blob: 2cb71bb78ce00f74192c9470bebb69a251274745 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
253``extern_weak``
254 The semantics of this linkage follow the ELF object file model: the
255 symbol is weak until linked, if not linked, the symbol becomes null
256 instead of being an undefined reference.
257``linkonce_odr``, ``weak_odr``
258 Some languages allow differing globals to be merged, such as two
259 functions with different semantics. Other languages, such as
260 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000261 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000262 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
263 global will only be merged with equivalent globals. These linkage
264 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000265``external``
266 If none of the above identifiers are used, the global is externally
267 visible, meaning that it participates in linkage and can be used to
268 resolve external symbol references.
269
Sean Silvab084af42012-12-07 10:36:55 +0000270It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000271other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000272
Sean Silvab084af42012-12-07 10:36:55 +0000273.. _callingconv:
274
275Calling Conventions
276-------------------
277
278LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
279:ref:`invokes <i_invoke>` can all have an optional calling convention
280specified for the call. The calling convention of any pair of dynamic
281caller/callee must match, or the behavior of the program is undefined.
282The following calling conventions are supported by LLVM, and more may be
283added in the future:
284
285"``ccc``" - The C calling convention
286 This calling convention (the default if no other calling convention
287 is specified) matches the target C calling conventions. This calling
288 convention supports varargs function calls and tolerates some
289 mismatch in the declared prototype and implemented declaration of
290 the function (as does normal C).
291"``fastcc``" - The fast calling convention
292 This calling convention attempts to make calls as fast as possible
293 (e.g. by passing things in registers). This calling convention
294 allows the target to use whatever tricks it wants to produce fast
295 code for the target, without having to conform to an externally
296 specified ABI (Application Binary Interface). `Tail calls can only
297 be optimized when this, the GHC or the HiPE convention is
298 used. <CodeGenerator.html#id80>`_ This calling convention does not
299 support varargs and requires the prototype of all callees to exactly
300 match the prototype of the function definition.
301"``coldcc``" - The cold calling convention
302 This calling convention attempts to make code in the caller as
303 efficient as possible under the assumption that the call is not
304 commonly executed. As such, these calls often preserve all registers
305 so that the call does not break any live ranges in the caller side.
306 This calling convention does not support varargs and requires the
307 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000308 function definition. Furthermore the inliner doesn't consider such function
309 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000310"``cc 10``" - GHC convention
311 This calling convention has been implemented specifically for use by
312 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
313 It passes everything in registers, going to extremes to achieve this
314 by disabling callee save registers. This calling convention should
315 not be used lightly but only for specific situations such as an
316 alternative to the *register pinning* performance technique often
317 used when implementing functional programming languages. At the
318 moment only X86 supports this convention and it has the following
319 limitations:
320
321 - On *X86-32* only supports up to 4 bit type parameters. No
322 floating point types are supported.
323 - On *X86-64* only supports up to 10 bit type parameters and 6
324 floating point parameters.
325
326 This calling convention supports `tail call
327 optimization <CodeGenerator.html#id80>`_ but requires both the
328 caller and callee are using it.
329"``cc 11``" - The HiPE calling convention
330 This calling convention has been implemented specifically for use by
331 the `High-Performance Erlang
332 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
333 native code compiler of the `Ericsson's Open Source Erlang/OTP
334 system <http://www.erlang.org/download.shtml>`_. It uses more
335 registers for argument passing than the ordinary C calling
336 convention and defines no callee-saved registers. The calling
337 convention properly supports `tail call
338 optimization <CodeGenerator.html#id80>`_ but requires that both the
339 caller and the callee use it. It uses a *register pinning*
340 mechanism, similar to GHC's convention, for keeping frequently
341 accessed runtime components pinned to specific hardware registers.
342 At the moment only X86 supports this convention (both 32 and 64
343 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000344"``webkit_jscc``" - WebKit's JavaScript calling convention
345 This calling convention has been implemented for `WebKit FTL JIT
346 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
347 stack right to left (as cdecl does), and returns a value in the
348 platform's customary return register.
349"``anyregcc``" - Dynamic calling convention for code patching
350 This is a special convention that supports patching an arbitrary code
351 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000352 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000353 allocated. This can currently only be used with calls to
354 llvm.experimental.patchpoint because only this intrinsic records
355 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000356"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 This calling convention attempts to make the code in the caller as
358 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000359 calling convention on how arguments and return values are passed, but it
360 uses a different set of caller/callee-saved registers. This alleviates the
361 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000362 call in the caller. If the arguments are passed in callee-saved registers,
363 then they will be preserved by the callee across the call. This doesn't
364 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000365
366 - On X86-64 the callee preserves all general purpose registers, except for
367 R11. R11 can be used as a scratch register. Floating-point registers
368 (XMMs/YMMs) are not preserved and need to be saved by the caller.
369
370 The idea behind this convention is to support calls to runtime functions
371 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000372 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000373 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000374 registers, which haven't already been saved by the caller. The
375 `PreserveMost` calling convention is very similar to the `cold` calling
376 convention in terms of caller/callee-saved registers, but they are used for
377 different types of function calls. `coldcc` is for function calls that are
378 rarely executed, whereas `preserve_mostcc` function calls are intended to be
379 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
380 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000381
382 This calling convention will be used by a future version of the ObjectiveC
383 runtime and should therefore still be considered experimental at this time.
384 Although this convention was created to optimize certain runtime calls to
385 the ObjectiveC runtime, it is not limited to this runtime and might be used
386 by other runtimes in the future too. The current implementation only
387 supports X86-64, but the intention is to support more architectures in the
388 future.
389"``preserve_allcc``" - The `PreserveAll` calling convention
390 This calling convention attempts to make the code in the caller even less
391 intrusive than the `PreserveMost` calling convention. This calling
392 convention also behaves identical to the `C` calling convention on how
393 arguments and return values are passed, but it uses a different set of
394 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000395 recovering a large register set before and after the call in the caller. If
396 the arguments are passed in callee-saved registers, then they will be
397 preserved by the callee across the call. This doesn't apply for values
398 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000399
400 - On X86-64 the callee preserves all general purpose registers, except for
401 R11. R11 can be used as a scratch register. Furthermore it also preserves
402 all floating-point registers (XMMs/YMMs).
403
404 The idea behind this convention is to support calls to runtime functions
405 that don't need to call out to any other functions.
406
407 This calling convention, like the `PreserveMost` calling convention, will be
408 used by a future version of the ObjectiveC runtime and should be considered
409 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000410"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000411 Clang generates an access function to access C++-style TLS. The access
412 function generally has an entry block, an exit block and an initialization
413 block that is run at the first time. The entry and exit blocks can access
414 a few TLS IR variables, each access will be lowered to a platform-specific
415 sequence.
416
Manman Ren19c7bbe2015-12-04 17:40:13 +0000417 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000418 preserving as many registers as possible (all the registers that are
419 perserved on the fast path, composed of the entry and exit blocks).
420
421 This calling convention behaves identical to the `C` calling convention on
422 how arguments and return values are passed, but it uses a different set of
423 caller/callee-saved registers.
424
425 Given that each platform has its own lowering sequence, hence its own set
426 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000427
428 - On X86-64 the callee preserves all general purpose registers, except for
429 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000430"``swiftcc``" - This calling convention is used for Swift language.
431 - On X86-64 RCX and R8 are available for additional integer returns, and
432 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000433 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000434"``cc <n>``" - Numbered convention
435 Any calling convention may be specified by number, allowing
436 target-specific calling conventions to be used. Target specific
437 calling conventions start at 64.
438
439More calling conventions can be added/defined on an as-needed basis, to
440support Pascal conventions or any other well-known target-independent
441convention.
442
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000443.. _visibilitystyles:
444
Sean Silvab084af42012-12-07 10:36:55 +0000445Visibility Styles
446-----------------
447
448All Global Variables and Functions have one of the following visibility
449styles:
450
451"``default``" - Default style
452 On targets that use the ELF object file format, default visibility
453 means that the declaration is visible to other modules and, in
454 shared libraries, means that the declared entity may be overridden.
455 On Darwin, default visibility means that the declaration is visible
456 to other modules. Default visibility corresponds to "external
457 linkage" in the language.
458"``hidden``" - Hidden style
459 Two declarations of an object with hidden visibility refer to the
460 same object if they are in the same shared object. Usually, hidden
461 visibility indicates that the symbol will not be placed into the
462 dynamic symbol table, so no other module (executable or shared
463 library) can reference it directly.
464"``protected``" - Protected style
465 On ELF, protected visibility indicates that the symbol will be
466 placed in the dynamic symbol table, but that references within the
467 defining module will bind to the local symbol. That is, the symbol
468 cannot be overridden by another module.
469
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000470A symbol with ``internal`` or ``private`` linkage must have ``default``
471visibility.
472
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000473.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000474
Nico Rieck7157bb72014-01-14 15:22:47 +0000475DLL Storage Classes
476-------------------
477
478All Global Variables, Functions and Aliases can have one of the following
479DLL storage class:
480
481``dllimport``
482 "``dllimport``" causes the compiler to reference a function or variable via
483 a global pointer to a pointer that is set up by the DLL exporting the
484 symbol. On Microsoft Windows targets, the pointer name is formed by
485 combining ``__imp_`` and the function or variable name.
486``dllexport``
487 "``dllexport``" causes the compiler to provide a global pointer to a pointer
488 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
489 Microsoft Windows targets, the pointer name is formed by combining
490 ``__imp_`` and the function or variable name. Since this storage class
491 exists for defining a dll interface, the compiler, assembler and linker know
492 it is externally referenced and must refrain from deleting the symbol.
493
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000494.. _tls_model:
495
496Thread Local Storage Models
497---------------------------
498
499A variable may be defined as ``thread_local``, which means that it will
500not be shared by threads (each thread will have a separated copy of the
501variable). Not all targets support thread-local variables. Optionally, a
502TLS model may be specified:
503
504``localdynamic``
505 For variables that are only used within the current shared library.
506``initialexec``
507 For variables in modules that will not be loaded dynamically.
508``localexec``
509 For variables defined in the executable and only used within it.
510
511If no explicit model is given, the "general dynamic" model is used.
512
513The models correspond to the ELF TLS models; see `ELF Handling For
514Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
515more information on under which circumstances the different models may
516be used. The target may choose a different TLS model if the specified
517model is not supported, or if a better choice of model can be made.
518
Sean Silva706fba52015-08-06 22:56:24 +0000519A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000520the alias is accessed. It will not have any effect in the aliasee.
521
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000522For platforms without linker support of ELF TLS model, the -femulated-tls
523flag can be used to generate GCC compatible emulated TLS code.
524
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000525.. _namedtypes:
526
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000527Structure Types
528---------------
Sean Silvab084af42012-12-07 10:36:55 +0000529
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000530LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000531types <t_struct>`. Literal types are uniqued structurally, but identified types
532are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000533to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000534
Sean Silva706fba52015-08-06 22:56:24 +0000535An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000536
537.. code-block:: llvm
538
539 %mytype = type { %mytype*, i32 }
540
Sean Silvaa1190322015-08-06 22:56:48 +0000541Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000542literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000543
544.. _globalvars:
545
546Global Variables
547----------------
548
549Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000550instead of run-time.
551
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000552Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000553
554Global variables in other translation units can also be declared, in which
555case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000556
Bob Wilson85b24f22014-06-12 20:40:33 +0000557Either global variable definitions or declarations may have an explicit section
558to be placed in and may have an optional explicit alignment specified.
559
Michael Gottesman006039c2013-01-31 05:48:48 +0000560A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000561the contents of the variable will **never** be modified (enabling better
562optimization, allowing the global data to be placed in the read-only
563section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000564initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000565variable.
566
567LLVM explicitly allows *declarations* of global variables to be marked
568constant, even if the final definition of the global is not. This
569capability can be used to enable slightly better optimization of the
570program, but requires the language definition to guarantee that
571optimizations based on the 'constantness' are valid for the translation
572units that do not include the definition.
573
574As SSA values, global variables define pointer values that are in scope
575(i.e. they dominate) all basic blocks in the program. Global variables
576always define a pointer to their "content" type because they describe a
577region of memory, and all memory objects in LLVM are accessed through
578pointers.
579
580Global variables can be marked with ``unnamed_addr`` which indicates
581that the address is not significant, only the content. Constants marked
582like this can be merged with other constants if they have the same
583initializer. Note that a constant with significant address *can* be
584merged with a ``unnamed_addr`` constant, the result being a constant
585whose address is significant.
586
587A global variable may be declared to reside in a target-specific
588numbered address space. For targets that support them, address spaces
589may affect how optimizations are performed and/or what target
590instructions are used to access the variable. The default address space
591is zero. The address space qualifier must precede any other attributes.
592
593LLVM allows an explicit section to be specified for globals. If the
594target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000595Additionally, the global can placed in a comdat if the target has the necessary
596support.
Sean Silvab084af42012-12-07 10:36:55 +0000597
Michael Gottesmane743a302013-02-04 03:22:00 +0000598By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000599variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000600initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000601true even for variables potentially accessible from outside the
602module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000603``@llvm.used`` or dllexported variables. This assumption may be suppressed
604by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000605
Sean Silvab084af42012-12-07 10:36:55 +0000606An explicit alignment may be specified for a global, which must be a
607power of 2. If not present, or if the alignment is set to zero, the
608alignment of the global is set by the target to whatever it feels
609convenient. If an explicit alignment is specified, the global is forced
610to have exactly that alignment. Targets and optimizers are not allowed
611to over-align the global if the global has an assigned section. In this
612case, the extra alignment could be observable: for example, code could
613assume that the globals are densely packed in their section and try to
614iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000615iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000616
Nico Rieck7157bb72014-01-14 15:22:47 +0000617Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
618
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000619Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000620:ref:`Thread Local Storage Model <tls_model>`.
621
Nico Rieck7157bb72014-01-14 15:22:47 +0000622Syntax::
623
624 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000625 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000626 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000627 [, section "name"] [, comdat [($name)]]
628 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000629
Sean Silvab084af42012-12-07 10:36:55 +0000630For example, the following defines a global in a numbered address space
631with an initializer, section, and alignment:
632
633.. code-block:: llvm
634
635 @G = addrspace(5) constant float 1.0, section "foo", align 4
636
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000637The following example just declares a global variable
638
639.. code-block:: llvm
640
641 @G = external global i32
642
Sean Silvab084af42012-12-07 10:36:55 +0000643The following example defines a thread-local global with the
644``initialexec`` TLS model:
645
646.. code-block:: llvm
647
648 @G = thread_local(initialexec) global i32 0, align 4
649
650.. _functionstructure:
651
652Functions
653---------
654
655LLVM function definitions consist of the "``define``" keyword, an
656optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000657style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
658an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000659an optional ``unnamed_addr`` attribute, a return type, an optional
660:ref:`parameter attribute <paramattrs>` for the return type, a function
661name, a (possibly empty) argument list (each with optional :ref:`parameter
662attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000663an optional section, an optional alignment,
664an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000665an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000666an optional :ref:`prologue <prologuedata>`,
667an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000668an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000669an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000670
671LLVM function declarations consist of the "``declare``" keyword, an
672optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000673style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
674an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000675an optional ``unnamed_addr`` attribute, a return type, an optional
676:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000677name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000678:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
679and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000680
Bill Wendling6822ecb2013-10-27 05:09:12 +0000681A function definition contains a list of basic blocks, forming the CFG (Control
682Flow Graph) for the function. Each basic block may optionally start with a label
683(giving the basic block a symbol table entry), contains a list of instructions,
684and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
685function return). If an explicit label is not provided, a block is assigned an
686implicit numbered label, using the next value from the same counter as used for
687unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
688entry block does not have an explicit label, it will be assigned label "%0",
689then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000690
691The first basic block in a function is special in two ways: it is
692immediately executed on entrance to the function, and it is not allowed
693to have predecessor basic blocks (i.e. there can not be any branches to
694the entry block of a function). Because the block can have no
695predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
696
697LLVM allows an explicit section to be specified for functions. If the
698target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000699Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000700
701An explicit alignment may be specified for a function. If not present,
702or if the alignment is set to zero, the alignment of the function is set
703by the target to whatever it feels convenient. If an explicit alignment
704is specified, the function is forced to have at least that much
705alignment. All alignments must be a power of 2.
706
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000707If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000708be significant and two identical functions can be merged.
709
710Syntax::
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000713 [cconv] [ret attrs]
714 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000715 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000716 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000717 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000718
Sean Silva706fba52015-08-06 22:56:24 +0000719The argument list is a comma separated sequence of arguments where each
720argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000721
722Syntax::
723
724 <type> [parameter Attrs] [name]
725
726
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000727.. _langref_aliases:
728
Sean Silvab084af42012-12-07 10:36:55 +0000729Aliases
730-------
731
Rafael Espindola64c1e182014-06-03 02:41:57 +0000732Aliases, unlike function or variables, don't create any new data. They
733are just a new symbol and metadata for an existing position.
734
735Aliases have a name and an aliasee that is either a global value or a
736constant expression.
737
Nico Rieck7157bb72014-01-14 15:22:47 +0000738Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000739:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
740<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000741
742Syntax::
743
David Blaikie196582e2015-10-22 01:17:29 +0000744 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000745
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000746The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000747``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000748might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000749
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000750Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000751the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
752to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000753
Rafael Espindola64c1e182014-06-03 02:41:57 +0000754Since aliases are only a second name, some restrictions apply, of which
755some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000756
Rafael Espindola64c1e182014-06-03 02:41:57 +0000757* The expression defining the aliasee must be computable at assembly
758 time. Since it is just a name, no relocations can be used.
759
760* No alias in the expression can be weak as the possibility of the
761 intermediate alias being overridden cannot be represented in an
762 object file.
763
764* No global value in the expression can be a declaration, since that
765 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000766
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000767.. _langref_ifunc:
768
769IFuncs
770-------
771
772IFuncs, like as aliases, don't create any new data or func. They are just a new
773symbol that dynamic linker resolves at runtime by calling a resolver function.
774
775IFuncs have a name and a resolver that is a function called by dynamic linker
776that returns address of another function associated with the name.
777
778IFunc may have an optional :ref:`linkage type <linkage>` and an optional
779:ref:`visibility style <visibility>`.
780
781Syntax::
782
783 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
784
785
David Majnemerdad0a642014-06-27 18:19:56 +0000786.. _langref_comdats:
787
788Comdats
789-------
790
791Comdat IR provides access to COFF and ELF object file COMDAT functionality.
792
Sean Silvaa1190322015-08-06 22:56:48 +0000793Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000794specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000795that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000796aliasee computes to, if any.
797
798Comdats have a selection kind to provide input on how the linker should
799choose between keys in two different object files.
800
801Syntax::
802
803 $<Name> = comdat SelectionKind
804
805The selection kind must be one of the following:
806
807``any``
808 The linker may choose any COMDAT key, the choice is arbitrary.
809``exactmatch``
810 The linker may choose any COMDAT key but the sections must contain the
811 same data.
812``largest``
813 The linker will choose the section containing the largest COMDAT key.
814``noduplicates``
815 The linker requires that only section with this COMDAT key exist.
816``samesize``
817 The linker may choose any COMDAT key but the sections must contain the
818 same amount of data.
819
820Note that the Mach-O platform doesn't support COMDATs and ELF only supports
821``any`` as a selection kind.
822
823Here is an example of a COMDAT group where a function will only be selected if
824the COMDAT key's section is the largest:
825
826.. code-block:: llvm
827
828 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000829 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000830
Rafael Espindola83a362c2015-01-06 22:55:16 +0000831 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000832 ret void
833 }
834
Rafael Espindola83a362c2015-01-06 22:55:16 +0000835As a syntactic sugar the ``$name`` can be omitted if the name is the same as
836the global name:
837
838.. code-block:: llvm
839
840 $foo = comdat any
841 @foo = global i32 2, comdat
842
843
David Majnemerdad0a642014-06-27 18:19:56 +0000844In a COFF object file, this will create a COMDAT section with selection kind
845``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
846and another COMDAT section with selection kind
847``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000848section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000849
850There are some restrictions on the properties of the global object.
851It, or an alias to it, must have the same name as the COMDAT group when
852targeting COFF.
853The contents and size of this object may be used during link-time to determine
854which COMDAT groups get selected depending on the selection kind.
855Because the name of the object must match the name of the COMDAT group, the
856linkage of the global object must not be local; local symbols can get renamed
857if a collision occurs in the symbol table.
858
859The combined use of COMDATS and section attributes may yield surprising results.
860For example:
861
862.. code-block:: llvm
863
864 $foo = comdat any
865 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 @g1 = global i32 42, section "sec", comdat($foo)
867 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000868
869From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000870with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000871COMDAT groups and COMDATs, at the object file level, are represented by
872sections.
873
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000874Note that certain IR constructs like global variables and functions may
875create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000876COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000877in individual sections (e.g. when `-data-sections` or `-function-sections`
878is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000879
Sean Silvab084af42012-12-07 10:36:55 +0000880.. _namedmetadatastructure:
881
882Named Metadata
883--------------
884
885Named metadata is a collection of metadata. :ref:`Metadata
886nodes <metadata>` (but not metadata strings) are the only valid
887operands for a named metadata.
888
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000889#. Named metadata are represented as a string of characters with the
890 metadata prefix. The rules for metadata names are the same as for
891 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
892 are still valid, which allows any character to be part of a name.
893
Sean Silvab084af42012-12-07 10:36:55 +0000894Syntax::
895
896 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000897 !0 = !{!"zero"}
898 !1 = !{!"one"}
899 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000900 ; A named metadata.
901 !name = !{!0, !1, !2}
902
903.. _paramattrs:
904
905Parameter Attributes
906--------------------
907
908The return type and each parameter of a function type may have a set of
909*parameter attributes* associated with them. Parameter attributes are
910used to communicate additional information about the result or
911parameters of a function. Parameter attributes are considered to be part
912of the function, not of the function type, so functions with different
913parameter attributes can have the same function type.
914
915Parameter attributes are simple keywords that follow the type specified.
916If multiple parameter attributes are needed, they are space separated.
917For example:
918
919.. code-block:: llvm
920
921 declare i32 @printf(i8* noalias nocapture, ...)
922 declare i32 @atoi(i8 zeroext)
923 declare signext i8 @returns_signed_char()
924
925Note that any attributes for the function result (``nounwind``,
926``readonly``) come immediately after the argument list.
927
928Currently, only the following parameter attributes are defined:
929
930``zeroext``
931 This indicates to the code generator that the parameter or return
932 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000933 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000934``signext``
935 This indicates to the code generator that the parameter or return
936 value should be sign-extended to the extent required by the target's
937 ABI (which is usually 32-bits) by the caller (for a parameter) or
938 the callee (for a return value).
939``inreg``
940 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000941 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000942 a function call or return (usually, by putting it in a register as
943 opposed to memory, though some targets use it to distinguish between
944 two different kinds of registers). Use of this attribute is
945 target-specific.
946``byval``
947 This indicates that the pointer parameter should really be passed by
948 value to the function. The attribute implies that a hidden copy of
949 the pointee is made between the caller and the callee, so the callee
950 is unable to modify the value in the caller. This attribute is only
951 valid on LLVM pointer arguments. It is generally used to pass
952 structs and arrays by value, but is also valid on pointers to
953 scalars. The copy is considered to belong to the caller not the
954 callee (for example, ``readonly`` functions should not write to
955 ``byval`` parameters). This is not a valid attribute for return
956 values.
957
958 The byval attribute also supports specifying an alignment with the
959 align attribute. It indicates the alignment of the stack slot to
960 form and the known alignment of the pointer specified to the call
961 site. If the alignment is not specified, then the code generator
962 makes a target-specific assumption.
963
Reid Klecknera534a382013-12-19 02:14:12 +0000964.. _attr_inalloca:
965
966``inalloca``
967
Reid Kleckner60d3a832014-01-16 22:59:24 +0000968 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000969 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000970 be a pointer to stack memory produced by an ``alloca`` instruction.
971 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000972 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000973 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000974
Reid Kleckner436c42e2014-01-17 23:58:17 +0000975 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000976 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000977 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000978 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000979 ``inalloca`` attribute also disables LLVM's implicit lowering of
980 large aggregate return values, which means that frontend authors
981 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000982
Reid Kleckner60d3a832014-01-16 22:59:24 +0000983 When the call site is reached, the argument allocation must have
984 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000985 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000986 space after an argument allocation and before its call site, but it
987 must be cleared off with :ref:`llvm.stackrestore
988 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000989
990 See :doc:`InAlloca` for more information on how to use this
991 attribute.
992
Sean Silvab084af42012-12-07 10:36:55 +0000993``sret``
994 This indicates that the pointer parameter specifies the address of a
995 structure that is the return value of the function in the source
996 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000997 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000998 not to trap and to be properly aligned. This may only be applied to
999 the first parameter. This is not a valid attribute for return
1000 values.
Sean Silva1703e702014-04-08 21:06:22 +00001001
Hal Finkelccc70902014-07-22 16:58:55 +00001002``align <n>``
1003 This indicates that the pointer value may be assumed by the optimizer to
1004 have the specified alignment.
1005
1006 Note that this attribute has additional semantics when combined with the
1007 ``byval`` attribute.
1008
Sean Silva1703e702014-04-08 21:06:22 +00001009.. _noalias:
1010
Sean Silvab084af42012-12-07 10:36:55 +00001011``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001012 This indicates that objects accessed via pointer values
1013 :ref:`based <pointeraliasing>` on the argument or return value are not also
1014 accessed, during the execution of the function, via pointer values not
1015 *based* on the argument or return value. The attribute on a return value
1016 also has additional semantics described below. The caller shares the
1017 responsibility with the callee for ensuring that these requirements are met.
1018 For further details, please see the discussion of the NoAlias response in
1019 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001020
1021 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001022 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001023
1024 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001025 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1026 attribute on return values are stronger than the semantics of the attribute
1027 when used on function arguments. On function return values, the ``noalias``
1028 attribute indicates that the function acts like a system memory allocation
1029 function, returning a pointer to allocated storage disjoint from the
1030 storage for any other object accessible to the caller.
1031
Sean Silvab084af42012-12-07 10:36:55 +00001032``nocapture``
1033 This indicates that the callee does not make any copies of the
1034 pointer that outlive the callee itself. This is not a valid
1035 attribute for return values.
1036
1037.. _nest:
1038
1039``nest``
1040 This indicates that the pointer parameter can be excised using the
1041 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001042 attribute for return values and can only be applied to one parameter.
1043
1044``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001045 This indicates that the function always returns the argument as its return
1046 value. This is an optimization hint to the code generator when generating
1047 the caller, allowing tail call optimization and omission of register saves
1048 and restores in some cases; it is not checked or enforced when generating
1049 the callee. The parameter and the function return type must be valid
1050 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1051 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001052
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001053``nonnull``
1054 This indicates that the parameter or return pointer is not null. This
1055 attribute may only be applied to pointer typed parameters. This is not
1056 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001058 is non-null.
1059
Hal Finkelb0407ba2014-07-18 15:51:28 +00001060``dereferenceable(<n>)``
1061 This indicates that the parameter or return pointer is dereferenceable. This
1062 attribute may only be applied to pointer typed parameters. A pointer that
1063 is dereferenceable can be loaded from speculatively without a risk of
1064 trapping. The number of bytes known to be dereferenceable must be provided
1065 in parentheses. It is legal for the number of bytes to be less than the
1066 size of the pointee type. The ``nonnull`` attribute does not imply
1067 dereferenceability (consider a pointer to one element past the end of an
1068 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1069 ``addrspace(0)`` (which is the default address space).
1070
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001071``dereferenceable_or_null(<n>)``
1072 This indicates that the parameter or return value isn't both
1073 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001074 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001075 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1076 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1077 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1078 and in other address spaces ``dereferenceable_or_null(<n>)``
1079 implies that a pointer is at least one of ``dereferenceable(<n>)``
1080 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001081 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001082 pointer typed parameters.
1083
Manman Renf46262e2016-03-29 17:37:21 +00001084``swiftself``
1085 This indicates that the parameter is the self/context parameter. This is not
1086 a valid attribute for return values and can only be applied to one
1087 parameter.
1088
Manman Ren9bfd0d02016-04-01 21:41:15 +00001089``swifterror``
1090 This attribute is motivated to model and optimize Swift error handling. It
1091 can be applied to a parameter with pointer to pointer type or a
1092 pointer-sized alloca. At the call site, the actual argument that corresponds
1093 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca. A
1094 ``swifterror`` value (either the parameter or the alloca) can only be loaded
1095 and stored from, or used as a ``swifterror`` argument. This is not a valid
1096 attribute for return values and can only be applied to one parameter.
1097
1098 These constraints allow the calling convention to optimize access to
1099 ``swifterror`` variables by associating them with a specific register at
1100 call boundaries rather than placing them in memory. Since this does change
1101 the calling convention, a function which uses the ``swifterror`` attribute
1102 on a parameter is not ABI-compatible with one which does not.
1103
1104 These constraints also allow LLVM to assume that a ``swifterror`` argument
1105 does not alias any other memory visible within a function and that a
1106 ``swifterror`` alloca passed as an argument does not escape.
1107
Sean Silvab084af42012-12-07 10:36:55 +00001108.. _gc:
1109
Philip Reamesf80bbff2015-02-25 23:45:20 +00001110Garbage Collector Strategy Names
1111--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001112
Philip Reamesf80bbff2015-02-25 23:45:20 +00001113Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001114string:
1115
1116.. code-block:: llvm
1117
1118 define void @f() gc "name" { ... }
1119
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001120The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001121<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001122strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001123named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001124garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001125which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001126
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001127.. _prefixdata:
1128
1129Prefix Data
1130-----------
1131
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001132Prefix data is data associated with a function which the code
1133generator will emit immediately before the function's entrypoint.
1134The purpose of this feature is to allow frontends to associate
1135language-specific runtime metadata with specific functions and make it
1136available through the function pointer while still allowing the
1137function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001138
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001139To access the data for a given function, a program may bitcast the
1140function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001141index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001142the prefix data. For instance, take the example of a function annotated
1143with a single ``i32``,
1144
1145.. code-block:: llvm
1146
1147 define void @f() prefix i32 123 { ... }
1148
1149The prefix data can be referenced as,
1150
1151.. code-block:: llvm
1152
David Blaikie16a97eb2015-03-04 22:02:58 +00001153 %0 = bitcast void* () @f to i32*
1154 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001155 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001156
1157Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001158of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001159beginning of the prefix data is aligned. This means that if the size
1160of the prefix data is not a multiple of the alignment size, the
1161function's entrypoint will not be aligned. If alignment of the
1162function's entrypoint is desired, padding must be added to the prefix
1163data.
1164
Sean Silvaa1190322015-08-06 22:56:48 +00001165A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001166to the ``available_externally`` linkage in that the data may be used by the
1167optimizers but will not be emitted in the object file.
1168
1169.. _prologuedata:
1170
1171Prologue Data
1172-------------
1173
1174The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1175be inserted prior to the function body. This can be used for enabling
1176function hot-patching and instrumentation.
1177
1178To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001179have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001180bytes which decode to a sequence of machine instructions, valid for the
1181module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001182the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001183the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001184definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001185makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001186
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001187A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001188which encodes the ``nop`` instruction:
1189
1190.. code-block:: llvm
1191
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001192 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001193
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001194Generally prologue data can be formed by encoding a relative branch instruction
1195which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001196x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1197
1198.. code-block:: llvm
1199
1200 %0 = type <{ i8, i8, i8* }>
1201
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001203
Sean Silvaa1190322015-08-06 22:56:48 +00001204A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001205to the ``available_externally`` linkage in that the data may be used by the
1206optimizers but will not be emitted in the object file.
1207
David Majnemer7fddecc2015-06-17 20:52:32 +00001208.. _personalityfn:
1209
1210Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001211--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001212
1213The ``personality`` attribute permits functions to specify what function
1214to use for exception handling.
1215
Bill Wendling63b88192013-02-06 06:52:58 +00001216.. _attrgrp:
1217
1218Attribute Groups
1219----------------
1220
1221Attribute groups are groups of attributes that are referenced by objects within
1222the IR. They are important for keeping ``.ll`` files readable, because a lot of
1223functions will use the same set of attributes. In the degenerative case of a
1224``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1225group will capture the important command line flags used to build that file.
1226
1227An attribute group is a module-level object. To use an attribute group, an
1228object references the attribute group's ID (e.g. ``#37``). An object may refer
1229to more than one attribute group. In that situation, the attributes from the
1230different groups are merged.
1231
1232Here is an example of attribute groups for a function that should always be
1233inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1234
1235.. code-block:: llvm
1236
1237 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001238 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001239
1240 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001241 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001242
1243 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1244 define void @f() #0 #1 { ... }
1245
Sean Silvab084af42012-12-07 10:36:55 +00001246.. _fnattrs:
1247
1248Function Attributes
1249-------------------
1250
1251Function attributes are set to communicate additional information about
1252a function. Function attributes are considered to be part of the
1253function, not of the function type, so functions with different function
1254attributes can have the same function type.
1255
1256Function attributes are simple keywords that follow the type specified.
1257If multiple attributes are needed, they are space separated. For
1258example:
1259
1260.. code-block:: llvm
1261
1262 define void @f() noinline { ... }
1263 define void @f() alwaysinline { ... }
1264 define void @f() alwaysinline optsize { ... }
1265 define void @f() optsize { ... }
1266
Sean Silvab084af42012-12-07 10:36:55 +00001267``alignstack(<n>)``
1268 This attribute indicates that, when emitting the prologue and
1269 epilogue, the backend should forcibly align the stack pointer.
1270 Specify the desired alignment, which must be a power of two, in
1271 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001272``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1273 This attribute indicates that the annotated function will always return at
1274 least a given number of bytes (or null). Its arguments are zero-indexed
1275 parameter numbers; if one argument is provided, then it's assumed that at
1276 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1277 returned pointer. If two are provided, then it's assumed that
1278 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1279 available. The referenced parameters must be integer types. No assumptions
1280 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001281``alwaysinline``
1282 This attribute indicates that the inliner should attempt to inline
1283 this function into callers whenever possible, ignoring any active
1284 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001285``builtin``
1286 This indicates that the callee function at a call site should be
1287 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001288 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001289 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001290 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001291``cold``
1292 This attribute indicates that this function is rarely called. When
1293 computing edge weights, basic blocks post-dominated by a cold
1294 function call are also considered to be cold; and, thus, given low
1295 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001296``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001297 In some parallel execution models, there exist operations that cannot be
1298 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001299 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001300
Justin Lebar58535b12016-02-17 17:46:41 +00001301 The ``convergent`` attribute may appear on functions or call/invoke
1302 instructions. When it appears on a function, it indicates that calls to
1303 this function should not be made control-dependent on additional values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001304 For example, the intrinsic ``llvm.cuda.syncthreads`` is ``convergent``, so
1305 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001306 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001307
Justin Lebar58535b12016-02-17 17:46:41 +00001308 When it appears on a call/invoke, the ``convergent`` attribute indicates
1309 that we should treat the call as though we're calling a convergent
1310 function. This is particularly useful on indirect calls; without this we
1311 may treat such calls as though the target is non-convergent.
1312
1313 The optimizer may remove the ``convergent`` attribute on functions when it
1314 can prove that the function does not execute any convergent operations.
1315 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1316 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001317``inaccessiblememonly``
1318 This attribute indicates that the function may only access memory that
1319 is not accessible by the module being compiled. This is a weaker form
1320 of ``readnone``.
1321``inaccessiblemem_or_argmemonly``
1322 This attribute indicates that the function may only access memory that is
1323 either not accessible by the module being compiled, or is pointed to
1324 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001325``inlinehint``
1326 This attribute indicates that the source code contained a hint that
1327 inlining this function is desirable (such as the "inline" keyword in
1328 C/C++). It is just a hint; it imposes no requirements on the
1329 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001330``jumptable``
1331 This attribute indicates that the function should be added to a
1332 jump-instruction table at code-generation time, and that all address-taken
1333 references to this function should be replaced with a reference to the
1334 appropriate jump-instruction-table function pointer. Note that this creates
1335 a new pointer for the original function, which means that code that depends
1336 on function-pointer identity can break. So, any function annotated with
1337 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001338``minsize``
1339 This attribute suggests that optimization passes and code generator
1340 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001341 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001342 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001343``naked``
1344 This attribute disables prologue / epilogue emission for the
1345 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001346``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001347 This indicates that the callee function at a call site is not recognized as
1348 a built-in function. LLVM will retain the original call and not replace it
1349 with equivalent code based on the semantics of the built-in function, unless
1350 the call site uses the ``builtin`` attribute. This is valid at call sites
1351 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001352``noduplicate``
1353 This attribute indicates that calls to the function cannot be
1354 duplicated. A call to a ``noduplicate`` function may be moved
1355 within its parent function, but may not be duplicated within
1356 its parent function.
1357
1358 A function containing a ``noduplicate`` call may still
1359 be an inlining candidate, provided that the call is not
1360 duplicated by inlining. That implies that the function has
1361 internal linkage and only has one call site, so the original
1362 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001363``noimplicitfloat``
1364 This attributes disables implicit floating point instructions.
1365``noinline``
1366 This attribute indicates that the inliner should never inline this
1367 function in any situation. This attribute may not be used together
1368 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001369``nonlazybind``
1370 This attribute suppresses lazy symbol binding for the function. This
1371 may make calls to the function faster, at the cost of extra program
1372 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001373``noredzone``
1374 This attribute indicates that the code generator should not use a
1375 red zone, even if the target-specific ABI normally permits it.
1376``noreturn``
1377 This function attribute indicates that the function never returns
1378 normally. This produces undefined behavior at runtime if the
1379 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001380``norecurse``
1381 This function attribute indicates that the function does not call itself
1382 either directly or indirectly down any possible call path. This produces
1383 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001384``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001385 This function attribute indicates that the function never raises an
1386 exception. If the function does raise an exception, its runtime
1387 behavior is undefined. However, functions marked nounwind may still
1388 trap or generate asynchronous exceptions. Exception handling schemes
1389 that are recognized by LLVM to handle asynchronous exceptions, such
1390 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001391``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001392 This function attribute indicates that most optimization passes will skip
1393 this function, with the exception of interprocedural optimization passes.
1394 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001395 This attribute cannot be used together with the ``alwaysinline``
1396 attribute; this attribute is also incompatible
1397 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001398
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001399 This attribute requires the ``noinline`` attribute to be specified on
1400 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001401 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001402 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001403``optsize``
1404 This attribute suggests that optimization passes and code generator
1405 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001406 and otherwise do optimizations specifically to reduce code size as
1407 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001408``"patchable-function"``
1409 This attribute tells the code generator that the code
1410 generated for this function needs to follow certain conventions that
1411 make it possible for a runtime function to patch over it later.
1412 The exact effect of this attribute depends on its string value,
1413 for which there currently is one legal possiblity:
1414
1415 * ``"prologue-short-redirect"`` - This style of patchable
1416 function is intended to support patching a function prologue to
1417 redirect control away from the function in a thread safe
1418 manner. It guarantees that the first instruction of the
1419 function will be large enough to accommodate a short jump
1420 instruction, and will be sufficiently aligned to allow being
1421 fully changed via an atomic compare-and-swap instruction.
1422 While the first requirement can be satisfied by inserting large
1423 enough NOP, LLVM can and will try to re-purpose an existing
1424 instruction (i.e. one that would have to be emitted anyway) as
1425 the patchable instruction larger than a short jump.
1426
1427 ``"prologue-short-redirect"`` is currently only supported on
1428 x86-64.
1429
1430 This attribute by itself does not imply restrictions on
1431 inter-procedural optimizations. All of the semantic effects the
1432 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001433``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001434 On a function, this attribute indicates that the function computes its
1435 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001436 without dereferencing any pointer arguments or otherwise accessing
1437 any mutable state (e.g. memory, control registers, etc) visible to
1438 caller functions. It does not write through any pointer arguments
1439 (including ``byval`` arguments) and never changes any state visible
1440 to callers. This means that it cannot unwind exceptions by calling
1441 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001442
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001443 On an argument, this attribute indicates that the function does not
1444 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001445 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001446``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001447 On a function, this attribute indicates that the function does not write
1448 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001449 modify any state (e.g. memory, control registers, etc) visible to
1450 caller functions. It may dereference pointer arguments and read
1451 state that may be set in the caller. A readonly function always
1452 returns the same value (or unwinds an exception identically) when
1453 called with the same set of arguments and global state. It cannot
1454 unwind an exception by calling the ``C++`` exception throwing
1455 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001456
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001457 On an argument, this attribute indicates that the function does not write
1458 through this pointer argument, even though it may write to the memory that
1459 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001460``argmemonly``
1461 This attribute indicates that the only memory accesses inside function are
1462 loads and stores from objects pointed to by its pointer-typed arguments,
1463 with arbitrary offsets. Or in other words, all memory operations in the
1464 function can refer to memory only using pointers based on its function
1465 arguments.
1466 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1467 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001468``returns_twice``
1469 This attribute indicates that this function can return twice. The C
1470 ``setjmp`` is an example of such a function. The compiler disables
1471 some optimizations (like tail calls) in the caller of these
1472 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001473``safestack``
1474 This attribute indicates that
1475 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1476 protection is enabled for this function.
1477
1478 If a function that has a ``safestack`` attribute is inlined into a
1479 function that doesn't have a ``safestack`` attribute or which has an
1480 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1481 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001482``sanitize_address``
1483 This attribute indicates that AddressSanitizer checks
1484 (dynamic address safety analysis) are enabled for this function.
1485``sanitize_memory``
1486 This attribute indicates that MemorySanitizer checks (dynamic detection
1487 of accesses to uninitialized memory) are enabled for this function.
1488``sanitize_thread``
1489 This attribute indicates that ThreadSanitizer checks
1490 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001491``ssp``
1492 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001493 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001494 placed on the stack before the local variables that's checked upon
1495 return from the function to see if it has been overwritten. A
1496 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001497 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001498
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001499 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1500 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1501 - Calls to alloca() with variable sizes or constant sizes greater than
1502 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001503
Josh Magee24c7f062014-02-01 01:36:16 +00001504 Variables that are identified as requiring a protector will be arranged
1505 on the stack such that they are adjacent to the stack protector guard.
1506
Sean Silvab084af42012-12-07 10:36:55 +00001507 If a function that has an ``ssp`` attribute is inlined into a
1508 function that doesn't have an ``ssp`` attribute, then the resulting
1509 function will have an ``ssp`` attribute.
1510``sspreq``
1511 This attribute indicates that the function should *always* emit a
1512 stack smashing protector. This overrides the ``ssp`` function
1513 attribute.
1514
Josh Magee24c7f062014-02-01 01:36:16 +00001515 Variables that are identified as requiring a protector will be arranged
1516 on the stack such that they are adjacent to the stack protector guard.
