001an unsigned subtraction of the two arguments, and indicate whether an
11002overflow occurred during the unsigned subtraction.
11003
11004Arguments:
11005""""""""""
11006
11007The arguments (%a and %b) and the first element of the result structure
11008may be of integer types of any bit width, but they must have the same
11009bit width. The second element of the result structure must be of type
11010``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11011subtraction.
11012
11013Semantics:
11014""""""""""
11015
11016The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011017an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011018the first element of which is the subtraction, and the second element of
11019which is a bit specifying if the unsigned subtraction resulted in an
11020overflow.
11021
11022Examples:
11023"""""""""
11024
11025.. code-block:: llvm
11026
11027 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11028 %sum = extractvalue {i32, i1} %res, 0
11029 %obit = extractvalue {i32, i1} %res, 1
11030 br i1 %obit, label %overflow, label %normal
11031
11032'``llvm.smul.with.overflow.*``' Intrinsics
11033^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11034
11035Syntax:
11036"""""""
11037
11038This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11039on any integer bit width.
11040
11041::
11042
11043 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11044 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11045 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11046
11047Overview:
11048"""""""""
11049
11050The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11051a signed multiplication of the two arguments, and indicate whether an
11052overflow occurred during the signed multiplication.
11053
11054Arguments:
11055""""""""""
11056
11057The arguments (%a and %b) and the first element of the result structure
11058may be of integer types of any bit width, but they must have the same
11059bit width. The second element of the result structure must be of type
11060``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11061multiplication.
11062
11063Semantics:
11064""""""""""
11065
11066The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011067a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011068the first element of which is the multiplication, and the second element
11069of which is a bit specifying if the signed multiplication resulted in an
11070overflow.
11071
11072Examples:
11073"""""""""
11074
11075.. code-block:: llvm
11076
11077 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11078 %sum = extractvalue {i32, i1} %res, 0
11079 %obit = extractvalue {i32, i1} %res, 1
11080 br i1 %obit, label %overflow, label %normal
11081
11082'``llvm.umul.with.overflow.*``' Intrinsics
11083^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11084
11085Syntax:
11086"""""""
11087
11088This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11089on any integer bit width.
11090
11091::
11092
11093 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11094 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11095 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11096
11097Overview:
11098"""""""""
11099
11100The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11101a unsigned multiplication of the two arguments, and indicate whether an
11102overflow occurred during the unsigned multiplication.
11103
11104Arguments:
11105""""""""""
11106
11107The arguments (%a and %b) and the first element of the result structure
11108may be of integer types of any bit width, but they must have the same
11109bit width. The second element of the result structure must be of type
11110``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11111multiplication.
11112
11113Semantics:
11114""""""""""
11115
11116The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011117an unsigned multiplication of the two arguments. They return a structure ---
11118the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011119element of which is a bit specifying if the unsigned multiplication
11120resulted in an overflow.
11121
11122Examples:
11123"""""""""
11124
11125.. code-block:: llvm
11126
11127 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11128 %sum = extractvalue {i32, i1} %res, 0
11129 %obit = extractvalue {i32, i1} %res, 1
11130 br i1 %obit, label %overflow, label %normal
11131
11132Specialised Arithmetic Intrinsics
11133---------------------------------
11134
Owen Anderson1056a922015-07-11 07:01:27 +000011135'``llvm.canonicalize.*``' Intrinsic
11136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11137
11138Syntax:
11139"""""""
11140
11141::
11142
11143 declare float @llvm.canonicalize.f32(float %a)
11144 declare double @llvm.canonicalize.f64(double %b)
11145
11146Overview:
11147"""""""""
11148
11149The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011150encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011151implementing certain numeric primitives such as frexp. The canonical encoding is
11152defined by IEEE-754-2008 to be:
11153
11154::
11155
11156 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011157 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011158 numbers, infinities, and NaNs, especially in decimal formats.
11159
11160This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011161conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011162according to section 6.2.
11163
11164Examples of non-canonical encodings:
11165
Sean Silvaa1190322015-08-06 22:56:48 +000011166- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011167 converted to a canonical representation per hardware-specific protocol.
11168- Many normal decimal floating point numbers have non-canonical alternative
11169 encodings.
11170- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011171 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011172 a zero of the same sign by this operation.
11173
11174Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11175default exception handling must signal an invalid exception, and produce a
11176quiet NaN result.
