blob: 0612d360558e0e249544ffea1f23a95677a1434d [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
253``extern_weak``
254 The semantics of this linkage follow the ELF object file model: the
255 symbol is weak until linked, if not linked, the symbol becomes null
256 instead of being an undefined reference.
257``linkonce_odr``, ``weak_odr``
258 Some languages allow differing globals to be merged, such as two
259 functions with different semantics. Other languages, such as
260 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000261 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000262 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
263 global will only be merged with equivalent globals. These linkage
264 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000265``external``
266 If none of the above identifiers are used, the global is externally
267 visible, meaning that it participates in linkage and can be used to
268 resolve external symbol references.
269
Sean Silvab084af42012-12-07 10:36:55 +0000270It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000271other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000272
Sean Silvab084af42012-12-07 10:36:55 +0000273.. _callingconv:
274
275Calling Conventions
276-------------------
277
278LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
279:ref:`invokes <i_invoke>` can all have an optional calling convention
280specified for the call. The calling convention of any pair of dynamic
281caller/callee must match, or the behavior of the program is undefined.
282The following calling conventions are supported by LLVM, and more may be
283added in the future:
284
285"``ccc``" - The C calling convention
286 This calling convention (the default if no other calling convention
287 is specified) matches the target C calling conventions. This calling
288 convention supports varargs function calls and tolerates some
289 mismatch in the declared prototype and implemented declaration of
290 the function (as does normal C).
291"``fastcc``" - The fast calling convention
292 This calling convention attempts to make calls as fast as possible
293 (e.g. by passing things in registers). This calling convention
294 allows the target to use whatever tricks it wants to produce fast
295 code for the target, without having to conform to an externally
296 specified ABI (Application Binary Interface). `Tail calls can only
297 be optimized when this, the GHC or the HiPE convention is
298 used. <CodeGenerator.html#id80>`_ This calling convention does not
299 support varargs and requires the prototype of all callees to exactly
300 match the prototype of the function definition.
301"``coldcc``" - The cold calling convention
302 This calling convention attempts to make code in the caller as
303 efficient as possible under the assumption that the call is not
304 commonly executed. As such, these calls often preserve all registers
305 so that the call does not break any live ranges in the caller side.
306 This calling convention does not support varargs and requires the
307 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000308 function definition. Furthermore the inliner doesn't consider such function
309 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000310"``cc 10``" - GHC convention
311 This calling convention has been implemented specifically for use by
312 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
313 It passes everything in registers, going to extremes to achieve this
314 by disabling callee save registers. This calling convention should
315 not be used lightly but only for specific situations such as an
316 alternative to the *register pinning* performance technique often
317 used when implementing functional programming languages. At the
318 moment only X86 supports this convention and it has the following
319 limitations:
320
321 - On *X86-32* only supports up to 4 bit type parameters. No
322 floating point types are supported.
323 - On *X86-64* only supports up to 10 bit type parameters and 6
324 floating point parameters.
325
326 This calling convention supports `tail call
327 optimization <CodeGenerator.html#id80>`_ but requires both the
328 caller and callee are using it.
329"``cc 11``" - The HiPE calling convention
330 This calling convention has been implemented specifically for use by
331 the `High-Performance Erlang
332 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
333 native code compiler of the `Ericsson's Open Source Erlang/OTP
334 system <http://www.erlang.org/download.shtml>`_. It uses more
335 registers for argument passing than the ordinary C calling
336 convention and defines no callee-saved registers. The calling
337 convention properly supports `tail call
338 optimization <CodeGenerator.html#id80>`_ but requires that both the
339 caller and the callee use it. It uses a *register pinning*
340 mechanism, similar to GHC's convention, for keeping frequently
341 accessed runtime components pinned to specific hardware registers.
342 At the moment only X86 supports this convention (both 32 and 64
343 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000344"``webkit_jscc``" - WebKit's JavaScript calling convention
345 This calling convention has been implemented for `WebKit FTL JIT
346 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
347 stack right to left (as cdecl does), and returns a value in the
348 platform's customary return register.
349"``anyregcc``" - Dynamic calling convention for code patching
350 This is a special convention that supports patching an arbitrary code
351 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000352 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000353 allocated. This can currently only be used with calls to
354 llvm.experimental.patchpoint because only this intrinsic records
355 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000356"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 This calling convention attempts to make the code in the caller as
358 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000359 calling convention on how arguments and return values are passed, but it
360 uses a different set of caller/callee-saved registers. This alleviates the
361 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000362 call in the caller. If the arguments are passed in callee-saved registers,
363 then they will be preserved by the callee across the call. This doesn't
364 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000365
366 - On X86-64 the callee preserves all general purpose registers, except for
367 R11. R11 can be used as a scratch register. Floating-point registers
368 (XMMs/YMMs) are not preserved and need to be saved by the caller.
369
370 The idea behind this convention is to support calls to runtime functions
371 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000372 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000373 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000374 registers, which haven't already been saved by the caller. The
375 `PreserveMost` calling convention is very similar to the `cold` calling
376 convention in terms of caller/callee-saved registers, but they are used for
377 different types of function calls. `coldcc` is for function calls that are
378 rarely executed, whereas `preserve_mostcc` function calls are intended to be
379 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
380 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000381
382 This calling convention will be used by a future version of the ObjectiveC
383 runtime and should therefore still be considered experimental at this time.
384 Although this convention was created to optimize certain runtime calls to
385 the ObjectiveC runtime, it is not limited to this runtime and might be used
386 by other runtimes in the future too. The current implementation only
387 supports X86-64, but the intention is to support more architectures in the
388 future.
389"``preserve_allcc``" - The `PreserveAll` calling convention
390 This calling convention attempts to make the code in the caller even less
391 intrusive than the `PreserveMost` calling convention. This calling
392 convention also behaves identical to the `C` calling convention on how
393 arguments and return values are passed, but it uses a different set of
394 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000395 recovering a large register set before and after the call in the caller. If
396 the arguments are passed in callee-saved registers, then they will be
397 preserved by the callee across the call. This doesn't apply for values
398 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000399
400 - On X86-64 the callee preserves all general purpose registers, except for
401 R11. R11 can be used as a scratch register. Furthermore it also preserves
402 all floating-point registers (XMMs/YMMs).
403
404 The idea behind this convention is to support calls to runtime functions
405 that don't need to call out to any other functions.
406
407 This calling convention, like the `PreserveMost` calling convention, will be
408 used by a future version of the ObjectiveC runtime and should be considered
409 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000410"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000411 Clang generates an access function to access C++-style TLS. The access
412 function generally has an entry block, an exit block and an initialization
413 block that is run at the first time. The entry and exit blocks can access
414 a few TLS IR variables, each access will be lowered to a platform-specific
415 sequence.
416
Manman Ren19c7bbe2015-12-04 17:40:13 +0000417 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000418 preserving as many registers as possible (all the registers that are
419 perserved on the fast path, composed of the entry and exit blocks).
420
421 This calling convention behaves identical to the `C` calling convention on
422 how arguments and return values are passed, but it uses a different set of
423 caller/callee-saved registers.
424
425 Given that each platform has its own lowering sequence, hence its own set
426 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000427
428 - On X86-64 the callee preserves all general purpose registers, except for
429 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000430"``swiftcc``" - This calling convention is used for Swift language.
431 - On X86-64 RCX and R8 are available for additional integer returns, and
432 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000433 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000434"``cc <n>``" - Numbered convention
435 Any calling convention may be specified by number, allowing
436 target-specific calling conventions to be used. Target specific
437 calling conventions start at 64.
438
439More calling conventions can be added/defined on an as-needed basis, to
440support Pascal conventions or any other well-known target-independent
441convention.
442
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000443.. _visibilitystyles:
444
Sean Silvab084af42012-12-07 10:36:55 +0000445Visibility Styles
446-----------------
447
448All Global Variables and Functions have one of the following visibility
449styles:
450
451"``default``" - Default style
452 On targets that use the ELF object file format, default visibility
453 means that the declaration is visible to other modules and, in
454 shared libraries, means that the declared entity may be overridden.
455 On Darwin, default visibility means that the declaration is visible
456 to other modules. Default visibility corresponds to "external
457 linkage" in the language.
458"``hidden``" - Hidden style
459 Two declarations of an object with hidden visibility refer to the
460 same object if they are in the same shared object. Usually, hidden
461 visibility indicates that the symbol will not be placed into the
462 dynamic symbol table, so no other module (executable or shared
463 library) can reference it directly.
464"``protected``" - Protected style
465 On ELF, protected visibility indicates that the symbol will be
466 placed in the dynamic symbol table, but that references within the
467 defining module will bind to the local symbol. That is, the symbol
468 cannot be overridden by another module.
469
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000470A symbol with ``internal`` or ``private`` linkage must have ``default``
471visibility.
472
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000473.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000474
Nico Rieck7157bb72014-01-14 15:22:47 +0000475DLL Storage Classes
476-------------------
477
478All Global Variables, Functions and Aliases can have one of the following
479DLL storage class:
480
481``dllimport``
482 "``dllimport``" causes the compiler to reference a function or variable via
483 a global pointer to a pointer that is set up by the DLL exporting the
484 symbol. On Microsoft Windows targets, the pointer name is formed by
485 combining ``__imp_`` and the function or variable name.
486``dllexport``
487 "``dllexport``" causes the compiler to provide a global pointer to a pointer
488 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
489 Microsoft Windows targets, the pointer name is formed by combining
490 ``__imp_`` and the function or variable name. Since this storage class
491 exists for defining a dll interface, the compiler, assembler and linker know
492 it is externally referenced and must refrain from deleting the symbol.
493
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000494.. _tls_model:
495
496Thread Local Storage Models
497---------------------------
498
499A variable may be defined as ``thread_local``, which means that it will
500not be shared by threads (each thread will have a separated copy of the
501variable). Not all targets support thread-local variables. Optionally, a
502TLS model may be specified:
503
504``localdynamic``
505 For variables that are only used within the current shared library.
506``initialexec``
507 For variables in modules that will not be loaded dynamically.
508``localexec``
509 For variables defined in the executable and only used within it.
510
511If no explicit model is given, the "general dynamic" model is used.
512
513The models correspond to the ELF TLS models; see `ELF Handling For
514Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
515more information on under which circumstances the different models may
516be used. The target may choose a different TLS model if the specified
517model is not supported, or if a better choice of model can be made.
518
Sean Silva706fba52015-08-06 22:56:24 +0000519A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000520the alias is accessed. It will not have any effect in the aliasee.
521
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000522For platforms without linker support of ELF TLS model, the -femulated-tls
523flag can be used to generate GCC compatible emulated TLS code.
524
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000525.. _namedtypes:
526
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000527Structure Types
528---------------
Sean Silvab084af42012-12-07 10:36:55 +0000529
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000530LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000531types <t_struct>`. Literal types are uniqued structurally, but identified types
532are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000533to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000534
Sean Silva706fba52015-08-06 22:56:24 +0000535An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000536
537.. code-block:: llvm
538
539 %mytype = type { %mytype*, i32 }
540
Sean Silvaa1190322015-08-06 22:56:48 +0000541Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000542literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000543
544.. _globalvars:
545
546Global Variables
547----------------
548
549Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000550instead of run-time.
551
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000552Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000553
554Global variables in other translation units can also be declared, in which
555case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000556
Bob Wilson85b24f22014-06-12 20:40:33 +0000557Either global variable definitions or declarations may have an explicit section
558to be placed in and may have an optional explicit alignment specified.
559
Michael Gottesman006039c2013-01-31 05:48:48 +0000560A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000561the contents of the variable will **never** be modified (enabling better
562optimization, allowing the global data to be placed in the read-only
563section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000564initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000565variable.
566
567LLVM explicitly allows *declarations* of global variables to be marked
568constant, even if the final definition of the global is not. This
569capability can be used to enable slightly better optimization of the
570program, but requires the language definition to guarantee that
571optimizations based on the 'constantness' are valid for the translation
572units that do not include the definition.
573
574As SSA values, global variables define pointer values that are in scope
575(i.e. they dominate) all basic blocks in the program. Global variables
576always define a pointer to their "content" type because they describe a
577region of memory, and all memory objects in LLVM are accessed through
578pointers.
579
580Global variables can be marked with ``unnamed_addr`` which indicates
581that the address is not significant, only the content. Constants marked
582like this can be merged with other constants if they have the same
583initializer. Note that a constant with significant address *can* be
584merged with a ``unnamed_addr`` constant, the result being a constant
585whose address is significant.
586
587A global variable may be declared to reside in a target-specific
588numbered address space. For targets that support them, address spaces
589may affect how optimizations are performed and/or what target
590instructions are used to access the variable. The default address space
591is zero. The address space qualifier must precede any other attributes.
592
593LLVM allows an explicit section to be specified for globals. If the
594target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000595Additionally, the global can placed in a comdat if the target has the necessary
596support.
Sean Silvab084af42012-12-07 10:36:55 +0000597
Michael Gottesmane743a302013-02-04 03:22:00 +0000598By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000599variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000600initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000601true even for variables potentially accessible from outside the
602module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000603``@llvm.used`` or dllexported variables. This assumption may be suppressed
604by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000605
Sean Silvab084af42012-12-07 10:36:55 +0000606An explicit alignment may be specified for a global, which must be a
607power of 2. If not present, or if the alignment is set to zero, the
608alignment of the global is set by the target to whatever it feels
609convenient. If an explicit alignment is specified, the global is forced
610to have exactly that alignment. Targets and optimizers are not allowed
611to over-align the global if the global has an assigned section. In this
612case, the extra alignment could be observable: for example, code could
613assume that the globals are densely packed in their section and try to
614iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000615iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000616
Nico Rieck7157bb72014-01-14 15:22:47 +0000617Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
618
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000619Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000620:ref:`Thread Local Storage Model <tls_model>`.
621
Nico Rieck7157bb72014-01-14 15:22:47 +0000622Syntax::
623
624 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000625 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000626 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000627 [, section "name"] [, comdat [($name)]]
628 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000629
Sean Silvab084af42012-12-07 10:36:55 +0000630For example, the following defines a global in a numbered address space
631with an initializer, section, and alignment:
632
633.. code-block:: llvm
634
635 @G = addrspace(5) constant float 1.0, section "foo", align 4
636
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000637The following example just declares a global variable
638
639.. code-block:: llvm
640
641 @G = external global i32
642
Sean Silvab084af42012-12-07 10:36:55 +0000643The following example defines a thread-local global with the
644``initialexec`` TLS model:
645
646.. code-block:: llvm
647
648 @G = thread_local(initialexec) global i32 0, align 4
649
650.. _functionstructure:
651
652Functions
653---------
654
655LLVM function definitions consist of the "``define``" keyword, an
656optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000657style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
658an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000659an optional ``unnamed_addr`` attribute, a return type, an optional
660:ref:`parameter attribute <paramattrs>` for the return type, a function
661name, a (possibly empty) argument list (each with optional :ref:`parameter
662attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000663an optional section, an optional alignment,
664an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000665an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000666an optional :ref:`prologue <prologuedata>`,
667an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000668an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000669an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000670
671LLVM function declarations consist of the "``declare``" keyword, an
672optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000673style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
674an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000675an optional ``unnamed_addr`` attribute, a return type, an optional
676:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000677name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000678:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
679and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000680
Bill Wendling6822ecb2013-10-27 05:09:12 +0000681A function definition contains a list of basic blocks, forming the CFG (Control
682Flow Graph) for the function. Each basic block may optionally start with a label
683(giving the basic block a symbol table entry), contains a list of instructions,
684and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
685function return). If an explicit label is not provided, a block is assigned an
686implicit numbered label, using the next value from the same counter as used for
687unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
688entry block does not have an explicit label, it will be assigned label "%0",
689then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000690
691The first basic block in a function is special in two ways: it is
692immediately executed on entrance to the function, and it is not allowed
693to have predecessor basic blocks (i.e. there can not be any branches to
694the entry block of a function). Because the block can have no
695predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
696
697LLVM allows an explicit section to be specified for functions. If the
698target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000699Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000700
701An explicit alignment may be specified for a function. If not present,
702or if the alignment is set to zero, the alignment of the function is set
703by the target to whatever it feels convenient. If an explicit alignment
704is specified, the function is forced to have at least that much
705alignment. All alignments must be a power of 2.
706
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000707If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000708be significant and two identical functions can be merged.
709
710Syntax::
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000713 [cconv] [ret attrs]
714 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000715 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000716 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000717 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000718
Sean Silva706fba52015-08-06 22:56:24 +0000719The argument list is a comma separated sequence of arguments where each
720argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000721
722Syntax::
723
724 <type> [parameter Attrs] [name]
725
726
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000727.. _langref_aliases:
728
Sean Silvab084af42012-12-07 10:36:55 +0000729Aliases
730-------
731
Rafael Espindola64c1e182014-06-03 02:41:57 +0000732Aliases, unlike function or variables, don't create any new data. They
733are just a new symbol and metadata for an existing position.
734
735Aliases have a name and an aliasee that is either a global value or a
736constant expression.
737
Nico Rieck7157bb72014-01-14 15:22:47 +0000738Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000739:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
740<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000741
742Syntax::
743
David Blaikie196582e2015-10-22 01:17:29 +0000744 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000745
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000746The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000747``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000748might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000749
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000750Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000751the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
752to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000753
Rafael Espindola64c1e182014-06-03 02:41:57 +0000754Since aliases are only a second name, some restrictions apply, of which
755some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000756
Rafael Espindola64c1e182014-06-03 02:41:57 +0000757* The expression defining the aliasee must be computable at assembly
758 time. Since it is just a name, no relocations can be used.
759
760* No alias in the expression can be weak as the possibility of the
761 intermediate alias being overridden cannot be represented in an
762 object file.
763
764* No global value in the expression can be a declaration, since that
765 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000766
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000767.. _langref_ifunc:
768
769IFuncs
770-------
771
772IFuncs, like as aliases, don't create any new data or func. They are just a new
773symbol that dynamic linker resolves at runtime by calling a resolver function.
774
775IFuncs have a name and a resolver that is a function called by dynamic linker
776that returns address of another function associated with the name.
777
778IFunc may have an optional :ref:`linkage type <linkage>` and an optional
779:ref:`visibility style <visibility>`.
780
781Syntax::
782
783 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
784
785
David Majnemerdad0a642014-06-27 18:19:56 +0000786.. _langref_comdats:
787
788Comdats
789-------
790
791Comdat IR provides access to COFF and ELF object file COMDAT functionality.
792
Sean Silvaa1190322015-08-06 22:56:48 +0000793Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000794specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000795that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000796aliasee computes to, if any.
797
798Comdats have a selection kind to provide input on how the linker should
799choose between keys in two different object files.
800
801Syntax::
802
803 $<Name> = comdat SelectionKind
804
805The selection kind must be one of the following:
806
807``any``
808 The linker may choose any COMDAT key, the choice is arbitrary.
809``exactmatch``
810 The linker may choose any COMDAT key but the sections must contain the
811 same data.
812``largest``
813 The linker will choose the section containing the largest COMDAT key.
814``noduplicates``
815 The linker requires that only section with this COMDAT key exist.
816``samesize``
817 The linker may choose any COMDAT key but the sections must contain the
818 same amount of data.
819
820Note that the Mach-O platform doesn't support COMDATs and ELF only supports
821``any`` as a selection kind.
822
823Here is an example of a COMDAT group where a function will only be selected if
824the COMDAT key's section is the largest:
825
826.. code-block:: llvm
827
828 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000829 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000830
Rafael Espindola83a362c2015-01-06 22:55:16 +0000831 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000832 ret void
833 }
834
Rafael Espindola83a362c2015-01-06 22:55:16 +0000835As a syntactic sugar the ``$name`` can be omitted if the name is the same as
836the global name:
837
838.. code-block:: llvm
839
840 $foo = comdat any
841 @foo = global i32 2, comdat
842
843
David Majnemerdad0a642014-06-27 18:19:56 +0000844In a COFF object file, this will create a COMDAT section with selection kind
845``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
846and another COMDAT section with selection kind
847``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000848section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000849
850There are some restrictions on the properties of the global object.
851It, or an alias to it, must have the same name as the COMDAT group when
852targeting COFF.
853The contents and size of this object may be used during link-time to determine
854which COMDAT groups get selected depending on the selection kind.
855Because the name of the object must match the name of the COMDAT group, the
856linkage of the global object must not be local; local symbols can get renamed
857if a collision occurs in the symbol table.
858
859The combined use of COMDATS and section attributes may yield surprising results.
860For example:
861
862.. code-block:: llvm
863
864 $foo = comdat any
865 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 @g1 = global i32 42, section "sec", comdat($foo)
867 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000868
869From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000870with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000871COMDAT groups and COMDATs, at the object file level, are represented by
872sections.
873
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000874Note that certain IR constructs like global variables and functions may
875create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000876COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000877in individual sections (e.g. when `-data-sections` or `-function-sections`
878is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000879
Sean Silvab084af42012-12-07 10:36:55 +0000880.. _namedmetadatastructure:
881
882Named Metadata
883--------------
884
885Named metadata is a collection of metadata. :ref:`Metadata
886nodes <metadata>` (but not metadata strings) are the only valid
887operands for a named metadata.
888
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000889#. Named metadata are represented as a string of characters with the
890 metadata prefix. The rules for metadata names are the same as for
891 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
892 are still valid, which allows any character to be part of a name.
893
Sean Silvab084af42012-12-07 10:36:55 +0000894Syntax::
895
896 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000897 !0 = !{!"zero"}
898 !1 = !{!"one"}
899 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000900 ; A named metadata.
901 !name = !{!0, !1, !2}
902
903.. _paramattrs:
904
905Parameter Attributes
906--------------------
907
908The return type and each parameter of a function type may have a set of
909*parameter attributes* associated with them. Parameter attributes are
910used to communicate additional information about the result or
911parameters of a function. Parameter attributes are considered to be part
912of the function, not of the function type, so functions with different
913parameter attributes can have the same function type.
914
915Parameter attributes are simple keywords that follow the type specified.
916If multiple parameter attributes are needed, they are space separated.
917For example:
918
919.. code-block:: llvm
920
921 declare i32 @printf(i8* noalias nocapture, ...)
922 declare i32 @atoi(i8 zeroext)
923 declare signext i8 @returns_signed_char()
924
925Note that any attributes for the function result (``nounwind``,
926``readonly``) come immediately after the argument list.
927
928Currently, only the following parameter attributes are defined:
929
930``zeroext``
931 This indicates to the code generator that the parameter or return
932 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000933 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000934``signext``
935 This indicates to the code generator that the parameter or return
936 value should be sign-extended to the extent required by the target's
937 ABI (which is usually 32-bits) by the caller (for a parameter) or
938 the callee (for a return value).
939``inreg``
940 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000941 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000942 a function call or return (usually, by putting it in a register as
943 opposed to memory, though some targets use it to distinguish between
944 two different kinds of registers). Use of this attribute is
945 target-specific.
946``byval``
947 This indicates that the pointer parameter should really be passed by
948 value to the function. The attribute implies that a hidden copy of
949 the pointee is made between the caller and the callee, so the callee
950 is unable to modify the value in the caller. This attribute is only
951 valid on LLVM pointer arguments. It is generally used to pass
952 structs and arrays by value, but is also valid on pointers to
953 scalars. The copy is considered to belong to the caller not the
954 callee (for example, ``readonly`` functions should not write to
955 ``byval`` parameters). This is not a valid attribute for return
956 values.
957
958 The byval attribute also supports specifying an alignment with the
959 align attribute. It indicates the alignment of the stack slot to
960 form and the known alignment of the pointer specified to the call
961 site. If the alignment is not specified, then the code generator
962 makes a target-specific assumption.
963
Reid Klecknera534a382013-12-19 02:14:12 +0000964.. _attr_inalloca:
965
966``inalloca``
967
Reid Kleckner60d3a832014-01-16 22:59:24 +0000968 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000969 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000970 be a pointer to stack memory produced by an ``alloca`` instruction.
971 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000972 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000973 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000974
Reid Kleckner436c42e2014-01-17 23:58:17 +0000975 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000976 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000977 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000978 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000979 ``inalloca`` attribute also disables LLVM's implicit lowering of
980 large aggregate return values, which means that frontend authors
981 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000982
Reid Kleckner60d3a832014-01-16 22:59:24 +0000983 When the call site is reached, the argument allocation must have
984 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000985 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000986 space after an argument allocation and before its call site, but it
987 must be cleared off with :ref:`llvm.stackrestore
988 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000989
990 See :doc:`InAlloca` for more information on how to use this
991 attribute.
992
Sean Silvab084af42012-12-07 10:36:55 +0000993``sret``
994 This indicates that the pointer parameter specifies the address of a
995 structure that is the return value of the function in the source
996 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000997 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000998 not to trap and to be properly aligned. This may only be applied to
999 the first parameter. This is not a valid attribute for return
1000 values.
Sean Silva1703e702014-04-08 21:06:22 +00001001
Hal Finkelccc70902014-07-22 16:58:55 +00001002``align <n>``
1003 This indicates that the pointer value may be assumed by the optimizer to
1004 have the specified alignment.
1005
1006 Note that this attribute has additional semantics when combined with the
1007 ``byval`` attribute.
1008
Sean Silva1703e702014-04-08 21:06:22 +00001009.. _noalias:
1010
Sean Silvab084af42012-12-07 10:36:55 +00001011``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001012 This indicates that objects accessed via pointer values
1013 :ref:`based <pointeraliasing>` on the argument or return value are not also
1014 accessed, during the execution of the function, via pointer values not
1015 *based* on the argument or return value. The attribute on a return value
1016 also has additional semantics described below. The caller shares the
1017 responsibility with the callee for ensuring that these requirements are met.
1018 For further details, please see the discussion of the NoAlias response in
1019 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001020
1021 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001022 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001023
1024 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001025 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1026 attribute on return values are stronger than the semantics of the attribute
1027 when used on function arguments. On function return values, the ``noalias``
1028 attribute indicates that the function acts like a system memory allocation
1029 function, returning a pointer to allocated storage disjoint from the
1030 storage for any other object accessible to the caller.
1031
Sean Silvab084af42012-12-07 10:36:55 +00001032``nocapture``
1033 This indicates that the callee does not make any copies of the
1034 pointer that outlive the callee itself. This is not a valid
1035 attribute for return values.
1036
1037.. _nest:
1038
1039``nest``
1040 This indicates that the pointer parameter can be excised using the
1041 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001042 attribute for return values and can only be applied to one parameter.
1043
1044``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001045 This indicates that the function always returns the argument as its return
1046 value. This is an optimization hint to the code generator when generating
1047 the caller, allowing tail call optimization and omission of register saves
1048 and restores in some cases; it is not checked or enforced when generating
1049 the callee. The parameter and the function return type must be valid
1050 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1051 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001052
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001053``nonnull``
1054 This indicates that the parameter or return pointer is not null. This
1055 attribute may only be applied to pointer typed parameters. This is not
1056 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001058 is non-null.
1059
Hal Finkelb0407ba2014-07-18 15:51:28 +00001060``dereferenceable(<n>)``
1061 This indicates that the parameter or return pointer is dereferenceable. This
1062 attribute may only be applied to pointer typed parameters. A pointer that
1063 is dereferenceable can be loaded from speculatively without a risk of
1064 trapping. The number of bytes known to be dereferenceable must be provided
1065 in parentheses. It is legal for the number of bytes to be less than the
1066 size of the pointee type. The ``nonnull`` attribute does not imply
1067 dereferenceability (consider a pointer to one element past the end of an
1068 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1069 ``addrspace(0)`` (which is the default address space).
1070
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001071``dereferenceable_or_null(<n>)``
1072 This indicates that the parameter or return value isn't both
1073 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001074 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001075 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1076 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1077 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1078 and in other address spaces ``dereferenceable_or_null(<n>)``
1079 implies that a pointer is at least one of ``dereferenceable(<n>)``
1080 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001081 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001082 pointer typed parameters.
1083
Manman Renf46262e2016-03-29 17:37:21 +00001084``swiftself``
1085 This indicates that the parameter is the self/context parameter. This is not
1086 a valid attribute for return values and can only be applied to one
1087 parameter.
1088
Manman Ren9bfd0d02016-04-01 21:41:15 +00001089``swifterror``
1090 This attribute is motivated to model and optimize Swift error handling. It
1091 can be applied to a parameter with pointer to pointer type or a
1092 pointer-sized alloca. At the call site, the actual argument that corresponds
1093 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca. A
1094 ``swifterror`` value (either the parameter or the alloca) can only be loaded
1095 and stored from, or used as a ``swifterror`` argument. This is not a valid
1096 attribute for return values and can only be applied to one parameter.
1097
1098 These constraints allow the calling convention to optimize access to
1099 ``swifterror`` variables by associating them with a specific register at
1100 call boundaries rather than placing them in memory. Since this does change
1101 the calling convention, a function which uses the ``swifterror`` attribute
1102 on a parameter is not ABI-compatible with one which does not.
1103
1104 These constraints also allow LLVM to assume that a ``swifterror`` argument
1105 does not alias any other memory visible within a function and that a
1106 ``swifterror`` alloca passed as an argument does not escape.
1107
Sean Silvab084af42012-12-07 10:36:55 +00001108.. _gc:
1109
Philip Reamesf80bbff2015-02-25 23:45:20 +00001110Garbage Collector Strategy Names
1111--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001112
Philip Reamesf80bbff2015-02-25 23:45:20 +00001113Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001114string:
1115
1116.. code-block:: llvm
1117
1118 define void @f() gc "name" { ... }
1119
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001120The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001121<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001122strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001123named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001124garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001125which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001126
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001127.. _prefixdata:
1128
1129Prefix Data
1130-----------
1131
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001132Prefix data is data associated with a function which the code
1133generator will emit immediately before the function's entrypoint.
1134The purpose of this feature is to allow frontends to associate
1135language-specific runtime metadata with specific functions and make it
1136available through the function pointer while still allowing the
1137function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001138
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001139To access the data for a given function, a program may bitcast the
1140function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001141index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001142the prefix data. For instance, take the example of a function annotated
1143with a single ``i32``,
1144
1145.. code-block:: llvm
1146
1147 define void @f() prefix i32 123 { ... }
1148
1149The prefix data can be referenced as,
1150
1151.. code-block:: llvm
1152
David Blaikie16a97eb2015-03-04 22:02:58 +00001153 %0 = bitcast void* () @f to i32*
1154 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001155 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001156
1157Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001158of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001159beginning of the prefix data is aligned. This means that if the size
1160of the prefix data is not a multiple of the alignment size, the
1161function's entrypoint will not be aligned. If alignment of the
1162function's entrypoint is desired, padding must be added to the prefix
1163data.
1164
Sean Silvaa1190322015-08-06 22:56:48 +00001165A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001166to the ``available_externally`` linkage in that the data may be used by the
1167optimizers but will not be emitted in the object file.
1168
1169.. _prologuedata:
1170
1171Prologue Data
1172-------------
1173
1174The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1175be inserted prior to the function body. This can be used for enabling
1176function hot-patching and instrumentation.
1177
1178To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001179have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001180bytes which decode to a sequence of machine instructions, valid for the
1181module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001182the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001183the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001184definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001185makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001186
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001187A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001188which encodes the ``nop`` instruction:
1189
1190.. code-block:: llvm
1191
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001192 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001193
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001194Generally prologue data can be formed by encoding a relative branch instruction
1195which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001196x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1197
1198.. code-block:: llvm
1199
1200 %0 = type <{ i8, i8, i8* }>
1201
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001203
Sean Silvaa1190322015-08-06 22:56:48 +00001204A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001205to the ``available_externally`` linkage in that the data may be used by the
1206optimizers but will not be emitted in the object file.
1207
David Majnemer7fddecc2015-06-17 20:52:32 +00001208.. _personalityfn:
1209
1210Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001211--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001212
1213The ``personality`` attribute permits functions to specify what function
1214to use for exception handling.
1215
Bill Wendling63b88192013-02-06 06:52:58 +00001216.. _attrgrp:
1217
1218Attribute Groups
1219----------------
1220
1221Attribute groups are groups of attributes that are referenced by objects within
1222the IR. They are important for keeping ``.ll`` files readable, because a lot of
1223functions will use the same set of attributes. In the degenerative case of a
1224``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1225group will capture the important command line flags used to build that file.
1226
1227An attribute group is a module-level object. To use an attribute group, an
1228object references the attribute group's ID (e.g. ``#37``). An object may refer
1229to more than one attribute group. In that situation, the attributes from the
1230different groups are merged.
1231
1232Here is an example of attribute groups for a function that should always be
1233inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1234
1235.. code-block:: llvm
1236
1237 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001238 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001239
1240 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001241 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001242
1243 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1244 define void @f() #0 #1 { ... }
1245
Sean Silvab084af42012-12-07 10:36:55 +00001246.. _fnattrs:
1247
1248Function Attributes
1249-------------------
1250
1251Function attributes are set to communicate additional information about
1252a function. Function attributes are considered to be part of the
1253function, not of the function type, so functions with different function
1254attributes can have the same function type.
1255
1256Function attributes are simple keywords that follow the type specified.
1257If multiple attributes are needed, they are space separated. For
1258example:
1259
1260.. code-block:: llvm
1261
1262 define void @f() noinline { ... }
1263 define void @f() alwaysinline { ... }
1264 define void @f() alwaysinline optsize { ... }
1265 define void @f() optsize { ... }
1266
Sean Silvab084af42012-12-07 10:36:55 +00001267``alignstack(<n>)``
1268 This attribute indicates that, when emitting the prologue and
1269 epilogue, the backend should forcibly align the stack pointer.
1270 Specify the desired alignment, which must be a power of two, in
1271 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001272``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1273 This attribute indicates that the annotated function will always return at
1274 least a given number of bytes (or null). Its arguments are zero-indexed
1275 parameter numbers; if one argument is provided, then it's assumed that at
1276 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1277 returned pointer. If two are provided, then it's assumed that
1278 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1279 available. The referenced parameters must be integer types. No assumptions
1280 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001281``alwaysinline``
1282 This attribute indicates that the inliner should attempt to inline
1283 this function into callers whenever possible, ignoring any active
1284 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001285``builtin``
1286 This indicates that the callee function at a call site should be
1287 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001288 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001289 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001290 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001291``cold``
1292 This attribute indicates that this function is rarely called. When
1293 computing edge weights, basic blocks post-dominated by a cold
1294 function call are also considered to be cold; and, thus, given low
1295 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001296``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001297 In some parallel execution models, there exist operations that cannot be
1298 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001299 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001300
Justin Lebar58535b12016-02-17 17:46:41 +00001301 The ``convergent`` attribute may appear on functions or call/invoke
1302 instructions. When it appears on a function, it indicates that calls to
1303 this function should not be made control-dependent on additional values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001304 For example, the intrinsic ``llvm.cuda.syncthreads`` is ``convergent``, so
1305 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001306 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001307
Justin Lebar58535b12016-02-17 17:46:41 +00001308 When it appears on a call/invoke, the ``convergent`` attribute indicates
1309 that we should treat the call as though we're calling a convergent
1310 function. This is particularly useful on indirect calls; without this we
1311 may treat such calls as though the target is non-convergent.
1312
1313 The optimizer may remove the ``convergent`` attribute on functions when it
1314 can prove that the function does not execute any convergent operations.
1315 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1316 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001317``inaccessiblememonly``
1318 This attribute indicates that the function may only access memory that
1319 is not accessible by the module being compiled. This is a weaker form
1320 of ``readnone``.
1321``inaccessiblemem_or_argmemonly``
1322 This attribute indicates that the function may only access memory that is
1323 either not accessible by the module being compiled, or is pointed to
1324 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001325``inlinehint``
1326 This attribute indicates that the source code contained a hint that
1327 inlining this function is desirable (such as the "inline" keyword in
1328 C/C++). It is just a hint; it imposes no requirements on the
1329 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001330``jumptable``
1331 This attribute indicates that the function should be added to a
1332 jump-instruction table at code-generation time, and that all address-taken
1333 references to this function should be replaced with a reference to the
1334 appropriate jump-instruction-table function pointer. Note that this creates
1335 a new pointer for the original function, which means that code that depends
1336 on function-pointer identity can break. So, any function annotated with
1337 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001338``minsize``
1339 This attribute suggests that optimization passes and code generator
1340 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001341 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001342 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001343``naked``
1344 This attribute disables prologue / epilogue emission for the
1345 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001346``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001347 This indicates that the callee function at a call site is not recognized as
1348 a built-in function. LLVM will retain the original call and not replace it
1349 with equivalent code based on the semantics of the built-in function, unless
1350 the call site uses the ``builtin`` attribute. This is valid at call sites
1351 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001352``noduplicate``
1353 This attribute indicates that calls to the function cannot be
1354 duplicated. A call to a ``noduplicate`` function may be moved
1355 within its parent function, but may not be duplicated within
1356 its parent function.
1357
1358 A function containing a ``noduplicate`` call may still
1359 be an inlining candidate, provided that the call is not
1360 duplicated by inlining. That implies that the function has
1361 internal linkage and only has one call site, so the original
1362 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001363``noimplicitfloat``
1364 This attributes disables implicit floating point instructions.
1365``noinline``
1366 This attribute indicates that the inliner should never inline this
1367 function in any situation. This attribute may not be used together
1368 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001369``nonlazybind``
1370 This attribute suppresses lazy symbol binding for the function. This
1371 may make calls to the function faster, at the cost of extra program
1372 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001373``noredzone``
1374 This attribute indicates that the code generator should not use a
1375 red zone, even if the target-specific ABI normally permits it.
1376``noreturn``
1377 This function attribute indicates that the function never returns
1378 normally. This produces undefined behavior at runtime if the
1379 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001380``norecurse``
1381 This function attribute indicates that the function does not call itself
1382 either directly or indirectly down any possible call path. This produces
1383 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001384``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001385 This function attribute indicates that the function never raises an
1386 exception. If the function does raise an exception, its runtime
1387 behavior is undefined. However, functions marked nounwind may still
1388 trap or generate asynchronous exceptions. Exception handling schemes
1389 that are recognized by LLVM to handle asynchronous exceptions, such
1390 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001391``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001392 This function attribute indicates that most optimization passes will skip
1393 this function, with the exception of interprocedural optimization passes.
1394 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001395 This attribute cannot be used together with the ``alwaysinline``
1396 attribute; this attribute is also incompatible
1397 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001398
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001399 This attribute requires the ``noinline`` attribute to be specified on
1400 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001401 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001402 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001403``optsize``
1404 This attribute suggests that optimization passes and code generator
1405 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001406 and otherwise do optimizations specifically to reduce code size as
1407 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001408``"patchable-function"``
1409 This attribute tells the code generator that the code
1410 generated for this function needs to follow certain conventions that
1411 make it possible for a runtime function to patch over it later.
1412 The exact effect of this attribute depends on its string value,
1413 for which there currently is one legal possiblity:
1414
1415 * ``"prologue-short-redirect"`` - This style of patchable
1416 function is intended to support patching a function prologue to
1417 redirect control away from the function in a thread safe
1418 manner. It guarantees that the first instruction of the
1419 function will be large enough to accommodate a short jump
1420 instruction, and will be sufficiently aligned to allow being
1421 fully changed via an atomic compare-and-swap instruction.
1422 While the first requirement can be satisfied by inserting large
1423 enough NOP, LLVM can and will try to re-purpose an existing
1424 instruction (i.e. one that would have to be emitted anyway) as
1425 the patchable instruction larger than a short jump.
1426
1427 ``"prologue-short-redirect"`` is currently only supported on
1428 x86-64.
1429
1430 This attribute by itself does not imply restrictions on
1431 inter-procedural optimizations. All of the semantic effects the
1432 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001433``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001434 On a function, this attribute indicates that the function computes its
1435 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001436 without dereferencing any pointer arguments or otherwise accessing
1437 any mutable state (e.g. memory, control registers, etc) visible to
1438 caller functions. It does not write through any pointer arguments
1439 (including ``byval`` arguments) and never changes any state visible
1440 to callers. This means that it cannot unwind exceptions by calling
1441 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001442
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001443 On an argument, this attribute indicates that the function does not
1444 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001445 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001446``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001447 On a function, this attribute indicates that the function does not write
1448 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001449 modify any state (e.g. memory, control registers, etc) visible to
1450 caller functions. It may dereference pointer arguments and read
1451 state that may be set in the caller. A readonly function always
1452 returns the same value (or unwinds an exception identically) when
1453 called with the same set of arguments and global state. It cannot
1454 unwind an exception by calling the ``C++`` exception throwing
1455 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001456
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001457 On an argument, this attribute indicates that the function does not write
1458 through this pointer argument, even though it may write to the memory that
1459 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001460``argmemonly``
1461 This attribute indicates that the only memory accesses inside function are
1462 loads and stores from objects pointed to by its pointer-typed arguments,
1463 with arbitrary offsets. Or in other words, all memory operations in the
1464 function can refer to memory only using pointers based on its function
1465 arguments.
1466 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1467 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001468``returns_twice``
1469 This attribute indicates that this function can return twice. The C
1470 ``setjmp`` is an example of such a function. The compiler disables
1471 some optimizations (like tail calls) in the caller of these
1472 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001473``safestack``
1474 This attribute indicates that
1475 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1476 protection is enabled for this function.
1477
1478 If a function that has a ``safestack`` attribute is inlined into a
1479 function that doesn't have a ``safestack`` attribute or which has an
1480 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1481 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001482``sanitize_address``
1483 This attribute indicates that AddressSanitizer checks
1484 (dynamic address safety analysis) are enabled for this function.
1485``sanitize_memory``
1486 This attribute indicates that MemorySanitizer checks (dynamic detection
1487 of accesses to uninitialized memory) are enabled for this function.
1488``sanitize_thread``
1489 This attribute indicates that ThreadSanitizer checks
1490 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001491``ssp``
1492 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001493 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001494 placed on the stack before the local variables that's checked upon
1495 return from the function to see if it has been overwritten. A
1496 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001497 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001498
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001499 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1500 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1501 - Calls to alloca() with variable sizes or constant sizes greater than
1502 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001503
Josh Magee24c7f062014-02-01 01:36:16 +00001504 Variables that are identified as requiring a protector will be arranged
1505 on the stack such that they are adjacent to the stack protector guard.
1506
Sean Silvab084af42012-12-07 10:36:55 +00001507 If a function that has an ``ssp`` attribute is inlined into a
1508 function that doesn't have an ``ssp`` attribute, then the resulting
1509 function will have an ``ssp`` attribute.
1510``sspreq``
1511 This attribute indicates that the function should *always* emit a
1512 stack smashing protector. This overrides the ``ssp`` function
1513 attribute.
1514
Josh Magee24c7f062014-02-01 01:36:16 +00001515 Variables that are identified as requiring a protector will be arranged
1516 on the stack such that they are adjacent to the stack protector guard.
1517 The specific layout rules are:
1518
1519 #. Large arrays and structures containing large arrays
1520 (``>= ssp-buffer-size``) are closest to the stack protector.