1517 The specific layout rules are:
1518
1519 #. Large arrays and structures containing large arrays
1520 (``>= ssp-buffer-size``) are closest to the stack protector.
1521 #. Small arrays and structures containing small arrays
1522 (``< ssp-buffer-size``) are 2nd closest to the protector.
1523 #. Variables that have had their address taken are 3rd closest to the
1524 protector.
1525
Sean Silvab084af42012-12-07 10:36:55 +00001526 If a function that has an ``sspreq`` attribute is inlined into a
1527 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001528 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1529 an ``sspreq`` attribute.
1530``sspstrong``
1531 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001532 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001533 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001534 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001535
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001536 - Arrays of any size and type
1537 - Aggregates containing an array of any size and type.
1538 - Calls to alloca().
1539 - Local variables that have had their address taken.
1540
Josh Magee24c7f062014-02-01 01:36:16 +00001541 Variables that are identified as requiring a protector will be arranged
1542 on the stack such that they are adjacent to the stack protector guard.
1543 The specific layout rules are:
1544
1545 #. Large arrays and structures containing large arrays
1546 (``>= ssp-buffer-size``) are closest to the stack protector.
1547 #. Small arrays and structures containing small arrays
1548 (``< ssp-buffer-size``) are 2nd closest to the protector.
1549 #. Variables that have had their address taken are 3rd closest to the
1550 protector.
1551
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001552 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001553
1554 If a function that has an ``sspstrong`` attribute is inlined into a
1555 function that doesn't have an ``sspstrong`` attribute, then the
1556 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001557``"thunk"``
1558 This attribute indicates that the function will delegate to some other
1559 function with a tail call. The prototype of a thunk should not be used for
1560 optimization purposes. The caller is expected to cast the thunk prototype to
1561 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001562``uwtable``
1563 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001564 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001565 show that no exceptions passes by it. This is normally the case for
1566 the ELF x86-64 abi, but it can be disabled for some compilation
1567 units.
Sean Silvab084af42012-12-07 10:36:55 +00001568
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001569
1570.. _opbundles:
1571
1572Operand Bundles
1573---------------
1574
1575Note: operand bundles are a work in progress, and they should be
1576considered experimental at this time.
1577
1578Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001579with certain LLVM instructions (currently only ``call`` s and
1580``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001581incorrect and will change program semantics.
1582
1583Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001584
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001585 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001586 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1587 bundle operand ::= SSA value
1588 tag ::= string constant
1589
1590Operand bundles are **not** part of a function's signature, and a
1591given function may be called from multiple places with different kinds
1592of operand bundles. This reflects the fact that the operand bundles
1593are conceptually a part of the ``call`` (or ``invoke``), not the
1594callee being dispatched to.
1595
1596Operand bundles are a generic mechanism intended to support
1597runtime-introspection-like functionality for managed languages. While
1598the exact semantics of an operand bundle depend on the bundle tag,
1599there are certain limitations to how much the presence of an operand
1600bundle can influence the semantics of a program. These restrictions
1601are described as the semantics of an "unknown" operand bundle. As
1602long as the behavior of an operand bundle is describable within these
1603restrictions, LLVM does not need to have special knowledge of the
1604operand bundle to not miscompile programs containing it.
1605
David Majnemer34cacb42015-10-22 01:46:38 +00001606- The bundle operands for an unknown operand bundle escape in unknown
1607 ways before control is transferred to the callee or invokee.
1608- Calls and invokes with operand bundles have unknown read / write
1609 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001610 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001611 callsite specific attributes.
1612- An operand bundle at a call site cannot change the implementation
1613 of the called function. Inter-procedural optimizations work as
1614 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001615
Sanjoy Dascdafd842015-11-11 21:38:02 +00001616More specific types of operand bundles are described below.
1617
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001618.. _deopt_opbundles:
1619
Sanjoy Dascdafd842015-11-11 21:38:02 +00001620Deoptimization Operand Bundles
1621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1622
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001623Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001624operand bundle tag. These operand bundles represent an alternate
1625"safe" continuation for the call site they're attached to, and can be
1626used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001627specified call site. There can be at most one ``"deopt"`` operand
1628bundle attached to a call site. Exact details of deoptimization is
1629out of scope for the language reference, but it usually involves
1630rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001631
1632From the compiler's perspective, deoptimization operand bundles make
1633the call sites they're attached to at least ``readonly``. They read
1634through all of their pointer typed operands (even if they're not
1635otherwise escaped) and the entire visible heap. Deoptimization
1636operand bundles do not capture their operands except during
1637deoptimization, in which case control will not be returned to the
1638compiled frame.
1639
Sanjoy Das2d161452015-11-18 06:23:38 +00001640The inliner knows how to inline through calls that have deoptimization
1641operand bundles. Just like inlining through a normal call site
1642involves composing the normal and exceptional continuations, inlining
1643through a call site with a deoptimization operand bundle needs to
1644appropriately compose the "safe" deoptimization continuation. The
1645inliner does this by prepending the parent's deoptimization
1646continuation to every deoptimization continuation in the inlined body.
1647E.g. inlining ``@f`` into ``@g`` in the following example
1648
1649.. code-block:: llvm
1650
1651 define void @f() {
1652 call void @x() ;; no deopt state
1653 call void @y() [ "deopt"(i32 10) ]
1654 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1655 ret void
1656 }
1657
1658 define void @g() {
1659 call void @f() [ "deopt"(i32 20) ]
1660 ret void
1661 }
1662
1663will result in
1664
1665.. code-block:: llvm
1666
1667 define void @g() {
1668 call void @x() ;; still no deopt state
1669 call void @y() [ "deopt"(i32 20, i32 10) ]
1670 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1671 ret void
1672 }
1673
1674It is the frontend's responsibility to structure or encode the
1675deoptimization state in a way that syntactically prepending the
1676caller's deoptimization state to the callee's deoptimization state is
1677semantically equivalent to composing the caller's deoptimization
1678continuation after the callee's deoptimization continuation.
1679
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001680.. _ob_funclet:
1681
David Majnemer3bb88c02015-12-15 21:27:27 +00001682Funclet Operand Bundles
1683^^^^^^^^^^^^^^^^^^^^^^^
1684
1685Funclet operand bundles are characterized by the ``"funclet"``
1686operand bundle tag. These operand bundles indicate that a call site
1687is within a particular funclet. There can be at most one
1688``"funclet"`` operand bundle attached to a call site and it must have
1689exactly one bundle operand.
1690
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001691If any funclet EH pads have been "entered" but not "exited" (per the
1692`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1693it is undefined behavior to execute a ``call`` or ``invoke`` which:
1694
1695* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1696 intrinsic, or
1697* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1698 not-yet-exited funclet EH pad.
1699
1700Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1701executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1702
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001703GC Transition Operand Bundles
1704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1705
1706GC transition operand bundles are characterized by the
1707``"gc-transition"`` operand bundle tag. These operand bundles mark a
1708call as a transition between a function with one GC strategy to a
1709function with a different GC strategy. If coordinating the transition
1710between GC strategies requires additional code generation at the call
1711site, these bundles may contain any values that are needed by the
1712generated code. For more details, see :ref:`GC Transitions
1713<gc_transition_args>`.
1714
Sean Silvab084af42012-12-07 10:36:55 +00001715.. _moduleasm:
1716
1717Module-Level Inline Assembly
1718----------------------------
1719
1720Modules may contain "module-level inline asm" blocks, which corresponds
1721to the GCC "file scope inline asm" blocks. These blocks are internally
1722concatenated by LLVM and treated as a single unit, but may be separated
1723in the ``.ll`` file if desired. The syntax is very simple:
1724
1725.. code-block:: llvm
1726
1727 module asm "inline asm code goes here"
1728 module asm "more can go here"
1729
1730The strings can contain any character by escaping non-printable
1731characters. The escape sequence used is simply "\\xx" where "xx" is the
1732two digit hex code for the number.
1733
James Y Knightbc832ed2015-07-08 18:08:36 +00001734Note that the assembly string *must* be parseable by LLVM's integrated assembler
1735(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001736
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001737.. _langref_datalayout:
1738
Sean Silvab084af42012-12-07 10:36:55 +00001739Data Layout
1740-----------
1741
1742A module may specify a target specific data layout string that specifies
1743how data is to be laid out in memory. The syntax for the data layout is
1744simply:
1745
1746.. code-block:: llvm
1747
1748 target datalayout = "layout specification"
1749
1750The *layout specification* consists of a list of specifications
1751separated by the minus sign character ('-'). Each specification starts
1752with a letter and may include other information after the letter to
1753define some aspect of the data layout. The specifications accepted are
1754as follows:
1755
1756``E``
1757 Specifies that the target lays out data in big-endian form. That is,
1758 the bits with the most significance have the lowest address
1759 location.
1760``e``
1761 Specifies that the target lays out data in little-endian form. That
1762 is, the bits with the least significance have the lowest address
1763 location.
1764``S<size>``
1765 Specifies the natural alignment of the stack in bits. Alignment
1766 promotion of stack variables is limited to the natural stack
1767 alignment to avoid dynamic stack realignment. The stack alignment
1768 must be a multiple of 8-bits. If omitted, the natural stack
1769 alignment defaults to "unspecified", which does not prevent any
1770 alignment promotions.
1771``p[n]:<size>:<abi>:<pref>``
1772 This specifies the *size* of a pointer and its ``<abi>`` and
1773 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001774 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001775 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001776 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001777``i<size>:<abi>:<pref>``
1778 This specifies the alignment for an integer type of a given bit
1779 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1780``v<size>:<abi>:<pref>``
1781 This specifies the alignment for a vector type of a given bit
1782 ``<size>``.
1783``f<size>:<abi>:<pref>``
1784 This specifies the alignment for a floating point type of a given bit
1785 ``<size>``. Only values of ``<size>`` that are supported by the target
1786 will work. 32 (float) and 64 (double) are supported on all targets; 80
1787 or 128 (different flavors of long double) are also supported on some
1788 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001789``a:<abi>:<pref>``
1790 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001791``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001792 If present, specifies that llvm names are mangled in the output. The
1793 options are
1794
1795 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1796 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1797 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1798 symbols get a ``_`` prefix.
1799 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1800 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001801 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1802 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001803``n<size1>:<size2>:<size3>...``
1804 This specifies a set of native integer widths for the target CPU in
1805 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1806 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1807 this set are considered to support most general arithmetic operations
1808 efficiently.
1809
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001810On every specification that takes a ``<abi>:<pref>``, specifying the
1811``<pref>`` alignment is optional. If omitted, the preceding ``:``
1812should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1813
Sean Silvab084af42012-12-07 10:36:55 +00001814When constructing the data layout for a given target, LLVM starts with a
1815default set of specifications which are then (possibly) overridden by
1816the specifications in the ``datalayout`` keyword. The default
1817specifications are given in this list:
1818
1819- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001820- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1821- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1822 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001823- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001824- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1825- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1826- ``i16:16:16`` - i16 is 16-bit aligned
1827- ``i32:32:32`` - i32 is 32-bit aligned
1828- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1829 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001830- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001831- ``f32:32:32`` - float is 32-bit aligned
1832- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001833- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001834- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1835- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001836- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001837
1838When LLVM is determining the alignment for a given type, it uses the
1839following rules:
1840
1841#. If the type sought is an exact match for one of the specifications,
1842 that specification is used.
1843#. If no match is found, and the type sought is an integer type, then
1844 the smallest integer type that is larger than the bitwidth of the
1845 sought type is used. If none of the specifications are larger than
1846 the bitwidth then the largest integer type is used. For example,
1847 given the default specifications above, the i7 type will use the
1848 alignment of i8 (next largest) while both i65 and i256 will use the
1849 alignment of i64 (largest specified).
1850#. If no match is found, and the type sought is a vector type, then the
1851 largest vector type that is smaller than the sought vector type will
1852 be used as a fall back. This happens because <128 x double> can be
1853 implemented in terms of 64 <2 x double>, for example.
1854
1855The function of the data layout string may not be what you expect.
1856Notably, this is not a specification from the frontend of what alignment
1857the code generator should use.
1858
1859Instead, if specified, the target data layout is required to match what
1860the ultimate *code generator* expects. This string is used by the
1861mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001862what the ultimate code generator uses. There is no way to generate IR
1863that does not embed this target-specific detail into the IR. If you
1864don't specify the string, the default specifications will be used to
1865generate a Data Layout and the optimization phases will operate
1866accordingly and introduce target specificity into the IR with respect to
1867these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001868
Bill Wendling5cc90842013-10-18 23:41:25 +00001869.. _langref_triple:
1870
1871Target Triple
1872-------------
1873
1874A module may specify a target triple string that describes the target
1875host. The syntax for the target triple is simply:
1876
1877.. code-block:: llvm
1878
1879 target triple = "x86_64-apple-macosx10.7.0"
1880
1881The *target triple* string consists of a series of identifiers delimited
1882by the minus sign character ('-'). The canonical forms are:
1883
1884::
1885
1886 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1887 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1888
1889This information is passed along to the backend so that it generates
1890code for the proper architecture. It's possible to override this on the
1891command line with the ``-mtriple`` command line option.
1892
Sean Silvab084af42012-12-07 10:36:55 +00001893.. _pointeraliasing:
1894
1895Pointer Aliasing Rules
1896----------------------
1897
1898Any memory access must be done through a pointer value associated with
1899an address range of the memory access, otherwise the behavior is
1900undefined. Pointer values are associated with address ranges according
1901to the following rules:
1902
1903- A pointer value is associated with the addresses associated with any
1904 value it is *based* on.
1905- An address of a global variable is associated with the address range
1906 of the variable's storage.
1907- The result value of an allocation instruction is associated with the
1908 address range of the allocated storage.
1909- A null pointer in the default address-space is associated with no
1910 address.
1911- An integer constant other than zero or a pointer value returned from
1912 a function not defined within LLVM may be associated with address
1913 ranges allocated through mechanisms other than those provided by
1914 LLVM. Such ranges shall not overlap with any ranges of addresses
1915 allocated by mechanisms provided by LLVM.
1916
1917A pointer value is *based* on another pointer value according to the
1918following rules:
1919
1920- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001921 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001922- The result value of a ``bitcast`` is *based* on the operand of the
1923 ``bitcast``.
1924- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1925 values that contribute (directly or indirectly) to the computation of
1926 the pointer's value.
1927- The "*based* on" relationship is transitive.
1928
1929Note that this definition of *"based"* is intentionally similar to the
1930definition of *"based"* in C99, though it is slightly weaker.
1931
1932LLVM IR does not associate types with memory. The result type of a
1933``load`` merely indicates the size and alignment of the memory from
1934which to load, as well as the interpretation of the value. The first
1935operand type of a ``store`` similarly only indicates the size and
1936alignment of the store.
1937
1938Consequently, type-based alias analysis, aka TBAA, aka
1939``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1940:ref:`Metadata <metadata>` may be used to encode additional information
1941which specialized optimization passes may use to implement type-based
1942alias analysis.
1943
1944.. _volatile:
1945
1946Volatile Memory Accesses
1947------------------------
1948
1949Certain memory accesses, such as :ref:`load <i_load>`'s,
1950:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1951marked ``volatile``. The optimizers must not change the number of
1952volatile operations or change their order of execution relative to other
1953volatile operations. The optimizers *may* change the order of volatile
1954operations relative to non-volatile operations. This is not Java's
1955"volatile" and has no cross-thread synchronization behavior.
1956
Andrew Trick89fc5a62013-01-30 21:19:35 +00001957IR-level volatile loads and stores cannot safely be optimized into
1958llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1959flagged volatile. Likewise, the backend should never split or merge
1960target-legal volatile load/store instructions.
1961
Andrew Trick7e6f9282013-01-31 00:49:39 +00001962.. admonition:: Rationale
1963
1964 Platforms may rely on volatile loads and stores of natively supported
1965 data width to be executed as single instruction. For example, in C
1966 this holds for an l-value of volatile primitive type with native
1967 hardware support, but not necessarily for aggregate types. The
1968 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001969 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001970 do not violate the frontend's contract with the language.
1971
Sean Silvab084af42012-12-07 10:36:55 +00001972.. _memmodel:
1973
1974Memory Model for Concurrent Operations
1975--------------------------------------
1976
1977The LLVM IR does not define any way to start parallel threads of
1978execution or to register signal handlers. Nonetheless, there are
1979platform-specific ways to create them, and we define LLVM IR's behavior
1980in their presence. This model is inspired by the C++0x memory model.
1981
1982For a more informal introduction to this model, see the :doc:`Atomics`.
1983
1984We define a *happens-before* partial order as the least partial order
1985that
1986
1987- Is a superset of single-thread program order, and
1988- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1989 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1990 techniques, like pthread locks, thread creation, thread joining,
1991 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1992 Constraints <ordering>`).
1993
1994Note that program order does not introduce *happens-before* edges
1995between a thread and signals executing inside that thread.
1996
1997Every (defined) read operation (load instructions, memcpy, atomic
1998loads/read-modify-writes, etc.) R reads a series of bytes written by
1999(defined) write operations (store instructions, atomic
2000stores/read-modify-writes, memcpy, etc.). For the purposes of this
2001section, initialized globals are considered to have a write of the
2002initializer which is atomic and happens before any other read or write
2003of the memory in question. For each byte of a read R, R\ :sub:`byte`
2004may see any write to the same byte, except:
2005
2006- If write\ :sub:`1` happens before write\ :sub:`2`, and
2007 write\ :sub:`2` happens before R\ :sub:`byte`, then
2008 R\ :sub:`byte` does not see write\ :sub:`1`.
2009- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2010 R\ :sub:`byte` does not see write\ :sub:`3`.
2011
2012Given that definition, R\ :sub:`byte` is defined as follows:
2013
2014- If R is volatile, the result is target-dependent. (Volatile is
2015 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002016 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002017 like normal memory. It does not generally provide cross-thread
2018 synchronization.)
2019- Otherwise, if there is no write to the same byte that happens before
2020 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2021- Otherwise, if R\ :sub:`byte` may see exactly one write,
2022 R\ :sub:`byte` returns the value written by that write.
2023- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2024 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2025 Memory Ordering Constraints <ordering>` section for additional
2026 constraints on how the choice is made.
2027- Otherwise R\ :sub:`byte` returns ``undef``.
2028
2029R returns the value composed of the series of bytes it read. This
2030implies that some bytes within the value may be ``undef`` **without**
2031the entire value being ``undef``. Note that this only defines the
2032semantics of the operation; it doesn't mean that targets will emit more
2033than one instruction to read the series of bytes.
2034
2035Note that in cases where none of the atomic intrinsics are used, this
2036model places only one restriction on IR transformations on top of what
2037is required for single-threaded execution: introducing a store to a byte
2038which might not otherwise be stored is not allowed in general.
2039(Specifically, in the case where another thread might write to and read
2040from an address, introducing a store can change a load that may see
2041exactly one write into a load that may see multiple writes.)
2042
2043.. _ordering:
2044
2045Atomic Memory Ordering Constraints
2046----------------------------------
2047
2048Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2049:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2050:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002051ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002052the same address they *synchronize with*. These semantics are borrowed
2053from Java and C++0x, but are somewhat more colloquial. If these
2054descriptions aren't precise enough, check those specs (see spec
2055references in the :doc:`atomics guide <Atomics>`).
2056:ref:`fence <i_fence>` instructions treat these orderings somewhat
2057differently since they don't take an address. See that instruction's
2058documentation for details.
2059
2060For a simpler introduction to the ordering constraints, see the
2061:doc:`Atomics`.
2062
2063``unordered``
2064 The set of values that can be read is governed by the happens-before
2065 partial order. A value cannot be read unless some operation wrote
2066 it. This is intended to provide a guarantee strong enough to model
2067 Java's non-volatile shared variables. This ordering cannot be
2068 specified for read-modify-write operations; it is not strong enough
2069 to make them atomic in any interesting way.
2070``monotonic``
2071 In addition to the guarantees of ``unordered``, there is a single
2072 total order for modifications by ``monotonic`` operations on each
2073 address. All modification orders must be compatible with the
2074 happens-before order. There is no guarantee that the modification
2075 orders can be combined to a global total order for the whole program
2076 (and this often will not be possible). The read in an atomic
2077 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2078 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2079 order immediately before the value it writes. If one atomic read
2080 happens before another atomic read of the same address, the later
2081 read must see the same value or a later value in the address's
2082 modification order. This disallows reordering of ``monotonic`` (or
2083 stronger) operations on the same address. If an address is written
2084 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2085 read that address repeatedly, the other threads must eventually see
2086 the write. This corresponds to the C++0x/C1x
2087 ``memory_order_relaxed``.
2088``acquire``
2089 In addition to the guarantees of ``monotonic``, a
2090 *synchronizes-with* edge may be formed with a ``release`` operation.
2091 This is intended to model C++'s ``memory_order_acquire``.
2092``release``
2093 In addition to the guarantees of ``monotonic``, if this operation
2094 writes a value which is subsequently read by an ``acquire``
2095 operation, it *synchronizes-with* that operation. (This isn't a
2096 complete description; see the C++0x definition of a release
2097 sequence.) This corresponds to the C++0x/C1x
2098 ``memory_order_release``.
2099``acq_rel`` (acquire+release)
2100 Acts as both an ``acquire`` and ``release`` operation on its
2101 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2102``seq_cst`` (sequentially consistent)
2103 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002104 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002105 writes), there is a global total order on all
2106 sequentially-consistent operations on all addresses, which is
2107 consistent with the *happens-before* partial order and with the
2108 modification orders of all the affected addresses. Each
2109 sequentially-consistent read sees the last preceding write to the
2110 same address in this global order. This corresponds to the C++0x/C1x
2111 ``memory_order_seq_cst`` and Java volatile.
2112
2113.. _singlethread:
2114
2115If an atomic operation is marked ``singlethread``, it only *synchronizes
2116with* or participates in modification and seq\_cst total orderings with
2117other operations running in the same thread (for example, in signal
2118handlers).
2119
2120.. _fastmath:
2121
2122Fast-Math Flags
2123---------------
2124
2125LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2126:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002127:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2128be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002129
2130``nnan``
2131 No NaNs - Allow optimizations to assume the arguments and result are not
2132 NaN. Such optimizations are required to retain defined behavior over
2133 NaNs, but the value of the result is undefined.
2134
2135``ninf``
2136 No Infs - Allow optimizations to assume the arguments and result are not
2137 +/-Inf. Such optimizations are required to retain defined behavior over
2138 +/-Inf, but the value of the result is undefined.
2139
2140``nsz``
2141 No Signed Zeros - Allow optimizations to treat the sign of a zero
2142 argument or result as insignificant.
2143
2144``arcp``
2145 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2146 argument rather than perform division.
2147
2148``fast``
2149 Fast - Allow algebraically equivalent transformations that may
2150 dramatically change results in floating point (e.g. reassociate). This
2151 flag implies all the others.
2152
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002153.. _uselistorder:
2154
2155Use-list Order Directives
2156-------------------------
2157
2158Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002159order to be recreated. ``<order-indexes>`` is a comma-separated list of
2160indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002161value's use-list is immediately sorted by these indexes.
2162
Sean Silvaa1190322015-08-06 22:56:48 +00002163Use-list directives may appear at function scope or global scope. They are not
2164instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002165function scope, they must appear after the terminator of the final basic block.
2166
2167If basic blocks have their address taken via ``blockaddress()`` expressions,
2168``uselistorder_bb`` can be used to reorder their use-lists from outside their
2169function's scope.
2170
2171:Syntax:
2172
2173::
2174
2175 uselistorder <ty> <value>, { <order-indexes> }
2176 uselistorder_bb @function, %block { <order-indexes> }
2177
2178:Examples:
2179
2180::
2181
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002182 define void @foo(i32 %arg1, i32 %arg2) {
2183 entry:
2184 ; ... instructions ...
2185 bb:
2186 ; ... instructions ...
2187
2188 ; At function scope.
2189 uselistorder i32 %arg1, { 1, 0, 2 }
2190 uselistorder label %bb, { 1, 0 }
2191 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002192
2193 ; At global scope.
2194 uselistorder i32* @global, { 1, 2, 0 }
2195 uselistorder i32 7, { 1, 0 }
2196 uselistorder i32 (i32) @bar, { 1, 0 }
2197 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2198
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002199.. _source_filename:
2200
2201Source Filename
2202---------------
2203
2204The *source filename* string is set to the original module identifier,
2205which will be the name of the compiled source file when compiling from
2206source through the clang front end, for example. It is then preserved through
2207the IR and bitcode.
2208
2209This is currently necessary to generate a consistent unique global
2210identifier for local functions used in profile data, which prepends the
2211source file name to the local function name.
2212
2213The syntax for the source file name is simply:
2214
2215.. code-block:: llvm
2216
2217 source_filename = "/path/to/source.c"
2218
Sean Silvab084af42012-12-07 10:36:55 +00002219.. _typesystem:
2220
2221Type System
2222===========
2223
2224The LLVM type system is one of the most important features of the
2225intermediate representation. Being typed enables a number of
2226optimizations to be performed on the intermediate representation
2227directly, without having to do extra analyses on the side before the
2228transformation. A strong type system makes it easier to read the
2229generated code and enables novel analyses and transformations that are
2230not feasible to perform on normal three address code representations.
2231
Rafael Espindola08013342013-12-07 19:34:20 +00002232.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002233
Rafael Espindola08013342013-12-07 19:34:20 +00002234Void Type
2235---------
Sean Silvab084af42012-12-07 10:36:55 +00002236
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002237:Overview:
2238
Rafael Espindola08013342013-12-07 19:34:20 +00002239
2240The void type does not represent any value and has no size.
2241
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002242:Syntax:
2243
Rafael Espindola08013342013-12-07 19:34:20 +00002244
2245::
2246
2247 void
Sean Silvab084af42012-12-07 10:36:55 +00002248
2249
Rafael Espindola08013342013-12-07 19:34:20 +00002250.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002251
Rafael Espindola08013342013-12-07 19:34:20 +00002252Function Type
2253-------------
Sean Silvab084af42012-12-07 10:36:55 +00002254
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002255:Overview:
2256
Sean Silvab084af42012-12-07 10:36:55 +00002257
Rafael Espindola08013342013-12-07 19:34:20 +00002258The function type can be thought of as a function signature. It consists of a
2259return type and a list of formal parameter types. The return type of a function
2260type is a void type or first class type --- except for :ref:`label <t_label>`
2261and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002262
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002263:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002264
Rafael Espindola08013342013-12-07 19:34:20 +00002265::
Sean Silvab084af42012-12-07 10:36:55 +00002266
Rafael Espindola08013342013-12-07 19:34:20 +00002267 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002268
Rafael Espindola08013342013-12-07 19:34:20 +00002269...where '``<parameter list>``' is a comma-separated list of type
2270specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002271indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002272argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002273handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002274except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002275
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002276:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002277
Rafael Espindola08013342013-12-07 19:34:20 +00002278+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2279| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2280+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2281| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2282+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2283| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2284+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2285| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2286+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2287
2288.. _t_firstclass:
2289
2290First Class Types
2291-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002292
2293The :ref:`first class <t_firstclass>` types are perhaps the most important.
2294Values of these types are the only ones which can be produced by
2295instructions.
2296
Rafael Espindola08013342013-12-07 19:34:20 +00002297.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002298
Rafael Espindola08013342013-12-07 19:34:20 +00002299Single Value Types
2300^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002301
Rafael Espindola08013342013-12-07 19:34:20 +00002302These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002303
2304.. _t_integer:
2305
2306Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002307""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002308
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002309:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002310
2311The integer type is a very simple type that simply specifies an
2312arbitrary bit width for the integer type desired. Any bit width from 1
2313bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2314
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002315:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002316
2317::
2318
2319 iN
2320
2321The number of bits the integer will occupy is specified by the ``N``
2322value.
2323
2324Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002325*********
Sean Silvab084af42012-12-07 10:36:55 +00002326
2327+----------------+------------------------------------------------+
2328| ``i1`` | a single-bit integer. |
2329+----------------+------------------------------------------------+
2330| ``i32`` | a 32-bit integer. |
2331+----------------+------------------------------------------------+
2332| ``i1942652`` | a really big integer of over 1 million bits. |
2333+----------------+------------------------------------------------+
2334
2335.. _t_floating:
2336
2337Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002338""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002339
2340.. list-table::
2341 :header-rows: 1
2342
2343 * - Type
2344 - Description
2345
2346 * - ``half``
2347 - 16-bit floating point value
2348
2349 * - ``float``
2350 - 32-bit floating point value
2351
2352 * - ``double``
2353 - 64-bit floating point value
2354
2355 * - ``fp128``
2356 - 128-bit floating point value (112-bit mantissa)
2357
2358 * - ``x86_fp80``
2359 - 80-bit floating point value (X87)
2360
2361 * - ``ppc_fp128``
2362 - 128-bit floating point value (two 64-bits)
2363
Reid Kleckner9a16d082014-03-05 02:41:37 +00002364X86_mmx Type
2365""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002366
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002367:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002368
Reid Kleckner9a16d082014-03-05 02:41:37 +00002369The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002370machine. The operations allowed on it are quite limited: parameters and
2371return values, load and store, and bitcast. User-specified MMX
2372instructions are represented as intrinsic or asm calls with arguments
2373and/or results of this type. There are no arrays, vectors or constants
2374of this type.
2375
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002376:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002377
2378::
2379
Reid Kleckner9a16d082014-03-05 02:41:37 +00002380 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002381
Sean Silvab084af42012-12-07 10:36:55 +00002382
Rafael Espindola08013342013-12-07 19:34:20 +00002383.. _t_pointer:
2384
2385Pointer Type
2386""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002387
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002388:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002389
Rafael Espindola08013342013-12-07 19:34:20 +00002390The pointer type is used to specify memory locations. Pointers are
2391commonly used to reference objects in memory.
2392
2393Pointer types may have an optional address space attribute defining the
2394numbered address space where the pointed-to object resides. The default
2395address space is number zero. The semantics of non-zero address spaces
2396are target-specific.
2397
2398Note that LLVM does not permit pointers to void (``void*``) nor does it
2399permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002400
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002401:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002402
2403::
2404
Rafael Espindola08013342013-12-07 19:34:20 +00002405 <type> *
2406
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002407:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002408
2409+-------------------------+--------------------------------------------------------------------------------------------------------------+
2410| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2411+-------------------------+--------------------------------------------------------------------------------------------------------------+
2412| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2413+-------------------------+--------------------------------------------------------------------------------------------------------------+
2414| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2415+-------------------------+--------------------------------------------------------------------------------------------------------------+
2416
2417.. _t_vector:
2418
2419Vector Type
2420"""""""""""
2421
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002422:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002423
2424A vector type is a simple derived type that represents a vector of
2425elements. Vector types are used when multiple primitive data are
2426operated in parallel using a single instruction (SIMD). A vector type
2427requires a size (number of elements) and an underlying primitive data
2428type. Vector types are considered :ref:`first class <t_firstclass>`.
2429
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002430:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002431
2432::
2433
2434 < <# elements> x <elementtype> >
2435
2436The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002437elementtype may be any integer, floating point or pointer type. Vectors
2438of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002439
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002440:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002441
2442+-------------------+--------------------------------------------------+
2443| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2444+-------------------+--------------------------------------------------+
2445| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2446+-------------------+--------------------------------------------------+
2447| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2448+-------------------+--------------------------------------------------+
2449| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2450+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002451
2452.. _t_label:
2453
2454Label Type
2455^^^^^^^^^^
2456
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002457:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002458
2459The label type represents code labels.
2460
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002461:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002462
2463::
2464
2465 label
2466
David Majnemerb611e3f2015-08-14 05:09:07 +00002467.. _t_token:
2468
2469Token Type
2470^^^^^^^^^^
2471
2472:Overview:
2473
2474The token type is used when a value is associated with an instruction
2475but all uses of the value must not attempt to introspect or obscure it.
2476As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2477:ref:`select <i_select>` of type token.
2478
2479:Syntax:
2480
2481::
2482
2483 token
2484
2485
2486
Sean Silvab084af42012-12-07 10:36:55 +00002487.. _t_metadata:
2488
2489Metadata Type
2490^^^^^^^^^^^^^
2491
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002492:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002493
2494The metadata type represents embedded metadata. No derived types may be
2495created from metadata except for :ref:`function <t_function>` arguments.
2496
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002497:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002498
2499::
2500
2501 metadata
2502
Sean Silvab084af42012-12-07 10:36:55 +00002503.. _t_aggregate:
2504
2505Aggregate Types
2506^^^^^^^^^^^^^^^
2507
2508Aggregate Types are a subset of derived types that can contain multiple
2509member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2510aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2511aggregate types.
2512
2513.. _t_array:
2514
2515Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002516""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002517
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002518:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002519
2520The array type is a very simple derived type that arranges elements
2521sequentially in memory. The array type requires a size (number of
2522elements) and an underlying data type.
2523
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002524:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002525
2526::
2527
2528 [<# elements> x <elementtype>]
2529
2530The number of elements is a constant integer value; ``elementtype`` may
2531be any type with a size.
2532
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002533:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002534
2535+------------------+--------------------------------------+
2536| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2537+------------------+--------------------------------------+
2538| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2539+------------------+--------------------------------------+
2540| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2541+------------------+--------------------------------------+
2542
2543Here are some examples of multidimensional arrays:
2544
2545+-----------------------------+----------------------------------------------------------+
2546| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2547+-----------------------------+----------------------------------------------------------+
2548| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2549+-----------------------------+----------------------------------------------------------+
2550| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2551+-----------------------------+----------------------------------------------------------+
2552
2553There is no restriction on indexing beyond the end of the array implied
2554by a static type (though there are restrictions on indexing beyond the
2555bounds of an allocated object in some cases). This means that
2556single-dimension 'variable sized array' addressing can be implemented in
2557LLVM with a zero length array type. An implementation of 'pascal style
2558arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2559example.
2560
Sean Silvab084af42012-12-07 10:36:55 +00002561.. _t_struct:
2562
2563Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002564""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002565
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002566:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002567
2568The structure type is used to represent a collection of data members
2569together in memory. The elements of a structure may be any type that has
2570a size.
2571
2572Structures in memory are accessed using '``load``' and '``store``' by
2573getting a pointer to a field with the '``getelementptr``' instruction.
2574Structures in registers are accessed using the '``extractvalue``' and
2575'``insertvalue``' instructions.
2576
2577Structures may optionally be "packed" structures, which indicate that
2578the alignment of the struct is one byte, and that there is no padding
2579between the elements. In non-packed structs, padding between field types
2580is inserted as defined by the DataLayout string in the module, which is
2581required to match what the underlying code generator expects.
2582
2583Structures can either be "literal" or "identified". A literal structure
2584is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2585identified types are always defined at the top level with a name.
2586Literal types are uniqued by their contents and can never be recursive
2587or opaque since there is no way to write one. Identified types can be
2588recursive, can be opaqued, and are never uniqued.
2589
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002590:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002591
2592::
2593
2594 %T1 = type { <type list> } ; Identified normal struct type
2595 %T2 = type <{ <type list> }> ; Identified packed struct type
2596
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002597:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002598
2599+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2600| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2601+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002602| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002603+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2604| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2605+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2606
2607.. _t_opaque:
2608
2609Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002610""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002611
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002612:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002613
2614Opaque structure types are used to represent named structure types that
2615do not have a body specified. This corresponds (for example) to the C
2616notion of a forward declared structure.
2617
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002618:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002619
2620::
2621
2622 %X = type opaque
2623 %52 = type opaque
2624
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002625:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002626
2627+--------------+-------------------+
2628| ``opaque`` | An opaque type. |
2629+--------------+-------------------+
2630
Sean Silva1703e702014-04-08 21:06:22 +00002631.. _constants:
2632
Sean Silvab084af42012-12-07 10:36:55 +00002633Constants
2634=========
2635
2636LLVM has several different basic types of constants. This section
2637describes them all and their syntax.
2638
2639Simple Constants
2640----------------
2641
2642**Boolean constants**
2643 The two strings '``true``' and '``false``' are both valid constants
2644 of the ``i1`` type.
2645**Integer constants**
2646 Standard integers (such as '4') are constants of the
2647 :ref:`integer <t_integer>` type. Negative numbers may be used with
2648 integer types.
2649**Floating point constants**
2650 Floating point constants use standard decimal notation (e.g.
2651 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2652 hexadecimal notation (see below). The assembler requires the exact
2653 decimal value of a floating-point constant. For example, the
2654 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2655 decimal in binary. Floating point constants must have a :ref:`floating
2656 point <t_floating>` type.
2657**Null pointer constants**
2658 The identifier '``null``' is recognized as a null pointer constant
2659 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002660**Token constants**
2661 The identifier '``none``' is recognized as an empty token constant
2662 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002663
2664The one non-intuitive notation for constants is the hexadecimal form of
2665floating point constants. For example, the form
2666'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2667than) '``double 4.5e+15``'. The only time hexadecimal floating point
2668constants are required (and the only time that they are generated by the
2669disassembler) is when a floating point constant must be emitted but it
2670cannot be represented as a decimal floating point number in a reasonable
2671number of digits. For example, NaN's, infinities, and other special
2672values are represented in their IEEE hexadecimal format so that assembly
2673and disassembly do not cause any bits to change in the constants.
2674
2675When using the hexadecimal form, constants of types half, float, and
2676double are represented using the 16-digit form shown above (which
2677matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002678must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002679precision, respectively. Hexadecimal format is always used for long
2680double, and there are three forms of long double. The 80-bit format used
2681by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2682128-bit format used by PowerPC (two adjacent doubles) is represented by
2683``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002684represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2685will only work if they match the long double format on your target.
2686The IEEE 16-bit format (half precision) is represented by ``0xH``
2687followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2688(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002689
Reid Kleckner9a16d082014-03-05 02:41:37 +00002690There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002691
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002692.. _complexconstants:
2693
Sean Silvab084af42012-12-07 10:36:55 +00002694Complex Constants
2695-----------------
2696
2697Complex constants are a (potentially recursive) combination of simple
2698constants and smaller complex constants.
2699
2700**Structure constants**
2701 Structure constants are represented with notation similar to
2702 structure type definitions (a comma separated list of elements,
2703 surrounded by braces (``{}``)). For example:
2704 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2705 "``@G = external global i32``". Structure constants must have
2706 :ref:`structure type <t_struct>`, and the number and types of elements
2707 must match those specified by the type.
2708**Array constants**
2709 Array constants are represented with notation similar to array type
2710 definitions (a comma separated list of elements, surrounded by
2711 square brackets (``[]``)). For example:
2712 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2713 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002714 match those specified by the type. As a special case, character array
2715 constants may also be represented as a double-quoted string using the ``c``
2716 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002717**Vector constants**
2718 Vector constants are represented with notation similar to vector
2719 type definitions (a comma separated list of elements, surrounded by
2720 less-than/greater-than's (``<>``)). For example:
2721 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2722 must have :ref:`vector type <t_vector>`, and the number and types of
2723 elements must match those specified by the type.
2724**Zero initialization**
2725 The string '``zeroinitializer``' can be used to zero initialize a
2726 value to zero of *any* type, including scalar and
2727 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2728 having to print large zero initializers (e.g. for large arrays) and
2729 is always exactly equivalent to using explicit zero initializers.
2730**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002731 A metadata node is a constant tuple without types. For example:
2732 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002733 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2734 Unlike other typed constants that are meant to be interpreted as part of
2735 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002736 information such as debug info.
2737
2738Global Variable and Function Addresses
2739--------------------------------------
2740
2741The addresses of :ref:`global variables <globalvars>` and
2742:ref:`functions <functionstructure>` are always implicitly valid
2743(link-time) constants. These constants are explicitly referenced when
2744the :ref:`identifier for the global <identifiers>` is used and always have
2745:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2746file:
2747
2748.. code-block:: llvm
2749
2750 @X = global i32 17
2751 @Y = global i32 42
2752 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2753
2754.. _undefvalues:
2755
2756Undefined Values
2757----------------
2758
2759The string '``undef``' can be used anywhere a constant is expected, and
2760indicates that the user of the value may receive an unspecified
2761bit-pattern. Undefined values may be of any type (other than '``label``'
2762or '``void``') and be used anywhere a constant is permitted.
2763
2764Undefined values are useful because they indicate to the compiler that
2765the program is well defined no matter what value is used. This gives the
2766compiler more freedom to optimize. Here are some examples of
2767(potentially surprising) transformations that are valid (in pseudo IR):
2768
2769.. code-block:: llvm
2770
2771 %A = add %X, undef
2772 %B = sub %X, undef
2773 %C = xor %X, undef
2774 Safe:
2775 %A = undef
2776 %B = undef
2777 %C = undef
2778
2779This is safe because all of the output bits are affected by the undef
2780bits. Any output bit can have a zero or one depending on the input bits.
2781
2782.. code-block:: llvm
2783
2784 %A = or %X, undef
2785 %B = and %X, undef
2786 Safe:
2787 %A = -1
2788 %B = 0
2789 Unsafe:
2790 %A = undef
2791 %B = undef
2792
2793These logical operations have bits that are not always affected by the
2794input. For example, if ``%X`` has a zero bit, then the output of the
2795'``and``' operation will always be a zero for that bit, no matter what
2796the corresponding bit from the '``undef``' is. As such, it is unsafe to
2797optimize or assume that the result of the '``and``' is '``undef``'.
2798However, it is safe to assume that all bits of the '``undef``' could be
27990, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2800all the bits of the '``undef``' operand to the '``or``' could be set,
2801allowing the '``or``' to be folded to -1.
2802
2803.. code-block:: llvm
2804
2805 %A = select undef, %X, %Y
2806 %B = select undef, 42, %Y
2807 %C = select %X, %Y, undef
2808 Safe:
2809 %A = %X (or %Y)
2810 %B = 42 (or %Y)
2811 %C = %Y
2812 Unsafe:
2813 %A = undef
2814 %B = undef
2815 %C = undef
2816
2817This set of examples shows that undefined '``select``' (and conditional
2818branch) conditions can go *either way*, but they have to come from one
2819of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2820both known to have a clear low bit, then ``%A`` would have to have a
2821cleared low bit. However, in the ``%C`` example, the optimizer is
2822allowed to assume that the '``undef``' operand could be the same as
2823``%Y``, allowing the whole '``select``' to be eliminated.
2824
2825.. code-block:: llvm
2826
2827 %A = xor undef, undef
2828
2829 %B = undef
2830 %C = xor %B, %B
2831
2832 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002833 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002834 %F = icmp gte %D, 4
2835
2836 Safe:
2837 %A = undef
2838 %B = undef
2839 %C = undef
2840 %D = undef
2841 %E = undef
2842 %F = undef
2843
2844This example points out that two '``undef``' operands are not
2845necessarily the same. This can be surprising to people (and also matches
2846C semantics) where they assume that "``X^X``" is always zero, even if
2847``X`` is undefined. This isn't true for a number of reasons, but the
2848short answer is that an '``undef``' "variable" can arbitrarily change
2849its value over its "live range". This is true because the variable
2850doesn't actually *have a live range*. Instead, the value is logically
2851read from arbitrary registers that happen to be around when needed, so
2852the value is not necessarily consistent over time. In fact, ``%A`` and
2853``%C`` need to have the same semantics or the core LLVM "replace all
2854uses with" concept would not hold.