11177
11178This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011179that the compiler does not constant fold the operation. Likewise, division by
111801.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011181-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11182
Sean Silvaa1190322015-08-06 22:56:48 +000011183``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011184
11185- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11186- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11187 to ``(x == y)``
11188
11189Additionally, the sign of zero must be conserved:
11190``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11191
11192The payload bits of a NaN must be conserved, with two exceptions.
11193First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011194must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011195usual methods.
11196
11197The canonicalization operation may be optimized away if:
11198
Sean Silvaa1190322015-08-06 22:56:48 +000011199- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011200 floating-point operation that is required by the standard to be canonical.
11201- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011202 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011203
Sean Silvab084af42012-12-07 10:36:55 +000011204'``llvm.fmuladd.*``' Intrinsic
11205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11206
11207Syntax:
11208"""""""
11209
11210::
11211
11212 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11213 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11214
11215Overview:
11216"""""""""
11217
11218The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011219expressions that can be fused if the code generator determines that (a) the
11220target instruction set has support for a fused operation, and (b) that the
11221fused operation is more efficient than the equivalent, separate pair of mul
11222and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011223
11224Arguments:
11225""""""""""
11226
11227The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11228multiplicands, a and b, and an addend c.
11229
11230Semantics:
11231""""""""""
11232
11233The expression:
11234
11235::
11236
11237 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11238
11239is equivalent to the expression a \* b + c, except that rounding will
11240not be performed between the multiplication and addition steps if the
11241code generator fuses the operations. Fusion is not guaranteed, even if
11242the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011243corresponding llvm.fma.\* intrinsic function should be used
11244instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011245
11246Examples:
11247"""""""""
11248
11249.. code-block:: llvm
11250
Tim Northover675a0962014-06-13 14:24:23 +000011251 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011252
11253Half Precision Floating Point Intrinsics
11254----------------------------------------
11255
11256For most target platforms, half precision floating point is a
11257storage-only format. This means that it is a dense encoding (in memory)
11258but does not support computation in the format.
11259
11260This means that code must first load the half-precision floating point
11261value as an i16, then convert it to float with
11262:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11263then be performed on the float value (including extending to double
11264etc). To store the value back to memory, it is first converted to float
11265if needed, then converted to i16 with
11266:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11267i16 value.
11268
11269.. _int_convert_to_fp16:
11270
11271'``llvm.convert.to.fp16``' Intrinsic
11272^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11273
11274Syntax:
11275"""""""
11276
11277::
11278
Tim Northoverfd7e4242014-07-17 10:51:23 +000011279 declare i16 @llvm.convert.to.fp16.f32(float %a)
11280 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011281
11282Overview:
11283"""""""""
11284
Tim Northoverfd7e4242014-07-17 10:51:23 +000011285The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11286conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011287
11288Arguments:
11289""""""""""
11290
11291The intrinsic function contains single argument - the value to be
11292converted.
11293
11294Semantics:
11295""""""""""
11296
Tim Northoverfd7e4242014-07-17 10:51:23 +000011297The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11298conventional floating point format to half precision floating point format. The
11299return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011300
11301Examples:
11302"""""""""
11303
11304.. code-block:: llvm
11305
Tim Northoverfd7e4242014-07-17 10:51:23 +000011306 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011307 store i16 %res, i16* @x, align 2
11308
11309.. _int_convert_from_fp16:
11310
11311'``llvm.convert.from.fp16``' Intrinsic
11312^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11313
11314Syntax:
11315"""""""
11316
11317::
11318
Tim Northoverfd7e4242014-07-17 10:51:23 +000011319 declare float @llvm.convert.from.fp16.f32(i16 %a)
11320 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011321
11322Overview:
11323"""""""""
11324
11325The '``llvm.convert.from.fp16``' intrinsic function performs a
11326conversion from half precision floating point format to single precision
11327floating point format.
11328
11329Arguments:
11330""""""""""
11331
11332The intrinsic function contains single argument - the value to be
11333converted.
11334
11335Semantics:
11336""""""""""
11337
11338The '``llvm.convert.from.fp16``' intrinsic function performs a
11339conversion from half single precision floating point format to single
11340precision floating point format. The input half-float value is
11341represented by an ``i16`` value.