1521 #. Small arrays and structures containing small arrays
1522 (``< ssp-buffer-size``) are 2nd closest to the protector.
1523 #. Variables that have had their address taken are 3rd closest to the
1524 protector.
1525
Sean Silvab084af42012-12-07 10:36:55 +00001526 If a function that has an ``sspreq`` attribute is inlined into a
1527 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001528 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1529 an ``sspreq`` attribute.
1530``sspstrong``
1531 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001532 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001533 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001534 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001535
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001536 - Arrays of any size and type
1537 - Aggregates containing an array of any size and type.
1538 - Calls to alloca().
1539 - Local variables that have had their address taken.
1540
Josh Magee24c7f062014-02-01 01:36:16 +00001541 Variables that are identified as requiring a protector will be arranged
1542 on the stack such that they are adjacent to the stack protector guard.
1543 The specific layout rules are:
1544
1545 #. Large arrays and structures containing large arrays
1546 (``>= ssp-buffer-size``) are closest to the stack protector.
1547 #. Small arrays and structures containing small arrays
1548 (``< ssp-buffer-size``) are 2nd closest to the protector.
1549 #. Variables that have had their address taken are 3rd closest to the
1550 protector.
1551
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001552 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001553
1554 If a function that has an ``sspstrong`` attribute is inlined into a
1555 function that doesn't have an ``sspstrong`` attribute, then the
1556 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001557``"thunk"``
1558 This attribute indicates that the function will delegate to some other
1559 function with a tail call. The prototype of a thunk should not be used for
1560 optimization purposes. The caller is expected to cast the thunk prototype to
1561 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001562``uwtable``
1563 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001564 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001565 show that no exceptions passes by it. This is normally the case for
1566 the ELF x86-64 abi, but it can be disabled for some compilation
1567 units.
Sean Silvab084af42012-12-07 10:36:55 +00001568
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001569
1570.. _opbundles:
1571
1572Operand Bundles
1573---------------
1574
1575Note: operand bundles are a work in progress, and they should be
1576considered experimental at this time.
1577
1578Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001579with certain LLVM instructions (currently only ``call`` s and
1580``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001581incorrect and will change program semantics.
1582
1583Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001584
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001585 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001586 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1587 bundle operand ::= SSA value
1588 tag ::= string constant
1589
1590Operand bundles are **not** part of a function's signature, and a
1591given function may be called from multiple places with different kinds
1592of operand bundles. This reflects the fact that the operand bundles
1593are conceptually a part of the ``call`` (or ``invoke``), not the
1594callee being dispatched to.
1595
1596Operand bundles are a generic mechanism intended to support
1597runtime-introspection-like functionality for managed languages. While
1598the exact semantics of an operand bundle depend on the bundle tag,
1599there are certain limitations to how much the presence of an operand
1600bundle can influence the semantics of a program. These restrictions
1601are described as the semantics of an "unknown" operand bundle. As
1602long as the behavior of an operand bundle is describable within these
1603restrictions, LLVM does not need to have special knowledge of the
1604operand bundle to not miscompile programs containing it.
1605
David Majnemer34cacb42015-10-22 01:46:38 +00001606- The bundle operands for an unknown operand bundle escape in unknown
1607 ways before control is transferred to the callee or invokee.
1608- Calls and invokes with operand bundles have unknown read / write
1609 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001610 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001611 callsite specific attributes.
1612- An operand bundle at a call site cannot change the implementation
1613 of the called function. Inter-procedural optimizations work as
1614 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001615
Sanjoy Dascdafd842015-11-11 21:38:02 +00001616More specific types of operand bundles are described below.
1617
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001618.. _deopt_opbundles:
1619
Sanjoy Dascdafd842015-11-11 21:38:02 +00001620Deoptimization Operand Bundles
1621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1622
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001623Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001624operand bundle tag. These operand bundles represent an alternate
1625"safe" continuation for the call site they're attached to, and can be
1626used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001627specified call site. There can be at most one ``"deopt"`` operand
1628bundle attached to a call site. Exact details of deoptimization is
1629out of scope for the language reference, but it usually involves
1630rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001631
1632From the compiler's perspective, deoptimization operand bundles make
1633the call sites they're attached to at least ``readonly``. They read
1634through all of their pointer typed operands (even if they're not
1635otherwise escaped) and the entire visible heap. Deoptimization
1636operand bundles do not capture their operands except during
1637deoptimization, in which case control will not be returned to the
1638compiled frame.
1639
Sanjoy Das2d161452015-11-18 06:23:38 +00001640The inliner knows how to inline through calls that have deoptimization
1641operand bundles. Just like inlining through a normal call site
1642involves composing the normal and exceptional continuations, inlining
1643through a call site with a deoptimization operand bundle needs to
1644appropriately compose the "safe" deoptimization continuation. The
1645inliner does this by prepending the parent's deoptimization
1646continuation to every deoptimization continuation in the inlined body.
1647E.g. inlining ``@f`` into ``@g`` in the following example
1648
1649.. code-block:: llvm
1650
1651 define void @f() {
1652 call void @x() ;; no deopt state
1653 call void @y() [ "deopt"(i32 10) ]
1654 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1655 ret void
1656 }
1657
1658 define void @g() {
1659 call void @f() [ "deopt"(i32 20) ]
1660 ret void
1661 }
1662
1663will result in
1664
1665.. code-block:: llvm
1666
1667 define void @g() {
1668 call void @x() ;; still no deopt state
1669 call void @y() [ "deopt"(i32 20, i32 10) ]
1670 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1671 ret void
1672 }
1673
1674It is the frontend's responsibility to structure or encode the
1675deoptimization state in a way that syntactically prepending the
1676caller's deoptimization state to the callee's deoptimization state is
1677semantically equivalent to composing the caller's deoptimization
1678continuation after the callee's deoptimization continuation.
1679
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001680.. _ob_funclet:
1681
David Majnemer3bb88c02015-12-15 21:27:27 +00001682Funclet Operand Bundles
1683^^^^^^^^^^^^^^^^^^^^^^^
1684
1685Funclet operand bundles are characterized by the ``"funclet"``
1686operand bundle tag. These operand bundles indicate that a call site
1687is within a particular funclet. There can be at most one
1688``"funclet"`` operand bundle attached to a call site and it must have
1689exactly one bundle operand.
1690
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001691If any funclet EH pads have been "entered" but not "exited" (per the
1692`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1693it is undefined behavior to execute a ``call`` or ``invoke`` which:
1694
1695* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1696 intrinsic, or
1697* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1698 not-yet-exited funclet EH pad.
1699
1700Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1701executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1702
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001703GC Transition Operand Bundles
1704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1705
1706GC transition operand bundles are characterized by the
1707``"gc-transition"`` operand bundle tag. These operand bundles mark a
1708call as a transition between a function with one GC strategy to a
1709function with a different GC strategy. If coordinating the transition
1710between GC strategies requires additional code generation at the call
1711site, these bundles may contain any values that are needed by the
1712generated code. For more details, see :ref:`GC Transitions
1713<gc_transition_args>`.
1714
Sean Silvab084af42012-12-07 10:36:55 +00001715.. _moduleasm:
1716
1717Module-Level Inline Assembly
1718----------------------------
1719
1720Modules may contain "module-level inline asm" blocks, which corresponds
1721to the GCC "file scope inline asm" blocks. These blocks are internally
1722concatenated by LLVM and treated as a single unit, but may be separated
1723in the ``.ll`` file if desired. The syntax is very simple:
1724
1725.. code-block:: llvm
1726
1727 module asm "inline asm code goes here"
1728 module asm "more can go here"
1729
1730The strings can contain any character by escaping non-printable
1731characters. The escape sequence used is simply "\\xx" where "xx" is the
1732two digit hex code for the number.
1733
James Y Knightbc832ed2015-07-08 18:08:36 +00001734Note that the assembly string *must* be parseable by LLVM's integrated assembler
1735(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001736
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001737.. _langref_datalayout:
1738
Sean Silvab084af42012-12-07 10:36:55 +00001739Data Layout
1740-----------
1741
1742A module may specify a target specific data layout string that specifies
1743how data is to be laid out in memory. The syntax for the data layout is
1744simply:
1745
1746.. code-block:: llvm
1747
1748 target datalayout = "layout specification"
1749
1750The *layout specification* consists of a list of specifications
1751separated by the minus sign character ('-'). Each specification starts
1752with a letter and may include other information after the letter to
1753define some aspect of the data layout. The specifications accepted are
1754as follows:
1755
1756``E``
1757 Specifies that the target lays out data in big-endian form. That is,
1758 the bits with the most significance have the lowest address
1759 location.
1760``e``
1761 Specifies that the target lays out data in little-endian form. That
1762 is, the bits with the least significance have the lowest address
1763 location.
1764``S<size>``
1765 Specifies the natural alignment of the stack in bits. Alignment
1766 promotion of stack variables is limited to the natural stack
1767 alignment to avoid dynamic stack realignment. The stack alignment
1768 must be a multiple of 8-bits. If omitted, the natural stack
1769 alignment defaults to "unspecified", which does not prevent any
1770 alignment promotions.
1771``p[n]:<size>:<abi>:<pref>``
1772 This specifies the *size* of a pointer and its ``<abi>`` and
1773 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001774 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001775 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001776 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001777``i<size>:<abi>:<pref>``
1778 This specifies the alignment for an integer type of a given bit
1779 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1780``v<size>:<abi>:<pref>``
1781 This specifies the alignment for a vector type of a given bit
1782 ``<size>``.
1783``f<size>:<abi>:<pref>``
1784 This specifies the alignment for a floating point type of a given bit
1785 ``<size>``. Only values of ``<size>`` that are supported by the target
1786 will work. 32 (float) and 64 (double) are supported on all targets; 80
1787 or 128 (different flavors of long double) are also supported on some
1788 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001789``a:<abi>:<pref>``
1790 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001791``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001792 If present, specifies that llvm names are mangled in the output. The
1793 options are
1794
1795 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1796 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1797 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1798 symbols get a ``_`` prefix.
1799 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1800 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001801 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1802 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001803``n<size1>:<size2>:<size3>...``
1804 This specifies a set of native integer widths for the target CPU in
1805 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1806 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1807 this set are considered to support most general arithmetic operations
1808 efficiently.
1809
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001810On every specification that takes a ``<abi>:<pref>``, specifying the
1811``<pref>`` alignment is optional. If omitted, the preceding ``:``
1812should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1813
Sean Silvab084af42012-12-07 10:36:55 +00001814When constructing the data layout for a given target, LLVM starts with a
1815default set of specifications which are then (possibly) overridden by
1816the specifications in the ``datalayout`` keyword. The default
1817specifications are given in this list:
1818
1819- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001820- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1821- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1822 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001823- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001824- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1825- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1826- ``i16:16:16`` - i16 is 16-bit aligned
1827- ``i32:32:32`` - i32 is 32-bit aligned
1828- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1829 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001830- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001831- ``f32:32:32`` - float is 32-bit aligned
1832- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001833- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001834- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1835- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001836- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001837
1838When LLVM is determining the alignment for a given type, it uses the
1839following rules:
1840
1841#. If the type sought is an exact match for one of the specifications,
1842 that specification is used.
1843#. If no match is found, and the type sought is an integer type, then
1844 the smallest integer type that is larger than the bitwidth of the
1845 sought type is used. If none of the specifications are larger than
1846 the bitwidth then the largest integer type is used. For example,
1847 given the default specifications above, the i7 type will use the
1848 alignment of i8 (next largest) while both i65 and i256 will use the
1849 alignment of i64 (largest specified).
1850#. If no match is found, and the type sought is a vector type, then the
1851 largest vector type that is smaller than the sought vector type will
1852 be used as a fall back. This happens because <128 x double> can be
1853 implemented in terms of 64 <2 x double>, for example.
1854
1855The function of the data layout string may not be what you expect.
1856Notably, this is not a specification from the frontend of what alignment
1857the code generator should use.
1858
1859Instead, if specified, the target data layout is required to match what
1860the ultimate *code generator* expects. This string is used by the
1861mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001862what the ultimate code generator uses. There is no way to generate IR
1863that does not embed this target-specific detail into the IR. If you
1864don't specify the string, the default specifications will be used to
1865generate a Data Layout and the optimization phases will operate
1866accordingly and introduce target specificity into the IR with respect to
1867these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001868
Bill Wendling5cc90842013-10-18 23:41:25 +00001869.. _langref_triple:
1870
1871Target Triple
1872-------------
1873
1874A module may specify a target triple string that describes the target
1875host. The syntax for the target triple is simply:
1876
1877.. code-block:: llvm
1878
1879 target triple = "x86_64-apple-macosx10.7.0"
1880
1881The *target triple* string consists of a series of identifiers delimited
1882by the minus sign character ('-'). The canonical forms are:
1883
1884::
1885
1886 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1887 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1888
1889This information is passed along to the backend so that it generates
1890code for the proper architecture. It's possible to override this on the
1891command line with the ``-mtriple`` command line option.
1892
Sean Silvab084af42012-12-07 10:36:55 +00001893.. _pointeraliasing:
1894
1895Pointer Aliasing Rules
1896----------------------
1897
1898Any memory access must be done through a pointer value associated with
1899an address range of the memory access, otherwise the behavior is
1900undefined. Pointer values are associated with address ranges according
1901to the following rules:
1902
1903- A pointer value is associated with the addresses associated with any
1904 value it is *based* on.
1905- An address of a global variable is associated with the address range
1906 of the variable's storage.
1907- The result value of an allocation instruction is associated with the
1908 address range of the allocated storage.
1909- A null pointer in the default address-space is associated with no
1910 address.
1911- An integer constant other than zero or a pointer value returned from
1912 a function not defined within LLVM may be associated with address
1913 ranges allocated through mechanisms other than those provided by
1914 LLVM. Such ranges shall not overlap with any ranges of addresses
1915 allocated by mechanisms provided by LLVM.
1916
1917A pointer value is *based* on another pointer value according to the
1918following rules:
1919
1920- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001921 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001922- The result value of a ``bitcast`` is *based* on the operand of the
1923 ``bitcast``.
1924- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1925 values that contribute (directly or indirectly) to the computation of
1926 the pointer's value.
1927- The "*based* on" relationship is transitive.
1928
1929Note that this definition of *"based"* is intentionally similar to the
1930definition of *"based"* in C99, though it is slightly weaker.
1931
1932LLVM IR does not associate types with memory. The result type of a
1933``load`` merely indicates the size and alignment of the memory from
1934which to load, as well as the interpretation of the value. The first
1935operand type of a ``store`` similarly only indicates the size and
1936alignment of the store.
1937
1938Consequently, type-based alias analysis, aka TBAA, aka
1939``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1940:ref:`Metadata <metadata>` may be used to encode additional information
1941which specialized optimization passes may use to implement type-based
1942alias analysis.
1943
1944.. _volatile:
1945
1946Volatile Memory Accesses
1947------------------------
1948
1949Certain memory accesses, such as :ref:`load <i_load>`'s,
1950:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1951marked ``volatile``. The optimizers must not change the number of
1952volatile operations or change their order of execution relative to other
1953volatile operations. The optimizers *may* change the order of volatile
1954operations relative to non-volatile operations. This is not Java's
1955"volatile" and has no cross-thread synchronization behavior.
1956
Andrew Trick89fc5a62013-01-30 21:19:35 +00001957IR-level volatile loads and stores cannot safely be optimized into
1958llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1959flagged volatile. Likewise, the backend should never split or merge
1960target-legal volatile load/store instructions.
1961
Andrew Trick7e6f9282013-01-31 00:49:39 +00001962.. admonition:: Rationale
1963
1964 Platforms may rely on volatile loads and stores of natively supported
1965 data width to be executed as single instruction. For example, in C
1966 this holds for an l-value of volatile primitive type with native
1967 hardware support, but not necessarily for aggregate types. The
1968 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001969 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001970 do not violate the frontend's contract with the language.
1971
Sean Silvab084af42012-12-07 10:36:55 +00001972.. _memmodel:
1973
1974Memory Model for Concurrent Operations
1975--------------------------------------
1976
1977The LLVM IR does not define any way to start parallel threads of
1978execution or to register signal handlers. Nonetheless, there are
1979platform-specific ways to create them, and we define LLVM IR's behavior
1980in their presence. This model is inspired by the C++0x memory model.
1981
1982For a more informal introduction to this model, see the :doc:`Atomics`.
1983
1984We define a *happens-before* partial order as the least partial order
1985that
1986
1987- Is a superset of single-thread program order, and
1988- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1989 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1990 techniques, like pthread locks, thread creation, thread joining,
1991 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1992 Constraints <ordering>`).
1993
1994Note that program order does not introduce *happens-before* edges
1995between a thread and signals executing inside that thread.
1996
1997Every (defined) read operation (load instructions, memcpy, atomic
1998loads/read-modify-writes, etc.) R reads a series of bytes written by
1999(defined) write operations (store instructions, atomic
2000stores/read-modify-writes, memcpy, etc.). For the purposes of this
2001section, initialized globals are considered to have a write of the
2002initializer which is atomic and happens before any other read or write
2003of the memory in question. For each byte of a read R, R\ :sub:`byte`
2004may see any write to the same byte, except:
2005
2006- If write\ :sub:`1` happens before write\ :sub:`2`, and
2007 write\ :sub:`2` happens before R\ :sub:`byte`, then
2008 R\ :sub:`byte` does not see write\ :sub:`1`.
2009- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2010 R\ :sub:`byte` does not see write\ :sub:`3`.
2011
2012Given that definition, R\ :sub:`byte` is defined as follows:
2013
2014- If R is volatile, the result is target-dependent. (Volatile is
2015 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002016 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002017 like normal memory. It does not generally provide cross-thread
2018 synchronization.)
2019- Otherwise, if there is no write to the same byte that happens before
2020 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2021- Otherwise, if R\ :sub:`byte` may see exactly one write,
2022 R\ :sub:`byte` returns the value written by that write.
2023- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2024 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2025 Memory Ordering Constraints <ordering>` section for additional
2026 constraints on how the choice is made.
2027- Otherwise R\ :sub:`byte` returns ``undef``.
2028
2029R returns the value composed of the series of bytes it read. This
2030implies that some bytes within the value may be ``undef`` **without**
2031the entire value being ``undef``. Note that this only defines the
2032semantics of the operation; it doesn't mean that targets will emit more
2033than one instruction to read the series of bytes.
2034
2035Note that in cases where none of the atomic intrinsics are used, this
2036model places only one restriction on IR transformations on top of what
2037is required for single-threaded execution: introducing a store to a byte
2038which might not otherwise be stored is not allowed in general.
2039(Specifically, in the case where another thread might write to and read
2040from an address, introducing a store can change a load that may see
2041exactly one write into a load that may see multiple writes.)
2042
2043.. _ordering:
2044
2045Atomic Memory Ordering Constraints
2046----------------------------------
2047
2048Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2049:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2050:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002051ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002052the same address they *synchronize with*. These semantics are borrowed
2053from Java and C++0x, but are somewhat more colloquial. If these
2054descriptions aren't precise enough, check those specs (see spec
2055references in the :doc:`atomics guide <Atomics>`).
2056:ref:`fence <i_fence>` instructions treat these orderings somewhat
2057differently since they don't take an address. See that instruction's
2058documentation for details.
2059
2060For a simpler introduction to the ordering constraints, see the
2061:doc:`Atomics`.
2062
2063``unordered``
2064 The set of values that can be read is governed by the happens-before
2065 partial order. A value cannot be read unless some operation wrote
2066 it. This is intended to provide a guarantee strong enough to model
2067 Java's non-volatile shared variables. This ordering cannot be
2068 specified for read-modify-write operations; it is not strong enough
2069 to make them atomic in any interesting way.
2070``monotonic``
2071 In addition to the guarantees of ``unordered``, there is a single
2072 total order for modifications by ``monotonic`` operations on each
2073 address. All modification orders must be compatible with the
2074 happens-before order. There is no guarantee that the modification
2075 orders can be combined to a global total order for the whole program
2076 (and this often will not be possible). The read in an atomic
2077 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2078 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2079 order immediately before the value it writes. If one atomic read
2080 happens before another atomic read of the same address, the later
2081 read must see the same value or a later value in the address's
2082 modification order. This disallows reordering of ``monotonic`` (or
2083 stronger) operations on the same address. If an address is written
2084 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2085 read that address repeatedly, the other threads must eventually see
2086 the write. This corresponds to the C++0x/C1x
2087 ``memory_order_relaxed``.
2088``acquire``
2089 In addition to the guarantees of ``monotonic``, a
2090 *synchronizes-with* edge may be formed with a ``release`` operation.
2091 This is intended to model C++'s ``memory_order_acquire``.
2092``release``
2093 In addition to the guarantees of ``monotonic``, if this operation
2094 writes a value which is subsequently read by an ``acquire``
2095 operation, it *synchronizes-with* that operation. (This isn't a
2096 complete description; see the C++0x definition of a release
2097 sequence.) This corresponds to the C++0x/C1x
2098 ``memory_order_release``.
2099``acq_rel`` (acquire+release)
2100 Acts as both an ``acquire`` and ``release`` operation on its
2101 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2102``seq_cst`` (sequentially consistent)
2103 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002104 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002105 writes), there is a global total order on all
2106 sequentially-consistent operations on all addresses, which is
2107 consistent with the *happens-before* partial order and with the
2108 modification orders of all the affected addresses. Each
2109 sequentially-consistent read sees the last preceding write to the
2110 same address in this global order. This corresponds to the C++0x/C1x
2111 ``memory_order_seq_cst`` and Java volatile.
2112
2113.. _singlethread:
2114
2115If an atomic operation is marked ``singlethread``, it only *synchronizes
2116with* or participates in modification and seq\_cst total orderings with
2117other operations running in the same thread (for example, in signal
2118handlers).
2119
2120.. _fastmath:
2121
2122Fast-Math Flags
2123---------------
2124
2125LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2126:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002127:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2128be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002129
2130``nnan``
2131 No NaNs - Allow optimizations to assume the arguments and result are not
2132 NaN. Such optimizations are required to retain defined behavior over
2133 NaNs, but the value of the result is undefined.
2134
2135``ninf``
2136 No Infs - Allow optimizations to assume the arguments and result are not
2137 +/-Inf. Such optimizations are required to retain defined behavior over
2138 +/-Inf, but the value of the result is undefined.
2139
2140``nsz``
2141 No Signed Zeros - Allow optimizations to treat the sign of a zero
2142 argument or result as insignificant.
2143
2144``arcp``
2145 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2146 argument rather than perform division.
2147
2148``fast``
2149 Fast - Allow algebraically equivalent transformations that may
2150 dramatically change results in floating point (e.g. reassociate). This
2151 flag implies all the others.
2152
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002153.. _uselistorder:
2154
2155Use-list Order Directives
2156-------------------------
2157
2158Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002159order to be recreated. ``<order-indexes>`` is a comma-separated list of
2160indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002161value's use-list is immediately sorted by these indexes.
2162
Sean Silvaa1190322015-08-06 22:56:48 +00002163Use-list directives may appear at function scope or global scope. They are not
2164instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002165function scope, they must appear after the terminator of the final basic block.
2166
2167If basic blocks have their address taken via ``blockaddress()`` expressions,
2168``uselistorder_bb`` can be used to reorder their use-lists from outside their
2169function's scope.
2170
2171:Syntax:
2172
2173::
2174
2175 uselistorder <ty> <value>, { <order-indexes> }
2176 uselistorder_bb @function, %block { <order-indexes> }
2177
2178:Examples:
2179
2180::
2181
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002182 define void @foo(i32 %arg1, i32 %arg2) {
2183 entry:
2184 ; ... instructions ...
2185 bb:
2186 ; ... instructions ...
2187
2188 ; At function scope.
2189 uselistorder i32 %arg1, { 1, 0, 2 }
2190 uselistorder label %bb, { 1, 0 }
2191 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002192
2193 ; At global scope.
2194 uselistorder i32* @global, { 1, 2, 0 }
2195 uselistorder i32 7, { 1, 0 }
2196 uselistorder i32 (i32) @bar, { 1, 0 }
2197 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2198
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002199.. _source_filename:
2200
2201Source Filename
2202---------------
2203
2204The *source filename* string is set to the original module identifier,
2205which will be the name of the compiled source file when compiling from
2206source through the clang front end, for example. It is then preserved through
2207the IR and bitcode.
2208
2209This is currently necessary to generate a consistent unique global
2210identifier for local functions used in profile data, which prepends the
2211source file name to the local function name.
2212
2213The syntax for the source file name is simply:
2214
2215.. code-block:: llvm
2216
2217 source_filename = "/path/to/source.c"
2218
Sean Silvab084af42012-12-07 10:36:55 +00002219.. _typesystem:
2220
2221Type System
2222===========
2223
2224The LLVM type system is one of the most important features of the
2225intermediate representation. Being typed enables a number of
2226optimizations to be performed on the intermediate representation
2227directly, without having to do extra analyses on the side before the
2228transformation. A strong type system makes it easier to read the
2229generated code and enables novel analyses and transformations that are
2230not feasible to perform on normal three address code representations.
2231
Rafael Espindola08013342013-12-07 19:34:20 +00002232.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002233
Rafael Espindola08013342013-12-07 19:34:20 +00002234Void Type
2235---------
Sean Silvab084af42012-12-07 10:36:55 +00002236
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002237:Overview:
2238
Rafael Espindola08013342013-12-07 19:34:20 +00002239
2240The void type does not represent any value and has no size.
2241
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002242:Syntax:
2243
Rafael Espindola08013342013-12-07 19:34:20 +00002244
2245::
2246
2247 void
Sean Silvab084af42012-12-07 10:36:55 +00002248
2249
Rafael Espindola08013342013-12-07 19:34:20 +00002250.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002251
Rafael Espindola08013342013-12-07 19:34:20 +00002252Function Type
2253-------------
Sean Silvab084af42012-12-07 10:36:55 +00002254
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002255:Overview:
2256
Sean Silvab084af42012-12-07 10:36:55 +00002257
Rafael Espindola08013342013-12-07 19:34:20 +00002258The function type can be thought of as a function signature. It consists of a
2259return type and a list of formal parameter types. The return type of a function
2260type is a void type or first class type --- except for :ref:`label <t_label>`
2261and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002262
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002263:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002264
Rafael Espindola08013342013-12-07 19:34:20 +00002265::
Sean Silvab084af42012-12-07 10:36:55 +00002266
Rafael Espindola08013342013-12-07 19:34:20 +00002267 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002268
Rafael Espindola08013342013-12-07 19:34:20 +00002269...where '``<parameter list>``' is a comma-separated list of type
2270specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002271indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002272argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002273handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002274except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002275
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002276:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002277
Rafael Espindola08013342013-12-07 19:34:20 +00002278+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2279| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2280+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2281| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2282+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2283| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2284+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2285| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2286+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2287
2288.. _t_firstclass:
2289
2290First Class Types
2291-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002292
2293The :ref:`first class <t_firstclass>` types are perhaps the most important.
2294Values of these types are the only ones which can be produced by
2295instructions.
2296
Rafael Espindola08013342013-12-07 19:34:20 +00002297.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002298
Rafael Espindola08013342013-12-07 19:34:20 +00002299Single Value Types
2300^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002301
Rafael Espindola08013342013-12-07 19:34:20 +00002302These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002303
2304.. _t_integer:
2305
2306Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002307""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002308
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002309:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002310
2311The integer type is a very simple type that simply specifies an
2312arbitrary bit width for the integer type desired. Any bit width from 1
2313bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2314
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002315:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002316
2317::
2318
2319 iN
2320
2321The number of bits the integer will occupy is specified by the ``N``
2322value.
2323
2324Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002325*********
Sean Silvab084af42012-12-07 10:36:55 +00002326
2327+----------------+------------------------------------------------+
2328| ``i1`` | a single-bit integer. |
2329+----------------+------------------------------------------------+
2330| ``i32`` | a 32-bit integer. |
2331+----------------+------------------------------------------------+
2332| ``i1942652`` | a really big integer of over 1 million bits. |
2333+----------------+------------------------------------------------+
2334
2335.. _t_floating:
2336
2337Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002338""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002339
2340.. list-table::
2341 :header-rows: 1
2342
2343 * - Type
2344 - Description
2345
2346 * - ``half``
2347 - 16-bit floating point value
2348
2349 * - ``float``
2350 - 32-bit floating point value
2351
2352 * - ``double``
2353 - 64-bit floating point value
2354
2355 * - ``fp128``
2356 - 128-bit floating point value (112-bit mantissa)
2357
2358 * - ``x86_fp80``
2359 - 80-bit floating point value (X87)
2360
2361 * - ``ppc_fp128``
2362 - 128-bit floating point value (two 64-bits)
2363
Reid Kleckner9a16d082014-03-05 02:41:37 +00002364X86_mmx Type
2365""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002366
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002367:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002368
Reid Kleckner9a16d082014-03-05 02:41:37 +00002369The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002370machine. The operations allowed on it are quite limited: parameters and
2371return values, load and store, and bitcast. User-specified MMX
2372instructions are represented as intrinsic or asm calls with arguments
2373and/or results of this type. There are no arrays, vectors or constants
2374of this type.
2375
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002376:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002377
2378::
2379
Reid Kleckner9a16d082014-03-05 02:41:37 +00002380 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002381
Sean Silvab084af42012-12-07 10:36:55 +00002382
Rafael Espindola08013342013-12-07 19:34:20 +00002383.. _t_pointer:
2384
2385Pointer Type
2386""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002387
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002388:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002389
Rafael Espindola08013342013-12-07 19:34:20 +00002390The pointer type is used to specify memory locations. Pointers are
2391commonly used to reference objects in memory.
2392
2393Pointer types may have an optional address space attribute defining the
2394numbered address space where the pointed-to object resides. The default
2395address space is number zero. The semantics of non-zero address spaces
2396are target-specific.
2397
2398Note that LLVM does not permit pointers to void (``void*``) nor does it
2399permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002400
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002401:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002402
2403::
2404
Rafael Espindola08013342013-12-07 19:34:20 +00002405 <type> *
2406
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002407:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002408
2409+-------------------------+--------------------------------------------------------------------------------------------------------------+
2410| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2411+-------------------------+--------------------------------------------------------------------------------------------------------------+
2412| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2413+-------------------------+--------------------------------------------------------------------------------------------------------------+
2414| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2415+-------------------------+--------------------------------------------------------------------------------------------------------------+
2416
2417.. _t_vector:
2418
2419Vector Type
2420"""""""""""
2421
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002422:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002423
2424A vector type is a simple derived type that represents a vector of
2425elements. Vector types are used when multiple primitive data are
2426operated in parallel using a single instruction (SIMD). A vector type
2427requires a size (number of elements) and an underlying primitive data
2428type. Vector types are considered :ref:`first class <t_firstclass>`.
2429
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002430:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002431
2432::
2433
2434 < <# elements> x <elementtype> >
2435
2436The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002437elementtype may be any integer, floating point or pointer type. Vectors
2438of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002439
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002440:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002441
2442+-------------------+--------------------------------------------------+
2443| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2444+-------------------+--------------------------------------------------+
2445| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2446+-------------------+--------------------------------------------------+
2447| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2448+-------------------+--------------------------------------------------+
2449| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2450+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002451
2452.. _t_label:
2453
2454Label Type
2455^^^^^^^^^^
2456
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002457:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002458
2459The label type represents code labels.
2460
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002461:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002462
2463::
2464
2465 label
2466
David Majnemerb611e3f2015-08-14 05:09:07 +00002467.. _t_token:
2468
2469Token Type
2470^^^^^^^^^^
2471
2472:Overview:
2473
2474The token type is used when a value is associated with an instruction
2475but all uses of the value must not attempt to introspect or obscure it.
2476As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2477:ref:`select <i_select>` of type token.
2478
2479:Syntax:
2480
2481::
2482
2483 token
2484
2485
2486
Sean Silvab084af42012-12-07 10:36:55 +00002487.. _t_metadata:
2488
2489Metadata Type
2490^^^^^^^^^^^^^
2491
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002492:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002493
2494The metadata type represents embedded metadata. No derived types may be
2495created from metadata except for :ref:`function <t_function>` arguments.
2496
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002497:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002498
2499::
2500
2501 metadata
2502
Sean Silvab084af42012-12-07 10:36:55 +00002503.. _t_aggregate:
2504
2505Aggregate Types
2506^^^^^^^^^^^^^^^
2507
2508Aggregate Types are a subset of derived types that can contain multiple
2509member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2510aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2511aggregate types.
2512
2513.. _t_array:
2514
2515Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002516""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002517
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002518:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002519
2520The array type is a very simple derived type that arranges elements
2521sequentially in memory. The array type requires a size (number of
2522elements) and an underlying data type.
2523
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002524:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002525
2526::
2527
2528 [<# elements> x <elementtype>]
2529
2530The number of elements is a constant integer value; ``elementtype`` may
2531be any type with a size.
2532
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002533:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002534
2535+------------------+--------------------------------------+
2536| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2537+------------------+--------------------------------------+
2538| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2539+------------------+--------------------------------------+
2540| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2541+------------------+--------------------------------------+
2542
2543Here are some examples of multidimensional arrays:
2544
2545+-----------------------------+----------------------------------------------------------+
2546| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2547+-----------------------------+----------------------------------------------------------+
2548| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2549+-----------------------------+----------------------------------------------------------+
2550| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2551+-----------------------------+----------------------------------------------------------+
2552
2553There is no restriction on indexing beyond the end of the array implied
2554by a static type (though there are restrictions on indexing beyond the
2555bounds of an allocated object in some cases). This means that
2556single-dimension 'variable sized array' addressing can be implemented in
2557LLVM with a zero length array type. An implementation of 'pascal style
2558arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2559example.
2560
Sean Silvab084af42012-12-07 10:36:55 +00002561.. _t_struct:
2562
2563Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002564""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002565
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002566:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002567
2568The structure type is used to represent a collection of data members
2569together in memory. The elements of a structure may be any type that has
2570a size.
2571
2572Structures in memory are accessed using '``load``' and '``store``' by
2573getting a pointer to a field with the '``getelementptr``' instruction.
2574Structures in registers are accessed using the '``extractvalue``' and
2575'``insertvalue``' instructions.
2576
2577Structures may optionally be "packed" structures, which indicate that
2578the alignment of the struct is one byte, and that there is no padding
2579between the elements. In non-packed structs, padding between field types
2580is inserted as defined by the DataLayout string in the module, which is
2581required to match what the underlying code generator expects.
2582
2583Structures can either be "literal" or "identified". A literal structure
2584is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2585identified types are always defined at the top level with a name.
2586Literal types are uniqued by their contents and can never be recursive
2587or opaque since there is no way to write one. Identified types can be
2588recursive, can be opaqued, and are never uniqued.
2589
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002590:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002591
2592::
2593
2594 %T1 = type { <type list> } ; Identified normal struct type
2595 %T2 = type <{ <type list> }> ; Identified packed struct type
2596
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002597:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002598
2599+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2600| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2601+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002602| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002603+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2604| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2605+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2606
2607.. _t_opaque:
2608
2609Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002610""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002611
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002612:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002613
2614Opaque structure types are used to represent named structure types that
2615do not have a body specified. This corresponds (for example) to the C
2616notion of a forward declared structure.
2617
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002618:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002619
2620::
2621
2622 %X = type opaque
2623 %52 = type opaque
2624
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002625:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002626
2627+--------------+-------------------+
2628| ``opaque`` | An opaque type. |
2629+--------------+-------------------+
2630
Sean Silva1703e702014-04-08 21:06:22 +00002631.. _constants:
2632
Sean Silvab084af42012-12-07 10:36:55 +00002633Constants
2634=========
2635
2636LLVM has several different basic types of constants. This section
2637describes them all and their syntax.
2638
2639Simple Constants
2640----------------
2641
2642**Boolean constants**
2643 The two strings '``true``' and '``false``' are both valid constants
2644 of the ``i1`` type.
2645**Integer constants**
2646 Standard integers (such as '4') are constants of the
2647 :ref:`integer <t_integer>` type. Negative numbers may be used with
2648 integer types.
2649**Floating point constants**
2650 Floating point constants use standard decimal notation (e.g.
2651 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2652 hexadecimal notation (see below). The assembler requires the exact
2653 decimal value of a floating-point constant. For example, the
2654 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2655 decimal in binary. Floating point constants must have a :ref:`floating
2656 point <t_floating>` type.
2657**Null pointer constants**
2658 The identifier '``null``' is recognized as a null pointer constant
2659 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002660**Token constants**
2661 The identifier '``none``' is recognized as an empty token constant
2662 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002663
2664The one non-intuitive notation for constants is the hexadecimal form of
2665floating point constants. For example, the form
2666'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2667than) '``double 4.5e+15``'. The only time hexadecimal floating point
2668constants are required (and the only time that they are generated by the
2669disassembler) is when a floating point constant must be emitted but it
2670cannot be represented as a decimal floating point number in a reasonable
2671number of digits. For example, NaN's, infinities, and other special
2672values are represented in their IEEE hexadecimal format so that assembly
2673and disassembly do not cause any bits to change in the constants.
2674
2675When using the hexadecimal form, constants of types half, float, and
2676double are represented using the 16-digit form shown above (which
2677matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002678must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002679precision, respectively. Hexadecimal format is always used for long
2680double, and there are three forms of long double. The 80-bit format used
2681by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2682128-bit format used by PowerPC (two adjacent doubles) is represented by
2683``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002684represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2685will only work if they match the long double format on your target.
2686The IEEE 16-bit format (half precision) is represented by ``0xH``
2687followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2688(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002689
Reid Kleckner9a16d082014-03-05 02:41:37 +00002690There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002691
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002692.. _complexconstants:
2693
Sean Silvab084af42012-12-07 10:36:55 +00002694Complex Constants
2695-----------------
2696
2697Complex constants are a (potentially recursive) combination of simple
2698constants and smaller complex constants.
2699
2700**Structure constants**
2701 Structure constants are represented with notation similar to
2702 structure type definitions (a comma separated list of elements,
2703 surrounded by braces (``{}``)). For example:
2704 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2705 "``@G = external global i32``". Structure constants must have
2706 :ref:`structure type <t_struct>`, and the number and types of elements
2707 must match those specified by the type.
2708**Array constants**
2709 Array constants are represented with notation similar to array type
2710 definitions (a comma separated list of elements, surrounded by
2711 square brackets (``[]``)). For example:
2712 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2713 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002714 match those specified by the type. As a special case, character array
2715 constants may also be represented as a double-quoted string using the ``c``
2716 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002717**Vector constants**
2718 Vector constants are represented with notation similar to vector
2719 type definitions (a comma separated list of elements, surrounded by
2720 less-than/greater-than's (``<>``)). For example:
2721 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2722 must have :ref:`vector type <t_vector>`, and the number and types of
2723 elements must match those specified by the type.
2724**Zero initialization**
2725 The string '``zeroinitializer``' can be used to zero initialize a
2726 value to zero of *any* type, including scalar and
2727 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2728 having to print large zero initializers (e.g. for large arrays) and
2729 is always exactly equivalent to using explicit zero initializers.
2730**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002731 A metadata node is a constant tuple without types. For example:
2732 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002733 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2734 Unlike other typed constants that are meant to be interpreted as part of
2735 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002736 information such as debug info.
2737
2738Global Variable and Function Addresses
2739--------------------------------------
2740
2741The addresses of :ref:`global variables <globalvars>` and
2742:ref:`functions <functionstructure>` are always implicitly valid
2743(link-time) constants. These constants are explicitly referenced when
2744the :ref:`identifier for the global <identifiers>` is used and always have
2745:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2746file:
2747
2748.. code-block:: llvm
2749
2750 @X = global i32 17
2751 @Y = global i32 42
2752 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2753
2754.. _undefvalues:
2755
2756Undefined Values
2757----------------
2758
2759The string '``undef``' can be used anywhere a constant is expected, and
2760indicates that the user of the value may receive an unspecified
2761bit-pattern. Undefined values may be of any type (other than '``label``'
2762or '``void``') and be used anywhere a constant is permitted.
2763
2764Undefined values are useful because they indicate to the compiler that
2765the program is well defined no matter what value is used. This gives the
2766compiler more freedom to optimize. Here are some examples of
2767(potentially surprising) transformations that are valid (in pseudo IR):
2768
2769.. code-block:: llvm
2770
2771 %A = add %X, undef
2772 %B = sub %X, undef
2773 %C = xor %X, undef
2774 Safe:
2775 %A = undef
2776 %B = undef
2777 %C = undef
2778
2779This is safe because all of the output bits are affected by the undef
2780bits. Any output bit can have a zero or one depending on the input bits.
2781
2782.. code-block:: llvm
2783
2784 %A = or %X, undef
2785 %B = and %X, undef
2786 Safe:
2787 %A = -1
2788 %B = 0
2789 Unsafe:
2790 %A = undef
2791 %B = undef
2792
2793These logical operations have bits that are not always affected by the
2794input. For example, if ``%X`` has a zero bit, then the output of the
2795'``and``' operation will always be a zero for that bit, no matter what
2796the corresponding bit from the '``undef``' is. As such, it is unsafe to
2797optimize or assume that the result of the '``and``' is '``undef``'.
2798However, it is safe to assume that all bits of the '``undef``' could be
27990, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2800all the bits of the '``undef``' operand to the '``or``' could be set,
2801allowing the '``or``' to be folded to -1.
2802
2803.. code-block:: llvm
2804
2805 %A = select undef, %X, %Y
2806 %B = select undef, 42, %Y
2807 %C = select %X, %Y, undef
2808 Safe:
2809 %A = %X (or %Y)
2810 %B = 42 (or %Y)
2811 %C = %Y
2812 Unsafe:
2813 %A = undef
2814 %B = undef
2815 %C = undef
2816
2817This set of examples shows that undefined '``select``' (and conditional
2818branch) conditions can go *either way*, but they have to come from one
2819of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2820both known to have a clear low bit, then ``%A`` would have to have a
2821cleared low bit. However, in the ``%C`` example, the optimizer is
2822allowed to assume that the '``undef``' operand could be the same as
2823``%Y``, allowing the whole '``select``' to be eliminated.
2824
2825.. code-block:: llvm
2826
2827 %A = xor undef, undef
2828
2829 %B = undef
2830 %C = xor %B, %B
2831
2832 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002833 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002834 %F = icmp gte %D, 4
2835
2836 Safe:
2837 %A = undef
2838 %B = undef
2839 %C = undef
2840 %D = undef
2841 %E = undef
2842 %F = undef
2843
2844This example points out that two '``undef``' operands are not
2845necessarily the same. This can be surprising to people (and also matches
2846C semantics) where they assume that "``X^X``" is always zero, even if
2847``X`` is undefined. This isn't true for a number of reasons, but the
2848short answer is that an '``undef``' "variable" can arbitrarily change
2849its value over its "live range". This is true because the variable
2850doesn't actually *have a live range*. Instead, the value is logically
2851read from arbitrary registers that happen to be around when needed, so
2852the value is not necessarily consistent over time. In fact, ``%A`` and
2853``%C`` need to have the same semantics or the core LLVM "replace all
2854uses with" concept would not hold.