2855
2856.. code-block:: llvm
2857
2858 %A = fdiv undef, %X
2859 %B = fdiv %X, undef
2860 Safe:
2861 %A = undef
2862 b: unreachable
2863
2864These examples show the crucial difference between an *undefined value*
2865and *undefined behavior*. An undefined value (like '``undef``') is
2866allowed to have an arbitrary bit-pattern. This means that the ``%A``
2867operation can be constant folded to '``undef``', because the '``undef``'
2868could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2869However, in the second example, we can make a more aggressive
2870assumption: because the ``undef`` is allowed to be an arbitrary value,
2871we are allowed to assume that it could be zero. Since a divide by zero
2872has *undefined behavior*, we are allowed to assume that the operation
2873does not execute at all. This allows us to delete the divide and all
2874code after it. Because the undefined operation "can't happen", the
2875optimizer can assume that it occurs in dead code.
2876
2877.. code-block:: llvm
2878
2879 a: store undef -> %X
2880 b: store %X -> undef
2881 Safe:
2882 a: <deleted>
2883 b: unreachable
2884
2885These examples reiterate the ``fdiv`` example: a store *of* an undefined
2886value can be assumed to not have any effect; we can assume that the
2887value is overwritten with bits that happen to match what was already
2888there. However, a store *to* an undefined location could clobber
2889arbitrary memory, therefore, it has undefined behavior.
2890
2891.. _poisonvalues:
2892
2893Poison Values
2894-------------
2895
2896Poison values are similar to :ref:`undef values <undefvalues>`, however
2897they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002898that cannot evoke side effects has nevertheless detected a condition
2899that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002900
2901There is currently no way of representing a poison value in the IR; they
2902only exist when produced by operations such as :ref:`add <i_add>` with
2903the ``nsw`` flag.
2904
2905Poison value behavior is defined in terms of value *dependence*:
2906
2907- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2908- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2909 their dynamic predecessor basic block.
2910- Function arguments depend on the corresponding actual argument values
2911 in the dynamic callers of their functions.
2912- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2913 instructions that dynamically transfer control back to them.
2914- :ref:`Invoke <i_invoke>` instructions depend on the
2915 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2916 call instructions that dynamically transfer control back to them.
2917- Non-volatile loads and stores depend on the most recent stores to all
2918 of the referenced memory addresses, following the order in the IR
2919 (including loads and stores implied by intrinsics such as
2920 :ref:`@llvm.memcpy <int_memcpy>`.)
2921- An instruction with externally visible side effects depends on the
2922 most recent preceding instruction with externally visible side
2923 effects, following the order in the IR. (This includes :ref:`volatile
2924 operations <volatile>`.)
2925- An instruction *control-depends* on a :ref:`terminator
2926 instruction <terminators>` if the terminator instruction has
2927 multiple successors and the instruction is always executed when
2928 control transfers to one of the successors, and may not be executed
2929 when control is transferred to another.
2930- Additionally, an instruction also *control-depends* on a terminator
2931 instruction if the set of instructions it otherwise depends on would
2932 be different if the terminator had transferred control to a different
2933 successor.
2934- Dependence is transitive.
2935
Richard Smith32dbdf62014-07-31 04:25:36 +00002936Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2937with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002938on a poison value has undefined behavior.
2939
2940Here are some examples:
2941
2942.. code-block:: llvm
2943
2944 entry:
2945 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2946 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002947 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002948 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2949
2950 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002951 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002952
2953 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2954
2955 %narrowaddr = bitcast i32* @g to i16*
2956 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002957 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2958 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002959
2960 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2961 br i1 %cmp, label %true, label %end ; Branch to either destination.
2962
2963 true:
2964 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2965 ; it has undefined behavior.
2966 br label %end
2967
2968 end:
2969 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2970 ; Both edges into this PHI are
2971 ; control-dependent on %cmp, so this
2972 ; always results in a poison value.
2973
2974 store volatile i32 0, i32* @g ; This would depend on the store in %true
2975 ; if %cmp is true, or the store in %entry
2976 ; otherwise, so this is undefined behavior.
2977
2978 br i1 %cmp, label %second_true, label %second_end
2979 ; The same branch again, but this time the
2980 ; true block doesn't have side effects.
2981
2982 second_true:
2983 ; No side effects!
2984 ret void
2985
2986 second_end:
2987 store volatile i32 0, i32* @g ; This time, the instruction always depends
2988 ; on the store in %end. Also, it is
2989 ; control-equivalent to %end, so this is
2990 ; well-defined (ignoring earlier undefined
2991 ; behavior in this example).
2992
2993.. _blockaddress:
2994
2995Addresses of Basic Blocks
2996-------------------------
2997
2998``blockaddress(@function, %block)``
2999
3000The '``blockaddress``' constant computes the address of the specified
3001basic block in the specified function, and always has an ``i8*`` type.
3002Taking the address of the entry block is illegal.
3003
3004This value only has defined behavior when used as an operand to the
3005':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3006against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003007undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003008no label is equal to the null pointer. This may be passed around as an
3009opaque pointer sized value as long as the bits are not inspected. This
3010allows ``ptrtoint`` and arithmetic to be performed on these values so
3011long as the original value is reconstituted before the ``indirectbr``
3012instruction.
3013
3014Finally, some targets may provide defined semantics when using the value
3015as the operand to an inline assembly, but that is target specific.
3016
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003017.. _constantexprs:
3018
Sean Silvab084af42012-12-07 10:36:55 +00003019Constant Expressions
3020--------------------
3021
3022Constant expressions are used to allow expressions involving other
3023constants to be used as constants. Constant expressions may be of any
3024:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3025that does not have side effects (e.g. load and call are not supported).
3026The following is the syntax for constant expressions:
3027
3028``trunc (CST to TYPE)``
3029 Truncate a constant to another type. The bit size of CST must be
3030 larger than the bit size of TYPE. Both types must be integers.
3031``zext (CST to TYPE)``
3032 Zero extend a constant to another type. The bit size of CST must be
3033 smaller than the bit size of TYPE. Both types must be integers.
3034``sext (CST to TYPE)``
3035 Sign extend a constant to another type. The bit size of CST must be
3036 smaller than the bit size of TYPE. Both types must be integers.
3037``fptrunc (CST to TYPE)``
3038 Truncate a floating point constant to another floating point type.
3039 The size of CST must be larger than the size of TYPE. Both types
3040 must be floating point.
3041``fpext (CST to TYPE)``
3042 Floating point extend a constant to another type. The size of CST
3043 must be smaller or equal to the size of TYPE. Both types must be
3044 floating point.
3045``fptoui (CST to TYPE)``
3046 Convert a floating point constant to the corresponding unsigned
3047 integer constant. TYPE must be a scalar or vector integer type. CST
3048 must be of scalar or vector floating point type. Both CST and TYPE
3049 must be scalars, or vectors of the same number of elements. If the
3050 value won't fit in the integer type, the results are undefined.
3051``fptosi (CST to TYPE)``
3052 Convert a floating point constant to the corresponding signed
3053 integer constant. TYPE must be a scalar or vector integer type. CST
3054 must be of scalar or vector floating point type. Both CST and TYPE
3055 must be scalars, or vectors of the same number of elements. If the
3056 value won't fit in the integer type, the results are undefined.
3057``uitofp (CST to TYPE)``
3058 Convert an unsigned integer constant to the corresponding floating
3059 point constant. TYPE must be a scalar or vector floating point type.
3060 CST must be of scalar or vector integer type. Both CST and TYPE must
3061 be scalars, or vectors of the same number of elements. If the value
3062 won't fit in the floating point type, the results are undefined.
3063``sitofp (CST to TYPE)``
3064 Convert a signed integer constant to the corresponding floating
3065 point constant. TYPE must be a scalar or vector floating point type.
3066 CST must be of scalar or vector integer type. Both CST and TYPE must
3067 be scalars, or vectors of the same number of elements. If the value
3068 won't fit in the floating point type, the results are undefined.
3069``ptrtoint (CST to TYPE)``
3070 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003071 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003072 pointer type. The ``CST`` value is zero extended, truncated, or
3073 unchanged to make it fit in ``TYPE``.
3074``inttoptr (CST to TYPE)``
3075 Convert an integer constant to a pointer constant. TYPE must be a
3076 pointer type. CST must be of integer type. The CST value is zero
3077 extended, truncated, or unchanged to make it fit in a pointer size.
3078 This one is *really* dangerous!
3079``bitcast (CST to TYPE)``
3080 Convert a constant, CST, to another TYPE. The constraints of the
3081 operands are the same as those for the :ref:`bitcast
3082 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003083``addrspacecast (CST to TYPE)``
3084 Convert a constant pointer or constant vector of pointer, CST, to another
3085 TYPE in a different address space. The constraints of the operands are the
3086 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003087``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003088 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3089 constants. As with the :ref:`getelementptr <i_getelementptr>`
3090 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003091 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003092``select (COND, VAL1, VAL2)``
3093 Perform the :ref:`select operation <i_select>` on constants.
3094``icmp COND (VAL1, VAL2)``
3095 Performs the :ref:`icmp operation <i_icmp>` on constants.
3096``fcmp COND (VAL1, VAL2)``
3097 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3098``extractelement (VAL, IDX)``
3099 Perform the :ref:`extractelement operation <i_extractelement>` on
3100 constants.
3101``insertelement (VAL, ELT, IDX)``
3102 Perform the :ref:`insertelement operation <i_insertelement>` on
3103 constants.
3104``shufflevector (VEC1, VEC2, IDXMASK)``
3105 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3106 constants.
3107``extractvalue (VAL, IDX0, IDX1, ...)``
3108 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3109 constants. The index list is interpreted in a similar manner as
3110 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3111 least one index value must be specified.
3112``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3113 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3114 The index list is interpreted in a similar manner as indices in a
3115 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3116 value must be specified.
3117``OPCODE (LHS, RHS)``
3118 Perform the specified operation of the LHS and RHS constants. OPCODE
3119 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3120 binary <bitwiseops>` operations. The constraints on operands are
3121 the same as those for the corresponding instruction (e.g. no bitwise
3122 operations on floating point values are allowed).
3123
3124Other Values
3125============
3126
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003127.. _inlineasmexprs:
3128
Sean Silvab084af42012-12-07 10:36:55 +00003129Inline Assembler Expressions
3130----------------------------
3131
3132LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003133Inline Assembly <moduleasm>`) through the use of a special value. This value
3134represents the inline assembler as a template string (containing the
3135instructions to emit), a list of operand constraints (stored as a string), a
3136flag that indicates whether or not the inline asm expression has side effects,
3137and a flag indicating whether the function containing the asm needs to align its
3138stack conservatively.
3139
3140The template string supports argument substitution of the operands using "``$``"
3141followed by a number, to indicate substitution of the given register/memory
3142location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3143be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3144operand (See :ref:`inline-asm-modifiers`).
3145
3146A literal "``$``" may be included by using "``$$``" in the template. To include
3147other special characters into the output, the usual "``\XX``" escapes may be
3148used, just as in other strings. Note that after template substitution, the
3149resulting assembly string is parsed by LLVM's integrated assembler unless it is
3150disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3151syntax known to LLVM.
3152
3153LLVM's support for inline asm is modeled closely on the requirements of Clang's
3154GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3155modifier codes listed here are similar or identical to those in GCC's inline asm
3156support. However, to be clear, the syntax of the template and constraint strings
3157described here is *not* the same as the syntax accepted by GCC and Clang, and,
3158while most constraint letters are passed through as-is by Clang, some get
3159translated to other codes when converting from the C source to the LLVM
3160assembly.
3161
3162An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003163
3164.. code-block:: llvm
3165
3166 i32 (i32) asm "bswap $0", "=r,r"
3167
3168Inline assembler expressions may **only** be used as the callee operand
3169of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3170Thus, typically we have:
3171
3172.. code-block:: llvm
3173
3174 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3175
3176Inline asms with side effects not visible in the constraint list must be
3177marked as having side effects. This is done through the use of the
3178'``sideeffect``' keyword, like so:
3179
3180.. code-block:: llvm
3181
3182 call void asm sideeffect "eieio", ""()
3183
3184In some cases inline asms will contain code that will not work unless
3185the stack is aligned in some way, such as calls or SSE instructions on
3186x86, yet will not contain code that does that alignment within the asm.
3187The compiler should make conservative assumptions about what the asm
3188might contain and should generate its usual stack alignment code in the
3189prologue if the '``alignstack``' keyword is present:
3190
3191.. code-block:: llvm
3192
3193 call void asm alignstack "eieio", ""()
3194
3195Inline asms also support using non-standard assembly dialects. The
3196assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3197the inline asm is using the Intel dialect. Currently, ATT and Intel are
3198the only supported dialects. An example is:
3199
3200.. code-block:: llvm
3201
3202 call void asm inteldialect "eieio", ""()
3203
3204If multiple keywords appear the '``sideeffect``' keyword must come
3205first, the '``alignstack``' keyword second and the '``inteldialect``'
3206keyword last.
3207
James Y Knightbc832ed2015-07-08 18:08:36 +00003208Inline Asm Constraint String
3209^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3210
3211The constraint list is a comma-separated string, each element containing one or
3212more constraint codes.
3213
3214For each element in the constraint list an appropriate register or memory
3215operand will be chosen, and it will be made available to assembly template
3216string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3217second, etc.
3218
3219There are three different types of constraints, which are distinguished by a
3220prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3221constraints must always be given in that order: outputs first, then inputs, then
3222clobbers. They cannot be intermingled.
3223
3224There are also three different categories of constraint codes:
3225
3226- Register constraint. This is either a register class, or a fixed physical
3227 register. This kind of constraint will allocate a register, and if necessary,
3228 bitcast the argument or result to the appropriate type.
3229- Memory constraint. This kind of constraint is for use with an instruction
3230 taking a memory operand. Different constraints allow for different addressing
3231 modes used by the target.
3232- Immediate value constraint. This kind of constraint is for an integer or other
3233 immediate value which can be rendered directly into an instruction. The
3234 various target-specific constraints allow the selection of a value in the
3235 proper range for the instruction you wish to use it with.
3236
3237Output constraints
3238""""""""""""""""""
3239
3240Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3241indicates that the assembly will write to this operand, and the operand will
3242then be made available as a return value of the ``asm`` expression. Output
3243constraints do not consume an argument from the call instruction. (Except, see
3244below about indirect outputs).
3245
3246Normally, it is expected that no output locations are written to by the assembly
3247expression until *all* of the inputs have been read. As such, LLVM may assign
3248the same register to an output and an input. If this is not safe (e.g. if the
3249assembly contains two instructions, where the first writes to one output, and
3250the second reads an input and writes to a second output), then the "``&``"
3251modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003252"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003253will not use the same register for any inputs (other than an input tied to this
3254output).
3255
3256Input constraints
3257"""""""""""""""""
3258
3259Input constraints do not have a prefix -- just the constraint codes. Each input
3260constraint will consume one argument from the call instruction. It is not
3261permitted for the asm to write to any input register or memory location (unless
3262that input is tied to an output). Note also that multiple inputs may all be
3263assigned to the same register, if LLVM can determine that they necessarily all
3264contain the same value.
3265
3266Instead of providing a Constraint Code, input constraints may also "tie"
3267themselves to an output constraint, by providing an integer as the constraint
3268string. Tied inputs still consume an argument from the call instruction, and
3269take up a position in the asm template numbering as is usual -- they will simply
3270be constrained to always use the same register as the output they've been tied
3271to. For example, a constraint string of "``=r,0``" says to assign a register for
3272output, and use that register as an input as well (it being the 0'th
3273constraint).
3274
3275It is permitted to tie an input to an "early-clobber" output. In that case, no
3276*other* input may share the same register as the input tied to the early-clobber
3277(even when the other input has the same value).
3278
3279You may only tie an input to an output which has a register constraint, not a
3280memory constraint. Only a single input may be tied to an output.
3281
3282There is also an "interesting" feature which deserves a bit of explanation: if a
3283register class constraint allocates a register which is too small for the value
3284type operand provided as input, the input value will be split into multiple
3285registers, and all of them passed to the inline asm.
3286
3287However, this feature is often not as useful as you might think.
3288
3289Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3290architectures that have instructions which operate on multiple consecutive
3291instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3292SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3293hardware then loads into both the named register, and the next register. This
3294feature of inline asm would not be useful to support that.)
3295
3296A few of the targets provide a template string modifier allowing explicit access
3297to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3298``D``). On such an architecture, you can actually access the second allocated
3299register (yet, still, not any subsequent ones). But, in that case, you're still
3300probably better off simply splitting the value into two separate operands, for
3301clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3302despite existing only for use with this feature, is not really a good idea to
3303use)
3304
3305Indirect inputs and outputs
3306"""""""""""""""""""""""""""
3307
3308Indirect output or input constraints can be specified by the "``*``" modifier
3309(which goes after the "``=``" in case of an output). This indicates that the asm
3310will write to or read from the contents of an *address* provided as an input
3311argument. (Note that in this way, indirect outputs act more like an *input* than
3312an output: just like an input, they consume an argument of the call expression,
3313rather than producing a return value. An indirect output constraint is an
3314"output" only in that the asm is expected to write to the contents of the input
3315memory location, instead of just read from it).
3316
3317This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3318address of a variable as a value.
3319
3320It is also possible to use an indirect *register* constraint, but only on output
3321(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3322value normally, and then, separately emit a store to the address provided as
3323input, after the provided inline asm. (It's not clear what value this
3324functionality provides, compared to writing the store explicitly after the asm
3325statement, and it can only produce worse code, since it bypasses many
3326optimization passes. I would recommend not using it.)
3327
3328
3329Clobber constraints
3330"""""""""""""""""""
3331
3332A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3333consume an input operand, nor generate an output. Clobbers cannot use any of the
3334general constraint code letters -- they may use only explicit register
3335constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3336"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3337memory locations -- not only the memory pointed to by a declared indirect
3338output.
3339
3340
3341Constraint Codes
3342""""""""""""""""
3343After a potential prefix comes constraint code, or codes.
3344
3345A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3346followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3347(e.g. "``{eax}``").
3348
3349The one and two letter constraint codes are typically chosen to be the same as
3350GCC's constraint codes.
3351
3352A single constraint may include one or more than constraint code in it, leaving
3353it up to LLVM to choose which one to use. This is included mainly for
3354compatibility with the translation of GCC inline asm coming from clang.
3355
3356There are two ways to specify alternatives, and either or both may be used in an
3357inline asm constraint list:
3358
33591) Append the codes to each other, making a constraint code set. E.g. "``im``"
3360 or "``{eax}m``". This means "choose any of the options in the set". The
3361 choice of constraint is made independently for each constraint in the
3362 constraint list.
3363
33642) Use "``|``" between constraint code sets, creating alternatives. Every
3365 constraint in the constraint list must have the same number of alternative
3366 sets. With this syntax, the same alternative in *all* of the items in the
3367 constraint list will be chosen together.
3368
3369Putting those together, you might have a two operand constraint string like
3370``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3371operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3372may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3373
3374However, the use of either of the alternatives features is *NOT* recommended, as
3375LLVM is not able to make an intelligent choice about which one to use. (At the
3376point it currently needs to choose, not enough information is available to do so
3377in a smart way.) Thus, it simply tries to make a choice that's most likely to
3378compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3379always choose to use memory, not registers). And, if given multiple registers,
3380or multiple register classes, it will simply choose the first one. (In fact, it
3381doesn't currently even ensure explicitly specified physical registers are
3382unique, so specifying multiple physical registers as alternatives, like
3383``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3384intended.)
3385
3386Supported Constraint Code List
3387""""""""""""""""""""""""""""""
3388
3389The constraint codes are, in general, expected to behave the same way they do in
3390GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3391inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3392and GCC likely indicates a bug in LLVM.
3393
3394Some constraint codes are typically supported by all targets:
3395
3396- ``r``: A register in the target's general purpose register class.
3397- ``m``: A memory address operand. It is target-specific what addressing modes
3398 are supported, typical examples are register, or register + register offset,
3399 or register + immediate offset (of some target-specific size).
3400- ``i``: An integer constant (of target-specific width). Allows either a simple
3401 immediate, or a relocatable value.
3402- ``n``: An integer constant -- *not* including relocatable values.
3403- ``s``: An integer constant, but allowing *only* relocatable values.
3404- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3405 useful to pass a label for an asm branch or call.
3406
3407 .. FIXME: but that surely isn't actually okay to jump out of an asm
3408 block without telling llvm about the control transfer???)
3409
3410- ``{register-name}``: Requires exactly the named physical register.
3411
3412Other constraints are target-specific:
3413
3414AArch64:
3415
3416- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3417- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3418 i.e. 0 to 4095 with optional shift by 12.
3419- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3420 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3421- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3422 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3423- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3424 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3425- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3426 32-bit register. This is a superset of ``K``: in addition to the bitmask
3427 immediate, also allows immediate integers which can be loaded with a single
3428 ``MOVZ`` or ``MOVL`` instruction.
3429- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3430 64-bit register. This is a superset of ``L``.
3431- ``Q``: Memory address operand must be in a single register (no
3432 offsets). (However, LLVM currently does this for the ``m`` constraint as
3433 well.)
3434- ``r``: A 32 or 64-bit integer register (W* or X*).
3435- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3436- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3437
3438AMDGPU:
3439
3440- ``r``: A 32 or 64-bit integer register.
3441- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3442- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3443
3444
3445All ARM modes:
3446
3447- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3448 operand. Treated the same as operand ``m``, at the moment.
3449
3450ARM and ARM's Thumb2 mode:
3451
3452- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3453- ``I``: An immediate integer valid for a data-processing instruction.
3454- ``J``: An immediate integer between -4095 and 4095.
3455- ``K``: An immediate integer whose bitwise inverse is valid for a
3456 data-processing instruction. (Can be used with template modifier "``B``" to
3457 print the inverted value).
3458- ``L``: An immediate integer whose negation is valid for a data-processing
3459 instruction. (Can be used with template modifier "``n``" to print the negated
3460 value).
3461- ``M``: A power of two or a integer between 0 and 32.
3462- ``N``: Invalid immediate constraint.
3463- ``O``: Invalid immediate constraint.
3464- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3465- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3466 as ``r``.
3467- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3468 invalid.
3469- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3470 ``d0-d31``, or ``q0-q15``.
3471- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3472 ``d0-d7``, or ``q0-q3``.
3473- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3474 ``s0-s31``.
3475
3476ARM's Thumb1 mode:
3477
3478- ``I``: An immediate integer between 0 and 255.
3479- ``J``: An immediate integer between -255 and -1.
3480- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3481 some amount.
3482- ``L``: An immediate integer between -7 and 7.
3483- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3484- ``N``: An immediate integer between 0 and 31.
3485- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3486- ``r``: A low 32-bit GPR register (``r0-r7``).
3487- ``l``: A low 32-bit GPR register (``r0-r7``).
3488- ``h``: A high GPR register (``r0-r7``).
3489- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3490 ``d0-d31``, or ``q0-q15``.
3491- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3492 ``d0-d7``, or ``q0-q3``.
3493- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3494 ``s0-s31``.
3495
3496
3497Hexagon:
3498
3499- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3500 at the moment.
3501- ``r``: A 32 or 64-bit register.
3502
3503MSP430:
3504
3505- ``r``: An 8 or 16-bit register.
3506
3507MIPS:
3508
3509- ``I``: An immediate signed 16-bit integer.
3510- ``J``: An immediate integer zero.
3511- ``K``: An immediate unsigned 16-bit integer.
3512- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3513- ``N``: An immediate integer between -65535 and -1.
3514- ``O``: An immediate signed 15-bit integer.
3515- ``P``: An immediate integer between 1 and 65535.
3516- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3517 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3518- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3519 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3520 ``m``.
3521- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3522 ``sc`` instruction on the given subtarget (details vary).
3523- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3524- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003525 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3526 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003527- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3528 ``25``).
3529- ``l``: The ``lo`` register, 32 or 64-bit.
3530- ``x``: Invalid.
3531
3532NVPTX:
3533
3534- ``b``: A 1-bit integer register.
3535- ``c`` or ``h``: A 16-bit integer register.
3536- ``r``: A 32-bit integer register.
3537- ``l`` or ``N``: A 64-bit integer register.
3538- ``f``: A 32-bit float register.
3539- ``d``: A 64-bit float register.
3540
3541
3542PowerPC:
3543
3544- ``I``: An immediate signed 16-bit integer.
3545- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3546- ``K``: An immediate unsigned 16-bit integer.
3547- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3548- ``M``: An immediate integer greater than 31.
3549- ``N``: An immediate integer that is an exact power of 2.
3550- ``O``: The immediate integer constant 0.
3551- ``P``: An immediate integer constant whose negation is a signed 16-bit
3552 constant.
3553- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3554 treated the same as ``m``.
3555- ``r``: A 32 or 64-bit integer register.
3556- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3557 ``R1-R31``).
3558- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3559 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3560- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3561 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3562 altivec vector register (``V0-V31``).
3563
3564 .. FIXME: is this a bug that v accepts QPX registers? I think this
3565 is supposed to only use the altivec vector registers?
3566
3567- ``y``: Condition register (``CR0-CR7``).
3568- ``wc``: An individual CR bit in a CR register.
3569- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3570 register set (overlapping both the floating-point and vector register files).
3571- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3572 set.
3573
3574Sparc:
3575
3576- ``I``: An immediate 13-bit signed integer.
3577- ``r``: A 32-bit integer register.
3578
3579SystemZ:
3580
3581- ``I``: An immediate unsigned 8-bit integer.
3582- ``J``: An immediate unsigned 12-bit integer.
3583- ``K``: An immediate signed 16-bit integer.
3584- ``L``: An immediate signed 20-bit integer.
3585- ``M``: An immediate integer 0x7fffffff.
3586- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3587 ``m``, at the moment.
3588- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3589- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3590 address context evaluates as zero).
3591- ``h``: A 32-bit value in the high part of a 64bit data register
3592 (LLVM-specific)
3593- ``f``: A 32, 64, or 128-bit floating point register.
3594
3595X86:
3596
3597- ``I``: An immediate integer between 0 and 31.
3598- ``J``: An immediate integer between 0 and 64.
3599- ``K``: An immediate signed 8-bit integer.
3600- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3601 0xffffffff.
3602- ``M``: An immediate integer between 0 and 3.
3603- ``N``: An immediate unsigned 8-bit integer.
3604- ``O``: An immediate integer between 0 and 127.
3605- ``e``: An immediate 32-bit signed integer.
3606- ``Z``: An immediate 32-bit unsigned integer.
3607- ``o``, ``v``: Treated the same as ``m``, at the moment.
3608- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3609 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3610 registers, and on X86-64, it is all of the integer registers.
3611- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3612 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3613- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3614- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3615 existed since i386, and can be accessed without the REX prefix.
3616- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3617- ``y``: A 64-bit MMX register, if MMX is enabled.
3618- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3619 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3620 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3621 512-bit vector operand in an AVX512 register, Otherwise, an error.
3622- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3623- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3624 32-bit mode, a 64-bit integer operand will get split into two registers). It
3625 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3626 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3627 you're better off splitting it yourself, before passing it to the asm
3628 statement.
3629
3630XCore:
3631
3632- ``r``: A 32-bit integer register.
3633
3634
3635.. _inline-asm-modifiers:
3636
3637Asm template argument modifiers
3638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3639
3640In the asm template string, modifiers can be used on the operand reference, like
3641"``${0:n}``".
3642
3643The modifiers are, in general, expected to behave the same way they do in
3644GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3645inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3646and GCC likely indicates a bug in LLVM.
3647
3648Target-independent:
3649
Sean Silvaa1190322015-08-06 22:56:48 +00003650- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003651 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3652- ``n``: Negate and print immediate integer constant unadorned, without the
3653 target-specific immediate punctuation (e.g. no ``$`` prefix).
3654- ``l``: Print as an unadorned label, without the target-specific label
3655 punctuation (e.g. no ``$`` prefix).
3656
3657AArch64:
3658
3659- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3660 instead of ``x30``, print ``w30``.
3661- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3662- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3663 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3664 ``v*``.
3665
3666AMDGPU:
3667
3668- ``r``: No effect.
3669
3670ARM:
3671
3672- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3673 register).
3674- ``P``: No effect.
3675- ``q``: No effect.
3676- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3677 as ``d4[1]`` instead of ``s9``)
3678- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3679 prefix.
3680- ``L``: Print the low 16-bits of an immediate integer constant.
3681- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3682 register operands subsequent to the specified one (!), so use carefully.
3683- ``Q``: Print the low-order register of a register-pair, or the low-order
3684 register of a two-register operand.
3685- ``R``: Print the high-order register of a register-pair, or the high-order
3686 register of a two-register operand.
3687- ``H``: Print the second register of a register-pair. (On a big-endian system,
3688 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3689 to ``R``.)
3690
3691 .. FIXME: H doesn't currently support printing the second register
3692 of a two-register operand.
3693
3694- ``e``: Print the low doubleword register of a NEON quad register.
3695- ``f``: Print the high doubleword register of a NEON quad register.
3696- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3697 adornment.
3698
3699Hexagon:
3700
3701- ``L``: Print the second register of a two-register operand. Requires that it
3702 has been allocated consecutively to the first.
3703
3704 .. FIXME: why is it restricted to consecutive ones? And there's
3705 nothing that ensures that happens, is there?
3706
3707- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3708 nothing. Used to print 'addi' vs 'add' instructions.
3709
3710MSP430:
3711
3712No additional modifiers.
3713
3714MIPS:
3715
3716- ``X``: Print an immediate integer as hexadecimal
3717- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3718- ``d``: Print an immediate integer as decimal.
3719- ``m``: Subtract one and print an immediate integer as decimal.
3720- ``z``: Print $0 if an immediate zero, otherwise print normally.
3721- ``L``: Print the low-order register of a two-register operand, or prints the
3722 address of the low-order word of a double-word memory operand.
3723
3724 .. FIXME: L seems to be missing memory operand support.
3725
3726- ``M``: Print the high-order register of a two-register operand, or prints the
3727 address of the high-order word of a double-word memory operand.
3728
3729 .. FIXME: M seems to be missing memory operand support.
3730
3731- ``D``: Print the second register of a two-register operand, or prints the
3732 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3733 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3734 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003735- ``w``: No effect. Provided for compatibility with GCC which requires this
3736 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3737 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003738
3739NVPTX:
3740
3741- ``r``: No effect.
3742
3743PowerPC:
3744
3745- ``L``: Print the second register of a two-register operand. Requires that it
3746 has been allocated consecutively to the first.
3747
3748 .. FIXME: why is it restricted to consecutive ones? And there's
3749 nothing that ensures that happens, is there?
3750
3751- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3752 nothing. Used to print 'addi' vs 'add' instructions.
3753- ``y``: For a memory operand, prints formatter for a two-register X-form
3754 instruction. (Currently always prints ``r0,OPERAND``).
3755- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3756 otherwise. (NOTE: LLVM does not support update form, so this will currently
3757 always print nothing)
3758- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3759 not support indexed form, so this will currently always print nothing)
3760
3761Sparc:
3762
3763- ``r``: No effect.
3764
3765SystemZ:
3766
3767SystemZ implements only ``n``, and does *not* support any of the other
3768target-independent modifiers.
3769
3770X86:
3771
3772- ``c``: Print an unadorned integer or symbol name. (The latter is
3773 target-specific behavior for this typically target-independent modifier).
3774- ``A``: Print a register name with a '``*``' before it.
3775- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3776 operand.
3777- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3778 memory operand.
3779- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3780 operand.
3781- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3782 operand.
3783- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3784 available, otherwise the 32-bit register name; do nothing on a memory operand.
3785- ``n``: Negate and print an unadorned integer, or, for operands other than an
3786 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3787 the operand. (The behavior for relocatable symbol expressions is a
3788 target-specific behavior for this typically target-independent modifier)
3789- ``H``: Print a memory reference with additional offset +8.
3790- ``P``: Print a memory reference or operand for use as the argument of a call
3791 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3792
3793XCore:
3794
3795No additional modifiers.
3796
3797
Sean Silvab084af42012-12-07 10:36:55 +00003798Inline Asm Metadata
3799^^^^^^^^^^^^^^^^^^^
3800
3801The call instructions that wrap inline asm nodes may have a
3802"``!srcloc``" MDNode attached to it that contains a list of constant
3803integers. If present, the code generator will use the integer as the
3804location cookie value when report errors through the ``LLVMContext``
3805error reporting mechanisms. This allows a front-end to correlate backend
3806errors that occur with inline asm back to the source code that produced
3807it. For example:
3808
3809.. code-block:: llvm
3810
3811 call void asm sideeffect "something bad", ""(), !srcloc !42
3812 ...
3813 !42 = !{ i32 1234567 }
3814
3815It is up to the front-end to make sense of the magic numbers it places
3816in the IR. If the MDNode contains multiple constants, the code generator
3817will use the one that corresponds to the line of the asm that the error
3818occurs on.
3819
3820.. _metadata:
3821
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003822Metadata
3823========
Sean Silvab084af42012-12-07 10:36:55 +00003824
3825LLVM IR allows metadata to be attached to instructions in the program
3826that can convey extra information about the code to the optimizers and
3827code generator. One example application of metadata is source-level
3828debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003829
Sean Silvaa1190322015-08-06 22:56:48 +00003830Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003831``call`` instruction, it uses the ``metadata`` type.
3832
3833All metadata are identified in syntax by a exclamation point ('``!``').
3834
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003835.. _metadata-string:
3836
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003837Metadata Nodes and Metadata Strings
3838-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003839
3840A metadata string is a string surrounded by double quotes. It can
3841contain any character by escaping non-printable characters with
3842"``\xx``" where "``xx``" is the two digit hex code. For example:
3843"``!"test\00"``".
3844
3845Metadata nodes are represented with notation similar to structure
3846constants (a comma separated list of elements, surrounded by braces and
3847preceded by an exclamation point). Metadata nodes can have any values as
3848their operand. For example:
3849
3850.. code-block:: llvm
3851
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003852 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003853
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003854Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3855
3856.. code-block:: llvm
3857
3858 !0 = distinct !{!"test\00", i32 10}
3859
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003860``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003861content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003862when metadata operands change.
3863
Sean Silvab084af42012-12-07 10:36:55 +00003864A :ref:`named metadata <namedmetadatastructure>` is a collection of
3865metadata nodes, which can be looked up in the module symbol table. For
3866example:
3867
3868.. code-block:: llvm
3869
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003870 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003871
3872Metadata can be used as function arguments. Here ``llvm.dbg.value``
3873function is using two metadata arguments:
3874
3875.. code-block:: llvm
3876
3877 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3878
Peter Collingbourne50108682015-11-06 02:41:02 +00003879Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3880to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003881
3882.. code-block:: llvm
3883
3884 %indvar.next = add i64 %indvar, 1, !dbg !21
3885
Peter Collingbourne50108682015-11-06 02:41:02 +00003886Metadata can also be attached to a function definition. Here metadata ``!22``
3887is attached to the ``foo`` function using the ``!dbg`` identifier:
3888
3889.. code-block:: llvm
3890
3891 define void @foo() !dbg !22 {
3892 ret void
3893 }
3894
Sean Silvab084af42012-12-07 10:36:55 +00003895More information about specific metadata nodes recognized by the
3896optimizers and code generator is found below.
3897
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003898.. _specialized-metadata:
3899
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003900Specialized Metadata Nodes
3901^^^^^^^^^^^^^^^^^^^^^^^^^^
3902
3903Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003904to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003905order.
3906
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003907These aren't inherently debug info centric, but currently all the specialized
3908metadata nodes are related to debug info.
3909
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003910.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003911
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003912DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003913"""""""""""""
3914
Sean Silvaa1190322015-08-06 22:56:48 +00003915``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003916``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3917fields are tuples containing the debug info to be emitted along with the compile
3918unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003919references to them from instructions).
3920
3921.. code-block:: llvm
3922
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003923 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003924 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003925 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003926 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003927 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003928
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003929Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003930specific compilation unit. File descriptors are defined using this scope.
3931These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003932keep track of subprograms, global variables, type information, and imported
3933entities (declarations and namespaces).
3934
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003935.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003936
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003937DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003938""""""
3939
Sean Silvaa1190322015-08-06 22:56:48 +00003940``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003941
3942.. code-block:: llvm
3943
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003944 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003945
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003946Files are sometimes used in ``scope:`` fields, and are the only valid target
3947for ``file:`` fields.
3948
Michael Kuperstein605308a2015-05-14 10:58:59 +00003949.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003950
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003951DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003952"""""""""""
3953
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003954``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003955``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003956
3957.. code-block:: llvm
3958
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003959 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003960 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003961 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003962
Sean Silvaa1190322015-08-06 22:56:48 +00003963The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003964following:
3965
3966.. code-block:: llvm
3967
3968 DW_ATE_address = 1
3969 DW_ATE_boolean = 2
3970 DW_ATE_float = 4
3971 DW_ATE_signed = 5
3972 DW_ATE_signed_char = 6
3973 DW_ATE_unsigned = 7
3974 DW_ATE_unsigned_char = 8
3975
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003976.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003977
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003978DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003979""""""""""""""""
3980
Sean Silvaa1190322015-08-06 22:56:48 +00003981``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003982refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003983types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003984represents a function with no return value (such as ``void foo() {}`` in C++).
3985
3986.. code-block:: llvm
3987
3988 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3989 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003990 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003991
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003992.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003993
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003994DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003995"""""""""""""
3996
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003997``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003998qualified types.
3999
4000.. code-block:: llvm
4001
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004002 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004003 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004004 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004005 align: 32)
4006
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004007The following ``tag:`` values are valid:
4008
4009.. code-block:: llvm
4010
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004011 DW_TAG_member = 13
4012 DW_TAG_pointer_type = 15
4013 DW_TAG_reference_type = 16
4014 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004015 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004016 DW_TAG_ptr_to_member_type = 31
4017 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004018 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004019 DW_TAG_volatile_type = 53
4020 DW_TAG_restrict_type = 55
4021
4022``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004023<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004024``offset:`` is the member's bit offset. If the composite type has a non-empty
4025``identifier:``, then it respects ODR rules. In that case, the ``scope:``
4026reference will be a :ref:`metadata string <metadata-string>`, and the member
4027will be uniqued solely based on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004028
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004029``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4030field of :ref:`composite types <DICompositeType>` to describe parents and
4031friends.
4032
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004033``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4034
4035``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
4036``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
4037``baseType:``.
4038
4039Note that the ``void *`` type is expressed as a type derived from NULL.
4040
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004041.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004042
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004043DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044"""""""""""""""
4045
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004046``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004047structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048
4049If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00004050identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004051can refer to composite types indirectly via a :ref:`metadata string
4052<metadata-string>` that matches their identifier.
4053
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004054For a given ``identifier:``, there should only be a single composite type that
4055does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4056together will unique such definitions at parse time via the ``identifier:``
4057field, even if the nodes are ``distinct``.
4058
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004059.. code-block:: llvm
4060
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004061 !0 = !DIEnumerator(name: "SixKind", value: 7)
4062 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4063 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4064 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004065 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4066 elements: !{!0, !1, !2})
4067
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004068The following ``tag:`` values are valid:
4069
4070.. code-block:: llvm
4071
4072 DW_TAG_array_type = 1
4073 DW_TAG_class_type = 2
4074 DW_TAG_enumeration_type = 4
4075 DW_TAG_structure_type = 19
4076 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004077
4078For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004079descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004080level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004081array type is a native packed vector.
4082
4083For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004084descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004085value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004086``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004087
4088For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4089``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004090<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4091``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4092``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004093
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004094.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004095
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004096DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004097""""""""""
4098
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004099``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004100:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004101
4102.. code-block:: llvm
4103
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004104 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4105 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4106 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004107
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004108.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004109
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004110DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004111""""""""""""
4112
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004113``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4114variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004115
4116.. code-block:: llvm
4117
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004118 !0 = !DIEnumerator(name: "SixKind", value: 7)
4119 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4120 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004121
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004122DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004123"""""""""""""""""""""""
4124
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004125``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004126language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004127:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004128
4129.. code-block:: llvm
4130
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004131 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004132
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004133DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004134""""""""""""""""""""""""
4135
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004136``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004137language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004138but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004139``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004140:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004141
4142.. code-block:: llvm
4143
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004144 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004145
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004146DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004147"""""""""""
4148
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004149``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004150
4151.. code-block:: llvm
4152
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004153 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004154
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004155DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004156""""""""""""""""
4157
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004158``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004159
4160.. code-block:: llvm
4161
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004162 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004163 file: !2, line: 7, type: !3, isLocal: true,
4164 isDefinition: false, variable: i32* @foo,
4165 declaration: !4)
4166
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004167All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004168:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004169
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004170.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004171
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004172DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004173""""""""""""
4174
Peter Collingbourne50108682015-11-06 02:41:02 +00004175``DISubprogram`` nodes represent functions from the source language. A
4176``DISubprogram`` may be attached to a function definition using ``!dbg``
4177metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4178that must be retained, even if their IR counterparts are optimized out of
4179the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004180
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004181When ``isDefinition: false``, subprograms describe a declaration in the type
4182tree as opposed to a definition of a funciton. If the scope is a
4183:ref:`metadata string <metadata-string>` then the composite type follows ODR
4184rules, and the subprogram declaration is uniqued based only on its
4185``linkageName:`` and ``scope:``.
4186
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004187.. code-block:: llvm
4188
Peter Collingbourne50108682015-11-06 02:41:02 +00004189 define void @_Z3foov() !dbg !0 {
4190 ...
4191 }
4192
4193 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4194 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004195 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004196 containingType: !4,
4197 virtuality: DW_VIRTUALITY_pure_virtual,
4198 virtualIndex: 10, flags: DIFlagPrototyped,
4199 isOptimized: true, templateParams: !5,
4200 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004201
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004202.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004203
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004204DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004205""""""""""""""
4206
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004207``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004208<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004209two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004210fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004211
4212.. code-block:: llvm
4213
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004214 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004215
4216Usually lexical blocks are ``distinct`` to prevent node merging based on
4217operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004218
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004219.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004220
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004221DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004222""""""""""""""""""
4223
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004224``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004225:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004226indicate textual inclusion, or the ``discriminator:`` field can be used to
4227discriminate between control flow within a single block in the source language.