11342
11343Examples:
11344"""""""""
11345
11346.. code-block:: llvm
11347
David Blaikiec7aabbb2015-03-04 22:06:14 +000011348 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011349 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011350
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011351.. _dbg_intrinsics:
11352
Sean Silvab084af42012-12-07 10:36:55 +000011353Debugger Intrinsics
11354-------------------
11355
11356The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11357prefix), are described in the `LLVM Source Level
11358Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11359document.
11360
11361Exception Handling Intrinsics
11362-----------------------------
11363
11364The LLVM exception handling intrinsics (which all start with
11365``llvm.eh.`` prefix), are described in the `LLVM Exception
11366Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11367
11368.. _int_trampoline:
11369
11370Trampoline Intrinsics
11371---------------------
11372
11373These intrinsics make it possible to excise one parameter, marked with
11374the :ref:`nest <nest>` attribute, from a function. The result is a
11375callable function pointer lacking the nest parameter - the caller does
11376not need to provide a value for it. Instead, the value to use is stored
11377in advance in a "trampoline", a block of memory usually allocated on the
11378stack, which also contains code to splice the nest value into the
11379argument list. This is used to implement the GCC nested function address
11380extension.
11381
11382For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11383then the resulting function pointer has signature ``i32 (i32, i32)*``.
11384It can be created as follows:
11385
11386.. code-block:: llvm
11387
11388 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011389 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011390 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11391 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11392 %fp = bitcast i8* %p to i32 (i32, i32)*
11393
11394The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11395``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11396
11397.. _int_it:
11398
11399'``llvm.init.trampoline``' Intrinsic
11400^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11401
11402Syntax:
11403"""""""
11404
11405::
11406
11407 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11408
11409Overview:
11410"""""""""
11411
11412This fills the memory pointed to by ``tramp`` with executable code,
11413turning it into a trampoline.
11414
11415Arguments:
11416""""""""""
11417
11418The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11419pointers. The ``tramp`` argument must point to a sufficiently large and
11420sufficiently aligned block of memory; this memory is written to by the
11421intrinsic. Note that the size and the alignment are target-specific -
11422LLVM currently provides no portable way of determining them, so a
11423front-end that generates this intrinsic needs to have some
11424target-specific knowledge. The ``func`` argument must hold a function
11425bitcast to an ``i8*``.
11426
11427Semantics:
11428""""""""""
11429
11430The block of memory pointed to by ``tramp`` is filled with target
11431dependent code, turning it into a function. Then ``tramp`` needs to be
11432passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11433be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11434function's signature is the same as that of ``func`` with any arguments
11435marked with the ``nest`` attribute removed. At most one such ``nest``
11436argument is allowed, and it must be of pointer type. Calling the new
11437function is equivalent to calling ``func`` with the same argument list,
11438but with ``nval`` used for the missing ``nest`` argument. If, after
11439calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11440modified, then the effect of any later call to the returned function
11441pointer is undefined.
11442
11443.. _int_at:
11444
11445'``llvm.adjust.trampoline``' Intrinsic
11446^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11447
11448Syntax:
11449"""""""
11450
11451::
11452
11453 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11454
11455Overview:
11456"""""""""
11457
11458This performs any required machine-specific adjustment to the address of
11459a trampoline (passed as ``tramp``).
11460
11461Arguments:
11462""""""""""
11463
11464``tramp`` must point to a block of memory which already has trampoline
11465code filled in by a previous call to
11466:ref:`llvm.init.trampoline <int_it>`.
11467
11468Semantics:
11469""""""""""
11470
11471On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011472different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011473intrinsic returns the executable address corresponding to ``tramp``
11474after performing the required machine specific adjustments. The pointer
11475returned can then be :ref:`bitcast and executed <int_trampoline>`.