2855
2856.. code-block:: llvm
2857
2858 %A = fdiv undef, %X
2859 %B = fdiv %X, undef
2860 Safe:
2861 %A = undef
2862 b: unreachable
2863
2864These examples show the crucial difference between an *undefined value*
2865and *undefined behavior*. An undefined value (like '``undef``') is
2866allowed to have an arbitrary bit-pattern. This means that the ``%A``
2867operation can be constant folded to '``undef``', because the '``undef``'
2868could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2869However, in the second example, we can make a more aggressive
2870assumption: because the ``undef`` is allowed to be an arbitrary value,
2871we are allowed to assume that it could be zero. Since a divide by zero
2872has *undefined behavior*, we are allowed to assume that the operation
2873does not execute at all. This allows us to delete the divide and all
2874code after it. Because the undefined operation "can't happen", the
2875optimizer can assume that it occurs in dead code.
2876
2877.. code-block:: llvm
2878
2879 a: store undef -> %X
2880 b: store %X -> undef
2881 Safe:
2882 a: <deleted>
2883 b: unreachable
2884
2885These examples reiterate the ``fdiv`` example: a store *of* an undefined
2886value can be assumed to not have any effect; we can assume that the
2887value is overwritten with bits that happen to match what was already
2888there. However, a store *to* an undefined location could clobber
2889arbitrary memory, therefore, it has undefined behavior.
2890
2891.. _poisonvalues:
2892
2893Poison Values
2894-------------
2895
2896Poison values are similar to :ref:`undef values <undefvalues>`, however
2897they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002898that cannot evoke side effects has nevertheless detected a condition
2899that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002900
2901There is currently no way of representing a poison value in the IR; they
2902only exist when produced by operations such as :ref:`add <i_add>` with
2903the ``nsw`` flag.
2904
2905Poison value behavior is defined in terms of value *dependence*:
2906
2907- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2908- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2909 their dynamic predecessor basic block.
2910- Function arguments depend on the corresponding actual argument values
2911 in the dynamic callers of their functions.
2912- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2913 instructions that dynamically transfer control back to them.
2914- :ref:`Invoke <i_invoke>` instructions depend on the
2915 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2916 call instructions that dynamically transfer control back to them.
2917- Non-volatile loads and stores depend on the most recent stores to all
2918 of the referenced memory addresses, following the order in the IR
2919 (including loads and stores implied by intrinsics such as
2920 :ref:`@llvm.memcpy <int_memcpy>`.)
2921- An instruction with externally visible side effects depends on the
2922 most recent preceding instruction with externally visible side
2923 effects, following the order in the IR. (This includes :ref:`volatile
2924 operations <volatile>`.)
2925- An instruction *control-depends* on a :ref:`terminator
2926 instruction <terminators>` if the terminator instruction has
2927 multiple successors and the instruction is always executed when
2928 control transfers to one of the successors, and may not be executed
2929 when control is transferred to another.
2930- Additionally, an instruction also *control-depends* on a terminator
2931 instruction if the set of instructions it otherwise depends on would
2932 be different if the terminator had transferred control to a different
2933 successor.
2934- Dependence is transitive.
2935
Richard Smith32dbdf62014-07-31 04:25:36 +00002936Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2937with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002938on a poison value has undefined behavior.
2939
2940Here are some examples:
2941
2942.. code-block:: llvm
2943
2944 entry:
2945 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2946 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002947 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002948 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2949
2950 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002951 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002952
2953 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2954
2955 %narrowaddr = bitcast i32* @g to i16*
2956 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002957 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2958 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002959
2960 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2961 br i1 %cmp, label %true, label %end ; Branch to either destination.
2962
2963 true:
2964 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2965 ; it has undefined behavior.
2966 br label %end
2967
2968 end:
2969 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2970 ; Both edges into this PHI are
2971 ; control-dependent on %cmp, so this
2972 ; always results in a poison value.
2973
2974 store volatile i32 0, i32* @g ; This would depend on the store in %true
2975 ; if %cmp is true, or the store in %entry
2976 ; otherwise, so this is undefined behavior.
2977
2978 br i1 %cmp, label %second_true, label %second_end
2979 ; The same branch again, but this time the
2980 ; true block doesn't have side effects.
2981
2982 second_true:
2983 ; No side effects!
2984 ret void
2985
2986 second_end:
2987 store volatile i32 0, i32* @g ; This time, the instruction always depends
2988 ; on the store in %end. Also, it is
2989 ; control-equivalent to %end, so this is
2990 ; well-defined (ignoring earlier undefined
2991 ; behavior in this example).
2992
2993.. _blockaddress:
2994
2995Addresses of Basic Blocks
2996-------------------------
2997
2998``blockaddress(@function, %block)``
2999
3000The '``blockaddress``' constant computes the address of the specified
3001basic block in the specified function, and always has an ``i8*`` type.
3002Taking the address of the entry block is illegal.
3003
3004This value only has defined behavior when used as an operand to the
3005':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3006against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003007undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003008no label is equal to the null pointer. This may be passed around as an
3009opaque pointer sized value as long as the bits are not inspected. This
3010allows ``ptrtoint`` and arithmetic to be performed on these values so
3011long as the original value is reconstituted before the ``indirectbr``
3012instruction.
3013
3014Finally, some targets may provide defined semantics when using the value
3015as the operand to an inline assembly, but that is target specific.
3016
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003017.. _constantexprs:
3018
Sean Silvab084af42012-12-07 10:36:55 +00003019Constant Expressions
3020--------------------
3021
3022Constant expressions are used to allow expressions involving other
3023constants to be used as constants. Constant expressions may be of any
3024:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3025that does not have side effects (e.g. load and call are not supported).
3026The following is the syntax for constant expressions:
3027
3028``trunc (CST to TYPE)``
3029 Truncate a constant to another type. The bit size of CST must be
3030 larger than the bit size of TYPE. Both types must be integers.
3031``zext (CST to TYPE)``
3032 Zero extend a constant to another type. The bit size of CST must be
3033 smaller than the bit size of TYPE. Both types must be integers.
3034``sext (CST to TYPE)``
3035 Sign extend a constant to another type. The bit size of CST must be
3036 smaller than the bit size of TYPE. Both types must be integers.
3037``fptrunc (CST to TYPE)``
3038 Truncate a floating point constant to another floating point type.
3039 The size of CST must be larger than the size of TYPE. Both types
3040 must be floating point.
3041``fpext (CST to TYPE)``
3042 Floating point extend a constant to another type. The size of CST
3043 must be smaller or equal to the size of TYPE. Both types must be
3044 floating point.
3045``fptoui (CST to TYPE)``
3046 Convert a floating point constant to the corresponding unsigned
3047 integer constant. TYPE must be a scalar or vector integer type. CST
3048 must be of scalar or vector floating point type. Both CST and TYPE
3049 must be scalars, or vectors of the same number of elements. If the
3050 value won't fit in the integer type, the results are undefined.
3051``fptosi (CST to TYPE)``
3052 Convert a floating point constant to the corresponding signed
3053 integer constant. TYPE must be a scalar or vector integer type. CST
3054 must be of scalar or vector floating point type. Both CST and TYPE
3055 must be scalars, or vectors of the same number of elements. If the
3056 value won't fit in the integer type, the results are undefined.
3057``uitofp (CST to TYPE)``
3058 Convert an unsigned integer constant to the corresponding floating
3059 point constant. TYPE must be a scalar or vector floating point type.
3060 CST must be of scalar or vector integer type. Both CST and TYPE must
3061 be scalars, or vectors of the same number of elements. If the value
3062 won't fit in the floating point type, the results are undefined.
3063``sitofp (CST to TYPE)``
3064 Convert a signed integer constant to the corresponding floating
3065 point constant. TYPE must be a scalar or vector floating point type.
3066 CST must be of scalar or vector integer type. Both CST and TYPE must
3067 be scalars, or vectors of the same number of elements. If the value
3068 won't fit in the floating point type, the results are undefined.
3069``ptrtoint (CST to TYPE)``
3070 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003071 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003072 pointer type. The ``CST`` value is zero extended, truncated, or
3073 unchanged to make it fit in ``TYPE``.
3074``inttoptr (CST to TYPE)``
3075 Convert an integer constant to a pointer constant. TYPE must be a
3076 pointer type. CST must be of integer type. The CST value is zero
3077 extended, truncated, or unchanged to make it fit in a pointer size.
3078 This one is *really* dangerous!
3079``bitcast (CST to TYPE)``
3080 Convert a constant, CST, to another TYPE. The constraints of the
3081 operands are the same as those for the :ref:`bitcast
3082 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003083``addrspacecast (CST to TYPE)``
3084 Convert a constant pointer or constant vector of pointer, CST, to another
3085 TYPE in a different address space. The constraints of the operands are the
3086 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003087``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003088 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3089 constants. As with the :ref:`getelementptr <i_getelementptr>`
3090 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003091 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003092``select (COND, VAL1, VAL2)``
3093 Perform the :ref:`select operation <i_select>` on constants.
3094``icmp COND (VAL1, VAL2)``
3095 Performs the :ref:`icmp operation <i_icmp>` on constants.
3096``fcmp COND (VAL1, VAL2)``
3097 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3098``extractelement (VAL, IDX)``
3099 Perform the :ref:`extractelement operation <i_extractelement>` on
3100 constants.
3101``insertelement (VAL, ELT, IDX)``
3102 Perform the :ref:`insertelement operation <i_insertelement>` on
3103 constants.
3104``shufflevector (VEC1, VEC2, IDXMASK)``
3105 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3106 constants.
3107``extractvalue (VAL, IDX0, IDX1, ...)``
3108 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3109 constants. The index list is interpreted in a similar manner as
3110 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3111 least one index value must be specified.
3112``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3113 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3114 The index list is interpreted in a similar manner as indices in a
3115 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3116 value must be specified.
3117``OPCODE (LHS, RHS)``
3118 Perform the specified operation of the LHS and RHS constants. OPCODE
3119 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3120 binary <bitwiseops>` operations. The constraints on operands are
3121 the same as those for the corresponding instruction (e.g. no bitwise
3122 operations on floating point values are allowed).
3123
3124Other Values
3125============
3126
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003127.. _inlineasmexprs:
3128
Sean Silvab084af42012-12-07 10:36:55 +00003129Inline Assembler Expressions
3130----------------------------
3131
3132LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003133Inline Assembly <moduleasm>`) through the use of a special value. This value
3134represents the inline assembler as a template string (containing the
3135instructions to emit), a list of operand constraints (stored as a string), a
3136flag that indicates whether or not the inline asm expression has side effects,
3137and a flag indicating whether the function containing the asm needs to align its
3138stack conservatively.
3139
3140The template string supports argument substitution of the operands using "``$``"
3141followed by a number, to indicate substitution of the given register/memory
3142location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3143be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3144operand (See :ref:`inline-asm-modifiers`).
3145
3146A literal "``$``" may be included by using "``$$``" in the template. To include
3147other special characters into the output, the usual "``\XX``" escapes may be
3148used, just as in other strings. Note that after template substitution, the
3149resulting assembly string is parsed by LLVM's integrated assembler unless it is
3150disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3151syntax known to LLVM.
3152
3153LLVM's support for inline asm is modeled closely on the requirements of Clang's
3154GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3155modifier codes listed here are similar or identical to those in GCC's inline asm
3156support. However, to be clear, the syntax of the template and constraint strings
3157described here is *not* the same as the syntax accepted by GCC and Clang, and,
3158while most constraint letters are passed through as-is by Clang, some get
3159translated to other codes when converting from the C source to the LLVM
3160assembly.
3161
3162An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003163
3164.. code-block:: llvm
3165
3166 i32 (i32) asm "bswap $0", "=r,r"
3167
3168Inline assembler expressions may **only** be used as the callee operand
3169of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3170Thus, typically we have:
3171
3172.. code-block:: llvm
3173
3174 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3175
3176Inline asms with side effects not visible in the constraint list must be
3177marked as having side effects. This is done through the use of the
3178'``sideeffect``' keyword, like so:
3179
3180.. code-block:: llvm
3181
3182 call void asm sideeffect "eieio", ""()
3183
3184In some cases inline asms will contain code that will not work unless
3185the stack is aligned in some way, such as calls or SSE instructions on
3186x86, yet will not contain code that does that alignment within the asm.
3187The compiler should make conservative assumptions about what the asm
3188might contain and should generate its usual stack alignment code in the
3189prologue if the '``alignstack``' keyword is present:
3190
3191.. code-block:: llvm
3192
3193 call void asm alignstack "eieio", ""()
3194
3195Inline asms also support using non-standard assembly dialects. The
3196assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3197the inline asm is using the Intel dialect. Currently, ATT and Intel are
3198the only supported dialects. An example is:
3199
3200.. code-block:: llvm
3201
3202 call void asm inteldialect "eieio", ""()
3203
3204If multiple keywords appear the '``sideeffect``' keyword must come
3205first, the '``alignstack``' keyword second and the '``inteldialect``'
3206keyword last.
3207
James Y Knightbc832ed2015-07-08 18:08:36 +00003208Inline Asm Constraint String
3209^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3210
3211The constraint list is a comma-separated string, each element containing one or
3212more constraint codes.
3213
3214For each element in the constraint list an appropriate register or memory
3215operand will be chosen, and it will be made available to assembly template
3216string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3217second, etc.
3218
3219There are three different types of constraints, which are distinguished by a
3220prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3221constraints must always be given in that order: outputs first, then inputs, then
3222clobbers. They cannot be intermingled.
3223
3224There are also three different categories of constraint codes:
3225
3226- Register constraint. This is either a register class, or a fixed physical
3227 register. This kind of constraint will allocate a register, and if necessary,
3228 bitcast the argument or result to the appropriate type.
3229- Memory constraint. This kind of constraint is for use with an instruction
3230 taking a memory operand. Different constraints allow for different addressing
3231 modes used by the target.
3232- Immediate value constraint. This kind of constraint is for an integer or other
3233 immediate value which can be rendered directly into an instruction. The
3234 various target-specific constraints allow the selection of a value in the
3235 proper range for the instruction you wish to use it with.
3236
3237Output constraints
3238""""""""""""""""""
3239
3240Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3241indicates that the assembly will write to this operand, and the operand will
3242then be made available as a return value of the ``asm`` expression. Output
3243constraints do not consume an argument from the call instruction. (Except, see
3244below about indirect outputs).
3245
3246Normally, it is expected that no output locations are written to by the assembly
3247expression until *all* of the inputs have been read. As such, LLVM may assign
3248the same register to an output and an input. If this is not safe (e.g. if the
3249assembly contains two instructions, where the first writes to one output, and
3250the second reads an input and writes to a second output), then the "``&``"
3251modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003252"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003253will not use the same register for any inputs (other than an input tied to this
3254output).
3255
3256Input constraints
3257"""""""""""""""""
3258
3259Input constraints do not have a prefix -- just the constraint codes. Each input
3260constraint will consume one argument from the call instruction. It is not
3261permitted for the asm to write to any input register or memory location (unless
3262that input is tied to an output). Note also that multiple inputs may all be
3263assigned to the same register, if LLVM can determine that they necessarily all
3264contain the same value.
3265
3266Instead of providing a Constraint Code, input constraints may also "tie"
3267themselves to an output constraint, by providing an integer as the constraint
3268string. Tied inputs still consume an argument from the call instruction, and
3269take up a position in the asm template numbering as is usual -- they will simply
3270be constrained to always use the same register as the output they've been tied
3271to. For example, a constraint string of "``=r,0``" says to assign a register for
3272output, and use that register as an input as well (it being the 0'th
3273constraint).
3274
3275It is permitted to tie an input to an "early-clobber" output. In that case, no
3276*other* input may share the same register as the input tied to the early-clobber
3277(even when the other input has the same value).
3278
3279You may only tie an input to an output which has a register constraint, not a
3280memory constraint. Only a single input may be tied to an output.
3281
3282There is also an "interesting" feature which deserves a bit of explanation: if a
3283register class constraint allocates a register which is too small for the value
3284type operand provided as input, the input value will be split into multiple
3285registers, and all of them passed to the inline asm.
3286
3287However, this feature is often not as useful as you might think.
3288
3289Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3290architectures that have instructions which operate on multiple consecutive
3291instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3292SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3293hardware then loads into both the named register, and the next register. This
3294feature of inline asm would not be useful to support that.)
3295
3296A few of the targets provide a template string modifier allowing explicit access
3297to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3298``D``). On such an architecture, you can actually access the second allocated
3299register (yet, still, not any subsequent ones). But, in that case, you're still
3300probably better off simply splitting the value into two separate operands, for
3301clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3302despite existing only for use with this feature, is not really a good idea to
3303use)
3304
3305Indirect inputs and outputs
3306"""""""""""""""""""""""""""
3307
3308Indirect output or input constraints can be specified by the "``*``" modifier
3309(which goes after the "``=``" in case of an output). This indicates that the asm
3310will write to or read from the contents of an *address* provided as an input
3311argument. (Note that in this way, indirect outputs act more like an *input* than
3312an output: just like an input, they consume an argument of the call expression,
3313rather than producing a return value. An indirect output constraint is an
3314"output" only in that the asm is expected to write to the contents of the input
3315memory location, instead of just read from it).
3316
3317This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3318address of a variable as a value.
3319
3320It is also possible to use an indirect *register* constraint, but only on output
3321(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3322value normally, and then, separately emit a store to the address provided as
3323input, after the provided inline asm. (It's not clear what value this
3324functionality provides, compared to writing the store explicitly after the asm
3325statement, and it can only produce worse code, since it bypasses many
3326optimization passes. I would recommend not using it.)
3327
3328
3329Clobber constraints
3330"""""""""""""""""""
3331
3332A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3333consume an input operand, nor generate an output. Clobbers cannot use any of the
3334general constraint code letters -- they may use only explicit register
3335constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3336"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3337memory locations -- not only the memory pointed to by a declared indirect
3338output.
3339
3340
3341Constraint Codes
3342""""""""""""""""
3343After a potential prefix comes constraint code, or codes.
3344
3345A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3346followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3347(e.g. "``{eax}``").
3348
3349The one and two letter constraint codes are typically chosen to be the same as
3350GCC's constraint codes.
3351
3352A single constraint may include one or more than constraint code in it, leaving
3353it up to LLVM to choose which one to use. This is included mainly for
3354compatibility with the translation of GCC inline asm coming from clang.
3355
3356There are two ways to specify alternatives, and either or both may be used in an
3357inline asm constraint list:
3358
33591) Append the codes to each other, making a constraint code set. E.g. "``im``"
3360 or "``{eax}m``". This means "choose any of the options in the set". The
3361 choice of constraint is made independently for each constraint in the
3362 constraint list.
3363
33642) Use "``|``" between constraint code sets, creating alternatives. Every
3365 constraint in the constraint list must have the same number of alternative
3366 sets. With this syntax, the same alternative in *all* of the items in the
3367 constraint list will be chosen together.
3368
3369Putting those together, you might have a two operand constraint string like
3370``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3371operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3372may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3373
3374However, the use of either of the alternatives features is *NOT* recommended, as
3375LLVM is not able to make an intelligent choice about which one to use. (At the
3376point it currently needs to choose, not enough information is available to do so
3377in a smart way.) Thus, it simply tries to make a choice that's most likely to
3378compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3379always choose to use memory, not registers). And, if given multiple registers,
3380or multiple register classes, it will simply choose the first one. (In fact, it
3381doesn't currently even ensure explicitly specified physical registers are
3382unique, so specifying multiple physical registers as alternatives, like
3383``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3384intended.)
3385
3386Supported Constraint Code List
3387""""""""""""""""""""""""""""""
3388
3389The constraint codes are, in general, expected to behave the same way they do in
3390GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3391inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3392and GCC likely indicates a bug in LLVM.
3393
3394Some constraint codes are typically supported by all targets:
3395
3396- ``r``: A register in the target's general purpose register class.
3397- ``m``: A memory address operand. It is target-specific what addressing modes
3398 are supported, typical examples are register, or register + register offset,
3399 or register + immediate offset (of some target-specific size).
3400- ``i``: An integer constant (of target-specific width). Allows either a simple
3401 immediate, or a relocatable value.
3402- ``n``: An integer constant -- *not* including relocatable values.
3403- ``s``: An integer constant, but allowing *only* relocatable values.
3404- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3405 useful to pass a label for an asm branch or call.
3406
3407 .. FIXME: but that surely isn't actually okay to jump out of an asm
3408 block without telling llvm about the control transfer???)
3409
3410- ``{register-name}``: Requires exactly the named physical register.
3411
3412Other constraints are target-specific:
3413
3414AArch64:
3415
3416- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3417- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3418 i.e. 0 to 4095 with optional shift by 12.
3419- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3420 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3421- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3422 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3423- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3424 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3425- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3426 32-bit register. This is a superset of ``K``: in addition to the bitmask
3427 immediate, also allows immediate integers which can be loaded with a single
3428 ``MOVZ`` or ``MOVL`` instruction.
3429- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3430 64-bit register. This is a superset of ``L``.
3431- ``Q``: Memory address operand must be in a single register (no
3432 offsets). (However, LLVM currently does this for the ``m`` constraint as
3433 well.)
3434- ``r``: A 32 or 64-bit integer register (W* or X*).
3435- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3436- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3437
3438AMDGPU:
3439
3440- ``r``: A 32 or 64-bit integer register.
3441- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3442- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3443
3444
3445All ARM modes:
3446
3447- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3448 operand. Treated the same as operand ``m``, at the moment.
3449
3450ARM and ARM's Thumb2 mode:
3451
3452- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3453- ``I``: An immediate integer valid for a data-processing instruction.
3454- ``J``: An immediate integer between -4095 and 4095.
3455- ``K``: An immediate integer whose bitwise inverse is valid for a
3456 data-processing instruction. (Can be used with template modifier "``B``" to
3457 print the inverted value).
3458- ``L``: An immediate integer whose negation is valid for a data-processing
3459 instruction. (Can be used with template modifier "``n``" to print the negated
3460 value).
3461- ``M``: A power of two or a integer between 0 and 32.
3462- ``N``: Invalid immediate constraint.
3463- ``O``: Invalid immediate constraint.
3464- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3465- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3466 as ``r``.
3467- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3468 invalid.
3469- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3470 ``d0-d31``, or ``q0-q15``.
3471- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3472 ``d0-d7``, or ``q0-q3``.
3473- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3474 ``s0-s31``.
3475
3476ARM's Thumb1 mode:
3477
3478- ``I``: An immediate integer between 0 and 255.
3479- ``J``: An immediate integer between -255 and -1.
3480- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3481 some amount.
3482- ``L``: An immediate integer between -7 and 7.
3483- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3484- ``N``: An immediate integer between 0 and 31.
3485- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3486- ``r``: A low 32-bit GPR register (``r0-r7``).
3487- ``l``: A low 32-bit GPR register (``r0-r7``).
3488- ``h``: A high GPR register (``r0-r7``).
3489- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3490 ``d0-d31``, or ``q0-q15``.
3491- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3492 ``d0-d7``, or ``q0-q3``.
3493- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3494 ``s0-s31``.
3495
3496
3497Hexagon:
3498
3499- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3500 at the moment.
3501- ``r``: A 32 or 64-bit register.
3502
3503MSP430:
3504
3505- ``r``: An 8 or 16-bit register.
3506
3507MIPS:
3508
3509- ``I``: An immediate signed 16-bit integer.
3510- ``J``: An immediate integer zero.
3511- ``K``: An immediate unsigned 16-bit integer.
3512- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3513- ``N``: An immediate integer between -65535 and -1.
3514- ``O``: An immediate signed 15-bit integer.
3515- ``P``: An immediate integer between 1 and 65535.
3516- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3517 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3518- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3519 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3520 ``m``.
3521- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3522 ``sc`` instruction on the given subtarget (details vary).
3523- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3524- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003525 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3526 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003527- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3528 ``25``).
3529- ``l``: The ``lo`` register, 32 or 64-bit.
3530- ``x``: Invalid.
3531
3532NVPTX:
3533
3534- ``b``: A 1-bit integer register.
3535- ``c`` or ``h``: A 16-bit integer register.
3536- ``r``: A 32-bit integer register.
3537- ``l`` or ``N``: A 64-bit integer register.
3538- ``f``: A 32-bit float register.
3539- ``d``: A 64-bit float register.
3540
3541
3542PowerPC:
3543
3544- ``I``: An immediate signed 16-bit integer.
3545- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3546- ``K``: An immediate unsigned 16-bit integer.
3547- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3548- ``M``: An immediate integer greater than 31.
3549- ``N``: An immediate integer that is an exact power of 2.
3550- ``O``: The immediate integer constant 0.
3551- ``P``: An immediate integer constant whose negation is a signed 16-bit
3552 constant.
3553- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3554 treated the same as ``m``.
3555- ``r``: A 32 or 64-bit integer register.
3556- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3557 ``R1-R31``).
3558- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3559 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3560- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3561 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3562 altivec vector register (``V0-V31``).
3563
3564 .. FIXME: is this a bug that v accepts QPX registers? I think this
3565 is supposed to only use the altivec vector registers?
3566
3567- ``y``: Condition register (``CR0-CR7``).
3568- ``wc``: An individual CR bit in a CR register.
3569- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3570 register set (overlapping both the floating-point and vector register files).
3571- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3572 set.
3573
3574Sparc:
3575
3576- ``I``: An immediate 13-bit signed integer.
3577- ``r``: A 32-bit integer register.
3578
3579SystemZ:
3580
3581- ``I``: An immediate unsigned 8-bit integer.
3582- ``J``: An immediate unsigned 12-bit integer.
3583- ``K``: An immediate signed 16-bit integer.
3584- ``L``: An immediate signed 20-bit integer.
3585- ``M``: An immediate integer 0x7fffffff.
3586- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3587 ``m``, at the moment.
3588- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3589- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3590 address context evaluates as zero).
3591- ``h``: A 32-bit value in the high part of a 64bit data register
3592 (LLVM-specific)
3593- ``f``: A 32, 64, or 128-bit floating point register.
3594
3595X86:
3596
3597- ``I``: An immediate integer between 0 and 31.
3598- ``J``: An immediate integer between 0 and 64.
3599- ``K``: An immediate signed 8-bit integer.
3600- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3601 0xffffffff.
3602- ``M``: An immediate integer between 0 and 3.
3603- ``N``: An immediate unsigned 8-bit integer.
3604- ``O``: An immediate integer between 0 and 127.
3605- ``e``: An immediate 32-bit signed integer.
3606- ``Z``: An immediate 32-bit unsigned integer.
3607- ``o``, ``v``: Treated the same as ``m``, at the moment.
3608- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3609 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3610 registers, and on X86-64, it is all of the integer registers.
3611- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3612 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3613- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3614- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3615 existed since i386, and can be accessed without the REX prefix.
3616- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3617- ``y``: A 64-bit MMX register, if MMX is enabled.
3618- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3619 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3620 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3621 512-bit vector operand in an AVX512 register, Otherwise, an error.
3622- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3623- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3624 32-bit mode, a 64-bit integer operand will get split into two registers). It
3625 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3626 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3627 you're better off splitting it yourself, before passing it to the asm
3628 statement.
3629
3630XCore:
3631
3632- ``r``: A 32-bit integer register.
3633
3634
3635.. _inline-asm-modifiers:
3636
3637Asm template argument modifiers
3638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3639
3640In the asm template string, modifiers can be used on the operand reference, like
3641"``${0:n}``".
3642
3643The modifiers are, in general, expected to behave the same way they do in
3644GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3645inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3646and GCC likely indicates a bug in LLVM.
3647
3648Target-independent:
3649
Sean Silvaa1190322015-08-06 22:56:48 +00003650- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003651 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3652- ``n``: Negate and print immediate integer constant unadorned, without the
3653 target-specific immediate punctuation (e.g. no ``$`` prefix).
3654- ``l``: Print as an unadorned label, without the target-specific label
3655 punctuation (e.g. no ``$`` prefix).
3656
3657AArch64:
3658
3659- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3660 instead of ``x30``, print ``w30``.
3661- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3662- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3663 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3664 ``v*``.
3665
3666AMDGPU:
3667
3668- ``r``: No effect.
3669
3670ARM:
3671
3672- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3673 register).
3674- ``P``: No effect.
3675- ``q``: No effect.
3676- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3677 as ``d4[1]`` instead of ``s9``)
3678- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3679 prefix.
3680- ``L``: Print the low 16-bits of an immediate integer constant.
3681- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3682 register operands subsequent to the specified one (!), so use carefully.
3683- ``Q``: Print the low-order register of a register-pair, or the low-order
3684 register of a two-register operand.
3685- ``R``: Print the high-order register of a register-pair, or the high-order
3686 register of a two-register operand.
3687- ``H``: Print the second register of a register-pair. (On a big-endian system,
3688 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3689 to ``R``.)
3690
3691 .. FIXME: H doesn't currently support printing the second register
3692 of a two-register operand.
3693
3694- ``e``: Print the low doubleword register of a NEON quad register.
3695- ``f``: Print the high doubleword register of a NEON quad register.
3696- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3697 adornment.
3698
3699Hexagon:
3700
3701- ``L``: Print the second register of a two-register operand. Requires that it
3702 has been allocated consecutively to the first.
3703
3704 .. FIXME: why is it restricted to consecutive ones? And there's
3705 nothing that ensures that happens, is there?
3706
3707- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3708 nothing. Used to print 'addi' vs 'add' instructions.
3709
3710MSP430:
3711
3712No additional modifiers.
3713
3714MIPS:
3715
3716- ``X``: Print an immediate integer as hexadecimal
3717- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3718- ``d``: Print an immediate integer as decimal.
3719- ``m``: Subtract one and print an immediate integer as decimal.
3720- ``z``: Print $0 if an immediate zero, otherwise print normally.
3721- ``L``: Print the low-order register of a two-register operand, or prints the
3722 address of the low-order word of a double-word memory operand.
3723
3724 .. FIXME: L seems to be missing memory operand support.
3725
3726- ``M``: Print the high-order register of a two-register operand, or prints the
3727 address of the high-order word of a double-word memory operand.
3728
3729 .. FIXME: M seems to be missing memory operand support.
3730
3731- ``D``: Print the second register of a two-register operand, or prints the
3732 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3733 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3734 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003735- ``w``: No effect. Provided for compatibility with GCC which requires this
3736 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3737 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003738
3739NVPTX:
3740
3741- ``r``: No effect.
3742
3743PowerPC:
3744
3745- ``L``: Print the second register of a two-register operand. Requires that it
3746 has been allocated consecutively to the first.
3747
3748 .. FIXME: why is it restricted to consecutive ones? And there's
3749 nothing that ensures that happens, is there?
3750
3751- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3752 nothing. Used to print 'addi' vs 'add' instructions.
3753- ``y``: For a memory operand, prints formatter for a two-register X-form
3754 instruction. (Currently always prints ``r0,OPERAND``).
3755- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3756 otherwise. (NOTE: LLVM does not support update form, so this will currently
3757 always print nothing)
3758- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3759 not support indexed form, so this will currently always print nothing)
3760
3761Sparc:
3762
3763- ``r``: No effect.
3764
3765SystemZ:
3766
3767SystemZ implements only ``n``, and does *not* support any of the other
3768target-independent modifiers.
3769
3770X86:
3771
3772- ``c``: Print an unadorned integer or symbol name. (The latter is
3773 target-specific behavior for this typically target-independent modifier).
3774- ``A``: Print a register name with a '``*``' before it.
3775- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3776 operand.
3777- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3778 memory operand.
3779- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3780 operand.
3781- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3782 operand.
3783- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3784 available, otherwise the 32-bit register name; do nothing on a memory operand.
3785- ``n``: Negate and print an unadorned integer, or, for operands other than an
3786 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3787 the operand. (The behavior for relocatable symbol expressions is a
3788 target-specific behavior for this typically target-independent modifier)
3789- ``H``: Print a memory reference with additional offset +8.
3790- ``P``: Print a memory reference or operand for use as the argument of a call
3791 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3792
3793XCore:
3794
3795No additional modifiers.
3796
3797
Sean Silvab084af42012-12-07 10:36:55 +00003798Inline Asm Metadata
3799^^^^^^^^^^^^^^^^^^^
3800
3801The call instructions that wrap inline asm nodes may have a
3802"``!srcloc``" MDNode attached to it that contains a list of constant
3803integers. If present, the code generator will use the integer as the
3804location cookie value when report errors through the ``LLVMContext``
3805error reporting mechanisms. This allows a front-end to correlate backend
3806errors that occur with inline asm back to the source code that produced
3807it. For example:
3808
3809.. code-block:: llvm
3810
3811 call void asm sideeffect "something bad", ""(), !srcloc !42
3812 ...
3813 !42 = !{ i32 1234567 }
3814
3815It is up to the front-end to make sense of the magic numbers it places
3816in the IR. If the MDNode contains multiple constants, the code generator
3817will use the one that corresponds to the line of the asm that the error
3818occurs on.
3819
3820.. _metadata:
3821
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003822Metadata
3823========
Sean Silvab084af42012-12-07 10:36:55 +00003824
3825LLVM IR allows metadata to be attached to instructions in the program
3826that can convey extra information about the code to the optimizers and
3827code generator. One example application of metadata is source-level
3828debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003829
Sean Silvaa1190322015-08-06 22:56:48 +00003830Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003831``call`` instruction, it uses the ``metadata`` type.
3832
3833All metadata are identified in syntax by a exclamation point ('``!``').
3834
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003835.. _metadata-string:
3836
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003837Metadata Nodes and Metadata Strings
3838-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003839
3840A metadata string is a string surrounded by double quotes. It can
3841contain any character by escaping non-printable characters with
3842"``\xx``" where "``xx``" is the two digit hex code. For example:
3843"``!"test\00"``".
3844
3845Metadata nodes are represented with notation similar to structure
3846constants (a comma separated list of elements, surrounded by braces and
3847preceded by an exclamation point). Metadata nodes can have any values as
3848their operand. For example:
3849
3850.. code-block:: llvm
3851
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003852 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003853
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003854Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3855
3856.. code-block:: llvm
3857
3858 !0 = distinct !{!"test\00", i32 10}
3859
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003860``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003861content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003862when metadata operands change.
3863
Sean Silvab084af42012-12-07 10:36:55 +00003864A :ref:`named metadata <namedmetadatastructure>` is a collection of
3865metadata nodes, which can be looked up in the module symbol table. For
3866example:
3867
3868.. code-block:: llvm
3869
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003870 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003871
3872Metadata can be used as function arguments. Here ``llvm.dbg.value``
3873function is using two metadata arguments:
3874
3875.. code-block:: llvm
3876
3877 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3878
Peter Collingbourne50108682015-11-06 02:41:02 +00003879Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3880to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003881
3882.. code-block:: llvm
3883
3884 %indvar.next = add i64 %indvar, 1, !dbg !21
3885
Peter Collingbourne50108682015-11-06 02:41:02 +00003886Metadata can also be attached to a function definition. Here metadata ``!22``
3887is attached to the ``foo`` function using the ``!dbg`` identifier:
3888
3889.. code-block:: llvm
3890
3891 define void @foo() !dbg !22 {
3892 ret void
3893 }
3894
Sean Silvab084af42012-12-07 10:36:55 +00003895More information about specific metadata nodes recognized by the
3896optimizers and code generator is found below.
3897
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003898.. _specialized-metadata:
3899
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003900Specialized Metadata Nodes
3901^^^^^^^^^^^^^^^^^^^^^^^^^^
3902
3903Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003904to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003905order.
3906
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003907These aren't inherently debug info centric, but currently all the specialized
3908metadata nodes are related to debug info.
3909
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003910.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003911
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003912DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003913"""""""""""""
3914
Sean Silvaa1190322015-08-06 22:56:48 +00003915``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003916``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3917fields are tuples containing the debug info to be emitted along with the compile
3918unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003919references to them from instructions).
3920
3921.. code-block:: llvm
3922
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003923 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003924 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003925 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003926 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003927 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003928
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003929Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003930specific compilation unit. File descriptors are defined using this scope.
3931These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003932keep track of subprograms, global variables, type information, and imported
3933entities (declarations and namespaces).
3934
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003935.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003936
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003937DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003938""""""
3939
Sean Silvaa1190322015-08-06 22:56:48 +00003940``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003941
3942.. code-block:: llvm
3943
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003944 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003945
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003946Files are sometimes used in ``scope:`` fields, and are the only valid target
3947for ``file:`` fields.
3948
Michael Kuperstein605308a2015-05-14 10:58:59 +00003949.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003950
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003951DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003952"""""""""""
3953
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003954``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003955``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003956
3957.. code-block:: llvm
3958
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003959 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003960 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003961 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003962
Sean Silvaa1190322015-08-06 22:56:48 +00003963The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003964following:
3965
3966.. code-block:: llvm
3967
3968 DW_ATE_address = 1
3969 DW_ATE_boolean = 2
3970 DW_ATE_float = 4
3971 DW_ATE_signed = 5
3972 DW_ATE_signed_char = 6
3973 DW_ATE_unsigned = 7
3974 DW_ATE_unsigned_char = 8
3975
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003976.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003977
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003978DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003979""""""""""""""""
3980
Sean Silvaa1190322015-08-06 22:56:48 +00003981``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003982refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003983types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003984represents a function with no return value (such as ``void foo() {}`` in C++).
3985
3986.. code-block:: llvm
3987
3988 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3989 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003990 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003991
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003992.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003993
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003994DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003995"""""""""""""
3996
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003997``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003998qualified types.
3999
4000.. code-block:: llvm
4001
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004002 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004003 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004004 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004005 align: 32)
4006
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004007The following ``tag:`` values are valid:
4008
4009.. code-block:: llvm
4010
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004011 DW_TAG_member = 13
4012 DW_TAG_pointer_type = 15
4013 DW_TAG_reference_type = 16
4014 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004015 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004016 DW_TAG_ptr_to_member_type = 31
4017 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004018 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004019 DW_TAG_volatile_type = 53
4020 DW_TAG_restrict_type = 55
4021
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004022.. _DIDerivedTypeMember:
4023
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004024``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004025<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004026``offset:`` is the member's bit offset. If the composite type has an ODR
4027``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4028uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004029
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004030``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4031field of :ref:`composite types <DICompositeType>` to describe parents and
4032friends.
4033
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004034``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4035
4036``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
4037``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
4038``baseType:``.
4039
4040Note that the ``void *`` type is expressed as a type derived from NULL.
4041
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004042.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004043
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004044DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004045"""""""""""""""
4046
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004047``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004048structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004049
4050If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004051identifier used for type merging between modules. When specified,
4052:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4053derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4054``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004055
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004056For a given ``identifier:``, there should only be a single composite type that
4057does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4058together will unique such definitions at parse time via the ``identifier:``
4059field, even if the nodes are ``distinct``.
4060
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004061.. code-block:: llvm
4062
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004063 !0 = !DIEnumerator(name: "SixKind", value: 7)
4064 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4065 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4066 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004067 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4068 elements: !{!0, !1, !2})
4069
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004070The following ``tag:`` values are valid:
4071
4072.. code-block:: llvm
4073
4074 DW_TAG_array_type = 1
4075 DW_TAG_class_type = 2
4076 DW_TAG_enumeration_type = 4
4077 DW_TAG_structure_type = 19
4078 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004079
4080For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004081descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004082level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004083array type is a native packed vector.
4084
4085For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004086descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004087value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004088``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004089
4090For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4091``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004092<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4093``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4094``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004095
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004096.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004097
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004098DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004099""""""""""
4100
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004101``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004102:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004103
4104.. code-block:: llvm
4105
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004106 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4107 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4108 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004109
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004110.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004111
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004112DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004113""""""""""""
4114
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004115``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4116variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004117
4118.. code-block:: llvm
4119
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004120 !0 = !DIEnumerator(name: "SixKind", value: 7)
4121 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4122 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004123
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004124DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004125"""""""""""""""""""""""
4126
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004127``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004128language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004129:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004130
4131.. code-block:: llvm
4132
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004133 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004134
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004135DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004136""""""""""""""""""""""""
4137
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004138``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004139language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004140but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004141``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004142:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004143
4144.. code-block:: llvm
4145
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004146 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004147
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004148DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004149"""""""""""
4150
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004151``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004152
4153.. code-block:: llvm
4154
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004155 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004156
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004157DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004158""""""""""""""""
4159
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004160``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004161
4162.. code-block:: llvm
4163
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004164 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004165 file: !2, line: 7, type: !3, isLocal: true,
4166 isDefinition: false, variable: i32* @foo,
4167 declaration: !4)
4168
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004169All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004170:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004171
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004172.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004173
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004174DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004175""""""""""""
4176
Peter Collingbourne50108682015-11-06 02:41:02 +00004177``DISubprogram`` nodes represent functions from the source language. A
4178``DISubprogram`` may be attached to a function definition using ``!dbg``
4179metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4180that must be retained, even if their IR counterparts are optimized out of
4181the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004182
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004183.. _DISubprogramDeclaration:
4184
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004185When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004186tree as opposed to a definition of a function. If the scope is a composite
4187type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4188then the subprogram declaration is uniqued based only on its ``linkageName:``
4189and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004190
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004191.. code-block:: llvm
4192
Peter Collingbourne50108682015-11-06 02:41:02 +00004193 define void @_Z3foov() !dbg !0 {
4194 ...
4195 }
4196
4197 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4198 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004199 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004200 containingType: !4,
4201 virtuality: DW_VIRTUALITY_pure_virtual,
4202 virtualIndex: 10, flags: DIFlagPrototyped,
4203 isOptimized: true, templateParams: !5,
4204 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004205
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004206.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004207
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004208DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004209""""""""""""""
4210
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004211``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004212<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004213two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004214fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004215
4216.. code-block:: llvm
4217
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004218 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004219
4220Usually lexical blocks are ``distinct`` to prevent node merging based on
4221operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004222
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004223.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004224
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004225DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004226""""""""""""""""""
4227
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004228``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004229:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004230indicate textual inclusion, or the ``discriminator:`` field can be used to
4231discriminate between control flow within a single block in the source language.
4232
4233.. code-block:: llvm
4234
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004235 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4236 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4237 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004238
Michael Kuperstein605308a2015-05-14 10:58:59 +00004239.. _DILocation:
4240
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004241DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004242""""""""""
4243
Sean Silvaa1190322015-08-06 22:56:48 +00004244``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004245mandatory, and points at an :ref:`DILexicalBlockFile`, an
4246:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004247
4248.. code-block:: llvm
4249
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004250 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004251
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004252.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004253
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004254DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004255"""""""""""""""
4256
Sean Silvaa1190322015-08-06 22:56:48 +00004257``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004258the ``arg:`` field is set to non-zero, then this variable is a subprogram
4259parameter, and it will be included in the ``variables:`` field of its
4260:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004261
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004262.. code-block:: llvm
4263
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004264 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4265 type: !3, flags: DIFlagArtificial)
4266 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4267 type: !3)
4268 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004270DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004271""""""""""""
4272
Sean Silvaa1190322015-08-06 22:56:48 +00004273``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004274:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4275describe how the referenced LLVM variable relates to the source language
4276variable.