4228
4229.. code-block:: llvm
4230
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004231 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4232 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4233 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004234
Michael Kuperstein605308a2015-05-14 10:58:59 +00004235.. _DILocation:
4236
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004237DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004238""""""""""
4239
Sean Silvaa1190322015-08-06 22:56:48 +00004240``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004241mandatory, and points at an :ref:`DILexicalBlockFile`, an
4242:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004243
4244.. code-block:: llvm
4245
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004246 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004247
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004248.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004249
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004250DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004251"""""""""""""""
4252
Sean Silvaa1190322015-08-06 22:56:48 +00004253``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004254the ``arg:`` field is set to non-zero, then this variable is a subprogram
4255parameter, and it will be included in the ``variables:`` field of its
4256:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004257
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004258.. code-block:: llvm
4259
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004260 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4261 type: !3, flags: DIFlagArtificial)
4262 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4263 type: !3)
4264 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004265
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004266DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004267""""""""""""
4268
Sean Silvaa1190322015-08-06 22:56:48 +00004269``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004270:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4271describe how the referenced LLVM variable relates to the source language
4272variable.
4273
4274The current supported vocabulary is limited:
4275
4276- ``DW_OP_deref`` dereferences the working expression.
4277- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4278- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4279 here, respectively) of the variable piece from the working expression.
4280
4281.. code-block:: llvm
4282
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004283 !0 = !DIExpression(DW_OP_deref)
4284 !1 = !DIExpression(DW_OP_plus, 3)
4285 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4286 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004287
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004288DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004289""""""""""""""
4290
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004291``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004292
4293.. code-block:: llvm
4294
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004295 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004296 getter: "getFoo", attributes: 7, type: !2)
4297
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004298DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004299""""""""""""""""
4300
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004301``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004302compile unit.
4303
4304.. code-block:: llvm
4305
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004306 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004307 entity: !1, line: 7)
4308
Amjad Abouda9bcf162015-12-10 12:56:35 +00004309DIMacro
4310"""""""
4311
4312``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4313The ``name:`` field is the macro identifier, followed by macro parameters when
4314definining a function-like macro, and the ``value`` field is the token-string
4315used to expand the macro identifier.
4316
4317.. code-block:: llvm
4318
4319 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4320 value: "((x) + 1)")
4321 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4322
4323DIMacroFile
4324"""""""""""
4325
4326``DIMacroFile`` nodes represent inclusion of source files.
4327The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4328appear in the included source file.
4329
4330.. code-block:: llvm
4331
4332 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4333 nodes: !3)
4334
Sean Silvab084af42012-12-07 10:36:55 +00004335'``tbaa``' Metadata
4336^^^^^^^^^^^^^^^^^^^
4337
4338In LLVM IR, memory does not have types, so LLVM's own type system is not
4339suitable for doing TBAA. Instead, metadata is added to the IR to
4340describe a type system of a higher level language. This can be used to
4341implement typical C/C++ TBAA, but it can also be used to implement
4342custom alias analysis behavior for other languages.
4343
4344The current metadata format is very simple. TBAA metadata nodes have up
4345to three fields, e.g.:
4346
4347.. code-block:: llvm
4348
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004349 !0 = !{ !"an example type tree" }
4350 !1 = !{ !"int", !0 }
4351 !2 = !{ !"float", !0 }
4352 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004353
4354The first field is an identity field. It can be any value, usually a
4355metadata string, which uniquely identifies the type. The most important
4356name in the tree is the name of the root node. Two trees with different
4357root node names are entirely disjoint, even if they have leaves with
4358common names.
4359
4360The second field identifies the type's parent node in the tree, or is
4361null or omitted for a root node. A type is considered to alias all of
4362its descendants and all of its ancestors in the tree. Also, a type is
4363considered to alias all types in other trees, so that bitcode produced
4364from multiple front-ends is handled conservatively.
4365
4366If the third field is present, it's an integer which if equal to 1
4367indicates that the type is "constant" (meaning
4368``pointsToConstantMemory`` should return true; see `other useful
4369AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4370
4371'``tbaa.struct``' Metadata
4372^^^^^^^^^^^^^^^^^^^^^^^^^^
4373
4374The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4375aggregate assignment operations in C and similar languages, however it
4376is defined to copy a contiguous region of memory, which is more than
4377strictly necessary for aggregate types which contain holes due to
4378padding. Also, it doesn't contain any TBAA information about the fields
4379of the aggregate.
4380
4381``!tbaa.struct`` metadata can describe which memory subregions in a
4382memcpy are padding and what the TBAA tags of the struct are.
4383
4384The current metadata format is very simple. ``!tbaa.struct`` metadata
4385nodes are a list of operands which are in conceptual groups of three.
4386For each group of three, the first operand gives the byte offset of a
4387field in bytes, the second gives its size in bytes, and the third gives
4388its tbaa tag. e.g.:
4389
4390.. code-block:: llvm
4391
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004392 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004393
4394This describes a struct with two fields. The first is at offset 0 bytes
4395with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4396and has size 4 bytes and has tbaa tag !2.
4397
4398Note that the fields need not be contiguous. In this example, there is a
43994 byte gap between the two fields. This gap represents padding which
4400does not carry useful data and need not be preserved.
4401
Hal Finkel94146652014-07-24 14:25:39 +00004402'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004403^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004404
4405``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4406noalias memory-access sets. This means that some collection of memory access
4407instructions (loads, stores, memory-accessing calls, etc.) that carry
4408``noalias`` metadata can specifically be specified not to alias with some other
4409collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004410Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004411a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004412of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004413subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004414instruction's ``noalias`` list, then the two memory accesses are assumed not to
4415alias.
Hal Finkel94146652014-07-24 14:25:39 +00004416
Hal Finkel029cde62014-07-25 15:50:02 +00004417The metadata identifying each domain is itself a list containing one or two
4418entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004419string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004420self-reference can be used to create globally unique domain names. A
4421descriptive string may optionally be provided as a second list entry.
4422
4423The metadata identifying each scope is also itself a list containing two or
4424three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004425is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004426self-reference can be used to create globally unique scope names. A metadata
4427reference to the scope's domain is the second entry. A descriptive string may
4428optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004429
4430For example,
4431
4432.. code-block:: llvm
4433
Hal Finkel029cde62014-07-25 15:50:02 +00004434 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004435 !0 = !{!0}
4436 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004437
Hal Finkel029cde62014-07-25 15:50:02 +00004438 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004439 !2 = !{!2, !0}
4440 !3 = !{!3, !0}
4441 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004442
Hal Finkel029cde62014-07-25 15:50:02 +00004443 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004444 !5 = !{!4} ; A list containing only scope !4
4445 !6 = !{!4, !3, !2}
4446 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004447
4448 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004449 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004450 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004451
Hal Finkel029cde62014-07-25 15:50:02 +00004452 ; These two instructions also don't alias (for domain !1, the set of scopes
4453 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004454 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004455 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004456
Adam Nemet0a8416f2015-05-11 08:30:28 +00004457 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004458 ; the !noalias list is not a superset of, or equal to, the scopes in the
4459 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004460 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004461 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004462
Sean Silvab084af42012-12-07 10:36:55 +00004463'``fpmath``' Metadata
4464^^^^^^^^^^^^^^^^^^^^^
4465
4466``fpmath`` metadata may be attached to any instruction of floating point
4467type. It can be used to express the maximum acceptable error in the
4468result of that instruction, in ULPs, thus potentially allowing the
4469compiler to use a more efficient but less accurate method of computing
4470it. ULP is defined as follows:
4471
4472 If ``x`` is a real number that lies between two finite consecutive
4473 floating-point numbers ``a`` and ``b``, without being equal to one
4474 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4475 distance between the two non-equal finite floating-point numbers
4476 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4477
4478The metadata node shall consist of a single positive floating point
4479number representing the maximum relative error, for example:
4480
4481.. code-block:: llvm
4482
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004483 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004484
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004485.. _range-metadata:
4486
Sean Silvab084af42012-12-07 10:36:55 +00004487'``range``' Metadata
4488^^^^^^^^^^^^^^^^^^^^
4489
Jingyue Wu37fcb592014-06-19 16:50:16 +00004490``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4491integer types. It expresses the possible ranges the loaded value or the value
4492returned by the called function at this call site is in. The ranges are
4493represented with a flattened list of integers. The loaded value or the value
4494returned is known to be in the union of the ranges defined by each consecutive
4495pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004496
4497- The type must match the type loaded by the instruction.
4498- The pair ``a,b`` represents the range ``[a,b)``.
4499- Both ``a`` and ``b`` are constants.
4500- The range is allowed to wrap.
4501- The range should not represent the full or empty set. That is,
4502 ``a!=b``.
4503
4504In addition, the pairs must be in signed order of the lower bound and
4505they must be non-contiguous.
4506
4507Examples:
4508
4509.. code-block:: llvm
4510
David Blaikiec7aabbb2015-03-04 22:06:14 +00004511 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4512 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004513 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4514 %d = invoke i8 @bar() to label %cont
4515 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004516 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004517 !0 = !{ i8 0, i8 2 }
4518 !1 = !{ i8 255, i8 2 }
4519 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4520 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004521
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004522'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004523^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004524
4525``unpredictable`` metadata may be attached to any branch or switch
4526instruction. It can be used to express the unpredictability of control
4527flow. Similar to the llvm.expect intrinsic, it may be used to alter
4528optimizations related to compare and branch instructions. The metadata
4529is treated as a boolean value; if it exists, it signals that the branch
4530or switch that it is attached to is completely unpredictable.
4531
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004532'``llvm.loop``'
4533^^^^^^^^^^^^^^^
4534
4535It is sometimes useful to attach information to loop constructs. Currently,
4536loop metadata is implemented as metadata attached to the branch instruction
4537in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004538guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004539specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004540
4541The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004542itself to avoid merging it with any other identifier metadata, e.g.,
4543during module linkage or function inlining. That is, each loop should refer
4544to their own identification metadata even if they reside in separate functions.
4545The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004546constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004547
4548.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004549
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004550 !0 = !{!0}
4551 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004552
Mark Heffernan893752a2014-07-18 19:24:51 +00004553The loop identifier metadata can be used to specify additional
4554per-loop metadata. Any operands after the first operand can be treated
4555as user-defined metadata. For example the ``llvm.loop.unroll.count``
4556suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004557
Paul Redmond5fdf8362013-05-28 20:00:34 +00004558.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004559
Paul Redmond5fdf8362013-05-28 20:00:34 +00004560 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4561 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004562 !0 = !{!0, !1}
4563 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004564
Mark Heffernan9d20e422014-07-21 23:11:03 +00004565'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4566^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004567
Mark Heffernan9d20e422014-07-21 23:11:03 +00004568Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4569used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004570vectorization width and interleave count. These metadata should be used in
4571conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004572``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4573optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004574it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004575which contains information about loop-carried memory dependencies can be helpful
4576in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004577
Mark Heffernan9d20e422014-07-21 23:11:03 +00004578'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4580
Mark Heffernan9d20e422014-07-21 23:11:03 +00004581This metadata suggests an interleave count to the loop interleaver.
4582The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004583second operand is an integer specifying the interleave count. For
4584example:
4585
4586.. code-block:: llvm
4587
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004588 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004589
Mark Heffernan9d20e422014-07-21 23:11:03 +00004590Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004591multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004592then the interleave count will be determined automatically.
4593
4594'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004596
4597This metadata selectively enables or disables vectorization for the loop. The
4598first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004599is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000046000 disables vectorization:
4601
4602.. code-block:: llvm
4603
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004604 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4605 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004606
4607'``llvm.loop.vectorize.width``' Metadata
4608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4609
4610This metadata sets the target width of the vectorizer. The first
4611operand is the string ``llvm.loop.vectorize.width`` and the second
4612operand is an integer specifying the width. For example:
4613
4614.. code-block:: llvm
4615
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004616 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004617
4618Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004619vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000046200 or if the loop does not have this metadata the width will be
4621determined automatically.
4622
4623'``llvm.loop.unroll``'
4624^^^^^^^^^^^^^^^^^^^^^^
4625
4626Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4627optimization hints such as the unroll factor. ``llvm.loop.unroll``
4628metadata should be used in conjunction with ``llvm.loop`` loop
4629identification metadata. The ``llvm.loop.unroll`` metadata are only
4630optimization hints and the unrolling will only be performed if the
4631optimizer believes it is safe to do so.
4632
Mark Heffernan893752a2014-07-18 19:24:51 +00004633'``llvm.loop.unroll.count``' Metadata
4634^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4635
4636This metadata suggests an unroll factor to the loop unroller. The
4637first operand is the string ``llvm.loop.unroll.count`` and the second
4638operand is a positive integer specifying the unroll factor. For
4639example:
4640
4641.. code-block:: llvm
4642
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004643 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004644
4645If the trip count of the loop is less than the unroll count the loop
4646will be partially unrolled.
4647
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004648'``llvm.loop.unroll.disable``' Metadata
4649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4650
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004651This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004652which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004653
4654.. code-block:: llvm
4655
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004656 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004657
Kevin Qin715b01e2015-03-09 06:14:18 +00004658'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004660
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004661This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004662operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004663
4664.. code-block:: llvm
4665
4666 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4667
Mark Heffernan89391542015-08-10 17:28:08 +00004668'``llvm.loop.unroll.enable``' Metadata
4669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4670
4671This metadata suggests that the loop should be fully unrolled if the trip count
4672is known at compile time and partially unrolled if the trip count is not known
4673at compile time. The metadata has a single operand which is the string
4674``llvm.loop.unroll.enable``. For example:
4675
4676.. code-block:: llvm
4677
4678 !0 = !{!"llvm.loop.unroll.enable"}
4679
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004680'``llvm.loop.unroll.full``' Metadata
4681^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4682
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004683This metadata suggests that the loop should be unrolled fully. The
4684metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004685For example:
4686
4687.. code-block:: llvm
4688
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004689 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004690
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004691'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004693
4694This metadata indicates that the loop should not be versioned for the purpose
4695of enabling loop-invariant code motion (LICM). The metadata has a single operand
4696which is the string ``llvm.loop.licm_versioning.disable``. For example:
4697
4698.. code-block:: llvm
4699
4700 !0 = !{!"llvm.loop.licm_versioning.disable"}
4701
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004702'``llvm.mem``'
4703^^^^^^^^^^^^^^^
4704
4705Metadata types used to annotate memory accesses with information helpful
4706for optimizations are prefixed with ``llvm.mem``.
4707
4708'``llvm.mem.parallel_loop_access``' Metadata
4709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4710
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004711The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4712or metadata containing a list of loop identifiers for nested loops.
4713The metadata is attached to memory accessing instructions and denotes that
4714no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004715with the same loop identifier.
4716
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004717Precisely, given two instructions ``m1`` and ``m2`` that both have the
4718``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4719set of loops associated with that metadata, respectively, then there is no loop
4720carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004721``L2``.
4722
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004723As a special case, if all memory accessing instructions in a loop have
4724``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4725loop has no loop carried memory dependences and is considered to be a parallel
4726loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004727
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004728Note that if not all memory access instructions have such metadata referring to
4729the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004730memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004731safe mechanism, this causes loops that were originally parallel to be considered
4732sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004733insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004734
4735Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004736both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004737metadata types that refer to the same loop identifier metadata.
4738
4739.. code-block:: llvm
4740
4741 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004742 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004743 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004744 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004745 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004746 ...
4747 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004748
4749 for.end:
4750 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004751 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004752
4753It is also possible to have nested parallel loops. In that case the
4754memory accesses refer to a list of loop identifier metadata nodes instead of
4755the loop identifier metadata node directly:
4756
4757.. code-block:: llvm
4758
4759 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004760 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004761 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004762 ...
4763 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004764
4765 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004766 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004767 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004768 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004769 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004770 ...
4771 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004772
4773 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004774 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004775 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004776 ...
4777 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004778
4779 outer.for.end: ; preds = %for.body
4780 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004781 !0 = !{!1, !2} ; a list of loop identifiers
4782 !1 = !{!1} ; an identifier for the inner loop
4783 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004784
Peter Collingbournee6909c82015-02-20 20:30:47 +00004785'``llvm.bitsets``'
4786^^^^^^^^^^^^^^^^^^
4787
4788The ``llvm.bitsets`` global metadata is used to implement
4789:doc:`bitsets <BitSets>`.
4790
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004791'``invariant.group``' Metadata
4792^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4793
4794The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4795The existence of the ``invariant.group`` metadata on the instruction tells
4796the optimizer that every ``load`` and ``store`` to the same pointer operand
4797within the same invariant group can be assumed to load or store the same
4798value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4799when two pointers are considered the same).
4800
4801Examples:
4802
4803.. code-block:: llvm
4804
4805 @unknownPtr = external global i8
4806 ...
4807 %ptr = alloca i8
4808 store i8 42, i8* %ptr, !invariant.group !0
4809 call void @foo(i8* %ptr)
4810
4811 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4812 call void @foo(i8* %ptr)
4813 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4814
4815 %newPtr = call i8* @getPointer(i8* %ptr)
4816 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4817
4818 %unknownValue = load i8, i8* @unknownPtr
4819 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4820
4821 call void @foo(i8* %ptr)
4822 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4823 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4824
4825 ...
4826 declare void @foo(i8*)
4827 declare i8* @getPointer(i8*)
4828 declare i8* @llvm.invariant.group.barrier(i8*)
4829
4830 !0 = !{!"magic ptr"}
4831 !1 = !{!"other ptr"}
4832
4833
4834
Sean Silvab084af42012-12-07 10:36:55 +00004835Module Flags Metadata
4836=====================
4837
4838Information about the module as a whole is difficult to convey to LLVM's
4839subsystems. The LLVM IR isn't sufficient to transmit this information.
4840The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004841this. These flags are in the form of key / value pairs --- much like a
4842dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004843look it up.
4844
4845The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4846Each triplet has the following form:
4847
4848- The first element is a *behavior* flag, which specifies the behavior
4849 when two (or more) modules are merged together, and it encounters two
4850 (or more) metadata with the same ID. The supported behaviors are
4851 described below.
4852- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004853 metadata. Each module may only have one flag entry for each unique ID (not
4854 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004855- The third element is the value of the flag.
4856
4857When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004858``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4859each unique metadata ID string, there will be exactly one entry in the merged
4860modules ``llvm.module.flags`` metadata table, and the value for that entry will
4861be determined by the merge behavior flag, as described below. The only exception
4862is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004863
4864The following behaviors are supported:
4865
4866.. list-table::
4867 :header-rows: 1
4868 :widths: 10 90
4869
4870 * - Value
4871 - Behavior
4872
4873 * - 1
4874 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004875 Emits an error if two values disagree, otherwise the resulting value
4876 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004877
4878 * - 2
4879 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004880 Emits a warning if two values disagree. The result value will be the
4881 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004882
4883 * - 3
4884 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004885 Adds a requirement that another module flag be present and have a
4886 specified value after linking is performed. The value must be a
4887 metadata pair, where the first element of the pair is the ID of the
4888 module flag to be restricted, and the second element of the pair is
4889 the value the module flag should be restricted to. This behavior can
4890 be used to restrict the allowable results (via triggering of an
4891 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004892
4893 * - 4
4894 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004895 Uses the specified value, regardless of the behavior or value of the
4896 other module. If both modules specify **Override**, but the values
4897 differ, an error will be emitted.
4898
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004899 * - 5
4900 - **Append**
4901 Appends the two values, which are required to be metadata nodes.
4902
4903 * - 6
4904 - **AppendUnique**
4905 Appends the two values, which are required to be metadata
4906 nodes. However, duplicate entries in the second list are dropped
4907 during the append operation.
4908
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004909It is an error for a particular unique flag ID to have multiple behaviors,
4910except in the case of **Require** (which adds restrictions on another metadata
4911value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004912
4913An example of module flags:
4914
4915.. code-block:: llvm
4916
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004917 !0 = !{ i32 1, !"foo", i32 1 }
4918 !1 = !{ i32 4, !"bar", i32 37 }
4919 !2 = !{ i32 2, !"qux", i32 42 }
4920 !3 = !{ i32 3, !"qux",
4921 !{
4922 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004923 }
4924 }
4925 !llvm.module.flags = !{ !0, !1, !2, !3 }
4926
4927- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4928 if two or more ``!"foo"`` flags are seen is to emit an error if their
4929 values are not equal.
4930
4931- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4932 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004933 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004934
4935- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4936 behavior if two or more ``!"qux"`` flags are seen is to emit a
4937 warning if their values are not equal.
4938
4939- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4940
4941 ::
4942
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004943 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004944
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004945 The behavior is to emit an error if the ``llvm.module.flags`` does not
4946 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4947 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004948
4949Objective-C Garbage Collection Module Flags Metadata
4950----------------------------------------------------
4951
4952On the Mach-O platform, Objective-C stores metadata about garbage
4953collection in a special section called "image info". The metadata
4954consists of a version number and a bitmask specifying what types of
4955garbage collection are supported (if any) by the file. If two or more
4956modules are linked together their garbage collection metadata needs to
4957be merged rather than appended together.
4958
4959The Objective-C garbage collection module flags metadata consists of the
4960following key-value pairs:
4961
4962.. list-table::
4963 :header-rows: 1
4964 :widths: 30 70
4965
4966 * - Key
4967 - Value
4968
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004969 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004970 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004971
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004972 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004973 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004974 always 0.
4975
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004976 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004977 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004978 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4979 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4980 Objective-C ABI version 2.
4981
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004982 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004983 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004984 not. Valid values are 0, for no garbage collection, and 2, for garbage
4985 collection supported.
4986
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004987 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004988 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004989 If present, its value must be 6. This flag requires that the
4990 ``Objective-C Garbage Collection`` flag have the value 2.
4991
4992Some important flag interactions:
4993
4994- If a module with ``Objective-C Garbage Collection`` set to 0 is
4995 merged with a module with ``Objective-C Garbage Collection`` set to
4996 2, then the resulting module has the
4997 ``Objective-C Garbage Collection`` flag set to 0.
4998- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4999 merged with a module with ``Objective-C GC Only`` set to 6.
5000
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005001Automatic Linker Flags Module Flags Metadata
5002--------------------------------------------
5003
5004Some targets support embedding flags to the linker inside individual object
5005files. Typically this is used in conjunction with language extensions which
5006allow source files to explicitly declare the libraries they depend on, and have
5007these automatically be transmitted to the linker via object files.
5008
5009These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005010using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005011to be ``AppendUnique``, and the value for the key is expected to be a metadata
5012node which should be a list of other metadata nodes, each of which should be a
5013list of metadata strings defining linker options.
5014
5015For example, the following metadata section specifies two separate sets of
5016linker options, presumably to link against ``libz`` and the ``Cocoa``
5017framework::
5018
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005019 !0 = !{ i32 6, !"Linker Options",
5020 !{
5021 !{ !"-lz" },
5022 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005023 !llvm.module.flags = !{ !0 }
5024
5025The metadata encoding as lists of lists of options, as opposed to a collapsed
5026list of options, is chosen so that the IR encoding can use multiple option
5027strings to specify e.g., a single library, while still having that specifier be
5028preserved as an atomic element that can be recognized by a target specific
5029assembly writer or object file emitter.
5030
5031Each individual option is required to be either a valid option for the target's
5032linker, or an option that is reserved by the target specific assembly writer or
5033object file emitter. No other aspect of these options is defined by the IR.
5034
Oliver Stannard5dc29342014-06-20 10:08:11 +00005035C type width Module Flags Metadata
5036----------------------------------
5037
5038The ARM backend emits a section into each generated object file describing the
5039options that it was compiled with (in a compiler-independent way) to prevent
5040linking incompatible objects, and to allow automatic library selection. Some
5041of these options are not visible at the IR level, namely wchar_t width and enum
5042width.
5043
5044To pass this information to the backend, these options are encoded in module
5045flags metadata, using the following key-value pairs:
5046
5047.. list-table::
5048 :header-rows: 1
5049 :widths: 30 70
5050
5051 * - Key
5052 - Value
5053
5054 * - short_wchar
5055 - * 0 --- sizeof(wchar_t) == 4
5056 * 1 --- sizeof(wchar_t) == 2
5057
5058 * - short_enum
5059 - * 0 --- Enums are at least as large as an ``int``.
5060 * 1 --- Enums are stored in the smallest integer type which can
5061 represent all of its values.
5062
5063For example, the following metadata section specifies that the module was
5064compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5065enum is the smallest type which can represent all of its values::
5066
5067 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005068 !0 = !{i32 1, !"short_wchar", i32 1}
5069 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005070
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005071.. _intrinsicglobalvariables:
5072
Sean Silvab084af42012-12-07 10:36:55 +00005073Intrinsic Global Variables
5074==========================
5075
5076LLVM has a number of "magic" global variables that contain data that
5077affect code generation or other IR semantics. These are documented here.
5078All globals of this sort should have a section specified as
5079"``llvm.metadata``". This section and all globals that start with
5080"``llvm.``" are reserved for use by LLVM.
5081
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005082.. _gv_llvmused:
5083
Sean Silvab084af42012-12-07 10:36:55 +00005084The '``llvm.used``' Global Variable
5085-----------------------------------
5086
Rafael Espindola74f2e462013-04-22 14:58:02 +00005087The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005088:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005089pointers to named global variables, functions and aliases which may optionally
5090have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005091use of it is:
5092
5093.. code-block:: llvm
5094
5095 @X = global i8 4
5096 @Y = global i32 123
5097
5098 @llvm.used = appending global [2 x i8*] [
5099 i8* @X,
5100 i8* bitcast (i32* @Y to i8*)
5101 ], section "llvm.metadata"
5102
Rafael Espindola74f2e462013-04-22 14:58:02 +00005103If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5104and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005105symbol that it cannot see (which is why they have to be named). For example, if
5106a variable has internal linkage and no references other than that from the
5107``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5108references from inline asms and other things the compiler cannot "see", and
5109corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005110
5111On some targets, the code generator must emit a directive to the
5112assembler or object file to prevent the assembler and linker from
5113molesting the symbol.
5114
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005115.. _gv_llvmcompilerused:
5116
Sean Silvab084af42012-12-07 10:36:55 +00005117The '``llvm.compiler.used``' Global Variable
5118--------------------------------------------
5119
5120The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5121directive, except that it only prevents the compiler from touching the
5122symbol. On targets that support it, this allows an intelligent linker to
5123optimize references to the symbol without being impeded as it would be
5124by ``@llvm.used``.
5125
5126This is a rare construct that should only be used in rare circumstances,
5127and should not be exposed to source languages.
5128
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005129.. _gv_llvmglobalctors:
5130
Sean Silvab084af42012-12-07 10:36:55 +00005131The '``llvm.global_ctors``' Global Variable
5132-------------------------------------------
5133
5134.. code-block:: llvm
5135
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005136 %0 = type { i32, void ()*, i8* }
5137 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005138
5139The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005140functions, priorities, and an optional associated global or function.
5141The functions referenced by this array will be called in ascending order
5142of priority (i.e. lowest first) when the module is loaded. The order of
5143functions with the same priority is not defined.
5144
5145If the third field is present, non-null, and points to a global variable
5146or function, the initializer function will only run if the associated
5147data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005148
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005149.. _llvmglobaldtors:
5150
Sean Silvab084af42012-12-07 10:36:55 +00005151The '``llvm.global_dtors``' Global Variable
5152-------------------------------------------
5153
5154.. code-block:: llvm
5155
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005156 %0 = type { i32, void ()*, i8* }
5157 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005158
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005159The ``@llvm.global_dtors`` array contains a list of destructor
5160functions, priorities, and an optional associated global or function.
5161The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005162order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005163order of functions with the same priority is not defined.
5164
5165If the third field is present, non-null, and points to a global variable
5166or function, the destructor function will only run if the associated
5167data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005168
5169Instruction Reference
5170=====================
5171
5172The LLVM instruction set consists of several different classifications
5173of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5174instructions <binaryops>`, :ref:`bitwise binary
5175instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5176:ref:`other instructions <otherops>`.
5177
5178.. _terminators:
5179
5180Terminator Instructions
5181-----------------------
5182
5183As mentioned :ref:`previously <functionstructure>`, every basic block in a
5184program ends with a "Terminator" instruction, which indicates which
5185block should be executed after the current block is finished. These
5186terminator instructions typically yield a '``void``' value: they produce
5187control flow, not values (the one exception being the
5188':ref:`invoke <i_invoke>`' instruction).
5189
5190The terminator instructions are: ':ref:`ret <i_ret>`',
5191':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5192':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005193':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005194':ref:`catchret <i_catchret>`',
5195':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005196and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005197
5198.. _i_ret:
5199
5200'``ret``' Instruction
5201^^^^^^^^^^^^^^^^^^^^^
5202
5203Syntax:
5204"""""""
5205
5206::
5207
5208 ret <type> <value> ; Return a value from a non-void function
5209 ret void ; Return from void function
5210
5211Overview:
5212"""""""""
5213
5214The '``ret``' instruction is used to return control flow (and optionally
5215a value) from a function back to the caller.
5216
5217There are two forms of the '``ret``' instruction: one that returns a
5218value and then causes control flow, and one that just causes control
5219flow to occur.
5220
5221Arguments:
5222""""""""""
5223
5224The '``ret``' instruction optionally accepts a single argument, the
5225return value. The type of the return value must be a ':ref:`first
5226class <t_firstclass>`' type.
5227
5228A function is not :ref:`well formed <wellformed>` if it it has a non-void
5229return type and contains a '``ret``' instruction with no return value or
5230a return value with a type that does not match its type, or if it has a
5231void return type and contains a '``ret``' instruction with a return
5232value.
5233
5234Semantics:
5235""""""""""
5236
5237When the '``ret``' instruction is executed, control flow returns back to
5238the calling function's context. If the caller is a
5239":ref:`call <i_call>`" instruction, execution continues at the
5240instruction after the call. If the caller was an
5241":ref:`invoke <i_invoke>`" instruction, execution continues at the
5242beginning of the "normal" destination block. If the instruction returns
5243a value, that value shall set the call or invoke instruction's return
5244value.
5245
5246Example:
5247""""""""
5248
5249.. code-block:: llvm
5250
5251 ret i32 5 ; Return an integer value of 5
5252 ret void ; Return from a void function
5253 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5254
5255.. _i_br:
5256
5257'``br``' Instruction
5258^^^^^^^^^^^^^^^^^^^^
5259
5260Syntax:
5261"""""""
5262
5263::
5264
5265 br i1 <cond>, label <iftrue>, label <iffalse>
5266 br label <dest> ; Unconditional branch
5267
5268Overview:
5269"""""""""
5270
5271The '``br``' instruction is used to cause control flow to transfer to a
5272different basic block in the current function. There are two forms of
5273this instruction, corresponding to a conditional branch and an
5274unconditional branch.
5275
5276Arguments:
5277""""""""""
5278
5279The conditional branch form of the '``br``' instruction takes a single
5280'``i1``' value and two '``label``' values. The unconditional form of the
5281'``br``' instruction takes a single '``label``' value as a target.
5282
5283Semantics:
5284""""""""""
5285
5286Upon execution of a conditional '``br``' instruction, the '``i1``'
5287argument is evaluated. If the value is ``true``, control flows to the
5288'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5289to the '``iffalse``' ``label`` argument.
5290
5291Example:
5292""""""""
5293
5294.. code-block:: llvm
5295
5296 Test:
5297 %cond = icmp eq i32 %a, %b
5298 br i1 %cond, label %IfEqual, label %IfUnequal
5299 IfEqual:
5300 ret i32 1
5301 IfUnequal:
5302 ret i32 0
5303
5304.. _i_switch:
5305
5306'``switch``' Instruction
5307^^^^^^^^^^^^^^^^^^^^^^^^
5308
5309Syntax:
5310"""""""
5311
5312::
5313
5314 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5315
5316Overview:
5317"""""""""
5318
5319The '``switch``' instruction is used to transfer control flow to one of
5320several different places. It is a generalization of the '``br``'
5321instruction, allowing a branch to occur to one of many possible
5322destinations.
5323
5324Arguments:
5325""""""""""
5326
5327The '``switch``' instruction uses three parameters: an integer
5328comparison value '``value``', a default '``label``' destination, and an
5329array of pairs of comparison value constants and '``label``'s. The table
5330is not allowed to contain duplicate constant entries.
5331
5332Semantics:
5333""""""""""
5334
5335The ``switch`` instruction specifies a table of values and destinations.
5336When the '``switch``' instruction is executed, this table is searched
5337for the given value. If the value is found, control flow is transferred
5338to the corresponding destination; otherwise, control flow is transferred
5339to the default destination.
5340
5341Implementation:
5342"""""""""""""""
5343
5344Depending on properties of the target machine and the particular
5345``switch`` instruction, this instruction may be code generated in
5346different ways. For example, it could be generated as a series of
5347chained conditional branches or with a lookup table.
5348
5349Example:
5350""""""""
5351
5352.. code-block:: llvm
5353
5354 ; Emulate a conditional br instruction
5355 %Val = zext i1 %value to i32
5356 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5357
5358 ; Emulate an unconditional br instruction
5359 switch i32 0, label %dest [ ]
5360
5361 ; Implement a jump table:
5362 switch i32 %val, label %otherwise [ i32 0, label %onzero
5363 i32 1, label %onone
5364 i32 2, label %ontwo ]
5365
5366.. _i_indirectbr:
5367
5368'``indirectbr``' Instruction
5369^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5370
5371Syntax:
5372"""""""
5373
5374::
5375
5376 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5377
5378Overview:
5379"""""""""
5380
5381The '``indirectbr``' instruction implements an indirect branch to a
5382label within the current function, whose address is specified by
5383"``address``". Address must be derived from a
5384:ref:`blockaddress <blockaddress>` constant.
5385
5386Arguments:
5387""""""""""
5388
5389The '``address``' argument is the address of the label to jump to. The
5390rest of the arguments indicate the full set of possible destinations
5391that the address may point to. Blocks are allowed to occur multiple
5392times in the destination list, though this isn't particularly useful.
5393
5394This destination list is required so that dataflow analysis has an
5395accurate understanding of the CFG.
5396
5397Semantics:
5398""""""""""
5399
5400Control transfers to the block specified in the address argument. All
5401possible destination blocks must be listed in the label list, otherwise
5402this instruction has undefined behavior. This implies that jumps to
5403labels defined in other functions have undefined behavior as well.
5404
5405Implementation:
5406"""""""""""""""
5407
5408This is typically implemented with a jump through a register.
5409
5410Example:
5411""""""""
5412
5413.. code-block:: llvm
5414
5415 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5416
5417.. _i_invoke:
5418
5419'``invoke``' Instruction
5420^^^^^^^^^^^^^^^^^^^^^^^^
5421
5422Syntax:
5423"""""""
5424
5425::
5426
5427 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005428 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005429
5430Overview:
5431"""""""""
5432
5433The '``invoke``' instruction causes control to transfer to a specified
5434function, with the possibility of control flow transfer to either the
5435'``normal``' label or the '``exception``' label. If the callee function
5436returns with the "``ret``" instruction, control flow will return to the
5437"normal" label. If the callee (or any indirect callees) returns via the
5438":ref:`resume <i_resume>`" instruction or other exception handling
5439mechanism, control is interrupted and continued at the dynamically
5440nearest "exception" label.
5441
5442The '``exception``' label is a `landing
5443pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5444'``exception``' label is required to have the
5445":ref:`landingpad <i_landingpad>`" instruction, which contains the
5446information about the behavior of the program after unwinding happens,
5447as its first non-PHI instruction. The restrictions on the
5448"``landingpad``" instruction's tightly couples it to the "``invoke``"
5449instruction, so that the important information contained within the
5450"``landingpad``" instruction can't be lost through normal code motion.
5451
5452Arguments:
5453""""""""""
5454
5455This instruction requires several arguments:
5456
5457#. The optional "cconv" marker indicates which :ref:`calling
5458 convention <callingconv>` the call should use. If none is
5459 specified, the call defaults to using C calling conventions.
5460#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5461 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5462 are valid here.
5463#. '``ptr to function ty``': shall be the signature of the pointer to
5464 function value being invoked. In most cases, this is a direct
5465 function invocation, but indirect ``invoke``'s are just as possible,
5466 branching off an arbitrary pointer to function value.
5467#. '``function ptr val``': An LLVM value containing a pointer to a
5468 function to be invoked.
5469#. '``function args``': argument list whose types match the function
5470 signature argument types and parameter attributes. All arguments must
5471 be of :ref:`first class <t_firstclass>` type. If the function signature
5472 indicates the function accepts a variable number of arguments, the
5473 extra arguments can be specified.
5474#. '``normal label``': the label reached when the called function
5475 executes a '``ret``' instruction.
5476#. '``exception label``': the label reached when a callee returns via
5477 the :ref:`resume <i_resume>` instruction or other exception handling
5478 mechanism.
5479#. The optional :ref:`function attributes <fnattrs>` list. Only
5480 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5481 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005482#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005483
5484Semantics:
5485""""""""""
5486
5487This instruction is designed to operate as a standard '``call``'
5488instruction in most regards. The primary difference is that it
5489establishes an association with a label, which is used by the runtime
5490library to unwind the stack.
5491
5492This instruction is used in languages with destructors to ensure that
5493proper cleanup is performed in the case of either a ``longjmp`` or a
5494thrown exception. Additionally, this is important for implementation of
5495'``catch``' clauses in high-level languages that support them.
5496
5497For the purposes of the SSA form, the definition of the value returned
5498by the '``invoke``' instruction is deemed to occur on the edge from the
5499current block to the "normal" label. If the callee unwinds then no
5500return value is available.
5501
5502Example:
5503""""""""
5504
5505.. code-block:: llvm
5506
5507 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005508 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005509 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005510 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005511
5512.. _i_resume:
5513
5514'``resume``' Instruction
5515^^^^^^^^^^^^^^^^^^^^^^^^
5516
5517Syntax:
5518"""""""
5519
5520::
5521
5522 resume <type> <value>
5523
5524Overview:
5525"""""""""
5526
5527The '``resume``' instruction is a terminator instruction that has no
5528successors.
5529
5530Arguments:
5531""""""""""
5532
5533The '``resume``' instruction requires one argument, which must have the
5534same type as the result of any '``landingpad``' instruction in the same
5535function.
5536
5537Semantics:
5538""""""""""
5539
5540The '``resume``' instruction resumes propagation of an existing
5541(in-flight) exception whose unwinding was interrupted with a
5542:ref:`landingpad <i_landingpad>` instruction.
5543
5544Example:
5545""""""""
5546
5547.. code-block:: llvm
5548
5549 resume { i8*, i32 } %exn
5550
David Majnemer8a1c45d2015-12-12 05:38:55 +00005551.. _i_catchswitch:
5552
5553'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005555
5556Syntax:
5557"""""""
5558
5559::
5560
5561 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5562 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5563
5564Overview:
5565"""""""""
5566
5567The '``catchswitch``' instruction is used by `LLVM's exception handling system
5568<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5569that may be executed by the :ref:`EH personality routine <personalityfn>`.
5570
5571Arguments:
5572""""""""""
5573
5574The ``parent`` argument is the token of the funclet that contains the
5575``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5576this operand may be the token ``none``.
5577
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005578The ``default`` argument is the label of another basic block beginning with
5579either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5580must be a legal target with respect to the ``parent`` links, as described in
5581the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005582
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005583The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005584:ref:`catchpad <i_catchpad>` instruction.
5585
5586Semantics:
5587""""""""""
5588
5589Executing this instruction transfers control to one of the successors in
5590``handlers``, if appropriate, or continues to unwind via the unwind label if
5591present.
5592
5593The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5594it must be both the first non-phi instruction and last instruction in the basic
5595block. Therefore, it must be the only non-phi instruction in the block.
5596
5597Example:
5598""""""""
5599
5600.. code-block:: llvm
5601
5602 dispatch1:
5603 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5604 dispatch2:
5605 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5606
David Majnemer654e1302015-07-31 17:58:14 +00005607.. _i_catchret:
5608
5609'``catchret``' Instruction
5610^^^^^^^^^^^^^^^^^^^^^^^^^^
5611
5612Syntax:
5613"""""""
5614
5615::
5616
David Majnemer8a1c45d2015-12-12 05:38:55 +00005617 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005618
5619Overview:
5620"""""""""
5621
5622The '``catchret``' instruction is a terminator instruction that has a
5623single successor.
5624
5625
5626Arguments:
5627""""""""""
5628
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005629The first argument to a '``catchret``' indicates which ``catchpad`` it
5630exits. It must be a :ref:`catchpad <i_catchpad>`.
5631The second argument to a '``catchret``' specifies where control will
5632transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005633
5634Semantics:
5635""""""""""
5636
David Majnemer8a1c45d2015-12-12 05:38:55 +00005637The '``catchret``' instruction ends an existing (in-flight) exception whose
5638unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5639:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5640code to, for example, destroy the active exception. Control then transfers to
5641``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005642
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005643The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5644If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5645funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5646the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005647
5648Example:
5649""""""""
5650
5651.. code-block:: llvm
5652
David Majnemer8a1c45d2015-12-12 05:38:55 +00005653 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005654
David Majnemer654e1302015-07-31 17:58:14 +00005655.. _i_cleanupret:
5656
5657'``cleanupret``' Instruction
5658^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5659
5660Syntax:
5661"""""""
5662
5663::
5664
David Majnemer8a1c45d2015-12-12 05:38:55 +00005665 cleanupret from <value> unwind label <continue>
5666 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005667
5668Overview:
5669"""""""""
5670
5671The '``cleanupret``' instruction is a terminator instruction that has
5672an optional successor.
5673
5674
5675Arguments:
5676""""""""""
5677
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005678The '``cleanupret``' instruction requires one argument, which indicates
5679which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005680If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5681funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5682the ``cleanupret``'s behavior is undefined.
5683
5684The '``cleanupret``' instruction also has an optional successor, ``continue``,
5685which must be the label of another basic block beginning with either a
5686``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5687be a legal target with respect to the ``parent`` links, as described in the
5688`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005689
5690Semantics:
5691""""""""""
5692
5693The '``cleanupret``' instruction indicates to the
5694:ref:`personality function <personalityfn>` that one
5695:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5696It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005697
David Majnemer654e1302015-07-31 17:58:14 +00005698Example:
5699""""""""
5700
5701.. code-block:: llvm
5702
David Majnemer8a1c45d2015-12-12 05:38:55 +00005703 cleanupret from %cleanup unwind to caller
5704 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005705
Sean Silvab084af42012-12-07 10:36:55 +00005706.. _i_unreachable:
5707
5708'``unreachable``' Instruction
5709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5710
5711Syntax:
5712"""""""
5713
5714::
5715
5716 unreachable
5717
5718Overview:
5719"""""""""
5720
5721The '``unreachable``' instruction has no defined semantics. This
5722instruction is used to inform the optimizer that a particular portion of
5723the code is not reachable. This can be used to indicate that the code
5724after a no-return function cannot be reached, and other facts.
5725
5726Semantics:
5727""""""""""
5728
5729The '``unreachable``' instruction has no defined semantics.
5730
5731.. _binaryops:
5732
5733Binary Operations
5734-----------------
5735
5736Binary operators are used to do most of the computation in a program.