11476
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011477.. _int_mload_mstore:
11478
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011479Masked Vector Load and Store Intrinsics
11480---------------------------------------
11481
11482LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11483
11484.. _int_mload:
11485
11486'``llvm.masked.load.*``' Intrinsics
11487^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11488
11489Syntax:
11490"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011491This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011492
11493::
11494
Adam Nemet7aab6482016-04-14 08:47:17 +000011495 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11496 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011497 ;; The data is a vector of pointers to double
Adam Nemet7aab6482016-04-14 08:47:17 +000011498 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011499 ;; The data is a vector of function pointers
Adam Nemet7aab6482016-04-14 08:47:17 +000011500 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011501
11502Overview:
11503"""""""""
11504
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011505Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011506
11507
11508Arguments:
11509""""""""""
11510
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011511The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011512
11513
11514Semantics:
11515""""""""""
11516
11517The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11518The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11519
11520
11521::
11522
Adam Nemet7aab6482016-04-14 08:47:17 +000011523 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011524
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011525 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011526 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011527 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011528
11529.. _int_mstore:
11530
11531'``llvm.masked.store.*``' Intrinsics
11532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11533
11534Syntax:
11535"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011536This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011537
11538::
11539
Adam Nemet7aab6482016-04-14 08:47:17 +000011540 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11541 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011542 ;; The data is a vector of pointers to double
Adam Nemet7aab6482016-04-14 08:47:17 +000011543 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011544 ;; The data is a vector of function pointers
Adam Nemet7aab6482016-04-14 08:47:17 +000011545 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011546
11547Overview:
11548"""""""""
11549
11550Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11551
11552Arguments:
11553""""""""""
11554
11555The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11556
11557
11558Semantics:
11559""""""""""
11560
11561The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11562The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11563
11564::
11565
Adam Nemet7aab6482016-04-14 08:47:17 +000011566 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011567
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011568 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011569 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011570 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11571 store <16 x float> %res, <16 x float>* %ptr, align 4
11572
11573
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011574Masked Vector Gather and Scatter Intrinsics
11575-------------------------------------------
11576
11577LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11578
11579.. _int_mgather:
11580
11581'``llvm.masked.gather.*``' Intrinsics
11582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11583
11584Syntax:
11585"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011586This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011587
11588::
11589
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011590 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11591 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11592 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011593
11594Overview:
11595"""""""""
11596
11597Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11598
11599
11600Arguments:
11601""""""""""
11602
11603The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11604
11605
11606Semantics:
11607""""""""""
11608
11609The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11610The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11611
11612
11613::
11614
11615 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11616
11617 ;; The gather with all-true mask is equivalent to the following instruction sequence
11618 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11619 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11620 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11621 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11622
11623 %val0 = load double, double* %ptr0, align 8
11624 %val1 = load double, double* %ptr1, align 8
11625 %val2 = load double, double* %ptr2, align 8
11626 %val3 = load double, double* %ptr3, align 8
11627
11628 %vec0 = insertelement <4 x double>undef, %val0, 0
11629 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11630 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11631 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11632
11633.. _int_mscatter:
11634
11635'``llvm.masked.scatter.*``' Intrinsics
11636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11637
11638Syntax:
11639"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011640This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011641
11642::
11643
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011644 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11645 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11646 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011647
11648Overview:
11649"""""""""
11650
11651Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11652
11653Arguments:
11654""""""""""
11655
11656The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11657
11658
11659Semantics:
11660""""""""""
11661
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011662The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011663
11664::
11665
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011666 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011667 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11668
11669 ;; It is equivalent to a list of scalar stores
11670 %val0 = extractelement <8 x i32> %value, i32 0
11671 %val1 = extractelement <8 x i32> %value, i32 1
11672 ..
11673 %val7 = extractelement <8 x i32> %value, i32 7
11674 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11675 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11676 ..
11677 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11678 ;; Note: the order of the following stores is important when they overlap:
11679 store i32 %val0, i32* %ptr0, align 4
11680 store i32 %val1, i32* %ptr1, align 4
11681 ..
11682 store i32 %val7, i32* %ptr7, align 4
11683
11684
Sean Silvab084af42012-12-07 10:36:55 +000011685Memory Use Markers
11686------------------
11687
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011688This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011689memory objects and ranges where variables are immutable.
11690
Reid Klecknera534a382013-12-19 02:14:12 +000011691.. _int_lifestart:
11692
Sean Silvab084af42012-12-07 10:36:55 +000011693'``llvm.lifetime.start``' Intrinsic
11694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11695
11696Syntax:
11697"""""""
11698
11699::
11700
11701 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11702
11703Overview:
11704"""""""""
11705
11706The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11707object's lifetime.
11708
11709Arguments:
11710""""""""""
11711
11712The first argument is a constant integer representing the size of the
11713object, or -1 if it is variable sized. The second argument is a pointer
11714to the object.
11715
11716Semantics:
11717""""""""""
11718
11719This intrinsic indicates that before this point in the code, the value
11720of the memory pointed to by ``ptr`` is dead. This means that it is known
11721to never be used and has an undefined value. A load from the pointer
11722that precedes this intrinsic can be replaced with ``'undef'``.