4277
4278The current supported vocabulary is limited:
4279
4280- ``DW_OP_deref`` dereferences the working expression.
4281- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4282- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4283 here, respectively) of the variable piece from the working expression.
4284
4285.. code-block:: llvm
4286
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004287 !0 = !DIExpression(DW_OP_deref)
4288 !1 = !DIExpression(DW_OP_plus, 3)
4289 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4290 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004291
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004292DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004293""""""""""""""
4294
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004295``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004296
4297.. code-block:: llvm
4298
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004299 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004300 getter: "getFoo", attributes: 7, type: !2)
4301
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004302DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004303""""""""""""""""
4304
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004305``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004306compile unit.
4307
4308.. code-block:: llvm
4309
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004310 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004311 entity: !1, line: 7)
4312
Amjad Abouda9bcf162015-12-10 12:56:35 +00004313DIMacro
4314"""""""
4315
4316``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4317The ``name:`` field is the macro identifier, followed by macro parameters when
4318definining a function-like macro, and the ``value`` field is the token-string
4319used to expand the macro identifier.
4320
4321.. code-block:: llvm
4322
4323 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4324 value: "((x) + 1)")
4325 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4326
4327DIMacroFile
4328"""""""""""
4329
4330``DIMacroFile`` nodes represent inclusion of source files.
4331The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4332appear in the included source file.
4333
4334.. code-block:: llvm
4335
4336 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4337 nodes: !3)
4338
Sean Silvab084af42012-12-07 10:36:55 +00004339'``tbaa``' Metadata
4340^^^^^^^^^^^^^^^^^^^
4341
4342In LLVM IR, memory does not have types, so LLVM's own type system is not
4343suitable for doing TBAA. Instead, metadata is added to the IR to
4344describe a type system of a higher level language. This can be used to
4345implement typical C/C++ TBAA, but it can also be used to implement
4346custom alias analysis behavior for other languages.
4347
4348The current metadata format is very simple. TBAA metadata nodes have up
4349to three fields, e.g.:
4350
4351.. code-block:: llvm
4352
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004353 !0 = !{ !"an example type tree" }
4354 !1 = !{ !"int", !0 }
4355 !2 = !{ !"float", !0 }
4356 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004357
4358The first field is an identity field. It can be any value, usually a
4359metadata string, which uniquely identifies the type. The most important
4360name in the tree is the name of the root node. Two trees with different
4361root node names are entirely disjoint, even if they have leaves with
4362common names.
4363
4364The second field identifies the type's parent node in the tree, or is
4365null or omitted for a root node. A type is considered to alias all of
4366its descendants and all of its ancestors in the tree. Also, a type is
4367considered to alias all types in other trees, so that bitcode produced
4368from multiple front-ends is handled conservatively.
4369
4370If the third field is present, it's an integer which if equal to 1
4371indicates that the type is "constant" (meaning
4372``pointsToConstantMemory`` should return true; see `other useful
4373AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4374
4375'``tbaa.struct``' Metadata
4376^^^^^^^^^^^^^^^^^^^^^^^^^^
4377
4378The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4379aggregate assignment operations in C and similar languages, however it
4380is defined to copy a contiguous region of memory, which is more than
4381strictly necessary for aggregate types which contain holes due to
4382padding. Also, it doesn't contain any TBAA information about the fields
4383of the aggregate.
4384
4385``!tbaa.struct`` metadata can describe which memory subregions in a
4386memcpy are padding and what the TBAA tags of the struct are.
4387
4388The current metadata format is very simple. ``!tbaa.struct`` metadata
4389nodes are a list of operands which are in conceptual groups of three.
4390For each group of three, the first operand gives the byte offset of a
4391field in bytes, the second gives its size in bytes, and the third gives
4392its tbaa tag. e.g.:
4393
4394.. code-block:: llvm
4395
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004396 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004397
4398This describes a struct with two fields. The first is at offset 0 bytes
4399with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4400and has size 4 bytes and has tbaa tag !2.
4401
4402Note that the fields need not be contiguous. In this example, there is a
44034 byte gap between the two fields. This gap represents padding which
4404does not carry useful data and need not be preserved.
4405
Hal Finkel94146652014-07-24 14:25:39 +00004406'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004408
4409``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4410noalias memory-access sets. This means that some collection of memory access
4411instructions (loads, stores, memory-accessing calls, etc.) that carry
4412``noalias`` metadata can specifically be specified not to alias with some other
4413collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004414Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004415a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004416of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004417subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004418instruction's ``noalias`` list, then the two memory accesses are assumed not to
4419alias.
Hal Finkel94146652014-07-24 14:25:39 +00004420
Hal Finkel029cde62014-07-25 15:50:02 +00004421The metadata identifying each domain is itself a list containing one or two
4422entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004423string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004424self-reference can be used to create globally unique domain names. A
4425descriptive string may optionally be provided as a second list entry.
4426
4427The metadata identifying each scope is also itself a list containing two or
4428three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004429is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004430self-reference can be used to create globally unique scope names. A metadata
4431reference to the scope's domain is the second entry. A descriptive string may
4432optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004433
4434For example,
4435
4436.. code-block:: llvm
4437
Hal Finkel029cde62014-07-25 15:50:02 +00004438 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004439 !0 = !{!0}
4440 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004441
Hal Finkel029cde62014-07-25 15:50:02 +00004442 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004443 !2 = !{!2, !0}
4444 !3 = !{!3, !0}
4445 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004446
Hal Finkel029cde62014-07-25 15:50:02 +00004447 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004448 !5 = !{!4} ; A list containing only scope !4
4449 !6 = !{!4, !3, !2}
4450 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004451
4452 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004453 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004454 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004455
Hal Finkel029cde62014-07-25 15:50:02 +00004456 ; These two instructions also don't alias (for domain !1, the set of scopes
4457 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004458 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004459 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004460
Adam Nemet0a8416f2015-05-11 08:30:28 +00004461 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004462 ; the !noalias list is not a superset of, or equal to, the scopes in the
4463 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004464 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004465 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004466
Sean Silvab084af42012-12-07 10:36:55 +00004467'``fpmath``' Metadata
4468^^^^^^^^^^^^^^^^^^^^^
4469
4470``fpmath`` metadata may be attached to any instruction of floating point
4471type. It can be used to express the maximum acceptable error in the
4472result of that instruction, in ULPs, thus potentially allowing the
4473compiler to use a more efficient but less accurate method of computing
4474it. ULP is defined as follows:
4475
4476 If ``x`` is a real number that lies between two finite consecutive
4477 floating-point numbers ``a`` and ``b``, without being equal to one
4478 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4479 distance between the two non-equal finite floating-point numbers
4480 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4481
4482The metadata node shall consist of a single positive floating point
4483number representing the maximum relative error, for example:
4484
4485.. code-block:: llvm
4486
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004487 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004488
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004489.. _range-metadata:
4490
Sean Silvab084af42012-12-07 10:36:55 +00004491'``range``' Metadata
4492^^^^^^^^^^^^^^^^^^^^
4493
Jingyue Wu37fcb592014-06-19 16:50:16 +00004494``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4495integer types. It expresses the possible ranges the loaded value or the value
4496returned by the called function at this call site is in. The ranges are
4497represented with a flattened list of integers. The loaded value or the value
4498returned is known to be in the union of the ranges defined by each consecutive
4499pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004500
4501- The type must match the type loaded by the instruction.
4502- The pair ``a,b`` represents the range ``[a,b)``.
4503- Both ``a`` and ``b`` are constants.
4504- The range is allowed to wrap.
4505- The range should not represent the full or empty set. That is,
4506 ``a!=b``.
4507
4508In addition, the pairs must be in signed order of the lower bound and
4509they must be non-contiguous.
4510
4511Examples:
4512
4513.. code-block:: llvm
4514
David Blaikiec7aabbb2015-03-04 22:06:14 +00004515 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4516 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004517 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4518 %d = invoke i8 @bar() to label %cont
4519 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004520 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004521 !0 = !{ i8 0, i8 2 }
4522 !1 = !{ i8 255, i8 2 }
4523 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4524 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004525
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004526'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004527^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004528
4529``unpredictable`` metadata may be attached to any branch or switch
4530instruction. It can be used to express the unpredictability of control
4531flow. Similar to the llvm.expect intrinsic, it may be used to alter
4532optimizations related to compare and branch instructions. The metadata
4533is treated as a boolean value; if it exists, it signals that the branch
4534or switch that it is attached to is completely unpredictable.
4535
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004536'``llvm.loop``'
4537^^^^^^^^^^^^^^^
4538
4539It is sometimes useful to attach information to loop constructs. Currently,
4540loop metadata is implemented as metadata attached to the branch instruction
4541in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004542guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004543specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004544
4545The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004546itself to avoid merging it with any other identifier metadata, e.g.,
4547during module linkage or function inlining. That is, each loop should refer
4548to their own identification metadata even if they reside in separate functions.
4549The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004550constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004551
4552.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004553
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004554 !0 = !{!0}
4555 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004556
Mark Heffernan893752a2014-07-18 19:24:51 +00004557The loop identifier metadata can be used to specify additional
4558per-loop metadata. Any operands after the first operand can be treated
4559as user-defined metadata. For example the ``llvm.loop.unroll.count``
4560suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004561
Paul Redmond5fdf8362013-05-28 20:00:34 +00004562.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004563
Paul Redmond5fdf8362013-05-28 20:00:34 +00004564 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4565 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004566 !0 = !{!0, !1}
4567 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004568
Mark Heffernan9d20e422014-07-21 23:11:03 +00004569'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004571
Mark Heffernan9d20e422014-07-21 23:11:03 +00004572Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4573used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004574vectorization width and interleave count. These metadata should be used in
4575conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004576``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4577optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004578it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004579which contains information about loop-carried memory dependencies can be helpful
4580in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004581
Mark Heffernan9d20e422014-07-21 23:11:03 +00004582'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4584
Mark Heffernan9d20e422014-07-21 23:11:03 +00004585This metadata suggests an interleave count to the loop interleaver.
4586The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004587second operand is an integer specifying the interleave count. For
4588example:
4589
4590.. code-block:: llvm
4591
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004592 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004593
Mark Heffernan9d20e422014-07-21 23:11:03 +00004594Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004595multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004596then the interleave count will be determined automatically.
4597
4598'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004600
4601This metadata selectively enables or disables vectorization for the loop. The
4602first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004603is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000046040 disables vectorization:
4605
4606.. code-block:: llvm
4607
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004608 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4609 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004610
4611'``llvm.loop.vectorize.width``' Metadata
4612^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4613
4614This metadata sets the target width of the vectorizer. The first
4615operand is the string ``llvm.loop.vectorize.width`` and the second
4616operand is an integer specifying the width. For example:
4617
4618.. code-block:: llvm
4619
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004620 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004621
4622Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004623vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000046240 or if the loop does not have this metadata the width will be
4625determined automatically.
4626
4627'``llvm.loop.unroll``'
4628^^^^^^^^^^^^^^^^^^^^^^
4629
4630Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4631optimization hints such as the unroll factor. ``llvm.loop.unroll``
4632metadata should be used in conjunction with ``llvm.loop`` loop
4633identification metadata. The ``llvm.loop.unroll`` metadata are only
4634optimization hints and the unrolling will only be performed if the
4635optimizer believes it is safe to do so.
4636
Mark Heffernan893752a2014-07-18 19:24:51 +00004637'``llvm.loop.unroll.count``' Metadata
4638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4639
4640This metadata suggests an unroll factor to the loop unroller. The
4641first operand is the string ``llvm.loop.unroll.count`` and the second
4642operand is a positive integer specifying the unroll factor. For
4643example:
4644
4645.. code-block:: llvm
4646
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004647 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004648
4649If the trip count of the loop is less than the unroll count the loop
4650will be partially unrolled.
4651
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004652'``llvm.loop.unroll.disable``' Metadata
4653^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4654
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004655This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004656which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004657
4658.. code-block:: llvm
4659
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004660 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004661
Kevin Qin715b01e2015-03-09 06:14:18 +00004662'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004664
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004665This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004666operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004667
4668.. code-block:: llvm
4669
4670 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4671
Mark Heffernan89391542015-08-10 17:28:08 +00004672'``llvm.loop.unroll.enable``' Metadata
4673^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4674
4675This metadata suggests that the loop should be fully unrolled if the trip count
4676is known at compile time and partially unrolled if the trip count is not known
4677at compile time. The metadata has a single operand which is the string
4678``llvm.loop.unroll.enable``. For example:
4679
4680.. code-block:: llvm
4681
4682 !0 = !{!"llvm.loop.unroll.enable"}
4683
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004684'``llvm.loop.unroll.full``' Metadata
4685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4686
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004687This metadata suggests that the loop should be unrolled fully. The
4688metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004689For example:
4690
4691.. code-block:: llvm
4692
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004693 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004694
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004695'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004697
4698This metadata indicates that the loop should not be versioned for the purpose
4699of enabling loop-invariant code motion (LICM). The metadata has a single operand
4700which is the string ``llvm.loop.licm_versioning.disable``. For example:
4701
4702.. code-block:: llvm
4703
4704 !0 = !{!"llvm.loop.licm_versioning.disable"}
4705
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004706'``llvm.mem``'
4707^^^^^^^^^^^^^^^
4708
4709Metadata types used to annotate memory accesses with information helpful
4710for optimizations are prefixed with ``llvm.mem``.
4711
4712'``llvm.mem.parallel_loop_access``' Metadata
4713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4714
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004715The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4716or metadata containing a list of loop identifiers for nested loops.
4717The metadata is attached to memory accessing instructions and denotes that
4718no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004719with the same loop identifier. The metadata on memory reads also implies that
4720if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004721
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004722Precisely, given two instructions ``m1`` and ``m2`` that both have the
4723``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4724set of loops associated with that metadata, respectively, then there is no loop
4725carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004726``L2``.
4727
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004728As a special case, if all memory accessing instructions in a loop have
4729``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4730loop has no loop carried memory dependences and is considered to be a parallel
4731loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004732
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004733Note that if not all memory access instructions have such metadata referring to
4734the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004735memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004736safe mechanism, this causes loops that were originally parallel to be considered
4737sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004738insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004739
4740Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004741both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004742metadata types that refer to the same loop identifier metadata.
4743
4744.. code-block:: llvm
4745
4746 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004747 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004748 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004749 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004750 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004751 ...
4752 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004753
4754 for.end:
4755 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004756 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004757
4758It is also possible to have nested parallel loops. In that case the
4759memory accesses refer to a list of loop identifier metadata nodes instead of
4760the loop identifier metadata node directly:
4761
4762.. code-block:: llvm
4763
4764 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004765 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004766 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004767 ...
4768 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004769
4770 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004771 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004772 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004773 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004774 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004775 ...
4776 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004777
4778 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004779 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004780 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004781 ...
4782 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004783
4784 outer.for.end: ; preds = %for.body
4785 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004786 !0 = !{!1, !2} ; a list of loop identifiers
4787 !1 = !{!1} ; an identifier for the inner loop
4788 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004789
Peter Collingbournee6909c82015-02-20 20:30:47 +00004790'``llvm.bitsets``'
4791^^^^^^^^^^^^^^^^^^
4792
4793The ``llvm.bitsets`` global metadata is used to implement
4794:doc:`bitsets <BitSets>`.
4795
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004796'``invariant.group``' Metadata
4797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4798
4799The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4800The existence of the ``invariant.group`` metadata on the instruction tells
4801the optimizer that every ``load`` and ``store`` to the same pointer operand
4802within the same invariant group can be assumed to load or store the same
4803value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4804when two pointers are considered the same).
4805
4806Examples:
4807
4808.. code-block:: llvm
4809
4810 @unknownPtr = external global i8
4811 ...
4812 %ptr = alloca i8
4813 store i8 42, i8* %ptr, !invariant.group !0
4814 call void @foo(i8* %ptr)
4815
4816 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4817 call void @foo(i8* %ptr)
4818 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4819
4820 %newPtr = call i8* @getPointer(i8* %ptr)
4821 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4822
4823 %unknownValue = load i8, i8* @unknownPtr
4824 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4825
4826 call void @foo(i8* %ptr)
4827 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4828 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4829
4830 ...
4831 declare void @foo(i8*)
4832 declare i8* @getPointer(i8*)
4833 declare i8* @llvm.invariant.group.barrier(i8*)
4834
4835 !0 = !{!"magic ptr"}
4836 !1 = !{!"other ptr"}
4837
4838
4839
Sean Silvab084af42012-12-07 10:36:55 +00004840Module Flags Metadata
4841=====================
4842
4843Information about the module as a whole is difficult to convey to LLVM's
4844subsystems. The LLVM IR isn't sufficient to transmit this information.
4845The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004846this. These flags are in the form of key / value pairs --- much like a
4847dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004848look it up.
4849
4850The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4851Each triplet has the following form:
4852
4853- The first element is a *behavior* flag, which specifies the behavior
4854 when two (or more) modules are merged together, and it encounters two
4855 (or more) metadata with the same ID. The supported behaviors are
4856 described below.
4857- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004858 metadata. Each module may only have one flag entry for each unique ID (not
4859 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004860- The third element is the value of the flag.
4861
4862When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004863``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4864each unique metadata ID string, there will be exactly one entry in the merged
4865modules ``llvm.module.flags`` metadata table, and the value for that entry will
4866be determined by the merge behavior flag, as described below. The only exception
4867is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004868
4869The following behaviors are supported:
4870
4871.. list-table::
4872 :header-rows: 1
4873 :widths: 10 90
4874
4875 * - Value
4876 - Behavior
4877
4878 * - 1
4879 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004880 Emits an error if two values disagree, otherwise the resulting value
4881 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004882
4883 * - 2
4884 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004885 Emits a warning if two values disagree. The result value will be the
4886 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004887
4888 * - 3
4889 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004890 Adds a requirement that another module flag be present and have a
4891 specified value after linking is performed. The value must be a
4892 metadata pair, where the first element of the pair is the ID of the
4893 module flag to be restricted, and the second element of the pair is
4894 the value the module flag should be restricted to. This behavior can
4895 be used to restrict the allowable results (via triggering of an
4896 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004897
4898 * - 4
4899 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004900 Uses the specified value, regardless of the behavior or value of the
4901 other module. If both modules specify **Override**, but the values
4902 differ, an error will be emitted.
4903
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004904 * - 5
4905 - **Append**
4906 Appends the two values, which are required to be metadata nodes.
4907
4908 * - 6
4909 - **AppendUnique**
4910 Appends the two values, which are required to be metadata
4911 nodes. However, duplicate entries in the second list are dropped
4912 during the append operation.
4913
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004914It is an error for a particular unique flag ID to have multiple behaviors,
4915except in the case of **Require** (which adds restrictions on another metadata
4916value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004917
4918An example of module flags:
4919
4920.. code-block:: llvm
4921
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004922 !0 = !{ i32 1, !"foo", i32 1 }
4923 !1 = !{ i32 4, !"bar", i32 37 }
4924 !2 = !{ i32 2, !"qux", i32 42 }
4925 !3 = !{ i32 3, !"qux",
4926 !{
4927 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004928 }
4929 }
4930 !llvm.module.flags = !{ !0, !1, !2, !3 }
4931
4932- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4933 if two or more ``!"foo"`` flags are seen is to emit an error if their
4934 values are not equal.
4935
4936- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4937 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004938 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004939
4940- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4941 behavior if two or more ``!"qux"`` flags are seen is to emit a
4942 warning if their values are not equal.
4943
4944- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4945
4946 ::
4947
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004948 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004949
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004950 The behavior is to emit an error if the ``llvm.module.flags`` does not
4951 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4952 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004953
4954Objective-C Garbage Collection Module Flags Metadata
4955----------------------------------------------------
4956
4957On the Mach-O platform, Objective-C stores metadata about garbage
4958collection in a special section called "image info". The metadata
4959consists of a version number and a bitmask specifying what types of
4960garbage collection are supported (if any) by the file. If two or more
4961modules are linked together their garbage collection metadata needs to
4962be merged rather than appended together.
4963
4964The Objective-C garbage collection module flags metadata consists of the
4965following key-value pairs:
4966
4967.. list-table::
4968 :header-rows: 1
4969 :widths: 30 70
4970
4971 * - Key
4972 - Value
4973
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004974 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004975 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004976
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004977 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004978 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004979 always 0.
4980
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004981 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004982 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004983 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4984 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4985 Objective-C ABI version 2.
4986
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004987 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004988 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004989 not. Valid values are 0, for no garbage collection, and 2, for garbage
4990 collection supported.
4991
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004992 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004993 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004994 If present, its value must be 6. This flag requires that the
4995 ``Objective-C Garbage Collection`` flag have the value 2.
4996
4997Some important flag interactions:
4998
4999- If a module with ``Objective-C Garbage Collection`` set to 0 is
5000 merged with a module with ``Objective-C Garbage Collection`` set to
5001 2, then the resulting module has the
5002 ``Objective-C Garbage Collection`` flag set to 0.
5003- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5004 merged with a module with ``Objective-C GC Only`` set to 6.
5005
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005006Automatic Linker Flags Module Flags Metadata
5007--------------------------------------------
5008
5009Some targets support embedding flags to the linker inside individual object
5010files. Typically this is used in conjunction with language extensions which
5011allow source files to explicitly declare the libraries they depend on, and have
5012these automatically be transmitted to the linker via object files.
5013
5014These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005015using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005016to be ``AppendUnique``, and the value for the key is expected to be a metadata
5017node which should be a list of other metadata nodes, each of which should be a
5018list of metadata strings defining linker options.
5019
5020For example, the following metadata section specifies two separate sets of
5021linker options, presumably to link against ``libz`` and the ``Cocoa``
5022framework::
5023
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005024 !0 = !{ i32 6, !"Linker Options",
5025 !{
5026 !{ !"-lz" },
5027 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005028 !llvm.module.flags = !{ !0 }
5029
5030The metadata encoding as lists of lists of options, as opposed to a collapsed
5031list of options, is chosen so that the IR encoding can use multiple option
5032strings to specify e.g., a single library, while still having that specifier be
5033preserved as an atomic element that can be recognized by a target specific
5034assembly writer or object file emitter.
5035
5036Each individual option is required to be either a valid option for the target's
5037linker, or an option that is reserved by the target specific assembly writer or
5038object file emitter. No other aspect of these options is defined by the IR.
5039
Oliver Stannard5dc29342014-06-20 10:08:11 +00005040C type width Module Flags Metadata
5041----------------------------------
5042
5043The ARM backend emits a section into each generated object file describing the
5044options that it was compiled with (in a compiler-independent way) to prevent
5045linking incompatible objects, and to allow automatic library selection. Some
5046of these options are not visible at the IR level, namely wchar_t width and enum
5047width.
5048
5049To pass this information to the backend, these options are encoded in module
5050flags metadata, using the following key-value pairs:
5051
5052.. list-table::
5053 :header-rows: 1
5054 :widths: 30 70
5055
5056 * - Key
5057 - Value
5058
5059 * - short_wchar
5060 - * 0 --- sizeof(wchar_t) == 4
5061 * 1 --- sizeof(wchar_t) == 2
5062
5063 * - short_enum
5064 - * 0 --- Enums are at least as large as an ``int``.
5065 * 1 --- Enums are stored in the smallest integer type which can
5066 represent all of its values.
5067
5068For example, the following metadata section specifies that the module was
5069compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5070enum is the smallest type which can represent all of its values::
5071
5072 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005073 !0 = !{i32 1, !"short_wchar", i32 1}
5074 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005075
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005076.. _intrinsicglobalvariables:
5077
Sean Silvab084af42012-12-07 10:36:55 +00005078Intrinsic Global Variables
5079==========================
5080
5081LLVM has a number of "magic" global variables that contain data that
5082affect code generation or other IR semantics. These are documented here.
5083All globals of this sort should have a section specified as
5084"``llvm.metadata``". This section and all globals that start with
5085"``llvm.``" are reserved for use by LLVM.
5086
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005087.. _gv_llvmused:
5088
Sean Silvab084af42012-12-07 10:36:55 +00005089The '``llvm.used``' Global Variable
5090-----------------------------------
5091
Rafael Espindola74f2e462013-04-22 14:58:02 +00005092The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005093:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005094pointers to named global variables, functions and aliases which may optionally
5095have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005096use of it is:
5097
5098.. code-block:: llvm
5099
5100 @X = global i8 4
5101 @Y = global i32 123
5102
5103 @llvm.used = appending global [2 x i8*] [
5104 i8* @X,
5105 i8* bitcast (i32* @Y to i8*)
5106 ], section "llvm.metadata"
5107
Rafael Espindola74f2e462013-04-22 14:58:02 +00005108If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5109and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005110symbol that it cannot see (which is why they have to be named). For example, if
5111a variable has internal linkage and no references other than that from the
5112``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5113references from inline asms and other things the compiler cannot "see", and
5114corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005115
5116On some targets, the code generator must emit a directive to the
5117assembler or object file to prevent the assembler and linker from
5118molesting the symbol.
5119
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005120.. _gv_llvmcompilerused:
5121
Sean Silvab084af42012-12-07 10:36:55 +00005122The '``llvm.compiler.used``' Global Variable
5123--------------------------------------------
5124
5125The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5126directive, except that it only prevents the compiler from touching the
5127symbol. On targets that support it, this allows an intelligent linker to
5128optimize references to the symbol without being impeded as it would be
5129by ``@llvm.used``.
5130
5131This is a rare construct that should only be used in rare circumstances,
5132and should not be exposed to source languages.
5133
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005134.. _gv_llvmglobalctors:
5135
Sean Silvab084af42012-12-07 10:36:55 +00005136The '``llvm.global_ctors``' Global Variable
5137-------------------------------------------
5138
5139.. code-block:: llvm
5140
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005141 %0 = type { i32, void ()*, i8* }
5142 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005143
5144The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005145functions, priorities, and an optional associated global or function.
5146The functions referenced by this array will be called in ascending order
5147of priority (i.e. lowest first) when the module is loaded. The order of
5148functions with the same priority is not defined.
5149
5150If the third field is present, non-null, and points to a global variable
5151or function, the initializer function will only run if the associated
5152data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005153
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005154.. _llvmglobaldtors:
5155
Sean Silvab084af42012-12-07 10:36:55 +00005156The '``llvm.global_dtors``' Global Variable
5157-------------------------------------------
5158
5159.. code-block:: llvm
5160
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005161 %0 = type { i32, void ()*, i8* }
5162 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005163
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005164The ``@llvm.global_dtors`` array contains a list of destructor
5165functions, priorities, and an optional associated global or function.
5166The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005167order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005168order of functions with the same priority is not defined.
5169
5170If the third field is present, non-null, and points to a global variable
5171or function, the destructor function will only run if the associated
5172data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005173
5174Instruction Reference
5175=====================
5176
5177The LLVM instruction set consists of several different classifications
5178of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5179instructions <binaryops>`, :ref:`bitwise binary
5180instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5181:ref:`other instructions <otherops>`.
5182
5183.. _terminators:
5184
5185Terminator Instructions
5186-----------------------
5187
5188As mentioned :ref:`previously <functionstructure>`, every basic block in a
5189program ends with a "Terminator" instruction, which indicates which
5190block should be executed after the current block is finished. These
5191terminator instructions typically yield a '``void``' value: they produce
5192control flow, not values (the one exception being the
5193':ref:`invoke <i_invoke>`' instruction).
5194
5195The terminator instructions are: ':ref:`ret <i_ret>`',
5196':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5197':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005198':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005199':ref:`catchret <i_catchret>`',
5200':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005201and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005202
5203.. _i_ret:
5204
5205'``ret``' Instruction
5206^^^^^^^^^^^^^^^^^^^^^
5207
5208Syntax:
5209"""""""
5210
5211::
5212
5213 ret <type> <value> ; Return a value from a non-void function
5214 ret void ; Return from void function
5215
5216Overview:
5217"""""""""
5218
5219The '``ret``' instruction is used to return control flow (and optionally
5220a value) from a function back to the caller.
5221
5222There are two forms of the '``ret``' instruction: one that returns a
5223value and then causes control flow, and one that just causes control
5224flow to occur.
5225
5226Arguments:
5227""""""""""
5228
5229The '``ret``' instruction optionally accepts a single argument, the
5230return value. The type of the return value must be a ':ref:`first
5231class <t_firstclass>`' type.
5232
5233A function is not :ref:`well formed <wellformed>` if it it has a non-void
5234return type and contains a '``ret``' instruction with no return value or
5235a return value with a type that does not match its type, or if it has a
5236void return type and contains a '``ret``' instruction with a return
5237value.
5238
5239Semantics:
5240""""""""""
5241
5242When the '``ret``' instruction is executed, control flow returns back to
5243the calling function's context. If the caller is a
5244":ref:`call <i_call>`" instruction, execution continues at the
5245instruction after the call. If the caller was an
5246":ref:`invoke <i_invoke>`" instruction, execution continues at the
5247beginning of the "normal" destination block. If the instruction returns
5248a value, that value shall set the call or invoke instruction's return
5249value.
5250
5251Example:
5252""""""""
5253
5254.. code-block:: llvm
5255
5256 ret i32 5 ; Return an integer value of 5
5257 ret void ; Return from a void function
5258 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5259
5260.. _i_br:
5261
5262'``br``' Instruction
5263^^^^^^^^^^^^^^^^^^^^
5264
5265Syntax:
5266"""""""
5267
5268::
5269
5270 br i1 <cond>, label <iftrue>, label <iffalse>
5271 br label <dest> ; Unconditional branch
5272
5273Overview:
5274"""""""""
5275
5276The '``br``' instruction is used to cause control flow to transfer to a
5277different basic block in the current function. There are two forms of
5278this instruction, corresponding to a conditional branch and an
5279unconditional branch.
5280
5281Arguments:
5282""""""""""
5283
5284The conditional branch form of the '``br``' instruction takes a single
5285'``i1``' value and two '``label``' values. The unconditional form of the
5286'``br``' instruction takes a single '``label``' value as a target.
5287
5288Semantics:
5289""""""""""
5290
5291Upon execution of a conditional '``br``' instruction, the '``i1``'
5292argument is evaluated. If the value is ``true``, control flows to the
5293'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5294to the '``iffalse``' ``label`` argument.
5295
5296Example:
5297""""""""
5298
5299.. code-block:: llvm
5300
5301 Test:
5302 %cond = icmp eq i32 %a, %b
5303 br i1 %cond, label %IfEqual, label %IfUnequal
5304 IfEqual:
5305 ret i32 1
5306 IfUnequal:
5307 ret i32 0
5308
5309.. _i_switch:
5310
5311'``switch``' Instruction
5312^^^^^^^^^^^^^^^^^^^^^^^^
5313
5314Syntax:
5315"""""""
5316
5317::
5318
5319 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5320
5321Overview:
5322"""""""""
5323
5324The '``switch``' instruction is used to transfer control flow to one of
5325several different places. It is a generalization of the '``br``'
5326instruction, allowing a branch to occur to one of many possible
5327destinations.
5328
5329Arguments:
5330""""""""""
5331
5332The '``switch``' instruction uses three parameters: an integer
5333comparison value '``value``', a default '``label``' destination, and an
5334array of pairs of comparison value constants and '``label``'s. The table
5335is not allowed to contain duplicate constant entries.
5336
5337Semantics:
5338""""""""""
5339
5340The ``switch`` instruction specifies a table of values and destinations.
5341When the '``switch``' instruction is executed, this table is searched
5342for the given value. If the value is found, control flow is transferred
5343to the corresponding destination; otherwise, control flow is transferred
5344to the default destination.
5345
5346Implementation:
5347"""""""""""""""
5348
5349Depending on properties of the target machine and the particular
5350``switch`` instruction, this instruction may be code generated in
5351different ways. For example, it could be generated as a series of
5352chained conditional branches or with a lookup table.
5353
5354Example:
5355""""""""
5356
5357.. code-block:: llvm
5358
5359 ; Emulate a conditional br instruction
5360 %Val = zext i1 %value to i32
5361 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5362
5363 ; Emulate an unconditional br instruction
5364 switch i32 0, label %dest [ ]
5365
5366 ; Implement a jump table:
5367 switch i32 %val, label %otherwise [ i32 0, label %onzero
5368 i32 1, label %onone
5369 i32 2, label %ontwo ]
5370
5371.. _i_indirectbr:
5372
5373'``indirectbr``' Instruction
5374^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5375
5376Syntax:
5377"""""""
5378
5379::
5380
5381 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5382
5383Overview:
5384"""""""""
5385
5386The '``indirectbr``' instruction implements an indirect branch to a
5387label within the current function, whose address is specified by
5388"``address``". Address must be derived from a
5389:ref:`blockaddress <blockaddress>` constant.
5390
5391Arguments:
5392""""""""""
5393
5394The '``address``' argument is the address of the label to jump to. The
5395rest of the arguments indicate the full set of possible destinations
5396that the address may point to. Blocks are allowed to occur multiple
5397times in the destination list, though this isn't particularly useful.
5398
5399This destination list is required so that dataflow analysis has an
5400accurate understanding of the CFG.
5401
5402Semantics:
5403""""""""""
5404
5405Control transfers to the block specified in the address argument. All
5406possible destination blocks must be listed in the label list, otherwise
5407this instruction has undefined behavior. This implies that jumps to
5408labels defined in other functions have undefined behavior as well.
5409
5410Implementation:
5411"""""""""""""""
5412
5413This is typically implemented with a jump through a register.
5414
5415Example:
5416""""""""
5417
5418.. code-block:: llvm
5419
5420 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5421
5422.. _i_invoke:
5423
5424'``invoke``' Instruction
5425^^^^^^^^^^^^^^^^^^^^^^^^
5426
5427Syntax:
5428"""""""
5429
5430::
5431
5432 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005433 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005434
5435Overview:
5436"""""""""
5437
5438The '``invoke``' instruction causes control to transfer to a specified
5439function, with the possibility of control flow transfer to either the
5440'``normal``' label or the '``exception``' label. If the callee function
5441returns with the "``ret``" instruction, control flow will return to the
5442"normal" label. If the callee (or any indirect callees) returns via the
5443":ref:`resume <i_resume>`" instruction or other exception handling
5444mechanism, control is interrupted and continued at the dynamically
5445nearest "exception" label.
5446
5447The '``exception``' label is a `landing
5448pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5449'``exception``' label is required to have the
5450":ref:`landingpad <i_landingpad>`" instruction, which contains the
5451information about the behavior of the program after unwinding happens,
5452as its first non-PHI instruction. The restrictions on the
5453"``landingpad``" instruction's tightly couples it to the "``invoke``"
5454instruction, so that the important information contained within the
5455"``landingpad``" instruction can't be lost through normal code motion.
5456
5457Arguments:
5458""""""""""
5459
5460This instruction requires several arguments:
5461
5462#. The optional "cconv" marker indicates which :ref:`calling
5463 convention <callingconv>` the call should use. If none is
5464 specified, the call defaults to using C calling conventions.
5465#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5466 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5467 are valid here.
5468#. '``ptr to function ty``': shall be the signature of the pointer to
5469 function value being invoked. In most cases, this is a direct
5470 function invocation, but indirect ``invoke``'s are just as possible,
5471 branching off an arbitrary pointer to function value.
5472#. '``function ptr val``': An LLVM value containing a pointer to a
5473 function to be invoked.
5474#. '``function args``': argument list whose types match the function
5475 signature argument types and parameter attributes. All arguments must
5476 be of :ref:`first class <t_firstclass>` type. If the function signature
5477 indicates the function accepts a variable number of arguments, the
5478 extra arguments can be specified.
5479#. '``normal label``': the label reached when the called function
5480 executes a '``ret``' instruction.
5481#. '``exception label``': the label reached when a callee returns via
5482 the :ref:`resume <i_resume>` instruction or other exception handling
5483 mechanism.
5484#. The optional :ref:`function attributes <fnattrs>` list. Only
5485 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5486 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005487#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005488
5489Semantics:
5490""""""""""
5491
5492This instruction is designed to operate as a standard '``call``'
5493instruction in most regards. The primary difference is that it
5494establishes an association with a label, which is used by the runtime
5495library to unwind the stack.
5496
5497This instruction is used in languages with destructors to ensure that
5498proper cleanup is performed in the case of either a ``longjmp`` or a
5499thrown exception. Additionally, this is important for implementation of
5500'``catch``' clauses in high-level languages that support them.
5501
5502For the purposes of the SSA form, the definition of the value returned
5503by the '``invoke``' instruction is deemed to occur on the edge from the
5504current block to the "normal" label. If the callee unwinds then no
5505return value is available.
5506
5507Example:
5508""""""""
5509
5510.. code-block:: llvm
5511
5512 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005513 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005514 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005515 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005516
5517.. _i_resume:
5518
5519'``resume``' Instruction
5520^^^^^^^^^^^^^^^^^^^^^^^^
5521
5522Syntax:
5523"""""""
5524
5525::
5526
5527 resume <type> <value>
5528
5529Overview:
5530"""""""""
5531
5532The '``resume``' instruction is a terminator instruction that has no
5533successors.
5534
5535Arguments:
5536""""""""""
5537
5538The '``resume``' instruction requires one argument, which must have the
5539same type as the result of any '``landingpad``' instruction in the same
5540function.
5541
5542Semantics:
5543""""""""""
5544
5545The '``resume``' instruction resumes propagation of an existing
5546(in-flight) exception whose unwinding was interrupted with a
5547:ref:`landingpad <i_landingpad>` instruction.
5548
5549Example:
5550""""""""
5551
5552.. code-block:: llvm
5553
5554 resume { i8*, i32 } %exn
5555
David Majnemer8a1c45d2015-12-12 05:38:55 +00005556.. _i_catchswitch:
5557
5558'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005560
5561Syntax:
5562"""""""
5563
5564::
5565
5566 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5567 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5568
5569Overview:
5570"""""""""
5571
5572The '``catchswitch``' instruction is used by `LLVM's exception handling system
5573<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5574that may be executed by the :ref:`EH personality routine <personalityfn>`.
5575
5576Arguments:
5577""""""""""
5578
5579The ``parent`` argument is the token of the funclet that contains the
5580``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5581this operand may be the token ``none``.
5582
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005583The ``default`` argument is the label of another basic block beginning with
5584either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5585must be a legal target with respect to the ``parent`` links, as described in
5586the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005587
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005588The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005589:ref:`catchpad <i_catchpad>` instruction.
5590
5591Semantics:
5592""""""""""
5593
5594Executing this instruction transfers control to one of the successors in
5595``handlers``, if appropriate, or continues to unwind via the unwind label if
5596present.
5597
5598The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5599it must be both the first non-phi instruction and last instruction in the basic
5600block. Therefore, it must be the only non-phi instruction in the block.
5601
5602Example:
5603""""""""
5604
5605.. code-block:: llvm
5606
5607 dispatch1:
5608 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5609 dispatch2:
5610 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5611
David Majnemer654e1302015-07-31 17:58:14 +00005612.. _i_catchret:
5613
5614'``catchret``' Instruction
5615^^^^^^^^^^^^^^^^^^^^^^^^^^
5616
5617Syntax:
5618"""""""
5619
5620::
5621
David Majnemer8a1c45d2015-12-12 05:38:55 +00005622 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005623
5624Overview:
5625"""""""""
5626
5627The '``catchret``' instruction is a terminator instruction that has a
5628single successor.
5629
5630
5631Arguments:
5632""""""""""
5633
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005634The first argument to a '``catchret``' indicates which ``catchpad`` it
5635exits. It must be a :ref:`catchpad <i_catchpad>`.
5636The second argument to a '``catchret``' specifies where control will
5637transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005638
5639Semantics:
5640""""""""""
5641
David Majnemer8a1c45d2015-12-12 05:38:55 +00005642The '``catchret``' instruction ends an existing (in-flight) exception whose
5643unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5644:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5645code to, for example, destroy the active exception. Control then transfers to
5646``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005647
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005648The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5649If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5650funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5651the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005652
5653Example:
5654""""""""
5655
5656.. code-block:: llvm
5657
David Majnemer8a1c45d2015-12-12 05:38:55 +00005658 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005659
David Majnemer654e1302015-07-31 17:58:14 +00005660.. _i_cleanupret:
5661
5662'``cleanupret``' Instruction
5663^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5664
5665Syntax:
5666"""""""
5667
5668::
5669
David Majnemer8a1c45d2015-12-12 05:38:55 +00005670 cleanupret from <value> unwind label <continue>
5671 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005672
5673Overview:
5674"""""""""
5675
5676The '``cleanupret``' instruction is a terminator instruction that has
5677an optional successor.
5678
5679
5680Arguments:
5681""""""""""
5682
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005683The '``cleanupret``' instruction requires one argument, which indicates
5684which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005685If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5686funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5687the ``cleanupret``'s behavior is undefined.
5688
5689The '``cleanupret``' instruction also has an optional successor, ``continue``,
5690which must be the label of another basic block beginning with either a
5691``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5692be a legal target with respect to the ``parent`` links, as described in the
5693`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005694
5695Semantics:
5696""""""""""
5697
5698The '``cleanupret``' instruction indicates to the
5699:ref:`personality function <personalityfn>` that one
5700:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5701It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005702
David Majnemer654e1302015-07-31 17:58:14 +00005703Example:
5704""""""""
5705
5706.. code-block:: llvm
5707
David Majnemer8a1c45d2015-12-12 05:38:55 +00005708 cleanupret from %cleanup unwind to caller
5709 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005710
Sean Silvab084af42012-12-07 10:36:55 +00005711.. _i_unreachable:
5712
5713'``unreachable``' Instruction
5714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5715
5716Syntax:
5717"""""""
5718
5719::
5720
5721 unreachable
5722
5723Overview:
5724"""""""""
5725
5726The '``unreachable``' instruction has no defined semantics. This
5727instruction is used to inform the optimizer that a particular portion of
5728the code is not reachable. This can be used to indicate that the code
5729after a no-return function cannot be reached, and other facts.
5730
5731Semantics:
5732""""""""""
5733
5734The '``unreachable``' instruction has no defined semantics.
5735
5736.. _binaryops:
5737
5738Binary Operations
5739-----------------
5740
5741Binary operators are used to do most of the computation in a program.
5742They require two operands of the same type, execute an operation on
5743them, and produce a single value. The operands might represent multiple
5744data, as is the case with the :ref:`vector <t_vector>` data type. The
5745result value has the same type as its operands.