5737They require two operands of the same type, execute an operation on
5738them, and produce a single value. The operands might represent multiple
5739data, as is the case with the :ref:`vector <t_vector>` data type. The
5740result value has the same type as its operands.
5741
5742There are several different binary operators:
5743
5744.. _i_add:
5745
5746'``add``' Instruction
5747^^^^^^^^^^^^^^^^^^^^^
5748
5749Syntax:
5750"""""""
5751
5752::
5753
Tim Northover675a0962014-06-13 14:24:23 +00005754 <result> = add <ty> <op1>, <op2> ; yields ty:result
5755 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5756 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5757 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005758
5759Overview:
5760"""""""""
5761
5762The '``add``' instruction returns the sum of its two operands.
5763
5764Arguments:
5765""""""""""
5766
5767The two arguments to the '``add``' instruction must be
5768:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5769arguments must have identical types.
5770
5771Semantics:
5772""""""""""
5773
5774The value produced is the integer sum of the two operands.
5775
5776If the sum has unsigned overflow, the result returned is the
5777mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5778the result.
5779
5780Because LLVM integers use a two's complement representation, this
5781instruction is appropriate for both signed and unsigned integers.
5782
5783``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5784respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5785result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5786unsigned and/or signed overflow, respectively, occurs.
5787
5788Example:
5789""""""""
5790
5791.. code-block:: llvm
5792
Tim Northover675a0962014-06-13 14:24:23 +00005793 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005794
5795.. _i_fadd:
5796
5797'``fadd``' Instruction
5798^^^^^^^^^^^^^^^^^^^^^^
5799
5800Syntax:
5801"""""""
5802
5803::
5804
Tim Northover675a0962014-06-13 14:24:23 +00005805 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005806
5807Overview:
5808"""""""""
5809
5810The '``fadd``' instruction returns the sum of its two operands.
5811
5812Arguments:
5813""""""""""
5814
5815The two arguments to the '``fadd``' instruction must be :ref:`floating
5816point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5817Both arguments must have identical types.
5818
5819Semantics:
5820""""""""""
5821
5822The value produced is the floating point sum of the two operands. This
5823instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5824which are optimization hints to enable otherwise unsafe floating point
5825optimizations:
5826
5827Example:
5828""""""""
5829
5830.. code-block:: llvm
5831
Tim Northover675a0962014-06-13 14:24:23 +00005832 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005833
5834'``sub``' Instruction
5835^^^^^^^^^^^^^^^^^^^^^
5836
5837Syntax:
5838"""""""
5839
5840::
5841
Tim Northover675a0962014-06-13 14:24:23 +00005842 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5843 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5844 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5845 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005846
5847Overview:
5848"""""""""
5849
5850The '``sub``' instruction returns the difference of its two operands.
5851
5852Note that the '``sub``' instruction is used to represent the '``neg``'
5853instruction present in most other intermediate representations.
5854
5855Arguments:
5856""""""""""
5857
5858The two arguments to the '``sub``' instruction must be
5859:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5860arguments must have identical types.
5861
5862Semantics:
5863""""""""""
5864
5865The value produced is the integer difference of the two operands.
5866
5867If the difference has unsigned overflow, the result returned is the
5868mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5869the result.
5870
5871Because LLVM integers use a two's complement representation, this
5872instruction is appropriate for both signed and unsigned integers.
5873
5874``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5875respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5876result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5877unsigned and/or signed overflow, respectively, occurs.
5878
5879Example:
5880""""""""
5881
5882.. code-block:: llvm
5883
Tim Northover675a0962014-06-13 14:24:23 +00005884 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5885 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005886
5887.. _i_fsub:
5888
5889'``fsub``' Instruction
5890^^^^^^^^^^^^^^^^^^^^^^
5891
5892Syntax:
5893"""""""
5894
5895::
5896
Tim Northover675a0962014-06-13 14:24:23 +00005897 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005898
5899Overview:
5900"""""""""
5901
5902The '``fsub``' instruction returns the difference of its two operands.
5903
5904Note that the '``fsub``' instruction is used to represent the '``fneg``'
5905instruction present in most other intermediate representations.
5906
5907Arguments:
5908""""""""""
5909
5910The two arguments to the '``fsub``' instruction must be :ref:`floating
5911point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5912Both arguments must have identical types.
5913
5914Semantics:
5915""""""""""
5916
5917The value produced is the floating point difference of the two operands.
5918This instruction can also take any number of :ref:`fast-math
5919flags <fastmath>`, which are optimization hints to enable otherwise
5920unsafe floating point optimizations:
5921
5922Example:
5923""""""""
5924
5925.. code-block:: llvm
5926
Tim Northover675a0962014-06-13 14:24:23 +00005927 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5928 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005929
5930'``mul``' Instruction
5931^^^^^^^^^^^^^^^^^^^^^
5932
5933Syntax:
5934"""""""
5935
5936::
5937
Tim Northover675a0962014-06-13 14:24:23 +00005938 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5939 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5940 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5941 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005942
5943Overview:
5944"""""""""
5945
5946The '``mul``' instruction returns the product of its two operands.
5947
5948Arguments:
5949""""""""""
5950
5951The two arguments to the '``mul``' instruction must be
5952:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5953arguments must have identical types.
5954
5955Semantics:
5956""""""""""
5957
5958The value produced is the integer product of the two operands.
5959
5960If the result of the multiplication has unsigned overflow, the result
5961returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5962bit width of the result.
5963
5964Because LLVM integers use a two's complement representation, and the
5965result is the same width as the operands, this instruction returns the
5966correct result for both signed and unsigned integers. If a full product
5967(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5968sign-extended or zero-extended as appropriate to the width of the full
5969product.
5970
5971``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5972respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5973result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5974unsigned and/or signed overflow, respectively, occurs.
5975
5976Example:
5977""""""""
5978
5979.. code-block:: llvm
5980
Tim Northover675a0962014-06-13 14:24:23 +00005981 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005982
5983.. _i_fmul:
5984
5985'``fmul``' Instruction
5986^^^^^^^^^^^^^^^^^^^^^^
5987
5988Syntax:
5989"""""""
5990
5991::
5992
Tim Northover675a0962014-06-13 14:24:23 +00005993 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005994
5995Overview:
5996"""""""""
5997
5998The '``fmul``' instruction returns the product of its two operands.
5999
6000Arguments:
6001""""""""""
6002
6003The two arguments to the '``fmul``' instruction must be :ref:`floating
6004point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6005Both arguments must have identical types.
6006
6007Semantics:
6008""""""""""
6009
6010The value produced is the floating point product of the two operands.
6011This instruction can also take any number of :ref:`fast-math
6012flags <fastmath>`, which are optimization hints to enable otherwise
6013unsafe floating point optimizations:
6014
6015Example:
6016""""""""
6017
6018.. code-block:: llvm
6019
Tim Northover675a0962014-06-13 14:24:23 +00006020 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006021
6022'``udiv``' Instruction
6023^^^^^^^^^^^^^^^^^^^^^^
6024
6025Syntax:
6026"""""""
6027
6028::
6029
Tim Northover675a0962014-06-13 14:24:23 +00006030 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6031 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006032
6033Overview:
6034"""""""""
6035
6036The '``udiv``' instruction returns the quotient of its two operands.
6037
6038Arguments:
6039""""""""""
6040
6041The two arguments to the '``udiv``' instruction must be
6042:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6043arguments must have identical types.
6044
6045Semantics:
6046""""""""""
6047
6048The value produced is the unsigned integer quotient of the two operands.
6049
6050Note that unsigned integer division and signed integer division are
6051distinct operations; for signed integer division, use '``sdiv``'.
6052
6053Division by zero leads to undefined behavior.
6054
6055If the ``exact`` keyword is present, the result value of the ``udiv`` is
6056a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6057such, "((a udiv exact b) mul b) == a").
6058
6059Example:
6060""""""""
6061
6062.. code-block:: llvm
6063
Tim Northover675a0962014-06-13 14:24:23 +00006064 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006065
6066'``sdiv``' Instruction
6067^^^^^^^^^^^^^^^^^^^^^^
6068
6069Syntax:
6070"""""""
6071
6072::
6073
Tim Northover675a0962014-06-13 14:24:23 +00006074 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6075 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006076
6077Overview:
6078"""""""""
6079
6080The '``sdiv``' instruction returns the quotient of its two operands.
6081
6082Arguments:
6083""""""""""
6084
6085The two arguments to the '``sdiv``' instruction must be
6086:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6087arguments must have identical types.
6088
6089Semantics:
6090""""""""""
6091
6092The value produced is the signed integer quotient of the two operands
6093rounded towards zero.
6094
6095Note that signed integer division and unsigned integer division are
6096distinct operations; for unsigned integer division, use '``udiv``'.
6097
6098Division by zero leads to undefined behavior. Overflow also leads to
6099undefined behavior; this is a rare case, but can occur, for example, by
6100doing a 32-bit division of -2147483648 by -1.
6101
6102If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6103a :ref:`poison value <poisonvalues>` if the result would be rounded.
6104
6105Example:
6106""""""""
6107
6108.. code-block:: llvm
6109
Tim Northover675a0962014-06-13 14:24:23 +00006110 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006111
6112.. _i_fdiv:
6113
6114'``fdiv``' Instruction
6115^^^^^^^^^^^^^^^^^^^^^^
6116
6117Syntax:
6118"""""""
6119
6120::
6121
Tim Northover675a0962014-06-13 14:24:23 +00006122 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006123
6124Overview:
6125"""""""""
6126
6127The '``fdiv``' instruction returns the quotient of its two operands.
6128
6129Arguments:
6130""""""""""
6131
6132The two arguments to the '``fdiv``' instruction must be :ref:`floating
6133point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6134Both arguments must have identical types.
6135
6136Semantics:
6137""""""""""
6138
6139The value produced is the floating point quotient of the two operands.
6140This instruction can also take any number of :ref:`fast-math
6141flags <fastmath>`, which are optimization hints to enable otherwise
6142unsafe floating point optimizations:
6143
6144Example:
6145""""""""
6146
6147.. code-block:: llvm
6148
Tim Northover675a0962014-06-13 14:24:23 +00006149 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006150
6151'``urem``' Instruction
6152^^^^^^^^^^^^^^^^^^^^^^
6153
6154Syntax:
6155"""""""
6156
6157::
6158
Tim Northover675a0962014-06-13 14:24:23 +00006159 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006160
6161Overview:
6162"""""""""
6163
6164The '``urem``' instruction returns the remainder from the unsigned
6165division of its two arguments.
6166
6167Arguments:
6168""""""""""
6169
6170The two arguments to the '``urem``' instruction must be
6171:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6172arguments must have identical types.
6173
6174Semantics:
6175""""""""""
6176
6177This instruction returns the unsigned integer *remainder* of a division.
6178This instruction always performs an unsigned division to get the
6179remainder.
6180
6181Note that unsigned integer remainder and signed integer remainder are
6182distinct operations; for signed integer remainder, use '``srem``'.
6183
6184Taking the remainder of a division by zero leads to undefined behavior.
6185
6186Example:
6187""""""""
6188
6189.. code-block:: llvm
6190
Tim Northover675a0962014-06-13 14:24:23 +00006191 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006192
6193'``srem``' Instruction
6194^^^^^^^^^^^^^^^^^^^^^^
6195
6196Syntax:
6197"""""""
6198
6199::
6200
Tim Northover675a0962014-06-13 14:24:23 +00006201 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006202
6203Overview:
6204"""""""""
6205
6206The '``srem``' instruction returns the remainder from the signed
6207division of its two operands. This instruction can also take
6208:ref:`vector <t_vector>` versions of the values in which case the elements
6209must be integers.
6210
6211Arguments:
6212""""""""""
6213
6214The two arguments to the '``srem``' instruction must be
6215:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6216arguments must have identical types.
6217
6218Semantics:
6219""""""""""
6220
6221This instruction returns the *remainder* of a division (where the result
6222is either zero or has the same sign as the dividend, ``op1``), not the
6223*modulo* operator (where the result is either zero or has the same sign
6224as the divisor, ``op2``) of a value. For more information about the
6225difference, see `The Math
6226Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6227table of how this is implemented in various languages, please see
6228`Wikipedia: modulo
6229operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6230
6231Note that signed integer remainder and unsigned integer remainder are
6232distinct operations; for unsigned integer remainder, use '``urem``'.
6233
6234Taking the remainder of a division by zero leads to undefined behavior.
6235Overflow also leads to undefined behavior; this is a rare case, but can
6236occur, for example, by taking the remainder of a 32-bit division of
6237-2147483648 by -1. (The remainder doesn't actually overflow, but this
6238rule lets srem be implemented using instructions that return both the
6239result of the division and the remainder.)
6240
6241Example:
6242""""""""
6243
6244.. code-block:: llvm
6245
Tim Northover675a0962014-06-13 14:24:23 +00006246 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006247
6248.. _i_frem:
6249
6250'``frem``' Instruction
6251^^^^^^^^^^^^^^^^^^^^^^
6252
6253Syntax:
6254"""""""
6255
6256::
6257
Tim Northover675a0962014-06-13 14:24:23 +00006258 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006259
6260Overview:
6261"""""""""
6262
6263The '``frem``' instruction returns the remainder from the division of
6264its two operands.
6265
6266Arguments:
6267""""""""""
6268
6269The two arguments to the '``frem``' instruction must be :ref:`floating
6270point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6271Both arguments must have identical types.
6272
6273Semantics:
6274""""""""""
6275
6276This instruction returns the *remainder* of a division. The remainder
6277has the same sign as the dividend. This instruction can also take any
6278number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6279to enable otherwise unsafe floating point optimizations:
6280
6281Example:
6282""""""""
6283
6284.. code-block:: llvm
6285
Tim Northover675a0962014-06-13 14:24:23 +00006286 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006287
6288.. _bitwiseops:
6289
6290Bitwise Binary Operations
6291-------------------------
6292
6293Bitwise binary operators are used to do various forms of bit-twiddling
6294in a program. They are generally very efficient instructions and can
6295commonly be strength reduced from other instructions. They require two
6296operands of the same type, execute an operation on them, and produce a
6297single value. The resulting value is the same type as its operands.
6298
6299'``shl``' Instruction
6300^^^^^^^^^^^^^^^^^^^^^
6301
6302Syntax:
6303"""""""
6304
6305::
6306
Tim Northover675a0962014-06-13 14:24:23 +00006307 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6308 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6309 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6310 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006311
6312Overview:
6313"""""""""
6314
6315The '``shl``' instruction returns the first operand shifted to the left
6316a specified number of bits.
6317
6318Arguments:
6319""""""""""
6320
6321Both arguments to the '``shl``' instruction must be the same
6322:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6323'``op2``' is treated as an unsigned value.
6324
6325Semantics:
6326""""""""""
6327
6328The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6329where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006330dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006331``op1``, the result is undefined. If the arguments are vectors, each
6332vector element of ``op1`` is shifted by the corresponding shift amount
6333in ``op2``.
6334
6335If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6336value <poisonvalues>` if it shifts out any non-zero bits. If the
6337``nsw`` keyword is present, then the shift produces a :ref:`poison
6338value <poisonvalues>` if it shifts out any bits that disagree with the
6339resultant sign bit. As such, NUW/NSW have the same semantics as they
6340would if the shift were expressed as a mul instruction with the same
6341nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6342
6343Example:
6344""""""""
6345
6346.. code-block:: llvm
6347
Tim Northover675a0962014-06-13 14:24:23 +00006348 <result> = shl i32 4, %var ; yields i32: 4 << %var
6349 <result> = shl i32 4, 2 ; yields i32: 16
6350 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006351 <result> = shl i32 1, 32 ; undefined
6352 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6353
6354'``lshr``' Instruction
6355^^^^^^^^^^^^^^^^^^^^^^
6356
6357Syntax:
6358"""""""
6359
6360::
6361
Tim Northover675a0962014-06-13 14:24:23 +00006362 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6363 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006364
6365Overview:
6366"""""""""
6367
6368The '``lshr``' instruction (logical shift right) returns the first
6369operand shifted to the right a specified number of bits with zero fill.
6370
6371Arguments:
6372""""""""""
6373
6374Both arguments to the '``lshr``' instruction must be the same
6375:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6376'``op2``' is treated as an unsigned value.
6377
6378Semantics:
6379""""""""""
6380
6381This instruction always performs a logical shift right operation. The
6382most significant bits of the result will be filled with zero bits after
6383the shift. If ``op2`` is (statically or dynamically) equal to or larger
6384than the number of bits in ``op1``, the result is undefined. If the
6385arguments are vectors, each vector element of ``op1`` is shifted by the
6386corresponding shift amount in ``op2``.
6387
6388If the ``exact`` keyword is present, the result value of the ``lshr`` is
6389a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6390non-zero.
6391
6392Example:
6393""""""""
6394
6395.. code-block:: llvm
6396
Tim Northover675a0962014-06-13 14:24:23 +00006397 <result> = lshr i32 4, 1 ; yields i32:result = 2
6398 <result> = lshr i32 4, 2 ; yields i32:result = 1
6399 <result> = lshr i8 4, 3 ; yields i8:result = 0
6400 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006401 <result> = lshr i32 1, 32 ; undefined
6402 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6403
6404'``ashr``' Instruction
6405^^^^^^^^^^^^^^^^^^^^^^
6406
6407Syntax:
6408"""""""
6409
6410::
6411
Tim Northover675a0962014-06-13 14:24:23 +00006412 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6413 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006414
6415Overview:
6416"""""""""
6417
6418The '``ashr``' instruction (arithmetic shift right) returns the first
6419operand shifted to the right a specified number of bits with sign
6420extension.
6421
6422Arguments:
6423""""""""""
6424
6425Both arguments to the '``ashr``' instruction must be the same
6426:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6427'``op2``' is treated as an unsigned value.
6428
6429Semantics:
6430""""""""""
6431
6432This instruction always performs an arithmetic shift right operation,
6433The most significant bits of the result will be filled with the sign bit
6434of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6435than the number of bits in ``op1``, the result is undefined. If the
6436arguments are vectors, each vector element of ``op1`` is shifted by the
6437corresponding shift amount in ``op2``.
6438
6439If the ``exact`` keyword is present, the result value of the ``ashr`` is
6440a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6441non-zero.
6442
6443Example:
6444""""""""
6445
6446.. code-block:: llvm
6447
Tim Northover675a0962014-06-13 14:24:23 +00006448 <result> = ashr i32 4, 1 ; yields i32:result = 2
6449 <result> = ashr i32 4, 2 ; yields i32:result = 1
6450 <result> = ashr i8 4, 3 ; yields i8:result = 0
6451 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006452 <result> = ashr i32 1, 32 ; undefined
6453 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6454
6455'``and``' Instruction
6456^^^^^^^^^^^^^^^^^^^^^
6457
6458Syntax:
6459"""""""
6460
6461::
6462
Tim Northover675a0962014-06-13 14:24:23 +00006463 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006464
6465Overview:
6466"""""""""
6467
6468The '``and``' instruction returns the bitwise logical and of its two
6469operands.
6470
6471Arguments:
6472""""""""""
6473
6474The two arguments to the '``and``' instruction must be
6475:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6476arguments must have identical types.
6477
6478Semantics:
6479""""""""""
6480
6481The truth table used for the '``and``' instruction is:
6482
6483+-----+-----+-----+
6484| In0 | In1 | Out |
6485+-----+-----+-----+
6486| 0 | 0 | 0 |
6487+-----+-----+-----+
6488| 0 | 1 | 0 |
6489+-----+-----+-----+
6490| 1 | 0 | 0 |
6491+-----+-----+-----+
6492| 1 | 1 | 1 |
6493+-----+-----+-----+
6494
6495Example:
6496""""""""
6497
6498.. code-block:: llvm
6499
Tim Northover675a0962014-06-13 14:24:23 +00006500 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6501 <result> = and i32 15, 40 ; yields i32:result = 8
6502 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006503
6504'``or``' Instruction
6505^^^^^^^^^^^^^^^^^^^^
6506
6507Syntax:
6508"""""""
6509
6510::
6511
Tim Northover675a0962014-06-13 14:24:23 +00006512 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006513
6514Overview:
6515"""""""""
6516
6517The '``or``' instruction returns the bitwise logical inclusive or of its
6518two operands.
6519
6520Arguments:
6521""""""""""
6522
6523The two arguments to the '``or``' instruction must be
6524:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6525arguments must have identical types.
6526
6527Semantics:
6528""""""""""
6529
6530The truth table used for the '``or``' instruction is:
6531
6532+-----+-----+-----+
6533| In0 | In1 | Out |
6534+-----+-----+-----+
6535| 0 | 0 | 0 |
6536+-----+-----+-----+
6537| 0 | 1 | 1 |
6538+-----+-----+-----+
6539| 1 | 0 | 1 |
6540+-----+-----+-----+
6541| 1 | 1 | 1 |
6542+-----+-----+-----+
6543
6544Example:
6545""""""""
6546
6547::
6548
Tim Northover675a0962014-06-13 14:24:23 +00006549 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6550 <result> = or i32 15, 40 ; yields i32:result = 47
6551 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006552
6553'``xor``' Instruction
6554^^^^^^^^^^^^^^^^^^^^^
6555
6556Syntax:
6557"""""""
6558
6559::
6560
Tim Northover675a0962014-06-13 14:24:23 +00006561 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006562
6563Overview:
6564"""""""""
6565
6566The '``xor``' instruction returns the bitwise logical exclusive or of
6567its two operands. The ``xor`` is used to implement the "one's
6568complement" operation, which is the "~" operator in C.
6569
6570Arguments:
6571""""""""""
6572
6573The two arguments to the '``xor``' instruction must be
6574:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6575arguments must have identical types.
6576
6577Semantics:
6578""""""""""
6579
6580The truth table used for the '``xor``' instruction is:
6581
6582+-----+-----+-----+
6583| In0 | In1 | Out |
6584+-----+-----+-----+
6585| 0 | 0 | 0 |
6586+-----+-----+-----+
6587| 0 | 1 | 1 |
6588+-----+-----+-----+
6589| 1 | 0 | 1 |
6590+-----+-----+-----+
6591| 1 | 1 | 0 |
6592+-----+-----+-----+
6593
6594Example:
6595""""""""
6596
6597.. code-block:: llvm
6598
Tim Northover675a0962014-06-13 14:24:23 +00006599 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6600 <result> = xor i32 15, 40 ; yields i32:result = 39
6601 <result> = xor i32 4, 8 ; yields i32:result = 12
6602 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006603
6604Vector Operations
6605-----------------
6606
6607LLVM supports several instructions to represent vector operations in a
6608target-independent manner. These instructions cover the element-access
6609and vector-specific operations needed to process vectors effectively.
6610While LLVM does directly support these vector operations, many
6611sophisticated algorithms will want to use target-specific intrinsics to
6612take full advantage of a specific target.
6613
6614.. _i_extractelement:
6615
6616'``extractelement``' Instruction
6617^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6618
6619Syntax:
6620"""""""
6621
6622::
6623
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006624 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006625
6626Overview:
6627"""""""""
6628
6629The '``extractelement``' instruction extracts a single scalar element
6630from a vector at a specified index.
6631
6632Arguments:
6633""""""""""
6634
6635The first operand of an '``extractelement``' instruction is a value of
6636:ref:`vector <t_vector>` type. The second operand is an index indicating
6637the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006638variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006639
6640Semantics:
6641""""""""""
6642
6643The result is a scalar of the same type as the element type of ``val``.
6644Its value is the value at position ``idx`` of ``val``. If ``idx``
6645exceeds the length of ``val``, the results are undefined.
6646
6647Example:
6648""""""""
6649
6650.. code-block:: llvm
6651
6652 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6653
6654.. _i_insertelement:
6655
6656'``insertelement``' Instruction
6657^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6658
6659Syntax:
6660"""""""
6661
6662::
6663
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006664 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006665
6666Overview:
6667"""""""""
6668
6669The '``insertelement``' instruction inserts a scalar element into a
6670vector at a specified index.
6671
6672Arguments:
6673""""""""""
6674
6675The first operand of an '``insertelement``' instruction is a value of
6676:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6677type must equal the element type of the first operand. The third operand
6678is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006679index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006680
6681Semantics:
6682""""""""""
6683
6684The result is a vector of the same type as ``val``. Its element values
6685are those of ``val`` except at position ``idx``, where it gets the value
6686``elt``. If ``idx`` exceeds the length of ``val``, the results are
6687undefined.
6688
6689Example:
6690""""""""
6691
6692.. code-block:: llvm
6693
6694 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6695
6696.. _i_shufflevector:
6697
6698'``shufflevector``' Instruction
6699^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6700
6701Syntax:
6702"""""""
6703
6704::
6705
6706 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6707
6708Overview:
6709"""""""""
6710
6711The '``shufflevector``' instruction constructs a permutation of elements
6712from two input vectors, returning a vector with the same element type as
6713the input and length that is the same as the shuffle mask.
6714
6715Arguments:
6716""""""""""
6717
6718The first two operands of a '``shufflevector``' instruction are vectors
6719with the same type. The third argument is a shuffle mask whose element
6720type is always 'i32'. The result of the instruction is a vector whose
6721length is the same as the shuffle mask and whose element type is the
6722same as the element type of the first two operands.
6723
6724The shuffle mask operand is required to be a constant vector with either
6725constant integer or undef values.
6726
6727Semantics:
6728""""""""""
6729
6730The elements of the two input vectors are numbered from left to right
6731across both of the vectors. The shuffle mask operand specifies, for each
6732element of the result vector, which element of the two input vectors the
6733result element gets. The element selector may be undef (meaning "don't
6734care") and the second operand may be undef if performing a shuffle from
6735only one vector.
6736
6737Example:
6738""""""""
6739
6740.. code-block:: llvm
6741
6742 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6743 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6744 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6745 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6746 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6747 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6748 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6749 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6750
6751Aggregate Operations
6752--------------------
6753
6754LLVM supports several instructions for working with
6755:ref:`aggregate <t_aggregate>` values.
6756
6757.. _i_extractvalue:
6758
6759'``extractvalue``' Instruction
6760^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6761
6762Syntax:
6763"""""""
6764
6765::
6766
6767 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6768
6769Overview:
6770"""""""""
6771
6772The '``extractvalue``' instruction extracts the value of a member field
6773from an :ref:`aggregate <t_aggregate>` value.
6774
6775Arguments:
6776""""""""""
6777
6778The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006779:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006780constant indices to specify which value to extract in a similar manner
6781as indices in a '``getelementptr``' instruction.
6782
6783The major differences to ``getelementptr`` indexing are:
6784
6785- Since the value being indexed is not a pointer, the first index is
6786 omitted and assumed to be zero.
6787- At least one index must be specified.
6788- Not only struct indices but also array indices must be in bounds.
6789
6790Semantics:
6791""""""""""
6792
6793The result is the value at the position in the aggregate specified by
6794the index operands.
6795
6796Example:
6797""""""""
6798
6799.. code-block:: llvm
6800
6801 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6802
6803.. _i_insertvalue:
6804
6805'``insertvalue``' Instruction
6806^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6807
6808Syntax:
6809"""""""
6810
6811::
6812
6813 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6814
6815Overview:
6816"""""""""
6817
6818The '``insertvalue``' instruction inserts a value into a member field in
6819an :ref:`aggregate <t_aggregate>` value.
6820
6821Arguments:
6822""""""""""
6823
6824The first operand of an '``insertvalue``' instruction is a value of
6825:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6826a first-class value to insert. The following operands are constant
6827indices indicating the position at which to insert the value in a
6828similar manner as indices in a '``extractvalue``' instruction. The value
6829to insert must have the same type as the value identified by the
6830indices.
6831
6832Semantics:
6833""""""""""
6834
6835The result is an aggregate of the same type as ``val``. Its value is
6836that of ``val`` except that the value at the position specified by the
6837indices is that of ``elt``.
6838
6839Example:
6840""""""""
6841
6842.. code-block:: llvm
6843
6844 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6845 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006846 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006847
6848.. _memoryops:
6849
6850Memory Access and Addressing Operations
6851---------------------------------------
6852
6853A key design point of an SSA-based representation is how it represents
6854memory. In LLVM, no memory locations are in SSA form, which makes things
6855very simple. This section describes how to read, write, and allocate
6856memory in LLVM.
6857
6858.. _i_alloca:
6859
6860'``alloca``' Instruction
6861^^^^^^^^^^^^^^^^^^^^^^^^
6862
6863Syntax:
6864"""""""
6865
6866::
6867
Tim Northover675a0962014-06-13 14:24:23 +00006868 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006869
6870Overview:
6871"""""""""
6872
6873The '``alloca``' instruction allocates memory on the stack frame of the
6874currently executing function, to be automatically released when this
6875function returns to its caller. The object is always allocated in the
6876generic address space (address space zero).
6877
6878Arguments:
6879""""""""""
6880
6881The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6882bytes of memory on the runtime stack, returning a pointer of the
6883appropriate type to the program. If "NumElements" is specified, it is
6884the number of elements allocated, otherwise "NumElements" is defaulted
6885to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006886allocation is guaranteed to be aligned to at least that boundary. The
6887alignment may not be greater than ``1 << 29``. If not specified, or if
6888zero, the target can choose to align the allocation on any convenient
6889boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006890
6891'``type``' may be any sized type.
6892
6893Semantics:
6894""""""""""
6895
6896Memory is allocated; a pointer is returned. The operation is undefined
6897if there is insufficient stack space for the allocation. '``alloca``'d
6898memory is automatically released when the function returns. The
6899'``alloca``' instruction is commonly used to represent automatic
6900variables that must have an address available. When the function returns
6901(either with the ``ret`` or ``resume`` instructions), the memory is
6902reclaimed. Allocating zero bytes is legal, but the result is undefined.
6903The order in which memory is allocated (ie., which way the stack grows)
6904is not specified.
6905
6906Example:
6907""""""""
6908
6909.. code-block:: llvm
6910
Tim Northover675a0962014-06-13 14:24:23 +00006911 %ptr = alloca i32 ; yields i32*:ptr
6912 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6913 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6914 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006915
6916.. _i_load:
6917
6918'``load``' Instruction
6919^^^^^^^^^^^^^^^^^^^^^^
6920
6921Syntax:
6922"""""""
6923
6924::
6925
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006926 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00006927 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006928 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006929 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006930 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006931
6932Overview:
6933"""""""""
6934
6935The '``load``' instruction is used to read from memory.
6936
6937Arguments:
6938""""""""""
6939
Eli Bendersky239a78b2013-04-17 20:17:08 +00006940The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006941from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006942class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6943then the optimizer is not allowed to modify the number or order of
6944execution of this ``load`` with other :ref:`volatile
6945operations <volatile>`.
6946
JF Bastiend1fb5852015-12-17 22:09:19 +00006947If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6948<ordering>` and optional ``singlethread`` argument. The ``release`` and
6949``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
6950produce :ref:`defined <memmodel>` results when they may see multiple atomic
6951stores. The type of the pointee must be an integer, pointer, or floating-point
6952type whose bit width is a power of two greater than or equal to eight and less
6953than or equal to a target-specific size limit. ``align`` must be explicitly
6954specified on atomic loads, and the load has undefined behavior if the alignment
6955is not set to a value which is at least the size in bytes of the
6956pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00006957
6958The optional constant ``align`` argument specifies the alignment of the
6959operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006960or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006961alignment for the target. It is the responsibility of the code emitter
6962to ensure that the alignment information is correct. Overestimating the
6963alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006964may produce less efficient code. An alignment of 1 is always safe. The
6965maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006966
6967The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006968metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006969``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006970metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006971that this load is not expected to be reused in the cache. The code
6972generator may select special instructions to save cache bandwidth, such
6973as the ``MOVNT`` instruction on x86.
6974
6975The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006976metadata name ``<index>`` corresponding to a metadata node with no
6977entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006978instruction tells the optimizer and code generator that the address
6979operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006980Being invariant does not imply that a location is dereferenceable,
6981but it does imply that once the location is known dereferenceable
6982its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006983
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006984The optional ``!invariant.group`` metadata must reference a single metadata name
6985 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6986
Philip Reamescdb72f32014-10-20 22:40:55 +00006987The optional ``!nonnull`` metadata must reference a single
6988metadata name ``<index>`` corresponding to a metadata node with no
6989entries. The existence of the ``!nonnull`` metadata on the
6990instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006991never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006992on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006993to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006994
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006995The optional ``!dereferenceable`` metadata must reference a single metadata
6996name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006997entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006998tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006999The number of bytes known to be dereferenceable is specified by the integer
7000value in the metadata node. This is analogous to the ''dereferenceable''
7001attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007002to loads of a pointer type.
7003
7004The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007005metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7006``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007007instruction tells the optimizer that the value loaded is known to be either
7008dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007009The number of bytes known to be dereferenceable is specified by the integer
7010value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7011attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007012to loads of a pointer type.
7013
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007014The optional ``!align`` metadata must reference a single metadata name
7015``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7016The existence of the ``!align`` metadata on the instruction tells the
7017optimizer that the value loaded is known to be aligned to a boundary specified
7018by the integer value in the metadata node. The alignment must be a power of 2.
7019This is analogous to the ''align'' attribute on parameters and return values.
7020This metadata can only be applied to loads of a pointer type.
7021
Sean Silvab084af42012-12-07 10:36:55 +00007022Semantics:
7023""""""""""
7024
7025The location of memory pointed to is loaded. If the value being loaded
7026is of scalar type then the number of bytes read does not exceed the
7027minimum number of bytes needed to hold all bits of the type. For
7028example, loading an ``i24`` reads at most three bytes. When loading a
7029value of a type like ``i20`` with a size that is not an integral number
7030of bytes, the result is undefined if the value was not originally
7031written using a store of the same type.
7032
7033Examples:
7034"""""""""
7035
7036.. code-block:: llvm
7037
Tim Northover675a0962014-06-13 14:24:23 +00007038 %ptr = alloca i32 ; yields i32*:ptr
7039 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007040 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007041
7042.. _i_store:
7043
7044'``store``' Instruction
7045^^^^^^^^^^^^^^^^^^^^^^^
7046
7047Syntax:
7048"""""""
7049
7050::
7051
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007052 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7053 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007054
7055Overview:
7056"""""""""
7057
7058The '``store``' instruction is used to write to memory.
7059
7060Arguments:
7061""""""""""
7062
Eli Benderskyca380842013-04-17 17:17:20 +00007063There are two arguments to the ``store`` instruction: a value to store
7064and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00007065operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00007066the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00007067then the optimizer is not allowed to modify the number or order of
7068execution of this ``store`` with other :ref:`volatile
7069operations <volatile>`.
7070
JF Bastiend1fb5852015-12-17 22:09:19 +00007071If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7072<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7073``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7074produce :ref:`defined <memmodel>` results when they may see multiple atomic
7075stores. The type of the pointee must be an integer, pointer, or floating-point
7076type whose bit width is a power of two greater than or equal to eight and less
7077than or equal to a target-specific size limit. ``align`` must be explicitly
7078specified on atomic stores, and the store has undefined behavior if the
7079alignment is not set to a value which is at least the size in bytes of the
7080pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007081
Eli Benderskyca380842013-04-17 17:17:20 +00007082The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007083operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007084or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007085alignment for the target. It is the responsibility of the code emitter
7086to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007087alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007088alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007089safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007090
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007091The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007092name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007093value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007094tells the optimizer and code generator that this load is not expected to
7095be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007096instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007097x86.
7098
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007099The optional ``!invariant.group`` metadata must reference a
7100single metadata name ``<index>``. See ``invariant.group`` metadata.
7101
Sean Silvab084af42012-12-07 10:36:55 +00007102Semantics:
7103""""""""""
7104
Eli Benderskyca380842013-04-17 17:17:20 +00007105The contents of memory are updated to contain ``<value>`` at the
7106location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007107of scalar type then the number of bytes written does not exceed the
7108minimum number of bytes needed to hold all bits of the type. For
7109example, storing an ``i24`` writes at most three bytes. When writing a
7110value of a type like ``i20`` with a size that is not an integral number
7111of bytes, it is unspecified what happens to the extra bits that do not
7112belong to the type, but they will typically be overwritten.
7113
7114Example:
7115""""""""
7116
7117.. code-block:: llvm
7118
Tim Northover675a0962014-06-13 14:24:23 +00007119 %ptr = alloca i32 ; yields i32*:ptr
7120 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007121 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007122
7123.. _i_fence:
7124
7125'``fence``' Instruction
7126^^^^^^^^^^^^^^^^^^^^^^^
7127
7128Syntax:
7129"""""""
7130
7131::
7132
Tim Northover675a0962014-06-13 14:24:23 +00007133 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007134
7135Overview:
7136"""""""""
7137
7138The '``fence``' instruction is used to introduce happens-before edges
7139between operations.
7140
7141Arguments:
7142""""""""""
7143
7144'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7145defines what *synchronizes-with* edges they add. They can only be given
7146``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7147
7148Semantics:
7149""""""""""
7150
7151A fence A which has (at least) ``release`` ordering semantics
7152*synchronizes with* a fence B with (at least) ``acquire`` ordering
7153semantics if and only if there exist atomic operations X and Y, both
7154operating on some atomic object M, such that A is sequenced before X, X
7155modifies M (either directly or through some side effect of a sequence
7156headed by X), Y is sequenced before B, and Y observes M. This provides a
7157*happens-before* dependency between A and B. Rather than an explicit
7158``fence``, one (but not both) of the atomic operations X or Y might
7159provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7160still *synchronize-with* the explicit ``fence`` and establish the
7161*happens-before* edge.
7162
7163A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7164``acquire`` and ``release`` semantics specified above, participates in
7165the global program order of other ``seq_cst`` operations and/or fences.
7166
7167The optional ":ref:`singlethread <singlethread>`" argument specifies
7168that the fence only synchronizes with other fences in the same thread.
7169(This is useful for interacting with signal handlers.)
7170
7171Example:
7172""""""""
7173
7174.. code-block:: llvm
7175
Tim Northover675a0962014-06-13 14:24:23 +00007176 fence acquire ; yields void
7177 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007178
7179.. _i_cmpxchg:
7180
7181'``cmpxchg``' Instruction
7182^^^^^^^^^^^^^^^^^^^^^^^^^
7183
7184Syntax:
7185"""""""
7186
7187::
7188
Tim Northover675a0962014-06-13 14:24:23 +00007189 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007190
7191Overview:
7192"""""""""
7193
7194The '``cmpxchg``' instruction is used to atomically modify memory. It
7195loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007196equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007197
7198Arguments:
7199""""""""""
7200
7201There are three arguments to the '``cmpxchg``' instruction: an address
7202to operate on, a value to compare to the value currently be at that
7203address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007204are equal. The type of '<cmp>' must be an integer or pointer type whose
7205bit width is a power of two greater than or equal to eight and less
7206than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7207have the same type, and the type of '<pointer>' must be a pointer to
7208that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7209optimizer is not allowed to modify the number or order of execution of
7210this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007211
Tim Northovere94a5182014-03-11 10:48:52 +00007212The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007213``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7214must be at least ``monotonic``, the ordering constraint on failure must be no
7215stronger than that on success, and the failure ordering cannot be either
7216``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007217
7218The optional "``singlethread``" argument declares that the ``cmpxchg``
7219is only atomic with respect to code (usually signal handlers) running in
7220the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7221respect to all other code in the system.
7222
7223The pointer passed into cmpxchg must have alignment greater than or
7224equal to the size in memory of the operand.
7225
7226Semantics:
7227""""""""""
7228
Tim Northover420a2162014-06-13 14:24:07 +00007229The contents of memory at the location specified by the '``<pointer>``' operand
7230is read and compared to '``<cmp>``'; if the read value is the equal, the
7231'``<new>``' is written. The original value at the location is returned, together
7232with a flag indicating success (true) or failure (false).
7233
7234If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7235permitted: the operation may not write ``<new>`` even if the comparison
7236matched.
7237
7238If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7239if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007240
Tim Northovere94a5182014-03-11 10:48:52 +00007241A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7242identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7243load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007244
7245Example:
7246""""""""
7247
7248.. code-block:: llvm
7249
7250 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007251 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007252 br label %loop
7253
7254 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007255 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007256 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007257 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007258 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7259 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007260 br i1 %success, label %done, label %loop
7261
7262 done:
7263 ...
7264
7265.. _i_atomicrmw:
7266
7267'``atomicrmw``' Instruction
7268^^^^^^^^^^^^^^^^^^^^^^^^^^^
7269
7270Syntax:
7271"""""""
7272
7273::
7274
Tim Northover675a0962014-06-13 14:24:23 +00007275 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007276
7277Overview:
7278"""""""""
7279
7280The '``atomicrmw``' instruction is used to atomically modify memory.
7281
7282Arguments:
7283""""""""""
7284
7285There are three arguments to the '``atomicrmw``' instruction: an
7286operation to apply, an address whose value to modify, an argument to the
7287operation. The operation must be one of the following keywords:
7288
7289- xchg
7290- add
7291- sub
7292- and
7293- nand
7294- or
7295- xor
7296- max
7297- min
7298- umax
7299- umin
7300
7301The type of '<value>' must be an integer type whose bit width is a power
7302of two greater than or equal to eight and less than or equal to a
7303target-specific size limit. The type of the '``<pointer>``' operand must
7304be a pointer to that type. If the ``atomicrmw`` is marked as
7305``volatile``, then the optimizer is not allowed to modify the number or
7306order of execution of this ``atomicrmw`` with other :ref:`volatile
7307operations <volatile>`.
7308
7309Semantics:
7310""""""""""
7311
7312The contents of memory at the location specified by the '``<pointer>``'
7313operand are atomically read, modified, and written back. The original
7314value at the location is returned. The modification is specified by the
7315operation argument:
7316
7317- xchg: ``*ptr = val``
7318- add: ``*ptr = *ptr + val``
7319- sub: ``*ptr = *ptr - val``
7320- and: ``*ptr = *ptr & val``
7321- nand: ``*ptr = ~(*ptr & val)``
7322- or: ``*ptr = *ptr | val``
7323- xor: ``*ptr = *ptr ^ val``
7324- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7325- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7326- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7327 comparison)
7328- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7329 comparison)
7330
7331Example:
7332""""""""
7333
7334.. code-block:: llvm
7335
Tim Northover675a0962014-06-13 14:24:23 +00007336 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007337
7338.. _i_getelementptr:
7339
7340'``getelementptr``' Instruction
7341^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7342
7343Syntax:
7344"""""""
7345
7346::
7347
David Blaikie16a97eb2015-03-04 22:02:58 +00007348 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7349 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7350 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007351
7352Overview:
7353"""""""""
7354
7355The '``getelementptr``' instruction is used to get the address of a
7356subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007357address calculation only and does not access memory. The instruction can also
7358be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007359
7360Arguments:
7361""""""""""
7362
David Blaikie16a97eb2015-03-04 22:02:58 +00007363The first argument is always a type used as the basis for the calculations.