11723
Reid Klecknera534a382013-12-19 02:14:12 +000011724.. _int_lifeend:
11725
Sean Silvab084af42012-12-07 10:36:55 +000011726'``llvm.lifetime.end``' Intrinsic
11727^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11728
11729Syntax:
11730"""""""
11731
11732::
11733
11734 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11735
11736Overview:
11737"""""""""
11738
11739The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11740object's lifetime.
11741
11742Arguments:
11743""""""""""
11744
11745The first argument is a constant integer representing the size of the
11746object, or -1 if it is variable sized. The second argument is a pointer
11747to the object.
11748
11749Semantics:
11750""""""""""
11751
11752This intrinsic indicates that after this point in the code, the value of
11753the memory pointed to by ``ptr`` is dead. This means that it is known to
11754never be used and has an undefined value. Any stores into the memory
11755object following this intrinsic may be removed as dead.
11756
11757'``llvm.invariant.start``' Intrinsic
11758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11759
11760Syntax:
11761"""""""
11762
11763::
11764
11765 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11766
11767Overview:
11768"""""""""
11769
11770The '``llvm.invariant.start``' intrinsic specifies that the contents of
11771a memory object will not change.
11772
11773Arguments:
11774""""""""""
11775
11776The first argument is a constant integer representing the size of the
11777object, or -1 if it is variable sized. The second argument is a pointer
11778to the object.
11779
11780Semantics:
11781""""""""""
11782
11783This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11784the return value, the referenced memory location is constant and
11785unchanging.
11786
11787'``llvm.invariant.end``' Intrinsic
11788^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11789
11790Syntax:
11791"""""""
11792
11793::
11794
11795 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11796
11797Overview:
11798"""""""""
11799
11800The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11801memory object are mutable.
11802
11803Arguments:
11804""""""""""
11805
11806The first argument is the matching ``llvm.invariant.start`` intrinsic.
11807The second argument is a constant integer representing the size of the
11808object, or -1 if it is variable sized and the third argument is a
11809pointer to the object.
11810
11811Semantics:
11812""""""""""
11813
11814This intrinsic indicates that the memory is mutable again.
11815
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011816'``llvm.invariant.group.barrier``' Intrinsic
11817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11818
11819Syntax:
11820"""""""
11821
11822::
11823
11824 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11825
11826Overview:
11827"""""""""
11828
11829The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11830established by invariant.group metadata no longer holds, to obtain a new pointer
11831value that does not carry the invariant information.
11832
11833
11834Arguments:
11835""""""""""
11836
11837The ``llvm.invariant.group.barrier`` takes only one argument, which is
11838the pointer to the memory for which the ``invariant.group`` no longer holds.
11839
11840Semantics:
11841""""""""""
11842
11843Returns another pointer that aliases its argument but which is considered different
11844for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11845
Sean Silvab084af42012-12-07 10:36:55 +000011846General Intrinsics
11847------------------
11848
11849This class of intrinsics is designed to be generic and has no specific
11850purpose.
11851
11852'``llvm.var.annotation``' Intrinsic
11853^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11854
11855Syntax:
11856"""""""
11857
11858::
11859
11860 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11861
11862Overview:
11863"""""""""
11864
11865The '``llvm.var.annotation``' intrinsic.
11866
11867Arguments:
11868""""""""""
11869
11870The first argument is a pointer to a value, the second is a pointer to a
11871global string, the third is a pointer to a global string which is the
11872source file name, and the last argument is the line number.
11873
11874Semantics:
11875""""""""""
11876
11877This intrinsic allows annotation of local variables with arbitrary
11878strings. This can be useful for special purpose optimizations that want
11879to look for these annotations. These have no other defined use; they are
11880ignored by code generation and optimization.
11881
Michael Gottesman88d18832013-03-26 00:34:27 +000011882'``llvm.ptr.annotation.*``' Intrinsic
11883^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11884
11885Syntax:
11886"""""""
11887
11888This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11889pointer to an integer of any width. *NOTE* you must specify an address space for
11890the pointer. The identifier for the default address space is the integer
11891'``0``'.
11892
11893::
11894
11895 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11896 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11897 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11898 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11899 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11900
11901Overview:
11902"""""""""
11903
11904The '``llvm.ptr.annotation``' intrinsic.