5746
5747There are several different binary operators:
5748
5749.. _i_add:
5750
5751'``add``' Instruction
5752^^^^^^^^^^^^^^^^^^^^^
5753
5754Syntax:
5755"""""""
5756
5757::
5758
Tim Northover675a0962014-06-13 14:24:23 +00005759 <result> = add <ty> <op1>, <op2> ; yields ty:result
5760 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5761 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5762 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005763
5764Overview:
5765"""""""""
5766
5767The '``add``' instruction returns the sum of its two operands.
5768
5769Arguments:
5770""""""""""
5771
5772The two arguments to the '``add``' instruction must be
5773:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5774arguments must have identical types.
5775
5776Semantics:
5777""""""""""
5778
5779The value produced is the integer sum of the two operands.
5780
5781If the sum has unsigned overflow, the result returned is the
5782mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5783the result.
5784
5785Because LLVM integers use a two's complement representation, this
5786instruction is appropriate for both signed and unsigned integers.
5787
5788``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5789respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5790result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5791unsigned and/or signed overflow, respectively, occurs.
5792
5793Example:
5794""""""""
5795
5796.. code-block:: llvm
5797
Tim Northover675a0962014-06-13 14:24:23 +00005798 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005799
5800.. _i_fadd:
5801
5802'``fadd``' Instruction
5803^^^^^^^^^^^^^^^^^^^^^^
5804
5805Syntax:
5806"""""""
5807
5808::
5809
Tim Northover675a0962014-06-13 14:24:23 +00005810 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005811
5812Overview:
5813"""""""""
5814
5815The '``fadd``' instruction returns the sum of its two operands.
5816
5817Arguments:
5818""""""""""
5819
5820The two arguments to the '``fadd``' instruction must be :ref:`floating
5821point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5822Both arguments must have identical types.
5823
5824Semantics:
5825""""""""""
5826
5827The value produced is the floating point sum of the two operands. This
5828instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5829which are optimization hints to enable otherwise unsafe floating point
5830optimizations:
5831
5832Example:
5833""""""""
5834
5835.. code-block:: llvm
5836
Tim Northover675a0962014-06-13 14:24:23 +00005837 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005838
5839'``sub``' Instruction
5840^^^^^^^^^^^^^^^^^^^^^
5841
5842Syntax:
5843"""""""
5844
5845::
5846
Tim Northover675a0962014-06-13 14:24:23 +00005847 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5848 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5849 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5850 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005851
5852Overview:
5853"""""""""
5854
5855The '``sub``' instruction returns the difference of its two operands.
5856
5857Note that the '``sub``' instruction is used to represent the '``neg``'
5858instruction present in most other intermediate representations.
5859
5860Arguments:
5861""""""""""
5862
5863The two arguments to the '``sub``' instruction must be
5864:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5865arguments must have identical types.
5866
5867Semantics:
5868""""""""""
5869
5870The value produced is the integer difference of the two operands.
5871
5872If the difference has unsigned overflow, the result returned is the
5873mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5874the result.
5875
5876Because LLVM integers use a two's complement representation, this
5877instruction is appropriate for both signed and unsigned integers.
5878
5879``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5880respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5881result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5882unsigned and/or signed overflow, respectively, occurs.
5883
5884Example:
5885""""""""
5886
5887.. code-block:: llvm
5888
Tim Northover675a0962014-06-13 14:24:23 +00005889 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5890 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005891
5892.. _i_fsub:
5893
5894'``fsub``' Instruction
5895^^^^^^^^^^^^^^^^^^^^^^
5896
5897Syntax:
5898"""""""
5899
5900::
5901
Tim Northover675a0962014-06-13 14:24:23 +00005902 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005903
5904Overview:
5905"""""""""
5906
5907The '``fsub``' instruction returns the difference of its two operands.
5908
5909Note that the '``fsub``' instruction is used to represent the '``fneg``'
5910instruction present in most other intermediate representations.
5911
5912Arguments:
5913""""""""""
5914
5915The two arguments to the '``fsub``' instruction must be :ref:`floating
5916point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5917Both arguments must have identical types.
5918
5919Semantics:
5920""""""""""
5921
5922The value produced is the floating point difference of the two operands.
5923This instruction can also take any number of :ref:`fast-math
5924flags <fastmath>`, which are optimization hints to enable otherwise
5925unsafe floating point optimizations:
5926
5927Example:
5928""""""""
5929
5930.. code-block:: llvm
5931
Tim Northover675a0962014-06-13 14:24:23 +00005932 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5933 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005934
5935'``mul``' Instruction
5936^^^^^^^^^^^^^^^^^^^^^
5937
5938Syntax:
5939"""""""
5940
5941::
5942
Tim Northover675a0962014-06-13 14:24:23 +00005943 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5944 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5945 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5946 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005947
5948Overview:
5949"""""""""
5950
5951The '``mul``' instruction returns the product of its two operands.
5952
5953Arguments:
5954""""""""""
5955
5956The two arguments to the '``mul``' instruction must be
5957:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5958arguments must have identical types.
5959
5960Semantics:
5961""""""""""
5962
5963The value produced is the integer product of the two operands.
5964
5965If the result of the multiplication has unsigned overflow, the result
5966returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5967bit width of the result.
5968
5969Because LLVM integers use a two's complement representation, and the
5970result is the same width as the operands, this instruction returns the
5971correct result for both signed and unsigned integers. If a full product
5972(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5973sign-extended or zero-extended as appropriate to the width of the full
5974product.
5975
5976``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5977respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5978result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5979unsigned and/or signed overflow, respectively, occurs.
5980
5981Example:
5982""""""""
5983
5984.. code-block:: llvm
5985
Tim Northover675a0962014-06-13 14:24:23 +00005986 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005987
5988.. _i_fmul:
5989
5990'``fmul``' Instruction
5991^^^^^^^^^^^^^^^^^^^^^^
5992
5993Syntax:
5994"""""""
5995
5996::
5997
Tim Northover675a0962014-06-13 14:24:23 +00005998 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005999
6000Overview:
6001"""""""""
6002
6003The '``fmul``' instruction returns the product of its two operands.
6004
6005Arguments:
6006""""""""""
6007
6008The two arguments to the '``fmul``' instruction must be :ref:`floating
6009point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6010Both arguments must have identical types.
6011
6012Semantics:
6013""""""""""
6014
6015The value produced is the floating point product of the two operands.
6016This instruction can also take any number of :ref:`fast-math
6017flags <fastmath>`, which are optimization hints to enable otherwise
6018unsafe floating point optimizations:
6019
6020Example:
6021""""""""
6022
6023.. code-block:: llvm
6024
Tim Northover675a0962014-06-13 14:24:23 +00006025 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006026
6027'``udiv``' Instruction
6028^^^^^^^^^^^^^^^^^^^^^^
6029
6030Syntax:
6031"""""""
6032
6033::
6034
Tim Northover675a0962014-06-13 14:24:23 +00006035 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6036 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006037
6038Overview:
6039"""""""""
6040
6041The '``udiv``' instruction returns the quotient of its two operands.
6042
6043Arguments:
6044""""""""""
6045
6046The two arguments to the '``udiv``' instruction must be
6047:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6048arguments must have identical types.
6049
6050Semantics:
6051""""""""""
6052
6053The value produced is the unsigned integer quotient of the two operands.
6054
6055Note that unsigned integer division and signed integer division are
6056distinct operations; for signed integer division, use '``sdiv``'.
6057
6058Division by zero leads to undefined behavior.
6059
6060If the ``exact`` keyword is present, the result value of the ``udiv`` is
6061a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6062such, "((a udiv exact b) mul b) == a").
6063
6064Example:
6065""""""""
6066
6067.. code-block:: llvm
6068
Tim Northover675a0962014-06-13 14:24:23 +00006069 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006070
6071'``sdiv``' Instruction
6072^^^^^^^^^^^^^^^^^^^^^^
6073
6074Syntax:
6075"""""""
6076
6077::
6078
Tim Northover675a0962014-06-13 14:24:23 +00006079 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6080 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006081
6082Overview:
6083"""""""""
6084
6085The '``sdiv``' instruction returns the quotient of its two operands.
6086
6087Arguments:
6088""""""""""
6089
6090The two arguments to the '``sdiv``' instruction must be
6091:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6092arguments must have identical types.
6093
6094Semantics:
6095""""""""""
6096
6097The value produced is the signed integer quotient of the two operands
6098rounded towards zero.
6099
6100Note that signed integer division and unsigned integer division are
6101distinct operations; for unsigned integer division, use '``udiv``'.
6102
6103Division by zero leads to undefined behavior. Overflow also leads to
6104undefined behavior; this is a rare case, but can occur, for example, by
6105doing a 32-bit division of -2147483648 by -1.
6106
6107If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6108a :ref:`poison value <poisonvalues>` if the result would be rounded.
6109
6110Example:
6111""""""""
6112
6113.. code-block:: llvm
6114
Tim Northover675a0962014-06-13 14:24:23 +00006115 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006116
6117.. _i_fdiv:
6118
6119'``fdiv``' Instruction
6120^^^^^^^^^^^^^^^^^^^^^^
6121
6122Syntax:
6123"""""""
6124
6125::
6126
Tim Northover675a0962014-06-13 14:24:23 +00006127 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006128
6129Overview:
6130"""""""""
6131
6132The '``fdiv``' instruction returns the quotient of its two operands.
6133
6134Arguments:
6135""""""""""
6136
6137The two arguments to the '``fdiv``' instruction must be :ref:`floating
6138point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6139Both arguments must have identical types.
6140
6141Semantics:
6142""""""""""
6143
6144The value produced is the floating point quotient of the two operands.
6145This instruction can also take any number of :ref:`fast-math
6146flags <fastmath>`, which are optimization hints to enable otherwise
6147unsafe floating point optimizations:
6148
6149Example:
6150""""""""
6151
6152.. code-block:: llvm
6153
Tim Northover675a0962014-06-13 14:24:23 +00006154 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006155
6156'``urem``' Instruction
6157^^^^^^^^^^^^^^^^^^^^^^
6158
6159Syntax:
6160"""""""
6161
6162::
6163
Tim Northover675a0962014-06-13 14:24:23 +00006164 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006165
6166Overview:
6167"""""""""
6168
6169The '``urem``' instruction returns the remainder from the unsigned
6170division of its two arguments.
6171
6172Arguments:
6173""""""""""
6174
6175The two arguments to the '``urem``' instruction must be
6176:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6177arguments must have identical types.
6178
6179Semantics:
6180""""""""""
6181
6182This instruction returns the unsigned integer *remainder* of a division.
6183This instruction always performs an unsigned division to get the
6184remainder.
6185
6186Note that unsigned integer remainder and signed integer remainder are
6187distinct operations; for signed integer remainder, use '``srem``'.
6188
6189Taking the remainder of a division by zero leads to undefined behavior.
6190
6191Example:
6192""""""""
6193
6194.. code-block:: llvm
6195
Tim Northover675a0962014-06-13 14:24:23 +00006196 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006197
6198'``srem``' Instruction
6199^^^^^^^^^^^^^^^^^^^^^^
6200
6201Syntax:
6202"""""""
6203
6204::
6205
Tim Northover675a0962014-06-13 14:24:23 +00006206 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006207
6208Overview:
6209"""""""""
6210
6211The '``srem``' instruction returns the remainder from the signed
6212division of its two operands. This instruction can also take
6213:ref:`vector <t_vector>` versions of the values in which case the elements
6214must be integers.
6215
6216Arguments:
6217""""""""""
6218
6219The two arguments to the '``srem``' instruction must be
6220:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6221arguments must have identical types.
6222
6223Semantics:
6224""""""""""
6225
6226This instruction returns the *remainder* of a division (where the result
6227is either zero or has the same sign as the dividend, ``op1``), not the
6228*modulo* operator (where the result is either zero or has the same sign
6229as the divisor, ``op2``) of a value. For more information about the
6230difference, see `The Math
6231Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6232table of how this is implemented in various languages, please see
6233`Wikipedia: modulo
6234operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6235
6236Note that signed integer remainder and unsigned integer remainder are
6237distinct operations; for unsigned integer remainder, use '``urem``'.
6238
6239Taking the remainder of a division by zero leads to undefined behavior.
6240Overflow also leads to undefined behavior; this is a rare case, but can
6241occur, for example, by taking the remainder of a 32-bit division of
6242-2147483648 by -1. (The remainder doesn't actually overflow, but this
6243rule lets srem be implemented using instructions that return both the
6244result of the division and the remainder.)
6245
6246Example:
6247""""""""
6248
6249.. code-block:: llvm
6250
Tim Northover675a0962014-06-13 14:24:23 +00006251 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006252
6253.. _i_frem:
6254
6255'``frem``' Instruction
6256^^^^^^^^^^^^^^^^^^^^^^
6257
6258Syntax:
6259"""""""
6260
6261::
6262
Tim Northover675a0962014-06-13 14:24:23 +00006263 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006264
6265Overview:
6266"""""""""
6267
6268The '``frem``' instruction returns the remainder from the division of
6269its two operands.
6270
6271Arguments:
6272""""""""""
6273
6274The two arguments to the '``frem``' instruction must be :ref:`floating
6275point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6276Both arguments must have identical types.
6277
6278Semantics:
6279""""""""""
6280
6281This instruction returns the *remainder* of a division. The remainder
6282has the same sign as the dividend. This instruction can also take any
6283number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6284to enable otherwise unsafe floating point optimizations:
6285
6286Example:
6287""""""""
6288
6289.. code-block:: llvm
6290
Tim Northover675a0962014-06-13 14:24:23 +00006291 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006292
6293.. _bitwiseops:
6294
6295Bitwise Binary Operations
6296-------------------------
6297
6298Bitwise binary operators are used to do various forms of bit-twiddling
6299in a program. They are generally very efficient instructions and can
6300commonly be strength reduced from other instructions. They require two
6301operands of the same type, execute an operation on them, and produce a
6302single value. The resulting value is the same type as its operands.
6303
6304'``shl``' Instruction
6305^^^^^^^^^^^^^^^^^^^^^
6306
6307Syntax:
6308"""""""
6309
6310::
6311
Tim Northover675a0962014-06-13 14:24:23 +00006312 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6313 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6314 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6315 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006316
6317Overview:
6318"""""""""
6319
6320The '``shl``' instruction returns the first operand shifted to the left
6321a specified number of bits.
6322
6323Arguments:
6324""""""""""
6325
6326Both arguments to the '``shl``' instruction must be the same
6327:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6328'``op2``' is treated as an unsigned value.
6329
6330Semantics:
6331""""""""""
6332
6333The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6334where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006335dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006336``op1``, the result is undefined. If the arguments are vectors, each
6337vector element of ``op1`` is shifted by the corresponding shift amount
6338in ``op2``.
6339
6340If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6341value <poisonvalues>` if it shifts out any non-zero bits. If the
6342``nsw`` keyword is present, then the shift produces a :ref:`poison
6343value <poisonvalues>` if it shifts out any bits that disagree with the
6344resultant sign bit. As such, NUW/NSW have the same semantics as they
6345would if the shift were expressed as a mul instruction with the same
6346nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6347
6348Example:
6349""""""""
6350
6351.. code-block:: llvm
6352
Tim Northover675a0962014-06-13 14:24:23 +00006353 <result> = shl i32 4, %var ; yields i32: 4 << %var
6354 <result> = shl i32 4, 2 ; yields i32: 16
6355 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006356 <result> = shl i32 1, 32 ; undefined
6357 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6358
6359'``lshr``' Instruction
6360^^^^^^^^^^^^^^^^^^^^^^
6361
6362Syntax:
6363"""""""
6364
6365::
6366
Tim Northover675a0962014-06-13 14:24:23 +00006367 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6368 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006369
6370Overview:
6371"""""""""
6372
6373The '``lshr``' instruction (logical shift right) returns the first
6374operand shifted to the right a specified number of bits with zero fill.
6375
6376Arguments:
6377""""""""""
6378
6379Both arguments to the '``lshr``' instruction must be the same
6380:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6381'``op2``' is treated as an unsigned value.
6382
6383Semantics:
6384""""""""""
6385
6386This instruction always performs a logical shift right operation. The
6387most significant bits of the result will be filled with zero bits after
6388the shift. If ``op2`` is (statically or dynamically) equal to or larger
6389than the number of bits in ``op1``, the result is undefined. If the
6390arguments are vectors, each vector element of ``op1`` is shifted by the
6391corresponding shift amount in ``op2``.
6392
6393If the ``exact`` keyword is present, the result value of the ``lshr`` is
6394a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6395non-zero.
6396
6397Example:
6398""""""""
6399
6400.. code-block:: llvm
6401
Tim Northover675a0962014-06-13 14:24:23 +00006402 <result> = lshr i32 4, 1 ; yields i32:result = 2
6403 <result> = lshr i32 4, 2 ; yields i32:result = 1
6404 <result> = lshr i8 4, 3 ; yields i8:result = 0
6405 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006406 <result> = lshr i32 1, 32 ; undefined
6407 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6408
6409'``ashr``' Instruction
6410^^^^^^^^^^^^^^^^^^^^^^
6411
6412Syntax:
6413"""""""
6414
6415::
6416
Tim Northover675a0962014-06-13 14:24:23 +00006417 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6418 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006419
6420Overview:
6421"""""""""
6422
6423The '``ashr``' instruction (arithmetic shift right) returns the first
6424operand shifted to the right a specified number of bits with sign
6425extension.
6426
6427Arguments:
6428""""""""""
6429
6430Both arguments to the '``ashr``' instruction must be the same
6431:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6432'``op2``' is treated as an unsigned value.
6433
6434Semantics:
6435""""""""""
6436
6437This instruction always performs an arithmetic shift right operation,
6438The most significant bits of the result will be filled with the sign bit
6439of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6440than the number of bits in ``op1``, the result is undefined. If the
6441arguments are vectors, each vector element of ``op1`` is shifted by the
6442corresponding shift amount in ``op2``.
6443
6444If the ``exact`` keyword is present, the result value of the ``ashr`` is
6445a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6446non-zero.
6447
6448Example:
6449""""""""
6450
6451.. code-block:: llvm
6452
Tim Northover675a0962014-06-13 14:24:23 +00006453 <result> = ashr i32 4, 1 ; yields i32:result = 2
6454 <result> = ashr i32 4, 2 ; yields i32:result = 1
6455 <result> = ashr i8 4, 3 ; yields i8:result = 0
6456 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006457 <result> = ashr i32 1, 32 ; undefined
6458 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6459
6460'``and``' Instruction
6461^^^^^^^^^^^^^^^^^^^^^
6462
6463Syntax:
6464"""""""
6465
6466::
6467
Tim Northover675a0962014-06-13 14:24:23 +00006468 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006469
6470Overview:
6471"""""""""
6472
6473The '``and``' instruction returns the bitwise logical and of its two
6474operands.
6475
6476Arguments:
6477""""""""""
6478
6479The two arguments to the '``and``' instruction must be
6480:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6481arguments must have identical types.
6482
6483Semantics:
6484""""""""""
6485
6486The truth table used for the '``and``' instruction is:
6487
6488+-----+-----+-----+
6489| In0 | In1 | Out |
6490+-----+-----+-----+
6491| 0 | 0 | 0 |
6492+-----+-----+-----+
6493| 0 | 1 | 0 |
6494+-----+-----+-----+
6495| 1 | 0 | 0 |
6496+-----+-----+-----+
6497| 1 | 1 | 1 |
6498+-----+-----+-----+
6499
6500Example:
6501""""""""
6502
6503.. code-block:: llvm
6504
Tim Northover675a0962014-06-13 14:24:23 +00006505 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6506 <result> = and i32 15, 40 ; yields i32:result = 8
6507 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006508
6509'``or``' Instruction
6510^^^^^^^^^^^^^^^^^^^^
6511
6512Syntax:
6513"""""""
6514
6515::
6516
Tim Northover675a0962014-06-13 14:24:23 +00006517 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006518
6519Overview:
6520"""""""""
6521
6522The '``or``' instruction returns the bitwise logical inclusive or of its
6523two operands.
6524
6525Arguments:
6526""""""""""
6527
6528The two arguments to the '``or``' instruction must be
6529:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6530arguments must have identical types.
6531
6532Semantics:
6533""""""""""
6534
6535The truth table used for the '``or``' instruction is:
6536
6537+-----+-----+-----+
6538| In0 | In1 | Out |
6539+-----+-----+-----+
6540| 0 | 0 | 0 |
6541+-----+-----+-----+
6542| 0 | 1 | 1 |
6543+-----+-----+-----+
6544| 1 | 0 | 1 |
6545+-----+-----+-----+
6546| 1 | 1 | 1 |
6547+-----+-----+-----+
6548
6549Example:
6550""""""""
6551
6552::
6553
Tim Northover675a0962014-06-13 14:24:23 +00006554 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6555 <result> = or i32 15, 40 ; yields i32:result = 47
6556 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006557
6558'``xor``' Instruction
6559^^^^^^^^^^^^^^^^^^^^^
6560
6561Syntax:
6562"""""""
6563
6564::
6565
Tim Northover675a0962014-06-13 14:24:23 +00006566 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006567
6568Overview:
6569"""""""""
6570
6571The '``xor``' instruction returns the bitwise logical exclusive or of
6572its two operands. The ``xor`` is used to implement the "one's
6573complement" operation, which is the "~" operator in C.
6574
6575Arguments:
6576""""""""""
6577
6578The two arguments to the '``xor``' instruction must be
6579:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6580arguments must have identical types.
6581
6582Semantics:
6583""""""""""
6584
6585The truth table used for the '``xor``' instruction is:
6586
6587+-----+-----+-----+
6588| In0 | In1 | Out |
6589+-----+-----+-----+
6590| 0 | 0 | 0 |
6591+-----+-----+-----+
6592| 0 | 1 | 1 |
6593+-----+-----+-----+
6594| 1 | 0 | 1 |
6595+-----+-----+-----+
6596| 1 | 1 | 0 |
6597+-----+-----+-----+
6598
6599Example:
6600""""""""
6601
6602.. code-block:: llvm
6603
Tim Northover675a0962014-06-13 14:24:23 +00006604 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6605 <result> = xor i32 15, 40 ; yields i32:result = 39
6606 <result> = xor i32 4, 8 ; yields i32:result = 12
6607 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006608
6609Vector Operations
6610-----------------
6611
6612LLVM supports several instructions to represent vector operations in a
6613target-independent manner. These instructions cover the element-access
6614and vector-specific operations needed to process vectors effectively.
6615While LLVM does directly support these vector operations, many
6616sophisticated algorithms will want to use target-specific intrinsics to
6617take full advantage of a specific target.
6618
6619.. _i_extractelement:
6620
6621'``extractelement``' Instruction
6622^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6623
6624Syntax:
6625"""""""
6626
6627::
6628
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006629 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006630
6631Overview:
6632"""""""""
6633
6634The '``extractelement``' instruction extracts a single scalar element
6635from a vector at a specified index.
6636
6637Arguments:
6638""""""""""
6639
6640The first operand of an '``extractelement``' instruction is a value of
6641:ref:`vector <t_vector>` type. The second operand is an index indicating
6642the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006643variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006644
6645Semantics:
6646""""""""""
6647
6648The result is a scalar of the same type as the element type of ``val``.
6649Its value is the value at position ``idx`` of ``val``. If ``idx``
6650exceeds the length of ``val``, the results are undefined.
6651
6652Example:
6653""""""""
6654
6655.. code-block:: llvm
6656
6657 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6658
6659.. _i_insertelement:
6660
6661'``insertelement``' Instruction
6662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6663
6664Syntax:
6665"""""""
6666
6667::
6668
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006669 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006670
6671Overview:
6672"""""""""
6673
6674The '``insertelement``' instruction inserts a scalar element into a
6675vector at a specified index.
6676
6677Arguments:
6678""""""""""
6679
6680The first operand of an '``insertelement``' instruction is a value of
6681:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6682type must equal the element type of the first operand. The third operand
6683is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006684index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006685
6686Semantics:
6687""""""""""
6688
6689The result is a vector of the same type as ``val``. Its element values
6690are those of ``val`` except at position ``idx``, where it gets the value
6691``elt``. If ``idx`` exceeds the length of ``val``, the results are
6692undefined.
6693
6694Example:
6695""""""""
6696
6697.. code-block:: llvm
6698
6699 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6700
6701.. _i_shufflevector:
6702
6703'``shufflevector``' Instruction
6704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6705
6706Syntax:
6707"""""""
6708
6709::
6710
6711 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6712
6713Overview:
6714"""""""""
6715
6716The '``shufflevector``' instruction constructs a permutation of elements
6717from two input vectors, returning a vector with the same element type as
6718the input and length that is the same as the shuffle mask.
6719
6720Arguments:
6721""""""""""
6722
6723The first two operands of a '``shufflevector``' instruction are vectors
6724with the same type. The third argument is a shuffle mask whose element
6725type is always 'i32'. The result of the instruction is a vector whose
6726length is the same as the shuffle mask and whose element type is the
6727same as the element type of the first two operands.
6728
6729The shuffle mask operand is required to be a constant vector with either
6730constant integer or undef values.
6731
6732Semantics:
6733""""""""""
6734
6735The elements of the two input vectors are numbered from left to right
6736across both of the vectors. The shuffle mask operand specifies, for each
6737element of the result vector, which element of the two input vectors the
6738result element gets. The element selector may be undef (meaning "don't
6739care") and the second operand may be undef if performing a shuffle from
6740only one vector.
6741
6742Example:
6743""""""""
6744
6745.. code-block:: llvm
6746
6747 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6748 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6749 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6750 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6751 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6752 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6753 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6754 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6755
6756Aggregate Operations
6757--------------------
6758
6759LLVM supports several instructions for working with
6760:ref:`aggregate <t_aggregate>` values.
6761
6762.. _i_extractvalue:
6763
6764'``extractvalue``' Instruction
6765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6766
6767Syntax:
6768"""""""
6769
6770::
6771
6772 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6773
6774Overview:
6775"""""""""
6776
6777The '``extractvalue``' instruction extracts the value of a member field
6778from an :ref:`aggregate <t_aggregate>` value.
6779
6780Arguments:
6781""""""""""
6782
6783The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006784:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006785constant indices to specify which value to extract in a similar manner
6786as indices in a '``getelementptr``' instruction.
6787
6788The major differences to ``getelementptr`` indexing are:
6789
6790- Since the value being indexed is not a pointer, the first index is
6791 omitted and assumed to be zero.
6792- At least one index must be specified.
6793- Not only struct indices but also array indices must be in bounds.
6794
6795Semantics:
6796""""""""""
6797
6798The result is the value at the position in the aggregate specified by
6799the index operands.
6800
6801Example:
6802""""""""
6803
6804.. code-block:: llvm
6805
6806 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6807
6808.. _i_insertvalue:
6809
6810'``insertvalue``' Instruction
6811^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6812
6813Syntax:
6814"""""""
6815
6816::
6817
6818 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6819
6820Overview:
6821"""""""""
6822
6823The '``insertvalue``' instruction inserts a value into a member field in
6824an :ref:`aggregate <t_aggregate>` value.
6825
6826Arguments:
6827""""""""""
6828
6829The first operand of an '``insertvalue``' instruction is a value of
6830:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6831a first-class value to insert. The following operands are constant
6832indices indicating the position at which to insert the value in a
6833similar manner as indices in a '``extractvalue``' instruction. The value
6834to insert must have the same type as the value identified by the
6835indices.
6836
6837Semantics:
6838""""""""""
6839
6840The result is an aggregate of the same type as ``val``. Its value is
6841that of ``val`` except that the value at the position specified by the
6842indices is that of ``elt``.
6843
6844Example:
6845""""""""
6846
6847.. code-block:: llvm
6848
6849 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6850 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006851 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006852
6853.. _memoryops:
6854
6855Memory Access and Addressing Operations
6856---------------------------------------
6857
6858A key design point of an SSA-based representation is how it represents
6859memory. In LLVM, no memory locations are in SSA form, which makes things
6860very simple. This section describes how to read, write, and allocate
6861memory in LLVM.
6862
6863.. _i_alloca:
6864
6865'``alloca``' Instruction
6866^^^^^^^^^^^^^^^^^^^^^^^^
6867
6868Syntax:
6869"""""""
6870
6871::
6872
Tim Northover675a0962014-06-13 14:24:23 +00006873 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006874
6875Overview:
6876"""""""""
6877
6878The '``alloca``' instruction allocates memory on the stack frame of the
6879currently executing function, to be automatically released when this
6880function returns to its caller. The object is always allocated in the
6881generic address space (address space zero).
6882
6883Arguments:
6884""""""""""
6885
6886The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6887bytes of memory on the runtime stack, returning a pointer of the
6888appropriate type to the program. If "NumElements" is specified, it is
6889the number of elements allocated, otherwise "NumElements" is defaulted
6890to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006891allocation is guaranteed to be aligned to at least that boundary. The
6892alignment may not be greater than ``1 << 29``. If not specified, or if
6893zero, the target can choose to align the allocation on any convenient
6894boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006895
6896'``type``' may be any sized type.
6897
6898Semantics:
6899""""""""""
6900
6901Memory is allocated; a pointer is returned. The operation is undefined
6902if there is insufficient stack space for the allocation. '``alloca``'d
6903memory is automatically released when the function returns. The
6904'``alloca``' instruction is commonly used to represent automatic
6905variables that must have an address available. When the function returns
6906(either with the ``ret`` or ``resume`` instructions), the memory is
6907reclaimed. Allocating zero bytes is legal, but the result is undefined.
6908The order in which memory is allocated (ie., which way the stack grows)
6909is not specified.
6910
6911Example:
6912""""""""
6913
6914.. code-block:: llvm
6915
Tim Northover675a0962014-06-13 14:24:23 +00006916 %ptr = alloca i32 ; yields i32*:ptr
6917 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6918 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6919 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006920
6921.. _i_load:
6922
6923'``load``' Instruction
6924^^^^^^^^^^^^^^^^^^^^^^
6925
6926Syntax:
6927"""""""
6928
6929::
6930
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006931 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00006932 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006933 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006934 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006935 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006936
6937Overview:
6938"""""""""
6939
6940The '``load``' instruction is used to read from memory.
6941
6942Arguments:
6943""""""""""
6944
Eli Bendersky239a78b2013-04-17 20:17:08 +00006945The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006946from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006947class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6948then the optimizer is not allowed to modify the number or order of
6949execution of this ``load`` with other :ref:`volatile
6950operations <volatile>`.
6951
JF Bastiend1fb5852015-12-17 22:09:19 +00006952If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6953<ordering>` and optional ``singlethread`` argument. The ``release`` and
6954``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
6955produce :ref:`defined <memmodel>` results when they may see multiple atomic
6956stores. The type of the pointee must be an integer, pointer, or floating-point
6957type whose bit width is a power of two greater than or equal to eight and less
6958than or equal to a target-specific size limit. ``align`` must be explicitly
6959specified on atomic loads, and the load has undefined behavior if the alignment
6960is not set to a value which is at least the size in bytes of the
6961pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00006962
6963The optional constant ``align`` argument specifies the alignment of the
6964operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006965or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006966alignment for the target. It is the responsibility of the code emitter
6967to ensure that the alignment information is correct. Overestimating the
6968alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006969may produce less efficient code. An alignment of 1 is always safe. The
6970maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006971
6972The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006973metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006974``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006975metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006976that this load is not expected to be reused in the cache. The code
6977generator may select special instructions to save cache bandwidth, such
6978as the ``MOVNT`` instruction on x86.
6979
6980The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006981metadata name ``<index>`` corresponding to a metadata node with no
6982entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006983instruction tells the optimizer and code generator that the address
6984operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006985Being invariant does not imply that a location is dereferenceable,
6986but it does imply that once the location is known dereferenceable
6987its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006988
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006989The optional ``!invariant.group`` metadata must reference a single metadata name
6990 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6991
Philip Reamescdb72f32014-10-20 22:40:55 +00006992The optional ``!nonnull`` metadata must reference a single
6993metadata name ``<index>`` corresponding to a metadata node with no
6994entries. The existence of the ``!nonnull`` metadata on the
6995instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006996never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006997on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006998to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006999
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007000The optional ``!dereferenceable`` metadata must reference a single metadata
7001name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007002entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007003tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007004The number of bytes known to be dereferenceable is specified by the integer
7005value in the metadata node. This is analogous to the ''dereferenceable''
7006attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007007to loads of a pointer type.
7008
7009The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007010metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7011``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007012instruction tells the optimizer that the value loaded is known to be either
7013dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007014The number of bytes known to be dereferenceable is specified by the integer
7015value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7016attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007017to loads of a pointer type.
7018
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007019The optional ``!align`` metadata must reference a single metadata name
7020``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7021The existence of the ``!align`` metadata on the instruction tells the
7022optimizer that the value loaded is known to be aligned to a boundary specified
7023by the integer value in the metadata node. The alignment must be a power of 2.
7024This is analogous to the ''align'' attribute on parameters and return values.
7025This metadata can only be applied to loads of a pointer type.
7026
Sean Silvab084af42012-12-07 10:36:55 +00007027Semantics:
7028""""""""""
7029
7030The location of memory pointed to is loaded. If the value being loaded
7031is of scalar type then the number of bytes read does not exceed the
7032minimum number of bytes needed to hold all bits of the type. For
7033example, loading an ``i24`` reads at most three bytes. When loading a
7034value of a type like ``i20`` with a size that is not an integral number
7035of bytes, the result is undefined if the value was not originally
7036written using a store of the same type.
7037
7038Examples:
7039"""""""""
7040
7041.. code-block:: llvm
7042
Tim Northover675a0962014-06-13 14:24:23 +00007043 %ptr = alloca i32 ; yields i32*:ptr
7044 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007045 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007046
7047.. _i_store:
7048
7049'``store``' Instruction
7050^^^^^^^^^^^^^^^^^^^^^^^
7051
7052Syntax:
7053"""""""
7054
7055::
7056
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007057 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7058 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007059
7060Overview:
7061"""""""""
7062
7063The '``store``' instruction is used to write to memory.
7064
7065Arguments:
7066""""""""""
7067
Eli Benderskyca380842013-04-17 17:17:20 +00007068There are two arguments to the ``store`` instruction: a value to store
7069and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00007070operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00007071the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00007072then the optimizer is not allowed to modify the number or order of
7073execution of this ``store`` with other :ref:`volatile
7074operations <volatile>`.
7075
JF Bastiend1fb5852015-12-17 22:09:19 +00007076If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7077<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7078``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7079produce :ref:`defined <memmodel>` results when they may see multiple atomic
7080stores. The type of the pointee must be an integer, pointer, or floating-point
7081type whose bit width is a power of two greater than or equal to eight and less
7082than or equal to a target-specific size limit. ``align`` must be explicitly
7083specified on atomic stores, and the store has undefined behavior if the
7084alignment is not set to a value which is at least the size in bytes of the
7085pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007086
Eli Benderskyca380842013-04-17 17:17:20 +00007087The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007088operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007089or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007090alignment for the target. It is the responsibility of the code emitter
7091to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007092alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007093alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007094safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007095
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007096The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007097name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007098value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007099tells the optimizer and code generator that this load is not expected to
7100be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007101instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007102x86.
7103
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007104The optional ``!invariant.group`` metadata must reference a
7105single metadata name ``<index>``. See ``invariant.group`` metadata.
7106
Sean Silvab084af42012-12-07 10:36:55 +00007107Semantics:
7108""""""""""
7109
Eli Benderskyca380842013-04-17 17:17:20 +00007110The contents of memory are updated to contain ``<value>`` at the
7111location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007112of scalar type then the number of bytes written does not exceed the
7113minimum number of bytes needed to hold all bits of the type. For
7114example, storing an ``i24`` writes at most three bytes. When writing a
7115value of a type like ``i20`` with a size that is not an integral number
7116of bytes, it is unspecified what happens to the extra bits that do not
7117belong to the type, but they will typically be overwritten.
7118
7119Example:
7120""""""""
7121
7122.. code-block:: llvm
7123
Tim Northover675a0962014-06-13 14:24:23 +00007124 %ptr = alloca i32 ; yields i32*:ptr
7125 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007126 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007127
7128.. _i_fence:
7129
7130'``fence``' Instruction
7131^^^^^^^^^^^^^^^^^^^^^^^
7132
7133Syntax:
7134"""""""
7135
7136::
7137
Tim Northover675a0962014-06-13 14:24:23 +00007138 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007139
7140Overview:
7141"""""""""
7142
7143The '``fence``' instruction is used to introduce happens-before edges
7144between operations.
7145
7146Arguments:
7147""""""""""
7148
7149'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7150defines what *synchronizes-with* edges they add. They can only be given
7151``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7152
7153Semantics:
7154""""""""""
7155
7156A fence A which has (at least) ``release`` ordering semantics
7157*synchronizes with* a fence B with (at least) ``acquire`` ordering
7158semantics if and only if there exist atomic operations X and Y, both
7159operating on some atomic object M, such that A is sequenced before X, X
7160modifies M (either directly or through some side effect of a sequence
7161headed by X), Y is sequenced before B, and Y observes M. This provides a
7162*happens-before* dependency between A and B. Rather than an explicit
7163``fence``, one (but not both) of the atomic operations X or Y might
7164provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7165still *synchronize-with* the explicit ``fence`` and establish the
7166*happens-before* edge.
7167
7168A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7169``acquire`` and ``release`` semantics specified above, participates in
7170the global program order of other ``seq_cst`` operations and/or fences.
7171
7172The optional ":ref:`singlethread <singlethread>`" argument specifies
7173that the fence only synchronizes with other fences in the same thread.
7174(This is useful for interacting with signal handlers.)
7175
7176Example:
7177""""""""
7178
7179.. code-block:: llvm
7180
Tim Northover675a0962014-06-13 14:24:23 +00007181 fence acquire ; yields void
7182 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007183
7184.. _i_cmpxchg:
7185
7186'``cmpxchg``' Instruction
7187^^^^^^^^^^^^^^^^^^^^^^^^^
7188
7189Syntax:
7190"""""""
7191
7192::
7193
Tim Northover675a0962014-06-13 14:24:23 +00007194 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007195
7196Overview:
7197"""""""""
7198
7199The '``cmpxchg``' instruction is used to atomically modify memory. It
7200loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007201equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007202
7203Arguments:
7204""""""""""
7205
7206There are three arguments to the '``cmpxchg``' instruction: an address
7207to operate on, a value to compare to the value currently be at that
7208address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007209are equal. The type of '<cmp>' must be an integer or pointer type whose
7210bit width is a power of two greater than or equal to eight and less
7211than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7212have the same type, and the type of '<pointer>' must be a pointer to
7213that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7214optimizer is not allowed to modify the number or order of execution of
7215this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007216
Tim Northovere94a5182014-03-11 10:48:52 +00007217The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007218``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7219must be at least ``monotonic``, the ordering constraint on failure must be no
7220stronger than that on success, and the failure ordering cannot be either
7221``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007222
7223The optional "``singlethread``" argument declares that the ``cmpxchg``
7224is only atomic with respect to code (usually signal handlers) running in
7225the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7226respect to all other code in the system.
7227
7228The pointer passed into cmpxchg must have alignment greater than or
7229equal to the size in memory of the operand.
7230
7231Semantics:
7232""""""""""
7233
Tim Northover420a2162014-06-13 14:24:07 +00007234The contents of memory at the location specified by the '``<pointer>``' operand
7235is read and compared to '``<cmp>``'; if the read value is the equal, the
7236'``<new>``' is written. The original value at the location is returned, together
7237with a flag indicating success (true) or failure (false).
7238
7239If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7240permitted: the operation may not write ``<new>`` even if the comparison
7241matched.
7242
7243If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7244if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007245
Tim Northovere94a5182014-03-11 10:48:52 +00007246A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7247identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7248load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007249
7250Example:
7251""""""""
7252
7253.. code-block:: llvm
7254
7255 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007256 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007257 br label %loop
7258
7259 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007260 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007261 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007262 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007263 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7264 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007265 br i1 %success, label %done, label %loop
7266
7267 done:
7268 ...
7269
7270.. _i_atomicrmw:
7271
7272'``atomicrmw``' Instruction
7273^^^^^^^^^^^^^^^^^^^^^^^^^^^
7274
7275Syntax:
7276"""""""
7277
7278::
7279
Tim Northover675a0962014-06-13 14:24:23 +00007280 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007281
7282Overview:
7283"""""""""
7284
7285The '``atomicrmw``' instruction is used to atomically modify memory.
7286
7287Arguments:
7288""""""""""
7289
7290There are three arguments to the '``atomicrmw``' instruction: an
7291operation to apply, an address whose value to modify, an argument to the
7292operation. The operation must be one of the following keywords:
7293
7294- xchg
7295- add
7296- sub
7297- and
7298- nand
7299- or
7300- xor
7301- max
7302- min
7303- umax
7304- umin
7305
7306The type of '<value>' must be an integer type whose bit width is a power
7307of two greater than or equal to eight and less than or equal to a
7308target-specific size limit. The type of the '``<pointer>``' operand must
7309be a pointer to that type. If the ``atomicrmw`` is marked as
7310``volatile``, then the optimizer is not allowed to modify the number or
7311order of execution of this ``atomicrmw`` with other :ref:`volatile
7312operations <volatile>`.
7313
7314Semantics:
7315""""""""""
7316
7317The contents of memory at the location specified by the '``<pointer>``'
7318operand are atomically read, modified, and written back. The original
7319value at the location is returned. The modification is specified by the
7320operation argument:
7321
7322- xchg: ``*ptr = val``
7323- add: ``*ptr = *ptr + val``
7324- sub: ``*ptr = *ptr - val``
7325- and: ``*ptr = *ptr & val``
7326- nand: ``*ptr = ~(*ptr & val)``
7327- or: ``*ptr = *ptr | val``
7328- xor: ``*ptr = *ptr ^ val``
7329- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7330- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7331- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7332 comparison)
7333- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7334 comparison)
7335
7336Example:
7337""""""""
7338
7339.. code-block:: llvm
7340
Tim Northover675a0962014-06-13 14:24:23 +00007341 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007342
7343.. _i_getelementptr:
7344
7345'``getelementptr``' Instruction
7346^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7347
7348Syntax:
7349"""""""
7350
7351::
7352
David Blaikie16a97eb2015-03-04 22:02:58 +00007353 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7354 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7355 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007356
7357Overview:
7358"""""""""
7359
7360The '``getelementptr``' instruction is used to get the address of a
7361subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007362address calculation only and does not access memory. The instruction can also
7363be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007364
7365Arguments:
7366""""""""""
7367
David Blaikie16a97eb2015-03-04 22:02:58 +00007368The first argument is always a type used as the basis for the calculations.
7369The second argument is always a pointer or a vector of pointers, and is the
7370base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007371that indicate which of the elements of the aggregate object are indexed.
7372The interpretation of each index is dependent on the type being indexed
7373into. The first index always indexes the pointer value given as the
7374first argument, the second index indexes a value of the type pointed to
7375(not necessarily the value directly pointed to, since the first index
7376can be non-zero), etc. The first type indexed into must be a pointer
7377value, subsequent types can be arrays, vectors, and structs. Note that
7378subsequent types being indexed into can never be pointers, since that
7379would require loading the pointer before continuing calculation.