7364The second argument is always a pointer or a vector of pointers, and is the
7365base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007366that indicate which of the elements of the aggregate object are indexed.
7367The interpretation of each index is dependent on the type being indexed
7368into. The first index always indexes the pointer value given as the
7369first argument, the second index indexes a value of the type pointed to
7370(not necessarily the value directly pointed to, since the first index
7371can be non-zero), etc. The first type indexed into must be a pointer
7372value, subsequent types can be arrays, vectors, and structs. Note that
7373subsequent types being indexed into can never be pointers, since that
7374would require loading the pointer before continuing calculation.
7375
7376The type of each index argument depends on the type it is indexing into.
7377When indexing into a (optionally packed) structure, only ``i32`` integer
7378**constants** are allowed (when using a vector of indices they must all
7379be the **same** ``i32`` integer constant). When indexing into an array,
7380pointer or vector, integers of any width are allowed, and they are not
7381required to be constant. These integers are treated as signed values
7382where relevant.
7383
7384For example, let's consider a C code fragment and how it gets compiled
7385to LLVM:
7386
7387.. code-block:: c
7388
7389 struct RT {
7390 char A;
7391 int B[10][20];
7392 char C;
7393 };
7394 struct ST {
7395 int X;
7396 double Y;
7397 struct RT Z;
7398 };
7399
7400 int *foo(struct ST *s) {
7401 return &s[1].Z.B[5][13];
7402 }
7403
7404The LLVM code generated by Clang is:
7405
7406.. code-block:: llvm
7407
7408 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7409 %struct.ST = type { i32, double, %struct.RT }
7410
7411 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7412 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007413 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007414 ret i32* %arrayidx
7415 }
7416
7417Semantics:
7418""""""""""
7419
7420In the example above, the first index is indexing into the
7421'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7422= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7423indexes into the third element of the structure, yielding a
7424'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7425structure. The third index indexes into the second element of the
7426structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7427dimensions of the array are subscripted into, yielding an '``i32``'
7428type. The '``getelementptr``' instruction returns a pointer to this
7429element, thus computing a value of '``i32*``' type.
7430
7431Note that it is perfectly legal to index partially through a structure,
7432returning a pointer to an inner element. Because of this, the LLVM code
7433for the given testcase is equivalent to:
7434
7435.. code-block:: llvm
7436
7437 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007438 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7439 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7440 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7441 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7442 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007443 ret i32* %t5
7444 }
7445
7446If the ``inbounds`` keyword is present, the result value of the
7447``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7448pointer is not an *in bounds* address of an allocated object, or if any
7449of the addresses that would be formed by successive addition of the
7450offsets implied by the indices to the base address with infinitely
7451precise signed arithmetic are not an *in bounds* address of that
7452allocated object. The *in bounds* addresses for an allocated object are
7453all the addresses that point into the object, plus the address one byte
7454past the end. In cases where the base is a vector of pointers the
7455``inbounds`` keyword applies to each of the computations element-wise.
7456
7457If the ``inbounds`` keyword is not present, the offsets are added to the
7458base address with silently-wrapping two's complement arithmetic. If the
7459offsets have a different width from the pointer, they are sign-extended
7460or truncated to the width of the pointer. The result value of the
7461``getelementptr`` may be outside the object pointed to by the base
7462pointer. The result value may not necessarily be used to access memory
7463though, even if it happens to point into allocated storage. See the
7464:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7465information.
7466
7467The getelementptr instruction is often confusing. For some more insight
7468into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7469
7470Example:
7471""""""""
7472
7473.. code-block:: llvm
7474
7475 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007476 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007477 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007478 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007479 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007480 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007481 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007482 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007483
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007484Vector of pointers:
7485"""""""""""""""""""
7486
7487The ``getelementptr`` returns a vector of pointers, instead of a single address,
7488when one or more of its arguments is a vector. In such cases, all vector
7489arguments should have the same number of elements, and every scalar argument
7490will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007491
7492.. code-block:: llvm
7493
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007494 ; All arguments are vectors:
7495 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7496 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007497
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007498 ; Add the same scalar offset to each pointer of a vector:
7499 ; A[i] = ptrs[i] + offset*sizeof(i8)
7500 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007501
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007502 ; Add distinct offsets to the same pointer:
7503 ; A[i] = ptr + offsets[i]*sizeof(i8)
7504 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007505
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007506 ; In all cases described above the type of the result is <4 x i8*>
7507
7508The two following instructions are equivalent:
7509
7510.. code-block:: llvm
7511
7512 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7513 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7514 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7515 <4 x i32> %ind4,
7516 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007517
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007518 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7519 i32 2, i32 1, <4 x i32> %ind4, i64 13
7520
7521Let's look at the C code, where the vector version of ``getelementptr``
7522makes sense:
7523
7524.. code-block:: c
7525
7526 // Let's assume that we vectorize the following loop:
7527 double *A, B; int *C;
7528 for (int i = 0; i < size; ++i) {
7529 A[i] = B[C[i]];
7530 }
7531
7532.. code-block:: llvm
7533
7534 ; get pointers for 8 elements from array B
7535 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7536 ; load 8 elements from array B into A
7537 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7538 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007539
7540Conversion Operations
7541---------------------
7542
7543The instructions in this category are the conversion instructions
7544(casting) which all take a single operand and a type. They perform
7545various bit conversions on the operand.
7546
7547'``trunc .. to``' Instruction
7548^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7549
7550Syntax:
7551"""""""
7552
7553::
7554
7555 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7556
7557Overview:
7558"""""""""
7559
7560The '``trunc``' instruction truncates its operand to the type ``ty2``.
7561
7562Arguments:
7563""""""""""
7564
7565The '``trunc``' instruction takes a value to trunc, and a type to trunc
7566it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7567of the same number of integers. The bit size of the ``value`` must be
7568larger than the bit size of the destination type, ``ty2``. Equal sized
7569types are not allowed.
7570
7571Semantics:
7572""""""""""
7573
7574The '``trunc``' instruction truncates the high order bits in ``value``
7575and converts the remaining bits to ``ty2``. Since the source size must
7576be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7577It will always truncate bits.
7578
7579Example:
7580""""""""
7581
7582.. code-block:: llvm
7583
7584 %X = trunc i32 257 to i8 ; yields i8:1
7585 %Y = trunc i32 123 to i1 ; yields i1:true
7586 %Z = trunc i32 122 to i1 ; yields i1:false
7587 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7588
7589'``zext .. to``' Instruction
7590^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7591
7592Syntax:
7593"""""""
7594
7595::
7596
7597 <result> = zext <ty> <value> to <ty2> ; yields ty2
7598
7599Overview:
7600"""""""""
7601
7602The '``zext``' instruction zero extends its operand to type ``ty2``.
7603
7604Arguments:
7605""""""""""
7606
7607The '``zext``' instruction takes a value to cast, and a type to cast it
7608to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7609the same number of integers. The bit size of the ``value`` must be
7610smaller than the bit size of the destination type, ``ty2``.
7611
7612Semantics:
7613""""""""""
7614
7615The ``zext`` fills the high order bits of the ``value`` with zero bits
7616until it reaches the size of the destination type, ``ty2``.
7617
7618When zero extending from i1, the result will always be either 0 or 1.
7619
7620Example:
7621""""""""
7622
7623.. code-block:: llvm
7624
7625 %X = zext i32 257 to i64 ; yields i64:257
7626 %Y = zext i1 true to i32 ; yields i32:1
7627 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7628
7629'``sext .. to``' Instruction
7630^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7631
7632Syntax:
7633"""""""
7634
7635::
7636
7637 <result> = sext <ty> <value> to <ty2> ; yields ty2
7638
7639Overview:
7640"""""""""
7641
7642The '``sext``' sign extends ``value`` to the type ``ty2``.
7643
7644Arguments:
7645""""""""""
7646
7647The '``sext``' instruction takes a value to cast, and a type to cast it
7648to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7649the same number of integers. The bit size of the ``value`` must be
7650smaller than the bit size of the destination type, ``ty2``.
7651
7652Semantics:
7653""""""""""
7654
7655The '``sext``' instruction performs a sign extension by copying the sign
7656bit (highest order bit) of the ``value`` until it reaches the bit size
7657of the type ``ty2``.
7658
7659When sign extending from i1, the extension always results in -1 or 0.
7660
7661Example:
7662""""""""
7663
7664.. code-block:: llvm
7665
7666 %X = sext i8 -1 to i16 ; yields i16 :65535
7667 %Y = sext i1 true to i32 ; yields i32:-1
7668 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7669
7670'``fptrunc .. to``' Instruction
7671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7672
7673Syntax:
7674"""""""
7675
7676::
7677
7678 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7679
7680Overview:
7681"""""""""
7682
7683The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7684
7685Arguments:
7686""""""""""
7687
7688The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7689value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7690The size of ``value`` must be larger than the size of ``ty2``. This
7691implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7692
7693Semantics:
7694""""""""""
7695
Dan Liew50456fb2015-09-03 18:43:56 +00007696The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007697:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007698point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7699destination type, ``ty2``, then the results are undefined. If the cast produces
7700an inexact result, how rounding is performed (e.g. truncation, also known as
7701round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007702
7703Example:
7704""""""""
7705
7706.. code-block:: llvm
7707
7708 %X = fptrunc double 123.0 to float ; yields float:123.0
7709 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7710
7711'``fpext .. to``' Instruction
7712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7713
7714Syntax:
7715"""""""
7716
7717::
7718
7719 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7720
7721Overview:
7722"""""""""
7723
7724The '``fpext``' extends a floating point ``value`` to a larger floating
7725point value.
7726
7727Arguments:
7728""""""""""
7729
7730The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7731``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7732to. The source type must be smaller than the destination type.
7733
7734Semantics:
7735""""""""""
7736
7737The '``fpext``' instruction extends the ``value`` from a smaller
7738:ref:`floating point <t_floating>` type to a larger :ref:`floating
7739point <t_floating>` type. The ``fpext`` cannot be used to make a
7740*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7741*no-op cast* for a floating point cast.
7742
7743Example:
7744""""""""
7745
7746.. code-block:: llvm
7747
7748 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7749 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7750
7751'``fptoui .. to``' Instruction
7752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7753
7754Syntax:
7755"""""""
7756
7757::
7758
7759 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7760
7761Overview:
7762"""""""""
7763
7764The '``fptoui``' converts a floating point ``value`` to its unsigned
7765integer equivalent of type ``ty2``.
7766
7767Arguments:
7768""""""""""
7769
7770The '``fptoui``' instruction takes a value to cast, which must be a
7771scalar or vector :ref:`floating point <t_floating>` value, and a type to
7772cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7773``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7774type with the same number of elements as ``ty``
7775
7776Semantics:
7777""""""""""
7778
7779The '``fptoui``' instruction converts its :ref:`floating
7780point <t_floating>` operand into the nearest (rounding towards zero)
7781unsigned integer value. If the value cannot fit in ``ty2``, the results
7782are undefined.
7783
7784Example:
7785""""""""
7786
7787.. code-block:: llvm
7788
7789 %X = fptoui double 123.0 to i32 ; yields i32:123
7790 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7791 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7792
7793'``fptosi .. to``' Instruction
7794^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7795
7796Syntax:
7797"""""""
7798
7799::
7800
7801 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7802
7803Overview:
7804"""""""""
7805
7806The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7807``value`` to type ``ty2``.
7808
7809Arguments:
7810""""""""""
7811
7812The '``fptosi``' instruction takes a value to cast, which must be a
7813scalar or vector :ref:`floating point <t_floating>` value, and a type to
7814cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7815``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7816type with the same number of elements as ``ty``
7817
7818Semantics:
7819""""""""""
7820
7821The '``fptosi``' instruction converts its :ref:`floating
7822point <t_floating>` operand into the nearest (rounding towards zero)
7823signed integer value. If the value cannot fit in ``ty2``, the results
7824are undefined.
7825
7826Example:
7827""""""""
7828
7829.. code-block:: llvm
7830
7831 %X = fptosi double -123.0 to i32 ; yields i32:-123
7832 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7833 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7834
7835'``uitofp .. to``' Instruction
7836^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7837
7838Syntax:
7839"""""""
7840
7841::
7842
7843 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7844
7845Overview:
7846"""""""""
7847
7848The '``uitofp``' instruction regards ``value`` as an unsigned integer
7849and converts that value to the ``ty2`` type.
7850
7851Arguments:
7852""""""""""
7853
7854The '``uitofp``' instruction takes a value to cast, which must be a
7855scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7856``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7857``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7858type with the same number of elements as ``ty``
7859
7860Semantics:
7861""""""""""
7862
7863The '``uitofp``' instruction interprets its operand as an unsigned
7864integer quantity and converts it to the corresponding floating point
7865value. If the value cannot fit in the floating point value, the results
7866are undefined.
7867
7868Example:
7869""""""""
7870
7871.. code-block:: llvm
7872
7873 %X = uitofp i32 257 to float ; yields float:257.0
7874 %Y = uitofp i8 -1 to double ; yields double:255.0
7875
7876'``sitofp .. to``' Instruction
7877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7878
7879Syntax:
7880"""""""
7881
7882::
7883
7884 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7885
7886Overview:
7887"""""""""
7888
7889The '``sitofp``' instruction regards ``value`` as a signed integer and
7890converts that value to the ``ty2`` type.
7891
7892Arguments:
7893""""""""""
7894
7895The '``sitofp``' instruction takes a value to cast, which must be a
7896scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7897``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7898``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7899type with the same number of elements as ``ty``
7900
7901Semantics:
7902""""""""""
7903
7904The '``sitofp``' instruction interprets its operand as a signed integer
7905quantity and converts it to the corresponding floating point value. If
7906the value cannot fit in the floating point value, the results are
7907undefined.
7908
7909Example:
7910""""""""
7911
7912.. code-block:: llvm
7913
7914 %X = sitofp i32 257 to float ; yields float:257.0
7915 %Y = sitofp i8 -1 to double ; yields double:-1.0
7916
7917.. _i_ptrtoint:
7918
7919'``ptrtoint .. to``' Instruction
7920^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7921
7922Syntax:
7923"""""""
7924
7925::
7926
7927 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7928
7929Overview:
7930"""""""""
7931
7932The '``ptrtoint``' instruction converts the pointer or a vector of
7933pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7934
7935Arguments:
7936""""""""""
7937
7938The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007939a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007940type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7941a vector of integers type.
7942
7943Semantics:
7944""""""""""
7945
7946The '``ptrtoint``' instruction converts ``value`` to integer type
7947``ty2`` by interpreting the pointer value as an integer and either
7948truncating or zero extending that value to the size of the integer type.
7949If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7950``value`` is larger than ``ty2`` then a truncation is done. If they are
7951the same size, then nothing is done (*no-op cast*) other than a type
7952change.
7953
7954Example:
7955""""""""
7956
7957.. code-block:: llvm
7958
7959 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7960 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7961 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7962
7963.. _i_inttoptr:
7964
7965'``inttoptr .. to``' Instruction
7966^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7967
7968Syntax:
7969"""""""
7970
7971::
7972
7973 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7974
7975Overview:
7976"""""""""
7977
7978The '``inttoptr``' instruction converts an integer ``value`` to a
7979pointer type, ``ty2``.
7980
7981Arguments:
7982""""""""""
7983
7984The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7985cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7986type.
7987
7988Semantics:
7989""""""""""
7990
7991The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7992applying either a zero extension or a truncation depending on the size
7993of the integer ``value``. If ``value`` is larger than the size of a
7994pointer then a truncation is done. If ``value`` is smaller than the size
7995of a pointer then a zero extension is done. If they are the same size,
7996nothing is done (*no-op cast*).
7997
7998Example:
7999""""""""
8000
8001.. code-block:: llvm
8002
8003 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8004 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8005 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8006 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8007
8008.. _i_bitcast:
8009
8010'``bitcast .. to``' Instruction
8011^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8012
8013Syntax:
8014"""""""
8015
8016::
8017
8018 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8019
8020Overview:
8021"""""""""
8022
8023The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8024changing any bits.
8025
8026Arguments:
8027""""""""""
8028
8029The '``bitcast``' instruction takes a value to cast, which must be a
8030non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008031also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8032bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008033identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008034also be a pointer of the same size. This instruction supports bitwise
8035conversion of vectors to integers and to vectors of other types (as
8036long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008037
8038Semantics:
8039""""""""""
8040
Matt Arsenault24b49c42013-07-31 17:49:08 +00008041The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8042is always a *no-op cast* because no bits change with this
8043conversion. The conversion is done as if the ``value`` had been stored
8044to memory and read back as type ``ty2``. Pointer (or vector of
8045pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008046pointers) types with the same address space through this instruction.
8047To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8048or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008049
8050Example:
8051""""""""
8052
8053.. code-block:: llvm
8054
8055 %X = bitcast i8 255 to i8 ; yields i8 :-1
8056 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8057 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8058 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8059
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008060.. _i_addrspacecast:
8061
8062'``addrspacecast .. to``' Instruction
8063^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8064
8065Syntax:
8066"""""""
8067
8068::
8069
8070 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8071
8072Overview:
8073"""""""""
8074
8075The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8076address space ``n`` to type ``pty2`` in address space ``m``.
8077
8078Arguments:
8079""""""""""
8080
8081The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8082to cast and a pointer type to cast it to, which must have a different
8083address space.
8084
8085Semantics:
8086""""""""""
8087
8088The '``addrspacecast``' instruction converts the pointer value
8089``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008090value modification, depending on the target and the address space
8091pair. Pointer conversions within the same address space must be
8092performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008093conversion is legal then both result and operand refer to the same memory
8094location.
8095
8096Example:
8097""""""""
8098
8099.. code-block:: llvm
8100
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008101 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8102 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8103 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008104
Sean Silvab084af42012-12-07 10:36:55 +00008105.. _otherops:
8106
8107Other Operations
8108----------------
8109
8110The instructions in this category are the "miscellaneous" instructions,
8111which defy better classification.
8112
8113.. _i_icmp:
8114
8115'``icmp``' Instruction
8116^^^^^^^^^^^^^^^^^^^^^^
8117
8118Syntax:
8119"""""""
8120
8121::
8122
Tim Northover675a0962014-06-13 14:24:23 +00008123 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008124
8125Overview:
8126"""""""""
8127
8128The '``icmp``' instruction returns a boolean value or a vector of
8129boolean values based on comparison of its two integer, integer vector,
8130pointer, or pointer vector operands.
8131
8132Arguments:
8133""""""""""
8134
8135The '``icmp``' instruction takes three operands. The first operand is
8136the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008137not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008138
8139#. ``eq``: equal
8140#. ``ne``: not equal
8141#. ``ugt``: unsigned greater than
8142#. ``uge``: unsigned greater or equal
8143#. ``ult``: unsigned less than
8144#. ``ule``: unsigned less or equal
8145#. ``sgt``: signed greater than
8146#. ``sge``: signed greater or equal
8147#. ``slt``: signed less than
8148#. ``sle``: signed less or equal
8149
8150The remaining two arguments must be :ref:`integer <t_integer>` or
8151:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8152must also be identical types.
8153
8154Semantics:
8155""""""""""
8156
8157The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8158code given as ``cond``. The comparison performed always yields either an
8159:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8160
8161#. ``eq``: yields ``true`` if the operands are equal, ``false``
8162 otherwise. No sign interpretation is necessary or performed.
8163#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8164 otherwise. No sign interpretation is necessary or performed.
8165#. ``ugt``: interprets the operands as unsigned values and yields
8166 ``true`` if ``op1`` is greater than ``op2``.
8167#. ``uge``: interprets the operands as unsigned values and yields
8168 ``true`` if ``op1`` is greater than or equal to ``op2``.
8169#. ``ult``: interprets the operands as unsigned values and yields
8170 ``true`` if ``op1`` is less than ``op2``.
8171#. ``ule``: interprets the operands as unsigned values and yields
8172 ``true`` if ``op1`` is less than or equal to ``op2``.
8173#. ``sgt``: interprets the operands as signed values and yields ``true``
8174 if ``op1`` is greater than ``op2``.
8175#. ``sge``: interprets the operands as signed values and yields ``true``
8176 if ``op1`` is greater than or equal to ``op2``.
8177#. ``slt``: interprets the operands as signed values and yields ``true``
8178 if ``op1`` is less than ``op2``.
8179#. ``sle``: interprets the operands as signed values and yields ``true``
8180 if ``op1`` is less than or equal to ``op2``.
8181
8182If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8183are compared as if they were integers.
8184
8185If the operands are integer vectors, then they are compared element by
8186element. The result is an ``i1`` vector with the same number of elements
8187as the values being compared. Otherwise, the result is an ``i1``.
8188
8189Example:
8190""""""""
8191
8192.. code-block:: llvm
8193
8194 <result> = icmp eq i32 4, 5 ; yields: result=false
8195 <result> = icmp ne float* %X, %X ; yields: result=false
8196 <result> = icmp ult i16 4, 5 ; yields: result=true
8197 <result> = icmp sgt i16 4, 5 ; yields: result=false
8198 <result> = icmp ule i16 -4, 5 ; yields: result=false
8199 <result> = icmp sge i16 4, 5 ; yields: result=false
8200
8201Note that the code generator does not yet support vector types with the
8202``icmp`` instruction.
8203
8204.. _i_fcmp:
8205
8206'``fcmp``' Instruction
8207^^^^^^^^^^^^^^^^^^^^^^
8208
8209Syntax:
8210"""""""
8211
8212::
8213
James Molloy88eb5352015-07-10 12:52:00 +00008214 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008215
8216Overview:
8217"""""""""
8218
8219The '``fcmp``' instruction returns a boolean value or vector of boolean
8220values based on comparison of its operands.
8221
8222If the operands are floating point scalars, then the result type is a
8223boolean (:ref:`i1 <t_integer>`).
8224
8225If the operands are floating point vectors, then the result type is a
8226vector of boolean with the same number of elements as the operands being
8227compared.
8228
8229Arguments:
8230""""""""""
8231
8232The '``fcmp``' instruction takes three operands. The first operand is
8233the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008234not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008235
8236#. ``false``: no comparison, always returns false
8237#. ``oeq``: ordered and equal
8238#. ``ogt``: ordered and greater than
8239#. ``oge``: ordered and greater than or equal
8240#. ``olt``: ordered and less than
8241#. ``ole``: ordered and less than or equal
8242#. ``one``: ordered and not equal
8243#. ``ord``: ordered (no nans)
8244#. ``ueq``: unordered or equal
8245#. ``ugt``: unordered or greater than
8246#. ``uge``: unordered or greater than or equal
8247#. ``ult``: unordered or less than
8248#. ``ule``: unordered or less than or equal
8249#. ``une``: unordered or not equal
8250#. ``uno``: unordered (either nans)
8251#. ``true``: no comparison, always returns true
8252
8253*Ordered* means that neither operand is a QNAN while *unordered* means
8254that either operand may be a QNAN.
8255
8256Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8257point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8258type. They must have identical types.
8259
8260Semantics:
8261""""""""""
8262
8263The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8264condition code given as ``cond``. If the operands are vectors, then the
8265vectors are compared element by element. Each comparison performed
8266always yields an :ref:`i1 <t_integer>` result, as follows:
8267
8268#. ``false``: always yields ``false``, regardless of operands.
8269#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8270 is equal to ``op2``.
8271#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8272 is greater than ``op2``.
8273#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8274 is greater than or equal to ``op2``.
8275#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8276 is less than ``op2``.
8277#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8278 is less than or equal to ``op2``.
8279#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8280 is not equal to ``op2``.
8281#. ``ord``: yields ``true`` if both operands are not a QNAN.
8282#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8283 equal to ``op2``.
8284#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8285 greater than ``op2``.
8286#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8287 greater than or equal to ``op2``.
8288#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8289 less than ``op2``.
8290#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8291 less than or equal to ``op2``.
8292#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8293 not equal to ``op2``.
8294#. ``uno``: yields ``true`` if either operand is a QNAN.
8295#. ``true``: always yields ``true``, regardless of operands.
8296
James Molloy88eb5352015-07-10 12:52:00 +00008297The ``fcmp`` instruction can also optionally take any number of
8298:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8299otherwise unsafe floating point optimizations.
8300
8301Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8302only flags that have any effect on its semantics are those that allow
8303assumptions to be made about the values of input arguments; namely
8304``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8305
Sean Silvab084af42012-12-07 10:36:55 +00008306Example:
8307""""""""
8308
8309.. code-block:: llvm
8310
8311 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8312 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8313 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8314 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8315
8316Note that the code generator does not yet support vector types with the
8317``fcmp`` instruction.
8318
8319.. _i_phi:
8320
8321'``phi``' Instruction
8322^^^^^^^^^^^^^^^^^^^^^
8323
8324Syntax:
8325"""""""
8326
8327::
8328
8329 <result> = phi <ty> [ <val0>, <label0>], ...
8330
8331Overview:
8332"""""""""
8333
8334The '``phi``' instruction is used to implement the φ node in the SSA
8335graph representing the function.
8336
8337Arguments:
8338""""""""""
8339
8340The type of the incoming values is specified with the first type field.
8341After this, the '``phi``' instruction takes a list of pairs as
8342arguments, with one pair for each predecessor basic block of the current
8343block. Only values of :ref:`first class <t_firstclass>` type may be used as
8344the value arguments to the PHI node. Only labels may be used as the
8345label arguments.
8346
8347There must be no non-phi instructions between the start of a basic block
8348and the PHI instructions: i.e. PHI instructions must be first in a basic
8349block.
8350
8351For the purposes of the SSA form, the use of each incoming value is
8352deemed to occur on the edge from the corresponding predecessor block to
8353the current block (but after any definition of an '``invoke``'
8354instruction's return value on the same edge).
8355
8356Semantics:
8357""""""""""
8358
8359At runtime, the '``phi``' instruction logically takes on the value
8360specified by the pair corresponding to the predecessor basic block that
8361executed just prior to the current block.
8362
8363Example:
8364""""""""
8365
8366.. code-block:: llvm
8367
8368 Loop: ; Infinite loop that counts from 0 on up...
8369 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8370 %nextindvar = add i32 %indvar, 1
8371 br label %Loop
8372
8373.. _i_select:
8374
8375'``select``' Instruction
8376^^^^^^^^^^^^^^^^^^^^^^^^
8377
8378Syntax:
8379"""""""
8380
8381::
8382
8383 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8384
8385 selty is either i1 or {<N x i1>}
8386
8387Overview:
8388"""""""""
8389
8390The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008391condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008392
8393Arguments:
8394""""""""""
8395
8396The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8397values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008398class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008399
8400Semantics:
8401""""""""""
8402
8403If the condition is an i1 and it evaluates to 1, the instruction returns
8404the first value argument; otherwise, it returns the second value
8405argument.
8406
8407If the condition is a vector of i1, then the value arguments must be
8408vectors of the same size, and the selection is done element by element.
8409
David Majnemer40a0b592015-03-03 22:45:47 +00008410If the condition is an i1 and the value arguments are vectors of the
8411same size, then an entire vector is selected.
8412
Sean Silvab084af42012-12-07 10:36:55 +00008413Example:
8414""""""""
8415
8416.. code-block:: llvm
8417
8418 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8419
8420.. _i_call:
8421
8422'``call``' Instruction
8423^^^^^^^^^^^^^^^^^^^^^^
8424
8425Syntax:
8426"""""""
8427
8428::
8429
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008430 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008431 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008432
8433Overview:
8434"""""""""
8435
8436The '``call``' instruction represents a simple function call.
8437
8438Arguments:
8439""""""""""
8440
8441This instruction requires several arguments:
8442
Reid Kleckner5772b772014-04-24 20:14:34 +00008443#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008444 should perform tail call optimization. The ``tail`` marker is a hint that
8445 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008446 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008447 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008448
8449 #. The call will not cause unbounded stack growth if it is part of a
8450 recursive cycle in the call graph.
8451 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8452 forwarded in place.
8453
8454 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008455 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008456 rules:
8457
8458 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8459 or a pointer bitcast followed by a ret instruction.
8460 - The ret instruction must return the (possibly bitcasted) value
8461 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008462 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008463 parameters or return types may differ in pointee type, but not
8464 in address space.
8465 - The calling conventions of the caller and callee must match.
8466 - All ABI-impacting function attributes, such as sret, byval, inreg,
8467 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008468 - The callee must be varargs iff the caller is varargs. Bitcasting a
8469 non-varargs function to the appropriate varargs type is legal so
8470 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008471
8472 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8473 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008474
8475 - Caller and callee both have the calling convention ``fastcc``.
8476 - The call is in tail position (ret immediately follows call and ret
8477 uses value of call or is void).
8478 - Option ``-tailcallopt`` is enabled, or
8479 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008480 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008481 met. <CodeGenerator.html#tailcallopt>`_
8482
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008483#. The optional ``notail`` marker indicates that the optimizers should not add
8484 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8485 call optimization from being performed on the call.
8486
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008487#. The optional ``fast-math flags`` marker indicates that the call has one or more
8488 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8489 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8490 for calls that return a floating-point scalar or vector type.
8491
Sean Silvab084af42012-12-07 10:36:55 +00008492#. The optional "cconv" marker indicates which :ref:`calling
8493 convention <callingconv>` the call should use. If none is
8494 specified, the call defaults to using C calling conventions. The
8495 calling convention of the call must match the calling convention of
8496 the target function, or else the behavior is undefined.
8497#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8498 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8499 are valid here.
8500#. '``ty``': the type of the call instruction itself which is also the
8501 type of the return value. Functions that return no value are marked
8502 ``void``.
8503#. '``fnty``': shall be the signature of the pointer to function value
8504 being invoked. The argument types must match the types implied by
8505 this signature. This type can be omitted if the function is not
8506 varargs and if the function type does not return a pointer to a
8507 function.
8508#. '``fnptrval``': An LLVM value containing a pointer to a function to
8509 be invoked. In most cases, this is a direct function invocation, but
8510 indirect ``call``'s are just as possible, calling an arbitrary pointer
8511 to function value.
8512#. '``function args``': argument list whose types match the function
8513 signature argument types and parameter attributes. All arguments must
8514 be of :ref:`first class <t_firstclass>` type. If the function signature
8515 indicates the function accepts a variable number of arguments, the
8516 extra arguments can be specified.
8517#. The optional :ref:`function attributes <fnattrs>` list. Only
8518 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8519 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008520#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008521
8522Semantics:
8523""""""""""
8524
8525The '``call``' instruction is used to cause control flow to transfer to
8526a specified function, with its incoming arguments bound to the specified
8527values. Upon a '``ret``' instruction in the called function, control
8528flow continues with the instruction after the function call, and the
8529return value of the function is bound to the result argument.
8530
8531Example:
8532""""""""
8533
8534.. code-block:: llvm
8535
8536 %retval = call i32 @test(i32 %argc)
8537 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8538 %X = tail call i32 @foo() ; yields i32
8539 %Y = tail call fastcc i32 @foo() ; yields i32
8540 call void %foo(i8 97 signext)
8541
8542 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008543 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008544 %gr = extractvalue %struct.A %r, 0 ; yields i32
8545 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8546 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8547 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8548
8549llvm treats calls to some functions with names and arguments that match
8550the standard C99 library as being the C99 library functions, and may
8551perform optimizations or generate code for them under that assumption.
8552This is something we'd like to change in the future to provide better
8553support for freestanding environments and non-C-based languages.
8554
8555.. _i_va_arg:
8556
8557'``va_arg``' Instruction
8558^^^^^^^^^^^^^^^^^^^^^^^^
8559
8560Syntax:
8561"""""""
8562
8563::
8564
8565 <resultval> = va_arg <va_list*> <arglist>, <argty>
8566
8567Overview:
8568"""""""""
8569
8570The '``va_arg``' instruction is used to access arguments passed through
8571the "variable argument" area of a function call. It is used to implement
8572the ``va_arg`` macro in C.
8573
8574Arguments:
8575""""""""""
8576
8577This instruction takes a ``va_list*`` value and the type of the
8578argument. It returns a value of the specified argument type and
8579increments the ``va_list`` to point to the next argument. The actual
8580type of ``va_list`` is target specific.
8581
8582Semantics:
8583""""""""""
8584
8585The '``va_arg``' instruction loads an argument of the specified type
8586from the specified ``va_list`` and causes the ``va_list`` to point to
8587the next argument. For more information, see the variable argument
8588handling :ref:`Intrinsic Functions <int_varargs>`.
8589
8590It is legal for this instruction to be called in a function which does
8591not take a variable number of arguments, for example, the ``vfprintf``
8592function.
8593
8594``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8595function <intrinsics>` because it takes a type as an argument.
8596
8597Example:
8598""""""""
8599
8600See the :ref:`variable argument processing <int_varargs>` section.
8601
8602Note that the code generator does not yet fully support va\_arg on many
8603targets. Also, it does not currently support va\_arg with aggregate
8604types on any target.
8605
8606.. _i_landingpad:
8607
8608'``landingpad``' Instruction
8609^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8610
8611Syntax:
8612"""""""
8613
8614::
8615
David Majnemer7fddecc2015-06-17 20:52:32 +00008616 <resultval> = landingpad <resultty> <clause>+
8617 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008618
8619 <clause> := catch <type> <value>
8620 <clause> := filter <array constant type> <array constant>
8621
8622Overview:
8623"""""""""
8624
8625The '``landingpad``' instruction is used by `LLVM's exception handling
8626system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008627is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008628code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008629defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008630re-entry to the function. The ``resultval`` has the type ``resultty``.
8631
8632Arguments:
8633""""""""""
8634
David Majnemer7fddecc2015-06-17 20:52:32 +00008635The optional
Sean Silvab084af42012-12-07 10:36:55 +00008636``cleanup`` flag indicates that the landing pad block is a cleanup.
8637
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008638A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008639contains the global variable representing the "type" that may be caught
8640or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8641clause takes an array constant as its argument. Use
8642"``[0 x i8**] undef``" for a filter which cannot throw. The
8643'``landingpad``' instruction must contain *at least* one ``clause`` or
8644the ``cleanup`` flag.
8645
8646Semantics:
8647""""""""""
8648
8649The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008650:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008651therefore the "result type" of the ``landingpad`` instruction. As with
8652calling conventions, how the personality function results are
8653represented in LLVM IR is target specific.
8654
8655The clauses are applied in order from top to bottom. If two
8656``landingpad`` instructions are merged together through inlining, the
8657clauses from the calling function are appended to the list of clauses.
8658When the call stack is being unwound due to an exception being thrown,
8659the exception is compared against each ``clause`` in turn. If it doesn't
8660match any of the clauses, and the ``cleanup`` flag is not set, then
8661unwinding continues further up the call stack.
8662
8663The ``landingpad`` instruction has several restrictions:
8664
8665- A landing pad block is a basic block which is the unwind destination
8666 of an '``invoke``' instruction.
8667- A landing pad block must have a '``landingpad``' instruction as its
8668 first non-PHI instruction.
8669- There can be only one '``landingpad``' instruction within the landing
8670 pad block.
8671- A basic block that is not a landing pad block may not include a
8672 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008673
8674Example:
8675""""""""
8676
8677.. code-block:: llvm
8678
8679 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008680 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008681 catch i8** @_ZTIi
8682 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008683 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008684 cleanup
8685 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008686 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008687 catch i8** @_ZTIi
8688 filter [1 x i8**] [@_ZTId]
8689
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008690.. _i_catchpad:
8691
8692'``catchpad``' Instruction
8693^^^^^^^^^^^^^^^^^^^^^^^^^^
8694
8695Syntax:
8696"""""""
8697
8698::
8699
8700 <resultval> = catchpad within <catchswitch> [<args>*]
8701
8702Overview:
8703"""""""""
8704
8705The '``catchpad``' instruction is used by `LLVM's exception handling
8706system <ExceptionHandling.html#overview>`_ to specify that a basic block
8707begins a catch handler --- one where a personality routine attempts to transfer
8708control to catch an exception.
8709
8710Arguments:
8711""""""""""
8712
8713The ``catchswitch`` operand must always be a token produced by a
8714:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8715ensures that each ``catchpad`` has exactly one predecessor block, and it always
8716terminates in a ``catchswitch``.
8717
8718The ``args`` correspond to whatever information the personality routine
8719requires to know if this is an appropriate handler for the exception. Control
8720will transfer to the ``catchpad`` if this is the first appropriate handler for
8721the exception.
8722
8723The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8724``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8725pads.
8726
8727Semantics:
8728""""""""""
8729
8730When the call stack is being unwound due to an exception being thrown, the
8731exception is compared against the ``args``. If it doesn't match, control will
8732not reach the ``catchpad`` instruction. The representation of ``args`` is
8733entirely target and personality function-specific.
8734
8735Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8736instruction must be the first non-phi of its parent basic block.
8737
8738The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8739instructions is described in the
8740`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8741
8742When a ``catchpad`` has been "entered" but not yet "exited" (as
8743described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8744it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8745that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8746
8747Example:
8748""""""""
8749
8750.. code-block:: llvm
8751
8752 dispatch:
8753 %cs = catchswitch within none [label %handler0] unwind to caller
8754 ;; A catch block which can catch an integer.
8755 handler0:
8756 %tok = catchpad within %cs [i8** @_ZTIi]
8757
David Majnemer654e1302015-07-31 17:58:14 +00008758.. _i_cleanuppad:
8759
8760'``cleanuppad``' Instruction
8761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8762
8763Syntax:
8764"""""""
8765
8766::
8767
David Majnemer8a1c45d2015-12-12 05:38:55 +00008768 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008769
8770Overview:
8771"""""""""
8772
8773The '``cleanuppad``' instruction is used by `LLVM's exception handling
8774system <ExceptionHandling.html#overview>`_ to specify that a basic block
8775is a cleanup block --- one where a personality routine attempts to
8776transfer control to run cleanup actions.
8777The ``args`` correspond to whatever additional
8778information the :ref:`personality function <personalityfn>` requires to
8779execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008780The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008781match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8782The ``parent`` argument is the token of the funclet that contains the
8783``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8784this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008785
8786Arguments:
8787""""""""""
8788
8789The instruction takes a list of arbitrary values which are interpreted
8790by the :ref:`personality function <personalityfn>`.
8791
8792Semantics:
8793""""""""""
8794
David Majnemer654e1302015-07-31 17:58:14 +00008795When the call stack is being unwound due to an exception being thrown,
8796the :ref:`personality function <personalityfn>` transfers control to the
8797``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008798As with calling conventions, how the personality function results are
8799represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008800
8801The ``cleanuppad`` instruction has several restrictions:
8802
8803- A cleanup block is a basic block which is the unwind destination of
8804 an exceptional instruction.
8805- A cleanup block must have a '``cleanuppad``' instruction as its
8806 first non-PHI instruction.
8807- There can be only one '``cleanuppad``' instruction within the
8808 cleanup block.
8809- A basic block that is not a cleanup block may not include a
8810 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008811
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008812When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8813described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8814it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8815that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008816
David Majnemer654e1302015-07-31 17:58:14 +00008817Example:
8818""""""""
8819
8820.. code-block:: llvm
8821
David Majnemer8a1c45d2015-12-12 05:38:55 +00008822 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008823
Sean Silvab084af42012-12-07 10:36:55 +00008824.. _intrinsics:
8825
8826Intrinsic Functions
8827===================
8828
8829LLVM supports the notion of an "intrinsic function". These functions
8830have well known names and semantics and are required to follow certain
8831restrictions. Overall, these intrinsics represent an extension mechanism
8832for the LLVM language that does not require changing all of the
8833transformations in LLVM when adding to the language (or the bitcode
8834reader/writer, the parser, etc...).
8835
8836Intrinsic function names must all start with an "``llvm.``" prefix. This
8837prefix is reserved in LLVM for intrinsic names; thus, function names may
8838not begin with this prefix. Intrinsic functions must always be external
8839functions: you cannot define the body of intrinsic functions. Intrinsic
8840functions may only be used in call or invoke instructions: it is illegal
8841to take the address of an intrinsic function. Additionally, because
8842intrinsic functions are part of the LLVM language, it is required if any
8843are added that they be documented here.
8844
8845Some intrinsic functions can be overloaded, i.e., the intrinsic
8846represents a family of functions that perform the same operation but on
8847different data types. Because LLVM can represent over 8 million
8848different integer types, overloading is used commonly to allow an
8849intrinsic function to operate on any integer type. One or more of the
8850argument types or the result type can be overloaded to accept any
8851integer type. Argument types may also be defined as exactly matching a
8852previous argument's type or the result type. This allows an intrinsic
8853function which accepts multiple arguments, but needs all of them to be
8854of the same type, to only be overloaded with respect to a single
8855argument or the result.
8856
8857Overloaded intrinsics will have the names of its overloaded argument
8858types encoded into its function name, each preceded by a period. Only
8859those types which are overloaded result in a name suffix. Arguments
8860whose type is matched against another type do not. For example, the
8861``llvm.ctpop`` function can take an integer of any width and returns an
8862integer of exactly the same integer width. This leads to a family of
8863functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8864``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8865overloaded, and only one type suffix is required. Because the argument's
8866type is matched against the return type, it does not require its own
8867name suffix.
8868
8869To learn how to add an intrinsic function, please see the `Extending
8870LLVM Guide <ExtendingLLVM.html>`_.
8871
8872.. _int_varargs:
8873
8874Variable Argument Handling Intrinsics
8875-------------------------------------
8876
8877Variable argument support is defined in LLVM with the
8878:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8879functions. These functions are related to the similarly named macros
8880defined in the ``<stdarg.h>`` header file.
8881
8882All of these functions operate on arguments that use a target-specific
8883value type "``va_list``". The LLVM assembly language reference manual
8884does not define what this type is, so all transformations should be
8885prepared to handle these functions regardless of the type used.
8886
8887This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8888variable argument handling intrinsic functions are used.
8889
8890.. code-block:: llvm
8891
Tim Northoverab60bb92014-11-02 01:21:51 +00008892 ; This struct is different for every platform. For most platforms,
8893 ; it is merely an i8*.
8894 %struct.va_list = type { i8* }
8895
8896 ; For Unix x86_64 platforms, va_list is the following struct:
8897 ; %struct.va_list = type { i32, i32, i8*, i8* }
8898
Sean Silvab084af42012-12-07 10:36:55 +00008899 define i32 @test(i32 %X, ...) {
8900 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008901 %ap = alloca %struct.va_list
8902 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008903 call void @llvm.va_start(i8* %ap2)
8904
8905 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008906 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008907
8908 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8909 %aq = alloca i8*
8910 %aq2 = bitcast i8** %aq to i8*
8911 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8912 call void @llvm.va_end(i8* %aq2)
8913
8914 ; Stop processing of arguments.