11905
11906Arguments:
11907""""""""""
11908
11909The first argument is a pointer to an integer value of arbitrary bitwidth
11910(result of some expression), the second is a pointer to a global string, the
11911third is a pointer to a global string which is the source file name, and the
11912last argument is the line number. It returns the value of the first argument.
11913
11914Semantics:
11915""""""""""
11916
11917This intrinsic allows annotation of a pointer to an integer with arbitrary
11918strings. This can be useful for special purpose optimizations that want to look
11919for these annotations. These have no other defined use; they are ignored by code
11920generation and optimization.
11921
Sean Silvab084af42012-12-07 10:36:55 +000011922'``llvm.annotation.*``' Intrinsic
11923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11924
11925Syntax:
11926"""""""
11927
11928This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11929any integer bit width.
11930
11931::
11932
11933 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11934 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11935 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11936 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11937 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11938
11939Overview:
11940"""""""""
11941
11942The '``llvm.annotation``' intrinsic.
11943
11944Arguments:
11945""""""""""
11946
11947The first argument is an integer value (result of some expression), the
11948second is a pointer to a global string, the third is a pointer to a
11949global string which is the source file name, and the last argument is
11950the line number. It returns the value of the first argument.
11951
11952Semantics:
11953""""""""""
11954
11955This intrinsic allows annotations to be put on arbitrary expressions
11956with arbitrary strings. This can be useful for special purpose
11957optimizations that want to look for these annotations. These have no
11958other defined use; they are ignored by code generation and optimization.
11959
11960'``llvm.trap``' Intrinsic
11961^^^^^^^^^^^^^^^^^^^^^^^^^
11962
11963Syntax:
11964"""""""
11965
11966::
11967
11968 declare void @llvm.trap() noreturn nounwind
11969
11970Overview:
11971"""""""""
11972
11973The '``llvm.trap``' intrinsic.
11974
11975Arguments:
11976""""""""""
11977
11978None.
11979
11980Semantics:
11981""""""""""
11982
11983This intrinsic is lowered to the target dependent trap instruction. If
11984the target does not have a trap instruction, this intrinsic will be
11985lowered to a call of the ``abort()`` function.
11986
11987'``llvm.debugtrap``' Intrinsic
11988^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11989
11990Syntax:
11991"""""""
11992
11993::
11994
11995 declare void @llvm.debugtrap() nounwind
11996
11997Overview:
11998"""""""""
11999
12000The '``llvm.debugtrap``' intrinsic.
12001
12002Arguments:
12003""""""""""
12004
12005None.
12006
12007Semantics:
12008""""""""""
12009
12010This intrinsic is lowered to code which is intended to cause an
12011execution trap with the intention of requesting the attention of a
12012debugger.
12013
12014'``llvm.stackprotector``' Intrinsic
12015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12016
12017Syntax:
12018"""""""
12019
12020::
12021
12022 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12023
12024Overview:
12025"""""""""
12026
12027The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12028onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12029is placed on the stack before local variables.
12030
12031Arguments:
12032""""""""""
12033
12034The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12035The first argument is the value loaded from the stack guard
12036``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12037enough space to hold the value of the guard.
12038
12039Semantics:
12040""""""""""
12041
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012042This intrinsic causes the prologue/epilogue inserter to force the position of
12043the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12044to ensure that if a local variable on the stack is overwritten, it will destroy
12045the value of the guard. When the function exits, the guard on the stack is
12046checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12047different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12048calling the ``__stack_chk_fail()`` function.
12049
Tim Shene885d5e2016-04-19 19:40:37 +000012050'``llvm.stackguard``' Intrinsic
12051^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12052
12053Syntax:
12054"""""""
12055
12056::
12057
12058 declare i8* @llvm.stackguard()
12059
12060Overview:
12061"""""""""
12062
12063The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12064
12065It should not be generated by frontends, since it is only for internal usage.
12066The reason why we create this intrinsic is that we still support IR form Stack
12067Protector in FastISel.
12068
12069Arguments:
12070""""""""""
12071
12072None.
12073
12074Semantics:
12075""""""""""
12076
12077On some platforms, the value returned by this intrinsic remains unchanged
12078between loads in the same thread. On other platforms, it returns the same
12079global variable value, if any, e.g. ``@__stack_chk_guard``.
12080
12081Currently some platforms have IR-level customized stack guard loading (e.g.
12082X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12083in the future.