7380
7381The type of each index argument depends on the type it is indexing into.
7382When indexing into a (optionally packed) structure, only ``i32`` integer
7383**constants** are allowed (when using a vector of indices they must all
7384be the **same** ``i32`` integer constant). When indexing into an array,
7385pointer or vector, integers of any width are allowed, and they are not
7386required to be constant. These integers are treated as signed values
7387where relevant.
7388
7389For example, let's consider a C code fragment and how it gets compiled
7390to LLVM:
7391
7392.. code-block:: c
7393
7394 struct RT {
7395 char A;
7396 int B[10][20];
7397 char C;
7398 };
7399 struct ST {
7400 int X;
7401 double Y;
7402 struct RT Z;
7403 };
7404
7405 int *foo(struct ST *s) {
7406 return &s[1].Z.B[5][13];
7407 }
7408
7409The LLVM code generated by Clang is:
7410
7411.. code-block:: llvm
7412
7413 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7414 %struct.ST = type { i32, double, %struct.RT }
7415
7416 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7417 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007418 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007419 ret i32* %arrayidx
7420 }
7421
7422Semantics:
7423""""""""""
7424
7425In the example above, the first index is indexing into the
7426'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7427= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7428indexes into the third element of the structure, yielding a
7429'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7430structure. The third index indexes into the second element of the
7431structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7432dimensions of the array are subscripted into, yielding an '``i32``'
7433type. The '``getelementptr``' instruction returns a pointer to this
7434element, thus computing a value of '``i32*``' type.
7435
7436Note that it is perfectly legal to index partially through a structure,
7437returning a pointer to an inner element. Because of this, the LLVM code
7438for the given testcase is equivalent to:
7439
7440.. code-block:: llvm
7441
7442 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007443 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7444 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7445 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7446 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7447 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007448 ret i32* %t5
7449 }
7450
7451If the ``inbounds`` keyword is present, the result value of the
7452``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7453pointer is not an *in bounds* address of an allocated object, or if any
7454of the addresses that would be formed by successive addition of the
7455offsets implied by the indices to the base address with infinitely
7456precise signed arithmetic are not an *in bounds* address of that
7457allocated object. The *in bounds* addresses for an allocated object are
7458all the addresses that point into the object, plus the address one byte
7459past the end. In cases where the base is a vector of pointers the
7460``inbounds`` keyword applies to each of the computations element-wise.
7461
7462If the ``inbounds`` keyword is not present, the offsets are added to the
7463base address with silently-wrapping two's complement arithmetic. If the
7464offsets have a different width from the pointer, they are sign-extended
7465or truncated to the width of the pointer. The result value of the
7466``getelementptr`` may be outside the object pointed to by the base
7467pointer. The result value may not necessarily be used to access memory
7468though, even if it happens to point into allocated storage. See the
7469:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7470information.
7471
7472The getelementptr instruction is often confusing. For some more insight
7473into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7474
7475Example:
7476""""""""
7477
7478.. code-block:: llvm
7479
7480 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007481 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007482 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007483 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007484 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007485 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007486 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007487 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007488
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007489Vector of pointers:
7490"""""""""""""""""""
7491
7492The ``getelementptr`` returns a vector of pointers, instead of a single address,
7493when one or more of its arguments is a vector. In such cases, all vector
7494arguments should have the same number of elements, and every scalar argument
7495will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007496
7497.. code-block:: llvm
7498
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007499 ; All arguments are vectors:
7500 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7501 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007502
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007503 ; Add the same scalar offset to each pointer of a vector:
7504 ; A[i] = ptrs[i] + offset*sizeof(i8)
7505 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007506
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007507 ; Add distinct offsets to the same pointer:
7508 ; A[i] = ptr + offsets[i]*sizeof(i8)
7509 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007510
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007511 ; In all cases described above the type of the result is <4 x i8*>
7512
7513The two following instructions are equivalent:
7514
7515.. code-block:: llvm
7516
7517 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7518 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7519 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7520 <4 x i32> %ind4,
7521 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007522
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007523 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7524 i32 2, i32 1, <4 x i32> %ind4, i64 13
7525
7526Let's look at the C code, where the vector version of ``getelementptr``
7527makes sense:
7528
7529.. code-block:: c
7530
7531 // Let's assume that we vectorize the following loop:
7532 double *A, B; int *C;
7533 for (int i = 0; i < size; ++i) {
7534 A[i] = B[C[i]];
7535 }
7536
7537.. code-block:: llvm
7538
7539 ; get pointers for 8 elements from array B
7540 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7541 ; load 8 elements from array B into A
7542 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7543 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007544
7545Conversion Operations
7546---------------------
7547
7548The instructions in this category are the conversion instructions
7549(casting) which all take a single operand and a type. They perform
7550various bit conversions on the operand.
7551
7552'``trunc .. to``' Instruction
7553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7554
7555Syntax:
7556"""""""
7557
7558::
7559
7560 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7561
7562Overview:
7563"""""""""
7564
7565The '``trunc``' instruction truncates its operand to the type ``ty2``.
7566
7567Arguments:
7568""""""""""
7569
7570The '``trunc``' instruction takes a value to trunc, and a type to trunc
7571it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7572of the same number of integers. The bit size of the ``value`` must be
7573larger than the bit size of the destination type, ``ty2``. Equal sized
7574types are not allowed.
7575
7576Semantics:
7577""""""""""
7578
7579The '``trunc``' instruction truncates the high order bits in ``value``
7580and converts the remaining bits to ``ty2``. Since the source size must
7581be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7582It will always truncate bits.
7583
7584Example:
7585""""""""
7586
7587.. code-block:: llvm
7588
7589 %X = trunc i32 257 to i8 ; yields i8:1
7590 %Y = trunc i32 123 to i1 ; yields i1:true
7591 %Z = trunc i32 122 to i1 ; yields i1:false
7592 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7593
7594'``zext .. to``' Instruction
7595^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7596
7597Syntax:
7598"""""""
7599
7600::
7601
7602 <result> = zext <ty> <value> to <ty2> ; yields ty2
7603
7604Overview:
7605"""""""""
7606
7607The '``zext``' instruction zero extends its operand to type ``ty2``.
7608
7609Arguments:
7610""""""""""
7611
7612The '``zext``' instruction takes a value to cast, and a type to cast it
7613to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7614the same number of integers. The bit size of the ``value`` must be
7615smaller than the bit size of the destination type, ``ty2``.
7616
7617Semantics:
7618""""""""""
7619
7620The ``zext`` fills the high order bits of the ``value`` with zero bits
7621until it reaches the size of the destination type, ``ty2``.
7622
7623When zero extending from i1, the result will always be either 0 or 1.
7624
7625Example:
7626""""""""
7627
7628.. code-block:: llvm
7629
7630 %X = zext i32 257 to i64 ; yields i64:257
7631 %Y = zext i1 true to i32 ; yields i32:1
7632 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7633
7634'``sext .. to``' Instruction
7635^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7636
7637Syntax:
7638"""""""
7639
7640::
7641
7642 <result> = sext <ty> <value> to <ty2> ; yields ty2
7643
7644Overview:
7645"""""""""
7646
7647The '``sext``' sign extends ``value`` to the type ``ty2``.
7648
7649Arguments:
7650""""""""""
7651
7652The '``sext``' instruction takes a value to cast, and a type to cast it
7653to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7654the same number of integers. The bit size of the ``value`` must be
7655smaller than the bit size of the destination type, ``ty2``.
7656
7657Semantics:
7658""""""""""
7659
7660The '``sext``' instruction performs a sign extension by copying the sign
7661bit (highest order bit) of the ``value`` until it reaches the bit size
7662of the type ``ty2``.
7663
7664When sign extending from i1, the extension always results in -1 or 0.
7665
7666Example:
7667""""""""
7668
7669.. code-block:: llvm
7670
7671 %X = sext i8 -1 to i16 ; yields i16 :65535
7672 %Y = sext i1 true to i32 ; yields i32:-1
7673 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7674
7675'``fptrunc .. to``' Instruction
7676^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7677
7678Syntax:
7679"""""""
7680
7681::
7682
7683 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7684
7685Overview:
7686"""""""""
7687
7688The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7689
7690Arguments:
7691""""""""""
7692
7693The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7694value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7695The size of ``value`` must be larger than the size of ``ty2``. This
7696implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7697
7698Semantics:
7699""""""""""
7700
Dan Liew50456fb2015-09-03 18:43:56 +00007701The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007702:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007703point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7704destination type, ``ty2``, then the results are undefined. If the cast produces
7705an inexact result, how rounding is performed (e.g. truncation, also known as
7706round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007707
7708Example:
7709""""""""
7710
7711.. code-block:: llvm
7712
7713 %X = fptrunc double 123.0 to float ; yields float:123.0
7714 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7715
7716'``fpext .. to``' Instruction
7717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7718
7719Syntax:
7720"""""""
7721
7722::
7723
7724 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7725
7726Overview:
7727"""""""""
7728
7729The '``fpext``' extends a floating point ``value`` to a larger floating
7730point value.
7731
7732Arguments:
7733""""""""""
7734
7735The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7736``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7737to. The source type must be smaller than the destination type.
7738
7739Semantics:
7740""""""""""
7741
7742The '``fpext``' instruction extends the ``value`` from a smaller
7743:ref:`floating point <t_floating>` type to a larger :ref:`floating
7744point <t_floating>` type. The ``fpext`` cannot be used to make a
7745*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7746*no-op cast* for a floating point cast.
7747
7748Example:
7749""""""""
7750
7751.. code-block:: llvm
7752
7753 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7754 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7755
7756'``fptoui .. to``' Instruction
7757^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7758
7759Syntax:
7760"""""""
7761
7762::
7763
7764 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7765
7766Overview:
7767"""""""""
7768
7769The '``fptoui``' converts a floating point ``value`` to its unsigned
7770integer equivalent of type ``ty2``.
7771
7772Arguments:
7773""""""""""
7774
7775The '``fptoui``' instruction takes a value to cast, which must be a
7776scalar or vector :ref:`floating point <t_floating>` value, and a type to
7777cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7778``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7779type with the same number of elements as ``ty``
7780
7781Semantics:
7782""""""""""
7783
7784The '``fptoui``' instruction converts its :ref:`floating
7785point <t_floating>` operand into the nearest (rounding towards zero)
7786unsigned integer value. If the value cannot fit in ``ty2``, the results
7787are undefined.
7788
7789Example:
7790""""""""
7791
7792.. code-block:: llvm
7793
7794 %X = fptoui double 123.0 to i32 ; yields i32:123
7795 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7796 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7797
7798'``fptosi .. to``' Instruction
7799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7800
7801Syntax:
7802"""""""
7803
7804::
7805
7806 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7807
7808Overview:
7809"""""""""
7810
7811The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7812``value`` to type ``ty2``.
7813
7814Arguments:
7815""""""""""
7816
7817The '``fptosi``' instruction takes a value to cast, which must be a
7818scalar or vector :ref:`floating point <t_floating>` value, and a type to
7819cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7820``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7821type with the same number of elements as ``ty``
7822
7823Semantics:
7824""""""""""
7825
7826The '``fptosi``' instruction converts its :ref:`floating
7827point <t_floating>` operand into the nearest (rounding towards zero)
7828signed integer value. If the value cannot fit in ``ty2``, the results
7829are undefined.
7830
7831Example:
7832""""""""
7833
7834.. code-block:: llvm
7835
7836 %X = fptosi double -123.0 to i32 ; yields i32:-123
7837 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7838 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7839
7840'``uitofp .. to``' Instruction
7841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7842
7843Syntax:
7844"""""""
7845
7846::
7847
7848 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7849
7850Overview:
7851"""""""""
7852
7853The '``uitofp``' instruction regards ``value`` as an unsigned integer
7854and converts that value to the ``ty2`` type.
7855
7856Arguments:
7857""""""""""
7858
7859The '``uitofp``' instruction takes a value to cast, which must be a
7860scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7861``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7862``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7863type with the same number of elements as ``ty``
7864
7865Semantics:
7866""""""""""
7867
7868The '``uitofp``' instruction interprets its operand as an unsigned
7869integer quantity and converts it to the corresponding floating point
7870value. If the value cannot fit in the floating point value, the results
7871are undefined.
7872
7873Example:
7874""""""""
7875
7876.. code-block:: llvm
7877
7878 %X = uitofp i32 257 to float ; yields float:257.0
7879 %Y = uitofp i8 -1 to double ; yields double:255.0
7880
7881'``sitofp .. to``' Instruction
7882^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7883
7884Syntax:
7885"""""""
7886
7887::
7888
7889 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7890
7891Overview:
7892"""""""""
7893
7894The '``sitofp``' instruction regards ``value`` as a signed integer and
7895converts that value to the ``ty2`` type.
7896
7897Arguments:
7898""""""""""
7899
7900The '``sitofp``' instruction takes a value to cast, which must be a
7901scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7902``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7903``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7904type with the same number of elements as ``ty``
7905
7906Semantics:
7907""""""""""
7908
7909The '``sitofp``' instruction interprets its operand as a signed integer
7910quantity and converts it to the corresponding floating point value. If
7911the value cannot fit in the floating point value, the results are
7912undefined.
7913
7914Example:
7915""""""""
7916
7917.. code-block:: llvm
7918
7919 %X = sitofp i32 257 to float ; yields float:257.0
7920 %Y = sitofp i8 -1 to double ; yields double:-1.0
7921
7922.. _i_ptrtoint:
7923
7924'``ptrtoint .. to``' Instruction
7925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7926
7927Syntax:
7928"""""""
7929
7930::
7931
7932 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7933
7934Overview:
7935"""""""""
7936
7937The '``ptrtoint``' instruction converts the pointer or a vector of
7938pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7939
7940Arguments:
7941""""""""""
7942
7943The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007944a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007945type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7946a vector of integers type.
7947
7948Semantics:
7949""""""""""
7950
7951The '``ptrtoint``' instruction converts ``value`` to integer type
7952``ty2`` by interpreting the pointer value as an integer and either
7953truncating or zero extending that value to the size of the integer type.
7954If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7955``value`` is larger than ``ty2`` then a truncation is done. If they are
7956the same size, then nothing is done (*no-op cast*) other than a type
7957change.
7958
7959Example:
7960""""""""
7961
7962.. code-block:: llvm
7963
7964 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7965 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7966 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7967
7968.. _i_inttoptr:
7969
7970'``inttoptr .. to``' Instruction
7971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7972
7973Syntax:
7974"""""""
7975
7976::
7977
7978 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7979
7980Overview:
7981"""""""""
7982
7983The '``inttoptr``' instruction converts an integer ``value`` to a
7984pointer type, ``ty2``.
7985
7986Arguments:
7987""""""""""
7988
7989The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7990cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7991type.
7992
7993Semantics:
7994""""""""""
7995
7996The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7997applying either a zero extension or a truncation depending on the size
7998of the integer ``value``. If ``value`` is larger than the size of a
7999pointer then a truncation is done. If ``value`` is smaller than the size
8000of a pointer then a zero extension is done. If they are the same size,
8001nothing is done (*no-op cast*).
8002
8003Example:
8004""""""""
8005
8006.. code-block:: llvm
8007
8008 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8009 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8010 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8011 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8012
8013.. _i_bitcast:
8014
8015'``bitcast .. to``' Instruction
8016^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8017
8018Syntax:
8019"""""""
8020
8021::
8022
8023 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8024
8025Overview:
8026"""""""""
8027
8028The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8029changing any bits.
8030
8031Arguments:
8032""""""""""
8033
8034The '``bitcast``' instruction takes a value to cast, which must be a
8035non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008036also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8037bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008038identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008039also be a pointer of the same size. This instruction supports bitwise
8040conversion of vectors to integers and to vectors of other types (as
8041long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008042
8043Semantics:
8044""""""""""
8045
Matt Arsenault24b49c42013-07-31 17:49:08 +00008046The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8047is always a *no-op cast* because no bits change with this
8048conversion. The conversion is done as if the ``value`` had been stored
8049to memory and read back as type ``ty2``. Pointer (or vector of
8050pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008051pointers) types with the same address space through this instruction.
8052To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8053or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008054
8055Example:
8056""""""""
8057
8058.. code-block:: llvm
8059
8060 %X = bitcast i8 255 to i8 ; yields i8 :-1
8061 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8062 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8063 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8064
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008065.. _i_addrspacecast:
8066
8067'``addrspacecast .. to``' Instruction
8068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8069
8070Syntax:
8071"""""""
8072
8073::
8074
8075 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8076
8077Overview:
8078"""""""""
8079
8080The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8081address space ``n`` to type ``pty2`` in address space ``m``.
8082
8083Arguments:
8084""""""""""
8085
8086The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8087to cast and a pointer type to cast it to, which must have a different
8088address space.
8089
8090Semantics:
8091""""""""""
8092
8093The '``addrspacecast``' instruction converts the pointer value
8094``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008095value modification, depending on the target and the address space
8096pair. Pointer conversions within the same address space must be
8097performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008098conversion is legal then both result and operand refer to the same memory
8099location.
8100
8101Example:
8102""""""""
8103
8104.. code-block:: llvm
8105
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008106 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8107 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8108 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008109
Sean Silvab084af42012-12-07 10:36:55 +00008110.. _otherops:
8111
8112Other Operations
8113----------------
8114
8115The instructions in this category are the "miscellaneous" instructions,
8116which defy better classification.
8117
8118.. _i_icmp:
8119
8120'``icmp``' Instruction
8121^^^^^^^^^^^^^^^^^^^^^^
8122
8123Syntax:
8124"""""""
8125
8126::
8127
Tim Northover675a0962014-06-13 14:24:23 +00008128 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008129
8130Overview:
8131"""""""""
8132
8133The '``icmp``' instruction returns a boolean value or a vector of
8134boolean values based on comparison of its two integer, integer vector,
8135pointer, or pointer vector operands.
8136
8137Arguments:
8138""""""""""
8139
8140The '``icmp``' instruction takes three operands. The first operand is
8141the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008142not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008143
8144#. ``eq``: equal
8145#. ``ne``: not equal
8146#. ``ugt``: unsigned greater than
8147#. ``uge``: unsigned greater or equal
8148#. ``ult``: unsigned less than
8149#. ``ule``: unsigned less or equal
8150#. ``sgt``: signed greater than
8151#. ``sge``: signed greater or equal
8152#. ``slt``: signed less than
8153#. ``sle``: signed less or equal
8154
8155The remaining two arguments must be :ref:`integer <t_integer>` or
8156:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8157must also be identical types.
8158
8159Semantics:
8160""""""""""
8161
8162The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8163code given as ``cond``. The comparison performed always yields either an
8164:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8165
8166#. ``eq``: yields ``true`` if the operands are equal, ``false``
8167 otherwise. No sign interpretation is necessary or performed.
8168#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8169 otherwise. No sign interpretation is necessary or performed.
8170#. ``ugt``: interprets the operands as unsigned values and yields
8171 ``true`` if ``op1`` is greater than ``op2``.
8172#. ``uge``: interprets the operands as unsigned values and yields
8173 ``true`` if ``op1`` is greater than or equal to ``op2``.
8174#. ``ult``: interprets the operands as unsigned values and yields
8175 ``true`` if ``op1`` is less than ``op2``.
8176#. ``ule``: interprets the operands as unsigned values and yields
8177 ``true`` if ``op1`` is less than or equal to ``op2``.
8178#. ``sgt``: interprets the operands as signed values and yields ``true``
8179 if ``op1`` is greater than ``op2``.
8180#. ``sge``: interprets the operands as signed values and yields ``true``
8181 if ``op1`` is greater than or equal to ``op2``.
8182#. ``slt``: interprets the operands as signed values and yields ``true``
8183 if ``op1`` is less than ``op2``.
8184#. ``sle``: interprets the operands as signed values and yields ``true``
8185 if ``op1`` is less than or equal to ``op2``.
8186
8187If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8188are compared as if they were integers.
8189
8190If the operands are integer vectors, then they are compared element by
8191element. The result is an ``i1`` vector with the same number of elements
8192as the values being compared. Otherwise, the result is an ``i1``.
8193
8194Example:
8195""""""""
8196
8197.. code-block:: llvm
8198
8199 <result> = icmp eq i32 4, 5 ; yields: result=false
8200 <result> = icmp ne float* %X, %X ; yields: result=false
8201 <result> = icmp ult i16 4, 5 ; yields: result=true
8202 <result> = icmp sgt i16 4, 5 ; yields: result=false
8203 <result> = icmp ule i16 -4, 5 ; yields: result=false
8204 <result> = icmp sge i16 4, 5 ; yields: result=false
8205
8206Note that the code generator does not yet support vector types with the
8207``icmp`` instruction.
8208
8209.. _i_fcmp:
8210
8211'``fcmp``' Instruction
8212^^^^^^^^^^^^^^^^^^^^^^
8213
8214Syntax:
8215"""""""
8216
8217::
8218
James Molloy88eb5352015-07-10 12:52:00 +00008219 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008220
8221Overview:
8222"""""""""
8223
8224The '``fcmp``' instruction returns a boolean value or vector of boolean
8225values based on comparison of its operands.
8226
8227If the operands are floating point scalars, then the result type is a
8228boolean (:ref:`i1 <t_integer>`).
8229
8230If the operands are floating point vectors, then the result type is a
8231vector of boolean with the same number of elements as the operands being
8232compared.
8233
8234Arguments:
8235""""""""""
8236
8237The '``fcmp``' instruction takes three operands. The first operand is
8238the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008239not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008240
8241#. ``false``: no comparison, always returns false
8242#. ``oeq``: ordered and equal
8243#. ``ogt``: ordered and greater than
8244#. ``oge``: ordered and greater than or equal
8245#. ``olt``: ordered and less than
8246#. ``ole``: ordered and less than or equal
8247#. ``one``: ordered and not equal
8248#. ``ord``: ordered (no nans)
8249#. ``ueq``: unordered or equal
8250#. ``ugt``: unordered or greater than
8251#. ``uge``: unordered or greater than or equal
8252#. ``ult``: unordered or less than
8253#. ``ule``: unordered or less than or equal
8254#. ``une``: unordered or not equal
8255#. ``uno``: unordered (either nans)
8256#. ``true``: no comparison, always returns true
8257
8258*Ordered* means that neither operand is a QNAN while *unordered* means
8259that either operand may be a QNAN.
8260
8261Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8262point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8263type. They must have identical types.
8264
8265Semantics:
8266""""""""""
8267
8268The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8269condition code given as ``cond``. If the operands are vectors, then the
8270vectors are compared element by element. Each comparison performed
8271always yields an :ref:`i1 <t_integer>` result, as follows:
8272
8273#. ``false``: always yields ``false``, regardless of operands.
8274#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8275 is equal to ``op2``.
8276#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8277 is greater than ``op2``.
8278#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8279 is greater than or equal to ``op2``.
8280#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8281 is less than ``op2``.
8282#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8283 is less than or equal to ``op2``.
8284#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8285 is not equal to ``op2``.
8286#. ``ord``: yields ``true`` if both operands are not a QNAN.
8287#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8288 equal to ``op2``.
8289#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8290 greater than ``op2``.
8291#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8292 greater than or equal to ``op2``.
8293#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8294 less than ``op2``.
8295#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8296 less than or equal to ``op2``.
8297#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8298 not equal to ``op2``.
8299#. ``uno``: yields ``true`` if either operand is a QNAN.
8300#. ``true``: always yields ``true``, regardless of operands.
8301
James Molloy88eb5352015-07-10 12:52:00 +00008302The ``fcmp`` instruction can also optionally take any number of
8303:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8304otherwise unsafe floating point optimizations.
8305
8306Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8307only flags that have any effect on its semantics are those that allow
8308assumptions to be made about the values of input arguments; namely
8309``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8310
Sean Silvab084af42012-12-07 10:36:55 +00008311Example:
8312""""""""
8313
8314.. code-block:: llvm
8315
8316 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8317 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8318 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8319 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8320
8321Note that the code generator does not yet support vector types with the
8322``fcmp`` instruction.
8323
8324.. _i_phi:
8325
8326'``phi``' Instruction
8327^^^^^^^^^^^^^^^^^^^^^
8328
8329Syntax:
8330"""""""
8331
8332::
8333
8334 <result> = phi <ty> [ <val0>, <label0>], ...
8335
8336Overview:
8337"""""""""
8338
8339The '``phi``' instruction is used to implement the φ node in the SSA
8340graph representing the function.
8341
8342Arguments:
8343""""""""""
8344
8345The type of the incoming values is specified with the first type field.
8346After this, the '``phi``' instruction takes a list of pairs as
8347arguments, with one pair for each predecessor basic block of the current
8348block. Only values of :ref:`first class <t_firstclass>` type may be used as
8349the value arguments to the PHI node. Only labels may be used as the
8350label arguments.
8351
8352There must be no non-phi instructions between the start of a basic block
8353and the PHI instructions: i.e. PHI instructions must be first in a basic
8354block.
8355
8356For the purposes of the SSA form, the use of each incoming value is
8357deemed to occur on the edge from the corresponding predecessor block to
8358the current block (but after any definition of an '``invoke``'
8359instruction's return value on the same edge).
8360
8361Semantics:
8362""""""""""
8363
8364At runtime, the '``phi``' instruction logically takes on the value
8365specified by the pair corresponding to the predecessor basic block that
8366executed just prior to the current block.
8367
8368Example:
8369""""""""
8370
8371.. code-block:: llvm
8372
8373 Loop: ; Infinite loop that counts from 0 on up...
8374 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8375 %nextindvar = add i32 %indvar, 1
8376 br label %Loop
8377
8378.. _i_select:
8379
8380'``select``' Instruction
8381^^^^^^^^^^^^^^^^^^^^^^^^
8382
8383Syntax:
8384"""""""
8385
8386::
8387
8388 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8389
8390 selty is either i1 or {<N x i1>}
8391
8392Overview:
8393"""""""""
8394
8395The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008396condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008397
8398Arguments:
8399""""""""""
8400
8401The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8402values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008403class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008404
8405Semantics:
8406""""""""""
8407
8408If the condition is an i1 and it evaluates to 1, the instruction returns
8409the first value argument; otherwise, it returns the second value
8410argument.
8411
8412If the condition is a vector of i1, then the value arguments must be
8413vectors of the same size, and the selection is done element by element.
8414
David Majnemer40a0b592015-03-03 22:45:47 +00008415If the condition is an i1 and the value arguments are vectors of the
8416same size, then an entire vector is selected.
8417
Sean Silvab084af42012-12-07 10:36:55 +00008418Example:
8419""""""""
8420
8421.. code-block:: llvm
8422
8423 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8424
8425.. _i_call:
8426
8427'``call``' Instruction
8428^^^^^^^^^^^^^^^^^^^^^^
8429
8430Syntax:
8431"""""""
8432
8433::
8434
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008435 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008436 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008437
8438Overview:
8439"""""""""
8440
8441The '``call``' instruction represents a simple function call.
8442
8443Arguments:
8444""""""""""
8445
8446This instruction requires several arguments:
8447
Reid Kleckner5772b772014-04-24 20:14:34 +00008448#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008449 should perform tail call optimization. The ``tail`` marker is a hint that
8450 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008451 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008452 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008453
8454 #. The call will not cause unbounded stack growth if it is part of a
8455 recursive cycle in the call graph.
8456 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8457 forwarded in place.
8458
8459 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008460 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008461 rules:
8462
8463 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8464 or a pointer bitcast followed by a ret instruction.
8465 - The ret instruction must return the (possibly bitcasted) value
8466 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008467 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008468 parameters or return types may differ in pointee type, but not
8469 in address space.
8470 - The calling conventions of the caller and callee must match.
8471 - All ABI-impacting function attributes, such as sret, byval, inreg,
8472 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008473 - The callee must be varargs iff the caller is varargs. Bitcasting a
8474 non-varargs function to the appropriate varargs type is legal so
8475 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008476
8477 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8478 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008479
8480 - Caller and callee both have the calling convention ``fastcc``.
8481 - The call is in tail position (ret immediately follows call and ret
8482 uses value of call or is void).
8483 - Option ``-tailcallopt`` is enabled, or
8484 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008485 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008486 met. <CodeGenerator.html#tailcallopt>`_
8487
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008488#. The optional ``notail`` marker indicates that the optimizers should not add
8489 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8490 call optimization from being performed on the call.
8491
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008492#. The optional ``fast-math flags`` marker indicates that the call has one or more
8493 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8494 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8495 for calls that return a floating-point scalar or vector type.
8496
Sean Silvab084af42012-12-07 10:36:55 +00008497#. The optional "cconv" marker indicates which :ref:`calling
8498 convention <callingconv>` the call should use. If none is
8499 specified, the call defaults to using C calling conventions. The
8500 calling convention of the call must match the calling convention of
8501 the target function, or else the behavior is undefined.
8502#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8503 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8504 are valid here.
8505#. '``ty``': the type of the call instruction itself which is also the
8506 type of the return value. Functions that return no value are marked
8507 ``void``.
8508#. '``fnty``': shall be the signature of the pointer to function value
8509 being invoked. The argument types must match the types implied by
8510 this signature. This type can be omitted if the function is not
8511 varargs and if the function type does not return a pointer to a
8512 function.
8513#. '``fnptrval``': An LLVM value containing a pointer to a function to
8514 be invoked. In most cases, this is a direct function invocation, but
8515 indirect ``call``'s are just as possible, calling an arbitrary pointer
8516 to function value.
8517#. '``function args``': argument list whose types match the function
8518 signature argument types and parameter attributes. All arguments must
8519 be of :ref:`first class <t_firstclass>` type. If the function signature
8520 indicates the function accepts a variable number of arguments, the
8521 extra arguments can be specified.
8522#. The optional :ref:`function attributes <fnattrs>` list. Only
8523 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8524 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008525#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008526
8527Semantics:
8528""""""""""
8529
8530The '``call``' instruction is used to cause control flow to transfer to
8531a specified function, with its incoming arguments bound to the specified
8532values. Upon a '``ret``' instruction in the called function, control
8533flow continues with the instruction after the function call, and the
8534return value of the function is bound to the result argument.
8535
8536Example:
8537""""""""
8538
8539.. code-block:: llvm
8540
8541 %retval = call i32 @test(i32 %argc)
8542 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8543 %X = tail call i32 @foo() ; yields i32
8544 %Y = tail call fastcc i32 @foo() ; yields i32
8545 call void %foo(i8 97 signext)
8546
8547 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008548 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008549 %gr = extractvalue %struct.A %r, 0 ; yields i32
8550 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8551 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8552 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8553
8554llvm treats calls to some functions with names and arguments that match
8555the standard C99 library as being the C99 library functions, and may
8556perform optimizations or generate code for them under that assumption.
8557This is something we'd like to change in the future to provide better
8558support for freestanding environments and non-C-based languages.
8559
8560.. _i_va_arg:
8561
8562'``va_arg``' Instruction
8563^^^^^^^^^^^^^^^^^^^^^^^^
8564
8565Syntax:
8566"""""""
8567
8568::
8569
8570 <resultval> = va_arg <va_list*> <arglist>, <argty>
8571
8572Overview:
8573"""""""""
8574
8575The '``va_arg``' instruction is used to access arguments passed through
8576the "variable argument" area of a function call. It is used to implement
8577the ``va_arg`` macro in C.
8578
8579Arguments:
8580""""""""""
8581
8582This instruction takes a ``va_list*`` value and the type of the
8583argument. It returns a value of the specified argument type and
8584increments the ``va_list`` to point to the next argument. The actual
8585type of ``va_list`` is target specific.
8586
8587Semantics:
8588""""""""""
8589
8590The '``va_arg``' instruction loads an argument of the specified type
8591from the specified ``va_list`` and causes the ``va_list`` to point to
8592the next argument. For more information, see the variable argument
8593handling :ref:`Intrinsic Functions <int_varargs>`.
8594
8595It is legal for this instruction to be called in a function which does
8596not take a variable number of arguments, for example, the ``vfprintf``
8597function.
8598
8599``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8600function <intrinsics>` because it takes a type as an argument.
8601
8602Example:
8603""""""""
8604
8605See the :ref:`variable argument processing <int_varargs>` section.
8606
8607Note that the code generator does not yet fully support va\_arg on many
8608targets. Also, it does not currently support va\_arg with aggregate
8609types on any target.
8610
8611.. _i_landingpad:
8612
8613'``landingpad``' Instruction
8614^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8615
8616Syntax:
8617"""""""
8618
8619::
8620
David Majnemer7fddecc2015-06-17 20:52:32 +00008621 <resultval> = landingpad <resultty> <clause>+
8622 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008623
8624 <clause> := catch <type> <value>
8625 <clause> := filter <array constant type> <array constant>
8626
8627Overview:
8628"""""""""
8629
8630The '``landingpad``' instruction is used by `LLVM's exception handling
8631system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008632is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008633code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008634defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008635re-entry to the function. The ``resultval`` has the type ``resultty``.
8636
8637Arguments:
8638""""""""""
8639
David Majnemer7fddecc2015-06-17 20:52:32 +00008640The optional
Sean Silvab084af42012-12-07 10:36:55 +00008641``cleanup`` flag indicates that the landing pad block is a cleanup.
8642
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008643A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008644contains the global variable representing the "type" that may be caught
8645or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8646clause takes an array constant as its argument. Use
8647"``[0 x i8**] undef``" for a filter which cannot throw. The
8648'``landingpad``' instruction must contain *at least* one ``clause`` or
8649the ``cleanup`` flag.
8650
8651Semantics:
8652""""""""""
8653
8654The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008655:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008656therefore the "result type" of the ``landingpad`` instruction. As with
8657calling conventions, how the personality function results are
8658represented in LLVM IR is target specific.
8659
8660The clauses are applied in order from top to bottom. If two
8661``landingpad`` instructions are merged together through inlining, the
8662clauses from the calling function are appended to the list of clauses.
8663When the call stack is being unwound due to an exception being thrown,
8664the exception is compared against each ``clause`` in turn. If it doesn't
8665match any of the clauses, and the ``cleanup`` flag is not set, then
8666unwinding continues further up the call stack.
8667
8668The ``landingpad`` instruction has several restrictions:
8669
8670- A landing pad block is a basic block which is the unwind destination
8671 of an '``invoke``' instruction.
8672- A landing pad block must have a '``landingpad``' instruction as its
8673 first non-PHI instruction.
8674- There can be only one '``landingpad``' instruction within the landing
8675 pad block.
8676- A basic block that is not a landing pad block may not include a
8677 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008678
8679Example:
8680""""""""
8681
8682.. code-block:: llvm
8683
8684 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008685 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008686 catch i8** @_ZTIi
8687 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008688 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008689 cleanup
8690 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008691 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008692 catch i8** @_ZTIi
8693 filter [1 x i8**] [@_ZTId]
8694
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008695.. _i_catchpad:
8696
8697'``catchpad``' Instruction
8698^^^^^^^^^^^^^^^^^^^^^^^^^^
8699
8700Syntax:
8701"""""""
8702
8703::
8704
8705 <resultval> = catchpad within <catchswitch> [<args>*]
8706
8707Overview:
8708"""""""""
8709
8710The '``catchpad``' instruction is used by `LLVM's exception handling
8711system <ExceptionHandling.html#overview>`_ to specify that a basic block
8712begins a catch handler --- one where a personality routine attempts to transfer
8713control to catch an exception.
8714
8715Arguments:
8716""""""""""
8717
8718The ``catchswitch`` operand must always be a token produced by a
8719:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8720ensures that each ``catchpad`` has exactly one predecessor block, and it always
8721terminates in a ``catchswitch``.
8722
8723The ``args`` correspond to whatever information the personality routine
8724requires to know if this is an appropriate handler for the exception. Control
8725will transfer to the ``catchpad`` if this is the first appropriate handler for
8726the exception.
8727
8728The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8729``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8730pads.
8731
8732Semantics:
8733""""""""""
8734
8735When the call stack is being unwound due to an exception being thrown, the
8736exception is compared against the ``args``. If it doesn't match, control will
8737not reach the ``catchpad`` instruction. The representation of ``args`` is
8738entirely target and personality function-specific.
8739
8740Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8741instruction must be the first non-phi of its parent basic block.
8742
8743The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8744instructions is described in the
8745`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8746
8747When a ``catchpad`` has been "entered" but not yet "exited" (as
8748described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8749it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8750that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8751
8752Example:
8753""""""""
8754
8755.. code-block:: llvm
8756
8757 dispatch:
8758 %cs = catchswitch within none [label %handler0] unwind to caller
8759 ;; A catch block which can catch an integer.
8760 handler0:
8761 %tok = catchpad within %cs [i8** @_ZTIi]
8762
David Majnemer654e1302015-07-31 17:58:14 +00008763.. _i_cleanuppad:
8764
8765'``cleanuppad``' Instruction
8766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8767
8768Syntax:
8769"""""""
8770
8771::
8772
David Majnemer8a1c45d2015-12-12 05:38:55 +00008773 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008774
8775Overview:
8776"""""""""
8777
8778The '``cleanuppad``' instruction is used by `LLVM's exception handling
8779system <ExceptionHandling.html#overview>`_ to specify that a basic block
8780is a cleanup block --- one where a personality routine attempts to
8781transfer control to run cleanup actions.
8782The ``args`` correspond to whatever additional
8783information the :ref:`personality function <personalityfn>` requires to
8784execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008785The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008786match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8787The ``parent`` argument is the token of the funclet that contains the
8788``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8789this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008790
8791Arguments:
8792""""""""""
8793
8794The instruction takes a list of arbitrary values which are interpreted
8795by the :ref:`personality function <personalityfn>`.
8796
8797Semantics:
8798""""""""""
8799
David Majnemer654e1302015-07-31 17:58:14 +00008800When the call stack is being unwound due to an exception being thrown,
8801the :ref:`personality function <personalityfn>` transfers control to the
8802``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008803As with calling conventions, how the personality function results are
8804represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008805
8806The ``cleanuppad`` instruction has several restrictions:
8807
8808- A cleanup block is a basic block which is the unwind destination of
8809 an exceptional instruction.
8810- A cleanup block must have a '``cleanuppad``' instruction as its
8811 first non-PHI instruction.
8812- There can be only one '``cleanuppad``' instruction within the
8813 cleanup block.
8814- A basic block that is not a cleanup block may not include a
8815 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008816
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008817When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8818described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8819it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8820that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008821
David Majnemer654e1302015-07-31 17:58:14 +00008822Example:
8823""""""""
8824
8825.. code-block:: llvm
8826
David Majnemer8a1c45d2015-12-12 05:38:55 +00008827 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008828
Sean Silvab084af42012-12-07 10:36:55 +00008829.. _intrinsics:
8830
8831Intrinsic Functions
8832===================
8833
8834LLVM supports the notion of an "intrinsic function". These functions
8835have well known names and semantics and are required to follow certain
8836restrictions. Overall, these intrinsics represent an extension mechanism
8837for the LLVM language that does not require changing all of the
8838transformations in LLVM when adding to the language (or the bitcode
8839reader/writer, the parser, etc...).
8840
8841Intrinsic function names must all start with an "``llvm.``" prefix. This
8842prefix is reserved in LLVM for intrinsic names; thus, function names may
8843not begin with this prefix. Intrinsic functions must always be external
8844functions: you cannot define the body of intrinsic functions. Intrinsic
8845functions may only be used in call or invoke instructions: it is illegal
8846to take the address of an intrinsic function. Additionally, because
8847intrinsic functions are part of the LLVM language, it is required if any
8848are added that they be documented here.
8849
8850Some intrinsic functions can be overloaded, i.e., the intrinsic
8851represents a family of functions that perform the same operation but on
8852different data types. Because LLVM can represent over 8 million
8853different integer types, overloading is used commonly to allow an
8854intrinsic function to operate on any integer type. One or more of the
8855argument types or the result type can be overloaded to accept any
8856integer type. Argument types may also be defined as exactly matching a
8857previous argument's type or the result type. This allows an intrinsic
8858function which accepts multiple arguments, but needs all of them to be
8859of the same type, to only be overloaded with respect to a single
8860argument or the result.
8861
8862Overloaded intrinsics will have the names of its overloaded argument
8863types encoded into its function name, each preceded by a period. Only
8864those types which are overloaded result in a name suffix. Arguments
8865whose type is matched against another type do not. For example, the
8866``llvm.ctpop`` function can take an integer of any width and returns an
8867integer of exactly the same integer width. This leads to a family of
8868functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8869``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8870overloaded, and only one type suffix is required. Because the argument's
8871type is matched against the return type, it does not require its own
8872name suffix.
8873
8874To learn how to add an intrinsic function, please see the `Extending
8875LLVM Guide <ExtendingLLVM.html>`_.
8876
8877.. _int_varargs:
8878
8879Variable Argument Handling Intrinsics
8880-------------------------------------
8881
8882Variable argument support is defined in LLVM with the
8883:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8884functions. These functions are related to the similarly named macros
8885defined in the ``<stdarg.h>`` header file.
8886
8887All of these functions operate on arguments that use a target-specific
8888value type "``va_list``". The LLVM assembly language reference manual
8889does not define what this type is, so all transformations should be
8890prepared to handle these functions regardless of the type used.
8891
8892This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8893variable argument handling intrinsic functions are used.
8894
8895.. code-block:: llvm
8896
Tim Northoverab60bb92014-11-02 01:21:51 +00008897 ; This struct is different for every platform. For most platforms,
8898 ; it is merely an i8*.
8899 %struct.va_list = type { i8* }
8900
8901 ; For Unix x86_64 platforms, va_list is the following struct:
8902 ; %struct.va_list = type { i32, i32, i8*, i8* }
8903
Sean Silvab084af42012-12-07 10:36:55 +00008904 define i32 @test(i32 %X, ...) {
8905 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008906 %ap = alloca %struct.va_list
8907 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008908 call void @llvm.va_start(i8* %ap2)
8909
8910 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008911 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008912
8913 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8914 %aq = alloca i8*
8915 %aq2 = bitcast i8** %aq to i8*
8916 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8917 call void @llvm.va_end(i8* %aq2)
8918
8919 ; Stop processing of arguments.
8920 call void @llvm.va_end(i8* %ap2)
8921 ret i32 %tmp
8922 }
8923
8924 declare void @llvm.va_start(i8*)
8925 declare void @llvm.va_copy(i8*, i8*)
8926 declare void @llvm.va_end(i8*)
8927
8928.. _int_va_start:
8929
8930'``llvm.va_start``' Intrinsic
8931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8932
8933Syntax:
8934"""""""
8935
8936::
8937
Nick Lewycky04f6de02013-09-11 22:04:52 +00008938 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008939
8940Overview:
8941"""""""""
8942
8943The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8944subsequent use by ``va_arg``.
8945
8946Arguments:
8947""""""""""
8948
8949The argument is a pointer to a ``va_list`` element to initialize.