8915 call void @llvm.va_end(i8* %ap2)
8916 ret i32 %tmp
8917 }
8918
8919 declare void @llvm.va_start(i8*)
8920 declare void @llvm.va_copy(i8*, i8*)
8921 declare void @llvm.va_end(i8*)
8922
8923.. _int_va_start:
8924
8925'``llvm.va_start``' Intrinsic
8926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8927
8928Syntax:
8929"""""""
8930
8931::
8932
Nick Lewycky04f6de02013-09-11 22:04:52 +00008933 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008934
8935Overview:
8936"""""""""
8937
8938The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8939subsequent use by ``va_arg``.
8940
8941Arguments:
8942""""""""""
8943
8944The argument is a pointer to a ``va_list`` element to initialize.
8945
8946Semantics:
8947""""""""""
8948
8949The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8950available in C. In a target-dependent way, it initializes the
8951``va_list`` element to which the argument points, so that the next call
8952to ``va_arg`` will produce the first variable argument passed to the
8953function. Unlike the C ``va_start`` macro, this intrinsic does not need
8954to know the last argument of the function as the compiler can figure
8955that out.
8956
8957'``llvm.va_end``' Intrinsic
8958^^^^^^^^^^^^^^^^^^^^^^^^^^^
8959
8960Syntax:
8961"""""""
8962
8963::
8964
8965 declare void @llvm.va_end(i8* <arglist>)
8966
8967Overview:
8968"""""""""
8969
8970The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8971initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8972
8973Arguments:
8974""""""""""
8975
8976The argument is a pointer to a ``va_list`` to destroy.
8977
8978Semantics:
8979""""""""""
8980
8981The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8982available in C. In a target-dependent way, it destroys the ``va_list``
8983element to which the argument points. Calls to
8984:ref:`llvm.va_start <int_va_start>` and
8985:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8986``llvm.va_end``.
8987
8988.. _int_va_copy:
8989
8990'``llvm.va_copy``' Intrinsic
8991^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8992
8993Syntax:
8994"""""""
8995
8996::
8997
8998 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8999
9000Overview:
9001"""""""""
9002
9003The '``llvm.va_copy``' intrinsic copies the current argument position
9004from the source argument list to the destination argument list.
9005
9006Arguments:
9007""""""""""
9008
9009The first argument is a pointer to a ``va_list`` element to initialize.
9010The second argument is a pointer to a ``va_list`` element to copy from.
9011
9012Semantics:
9013""""""""""
9014
9015The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9016available in C. In a target-dependent way, it copies the source
9017``va_list`` element into the destination ``va_list`` element. This
9018intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9019arbitrarily complex and require, for example, memory allocation.
9020
9021Accurate Garbage Collection Intrinsics
9022--------------------------------------
9023
Philip Reamesc5b0f562015-02-25 23:52:06 +00009024LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009025(GC) requires the frontend to generate code containing appropriate intrinsic
9026calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009027intrinsics in a manner which is appropriate for the target collector.
9028
Sean Silvab084af42012-12-07 10:36:55 +00009029These intrinsics allow identification of :ref:`GC roots on the
9030stack <int_gcroot>`, as well as garbage collector implementations that
9031require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009032Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009033these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009034details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009035
Philip Reamesf80bbff2015-02-25 23:45:20 +00009036Experimental Statepoint Intrinsics
9037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9038
9039LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009040collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009041to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009042:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009043differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009044<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009045described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009046
9047.. _int_gcroot:
9048
9049'``llvm.gcroot``' Intrinsic
9050^^^^^^^^^^^^^^^^^^^^^^^^^^^
9051
9052Syntax:
9053"""""""
9054
9055::
9056
9057 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9058
9059Overview:
9060"""""""""
9061
9062The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9063the code generator, and allows some metadata to be associated with it.
9064
9065Arguments:
9066""""""""""
9067
9068The first argument specifies the address of a stack object that contains
9069the root pointer. The second pointer (which must be either a constant or
9070a global value address) contains the meta-data to be associated with the
9071root.
9072
9073Semantics:
9074""""""""""
9075
9076At runtime, a call to this intrinsic stores a null pointer into the
9077"ptrloc" location. At compile-time, the code generator generates
9078information to allow the runtime to find the pointer at GC safe points.
9079The '``llvm.gcroot``' intrinsic may only be used in a function which
9080:ref:`specifies a GC algorithm <gc>`.
9081
9082.. _int_gcread:
9083
9084'``llvm.gcread``' Intrinsic
9085^^^^^^^^^^^^^^^^^^^^^^^^^^^
9086
9087Syntax:
9088"""""""
9089
9090::
9091
9092 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9093
9094Overview:
9095"""""""""
9096
9097The '``llvm.gcread``' intrinsic identifies reads of references from heap
9098locations, allowing garbage collector implementations that require read
9099barriers.
9100
9101Arguments:
9102""""""""""
9103
9104The second argument is the address to read from, which should be an
9105address allocated from the garbage collector. The first object is a
9106pointer to the start of the referenced object, if needed by the language
9107runtime (otherwise null).
9108
9109Semantics:
9110""""""""""
9111
9112The '``llvm.gcread``' intrinsic has the same semantics as a load
9113instruction, but may be replaced with substantially more complex code by
9114the garbage collector runtime, as needed. The '``llvm.gcread``'
9115intrinsic may only be used in a function which :ref:`specifies a GC
9116algorithm <gc>`.
9117
9118.. _int_gcwrite:
9119
9120'``llvm.gcwrite``' Intrinsic
9121^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9122
9123Syntax:
9124"""""""
9125
9126::
9127
9128 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9129
9130Overview:
9131"""""""""
9132
9133The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9134locations, allowing garbage collector implementations that require write
9135barriers (such as generational or reference counting collectors).
9136
9137Arguments:
9138""""""""""
9139
9140The first argument is the reference to store, the second is the start of
9141the object to store it to, and the third is the address of the field of
9142Obj to store to. If the runtime does not require a pointer to the
9143object, Obj may be null.
9144
9145Semantics:
9146""""""""""
9147
9148The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9149instruction, but may be replaced with substantially more complex code by
9150the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9151intrinsic may only be used in a function which :ref:`specifies a GC
9152algorithm <gc>`.
9153
9154Code Generator Intrinsics
9155-------------------------
9156
9157These intrinsics are provided by LLVM to expose special features that
9158may only be implemented with code generator support.
9159
9160'``llvm.returnaddress``' Intrinsic
9161^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9162
9163Syntax:
9164"""""""
9165
9166::
9167
9168 declare i8 *@llvm.returnaddress(i32 <level>)
9169
9170Overview:
9171"""""""""
9172
9173The '``llvm.returnaddress``' intrinsic attempts to compute a
9174target-specific value indicating the return address of the current
9175function or one of its callers.
9176
9177Arguments:
9178""""""""""
9179
9180The argument to this intrinsic indicates which function to return the
9181address for. Zero indicates the calling function, one indicates its
9182caller, etc. The argument is **required** to be a constant integer
9183value.
9184
9185Semantics:
9186""""""""""
9187
9188The '``llvm.returnaddress``' intrinsic either returns a pointer
9189indicating the return address of the specified call frame, or zero if it
9190cannot be identified. The value returned by this intrinsic is likely to
9191be incorrect or 0 for arguments other than zero, so it should only be
9192used for debugging purposes.
9193
9194Note that calling this intrinsic does not prevent function inlining or
9195other aggressive transformations, so the value returned may not be that
9196of the obvious source-language caller.
9197
9198'``llvm.frameaddress``' Intrinsic
9199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9200
9201Syntax:
9202"""""""
9203
9204::
9205
9206 declare i8* @llvm.frameaddress(i32 <level>)
9207
9208Overview:
9209"""""""""
9210
9211The '``llvm.frameaddress``' intrinsic attempts to return the
9212target-specific frame pointer value for the specified stack frame.
9213
9214Arguments:
9215""""""""""
9216
9217The argument to this intrinsic indicates which function to return the
9218frame pointer for. Zero indicates the calling function, one indicates
9219its caller, etc. The argument is **required** to be a constant integer
9220value.
9221
9222Semantics:
9223""""""""""
9224
9225The '``llvm.frameaddress``' intrinsic either returns a pointer
9226indicating the frame address of the specified call frame, or zero if it
9227cannot be identified. The value returned by this intrinsic is likely to
9228be incorrect or 0 for arguments other than zero, so it should only be
9229used for debugging purposes.
9230
9231Note that calling this intrinsic does not prevent function inlining or
9232other aggressive transformations, so the value returned may not be that
9233of the obvious source-language caller.
9234
Reid Kleckner60381792015-07-07 22:25:32 +00009235'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009236^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9237
9238Syntax:
9239"""""""
9240
9241::
9242
Reid Kleckner60381792015-07-07 22:25:32 +00009243 declare void @llvm.localescape(...)
9244 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009245
9246Overview:
9247"""""""""
9248
Reid Kleckner60381792015-07-07 22:25:32 +00009249The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9250allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009251live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009252computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009253
9254Arguments:
9255""""""""""
9256
Reid Kleckner60381792015-07-07 22:25:32 +00009257All arguments to '``llvm.localescape``' must be pointers to static allocas or
9258casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009259once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009260
Reid Kleckner60381792015-07-07 22:25:32 +00009261The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009262bitcasted pointer to a function defined in the current module. The code
9263generator cannot determine the frame allocation offset of functions defined in
9264other modules.
9265
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009266The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9267call frame that is currently live. The return value of '``llvm.localaddress``'
9268is one way to produce such a value, but various runtimes also expose a suitable
9269pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009270
Reid Kleckner60381792015-07-07 22:25:32 +00009271The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9272'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009273
Reid Klecknere9b89312015-01-13 00:48:10 +00009274Semantics:
9275""""""""""
9276
Reid Kleckner60381792015-07-07 22:25:32 +00009277These intrinsics allow a group of functions to share access to a set of local
9278stack allocations of a one parent function. The parent function may call the
9279'``llvm.localescape``' intrinsic once from the function entry block, and the
9280child functions can use '``llvm.localrecover``' to access the escaped allocas.
9281The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9282the escaped allocas are allocated, which would break attempts to use
9283'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009284
Renato Golinc7aea402014-05-06 16:51:25 +00009285.. _int_read_register:
9286.. _int_write_register:
9287
9288'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9289^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9290
9291Syntax:
9292"""""""
9293
9294::
9295
9296 declare i32 @llvm.read_register.i32(metadata)
9297 declare i64 @llvm.read_register.i64(metadata)
9298 declare void @llvm.write_register.i32(metadata, i32 @value)
9299 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009300 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009301
9302Overview:
9303"""""""""
9304
9305The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9306provides access to the named register. The register must be valid on
9307the architecture being compiled to. The type needs to be compatible
9308with the register being read.
9309
9310Semantics:
9311""""""""""
9312
9313The '``llvm.read_register``' intrinsic returns the current value of the
9314register, where possible. The '``llvm.write_register``' intrinsic sets
9315the current value of the register, where possible.
9316
9317This is useful to implement named register global variables that need
9318to always be mapped to a specific register, as is common practice on
9319bare-metal programs including OS kernels.
9320
9321The compiler doesn't check for register availability or use of the used
9322register in surrounding code, including inline assembly. Because of that,
9323allocatable registers are not supported.
9324
9325Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009326architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009327work is needed to support other registers and even more so, allocatable
9328registers.
9329
Sean Silvab084af42012-12-07 10:36:55 +00009330.. _int_stacksave:
9331
9332'``llvm.stacksave``' Intrinsic
9333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9334
9335Syntax:
9336"""""""
9337
9338::
9339
9340 declare i8* @llvm.stacksave()
9341
9342Overview:
9343"""""""""
9344
9345The '``llvm.stacksave``' intrinsic is used to remember the current state
9346of the function stack, for use with
9347:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9348implementing language features like scoped automatic variable sized
9349arrays in C99.
9350
9351Semantics:
9352""""""""""
9353
9354This intrinsic returns a opaque pointer value that can be passed to
9355:ref:`llvm.stackrestore <int_stackrestore>`. When an
9356``llvm.stackrestore`` intrinsic is executed with a value saved from
9357``llvm.stacksave``, it effectively restores the state of the stack to
9358the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9359practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9360were allocated after the ``llvm.stacksave`` was executed.
9361
9362.. _int_stackrestore:
9363
9364'``llvm.stackrestore``' Intrinsic
9365^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9366
9367Syntax:
9368"""""""
9369
9370::
9371
9372 declare void @llvm.stackrestore(i8* %ptr)
9373
9374Overview:
9375"""""""""
9376
9377The '``llvm.stackrestore``' intrinsic is used to restore the state of
9378the function stack to the state it was in when the corresponding
9379:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9380useful for implementing language features like scoped automatic variable
9381sized arrays in C99.
9382
9383Semantics:
9384""""""""""
9385
9386See the description for :ref:`llvm.stacksave <int_stacksave>`.
9387
Yury Gribovd7dbb662015-12-01 11:40:55 +00009388.. _int_get_dynamic_area_offset:
9389
9390'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009391^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009392
9393Syntax:
9394"""""""
9395
9396::
9397
9398 declare i32 @llvm.get.dynamic.area.offset.i32()
9399 declare i64 @llvm.get.dynamic.area.offset.i64()
9400
9401 Overview:
9402 """""""""
9403
9404 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9405 get the offset from native stack pointer to the address of the most
9406 recent dynamic alloca on the caller's stack. These intrinsics are
9407 intendend for use in combination with
9408 :ref:`llvm.stacksave <int_stacksave>` to get a
9409 pointer to the most recent dynamic alloca. This is useful, for example,
9410 for AddressSanitizer's stack unpoisoning routines.
9411
9412Semantics:
9413""""""""""
9414
9415 These intrinsics return a non-negative integer value that can be used to
9416 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9417 on the caller's stack. In particular, for targets where stack grows downwards,
9418 adding this offset to the native stack pointer would get the address of the most
9419 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9420 complicated, because substracting this value from stack pointer would get the address
9421 one past the end of the most recent dynamic alloca.
9422
9423 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9424 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9425 compile-time-known constant value.
9426
9427 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9428 must match the target's generic address space's (address space 0) pointer type.
9429
Sean Silvab084af42012-12-07 10:36:55 +00009430'``llvm.prefetch``' Intrinsic
9431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9432
9433Syntax:
9434"""""""
9435
9436::
9437
9438 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9439
9440Overview:
9441"""""""""
9442
9443The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9444insert a prefetch instruction if supported; otherwise, it is a noop.
9445Prefetches have no effect on the behavior of the program but can change
9446its performance characteristics.
9447
9448Arguments:
9449""""""""""
9450
9451``address`` is the address to be prefetched, ``rw`` is the specifier
9452determining if the fetch should be for a read (0) or write (1), and
9453``locality`` is a temporal locality specifier ranging from (0) - no
9454locality, to (3) - extremely local keep in cache. The ``cache type``
9455specifies whether the prefetch is performed on the data (1) or
9456instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9457arguments must be constant integers.
9458
9459Semantics:
9460""""""""""
9461
9462This intrinsic does not modify the behavior of the program. In
9463particular, prefetches cannot trap and do not produce a value. On
9464targets that support this intrinsic, the prefetch can provide hints to
9465the processor cache for better performance.
9466
9467'``llvm.pcmarker``' Intrinsic
9468^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9469
9470Syntax:
9471"""""""
9472
9473::
9474
9475 declare void @llvm.pcmarker(i32 <id>)
9476
9477Overview:
9478"""""""""
9479
9480The '``llvm.pcmarker``' intrinsic is a method to export a Program
9481Counter (PC) in a region of code to simulators and other tools. The
9482method is target specific, but it is expected that the marker will use
9483exported symbols to transmit the PC of the marker. The marker makes no
9484guarantees that it will remain with any specific instruction after
9485optimizations. It is possible that the presence of a marker will inhibit
9486optimizations. The intended use is to be inserted after optimizations to
9487allow correlations of simulation runs.
9488
9489Arguments:
9490""""""""""
9491
9492``id`` is a numerical id identifying the marker.
9493
9494Semantics:
9495""""""""""
9496
9497This intrinsic does not modify the behavior of the program. Backends
9498that do not support this intrinsic may ignore it.
9499
9500'``llvm.readcyclecounter``' Intrinsic
9501^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9502
9503Syntax:
9504"""""""
9505
9506::
9507
9508 declare i64 @llvm.readcyclecounter()
9509
9510Overview:
9511"""""""""
9512
9513The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9514counter register (or similar low latency, high accuracy clocks) on those
9515targets that support it. On X86, it should map to RDTSC. On Alpha, it
9516should map to RPCC. As the backing counters overflow quickly (on the
9517order of 9 seconds on alpha), this should only be used for small
9518timings.
9519
9520Semantics:
9521""""""""""
9522
9523When directly supported, reading the cycle counter should not modify any
9524memory. Implementations are allowed to either return a application
9525specific value or a system wide value. On backends without support, this
9526is lowered to a constant 0.
9527
Tim Northoverbc933082013-05-23 19:11:20 +00009528Note that runtime support may be conditional on the privilege-level code is
9529running at and the host platform.
9530
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009531'``llvm.clear_cache``' Intrinsic
9532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9533
9534Syntax:
9535"""""""
9536
9537::
9538
9539 declare void @llvm.clear_cache(i8*, i8*)
9540
9541Overview:
9542"""""""""
9543
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009544The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9545in the specified range to the execution unit of the processor. On
9546targets with non-unified instruction and data cache, the implementation
9547flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009548
9549Semantics:
9550""""""""""
9551
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009552On platforms with coherent instruction and data caches (e.g. x86), this
9553intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009554cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009555instructions or a system call, if cache flushing requires special
9556privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009557
Sean Silvad02bf3e2014-04-07 22:29:53 +00009558The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009559time library.
Renato Golin93010e62014-03-26 14:01:32 +00009560
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009561This instrinsic does *not* empty the instruction pipeline. Modifications
9562of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009563
Justin Bogner61ba2e32014-12-08 18:02:35 +00009564'``llvm.instrprof_increment``' Intrinsic
9565^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9566
9567Syntax:
9568"""""""
9569
9570::
9571
9572 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9573 i32 <num-counters>, i32 <index>)
9574
9575Overview:
9576"""""""""
9577
9578The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9579frontend for use with instrumentation based profiling. These will be
9580lowered by the ``-instrprof`` pass to generate execution counts of a
9581program at runtime.
9582
9583Arguments:
9584""""""""""
9585
9586The first argument is a pointer to a global variable containing the
9587name of the entity being instrumented. This should generally be the
9588(mangled) function name for a set of counters.
9589
9590The second argument is a hash value that can be used by the consumer
9591of the profile data to detect changes to the instrumented source, and
9592the third is the number of counters associated with ``name``. It is an
9593error if ``hash`` or ``num-counters`` differ between two instances of
9594``instrprof_increment`` that refer to the same name.
9595
9596The last argument refers to which of the counters for ``name`` should
9597be incremented. It should be a value between 0 and ``num-counters``.
9598
9599Semantics:
9600""""""""""
9601
9602This intrinsic represents an increment of a profiling counter. It will
9603cause the ``-instrprof`` pass to generate the appropriate data
9604structures and the code to increment the appropriate value, in a
9605format that can be written out by a compiler runtime and consumed via
9606the ``llvm-profdata`` tool.
9607
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009608'``llvm.instrprof_value_profile``' Intrinsic
9609^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9610
9611Syntax:
9612"""""""
9613
9614::
9615
9616 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9617 i64 <value>, i32 <value_kind>,
9618 i32 <index>)
9619
9620Overview:
9621"""""""""
9622
9623The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9624frontend for use with instrumentation based profiling. This will be
9625lowered by the ``-instrprof`` pass to find out the target values,
9626instrumented expressions take in a program at runtime.
9627
9628Arguments:
9629""""""""""
9630
9631The first argument is a pointer to a global variable containing the
9632name of the entity being instrumented. ``name`` should generally be the
9633(mangled) function name for a set of counters.
9634
9635The second argument is a hash value that can be used by the consumer
9636of the profile data to detect changes to the instrumented source. It
9637is an error if ``hash`` differs between two instances of
9638``llvm.instrprof_*`` that refer to the same name.
9639
9640The third argument is the value of the expression being profiled. The profiled
9641expression's value should be representable as an unsigned 64-bit value. The
9642fourth argument represents the kind of value profiling that is being done. The
9643supported value profiling kinds are enumerated through the
9644``InstrProfValueKind`` type declared in the
9645``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9646index of the instrumented expression within ``name``. It should be >= 0.
9647
9648Semantics:
9649""""""""""
9650
9651This intrinsic represents the point where a call to a runtime routine
9652should be inserted for value profiling of target expressions. ``-instrprof``
9653pass will generate the appropriate data structures and replace the
9654``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9655runtime library with proper arguments.
9656
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009657'``llvm.thread.pointer``' Intrinsic
9658^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9659
9660Syntax:
9661"""""""
9662
9663::
9664
9665 declare i8* @llvm.thread.pointer()
9666
9667Overview:
9668"""""""""
9669
9670The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9671pointer.
9672
9673Semantics:
9674""""""""""
9675
9676The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9677for the current thread. The exact semantics of this value are target
9678specific: it may point to the start of TLS area, to the end, or somewhere
9679in the middle. Depending on the target, this intrinsic may read a register,
9680call a helper function, read from an alternate memory space, or perform
9681other operations necessary to locate the TLS area. Not all targets support
9682this intrinsic.
9683
Sean Silvab084af42012-12-07 10:36:55 +00009684Standard C Library Intrinsics
9685-----------------------------
9686
9687LLVM provides intrinsics for a few important standard C library
9688functions. These intrinsics allow source-language front-ends to pass
9689information about the alignment of the pointer arguments to the code
9690generator, providing opportunity for more efficient code generation.
9691
9692.. _int_memcpy:
9693
9694'``llvm.memcpy``' Intrinsic
9695^^^^^^^^^^^^^^^^^^^^^^^^^^^
9696
9697Syntax:
9698"""""""
9699
9700This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9701integer bit width and for different address spaces. Not all targets
9702support all bit widths however.
9703
9704::
9705
9706 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9707 i32 <len>, i32 <align>, i1 <isvolatile>)
9708 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9709 i64 <len>, i32 <align>, i1 <isvolatile>)
9710
9711Overview:
9712"""""""""
9713
9714The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9715source location to the destination location.
9716
9717Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9718intrinsics do not return a value, takes extra alignment/isvolatile
9719arguments and the pointers can be in specified address spaces.
9720
9721Arguments:
9722""""""""""
9723
9724The first argument is a pointer to the destination, the second is a
9725pointer to the source. The third argument is an integer argument
9726specifying the number of bytes to copy, the fourth argument is the
9727alignment of the source and destination locations, and the fifth is a
9728boolean indicating a volatile access.
9729
9730If the call to this intrinsic has an alignment value that is not 0 or 1,
9731then the caller guarantees that both the source and destination pointers
9732are aligned to that boundary.
9733
9734If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9735a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9736very cleanly specified and it is unwise to depend on it.
9737
9738Semantics:
9739""""""""""
9740
9741The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9742source location to the destination location, which are not allowed to
9743overlap. It copies "len" bytes of memory over. If the argument is known
9744to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009745argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009746
9747'``llvm.memmove``' Intrinsic
9748^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9749
9750Syntax:
9751"""""""
9752
9753This is an overloaded intrinsic. You can use llvm.memmove on any integer
9754bit width and for different address space. Not all targets support all
9755bit widths however.
9756
9757::
9758
9759 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9760 i32 <len>, i32 <align>, i1 <isvolatile>)
9761 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9762 i64 <len>, i32 <align>, i1 <isvolatile>)
9763
9764Overview:
9765"""""""""
9766
9767The '``llvm.memmove.*``' intrinsics move a block of memory from the
9768source location to the destination location. It is similar to the
9769'``llvm.memcpy``' intrinsic but allows the two memory locations to
9770overlap.
9771
9772Note that, unlike the standard libc function, the ``llvm.memmove.*``
9773intrinsics do not return a value, takes extra alignment/isvolatile
9774arguments and the pointers can be in specified address spaces.
9775
9776Arguments:
9777""""""""""
9778
9779The first argument is a pointer to the destination, the second is a
9780pointer to the source. The third argument is an integer argument
9781specifying the number of bytes to copy, the fourth argument is the
9782alignment of the source and destination locations, and the fifth is a
9783boolean indicating a volatile access.
9784
9785If the call to this intrinsic has an alignment value that is not 0 or 1,
9786then the caller guarantees that the source and destination pointers are
9787aligned to that boundary.
9788
9789If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9790is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9791not very cleanly specified and it is unwise to depend on it.
9792
9793Semantics:
9794""""""""""
9795
9796The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9797source location to the destination location, which may overlap. It
9798copies "len" bytes of memory over. If the argument is known to be
9799aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009800otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009801
9802'``llvm.memset.*``' Intrinsics
9803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9804
9805Syntax:
9806"""""""
9807
9808This is an overloaded intrinsic. You can use llvm.memset on any integer
9809bit width and for different address spaces. However, not all targets
9810support all bit widths.
9811
9812::
9813
9814 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9815 i32 <len>, i32 <align>, i1 <isvolatile>)
9816 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9817 i64 <len>, i32 <align>, i1 <isvolatile>)
9818
9819Overview:
9820"""""""""
9821
9822The '``llvm.memset.*``' intrinsics fill a block of memory with a
9823particular byte value.
9824
9825Note that, unlike the standard libc function, the ``llvm.memset``
9826intrinsic does not return a value and takes extra alignment/volatile
9827arguments. Also, the destination can be in an arbitrary address space.
9828
9829Arguments:
9830""""""""""
9831
9832The first argument is a pointer to the destination to fill, the second
9833is the byte value with which to fill it, the third argument is an
9834integer argument specifying the number of bytes to fill, and the fourth
9835argument is the known alignment of the destination location.
9836
9837If the call to this intrinsic has an alignment value that is not 0 or 1,
9838then the caller guarantees that the destination pointer is aligned to
9839that boundary.
9840
9841If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9842a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9843very cleanly specified and it is unwise to depend on it.
9844
9845Semantics:
9846""""""""""
9847
9848The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9849at the destination location. If the argument is known to be aligned to
9850some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009851it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009852
9853'``llvm.sqrt.*``' Intrinsic
9854^^^^^^^^^^^^^^^^^^^^^^^^^^^
9855
9856Syntax:
9857"""""""
9858
9859This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9860floating point or vector of floating point type. Not all targets support
9861all types however.
9862
9863::
9864
9865 declare float @llvm.sqrt.f32(float %Val)
9866 declare double @llvm.sqrt.f64(double %Val)
9867 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9868 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9869 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9870
9871Overview:
9872"""""""""
9873
9874The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9875returning the same value as the libm '``sqrt``' functions would. Unlike
9876``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9877negative numbers other than -0.0 (which allows for better optimization,
9878because there is no need to worry about errno being set).
9879``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9880
9881Arguments:
9882""""""""""
9883
9884The argument and return value are floating point numbers of the same
9885type.
9886
9887Semantics:
9888""""""""""
9889
9890This function returns the sqrt of the specified operand if it is a
9891nonnegative floating point number.
9892
9893'``llvm.powi.*``' Intrinsic
9894^^^^^^^^^^^^^^^^^^^^^^^^^^^
9895
9896Syntax:
9897"""""""
9898
9899This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9900floating point or vector of floating point type. Not all targets support
9901all types however.
9902
9903::
9904
9905 declare float @llvm.powi.f32(float %Val, i32 %power)
9906 declare double @llvm.powi.f64(double %Val, i32 %power)
9907 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9908 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9909 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9910
9911Overview:
9912"""""""""
9913
9914The '``llvm.powi.*``' intrinsics return the first operand raised to the
9915specified (positive or negative) power. The order of evaluation of
9916multiplications is not defined. When a vector of floating point type is
9917used, the second argument remains a scalar integer value.
9918
9919Arguments:
9920""""""""""
9921
9922The second argument is an integer power, and the first is a value to
9923raise to that power.
9924
9925Semantics:
9926""""""""""
9927
9928This function returns the first value raised to the second power with an
9929unspecified sequence of rounding operations.
9930
9931'``llvm.sin.*``' Intrinsic
9932^^^^^^^^^^^^^^^^^^^^^^^^^^
9933
9934Syntax:
9935"""""""
9936
9937This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9938floating point or vector of floating point type. Not all targets support
9939all types however.
9940
9941::
9942
9943 declare float @llvm.sin.f32(float %Val)
9944 declare double @llvm.sin.f64(double %Val)
9945 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9946 declare fp128 @llvm.sin.f128(fp128 %Val)
9947 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9948
9949Overview:
9950"""""""""
9951
9952The '``llvm.sin.*``' intrinsics return the sine of the operand.
9953
9954Arguments:
9955""""""""""
9956
9957The argument and return value are floating point numbers of the same
9958type.
9959
9960Semantics:
9961""""""""""
9962
9963This function returns the sine of the specified operand, returning the
9964same values as the libm ``sin`` functions would, and handles error
9965conditions in the same way.
9966
9967'``llvm.cos.*``' Intrinsic
9968^^^^^^^^^^^^^^^^^^^^^^^^^^
9969
9970Syntax:
9971"""""""
9972
9973This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9974floating point or vector of floating point type. Not all targets support
9975all types however.
9976
9977::
9978
9979 declare float @llvm.cos.f32(float %Val)
9980 declare double @llvm.cos.f64(double %Val)
9981 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9982 declare fp128 @llvm.cos.f128(fp128 %Val)
9983 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9984
9985Overview:
9986"""""""""
9987
9988The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9989
9990Arguments:
9991""""""""""
9992
9993The argument and return value are floating point numbers of the same
9994type.
9995
9996Semantics:
9997""""""""""
9998
9999This function returns the cosine of the specified operand, returning the
10000same values as the libm ``cos`` functions would, and handles error
10001conditions in the same way.
10002
10003'``llvm.pow.*``' Intrinsic
10004^^^^^^^^^^^^^^^^^^^^^^^^^^
10005
10006Syntax:
10007"""""""
10008
10009This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10010floating point or vector of floating point type. Not all targets support
10011all types however.
10012
10013::
10014
10015 declare float @llvm.pow.f32(float %Val, float %Power)
10016 declare double @llvm.pow.f64(double %Val, double %Power)
10017 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10018 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10019 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10020
10021Overview:
10022"""""""""
10023
10024The '``llvm.pow.*``' intrinsics return the first operand raised to the
10025specified (positive or negative) power.
10026
10027Arguments:
10028""""""""""
10029
10030The second argument is a floating point power, and the first is a value
10031to raise to that power.
10032
10033Semantics:
10034""""""""""
10035
10036This function returns the first value raised to the second power,
10037returning the same values as the libm ``pow`` functions would, and
10038handles error conditions in the same way.
10039
10040'``llvm.exp.*``' Intrinsic
10041^^^^^^^^^^^^^^^^^^^^^^^^^^
10042
10043Syntax:
10044"""""""
10045
10046This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10047floating point or vector of floating point type. Not all targets support
10048all types however.
10049
10050::
10051
10052 declare float @llvm.exp.f32(float %Val)
10053 declare double @llvm.exp.f64(double %Val)
10054 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10055 declare fp128 @llvm.exp.f128(fp128 %Val)
10056 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10057
10058Overview:
10059"""""""""
10060
10061The '``llvm.exp.*``' intrinsics perform the exp function.
10062
10063Arguments:
10064""""""""""
10065
10066The argument and return value are floating point numbers of the same
10067type.
10068
10069Semantics:
10070""""""""""
10071
10072This function returns the same values as the libm ``exp`` functions
10073would, and handles error conditions in the same way.
10074
10075'``llvm.exp2.*``' Intrinsic
10076^^^^^^^^^^^^^^^^^^^^^^^^^^^
10077
10078Syntax:
10079"""""""
10080
10081This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10082floating point or vector of floating point type. Not all targets support
10083all types however.
10084
10085::
10086
10087 declare float @llvm.exp2.f32(float %Val)
10088 declare double @llvm.exp2.f64(double %Val)
10089 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10090 declare fp128 @llvm.exp2.f128(fp128 %Val)
10091 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10092
10093Overview:
10094"""""""""
10095
10096The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10097
10098Arguments:
10099""""""""""
10100
10101The argument and return value are floating point numbers of the same
10102type.
10103
10104Semantics:
10105""""""""""
10106
10107This function returns the same values as the libm ``exp2`` functions
10108would, and handles error conditions in the same way.
10109
10110'``llvm.log.*``' Intrinsic
10111^^^^^^^^^^^^^^^^^^^^^^^^^^
10112
10113Syntax:
10114"""""""
10115
10116This is an overloaded intrinsic. You can use ``llvm.log`` on any
10117floating point or vector of floating point type. Not all targets support
10118all types however.
10119
10120::
10121
10122 declare float @llvm.log.f32(float %Val)
10123 declare double @llvm.log.f64(double %Val)
10124 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10125 declare fp128 @llvm.log.f128(fp128 %Val)
10126 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10127
10128Overview:
10129"""""""""
10130
10131The '``llvm.log.*``' intrinsics perform the log function.
10132
10133Arguments:
10134""""""""""
10135
10136The argument and return value are floating point numbers of the same
10137type.
10138
10139Semantics:
10140""""""""""
10141
10142This function returns the same values as the libm ``log`` functions
10143would, and handles error conditions in the same way.
10144
10145'``llvm.log10.*``' Intrinsic
10146^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10147
10148Syntax:
10149"""""""
10150
10151This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10152floating point or vector of floating point type. Not all targets support
10153all types however.
10154
10155::
10156
10157 declare float @llvm.log10.f32(float %Val)
10158 declare double @llvm.log10.f64(double %Val)
10159 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10160 declare fp128 @llvm.log10.f128(fp128 %Val)
10161 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10162
10163Overview:
10164"""""""""
10165
10166The '``llvm.log10.*``' intrinsics perform the log10 function.
10167
10168Arguments:
10169""""""""""
10170
10171The argument and return value are floating point numbers of the same
10172type.
10173
10174Semantics:
10175""""""""""
10176
10177This function returns the same values as the libm ``log10`` functions
10178would, and handles error conditions in the same way.
10179
10180'``llvm.log2.*``' Intrinsic
10181^^^^^^^^^^^^^^^^^^^^^^^^^^^
10182
10183Syntax:
10184"""""""
10185
10186This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10187floating point or vector of floating point type. Not all targets support
10188all types however.
10189
10190::
10191
10192 declare float @llvm.log2.f32(float %Val)
10193 declare double @llvm.log2.f64(double %Val)
10194 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10195 declare fp128 @llvm.log2.f128(fp128 %Val)
10196 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10197
10198Overview:
10199"""""""""
10200
10201The '``llvm.log2.*``' intrinsics perform the log2 function.
10202
10203Arguments:
10204""""""""""
10205
10206The argument and return value are floating point numbers of the same
10207type.
10208
10209Semantics:
10210""""""""""
10211
10212This function returns the same values as the libm ``log2`` functions
10213would, and handles error conditions in the same way.
10214
10215'``llvm.fma.*``' Intrinsic
10216^^^^^^^^^^^^^^^^^^^^^^^^^^
10217
10218Syntax:
10219"""""""
10220
10221This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10222floating point or vector of floating point type. Not all targets support
10223all types however.
10224
10225::
10226
10227 declare float @llvm.fma.f32(float %a, float %b, float %c)
10228 declare double @llvm.fma.f64(double %a, double %b, double %c)
10229 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10230 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10231 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10232
10233Overview:
10234"""""""""
10235
10236The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10237operation.
10238
10239Arguments:
10240""""""""""
10241
10242The argument and return value are floating point numbers of the same
10243type.
10244
10245Semantics:
10246""""""""""
10247
10248This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010249would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010250
10251'``llvm.fabs.*``' Intrinsic
10252^^^^^^^^^^^^^^^^^^^^^^^^^^^
10253
10254Syntax:
10255"""""""
10256
10257This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10258floating point or vector of floating point type. Not all targets support
10259all types however.
10260
10261::
10262
10263 declare float @llvm.fabs.f32(float %Val)
10264 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010265 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010266 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010267 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010268
10269Overview:
10270"""""""""
10271
10272The '``llvm.fabs.*``' intrinsics return the absolute value of the
10273operand.
10274
10275Arguments:
10276""""""""""
10277
10278The argument and return value are floating point numbers of the same
10279type.
10280
10281Semantics:
10282""""""""""
10283
10284This function returns the same values as the libm ``fabs`` functions
10285would, and handles error conditions in the same way.
10286
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010287'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010288^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010289
10290Syntax:
10291"""""""
10292
10293This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10294floating point or vector of floating point type. Not all targets support
10295all types however.
10296
10297::
10298
Matt Arsenault64313c92014-10-22 18:25:02 +000010299 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10300 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10301 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10302 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10303 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010304
10305Overview:
10306"""""""""
10307
10308The '``llvm.minnum.*``' intrinsics return the minimum of the two
10309arguments.
10310
10311
10312Arguments:
10313""""""""""
10314
10315The arguments and return value are floating point numbers of the same
10316type.
10317
10318Semantics:
10319""""""""""
10320
10321Follows the IEEE-754 semantics for minNum, which also match for libm's
10322fmin.
10323
10324If either operand is a NaN, returns the other non-NaN operand. Returns
10325NaN only if both operands are NaN. If the operands compare equal,
10326returns a value that compares equal to both operands. This means that
10327fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10328
10329'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010331
10332Syntax:
10333"""""""
10334
10335This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10336floating point or vector of floating point type. Not all targets support
10337all types however.
10338
10339::
10340
Matt Arsenault64313c92014-10-22 18:25:02 +000010341 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10342 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10343 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10344 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10345 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010346
10347Overview:
10348"""""""""
10349
10350The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10351arguments.
10352
10353
10354Arguments:
10355""""""""""
10356
10357The arguments and return value are floating point numbers of the same
10358type.
10359
10360Semantics:
10361""""""""""
10362Follows the IEEE-754 semantics for maxNum, which also match for libm's
10363fmax.
10364
10365If either operand is a NaN, returns the other non-NaN operand. Returns
10366NaN only if both operands are NaN. If the operands compare equal,
10367returns a value that compares equal to both operands. This means that
10368fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10369
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010370'``llvm.copysign.*``' Intrinsic
10371^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10372
10373Syntax:
10374"""""""
10375
10376This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10377floating point or vector of floating point type. Not all targets support
10378all types however.
10379
10380::
10381
10382 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10383 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10384 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10385 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10386 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10387
10388Overview:
10389"""""""""
10390
10391The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10392first operand and the sign of the second operand.
10393
10394Arguments:
10395""""""""""
10396
10397The arguments and return value are floating point numbers of the same
10398type.
10399
10400Semantics:
10401""""""""""
10402
10403This function returns the same values as the libm ``copysign``
10404functions would, and handles error conditions in the same way.
10405
Sean Silvab084af42012-12-07 10:36:55 +000010406'``llvm.floor.*``' Intrinsic
10407^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10408
10409Syntax:
10410"""""""
10411
10412This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10413floating point or vector of floating point type. Not all targets support
10414all types however.
10415
10416::
10417
10418 declare float @llvm.floor.f32(float %Val)
10419 declare double @llvm.floor.f64(double %Val)
10420 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10421 declare fp128 @llvm.floor.f128(fp128 %Val)
10422 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10423
10424Overview:
10425"""""""""
10426
10427The '``llvm.floor.*``' intrinsics return the floor of the operand.
10428
10429Arguments:
10430""""""""""
10431
10432The argument and return value are floating point numbers of the same
10433type.
10434
10435Semantics:
10436""""""""""
10437
10438This function returns the same values as the libm ``floor`` functions
10439would, and handles error conditions in the same way.
10440
10441'``llvm.ceil.*``' Intrinsic
10442^^^^^^^^^^^^^^^^^^^^^^^^^^^
10443
10444Syntax:
10445"""""""
10446
10447This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10448floating point or vector of floating point type. Not all targets support
10449all types however.
10450
10451::
10452
10453 declare float @llvm.ceil.f32(float %Val)
10454 declare double @llvm.ceil.f64(double %Val)
10455 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10456 declare fp128 @llvm.ceil.f128(fp128 %Val)
10457 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10458
10459Overview:
10460"""""""""
10461
10462The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10463
10464Arguments:
10465""""""""""
10466
10467The argument and return value are floating point numbers of the same
10468type.
10469
10470Semantics:
10471""""""""""
10472
10473This function returns the same values as the libm ``ceil`` functions
10474would, and handles error conditions in the same way.
10475
10476'``llvm.trunc.*``' Intrinsic
10477^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10478
10479Syntax:
10480"""""""
10481
10482This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10483floating point or vector of floating point type. Not all targets support
10484all types however.
10485
10486::
10487
10488 declare float @llvm.trunc.f32(float %Val)
10489 declare double @llvm.trunc.f64(double %Val)
10490 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10491 declare fp128 @llvm.trunc.f128(fp128 %Val)
10492 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10493
10494Overview:
10495"""""""""
10496
10497The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10498nearest integer not larger in magnitude than the operand.
10499
10500Arguments:
10501""""""""""
10502
10503The argument and return value are floating point numbers of the same
10504type.
10505
10506Semantics:
10507""""""""""
10508
10509This function returns the same values as the libm ``trunc`` functions
10510would, and handles error conditions in the same way.
10511
10512'``llvm.rint.*``' Intrinsic
10513^^^^^^^^^^^^^^^^^^^^^^^^^^^
10514
10515Syntax:
10516"""""""
10517
10518This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10519floating point or vector of floating point type. Not all targets support
10520all types however.
10521
10522::
10523
10524 declare float @llvm.rint.f32(float %Val)
10525 declare double @llvm.rint.f64(double %Val)
10526 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10527 declare fp128 @llvm.rint.f128(fp128 %Val)
10528 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10529
10530Overview:
10531"""""""""
10532
10533The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10534nearest integer. It may raise an inexact floating-point exception if the
10535operand isn't an integer.
10536
10537Arguments:
10538""""""""""
10539
10540The argument and return value are floating point numbers of the same
10541type.
10542
10543Semantics:
10544""""""""""
10545
10546This function returns the same values as the libm ``rint`` functions
10547would, and handles error conditions in the same way.
10548
10549'``llvm.nearbyint.*``' Intrinsic
10550^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10551
10552Syntax:
10553"""""""
10554
10555This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10556floating point or vector of floating point type. Not all targets support
10557all types however.
10558
10559::
10560
10561 declare float @llvm.nearbyint.f32(float %Val)
10562 declare double @llvm.nearbyint.f64(double %Val)
10563 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10564 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10565 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10566
10567Overview:
10568"""""""""
10569
10570The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10571nearest integer.
10572
10573Arguments:
10574""""""""""
10575
10576The argument and return value are floating point numbers of the same
10577type.
10578
10579Semantics:
10580""""""""""
10581
10582This function returns the same values as the libm ``nearbyint``
10583functions would, and handles error conditions in the same way.