12084
Sean Silvab084af42012-12-07 10:36:55 +000012085'``llvm.objectsize``' Intrinsic
12086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12087
12088Syntax:
12089"""""""
12090
12091::
12092
12093 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12094 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12095
12096Overview:
12097"""""""""
12098
12099The ``llvm.objectsize`` intrinsic is designed to provide information to
12100the optimizers to determine at compile time whether a) an operation
12101(like memcpy) will overflow a buffer that corresponds to an object, or
12102b) that a runtime check for overflow isn't necessary. An object in this
12103context means an allocation of a specific class, structure, array, or
12104other object.
12105
12106Arguments:
12107""""""""""
12108
12109The ``llvm.objectsize`` intrinsic takes two arguments. The first
12110argument is a pointer to or into the ``object``. The second argument is
12111a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12112or -1 (if false) when the object size is unknown. The second argument
12113only accepts constants.
12114
12115Semantics:
12116""""""""""
12117
12118The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12119the size of the object concerned. If the size cannot be determined at
12120compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12121on the ``min`` argument).
12122
12123'``llvm.expect``' Intrinsic
12124^^^^^^^^^^^^^^^^^^^^^^^^^^^
12125
12126Syntax:
12127"""""""
12128
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012129This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12130integer bit width.
12131
Sean Silvab084af42012-12-07 10:36:55 +000012132::
12133
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012134 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012135 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12136 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12137
12138Overview:
12139"""""""""
12140
12141The ``llvm.expect`` intrinsic provides information about expected (the
12142most probable) value of ``val``, which can be used by optimizers.
12143
12144Arguments:
12145""""""""""
12146
12147The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12148a value. The second argument is an expected value, this needs to be a
12149constant value, variables are not allowed.
12150
12151Semantics:
12152""""""""""
12153
12154This intrinsic is lowered to the ``val``.
12155
Philip Reamese0e90832015-04-26 22:23:12 +000012156.. _int_assume:
12157
Hal Finkel93046912014-07-25 21:13:35 +000012158'``llvm.assume``' Intrinsic
12159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12160
12161Syntax:
12162"""""""
12163
12164::
12165
12166 declare void @llvm.assume(i1 %cond)
12167
12168Overview:
12169"""""""""
12170
12171The ``llvm.assume`` allows the optimizer to assume that the provided
12172condition is true. This information can then be used in simplifying other parts
12173of the code.
12174
12175Arguments:
12176""""""""""
12177
12178The condition which the optimizer may assume is always true.
12179
12180Semantics:
12181""""""""""
12182
12183The intrinsic allows the optimizer to assume that the provided condition is
12184always true whenever the control flow reaches the intrinsic call. No code is
12185generated for this intrinsic, and instructions that contribute only to the
12186provided condition are not used for code generation. If the condition is
12187violated during execution, the behavior is undefined.
12188
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012189Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012190used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12191only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012192if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012193sufficient overall improvement in code quality. For this reason,
12194``llvm.assume`` should not be used to document basic mathematical invariants
12195that the optimizer can otherwise deduce or facts that are of little use to the
12196optimizer.
12197
Peter Collingbournee6909c82015-02-20 20:30:47 +000012198.. _bitset.test:
12199
12200'``llvm.bitset.test``' Intrinsic
12201^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12202
12203Syntax:
12204"""""""
12205
12206::
12207
12208 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12209
12210
12211Arguments:
12212""""""""""
12213
12214The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012215metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012216
12217Overview:
12218"""""""""
12219
12220The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12221member of the given bitset.
12222
Sean Silvab084af42012-12-07 10:36:55 +000012223'``llvm.donothing``' Intrinsic
12224^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12225
12226Syntax:
12227"""""""
12228
12229::
12230
12231 declare void @llvm.donothing() nounwind readnone
12232
12233Overview:
12234"""""""""
12235
Juergen Ributzkac9161192014-10-23 22:36:13 +000012236The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012237three intrinsics (besides ``llvm.experimental.patchpoint`` and
12238``llvm.experimental.gc.statepoint``) that can be called with an invoke
12239instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012240
12241Arguments:
12242""""""""""
12243
12244None.
12245
12246Semantics:
12247""""""""""
12248
12249This intrinsic does nothing, and it's removed by optimizers and ignored
12250by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012251
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012252'``llvm.experimental.deoptimize``' Intrinsic
12253^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12254
12255Syntax:
12256"""""""
12257
12258::
12259
12260 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12261
12262Overview:
12263"""""""""
12264
12265This intrinsic, together with :ref:`deoptimization operand bundles
12266<deopt_opbundles>`, allow frontends to express transfer of control and
12267frame-local state from the currently executing (typically more specialized,
12268hence faster) version of a function into another (typically more generic, hence
12269slower) version.