8950
8951Semantics:
8952""""""""""
8953
8954The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8955available in C. In a target-dependent way, it initializes the
8956``va_list`` element to which the argument points, so that the next call
8957to ``va_arg`` will produce the first variable argument passed to the
8958function. Unlike the C ``va_start`` macro, this intrinsic does not need
8959to know the last argument of the function as the compiler can figure
8960that out.
8961
8962'``llvm.va_end``' Intrinsic
8963^^^^^^^^^^^^^^^^^^^^^^^^^^^
8964
8965Syntax:
8966"""""""
8967
8968::
8969
8970 declare void @llvm.va_end(i8* <arglist>)
8971
8972Overview:
8973"""""""""
8974
8975The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8976initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8977
8978Arguments:
8979""""""""""
8980
8981The argument is a pointer to a ``va_list`` to destroy.
8982
8983Semantics:
8984""""""""""
8985
8986The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8987available in C. In a target-dependent way, it destroys the ``va_list``
8988element to which the argument points. Calls to
8989:ref:`llvm.va_start <int_va_start>` and
8990:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8991``llvm.va_end``.
8992
8993.. _int_va_copy:
8994
8995'``llvm.va_copy``' Intrinsic
8996^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8997
8998Syntax:
8999"""""""
9000
9001::
9002
9003 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9004
9005Overview:
9006"""""""""
9007
9008The '``llvm.va_copy``' intrinsic copies the current argument position
9009from the source argument list to the destination argument list.
9010
9011Arguments:
9012""""""""""
9013
9014The first argument is a pointer to a ``va_list`` element to initialize.
9015The second argument is a pointer to a ``va_list`` element to copy from.
9016
9017Semantics:
9018""""""""""
9019
9020The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9021available in C. In a target-dependent way, it copies the source
9022``va_list`` element into the destination ``va_list`` element. This
9023intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9024arbitrarily complex and require, for example, memory allocation.
9025
9026Accurate Garbage Collection Intrinsics
9027--------------------------------------
9028
Philip Reamesc5b0f562015-02-25 23:52:06 +00009029LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009030(GC) requires the frontend to generate code containing appropriate intrinsic
9031calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009032intrinsics in a manner which is appropriate for the target collector.
9033
Sean Silvab084af42012-12-07 10:36:55 +00009034These intrinsics allow identification of :ref:`GC roots on the
9035stack <int_gcroot>`, as well as garbage collector implementations that
9036require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009037Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009038these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009039details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009040
Philip Reamesf80bbff2015-02-25 23:45:20 +00009041Experimental Statepoint Intrinsics
9042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9043
9044LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009045collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009046to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009047:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009048differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009049<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009050described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009051
9052.. _int_gcroot:
9053
9054'``llvm.gcroot``' Intrinsic
9055^^^^^^^^^^^^^^^^^^^^^^^^^^^
9056
9057Syntax:
9058"""""""
9059
9060::
9061
9062 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9063
9064Overview:
9065"""""""""
9066
9067The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9068the code generator, and allows some metadata to be associated with it.
9069
9070Arguments:
9071""""""""""
9072
9073The first argument specifies the address of a stack object that contains
9074the root pointer. The second pointer (which must be either a constant or
9075a global value address) contains the meta-data to be associated with the
9076root.
9077
9078Semantics:
9079""""""""""
9080
9081At runtime, a call to this intrinsic stores a null pointer into the
9082"ptrloc" location. At compile-time, the code generator generates
9083information to allow the runtime to find the pointer at GC safe points.
9084The '``llvm.gcroot``' intrinsic may only be used in a function which
9085:ref:`specifies a GC algorithm <gc>`.
9086
9087.. _int_gcread:
9088
9089'``llvm.gcread``' Intrinsic
9090^^^^^^^^^^^^^^^^^^^^^^^^^^^
9091
9092Syntax:
9093"""""""
9094
9095::
9096
9097 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9098
9099Overview:
9100"""""""""
9101
9102The '``llvm.gcread``' intrinsic identifies reads of references from heap
9103locations, allowing garbage collector implementations that require read
9104barriers.
9105
9106Arguments:
9107""""""""""
9108
9109The second argument is the address to read from, which should be an
9110address allocated from the garbage collector. The first object is a
9111pointer to the start of the referenced object, if needed by the language
9112runtime (otherwise null).
9113
9114Semantics:
9115""""""""""
9116
9117The '``llvm.gcread``' intrinsic has the same semantics as a load
9118instruction, but may be replaced with substantially more complex code by
9119the garbage collector runtime, as needed. The '``llvm.gcread``'
9120intrinsic may only be used in a function which :ref:`specifies a GC
9121algorithm <gc>`.
9122
9123.. _int_gcwrite:
9124
9125'``llvm.gcwrite``' Intrinsic
9126^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9127
9128Syntax:
9129"""""""
9130
9131::
9132
9133 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9134
9135Overview:
9136"""""""""
9137
9138The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9139locations, allowing garbage collector implementations that require write
9140barriers (such as generational or reference counting collectors).
9141
9142Arguments:
9143""""""""""
9144
9145The first argument is the reference to store, the second is the start of
9146the object to store it to, and the third is the address of the field of
9147Obj to store to. If the runtime does not require a pointer to the
9148object, Obj may be null.
9149
9150Semantics:
9151""""""""""
9152
9153The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9154instruction, but may be replaced with substantially more complex code by
9155the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9156intrinsic may only be used in a function which :ref:`specifies a GC
9157algorithm <gc>`.
9158
9159Code Generator Intrinsics
9160-------------------------
9161
9162These intrinsics are provided by LLVM to expose special features that
9163may only be implemented with code generator support.
9164
9165'``llvm.returnaddress``' Intrinsic
9166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9167
9168Syntax:
9169"""""""
9170
9171::
9172
9173 declare i8 *@llvm.returnaddress(i32 <level>)
9174
9175Overview:
9176"""""""""
9177
9178The '``llvm.returnaddress``' intrinsic attempts to compute a
9179target-specific value indicating the return address of the current
9180function or one of its callers.
9181
9182Arguments:
9183""""""""""
9184
9185The argument to this intrinsic indicates which function to return the
9186address for. Zero indicates the calling function, one indicates its
9187caller, etc. The argument is **required** to be a constant integer
9188value.
9189
9190Semantics:
9191""""""""""
9192
9193The '``llvm.returnaddress``' intrinsic either returns a pointer
9194indicating the return address of the specified call frame, or zero if it
9195cannot be identified. The value returned by this intrinsic is likely to
9196be incorrect or 0 for arguments other than zero, so it should only be
9197used for debugging purposes.
9198
9199Note that calling this intrinsic does not prevent function inlining or
9200other aggressive transformations, so the value returned may not be that
9201of the obvious source-language caller.
9202
9203'``llvm.frameaddress``' Intrinsic
9204^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9205
9206Syntax:
9207"""""""
9208
9209::
9210
9211 declare i8* @llvm.frameaddress(i32 <level>)
9212
9213Overview:
9214"""""""""
9215
9216The '``llvm.frameaddress``' intrinsic attempts to return the
9217target-specific frame pointer value for the specified stack frame.
9218
9219Arguments:
9220""""""""""
9221
9222The argument to this intrinsic indicates which function to return the
9223frame pointer for. Zero indicates the calling function, one indicates
9224its caller, etc. The argument is **required** to be a constant integer
9225value.
9226
9227Semantics:
9228""""""""""
9229
9230The '``llvm.frameaddress``' intrinsic either returns a pointer
9231indicating the frame address of the specified call frame, or zero if it
9232cannot be identified. The value returned by this intrinsic is likely to
9233be incorrect or 0 for arguments other than zero, so it should only be
9234used for debugging purposes.
9235
9236Note that calling this intrinsic does not prevent function inlining or
9237other aggressive transformations, so the value returned may not be that
9238of the obvious source-language caller.
9239
Reid Kleckner60381792015-07-07 22:25:32 +00009240'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009241^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9242
9243Syntax:
9244"""""""
9245
9246::
9247
Reid Kleckner60381792015-07-07 22:25:32 +00009248 declare void @llvm.localescape(...)
9249 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009250
9251Overview:
9252"""""""""
9253
Reid Kleckner60381792015-07-07 22:25:32 +00009254The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9255allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009256live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009257computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009258
9259Arguments:
9260""""""""""
9261
Reid Kleckner60381792015-07-07 22:25:32 +00009262All arguments to '``llvm.localescape``' must be pointers to static allocas or
9263casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009264once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009265
Reid Kleckner60381792015-07-07 22:25:32 +00009266The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009267bitcasted pointer to a function defined in the current module. The code
9268generator cannot determine the frame allocation offset of functions defined in
9269other modules.
9270
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009271The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9272call frame that is currently live. The return value of '``llvm.localaddress``'
9273is one way to produce such a value, but various runtimes also expose a suitable
9274pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009275
Reid Kleckner60381792015-07-07 22:25:32 +00009276The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9277'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009278
Reid Klecknere9b89312015-01-13 00:48:10 +00009279Semantics:
9280""""""""""
9281
Reid Kleckner60381792015-07-07 22:25:32 +00009282These intrinsics allow a group of functions to share access to a set of local
9283stack allocations of a one parent function. The parent function may call the
9284'``llvm.localescape``' intrinsic once from the function entry block, and the
9285child functions can use '``llvm.localrecover``' to access the escaped allocas.
9286The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9287the escaped allocas are allocated, which would break attempts to use
9288'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009289
Renato Golinc7aea402014-05-06 16:51:25 +00009290.. _int_read_register:
9291.. _int_write_register:
9292
9293'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9295
9296Syntax:
9297"""""""
9298
9299::
9300
9301 declare i32 @llvm.read_register.i32(metadata)
9302 declare i64 @llvm.read_register.i64(metadata)
9303 declare void @llvm.write_register.i32(metadata, i32 @value)
9304 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009305 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009306
9307Overview:
9308"""""""""
9309
9310The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9311provides access to the named register. The register must be valid on
9312the architecture being compiled to. The type needs to be compatible
9313with the register being read.
9314
9315Semantics:
9316""""""""""
9317
9318The '``llvm.read_register``' intrinsic returns the current value of the
9319register, where possible. The '``llvm.write_register``' intrinsic sets
9320the current value of the register, where possible.
9321
9322This is useful to implement named register global variables that need
9323to always be mapped to a specific register, as is common practice on
9324bare-metal programs including OS kernels.
9325
9326The compiler doesn't check for register availability or use of the used
9327register in surrounding code, including inline assembly. Because of that,
9328allocatable registers are not supported.
9329
9330Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009331architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009332work is needed to support other registers and even more so, allocatable
9333registers.
9334
Sean Silvab084af42012-12-07 10:36:55 +00009335.. _int_stacksave:
9336
9337'``llvm.stacksave``' Intrinsic
9338^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9339
9340Syntax:
9341"""""""
9342
9343::
9344
9345 declare i8* @llvm.stacksave()
9346
9347Overview:
9348"""""""""
9349
9350The '``llvm.stacksave``' intrinsic is used to remember the current state
9351of the function stack, for use with
9352:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9353implementing language features like scoped automatic variable sized
9354arrays in C99.
9355
9356Semantics:
9357""""""""""
9358
9359This intrinsic returns a opaque pointer value that can be passed to
9360:ref:`llvm.stackrestore <int_stackrestore>`. When an
9361``llvm.stackrestore`` intrinsic is executed with a value saved from
9362``llvm.stacksave``, it effectively restores the state of the stack to
9363the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9364practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9365were allocated after the ``llvm.stacksave`` was executed.
9366
9367.. _int_stackrestore:
9368
9369'``llvm.stackrestore``' Intrinsic
9370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9371
9372Syntax:
9373"""""""
9374
9375::
9376
9377 declare void @llvm.stackrestore(i8* %ptr)
9378
9379Overview:
9380"""""""""
9381
9382The '``llvm.stackrestore``' intrinsic is used to restore the state of
9383the function stack to the state it was in when the corresponding
9384:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9385useful for implementing language features like scoped automatic variable
9386sized arrays in C99.
9387
9388Semantics:
9389""""""""""
9390
9391See the description for :ref:`llvm.stacksave <int_stacksave>`.
9392
Yury Gribovd7dbb662015-12-01 11:40:55 +00009393.. _int_get_dynamic_area_offset:
9394
9395'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009396^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009397
9398Syntax:
9399"""""""
9400
9401::
9402
9403 declare i32 @llvm.get.dynamic.area.offset.i32()
9404 declare i64 @llvm.get.dynamic.area.offset.i64()
9405
9406 Overview:
9407 """""""""
9408
9409 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9410 get the offset from native stack pointer to the address of the most
9411 recent dynamic alloca on the caller's stack. These intrinsics are
9412 intendend for use in combination with
9413 :ref:`llvm.stacksave <int_stacksave>` to get a
9414 pointer to the most recent dynamic alloca. This is useful, for example,
9415 for AddressSanitizer's stack unpoisoning routines.
9416
9417Semantics:
9418""""""""""
9419
9420 These intrinsics return a non-negative integer value that can be used to
9421 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9422 on the caller's stack. In particular, for targets where stack grows downwards,
9423 adding this offset to the native stack pointer would get the address of the most
9424 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9425 complicated, because substracting this value from stack pointer would get the address
9426 one past the end of the most recent dynamic alloca.
9427
9428 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9429 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9430 compile-time-known constant value.
9431
9432 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9433 must match the target's generic address space's (address space 0) pointer type.
9434
Sean Silvab084af42012-12-07 10:36:55 +00009435'``llvm.prefetch``' Intrinsic
9436^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9437
9438Syntax:
9439"""""""
9440
9441::
9442
9443 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9444
9445Overview:
9446"""""""""
9447
9448The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9449insert a prefetch instruction if supported; otherwise, it is a noop.
9450Prefetches have no effect on the behavior of the program but can change
9451its performance characteristics.
9452
9453Arguments:
9454""""""""""
9455
9456``address`` is the address to be prefetched, ``rw`` is the specifier
9457determining if the fetch should be for a read (0) or write (1), and
9458``locality`` is a temporal locality specifier ranging from (0) - no
9459locality, to (3) - extremely local keep in cache. The ``cache type``
9460specifies whether the prefetch is performed on the data (1) or
9461instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9462arguments must be constant integers.
9463
9464Semantics:
9465""""""""""
9466
9467This intrinsic does not modify the behavior of the program. In
9468particular, prefetches cannot trap and do not produce a value. On
9469targets that support this intrinsic, the prefetch can provide hints to
9470the processor cache for better performance.
9471
9472'``llvm.pcmarker``' Intrinsic
9473^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9474
9475Syntax:
9476"""""""
9477
9478::
9479
9480 declare void @llvm.pcmarker(i32 <id>)
9481
9482Overview:
9483"""""""""
9484
9485The '``llvm.pcmarker``' intrinsic is a method to export a Program
9486Counter (PC) in a region of code to simulators and other tools. The
9487method is target specific, but it is expected that the marker will use
9488exported symbols to transmit the PC of the marker. The marker makes no
9489guarantees that it will remain with any specific instruction after
9490optimizations. It is possible that the presence of a marker will inhibit
9491optimizations. The intended use is to be inserted after optimizations to
9492allow correlations of simulation runs.
9493
9494Arguments:
9495""""""""""
9496
9497``id`` is a numerical id identifying the marker.
9498
9499Semantics:
9500""""""""""
9501
9502This intrinsic does not modify the behavior of the program. Backends
9503that do not support this intrinsic may ignore it.
9504
9505'``llvm.readcyclecounter``' Intrinsic
9506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9507
9508Syntax:
9509"""""""
9510
9511::
9512
9513 declare i64 @llvm.readcyclecounter()
9514
9515Overview:
9516"""""""""
9517
9518The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9519counter register (or similar low latency, high accuracy clocks) on those
9520targets that support it. On X86, it should map to RDTSC. On Alpha, it
9521should map to RPCC. As the backing counters overflow quickly (on the
9522order of 9 seconds on alpha), this should only be used for small
9523timings.
9524
9525Semantics:
9526""""""""""
9527
9528When directly supported, reading the cycle counter should not modify any
9529memory. Implementations are allowed to either return a application
9530specific value or a system wide value. On backends without support, this
9531is lowered to a constant 0.
9532
Tim Northoverbc933082013-05-23 19:11:20 +00009533Note that runtime support may be conditional on the privilege-level code is
9534running at and the host platform.
9535
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009536'``llvm.clear_cache``' Intrinsic
9537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9538
9539Syntax:
9540"""""""
9541
9542::
9543
9544 declare void @llvm.clear_cache(i8*, i8*)
9545
9546Overview:
9547"""""""""
9548
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009549The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9550in the specified range to the execution unit of the processor. On
9551targets with non-unified instruction and data cache, the implementation
9552flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009553
9554Semantics:
9555""""""""""
9556
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009557On platforms with coherent instruction and data caches (e.g. x86), this
9558intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009559cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009560instructions or a system call, if cache flushing requires special
9561privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009562
Sean Silvad02bf3e2014-04-07 22:29:53 +00009563The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009564time library.
Renato Golin93010e62014-03-26 14:01:32 +00009565
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009566This instrinsic does *not* empty the instruction pipeline. Modifications
9567of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009568
Justin Bogner61ba2e32014-12-08 18:02:35 +00009569'``llvm.instrprof_increment``' Intrinsic
9570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9571
9572Syntax:
9573"""""""
9574
9575::
9576
9577 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9578 i32 <num-counters>, i32 <index>)
9579
9580Overview:
9581"""""""""
9582
9583The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9584frontend for use with instrumentation based profiling. These will be
9585lowered by the ``-instrprof`` pass to generate execution counts of a
9586program at runtime.
9587
9588Arguments:
9589""""""""""
9590
9591The first argument is a pointer to a global variable containing the
9592name of the entity being instrumented. This should generally be the
9593(mangled) function name for a set of counters.
9594
9595The second argument is a hash value that can be used by the consumer
9596of the profile data to detect changes to the instrumented source, and
9597the third is the number of counters associated with ``name``. It is an
9598error if ``hash`` or ``num-counters`` differ between two instances of
9599``instrprof_increment`` that refer to the same name.
9600
9601The last argument refers to which of the counters for ``name`` should
9602be incremented. It should be a value between 0 and ``num-counters``.
9603
9604Semantics:
9605""""""""""
9606
9607This intrinsic represents an increment of a profiling counter. It will
9608cause the ``-instrprof`` pass to generate the appropriate data
9609structures and the code to increment the appropriate value, in a
9610format that can be written out by a compiler runtime and consumed via
9611the ``llvm-profdata`` tool.
9612
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009613'``llvm.instrprof_value_profile``' Intrinsic
9614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9615
9616Syntax:
9617"""""""
9618
9619::
9620
9621 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9622 i64 <value>, i32 <value_kind>,
9623 i32 <index>)
9624
9625Overview:
9626"""""""""
9627
9628The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9629frontend for use with instrumentation based profiling. This will be
9630lowered by the ``-instrprof`` pass to find out the target values,
9631instrumented expressions take in a program at runtime.
9632
9633Arguments:
9634""""""""""
9635
9636The first argument is a pointer to a global variable containing the
9637name of the entity being instrumented. ``name`` should generally be the
9638(mangled) function name for a set of counters.
9639
9640The second argument is a hash value that can be used by the consumer
9641of the profile data to detect changes to the instrumented source. It
9642is an error if ``hash`` differs between two instances of
9643``llvm.instrprof_*`` that refer to the same name.
9644
9645The third argument is the value of the expression being profiled. The profiled
9646expression's value should be representable as an unsigned 64-bit value. The
9647fourth argument represents the kind of value profiling that is being done. The
9648supported value profiling kinds are enumerated through the
9649``InstrProfValueKind`` type declared in the
9650``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9651index of the instrumented expression within ``name``. It should be >= 0.
9652
9653Semantics:
9654""""""""""
9655
9656This intrinsic represents the point where a call to a runtime routine
9657should be inserted for value profiling of target expressions. ``-instrprof``
9658pass will generate the appropriate data structures and replace the
9659``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9660runtime library with proper arguments.
9661
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009662'``llvm.thread.pointer``' Intrinsic
9663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9664
9665Syntax:
9666"""""""
9667
9668::
9669
9670 declare i8* @llvm.thread.pointer()
9671
9672Overview:
9673"""""""""
9674
9675The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9676pointer.
9677
9678Semantics:
9679""""""""""
9680
9681The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9682for the current thread. The exact semantics of this value are target
9683specific: it may point to the start of TLS area, to the end, or somewhere
9684in the middle. Depending on the target, this intrinsic may read a register,
9685call a helper function, read from an alternate memory space, or perform
9686other operations necessary to locate the TLS area. Not all targets support
9687this intrinsic.
9688
Sean Silvab084af42012-12-07 10:36:55 +00009689Standard C Library Intrinsics
9690-----------------------------
9691
9692LLVM provides intrinsics for a few important standard C library
9693functions. These intrinsics allow source-language front-ends to pass
9694information about the alignment of the pointer arguments to the code
9695generator, providing opportunity for more efficient code generation.
9696
9697.. _int_memcpy:
9698
9699'``llvm.memcpy``' Intrinsic
9700^^^^^^^^^^^^^^^^^^^^^^^^^^^
9701
9702Syntax:
9703"""""""
9704
9705This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9706integer bit width and for different address spaces. Not all targets
9707support all bit widths however.
9708
9709::
9710
9711 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9712 i32 <len>, i32 <align>, i1 <isvolatile>)
9713 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9714 i64 <len>, i32 <align>, i1 <isvolatile>)
9715
9716Overview:
9717"""""""""
9718
9719The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9720source location to the destination location.
9721
9722Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9723intrinsics do not return a value, takes extra alignment/isvolatile
9724arguments and the pointers can be in specified address spaces.
9725
9726Arguments:
9727""""""""""
9728
9729The first argument is a pointer to the destination, the second is a
9730pointer to the source. The third argument is an integer argument
9731specifying the number of bytes to copy, the fourth argument is the
9732alignment of the source and destination locations, and the fifth is a
9733boolean indicating a volatile access.
9734
9735If the call to this intrinsic has an alignment value that is not 0 or 1,
9736then the caller guarantees that both the source and destination pointers
9737are aligned to that boundary.
9738
9739If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9740a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9741very cleanly specified and it is unwise to depend on it.
9742
9743Semantics:
9744""""""""""
9745
9746The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9747source location to the destination location, which are not allowed to
9748overlap. It copies "len" bytes of memory over. If the argument is known
9749to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009750argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009751
9752'``llvm.memmove``' Intrinsic
9753^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9754
9755Syntax:
9756"""""""
9757
9758This is an overloaded intrinsic. You can use llvm.memmove on any integer
9759bit width and for different address space. Not all targets support all
9760bit widths however.
9761
9762::
9763
9764 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9765 i32 <len>, i32 <align>, i1 <isvolatile>)
9766 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9767 i64 <len>, i32 <align>, i1 <isvolatile>)
9768
9769Overview:
9770"""""""""
9771
9772The '``llvm.memmove.*``' intrinsics move a block of memory from the
9773source location to the destination location. It is similar to the
9774'``llvm.memcpy``' intrinsic but allows the two memory locations to
9775overlap.
9776
9777Note that, unlike the standard libc function, the ``llvm.memmove.*``
9778intrinsics do not return a value, takes extra alignment/isvolatile
9779arguments and the pointers can be in specified address spaces.
9780
9781Arguments:
9782""""""""""
9783
9784The first argument is a pointer to the destination, the second is a
9785pointer to the source. The third argument is an integer argument
9786specifying the number of bytes to copy, the fourth argument is the
9787alignment of the source and destination locations, and the fifth is a
9788boolean indicating a volatile access.
9789
9790If the call to this intrinsic has an alignment value that is not 0 or 1,
9791then the caller guarantees that the source and destination pointers are
9792aligned to that boundary.
9793
9794If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9795is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9796not very cleanly specified and it is unwise to depend on it.
9797
9798Semantics:
9799""""""""""
9800
9801The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9802source location to the destination location, which may overlap. It
9803copies "len" bytes of memory over. If the argument is known to be
9804aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009805otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009806
9807'``llvm.memset.*``' Intrinsics
9808^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9809
9810Syntax:
9811"""""""
9812
9813This is an overloaded intrinsic. You can use llvm.memset on any integer
9814bit width and for different address spaces. However, not all targets
9815support all bit widths.
9816
9817::
9818
9819 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9820 i32 <len>, i32 <align>, i1 <isvolatile>)
9821 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9822 i64 <len>, i32 <align>, i1 <isvolatile>)
9823
9824Overview:
9825"""""""""
9826
9827The '``llvm.memset.*``' intrinsics fill a block of memory with a
9828particular byte value.
9829
9830Note that, unlike the standard libc function, the ``llvm.memset``
9831intrinsic does not return a value and takes extra alignment/volatile
9832arguments. Also, the destination can be in an arbitrary address space.
9833
9834Arguments:
9835""""""""""
9836
9837The first argument is a pointer to the destination to fill, the second
9838is the byte value with which to fill it, the third argument is an
9839integer argument specifying the number of bytes to fill, and the fourth
9840argument is the known alignment of the destination location.
9841
9842If the call to this intrinsic has an alignment value that is not 0 or 1,
9843then the caller guarantees that the destination pointer is aligned to
9844that boundary.
9845
9846If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9847a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9848very cleanly specified and it is unwise to depend on it.
9849
9850Semantics:
9851""""""""""
9852
9853The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9854at the destination location. If the argument is known to be aligned to
9855some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009856it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009857
9858'``llvm.sqrt.*``' Intrinsic
9859^^^^^^^^^^^^^^^^^^^^^^^^^^^
9860
9861Syntax:
9862"""""""
9863
9864This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9865floating point or vector of floating point type. Not all targets support
9866all types however.
9867
9868::
9869
9870 declare float @llvm.sqrt.f32(float %Val)
9871 declare double @llvm.sqrt.f64(double %Val)
9872 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9873 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9874 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9875
9876Overview:
9877"""""""""
9878
9879The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9880returning the same value as the libm '``sqrt``' functions would. Unlike
9881``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9882negative numbers other than -0.0 (which allows for better optimization,
9883because there is no need to worry about errno being set).
9884``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9885
9886Arguments:
9887""""""""""
9888
9889The argument and return value are floating point numbers of the same
9890type.
9891
9892Semantics:
9893""""""""""
9894
9895This function returns the sqrt of the specified operand if it is a
9896nonnegative floating point number.
9897
9898'``llvm.powi.*``' Intrinsic
9899^^^^^^^^^^^^^^^^^^^^^^^^^^^
9900
9901Syntax:
9902"""""""
9903
9904This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9905floating point or vector of floating point type. Not all targets support
9906all types however.
9907
9908::
9909
9910 declare float @llvm.powi.f32(float %Val, i32 %power)
9911 declare double @llvm.powi.f64(double %Val, i32 %power)
9912 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9913 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9914 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9915
9916Overview:
9917"""""""""
9918
9919The '``llvm.powi.*``' intrinsics return the first operand raised to the
9920specified (positive or negative) power. The order of evaluation of
9921multiplications is not defined. When a vector of floating point type is
9922used, the second argument remains a scalar integer value.
9923
9924Arguments:
9925""""""""""
9926
9927The second argument is an integer power, and the first is a value to
9928raise to that power.
9929
9930Semantics:
9931""""""""""
9932
9933This function returns the first value raised to the second power with an
9934unspecified sequence of rounding operations.
9935
9936'``llvm.sin.*``' Intrinsic
9937^^^^^^^^^^^^^^^^^^^^^^^^^^
9938
9939Syntax:
9940"""""""
9941
9942This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9943floating point or vector of floating point type. Not all targets support
9944all types however.
9945
9946::
9947
9948 declare float @llvm.sin.f32(float %Val)
9949 declare double @llvm.sin.f64(double %Val)
9950 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9951 declare fp128 @llvm.sin.f128(fp128 %Val)
9952 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9953
9954Overview:
9955"""""""""
9956
9957The '``llvm.sin.*``' intrinsics return the sine of the operand.
9958
9959Arguments:
9960""""""""""
9961
9962The argument and return value are floating point numbers of the same
9963type.
9964
9965Semantics:
9966""""""""""
9967
9968This function returns the sine of the specified operand, returning the
9969same values as the libm ``sin`` functions would, and handles error
9970conditions in the same way.
9971
9972'``llvm.cos.*``' Intrinsic
9973^^^^^^^^^^^^^^^^^^^^^^^^^^
9974
9975Syntax:
9976"""""""
9977
9978This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9979floating point or vector of floating point type. Not all targets support
9980all types however.
9981
9982::
9983
9984 declare float @llvm.cos.f32(float %Val)
9985 declare double @llvm.cos.f64(double %Val)
9986 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9987 declare fp128 @llvm.cos.f128(fp128 %Val)
9988 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9989
9990Overview:
9991"""""""""
9992
9993The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9994
9995Arguments:
9996""""""""""
9997
9998The argument and return value are floating point numbers of the same
9999type.
10000
10001Semantics:
10002""""""""""
10003
10004This function returns the cosine of the specified operand, returning the
10005same values as the libm ``cos`` functions would, and handles error
10006conditions in the same way.
10007
10008'``llvm.pow.*``' Intrinsic
10009^^^^^^^^^^^^^^^^^^^^^^^^^^
10010
10011Syntax:
10012"""""""
10013
10014This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10015floating point or vector of floating point type. Not all targets support
10016all types however.
10017
10018::
10019
10020 declare float @llvm.pow.f32(float %Val, float %Power)
10021 declare double @llvm.pow.f64(double %Val, double %Power)
10022 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10023 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10024 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10025
10026Overview:
10027"""""""""
10028
10029The '``llvm.pow.*``' intrinsics return the first operand raised to the
10030specified (positive or negative) power.
10031
10032Arguments:
10033""""""""""
10034
10035The second argument is a floating point power, and the first is a value
10036to raise to that power.
10037
10038Semantics:
10039""""""""""
10040
10041This function returns the first value raised to the second power,
10042returning the same values as the libm ``pow`` functions would, and
10043handles error conditions in the same way.
10044
10045'``llvm.exp.*``' Intrinsic
10046^^^^^^^^^^^^^^^^^^^^^^^^^^
10047
10048Syntax:
10049"""""""
10050
10051This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10052floating point or vector of floating point type. Not all targets support
10053all types however.
10054
10055::
10056
10057 declare float @llvm.exp.f32(float %Val)
10058 declare double @llvm.exp.f64(double %Val)
10059 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10060 declare fp128 @llvm.exp.f128(fp128 %Val)
10061 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10062
10063Overview:
10064"""""""""
10065
10066The '``llvm.exp.*``' intrinsics perform the exp function.
10067
10068Arguments:
10069""""""""""
10070
10071The argument and return value are floating point numbers of the same
10072type.
10073
10074Semantics:
10075""""""""""
10076
10077This function returns the same values as the libm ``exp`` functions
10078would, and handles error conditions in the same way.
10079
10080'``llvm.exp2.*``' Intrinsic
10081^^^^^^^^^^^^^^^^^^^^^^^^^^^
10082
10083Syntax:
10084"""""""
10085
10086This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10087floating point or vector of floating point type. Not all targets support
10088all types however.
10089
10090::
10091
10092 declare float @llvm.exp2.f32(float %Val)
10093 declare double @llvm.exp2.f64(double %Val)
10094 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10095 declare fp128 @llvm.exp2.f128(fp128 %Val)
10096 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10097
10098Overview:
10099"""""""""
10100
10101The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10102
10103Arguments:
10104""""""""""
10105
10106The argument and return value are floating point numbers of the same
10107type.
10108
10109Semantics:
10110""""""""""
10111
10112This function returns the same values as the libm ``exp2`` functions
10113would, and handles error conditions in the same way.
10114
10115'``llvm.log.*``' Intrinsic
10116^^^^^^^^^^^^^^^^^^^^^^^^^^
10117
10118Syntax:
10119"""""""
10120
10121This is an overloaded intrinsic. You can use ``llvm.log`` on any
10122floating point or vector of floating point type. Not all targets support
10123all types however.
10124
10125::
10126
10127 declare float @llvm.log.f32(float %Val)
10128 declare double @llvm.log.f64(double %Val)
10129 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10130 declare fp128 @llvm.log.f128(fp128 %Val)
10131 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10132
10133Overview:
10134"""""""""
10135
10136The '``llvm.log.*``' intrinsics perform the log function.
10137
10138Arguments:
10139""""""""""
10140
10141The argument and return value are floating point numbers of the same
10142type.
10143
10144Semantics:
10145""""""""""
10146
10147This function returns the same values as the libm ``log`` functions
10148would, and handles error conditions in the same way.
10149
10150'``llvm.log10.*``' Intrinsic
10151^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10152
10153Syntax:
10154"""""""
10155
10156This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10157floating point or vector of floating point type. Not all targets support
10158all types however.
10159
10160::
10161
10162 declare float @llvm.log10.f32(float %Val)
10163 declare double @llvm.log10.f64(double %Val)
10164 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10165 declare fp128 @llvm.log10.f128(fp128 %Val)
10166 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10167
10168Overview:
10169"""""""""
10170
10171The '``llvm.log10.*``' intrinsics perform the log10 function.
10172
10173Arguments:
10174""""""""""
10175
10176The argument and return value are floating point numbers of the same
10177type.
10178
10179Semantics:
10180""""""""""
10181
10182This function returns the same values as the libm ``log10`` functions
10183would, and handles error conditions in the same way.
10184
10185'``llvm.log2.*``' Intrinsic
10186^^^^^^^^^^^^^^^^^^^^^^^^^^^
10187
10188Syntax:
10189"""""""
10190
10191This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10192floating point or vector of floating point type. Not all targets support
10193all types however.
10194
10195::
10196
10197 declare float @llvm.log2.f32(float %Val)
10198 declare double @llvm.log2.f64(double %Val)
10199 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10200 declare fp128 @llvm.log2.f128(fp128 %Val)
10201 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10202
10203Overview:
10204"""""""""
10205
10206The '``llvm.log2.*``' intrinsics perform the log2 function.
10207
10208Arguments:
10209""""""""""
10210
10211The argument and return value are floating point numbers of the same
10212type.
10213
10214Semantics:
10215""""""""""
10216
10217This function returns the same values as the libm ``log2`` functions
10218would, and handles error conditions in the same way.
10219
10220'``llvm.fma.*``' Intrinsic
10221^^^^^^^^^^^^^^^^^^^^^^^^^^
10222
10223Syntax:
10224"""""""
10225
10226This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10227floating point or vector of floating point type. Not all targets support
10228all types however.
10229
10230::
10231
10232 declare float @llvm.fma.f32(float %a, float %b, float %c)
10233 declare double @llvm.fma.f64(double %a, double %b, double %c)
10234 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10235 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10236 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10237
10238Overview:
10239"""""""""
10240
10241The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10242operation.
10243
10244Arguments:
10245""""""""""
10246
10247The argument and return value are floating point numbers of the same
10248type.
10249
10250Semantics:
10251""""""""""
10252
10253This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010254would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010255
10256'``llvm.fabs.*``' Intrinsic
10257^^^^^^^^^^^^^^^^^^^^^^^^^^^
10258
10259Syntax:
10260"""""""
10261
10262This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10263floating point or vector of floating point type. Not all targets support
10264all types however.
10265
10266::
10267
10268 declare float @llvm.fabs.f32(float %Val)
10269 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010270 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010271 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010272 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010273
10274Overview:
10275"""""""""
10276
10277The '``llvm.fabs.*``' intrinsics return the absolute value of the
10278operand.
10279
10280Arguments:
10281""""""""""
10282
10283The argument and return value are floating point numbers of the same
10284type.
10285
10286Semantics:
10287""""""""""
10288
10289This function returns the same values as the libm ``fabs`` functions
10290would, and handles error conditions in the same way.
10291
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010292'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010293^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010294
10295Syntax:
10296"""""""
10297
10298This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10299floating point or vector of floating point type. Not all targets support
10300all types however.
10301
10302::
10303
Matt Arsenault64313c92014-10-22 18:25:02 +000010304 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10305 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10306 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10307 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10308 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010309
10310Overview:
10311"""""""""
10312
10313The '``llvm.minnum.*``' intrinsics return the minimum of the two
10314arguments.
10315
10316
10317Arguments:
10318""""""""""
10319
10320The arguments and return value are floating point numbers of the same
10321type.
10322
10323Semantics:
10324""""""""""
10325
10326Follows the IEEE-754 semantics for minNum, which also match for libm's
10327fmin.
10328
10329If either operand is a NaN, returns the other non-NaN operand. Returns
10330NaN only if both operands are NaN. If the operands compare equal,
10331returns a value that compares equal to both operands. This means that
10332fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10333
10334'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010335^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010336
10337Syntax:
10338"""""""
10339
10340This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10341floating point or vector of floating point type. Not all targets support
10342all types however.
10343
10344::
10345
Matt Arsenault64313c92014-10-22 18:25:02 +000010346 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10347 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10348 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10349 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10350 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010351
10352Overview:
10353"""""""""
10354
10355The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10356arguments.
10357
10358
10359Arguments:
10360""""""""""
10361
10362The arguments and return value are floating point numbers of the same
10363type.
10364
10365Semantics:
10366""""""""""
10367Follows the IEEE-754 semantics for maxNum, which also match for libm's
10368fmax.
10369
10370If either operand is a NaN, returns the other non-NaN operand. Returns
10371NaN only if both operands are NaN. If the operands compare equal,
10372returns a value that compares equal to both operands. This means that
10373fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10374
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010375'``llvm.copysign.*``' Intrinsic
10376^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10377
10378Syntax:
10379"""""""
10380
10381This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10382floating point or vector of floating point type. Not all targets support
10383all types however.
10384
10385::
10386
10387 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10388 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10389 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10390 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10391 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10392
10393Overview:
10394"""""""""
10395
10396The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10397first operand and the sign of the second operand.
10398
10399Arguments:
10400""""""""""
10401
10402The arguments and return value are floating point numbers of the same
10403type.
10404
10405Semantics:
10406""""""""""
10407
10408This function returns the same values as the libm ``copysign``
10409functions would, and handles error conditions in the same way.
10410
Sean Silvab084af42012-12-07 10:36:55 +000010411'``llvm.floor.*``' Intrinsic
10412^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10413
10414Syntax:
10415"""""""
10416
10417This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10418floating point or vector of floating point type. Not all targets support
10419all types however.
10420
10421::
10422
10423 declare float @llvm.floor.f32(float %Val)
10424 declare double @llvm.floor.f64(double %Val)
10425 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10426 declare fp128 @llvm.floor.f128(fp128 %Val)
10427 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10428
10429Overview:
10430"""""""""
10431
10432The '``llvm.floor.*``' intrinsics return the floor of the operand.
10433
10434Arguments:
10435""""""""""
10436
10437The argument and return value are floating point numbers of the same
10438type.
10439
10440Semantics:
10441""""""""""
10442
10443This function returns the same values as the libm ``floor`` functions
10444would, and handles error conditions in the same way.
10445
10446'``llvm.ceil.*``' Intrinsic
10447^^^^^^^^^^^^^^^^^^^^^^^^^^^
10448
10449Syntax:
10450"""""""
10451
10452This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10453floating point or vector of floating point type. Not all targets support
10454all types however.
10455
10456::
10457
10458 declare float @llvm.ceil.f32(float %Val)
10459 declare double @llvm.ceil.f64(double %Val)
10460 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10461 declare fp128 @llvm.ceil.f128(fp128 %Val)
10462 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10463
10464Overview:
10465"""""""""
10466
10467The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10468
10469Arguments:
10470""""""""""
10471
10472The argument and return value are floating point numbers of the same
10473type.
10474
10475Semantics:
10476""""""""""
10477
10478This function returns the same values as the libm ``ceil`` functions
10479would, and handles error conditions in the same way.
10480
10481'``llvm.trunc.*``' Intrinsic
10482^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10483
10484Syntax:
10485"""""""
10486
10487This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10488floating point or vector of floating point type. Not all targets support
10489all types however.
10490
10491::
10492
10493 declare float @llvm.trunc.f32(float %Val)
10494 declare double @llvm.trunc.f64(double %Val)
10495 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10496 declare fp128 @llvm.trunc.f128(fp128 %Val)
10497 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10498
10499Overview:
10500"""""""""
10501
10502The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10503nearest integer not larger in magnitude than the operand.
10504
10505Arguments:
10506""""""""""
10507
10508The argument and return value are floating point numbers of the same
10509type.
10510
10511Semantics:
10512""""""""""
10513
10514This function returns the same values as the libm ``trunc`` functions
10515would, and handles error conditions in the same way.
10516
10517'``llvm.rint.*``' Intrinsic
10518^^^^^^^^^^^^^^^^^^^^^^^^^^^
10519
10520Syntax:
10521"""""""
10522
10523This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10524floating point or vector of floating point type. Not all targets support
10525all types however.
10526
10527::
10528
10529 declare float @llvm.rint.f32(float %Val)
10530 declare double @llvm.rint.f64(double %Val)
10531 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10532 declare fp128 @llvm.rint.f128(fp128 %Val)
10533 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10534
10535Overview:
10536"""""""""
10537
10538The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10539nearest integer. It may raise an inexact floating-point exception if the
10540operand isn't an integer.
10541
10542Arguments:
10543""""""""""
10544
10545The argument and return value are floating point numbers of the same
10546type.
10547
10548Semantics:
10549""""""""""
10550
10551This function returns the same values as the libm ``rint`` functions
10552would, and handles error conditions in the same way.
10553
10554'``llvm.nearbyint.*``' Intrinsic
10555^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10556
10557Syntax:
10558"""""""
10559
10560This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10561floating point or vector of floating point type. Not all targets support
10562all types however.
10563
10564::
10565
10566 declare float @llvm.nearbyint.f32(float %Val)
10567 declare double @llvm.nearbyint.f64(double %Val)
10568 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10569 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10570 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10571
10572Overview:
10573"""""""""
10574
10575The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10576nearest integer.
10577
10578Arguments:
10579""""""""""
10580
10581The argument and return value are floating point numbers of the same
10582type.
10583
10584Semantics:
10585""""""""""
10586
10587This function returns the same values as the libm ``nearbyint``
10588functions would, and handles error conditions in the same way.
10589
Hal Finkel171817e2013-08-07 22:49:12 +000010590'``llvm.round.*``' Intrinsic
10591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10592
10593Syntax:
10594"""""""
10595
10596This is an overloaded intrinsic. You can use ``llvm.round`` on any
10597floating point or vector of floating point type. Not all targets support
10598all types however.
10599
10600::
10601
10602 declare float @llvm.round.f32(float %Val)
10603 declare double @llvm.round.f64(double %Val)
10604 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10605 declare fp128 @llvm.round.f128(fp128 %Val)
10606 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10607
10608Overview:
10609"""""""""
10610
10611The '``llvm.round.*``' intrinsics returns the operand rounded to the
10612nearest integer.
10613
10614Arguments:
10615""""""""""
10616
10617The argument and return value are floating point numbers of the same
10618type.