10584
Hal Finkel171817e2013-08-07 22:49:12 +000010585'``llvm.round.*``' Intrinsic
10586^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10587
10588Syntax:
10589"""""""
10590
10591This is an overloaded intrinsic. You can use ``llvm.round`` on any
10592floating point or vector of floating point type. Not all targets support
10593all types however.
10594
10595::
10596
10597 declare float @llvm.round.f32(float %Val)
10598 declare double @llvm.round.f64(double %Val)
10599 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10600 declare fp128 @llvm.round.f128(fp128 %Val)
10601 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10602
10603Overview:
10604"""""""""
10605
10606The '``llvm.round.*``' intrinsics returns the operand rounded to the
10607nearest integer.
10608
10609Arguments:
10610""""""""""
10611
10612The argument and return value are floating point numbers of the same
10613type.
10614
10615Semantics:
10616""""""""""
10617
10618This function returns the same values as the libm ``round``
10619functions would, and handles error conditions in the same way.
10620
Sean Silvab084af42012-12-07 10:36:55 +000010621Bit Manipulation Intrinsics
10622---------------------------
10623
10624LLVM provides intrinsics for a few important bit manipulation
10625operations. These allow efficient code generation for some algorithms.
10626
James Molloy90111f72015-11-12 12:29:09 +000010627'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010629
10630Syntax:
10631"""""""
10632
10633This is an overloaded intrinsic function. You can use bitreverse on any
10634integer type.
10635
10636::
10637
10638 declare i16 @llvm.bitreverse.i16(i16 <id>)
10639 declare i32 @llvm.bitreverse.i32(i32 <id>)
10640 declare i64 @llvm.bitreverse.i64(i64 <id>)
10641
10642Overview:
10643"""""""""
10644
10645The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010646bitpattern of an integer value; for example ``0b10110110`` becomes
10647``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010648
10649Semantics:
10650""""""""""
10651
10652The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10653``M`` in the input moved to bit ``N-M`` in the output.
10654
Sean Silvab084af42012-12-07 10:36:55 +000010655'``llvm.bswap.*``' Intrinsics
10656^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10657
10658Syntax:
10659"""""""
10660
10661This is an overloaded intrinsic function. You can use bswap on any
10662integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10663
10664::
10665
10666 declare i16 @llvm.bswap.i16(i16 <id>)
10667 declare i32 @llvm.bswap.i32(i32 <id>)
10668 declare i64 @llvm.bswap.i64(i64 <id>)
10669
10670Overview:
10671"""""""""
10672
10673The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10674values with an even number of bytes (positive multiple of 16 bits).
10675These are useful for performing operations on data that is not in the
10676target's native byte order.
10677
10678Semantics:
10679""""""""""
10680
10681The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10682and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10683intrinsic returns an i32 value that has the four bytes of the input i32
10684swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10685returned i32 will have its bytes in 3, 2, 1, 0 order. The
10686``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10687concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10688respectively).
10689
10690'``llvm.ctpop.*``' Intrinsic
10691^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10692
10693Syntax:
10694"""""""
10695
10696This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10697bit width, or on any vector with integer elements. Not all targets
10698support all bit widths or vector types, however.
10699
10700::
10701
10702 declare i8 @llvm.ctpop.i8(i8 <src>)
10703 declare i16 @llvm.ctpop.i16(i16 <src>)
10704 declare i32 @llvm.ctpop.i32(i32 <src>)
10705 declare i64 @llvm.ctpop.i64(i64 <src>)
10706 declare i256 @llvm.ctpop.i256(i256 <src>)
10707 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10708
10709Overview:
10710"""""""""
10711
10712The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10713in a value.
10714
10715Arguments:
10716""""""""""
10717
10718The only argument is the value to be counted. The argument may be of any
10719integer type, or a vector with integer elements. The return type must
10720match the argument type.
10721
10722Semantics:
10723""""""""""
10724
10725The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10726each element of a vector.
10727
10728'``llvm.ctlz.*``' Intrinsic
10729^^^^^^^^^^^^^^^^^^^^^^^^^^^
10730
10731Syntax:
10732"""""""
10733
10734This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10735integer bit width, or any vector whose elements are integers. Not all
10736targets support all bit widths or vector types, however.
10737
10738::
10739
10740 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10741 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10742 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10743 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10744 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010745 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010746
10747Overview:
10748"""""""""
10749
10750The '``llvm.ctlz``' family of intrinsic functions counts the number of
10751leading zeros in a variable.
10752
10753Arguments:
10754""""""""""
10755
10756The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010757any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010758type must match the first argument type.
10759
10760The second argument must be a constant and is a flag to indicate whether
10761the intrinsic should ensure that a zero as the first argument produces a
10762defined result. Historically some architectures did not provide a
10763defined result for zero values as efficiently, and many algorithms are
10764now predicated on avoiding zero-value inputs.
10765
10766Semantics:
10767""""""""""
10768
10769The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10770zeros in a variable, or within each element of the vector. If
10771``src == 0`` then the result is the size in bits of the type of ``src``
10772if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10773``llvm.ctlz(i32 2) = 30``.
10774
10775'``llvm.cttz.*``' Intrinsic
10776^^^^^^^^^^^^^^^^^^^^^^^^^^^
10777
10778Syntax:
10779"""""""
10780
10781This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10782integer bit width, or any vector of integer elements. Not all targets
10783support all bit widths or vector types, however.
10784
10785::
10786
10787 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10788 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10789 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10790 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10791 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010792 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010793
10794Overview:
10795"""""""""
10796
10797The '``llvm.cttz``' family of intrinsic functions counts the number of
10798trailing zeros.
10799
10800Arguments:
10801""""""""""
10802
10803The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010804any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010805type must match the first argument type.
10806
10807The second argument must be a constant and is a flag to indicate whether
10808the intrinsic should ensure that a zero as the first argument produces a
10809defined result. Historically some architectures did not provide a
10810defined result for zero values as efficiently, and many algorithms are
10811now predicated on avoiding zero-value inputs.
10812
10813Semantics:
10814""""""""""
10815
10816The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10817zeros in a variable, or within each element of a vector. If ``src == 0``
10818then the result is the size in bits of the type of ``src`` if
10819``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10820``llvm.cttz(2) = 1``.
10821
Philip Reames34843ae2015-03-05 05:55:55 +000010822.. _int_overflow:
10823
Sean Silvab084af42012-12-07 10:36:55 +000010824Arithmetic with Overflow Intrinsics
10825-----------------------------------
10826
10827LLVM provides intrinsics for some arithmetic with overflow operations.
10828
10829'``llvm.sadd.with.overflow.*``' Intrinsics
10830^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10831
10832Syntax:
10833"""""""
10834
10835This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10836on any integer bit width.
10837
10838::
10839
10840 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10841 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10842 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10843
10844Overview:
10845"""""""""
10846
10847The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10848a signed addition of the two arguments, and indicate whether an overflow
10849occurred during the signed summation.
10850
10851Arguments:
10852""""""""""
10853
10854The arguments (%a and %b) and the first element of the result structure
10855may be of integer types of any bit width, but they must have the same
10856bit width. The second element of the result structure must be of type
10857``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10858addition.
10859
10860Semantics:
10861""""""""""
10862
10863The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010864a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010865first element of which is the signed summation, and the second element
10866of which is a bit specifying if the signed summation resulted in an
10867overflow.
10868
10869Examples:
10870"""""""""
10871
10872.. code-block:: llvm
10873
10874 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10875 %sum = extractvalue {i32, i1} %res, 0
10876 %obit = extractvalue {i32, i1} %res, 1
10877 br i1 %obit, label %overflow, label %normal
10878
10879'``llvm.uadd.with.overflow.*``' Intrinsics
10880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10881
10882Syntax:
10883"""""""
10884
10885This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10886on any integer bit width.
10887
10888::
10889
10890 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10891 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10892 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10893
10894Overview:
10895"""""""""
10896
10897The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10898an unsigned addition of the two arguments, and indicate whether a carry
10899occurred during the unsigned summation.
10900
10901Arguments:
10902""""""""""
10903
10904The arguments (%a and %b) and the first element of the result structure
10905may be of integer types of any bit width, but they must have the same
10906bit width. The second element of the result structure must be of type
10907``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10908addition.
10909
10910Semantics:
10911""""""""""
10912
10913The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010914an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010915first element of which is the sum, and the second element of which is a
10916bit specifying if the unsigned summation resulted in a carry.
10917
10918Examples:
10919"""""""""
10920
10921.. code-block:: llvm
10922
10923 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10924 %sum = extractvalue {i32, i1} %res, 0
10925 %obit = extractvalue {i32, i1} %res, 1
10926 br i1 %obit, label %carry, label %normal
10927
10928'``llvm.ssub.with.overflow.*``' Intrinsics
10929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10930
10931Syntax:
10932"""""""
10933
10934This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10935on any integer bit width.
10936
10937::
10938
10939 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10940 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10941 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10942
10943Overview:
10944"""""""""
10945
10946The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10947a signed subtraction of the two arguments, and indicate whether an
10948overflow occurred during the signed subtraction.
10949
10950Arguments:
10951""""""""""
10952
10953The arguments (%a and %b) and the first element of the result structure
10954may be of integer types of any bit width, but they must have the same
10955bit width. The second element of the result structure must be of type
10956``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10957subtraction.
10958
10959Semantics:
10960""""""""""
10961
10962The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010963a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010964first element of which is the subtraction, and the second element of
10965which is a bit specifying if the signed subtraction resulted in an
10966overflow.
10967
10968Examples:
10969"""""""""
10970
10971.. code-block:: llvm
10972
10973 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10974 %sum = extractvalue {i32, i1} %res, 0
10975 %obit = extractvalue {i32, i1} %res, 1
10976 br i1 %obit, label %overflow, label %normal
10977
10978'``llvm.usub.with.overflow.*``' Intrinsics
10979^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10980
10981Syntax:
10982"""""""
10983
10984This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10985on any integer bit width.
10986
10987::
10988
10989 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10990 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10991 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10992
10993Overview:
10994"""""""""
10995
10996The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10997an unsigned subtraction of the two arguments, and indicate whether an
10998overflow occurred during the unsigned subtraction.
10999
11000Arguments:
11001""""""""""
11002
11003The arguments (%a and %b) and the first element of the result structure
11004may be of integer types of any bit width, but they must have the same
11005bit width. The second element of the result structure must be of type
11006``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11007subtraction.
11008
11009Semantics:
11010""""""""""
11011
11012The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011013an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011014the first element of which is the subtraction, and the second element of
11015which is a bit specifying if the unsigned subtraction resulted in an
11016overflow.
11017
11018Examples:
11019"""""""""
11020
11021.. code-block:: llvm
11022
11023 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11024 %sum = extractvalue {i32, i1} %res, 0
11025 %obit = extractvalue {i32, i1} %res, 1
11026 br i1 %obit, label %overflow, label %normal
11027
11028'``llvm.smul.with.overflow.*``' Intrinsics
11029^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11030
11031Syntax:
11032"""""""
11033
11034This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11035on any integer bit width.
11036
11037::
11038
11039 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11040 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11041 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11042
11043Overview:
11044"""""""""
11045
11046The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11047a signed multiplication of the two arguments, and indicate whether an
11048overflow occurred during the signed multiplication.
11049
11050Arguments:
11051""""""""""
11052
11053The arguments (%a and %b) and the first element of the result structure
11054may be of integer types of any bit width, but they must have the same
11055bit width. The second element of the result structure must be of type
11056``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11057multiplication.
11058
11059Semantics:
11060""""""""""
11061
11062The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011063a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011064the first element of which is the multiplication, and the second element
11065of which is a bit specifying if the signed multiplication resulted in an
11066overflow.
11067
11068Examples:
11069"""""""""
11070
11071.. code-block:: llvm
11072
11073 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11074 %sum = extractvalue {i32, i1} %res, 0
11075 %obit = extractvalue {i32, i1} %res, 1
11076 br i1 %obit, label %overflow, label %normal
11077
11078'``llvm.umul.with.overflow.*``' Intrinsics
11079^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11080
11081Syntax:
11082"""""""
11083
11084This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11085on any integer bit width.
11086
11087::
11088
11089 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11090 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11091 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11092
11093Overview:
11094"""""""""
11095
11096The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11097a unsigned multiplication of the two arguments, and indicate whether an
11098overflow occurred during the unsigned multiplication.
11099
11100Arguments:
11101""""""""""
11102
11103The arguments (%a and %b) and the first element of the result structure
11104may be of integer types of any bit width, but they must have the same
11105bit width. The second element of the result structure must be of type
11106``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11107multiplication.
11108
11109Semantics:
11110""""""""""
11111
11112The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011113an unsigned multiplication of the two arguments. They return a structure ---
11114the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011115element of which is a bit specifying if the unsigned multiplication
11116resulted in an overflow.
11117
11118Examples:
11119"""""""""
11120
11121.. code-block:: llvm
11122
11123 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11124 %sum = extractvalue {i32, i1} %res, 0
11125 %obit = extractvalue {i32, i1} %res, 1
11126 br i1 %obit, label %overflow, label %normal
11127
11128Specialised Arithmetic Intrinsics
11129---------------------------------
11130
Owen Anderson1056a922015-07-11 07:01:27 +000011131'``llvm.canonicalize.*``' Intrinsic
11132^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11133
11134Syntax:
11135"""""""
11136
11137::
11138
11139 declare float @llvm.canonicalize.f32(float %a)
11140 declare double @llvm.canonicalize.f64(double %b)
11141
11142Overview:
11143"""""""""
11144
11145The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011146encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011147implementing certain numeric primitives such as frexp. The canonical encoding is
11148defined by IEEE-754-2008 to be:
11149
11150::
11151
11152 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011153 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011154 numbers, infinities, and NaNs, especially in decimal formats.
11155
11156This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011157conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011158according to section 6.2.
11159
11160Examples of non-canonical encodings:
11161
Sean Silvaa1190322015-08-06 22:56:48 +000011162- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011163 converted to a canonical representation per hardware-specific protocol.
11164- Many normal decimal floating point numbers have non-canonical alternative
11165 encodings.
11166- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011167 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011168 a zero of the same sign by this operation.
11169
11170Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11171default exception handling must signal an invalid exception, and produce a
11172quiet NaN result.
11173
11174This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011175that the compiler does not constant fold the operation. Likewise, division by
111761.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011177-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11178
Sean Silvaa1190322015-08-06 22:56:48 +000011179``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011180
11181- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11182- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11183 to ``(x == y)``
11184
11185Additionally, the sign of zero must be conserved:
11186``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11187
11188The payload bits of a NaN must be conserved, with two exceptions.
11189First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011190must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011191usual methods.
11192
11193The canonicalization operation may be optimized away if:
11194
Sean Silvaa1190322015-08-06 22:56:48 +000011195- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011196 floating-point operation that is required by the standard to be canonical.
11197- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011198 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011199
Sean Silvab084af42012-12-07 10:36:55 +000011200'``llvm.fmuladd.*``' Intrinsic
11201^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11202
11203Syntax:
11204"""""""
11205
11206::
11207
11208 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11209 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11210
11211Overview:
11212"""""""""
11213
11214The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011215expressions that can be fused if the code generator determines that (a) the
11216target instruction set has support for a fused operation, and (b) that the
11217fused operation is more efficient than the equivalent, separate pair of mul
11218and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011219
11220Arguments:
11221""""""""""
11222
11223The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11224multiplicands, a and b, and an addend c.
11225
11226Semantics:
11227""""""""""
11228
11229The expression:
11230
11231::
11232
11233 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11234
11235is equivalent to the expression a \* b + c, except that rounding will
11236not be performed between the multiplication and addition steps if the
11237code generator fuses the operations. Fusion is not guaranteed, even if
11238the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011239corresponding llvm.fma.\* intrinsic function should be used
11240instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011241
11242Examples:
11243"""""""""
11244
11245.. code-block:: llvm
11246
Tim Northover675a0962014-06-13 14:24:23 +000011247 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011248
11249Half Precision Floating Point Intrinsics
11250----------------------------------------
11251
11252For most target platforms, half precision floating point is a
11253storage-only format. This means that it is a dense encoding (in memory)
11254but does not support computation in the format.
11255
11256This means that code must first load the half-precision floating point
11257value as an i16, then convert it to float with
11258:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11259then be performed on the float value (including extending to double
11260etc). To store the value back to memory, it is first converted to float
11261if needed, then converted to i16 with
11262:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11263i16 value.
11264
11265.. _int_convert_to_fp16:
11266
11267'``llvm.convert.to.fp16``' Intrinsic
11268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11269
11270Syntax:
11271"""""""
11272
11273::
11274
Tim Northoverfd7e4242014-07-17 10:51:23 +000011275 declare i16 @llvm.convert.to.fp16.f32(float %a)
11276 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011277
11278Overview:
11279"""""""""
11280
Tim Northoverfd7e4242014-07-17 10:51:23 +000011281The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11282conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011283
11284Arguments:
11285""""""""""
11286
11287The intrinsic function contains single argument - the value to be
11288converted.
11289
11290Semantics:
11291""""""""""
11292
Tim Northoverfd7e4242014-07-17 10:51:23 +000011293The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11294conventional floating point format to half precision floating point format. The
11295return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011296
11297Examples:
11298"""""""""
11299
11300.. code-block:: llvm
11301
Tim Northoverfd7e4242014-07-17 10:51:23 +000011302 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011303 store i16 %res, i16* @x, align 2
11304
11305.. _int_convert_from_fp16:
11306
11307'``llvm.convert.from.fp16``' Intrinsic
11308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11309
11310Syntax:
11311"""""""
11312
11313::
11314
Tim Northoverfd7e4242014-07-17 10:51:23 +000011315 declare float @llvm.convert.from.fp16.f32(i16 %a)
11316 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011317
11318Overview:
11319"""""""""
11320
11321The '``llvm.convert.from.fp16``' intrinsic function performs a
11322conversion from half precision floating point format to single precision
11323floating point format.
11324
11325Arguments:
11326""""""""""
11327
11328The intrinsic function contains single argument - the value to be
11329converted.
11330
11331Semantics:
11332""""""""""
11333
11334The '``llvm.convert.from.fp16``' intrinsic function performs a
11335conversion from half single precision floating point format to single
11336precision floating point format. The input half-float value is
11337represented by an ``i16`` value.
11338
11339Examples:
11340"""""""""
11341
11342.. code-block:: llvm
11343
David Blaikiec7aabbb2015-03-04 22:06:14 +000011344 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011345 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011346
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011347.. _dbg_intrinsics:
11348
Sean Silvab084af42012-12-07 10:36:55 +000011349Debugger Intrinsics
11350-------------------
11351
11352The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11353prefix), are described in the `LLVM Source Level
11354Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11355document.
11356
11357Exception Handling Intrinsics
11358-----------------------------
11359
11360The LLVM exception handling intrinsics (which all start with
11361``llvm.eh.`` prefix), are described in the `LLVM Exception
11362Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11363
11364.. _int_trampoline:
11365
11366Trampoline Intrinsics
11367---------------------
11368
11369These intrinsics make it possible to excise one parameter, marked with
11370the :ref:`nest <nest>` attribute, from a function. The result is a
11371callable function pointer lacking the nest parameter - the caller does
11372not need to provide a value for it. Instead, the value to use is stored
11373in advance in a "trampoline", a block of memory usually allocated on the
11374stack, which also contains code to splice the nest value into the
11375argument list. This is used to implement the GCC nested function address
11376extension.
11377
11378For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11379then the resulting function pointer has signature ``i32 (i32, i32)*``.
11380It can be created as follows:
11381
11382.. code-block:: llvm
11383
11384 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011385 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011386 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11387 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11388 %fp = bitcast i8* %p to i32 (i32, i32)*
11389
11390The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11391``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11392
11393.. _int_it:
11394
11395'``llvm.init.trampoline``' Intrinsic
11396^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11397
11398Syntax:
11399"""""""
11400
11401::
11402
11403 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11404
11405Overview:
11406"""""""""
11407
11408This fills the memory pointed to by ``tramp`` with executable code,
11409turning it into a trampoline.
11410
11411Arguments:
11412""""""""""
11413
11414The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11415pointers. The ``tramp`` argument must point to a sufficiently large and
11416sufficiently aligned block of memory; this memory is written to by the
11417intrinsic. Note that the size and the alignment are target-specific -
11418LLVM currently provides no portable way of determining them, so a
11419front-end that generates this intrinsic needs to have some
11420target-specific knowledge. The ``func`` argument must hold a function
11421bitcast to an ``i8*``.
11422
11423Semantics:
11424""""""""""
11425
11426The block of memory pointed to by ``tramp`` is filled with target
11427dependent code, turning it into a function. Then ``tramp`` needs to be
11428passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11429be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11430function's signature is the same as that of ``func`` with any arguments
11431marked with the ``nest`` attribute removed. At most one such ``nest``
11432argument is allowed, and it must be of pointer type. Calling the new
11433function is equivalent to calling ``func`` with the same argument list,
11434but with ``nval`` used for the missing ``nest`` argument. If, after
11435calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11436modified, then the effect of any later call to the returned function
11437pointer is undefined.
11438
11439.. _int_at:
11440
11441'``llvm.adjust.trampoline``' Intrinsic
11442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11443
11444Syntax:
11445"""""""
11446
11447::
11448
11449 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11450
11451Overview:
11452"""""""""
11453
11454This performs any required machine-specific adjustment to the address of
11455a trampoline (passed as ``tramp``).
11456
11457Arguments:
11458""""""""""
11459
11460``tramp`` must point to a block of memory which already has trampoline
11461code filled in by a previous call to
11462:ref:`llvm.init.trampoline <int_it>`.
11463
11464Semantics:
11465""""""""""
11466
11467On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011468different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011469intrinsic returns the executable address corresponding to ``tramp``
11470after performing the required machine specific adjustments. The pointer
11471returned can then be :ref:`bitcast and executed <int_trampoline>`.
11472
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011473.. _int_mload_mstore:
11474
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011475Masked Vector Load and Store Intrinsics
11476---------------------------------------
11477
11478LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11479
11480.. _int_mload:
11481
11482'``llvm.masked.load.*``' Intrinsics
11483^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11484
11485Syntax:
11486"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011487This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011488
11489::
11490
Adam Nemet7aab6482016-04-14 08:47:17 +000011491 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11492 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011493 ;; The data is a vector of pointers to double
Adam Nemet7aab6482016-04-14 08:47:17 +000011494 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011495 ;; The data is a vector of function pointers
Adam Nemet7aab6482016-04-14 08:47:17 +000011496 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011497
11498Overview:
11499"""""""""
11500
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011501Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011502
11503
11504Arguments:
11505""""""""""
11506
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011507The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011508
11509
11510Semantics:
11511""""""""""
11512
11513The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11514The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11515
11516
11517::
11518
Adam Nemet7aab6482016-04-14 08:47:17 +000011519 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011520
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011521 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011522 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011523 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011524
11525.. _int_mstore:
11526
11527'``llvm.masked.store.*``' Intrinsics
11528^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11529
11530Syntax:
11531"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011532This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011533
11534::
11535
Adam Nemet7aab6482016-04-14 08:47:17 +000011536 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11537 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011538 ;; The data is a vector of pointers to double
Adam Nemet7aab6482016-04-14 08:47:17 +000011539 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011540 ;; The data is a vector of function pointers
Adam Nemet7aab6482016-04-14 08:47:17 +000011541 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011542
11543Overview:
11544"""""""""
11545
11546Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11547
11548Arguments:
11549""""""""""
11550
11551The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11552
11553
11554Semantics:
11555""""""""""
11556
11557The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11558The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11559
11560::
11561
Adam Nemet7aab6482016-04-14 08:47:17 +000011562 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011563
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011564 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011565 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011566 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11567 store <16 x float> %res, <16 x float>* %ptr, align 4
11568
11569
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011570Masked Vector Gather and Scatter Intrinsics
11571-------------------------------------------
11572
11573LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11574
11575.. _int_mgather:
11576
11577'``llvm.masked.gather.*``' Intrinsics
11578^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11579
11580Syntax:
11581"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011582This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011583
11584::
11585
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011586 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11587 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11588 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011589
11590Overview:
11591"""""""""
11592
11593Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11594
11595
11596Arguments:
11597""""""""""
11598
11599The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11600
11601
11602Semantics:
11603""""""""""
11604
11605The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11606The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11607
11608
11609::
11610
11611 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11612
11613 ;; The gather with all-true mask is equivalent to the following instruction sequence
11614 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11615 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11616 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11617 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11618
11619 %val0 = load double, double* %ptr0, align 8
11620 %val1 = load double, double* %ptr1, align 8
11621 %val2 = load double, double* %ptr2, align 8
11622 %val3 = load double, double* %ptr3, align 8
11623
11624 %vec0 = insertelement <4 x double>undef, %val0, 0
11625 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11626 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11627 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11628
11629.. _int_mscatter:
11630
11631'``llvm.masked.scatter.*``' Intrinsics
11632^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11633
11634Syntax:
11635"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011636This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011637
11638::
11639
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011640 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11641 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11642 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011643
11644Overview:
11645"""""""""
11646
11647Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11648
11649Arguments:
11650""""""""""
11651
11652The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11653
11654
11655Semantics:
11656""""""""""
11657
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011658The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011659
11660::
11661
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011662 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011663 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11664
11665 ;; It is equivalent to a list of scalar stores
11666 %val0 = extractelement <8 x i32> %value, i32 0
11667 %val1 = extractelement <8 x i32> %value, i32 1
11668 ..
11669 %val7 = extractelement <8 x i32> %value, i32 7
11670 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11671 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11672 ..
11673 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11674 ;; Note: the order of the following stores is important when they overlap:
11675 store i32 %val0, i32* %ptr0, align 4
11676 store i32 %val1, i32* %ptr1, align 4
11677 ..
11678 store i32 %val7, i32* %ptr7, align 4
11679
11680
Sean Silvab084af42012-12-07 10:36:55 +000011681Memory Use Markers
11682------------------
11683
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011684This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011685memory objects and ranges where variables are immutable.
11686
Reid Klecknera534a382013-12-19 02:14:12 +000011687.. _int_lifestart:
11688
Sean Silvab084af42012-12-07 10:36:55 +000011689'``llvm.lifetime.start``' Intrinsic
11690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11691
11692Syntax:
11693"""""""
11694
11695::
11696
11697 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11698
11699Overview:
11700"""""""""
11701
11702The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11703object's lifetime.
11704
11705Arguments:
11706""""""""""
11707
11708The first argument is a constant integer representing the size of the
11709object, or -1 if it is variable sized. The second argument is a pointer
11710to the object.
11711
11712Semantics:
11713""""""""""
11714
11715This intrinsic indicates that before this point in the code, the value
11716of the memory pointed to by ``ptr`` is dead. This means that it is known
11717to never be used and has an undefined value. A load from the pointer
11718that precedes this intrinsic can be replaced with ``'undef'``.
11719
Reid Klecknera534a382013-12-19 02:14:12 +000011720.. _int_lifeend:
11721
Sean Silvab084af42012-12-07 10:36:55 +000011722'``llvm.lifetime.end``' Intrinsic
11723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11724
11725Syntax:
11726"""""""
11727
11728::
11729
11730 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11731
11732Overview:
11733"""""""""
11734
11735The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11736object's lifetime.
11737
11738Arguments:
11739""""""""""
11740
11741The first argument is a constant integer representing the size of the
11742object, or -1 if it is variable sized. The second argument is a pointer
11743to the object.
11744
11745Semantics:
11746""""""""""
11747
11748This intrinsic indicates that after this point in the code, the value of
11749the memory pointed to by ``ptr`` is dead. This means that it is known to
11750never be used and has an undefined value. Any stores into the memory
11751object following this intrinsic may be removed as dead.
11752
11753'``llvm.invariant.start``' Intrinsic
11754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11755
11756Syntax:
11757"""""""
11758
11759::
11760
11761 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11762
11763Overview:
11764"""""""""
11765
11766The '``llvm.invariant.start``' intrinsic specifies that the contents of
11767a memory object will not change.
11768
11769Arguments:
11770""""""""""
11771
11772The first argument is a constant integer representing the size of the
11773object, or -1 if it is variable sized. The second argument is a pointer
11774to the object.
11775
11776Semantics:
11777""""""""""
11778
11779This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11780the return value, the referenced memory location is constant and
11781unchanging.
11782
11783'``llvm.invariant.end``' Intrinsic
11784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11785
11786Syntax:
11787"""""""
11788
11789::
11790
11791 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11792
11793Overview:
11794"""""""""
11795
11796The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11797memory object are mutable.
11798
11799Arguments:
11800""""""""""
11801
11802The first argument is the matching ``llvm.invariant.start`` intrinsic.
11803The second argument is a constant integer representing the size of the
11804object, or -1 if it is variable sized and the third argument is a
11805pointer to the object.
11806
11807Semantics:
11808""""""""""
11809
11810This intrinsic indicates that the memory is mutable again.
11811
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011812'``llvm.invariant.group.barrier``' Intrinsic
11813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11814
11815Syntax:
11816"""""""
11817
11818::
11819
11820 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11821
11822Overview:
11823"""""""""
11824
11825The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11826established by invariant.group metadata no longer holds, to obtain a new pointer
11827value that does not carry the invariant information.
11828
11829
11830Arguments:
11831""""""""""
11832
11833The ``llvm.invariant.group.barrier`` takes only one argument, which is
11834the pointer to the memory for which the ``invariant.group`` no longer holds.
11835
11836Semantics:
11837""""""""""
11838
11839Returns another pointer that aliases its argument but which is considered different
11840for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11841
Sean Silvab084af42012-12-07 10:36:55 +000011842General Intrinsics
11843------------------
11844
11845This class of intrinsics is designed to be generic and has no specific
11846purpose.
11847
11848'``llvm.var.annotation``' Intrinsic
11849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11850
11851Syntax:
11852"""""""
11853
11854::
11855
11856 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11857
11858Overview:
11859"""""""""
11860
11861The '``llvm.var.annotation``' intrinsic.
11862
11863Arguments:
11864""""""""""
11865
11866The first argument is a pointer to a value, the second is a pointer to a
11867global string, the third is a pointer to a global string which is the
11868source file name, and the last argument is the line number.
11869
11870Semantics:
11871""""""""""
11872
11873This intrinsic allows annotation of local variables with arbitrary
11874strings. This can be useful for special purpose optimizations that want
11875to look for these annotations. These have no other defined use; they are
11876ignored by code generation and optimization.
11877
Michael Gottesman88d18832013-03-26 00:34:27 +000011878'``llvm.ptr.annotation.*``' Intrinsic
11879^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11880
11881Syntax:
11882"""""""
11883
11884This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11885pointer to an integer of any width. *NOTE* you must specify an address space for
11886the pointer. The identifier for the default address space is the integer
11887'``0``'.
11888
11889::
11890
11891 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11892 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11893 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11894 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11895 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11896
11897Overview:
11898"""""""""
11899
11900The '``llvm.ptr.annotation``' intrinsic.
11901
11902Arguments:
11903""""""""""
11904
11905The first argument is a pointer to an integer value of arbitrary bitwidth
11906(result of some expression), the second is a pointer to a global string, the
11907third is a pointer to a global string which is the source file name, and the
11908last argument is the line number. It returns the value of the first argument.
11909
11910Semantics:
11911""""""""""
11912
11913This intrinsic allows annotation of a pointer to an integer with arbitrary
11914strings. This can be useful for special purpose optimizations that want to look
11915for these annotations. These have no other defined use; they are ignored by code
11916generation and optimization.
11917
Sean Silvab084af42012-12-07 10:36:55 +000011918'``llvm.annotation.*``' Intrinsic
11919^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11920
11921Syntax:
11922"""""""
11923
11924This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11925any integer bit width.
11926
11927::
11928
11929 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11930 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11931 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11932 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11933 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11934
11935Overview:
11936"""""""""
11937
11938The '``llvm.annotation``' intrinsic.
11939
11940Arguments:
11941""""""""""
11942
11943The first argument is an integer value (result of some expression), the
11944second is a pointer to a global string, the third is a pointer to a
11945global string which is the source file name, and the last argument is
11946the line number. It returns the value of the first argument.
11947
11948Semantics:
11949""""""""""
11950
11951This intrinsic allows annotations to be put on arbitrary expressions
11952with arbitrary strings. This can be useful for special purpose
11953optimizations that want to look for these annotations. These have no
11954other defined use; they are ignored by code generation and optimization.
11955
11956'``llvm.trap``' Intrinsic
11957^^^^^^^^^^^^^^^^^^^^^^^^^
11958
11959Syntax:
11960"""""""
11961
11962::
11963
11964 declare void @llvm.trap() noreturn nounwind
11965
11966Overview:
11967"""""""""
11968
11969The '``llvm.trap``' intrinsic.
11970
11971Arguments:
11972""""""""""
11973
11974None.
11975
11976Semantics:
11977""""""""""
11978
11979This intrinsic is lowered to the target dependent trap instruction. If
11980the target does not have a trap instruction, this intrinsic will be
11981lowered to a call of the ``abort()`` function.
11982
11983'``llvm.debugtrap``' Intrinsic
11984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11985
11986Syntax:
11987"""""""
11988
11989::
11990
11991 declare void @llvm.debugtrap() nounwind
11992
11993Overview:
11994"""""""""
11995
11996The '``llvm.debugtrap``' intrinsic.
11997
11998Arguments:
11999""""""""""
12000
12001None.
12002
12003Semantics:
12004""""""""""
12005
12006This intrinsic is lowered to code which is intended to cause an
12007execution trap with the intention of requesting the attention of a
12008debugger.
12009
12010'``llvm.stackprotector``' Intrinsic
12011^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12012
12013Syntax:
12014"""""""
12015
12016::
12017
12018 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12019
12020Overview:
12021"""""""""
12022
12023The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12024onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12025is placed on the stack before local variables.
12026
12027Arguments:
12028""""""""""
12029
12030The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12031The first argument is the value loaded from the stack guard
12032``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12033enough space to hold the value of the guard.
12034
12035Semantics:
12036""""""""""
12037
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012038This intrinsic causes the prologue/epilogue inserter to force the position of
12039the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12040to ensure that if a local variable on the stack is overwritten, it will destroy
12041the value of the guard. When the function exits, the guard on the stack is
12042checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12043different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12044calling the ``__stack_chk_fail()`` function.
12045
Tim Shene885d5e2016-04-19 19:40:37 +000012046'``llvm.stackguard``' Intrinsic
12047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12048
12049Syntax:
12050"""""""
12051
12052::
12053
12054 declare i8* @llvm.stackguard()
12055
12056Overview:
12057"""""""""
12058
12059The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12060
12061It should not be generated by frontends, since it is only for internal usage.
12062The reason why we create this intrinsic is that we still support IR form Stack
12063Protector in FastISel.
12064
12065Arguments:
12066""""""""""
12067
12068None.
12069
12070Semantics:
12071""""""""""
12072
12073On some platforms, the value returned by this intrinsic remains unchanged
12074between loads in the same thread. On other platforms, it returns the same
12075global variable value, if any, e.g. ``@__stack_chk_guard``.
12076
12077Currently some platforms have IR-level customized stack guard loading (e.g.
12078X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12079in the future.
12080
Sean Silvab084af42012-12-07 10:36:55 +000012081'``llvm.objectsize``' Intrinsic
12082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12083
12084Syntax:
12085"""""""
12086
12087::
12088
12089 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12090 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12091
12092Overview:
12093"""""""""
12094
12095The ``llvm.objectsize`` intrinsic is designed to provide information to
12096the optimizers to determine at compile time whether a) an operation
12097(like memcpy) will overflow a buffer that corresponds to an object, or
12098b) that a runtime check for overflow isn't necessary. An object in this
12099context means an allocation of a specific class, structure, array, or
12100other object.
12101
12102Arguments:
12103""""""""""
12104
12105The ``llvm.objectsize`` intrinsic takes two arguments. The first
12106argument is a pointer to or into the ``object``. The second argument is
12107a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12108or -1 (if false) when the object size is unknown. The second argument
12109only accepts constants.
12110
12111Semantics:
12112""""""""""
12113
12114The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12115the size of the object concerned. If the size cannot be determined at
12116compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12117on the ``min`` argument).
12118
12119'``llvm.expect``' Intrinsic
12120^^^^^^^^^^^^^^^^^^^^^^^^^^^
12121
12122Syntax:
12123"""""""
12124
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012125This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12126integer bit width.
12127
Sean Silvab084af42012-12-07 10:36:55 +000012128::
12129
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012130 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012131 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12132 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12133
12134Overview:
12135"""""""""
12136
12137The ``llvm.expect`` intrinsic provides information about expected (the
12138most probable) value of ``val``, which can be used by optimizers.
12139
12140Arguments:
12141""""""""""
12142
12143The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12144a value. The second argument is an expected value, this needs to be a
12145constant value, variables are not allowed.
12146
12147Semantics:
12148""""""""""
12149
12150This intrinsic is lowered to the ``val``.
12151
Philip Reamese0e90832015-04-26 22:23:12 +000012152.. _int_assume:
12153
Hal Finkel93046912014-07-25 21:13:35 +000012154'``llvm.assume``' Intrinsic
12155^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12156
12157Syntax:
12158"""""""
12159
12160::
12161
12162 declare void @llvm.assume(i1 %cond)
12163
12164Overview:
12165"""""""""
12166
12167The ``llvm.assume`` allows the optimizer to assume that the provided
12168condition is true. This information can then be used in simplifying other parts
12169of the code.
12170
12171Arguments:
12172""""""""""
12173
12174The condition which the optimizer may assume is always true.
12175
12176Semantics:
12177""""""""""
12178
12179The intrinsic allows the optimizer to assume that the provided condition is
12180always true whenever the control flow reaches the intrinsic call. No code is
12181generated for this intrinsic, and instructions that contribute only to the
12182provided condition are not used for code generation. If the condition is
12183violated during execution, the behavior is undefined.
12184
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012185Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012186used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12187only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012188if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012189sufficient overall improvement in code quality. For this reason,
12190``llvm.assume`` should not be used to document basic mathematical invariants
12191that the optimizer can otherwise deduce or facts that are of little use to the
12192optimizer.
12193
Peter Collingbournee6909c82015-02-20 20:30:47 +000012194.. _bitset.test:
12195
12196'``llvm.bitset.test``' Intrinsic
12197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12198
12199Syntax:
12200"""""""
12201
12202::
12203
12204 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12205
12206
12207Arguments:
12208""""""""""
12209
12210The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012211metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012212
12213Overview:
12214"""""""""
12215
12216The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12217member of the given bitset.
12218
Sean Silvab084af42012-12-07 10:36:55 +000012219'``llvm.donothing``' Intrinsic
12220^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12221
12222Syntax:
12223"""""""
12224
12225::
12226
12227 declare void @llvm.donothing() nounwind readnone
12228
12229Overview:
12230"""""""""
12231
Juergen Ributzkac9161192014-10-23 22:36:13 +000012232The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012233three intrinsics (besides ``llvm.experimental.patchpoint`` and
12234``llvm.experimental.gc.statepoint``) that can be called with an invoke
12235instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012236
12237Arguments:
12238""""""""""
12239
12240None.
12241
12242Semantics:
12243""""""""""
12244
12245This intrinsic does nothing, and it's removed by optimizers and ignored
12246by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012247
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012248'``llvm.experimental.deoptimize``' Intrinsic
12249^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12250
12251Syntax:
12252"""""""
12253
12254::
12255
12256 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12257
12258Overview:
12259"""""""""
12260
12261This intrinsic, together with :ref:`deoptimization operand bundles
12262<deopt_opbundles>`, allow frontends to express transfer of control and
12263frame-local state from the currently executing (typically more specialized,
12264hence faster) version of a function into another (typically more generic, hence
12265slower) version.
12266
12267In languages with a fully integrated managed runtime like Java and JavaScript
12268this intrinsic can be used to implement "uncommon trap" or "side exit" like
12269functionality. In unmanaged languages like C and C++, this intrinsic can be
12270used to represent the slow paths of specialized functions.
12271
12272
12273Arguments:
12274""""""""""
12275
12276The intrinsic takes an arbitrary number of arguments, whose meaning is
12277decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12278
12279Semantics:
12280""""""""""
12281
12282The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12283deoptimization continuation (denoted using a :ref:`deoptimization
12284operand bundle <deopt_opbundles>`) and returns the value returned by
12285the deoptimization continuation. Defining the semantic properties of
12286the continuation itself is out of scope of the language reference --
12287as far as LLVM is concerned, the deoptimization continuation can
12288invoke arbitrary side effects, including reading from and writing to
12289the entire heap.
12290
12291Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12292continue execution to the end of the physical frame containing them, so all
12293calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12294
12295 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12296 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12297 - The ``ret`` instruction must return the value produced by the
12298 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12299
12300Note that the above restrictions imply that the return type for a call to
12301``@llvm.experimental.deoptimize`` will match the return type of its immediate
12302caller.
12303
12304The inliner composes the ``"deopt"`` continuations of the caller into the
12305``"deopt"`` continuations present in the inlinee, and also updates calls to this
12306intrinsic to return directly from the frame of the function it inlined into.
12307
12308.. _deoptimize_lowering:
12309
12310Lowering:
12311"""""""""
12312
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012313Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12314symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12315ensure that this symbol is defined). The call arguments to
12316``@llvm.experimental.deoptimize`` are lowered as if they were formal
12317arguments of the specified types, and not as varargs.
12318
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012319
Sanjoy Das021de052016-03-31 00:18:46 +000012320'``llvm.experimental.guard``' Intrinsic
12321^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12322
12323Syntax:
12324"""""""
12325
12326::
12327
12328 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12329
12330Overview:
12331"""""""""
12332
12333This intrinsic, together with :ref:`deoptimization operand bundles
12334<deopt_opbundles>`, allows frontends to express guards or checks on
12335optimistic assumptions made during compilation. The semantics of
12336``@llvm.experimental.guard`` is defined in terms of
12337``@llvm.experimental.deoptimize`` -- its body is defined to be
12338equivalent to:
12339
12340.. code-block:: llvm
12341
12342 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12343 %realPred = and i1 %pred, undef
12344 br i1 %realPred, label %continue, label %leave
12345
12346 leave:
12347 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12348 ret void
12349
12350 continue:
12351 ret void
12352 }
12353
12354In words, ``@llvm.experimental.guard`` executes the attached
12355``"deopt"`` continuation if (but **not** only if) its first argument
12356is ``false``. Since the optimizer is allowed to replace the ``undef``
12357with an arbitrary value, it can optimize guard to fail "spuriously",
12358i.e. without the original condition being false (hence the "not only
12359if"); and this allows for "check widening" type optimizations.
12360
12361``@llvm.experimental.guard`` cannot be invoked.
12362
12363
Andrew Trick5e029ce2013-12-24 02:57:25 +000012364Stack Map Intrinsics
12365--------------------
12366
12367LLVM provides experimental intrinsics to support runtime patching
12368mechanisms commonly desired in dynamic language JITs. These intrinsics
12369are described in :doc:`StackMaps`.