12270
12271In languages with a fully integrated managed runtime like Java and JavaScript
12272this intrinsic can be used to implement "uncommon trap" or "side exit" like
12273functionality. In unmanaged languages like C and C++, this intrinsic can be
12274used to represent the slow paths of specialized functions.
12275
12276
12277Arguments:
12278""""""""""
12279
12280The intrinsic takes an arbitrary number of arguments, whose meaning is
12281decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12282
12283Semantics:
12284""""""""""
12285
12286The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12287deoptimization continuation (denoted using a :ref:`deoptimization
12288operand bundle <deopt_opbundles>`) and returns the value returned by
12289the deoptimization continuation. Defining the semantic properties of
12290the continuation itself is out of scope of the language reference --
12291as far as LLVM is concerned, the deoptimization continuation can
12292invoke arbitrary side effects, including reading from and writing to
12293the entire heap.
12294
12295Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12296continue execution to the end of the physical frame containing them, so all
12297calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12298
12299 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12300 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12301 - The ``ret`` instruction must return the value produced by the
12302 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12303
12304Note that the above restrictions imply that the return type for a call to
12305``@llvm.experimental.deoptimize`` will match the return type of its immediate
12306caller.
12307
12308The inliner composes the ``"deopt"`` continuations of the caller into the
12309``"deopt"`` continuations present in the inlinee, and also updates calls to this
12310intrinsic to return directly from the frame of the function it inlined into.
12311
12312.. _deoptimize_lowering:
12313
12314Lowering:
12315"""""""""
12316
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012317Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12318symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12319ensure that this symbol is defined). The call arguments to
12320``@llvm.experimental.deoptimize`` are lowered as if they were formal
12321arguments of the specified types, and not as varargs.
12322
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012323
Sanjoy Das021de052016-03-31 00:18:46 +000012324'``llvm.experimental.guard``' Intrinsic
12325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12326
12327Syntax:
12328"""""""
12329
12330::
12331
12332 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12333
12334Overview:
12335"""""""""
12336
12337This intrinsic, together with :ref:`deoptimization operand bundles
12338<deopt_opbundles>`, allows frontends to express guards or checks on
12339optimistic assumptions made during compilation. The semantics of
12340``@llvm.experimental.guard`` is defined in terms of
12341``@llvm.experimental.deoptimize`` -- its body is defined to be
12342equivalent to:
12343
12344.. code-block:: llvm
12345
12346 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12347 %realPred = and i1 %pred, undef
12348 br i1 %realPred, label %continue, label %leave
12349
12350 leave:
12351 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12352 ret void
12353
12354 continue:
12355 ret void
12356 }
12357
12358In words, ``@llvm.experimental.guard`` executes the attached
12359``"deopt"`` continuation if (but **not** only if) its first argument
12360is ``false``. Since the optimizer is allowed to replace the ``undef``
12361with an arbitrary value, it can optimize guard to fail "spuriously",
12362i.e. without the original condition being false (hence the "not only
12363if"); and this allows for "check widening" type optimizations.
12364
12365``@llvm.experimental.guard`` cannot be invoked.
12366
12367
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012368'``llvm.load.relative``' Intrinsic
12369^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12370
12371Syntax:
12372"""""""
12373
12374::
12375
12376 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12377
12378Overview:
12379"""""""""
12380
12381This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12382adds ``%ptr`` to that value and returns it. The constant folder specifically
12383recognizes the form of this intrinsic and the constant initializers it may
12384load from; if a loaded constant initializer is known to have the form
12385``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12386
12387LLVM provides that the calculation of such a constant initializer will
12388not overflow at link time under the medium code model if ``x`` is an
12389``unnamed_addr`` function. However, it does not provide this guarantee for
12390a constant initializer folded into a function body. This intrinsic can be
12391used to avoid the possibility of overflows when loading from such a constant.
12392
Andrew Trick5e029ce2013-12-24 02:57:25 +000012393Stack Map Intrinsics
12394--------------------
12395
12396LLVM provides experimental intrinsics to support runtime patching
12397mechanisms commonly desired in dynamic language JITs. These intrinsics
12398are described in :doc:`StackMaps`.