10619
10620Semantics:
10621""""""""""
10622
10623This function returns the same values as the libm ``round``
10624functions would, and handles error conditions in the same way.
10625
Sean Silvab084af42012-12-07 10:36:55 +000010626Bit Manipulation Intrinsics
10627---------------------------
10628
10629LLVM provides intrinsics for a few important bit manipulation
10630operations. These allow efficient code generation for some algorithms.
10631
James Molloy90111f72015-11-12 12:29:09 +000010632'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010634
10635Syntax:
10636"""""""
10637
10638This is an overloaded intrinsic function. You can use bitreverse on any
10639integer type.
10640
10641::
10642
10643 declare i16 @llvm.bitreverse.i16(i16 <id>)
10644 declare i32 @llvm.bitreverse.i32(i32 <id>)
10645 declare i64 @llvm.bitreverse.i64(i64 <id>)
10646
10647Overview:
10648"""""""""
10649
10650The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010651bitpattern of an integer value; for example ``0b10110110`` becomes
10652``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010653
10654Semantics:
10655""""""""""
10656
10657The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10658``M`` in the input moved to bit ``N-M`` in the output.
10659
Sean Silvab084af42012-12-07 10:36:55 +000010660'``llvm.bswap.*``' Intrinsics
10661^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10662
10663Syntax:
10664"""""""
10665
10666This is an overloaded intrinsic function. You can use bswap on any
10667integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10668
10669::
10670
10671 declare i16 @llvm.bswap.i16(i16 <id>)
10672 declare i32 @llvm.bswap.i32(i32 <id>)
10673 declare i64 @llvm.bswap.i64(i64 <id>)
10674
10675Overview:
10676"""""""""
10677
10678The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10679values with an even number of bytes (positive multiple of 16 bits).
10680These are useful for performing operations on data that is not in the
10681target's native byte order.
10682
10683Semantics:
10684""""""""""
10685
10686The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10687and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10688intrinsic returns an i32 value that has the four bytes of the input i32
10689swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10690returned i32 will have its bytes in 3, 2, 1, 0 order. The
10691``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10692concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10693respectively).
10694
10695'``llvm.ctpop.*``' Intrinsic
10696^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10697
10698Syntax:
10699"""""""
10700
10701This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10702bit width, or on any vector with integer elements. Not all targets
10703support all bit widths or vector types, however.
10704
10705::
10706
10707 declare i8 @llvm.ctpop.i8(i8 <src>)
10708 declare i16 @llvm.ctpop.i16(i16 <src>)
10709 declare i32 @llvm.ctpop.i32(i32 <src>)
10710 declare i64 @llvm.ctpop.i64(i64 <src>)
10711 declare i256 @llvm.ctpop.i256(i256 <src>)
10712 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10713
10714Overview:
10715"""""""""
10716
10717The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10718in a value.
10719
10720Arguments:
10721""""""""""
10722
10723The only argument is the value to be counted. The argument may be of any
10724integer type, or a vector with integer elements. The return type must
10725match the argument type.
10726
10727Semantics:
10728""""""""""
10729
10730The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10731each element of a vector.
10732
10733'``llvm.ctlz.*``' Intrinsic
10734^^^^^^^^^^^^^^^^^^^^^^^^^^^
10735
10736Syntax:
10737"""""""
10738
10739This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10740integer bit width, or any vector whose elements are integers. Not all
10741targets support all bit widths or vector types, however.
10742
10743::
10744
10745 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10746 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10747 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10748 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10749 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010750 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010751
10752Overview:
10753"""""""""
10754
10755The '``llvm.ctlz``' family of intrinsic functions counts the number of
10756leading zeros in a variable.
10757
10758Arguments:
10759""""""""""
10760
10761The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010762any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010763type must match the first argument type.
10764
10765The second argument must be a constant and is a flag to indicate whether
10766the intrinsic should ensure that a zero as the first argument produces a
10767defined result. Historically some architectures did not provide a
10768defined result for zero values as efficiently, and many algorithms are
10769now predicated on avoiding zero-value inputs.
10770
10771Semantics:
10772""""""""""
10773
10774The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10775zeros in a variable, or within each element of the vector. If
10776``src == 0`` then the result is the size in bits of the type of ``src``
10777if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10778``llvm.ctlz(i32 2) = 30``.
10779
10780'``llvm.cttz.*``' Intrinsic
10781^^^^^^^^^^^^^^^^^^^^^^^^^^^
10782
10783Syntax:
10784"""""""
10785
10786This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10787integer bit width, or any vector of integer elements. Not all targets
10788support all bit widths or vector types, however.
10789
10790::
10791
10792 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10793 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10794 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10795 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10796 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010797 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010798
10799Overview:
10800"""""""""
10801
10802The '``llvm.cttz``' family of intrinsic functions counts the number of
10803trailing zeros.
10804
10805Arguments:
10806""""""""""
10807
10808The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010809any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010810type must match the first argument type.
10811
10812The second argument must be a constant and is a flag to indicate whether
10813the intrinsic should ensure that a zero as the first argument produces a
10814defined result. Historically some architectures did not provide a
10815defined result for zero values as efficiently, and many algorithms are
10816now predicated on avoiding zero-value inputs.
10817
10818Semantics:
10819""""""""""
10820
10821The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10822zeros in a variable, or within each element of a vector. If ``src == 0``
10823then the result is the size in bits of the type of ``src`` if
10824``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10825``llvm.cttz(2) = 1``.
10826
Philip Reames34843ae2015-03-05 05:55:55 +000010827.. _int_overflow:
10828
Sean Silvab084af42012-12-07 10:36:55 +000010829Arithmetic with Overflow Intrinsics
10830-----------------------------------
10831
10832LLVM provides intrinsics for some arithmetic with overflow operations.
10833
10834'``llvm.sadd.with.overflow.*``' Intrinsics
10835^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10836
10837Syntax:
10838"""""""
10839
10840This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10841on any integer bit width.
10842
10843::
10844
10845 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10846 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10847 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10848
10849Overview:
10850"""""""""
10851
10852The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10853a signed addition of the two arguments, and indicate whether an overflow
10854occurred during the signed summation.
10855
10856Arguments:
10857""""""""""
10858
10859The arguments (%a and %b) and the first element of the result structure
10860may be of integer types of any bit width, but they must have the same
10861bit width. The second element of the result structure must be of type
10862``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10863addition.
10864
10865Semantics:
10866""""""""""
10867
10868The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010869a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010870first element of which is the signed summation, and the second element
10871of which is a bit specifying if the signed summation resulted in an
10872overflow.
10873
10874Examples:
10875"""""""""
10876
10877.. code-block:: llvm
10878
10879 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10880 %sum = extractvalue {i32, i1} %res, 0
10881 %obit = extractvalue {i32, i1} %res, 1
10882 br i1 %obit, label %overflow, label %normal
10883
10884'``llvm.uadd.with.overflow.*``' Intrinsics
10885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10886
10887Syntax:
10888"""""""
10889
10890This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10891on any integer bit width.
10892
10893::
10894
10895 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10896 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10897 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10898
10899Overview:
10900"""""""""
10901
10902The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10903an unsigned addition of the two arguments, and indicate whether a carry
10904occurred during the unsigned summation.
10905
10906Arguments:
10907""""""""""
10908
10909The arguments (%a and %b) and the first element of the result structure
10910may be of integer types of any bit width, but they must have the same
10911bit width. The second element of the result structure must be of type
10912``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10913addition.
10914
10915Semantics:
10916""""""""""
10917
10918The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010919an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010920first element of which is the sum, and the second element of which is a
10921bit specifying if the unsigned summation resulted in a carry.
10922
10923Examples:
10924"""""""""
10925
10926.. code-block:: llvm
10927
10928 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10929 %sum = extractvalue {i32, i1} %res, 0
10930 %obit = extractvalue {i32, i1} %res, 1
10931 br i1 %obit, label %carry, label %normal
10932
10933'``llvm.ssub.with.overflow.*``' Intrinsics
10934^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10935
10936Syntax:
10937"""""""
10938
10939This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10940on any integer bit width.
10941
10942::
10943
10944 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10945 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10946 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10947
10948Overview:
10949"""""""""
10950
10951The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10952a signed subtraction of the two arguments, and indicate whether an
10953overflow occurred during the signed subtraction.
10954
10955Arguments:
10956""""""""""
10957
10958The arguments (%a and %b) and the first element of the result structure
10959may be of integer types of any bit width, but they must have the same
10960bit width. The second element of the result structure must be of type
10961``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10962subtraction.
10963
10964Semantics:
10965""""""""""
10966
10967The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010968a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010969first element of which is the subtraction, and the second element of
10970which is a bit specifying if the signed subtraction resulted in an
10971overflow.
10972
10973Examples:
10974"""""""""
10975
10976.. code-block:: llvm
10977
10978 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10979 %sum = extractvalue {i32, i1} %res, 0
10980 %obit = extractvalue {i32, i1} %res, 1
10981 br i1 %obit, label %overflow, label %normal
10982
10983'``llvm.usub.with.overflow.*``' Intrinsics
10984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10985
10986Syntax:
10987"""""""
10988
10989This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10990on any integer bit width.
10991
10992::
10993
10994 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10995 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10996 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10997
10998Overview:
10999"""""""""
11000
11001The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11002an unsigned subtraction of the two arguments, and indicate whether an
11003overflow occurred during the unsigned subtraction.
11004
11005Arguments:
11006""""""""""
11007
11008The arguments (%a and %b) and the first element of the result structure
11009may be of integer types of any bit width, but they must have the same
11010bit width. The second element of the result structure must be of type
11011``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11012subtraction.
11013
11014Semantics:
11015""""""""""
11016
11017The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011018an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011019the first element of which is the subtraction, and the second element of
11020which is a bit specifying if the unsigned subtraction resulted in an
11021overflow.
11022
11023Examples:
11024"""""""""
11025
11026.. code-block:: llvm
11027
11028 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11029 %sum = extractvalue {i32, i1} %res, 0
11030 %obit = extractvalue {i32, i1} %res, 1
11031 br i1 %obit, label %overflow, label %normal
11032
11033'``llvm.smul.with.overflow.*``' Intrinsics
11034^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11035
11036Syntax:
11037"""""""
11038
11039This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11040on any integer bit width.
11041
11042::
11043
11044 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11045 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11046 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11047
11048Overview:
11049"""""""""
11050
11051The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11052a signed multiplication of the two arguments, and indicate whether an
11053overflow occurred during the signed multiplication.
11054
11055Arguments:
11056""""""""""
11057
11058The arguments (%a and %b) and the first element of the result structure
11059may be of integer types of any bit width, but they must have the same
11060bit width. The second element of the result structure must be of type
11061``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11062multiplication.
11063
11064Semantics:
11065""""""""""
11066
11067The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011068a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011069the first element of which is the multiplication, and the second element
11070of which is a bit specifying if the signed multiplication resulted in an
11071overflow.
11072
11073Examples:
11074"""""""""
11075
11076.. code-block:: llvm
11077
11078 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11079 %sum = extractvalue {i32, i1} %res, 0
11080 %obit = extractvalue {i32, i1} %res, 1
11081 br i1 %obit, label %overflow, label %normal
11082
11083'``llvm.umul.with.overflow.*``' Intrinsics
11084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11085
11086Syntax:
11087"""""""
11088
11089This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11090on any integer bit width.
11091
11092::
11093
11094 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11095 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11096 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11097
11098Overview:
11099"""""""""
11100
11101The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11102a unsigned multiplication of the two arguments, and indicate whether an
11103overflow occurred during the unsigned multiplication.
11104
11105Arguments:
11106""""""""""
11107
11108The arguments (%a and %b) and the first element of the result structure
11109may be of integer types of any bit width, but they must have the same
11110bit width. The second element of the result structure must be of type
11111``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11112multiplication.
11113
11114Semantics:
11115""""""""""
11116
11117The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011118an unsigned multiplication of the two arguments. They return a structure ---
11119the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011120element of which is a bit specifying if the unsigned multiplication
11121resulted in an overflow.
11122
11123Examples:
11124"""""""""
11125
11126.. code-block:: llvm
11127
11128 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11129 %sum = extractvalue {i32, i1} %res, 0
11130 %obit = extractvalue {i32, i1} %res, 1
11131 br i1 %obit, label %overflow, label %normal
11132
11133Specialised Arithmetic Intrinsics
11134---------------------------------
11135
Owen Anderson1056a922015-07-11 07:01:27 +000011136'``llvm.canonicalize.*``' Intrinsic
11137^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11138
11139Syntax:
11140"""""""
11141
11142::
11143
11144 declare float @llvm.canonicalize.f32(float %a)
11145 declare double @llvm.canonicalize.f64(double %b)
11146
11147Overview:
11148"""""""""
11149
11150The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011151encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011152implementing certain numeric primitives such as frexp. The canonical encoding is
11153defined by IEEE-754-2008 to be:
11154
11155::
11156
11157 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011158 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011159 numbers, infinities, and NaNs, especially in decimal formats.
11160
11161This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011162conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011163according to section 6.2.
11164
11165Examples of non-canonical encodings:
11166
Sean Silvaa1190322015-08-06 22:56:48 +000011167- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011168 converted to a canonical representation per hardware-specific protocol.
11169- Many normal decimal floating point numbers have non-canonical alternative
11170 encodings.
11171- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011172 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011173 a zero of the same sign by this operation.
11174
11175Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11176default exception handling must signal an invalid exception, and produce a
11177quiet NaN result.
11178
11179This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011180that the compiler does not constant fold the operation. Likewise, division by
111811.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011182-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11183
Sean Silvaa1190322015-08-06 22:56:48 +000011184``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011185
11186- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11187- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11188 to ``(x == y)``
11189
11190Additionally, the sign of zero must be conserved:
11191``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11192
11193The payload bits of a NaN must be conserved, with two exceptions.
11194First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011195must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011196usual methods.
11197
11198The canonicalization operation may be optimized away if:
11199
Sean Silvaa1190322015-08-06 22:56:48 +000011200- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011201 floating-point operation that is required by the standard to be canonical.
11202- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011203 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011204
Sean Silvab084af42012-12-07 10:36:55 +000011205'``llvm.fmuladd.*``' Intrinsic
11206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11207
11208Syntax:
11209"""""""
11210
11211::
11212
11213 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11214 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11215
11216Overview:
11217"""""""""
11218
11219The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011220expressions that can be fused if the code generator determines that (a) the
11221target instruction set has support for a fused operation, and (b) that the
11222fused operation is more efficient than the equivalent, separate pair of mul
11223and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011224
11225Arguments:
11226""""""""""
11227
11228The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11229multiplicands, a and b, and an addend c.
11230
11231Semantics:
11232""""""""""
11233
11234The expression:
11235
11236::
11237
11238 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11239
11240is equivalent to the expression a \* b + c, except that rounding will
11241not be performed between the multiplication and addition steps if the
11242code generator fuses the operations. Fusion is not guaranteed, even if
11243the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011244corresponding llvm.fma.\* intrinsic function should be used
11245instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011246
11247Examples:
11248"""""""""
11249
11250.. code-block:: llvm
11251
Tim Northover675a0962014-06-13 14:24:23 +000011252 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011253
11254Half Precision Floating Point Intrinsics
11255----------------------------------------
11256
11257For most target platforms, half precision floating point is a
11258storage-only format. This means that it is a dense encoding (in memory)
11259but does not support computation in the format.
11260
11261This means that code must first load the half-precision floating point
11262value as an i16, then convert it to float with
11263:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11264then be performed on the float value (including extending to double
11265etc). To store the value back to memory, it is first converted to float
11266if needed, then converted to i16 with
11267:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11268i16 value.
11269
11270.. _int_convert_to_fp16:
11271
11272'``llvm.convert.to.fp16``' Intrinsic
11273^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11274
11275Syntax:
11276"""""""
11277
11278::
11279
Tim Northoverfd7e4242014-07-17 10:51:23 +000011280 declare i16 @llvm.convert.to.fp16.f32(float %a)
11281 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011282
11283Overview:
11284"""""""""
11285
Tim Northoverfd7e4242014-07-17 10:51:23 +000011286The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11287conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011288
11289Arguments:
11290""""""""""
11291
11292The intrinsic function contains single argument - the value to be
11293converted.
11294
11295Semantics:
11296""""""""""
11297
Tim Northoverfd7e4242014-07-17 10:51:23 +000011298The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11299conventional floating point format to half precision floating point format. The
11300return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011301
11302Examples:
11303"""""""""
11304
11305.. code-block:: llvm
11306
Tim Northoverfd7e4242014-07-17 10:51:23 +000011307 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011308 store i16 %res, i16* @x, align 2
11309
11310.. _int_convert_from_fp16:
11311
11312'``llvm.convert.from.fp16``' Intrinsic
11313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11314
11315Syntax:
11316"""""""
11317
11318::
11319
Tim Northoverfd7e4242014-07-17 10:51:23 +000011320 declare float @llvm.convert.from.fp16.f32(i16 %a)
11321 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011322
11323Overview:
11324"""""""""
11325
11326The '``llvm.convert.from.fp16``' intrinsic function performs a
11327conversion from half precision floating point format to single precision
11328floating point format.
11329
11330Arguments:
11331""""""""""
11332
11333The intrinsic function contains single argument - the value to be
11334converted.
11335
11336Semantics:
11337""""""""""
11338
11339The '``llvm.convert.from.fp16``' intrinsic function performs a
11340conversion from half single precision floating point format to single
11341precision floating point format. The input half-float value is
11342represented by an ``i16`` value.
11343
11344Examples:
11345"""""""""
11346
11347.. code-block:: llvm
11348
David Blaikiec7aabbb2015-03-04 22:06:14 +000011349 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011350 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011351
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011352.. _dbg_intrinsics:
11353
Sean Silvab084af42012-12-07 10:36:55 +000011354Debugger Intrinsics
11355-------------------
11356
11357The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11358prefix), are described in the `LLVM Source Level
11359Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11360document.
11361
11362Exception Handling Intrinsics
11363-----------------------------
11364
11365The LLVM exception handling intrinsics (which all start with
11366``llvm.eh.`` prefix), are described in the `LLVM Exception
11367Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11368
11369.. _int_trampoline:
11370
11371Trampoline Intrinsics
11372---------------------
11373
11374These intrinsics make it possible to excise one parameter, marked with
11375the :ref:`nest <nest>` attribute, from a function. The result is a
11376callable function pointer lacking the nest parameter - the caller does
11377not need to provide a value for it. Instead, the value to use is stored
11378in advance in a "trampoline", a block of memory usually allocated on the
11379stack, which also contains code to splice the nest value into the
11380argument list. This is used to implement the GCC nested function address
11381extension.
11382
11383For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11384then the resulting function pointer has signature ``i32 (i32, i32)*``.
11385It can be created as follows:
11386
11387.. code-block:: llvm
11388
11389 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011390 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011391 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11392 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11393 %fp = bitcast i8* %p to i32 (i32, i32)*
11394
11395The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11396``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11397
11398.. _int_it:
11399
11400'``llvm.init.trampoline``' Intrinsic
11401^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11402
11403Syntax:
11404"""""""
11405
11406::
11407
11408 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11409
11410Overview:
11411"""""""""
11412
11413This fills the memory pointed to by ``tramp`` with executable code,
11414turning it into a trampoline.
11415
11416Arguments:
11417""""""""""
11418
11419The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11420pointers. The ``tramp`` argument must point to a sufficiently large and
11421sufficiently aligned block of memory; this memory is written to by the
11422intrinsic. Note that the size and the alignment are target-specific -
11423LLVM currently provides no portable way of determining them, so a
11424front-end that generates this intrinsic needs to have some
11425target-specific knowledge. The ``func`` argument must hold a function
11426bitcast to an ``i8*``.
11427
11428Semantics:
11429""""""""""
11430
11431The block of memory pointed to by ``tramp`` is filled with target
11432dependent code, turning it into a function. Then ``tramp`` needs to be
11433passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11434be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11435function's signature is the same as that of ``func`` with any arguments
11436marked with the ``nest`` attribute removed. At most one such ``nest``
11437argument is allowed, and it must be of pointer type. Calling the new
11438function is equivalent to calling ``func`` with the same argument list,
11439but with ``nval`` used for the missing ``nest`` argument. If, after
11440calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11441modified, then the effect of any later call to the returned function
11442pointer is undefined.
11443
11444.. _int_at:
11445
11446'``llvm.adjust.trampoline``' Intrinsic
11447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11448
11449Syntax:
11450"""""""
11451
11452::
11453
11454 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11455
11456Overview:
11457"""""""""
11458
11459This performs any required machine-specific adjustment to the address of
11460a trampoline (passed as ``tramp``).
11461
11462Arguments:
11463""""""""""
11464
11465``tramp`` must point to a block of memory which already has trampoline
11466code filled in by a previous call to
11467:ref:`llvm.init.trampoline <int_it>`.
11468
11469Semantics:
11470""""""""""
11471
11472On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011473different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011474intrinsic returns the executable address corresponding to ``tramp``
11475after performing the required machine specific adjustments. The pointer
11476returned can then be :ref:`bitcast and executed <int_trampoline>`.
11477
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011478.. _int_mload_mstore:
11479
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011480Masked Vector Load and Store Intrinsics
11481---------------------------------------
11482
11483LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11484
11485.. _int_mload:
11486
11487'``llvm.masked.load.*``' Intrinsics
11488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11489
11490Syntax:
11491"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011492This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011493
11494::
11495
Adam Nemet7aab6482016-04-14 08:47:17 +000011496 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11497 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011498 ;; The data is a vector of pointers to double
Adam Nemet7aab6482016-04-14 08:47:17 +000011499 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011500 ;; The data is a vector of function pointers
Adam Nemet7aab6482016-04-14 08:47:17 +000011501 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011502
11503Overview:
11504"""""""""
11505
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011506Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011507
11508
11509Arguments:
11510""""""""""
11511
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011512The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011513
11514
11515Semantics:
11516""""""""""
11517
11518The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11519The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11520
11521
11522::
11523
Adam Nemet7aab6482016-04-14 08:47:17 +000011524 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011525
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011526 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011527 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011528 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011529
11530.. _int_mstore:
11531
11532'``llvm.masked.store.*``' Intrinsics
11533^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11534
11535Syntax:
11536"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011537This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011538
11539::
11540
Adam Nemet7aab6482016-04-14 08:47:17 +000011541 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11542 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011543 ;; The data is a vector of pointers to double
Adam Nemet7aab6482016-04-14 08:47:17 +000011544 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011545 ;; The data is a vector of function pointers
Adam Nemet7aab6482016-04-14 08:47:17 +000011546 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011547
11548Overview:
11549"""""""""
11550
11551Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11552
11553Arguments:
11554""""""""""
11555
11556The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11557
11558
11559Semantics:
11560""""""""""
11561
11562The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11563The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11564
11565::
11566
Adam Nemet7aab6482016-04-14 08:47:17 +000011567 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011568
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011569 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011570 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011571 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11572 store <16 x float> %res, <16 x float>* %ptr, align 4
11573
11574
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011575Masked Vector Gather and Scatter Intrinsics
11576-------------------------------------------
11577
11578LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11579
11580.. _int_mgather:
11581
11582'``llvm.masked.gather.*``' Intrinsics
11583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11584
11585Syntax:
11586"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011587This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011588
11589::
11590
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011591 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11592 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11593 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011594
11595Overview:
11596"""""""""
11597
11598Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11599
11600
11601Arguments:
11602""""""""""
11603
11604The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11605
11606
11607Semantics:
11608""""""""""
11609
11610The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11611The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11612
11613
11614::
11615
11616 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11617
11618 ;; The gather with all-true mask is equivalent to the following instruction sequence
11619 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11620 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11621 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11622 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11623
11624 %val0 = load double, double* %ptr0, align 8
11625 %val1 = load double, double* %ptr1, align 8
11626 %val2 = load double, double* %ptr2, align 8
11627 %val3 = load double, double* %ptr3, align 8
11628
11629 %vec0 = insertelement <4 x double>undef, %val0, 0
11630 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11631 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11632 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11633
11634.. _int_mscatter:
11635
11636'``llvm.masked.scatter.*``' Intrinsics
11637^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11638
11639Syntax:
11640"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011641This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011642
11643::
11644
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011645 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11646 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11647 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011648
11649Overview:
11650"""""""""
11651
11652Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11653
11654Arguments:
11655""""""""""
11656
11657The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11658
11659
11660Semantics:
11661""""""""""
11662
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011663The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011664
11665::
11666
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011667 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011668 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11669
11670 ;; It is equivalent to a list of scalar stores
11671 %val0 = extractelement <8 x i32> %value, i32 0
11672 %val1 = extractelement <8 x i32> %value, i32 1
11673 ..
11674 %val7 = extractelement <8 x i32> %value, i32 7
11675 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11676 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11677 ..
11678 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11679 ;; Note: the order of the following stores is important when they overlap:
11680 store i32 %val0, i32* %ptr0, align 4
11681 store i32 %val1, i32* %ptr1, align 4
11682 ..
11683 store i32 %val7, i32* %ptr7, align 4
11684
11685
Sean Silvab084af42012-12-07 10:36:55 +000011686Memory Use Markers
11687------------------
11688
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011689This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011690memory objects and ranges where variables are immutable.
11691
Reid Klecknera534a382013-12-19 02:14:12 +000011692.. _int_lifestart:
11693
Sean Silvab084af42012-12-07 10:36:55 +000011694'``llvm.lifetime.start``' Intrinsic
11695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11696
11697Syntax:
11698"""""""
11699
11700::
11701
11702 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11703
11704Overview:
11705"""""""""
11706
11707The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11708object's lifetime.
11709
11710Arguments:
11711""""""""""
11712
11713The first argument is a constant integer representing the size of the
11714object, or -1 if it is variable sized. The second argument is a pointer
11715to the object.
11716
11717Semantics:
11718""""""""""
11719
11720This intrinsic indicates that before this point in the code, the value
11721of the memory pointed to by ``ptr`` is dead. This means that it is known
11722to never be used and has an undefined value. A load from the pointer
11723that precedes this intrinsic can be replaced with ``'undef'``.
11724
Reid Klecknera534a382013-12-19 02:14:12 +000011725.. _int_lifeend:
11726
Sean Silvab084af42012-12-07 10:36:55 +000011727'``llvm.lifetime.end``' Intrinsic
11728^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11729
11730Syntax:
11731"""""""
11732
11733::
11734
11735 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11736
11737Overview:
11738"""""""""
11739
11740The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11741object's lifetime.
11742
11743Arguments:
11744""""""""""
11745
11746The first argument is a constant integer representing the size of the
11747object, or -1 if it is variable sized. The second argument is a pointer
11748to the object.
11749
11750Semantics:
11751""""""""""
11752
11753This intrinsic indicates that after this point in the code, the value of
11754the memory pointed to by ``ptr`` is dead. This means that it is known to
11755never be used and has an undefined value. Any stores into the memory
11756object following this intrinsic may be removed as dead.
11757
11758'``llvm.invariant.start``' Intrinsic
11759^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11760
11761Syntax:
11762"""""""
11763
11764::
11765
11766 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11767
11768Overview:
11769"""""""""
11770
11771The '``llvm.invariant.start``' intrinsic specifies that the contents of
11772a memory object will not change.
11773
11774Arguments:
11775""""""""""
11776
11777The first argument is a constant integer representing the size of the
11778object, or -1 if it is variable sized. The second argument is a pointer
11779to the object.
11780
11781Semantics:
11782""""""""""
11783
11784This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11785the return value, the referenced memory location is constant and
11786unchanging.
11787
11788'``llvm.invariant.end``' Intrinsic
11789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11790
11791Syntax:
11792"""""""
11793
11794::
11795
11796 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11797
11798Overview:
11799"""""""""
11800
11801The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11802memory object are mutable.
11803
11804Arguments:
11805""""""""""
11806
11807The first argument is the matching ``llvm.invariant.start`` intrinsic.
11808The second argument is a constant integer representing the size of the
11809object, or -1 if it is variable sized and the third argument is a
11810pointer to the object.
11811
11812Semantics:
11813""""""""""
11814
11815This intrinsic indicates that the memory is mutable again.
11816
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011817'``llvm.invariant.group.barrier``' Intrinsic
11818^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11819
11820Syntax:
11821"""""""
11822
11823::
11824
11825 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11826
11827Overview:
11828"""""""""
11829
11830The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11831established by invariant.group metadata no longer holds, to obtain a new pointer
11832value that does not carry the invariant information.
11833
11834
11835Arguments:
11836""""""""""
11837
11838The ``llvm.invariant.group.barrier`` takes only one argument, which is
11839the pointer to the memory for which the ``invariant.group`` no longer holds.
11840
11841Semantics:
11842""""""""""
11843
11844Returns another pointer that aliases its argument but which is considered different
11845for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11846
Sean Silvab084af42012-12-07 10:36:55 +000011847General Intrinsics
11848------------------
11849
11850This class of intrinsics is designed to be generic and has no specific
11851purpose.
11852
11853'``llvm.var.annotation``' Intrinsic
11854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11855
11856Syntax:
11857"""""""
11858
11859::
11860
11861 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11862
11863Overview:
11864"""""""""
11865
11866The '``llvm.var.annotation``' intrinsic.
11867
11868Arguments:
11869""""""""""
11870
11871The first argument is a pointer to a value, the second is a pointer to a
11872global string, the third is a pointer to a global string which is the
11873source file name, and the last argument is the line number.
11874
11875Semantics:
11876""""""""""
11877
11878This intrinsic allows annotation of local variables with arbitrary
11879strings. This can be useful for special purpose optimizations that want
11880to look for these annotations. These have no other defined use; they are
11881ignored by code generation and optimization.
11882
Michael Gottesman88d18832013-03-26 00:34:27 +000011883'``llvm.ptr.annotation.*``' Intrinsic
11884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11885
11886Syntax:
11887"""""""
11888
11889This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11890pointer to an integer of any width. *NOTE* you must specify an address space for
11891the pointer. The identifier for the default address space is the integer
11892'``0``'.
11893
11894::
11895
11896 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11897 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11898 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11899 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11900 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11901
11902Overview:
11903"""""""""
11904
11905The '``llvm.ptr.annotation``' intrinsic.
11906
11907Arguments:
11908""""""""""
11909
11910The first argument is a pointer to an integer value of arbitrary bitwidth
11911(result of some expression), the second is a pointer to a global string, the
11912third is a pointer to a global string which is the source file name, and the
11913last argument is the line number. It returns the value of the first argument.
11914
11915Semantics:
11916""""""""""
11917
11918This intrinsic allows annotation of a pointer to an integer with arbitrary
11919strings. This can be useful for special purpose optimizations that want to look
11920for these annotations. These have no other defined use; they are ignored by code
11921generation and optimization.
11922
Sean Silvab084af42012-12-07 10:36:55 +000011923'``llvm.annotation.*``' Intrinsic
11924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11925
11926Syntax:
11927"""""""
11928
11929This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11930any integer bit width.
11931
11932::
11933
11934 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11935 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11936 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11937 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11938 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11939
11940Overview:
11941"""""""""
11942
11943The '``llvm.annotation``' intrinsic.
11944
11945Arguments:
11946""""""""""
11947
11948The first argument is an integer value (result of some expression), the
11949second is a pointer to a global string, the third is a pointer to a
11950global string which is the source file name, and the last argument is
11951the line number. It returns the value of the first argument.
11952
11953Semantics:
11954""""""""""
11955
11956This intrinsic allows annotations to be put on arbitrary expressions
11957with arbitrary strings. This can be useful for special purpose
11958optimizations that want to look for these annotations. These have no
11959other defined use; they are ignored by code generation and optimization.
11960
11961'``llvm.trap``' Intrinsic
11962^^^^^^^^^^^^^^^^^^^^^^^^^
11963
11964Syntax:
11965"""""""
11966
11967::
11968
11969 declare void @llvm.trap() noreturn nounwind
11970
11971Overview:
11972"""""""""
11973
11974The '``llvm.trap``' intrinsic.
11975
11976Arguments:
11977""""""""""
11978
11979None.
11980
11981Semantics:
11982""""""""""
11983
11984This intrinsic is lowered to the target dependent trap instruction. If
11985the target does not have a trap instruction, this intrinsic will be
11986lowered to a call of the ``abort()`` function.
11987
11988'``llvm.debugtrap``' Intrinsic
11989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11990
11991Syntax:
11992"""""""
11993
11994::
11995
11996 declare void @llvm.debugtrap() nounwind
11997
11998Overview:
11999"""""""""
12000
12001The '``llvm.debugtrap``' intrinsic.
12002
12003Arguments:
12004""""""""""
12005
12006None.
12007
12008Semantics:
12009""""""""""
12010
12011This intrinsic is lowered to code which is intended to cause an
12012execution trap with the intention of requesting the attention of a
12013debugger.
12014
12015'``llvm.stackprotector``' Intrinsic
12016^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12017
12018Syntax:
12019"""""""
12020
12021::
12022
12023 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12024
12025Overview:
12026"""""""""
12027
12028The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12029onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12030is placed on the stack before local variables.
12031
12032Arguments:
12033""""""""""
12034
12035The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12036The first argument is the value loaded from the stack guard
12037``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12038enough space to hold the value of the guard.
12039
12040Semantics:
12041""""""""""
12042
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012043This intrinsic causes the prologue/epilogue inserter to force the position of
12044the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12045to ensure that if a local variable on the stack is overwritten, it will destroy
12046the value of the guard. When the function exits, the guard on the stack is
12047checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12048different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12049calling the ``__stack_chk_fail()`` function.
12050
Tim Shene885d5e2016-04-19 19:40:37 +000012051'``llvm.stackguard``' Intrinsic
12052^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12053
12054Syntax:
12055"""""""
12056
12057::
12058
12059 declare i8* @llvm.stackguard()
12060
12061Overview:
12062"""""""""
12063
12064The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12065
12066It should not be generated by frontends, since it is only for internal usage.
12067The reason why we create this intrinsic is that we still support IR form Stack
12068Protector in FastISel.
12069
12070Arguments:
12071""""""""""
12072
12073None.
12074
12075Semantics:
12076""""""""""
12077
12078On some platforms, the value returned by this intrinsic remains unchanged
12079between loads in the same thread. On other platforms, it returns the same
12080global variable value, if any, e.g. ``@__stack_chk_guard``.
12081
12082Currently some platforms have IR-level customized stack guard loading (e.g.
12083X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12084in the future.
12085
Sean Silvab084af42012-12-07 10:36:55 +000012086'``llvm.objectsize``' Intrinsic
12087^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12088
12089Syntax:
12090"""""""
12091
12092::
12093
12094 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12095 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12096
12097Overview:
12098"""""""""
12099
12100The ``llvm.objectsize`` intrinsic is designed to provide information to
12101the optimizers to determine at compile time whether a) an operation
12102(like memcpy) will overflow a buffer that corresponds to an object, or
12103b) that a runtime check for overflow isn't necessary. An object in this
12104context means an allocation of a specific class, structure, array, or
12105other object.
12106
12107Arguments:
12108""""""""""
12109
12110The ``llvm.objectsize`` intrinsic takes two arguments. The first
12111argument is a pointer to or into the ``object``. The second argument is
12112a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12113or -1 (if false) when the object size is unknown. The second argument
12114only accepts constants.
12115
12116Semantics:
12117""""""""""
12118
12119The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12120the size of the object concerned. If the size cannot be determined at
12121compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12122on the ``min`` argument).
12123
12124'``llvm.expect``' Intrinsic
12125^^^^^^^^^^^^^^^^^^^^^^^^^^^
12126
12127Syntax:
12128"""""""
12129
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012130This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12131integer bit width.
12132
Sean Silvab084af42012-12-07 10:36:55 +000012133::
12134
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012135 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012136 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12137 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12138
12139Overview:
12140"""""""""
12141
12142The ``llvm.expect`` intrinsic provides information about expected (the
12143most probable) value of ``val``, which can be used by optimizers.
12144
12145Arguments:
12146""""""""""
12147
12148The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12149a value. The second argument is an expected value, this needs to be a
12150constant value, variables are not allowed.
12151
12152Semantics:
12153""""""""""
12154
12155This intrinsic is lowered to the ``val``.
12156
Philip Reamese0e90832015-04-26 22:23:12 +000012157.. _int_assume:
12158
Hal Finkel93046912014-07-25 21:13:35 +000012159'``llvm.assume``' Intrinsic
12160^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12161
12162Syntax:
12163"""""""
12164
12165::
12166
12167 declare void @llvm.assume(i1 %cond)
12168
12169Overview:
12170"""""""""
12171
12172The ``llvm.assume`` allows the optimizer to assume that the provided
12173condition is true. This information can then be used in simplifying other parts
12174of the code.
12175
12176Arguments:
12177""""""""""
12178
12179The condition which the optimizer may assume is always true.
12180
12181Semantics:
12182""""""""""
12183
12184The intrinsic allows the optimizer to assume that the provided condition is
12185always true whenever the control flow reaches the intrinsic call. No code is
12186generated for this intrinsic, and instructions that contribute only to the
12187provided condition are not used for code generation. If the condition is
12188violated during execution, the behavior is undefined.
12189
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012190Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012191used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12192only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012193if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012194sufficient overall improvement in code quality. For this reason,
12195``llvm.assume`` should not be used to document basic mathematical invariants
12196that the optimizer can otherwise deduce or facts that are of little use to the
12197optimizer.
12198
Peter Collingbournee6909c82015-02-20 20:30:47 +000012199.. _bitset.test:
12200
12201'``llvm.bitset.test``' Intrinsic
12202^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12203
12204Syntax:
12205"""""""
12206
12207::
12208
12209 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12210
12211
12212Arguments:
12213""""""""""
12214
12215The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012216metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012217
12218Overview:
12219"""""""""
12220
12221The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12222member of the given bitset.
12223
Sean Silvab084af42012-12-07 10:36:55 +000012224'``llvm.donothing``' Intrinsic
12225^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12226
12227Syntax:
12228"""""""
12229
12230::
12231
12232 declare void @llvm.donothing() nounwind readnone
12233
12234Overview:
12235"""""""""
12236
Juergen Ributzkac9161192014-10-23 22:36:13 +000012237The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012238three intrinsics (besides ``llvm.experimental.patchpoint`` and
12239``llvm.experimental.gc.statepoint``) that can be called with an invoke
12240instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012241
12242Arguments:
12243""""""""""
12244
12245None.
12246
12247Semantics:
12248""""""""""
12249
12250This intrinsic does nothing, and it's removed by optimizers and ignored
12251by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012252
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012253'``llvm.experimental.deoptimize``' Intrinsic
12254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12255
12256Syntax:
12257"""""""
12258
12259::
12260
12261 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12262
12263Overview:
12264"""""""""
12265
12266This intrinsic, together with :ref:`deoptimization operand bundles
12267<deopt_opbundles>`, allow frontends to express transfer of control and
12268frame-local state from the currently executing (typically more specialized,
12269hence faster) version of a function into another (typically more generic, hence
12270slower) version.
12271
12272In languages with a fully integrated managed runtime like Java and JavaScript
12273this intrinsic can be used to implement "uncommon trap" or "side exit" like
12274functionality. In unmanaged languages like C and C++, this intrinsic can be
12275used to represent the slow paths of specialized functions.
12276
12277
12278Arguments:
12279""""""""""
12280
12281The intrinsic takes an arbitrary number of arguments, whose meaning is
12282decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12283
12284Semantics:
12285""""""""""
12286
12287The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12288deoptimization continuation (denoted using a :ref:`deoptimization
12289operand bundle <deopt_opbundles>`) and returns the value returned by
12290the deoptimization continuation. Defining the semantic properties of
12291the continuation itself is out of scope of the language reference --
12292as far as LLVM is concerned, the deoptimization continuation can
12293invoke arbitrary side effects, including reading from and writing to
12294the entire heap.
12295
12296Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12297continue execution to the end of the physical frame containing them, so all
12298calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12299
12300 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12301 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12302 - The ``ret`` instruction must return the value produced by the
12303 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12304
12305Note that the above restrictions imply that the return type for a call to
12306``@llvm.experimental.deoptimize`` will match the return type of its immediate
12307caller.
12308
12309The inliner composes the ``"deopt"`` continuations of the caller into the
12310``"deopt"`` continuations present in the inlinee, and also updates calls to this
12311intrinsic to return directly from the frame of the function it inlined into.
12312
12313.. _deoptimize_lowering:
12314
12315Lowering:
12316"""""""""
12317
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012318Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12319symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12320ensure that this symbol is defined). The call arguments to
12321``@llvm.experimental.deoptimize`` are lowered as if they were formal
12322arguments of the specified types, and not as varargs.
12323
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012324
Sanjoy Das021de052016-03-31 00:18:46 +000012325'``llvm.experimental.guard``' Intrinsic
12326^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12327
12328Syntax:
12329"""""""
12330
12331::
12332
12333 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12334
12335Overview:
12336"""""""""
12337
12338This intrinsic, together with :ref:`deoptimization operand bundles
12339<deopt_opbundles>`, allows frontends to express guards or checks on
12340optimistic assumptions made during compilation. The semantics of
12341``@llvm.experimental.guard`` is defined in terms of
12342``@llvm.experimental.deoptimize`` -- its body is defined to be
12343equivalent to:
12344
12345.. code-block:: llvm
12346
12347 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12348 %realPred = and i1 %pred, undef
12349 br i1 %realPred, label %continue, label %leave
12350
12351 leave:
12352 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12353 ret void
12354
12355 continue:
12356 ret void
12357 }
12358
12359In words, ``@llvm.experimental.guard`` executes the attached
12360``"deopt"`` continuation if (but **not** only if) its first argument
12361is ``false``. Since the optimizer is allowed to replace the ``undef``
12362with an arbitrary value, it can optimize guard to fail "spuriously",
12363i.e. without the original condition being false (hence the "not only
12364if"); and this allows for "check widening" type optimizations.
12365
12366``@llvm.experimental.guard`` cannot be invoked.
12367
12368
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012369'``llvm.load.relative``' Intrinsic
12370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12371
12372Syntax:
12373"""""""
12374
12375::
12376
12377 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12378
12379Overview:
12380"""""""""
12381
12382This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12383adds ``%ptr`` to that value and returns it. The constant folder specifically
12384recognizes the form of this intrinsic and the constant initializers it may
12385load from; if a loaded constant initializer is known to have the form
12386``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12387
12388LLVM provides that the calculation of such a constant initializer will
12389not overflow at link time under the medium code model if ``x`` is an
12390``unnamed_addr`` function. However, it does not provide this guarantee for
12391a constant initializer folded into a function body. This intrinsic can be
12392used to avoid the possibility of overflows when loading from such a constant.
12393
Andrew Trick5e029ce2013-12-24 02:57:25 +000012394Stack Map Intrinsics
12395--------------------
12396
12397LLVM provides experimental intrinsics to support runtime patching
12398mechanisms commonly desired in dynamic language JITs. These intrinsics
12399are described in :doc:`StackMaps`.