blob: 2a1c7a0004906eef58fa92fd5d471791fc9fd2aa [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
549.. _globalvars:
550
551Global Variables
552----------------
553
554Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000555instead of run-time.
556
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000557Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000558
559Global variables in other translation units can also be declared, in which
560case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000561
Bob Wilson85b24f22014-06-12 20:40:33 +0000562Either global variable definitions or declarations may have an explicit section
563to be placed in and may have an optional explicit alignment specified.
564
Michael Gottesman006039c2013-01-31 05:48:48 +0000565A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000566the contents of the variable will **never** be modified (enabling better
567optimization, allowing the global data to be placed in the read-only
568section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000569initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000570variable.
571
572LLVM explicitly allows *declarations* of global variables to be marked
573constant, even if the final definition of the global is not. This
574capability can be used to enable slightly better optimization of the
575program, but requires the language definition to guarantee that
576optimizations based on the 'constantness' are valid for the translation
577units that do not include the definition.
578
579As SSA values, global variables define pointer values that are in scope
580(i.e. they dominate) all basic blocks in the program. Global variables
581always define a pointer to their "content" type because they describe a
582region of memory, and all memory objects in LLVM are accessed through
583pointers.
584
585Global variables can be marked with ``unnamed_addr`` which indicates
586that the address is not significant, only the content. Constants marked
587like this can be merged with other constants if they have the same
588initializer. Note that a constant with significant address *can* be
589merged with a ``unnamed_addr`` constant, the result being a constant
590whose address is significant.
591
592A global variable may be declared to reside in a target-specific
593numbered address space. For targets that support them, address spaces
594may affect how optimizations are performed and/or what target
595instructions are used to access the variable. The default address space
596is zero. The address space qualifier must precede any other attributes.
597
598LLVM allows an explicit section to be specified for globals. If the
599target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000600Additionally, the global can placed in a comdat if the target has the necessary
601support.
Sean Silvab084af42012-12-07 10:36:55 +0000602
Michael Gottesmane743a302013-02-04 03:22:00 +0000603By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000604variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000605initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000606true even for variables potentially accessible from outside the
607module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000608``@llvm.used`` or dllexported variables. This assumption may be suppressed
609by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000610
Sean Silvab084af42012-12-07 10:36:55 +0000611An explicit alignment may be specified for a global, which must be a
612power of 2. If not present, or if the alignment is set to zero, the
613alignment of the global is set by the target to whatever it feels
614convenient. If an explicit alignment is specified, the global is forced
615to have exactly that alignment. Targets and optimizers are not allowed
616to over-align the global if the global has an assigned section. In this
617case, the extra alignment could be observable: for example, code could
618assume that the globals are densely packed in their section and try to
619iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000620iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000621
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000622Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
623an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000624
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000625Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000626:ref:`Thread Local Storage Model <tls_model>`.
627
Nico Rieck7157bb72014-01-14 15:22:47 +0000628Syntax::
629
Rafael Espindola32483a72016-05-10 18:22:45 +0000630 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000631 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000632 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000633 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000634 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000635
Sean Silvab084af42012-12-07 10:36:55 +0000636For example, the following defines a global in a numbered address space
637with an initializer, section, and alignment:
638
639.. code-block:: llvm
640
641 @G = addrspace(5) constant float 1.0, section "foo", align 4
642
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000643The following example just declares a global variable
644
645.. code-block:: llvm
646
647 @G = external global i32
648
Sean Silvab084af42012-12-07 10:36:55 +0000649The following example defines a thread-local global with the
650``initialexec`` TLS model:
651
652.. code-block:: llvm
653
654 @G = thread_local(initialexec) global i32 0, align 4
655
656.. _functionstructure:
657
658Functions
659---------
660
661LLVM function definitions consist of the "``define``" keyword, an
662optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000663style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
664an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000665an optional ``unnamed_addr`` attribute, a return type, an optional
666:ref:`parameter attribute <paramattrs>` for the return type, a function
667name, a (possibly empty) argument list (each with optional :ref:`parameter
668attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000669an optional section, an optional alignment,
670an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000671an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000672an optional :ref:`prologue <prologuedata>`,
673an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000674an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000675an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000676
677LLVM function declarations consist of the "``declare``" keyword, an
678optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000679style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
680an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000681an optional ``unnamed_addr`` attribute, a return type, an optional
682:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000683name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000684:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
685and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000686
Bill Wendling6822ecb2013-10-27 05:09:12 +0000687A function definition contains a list of basic blocks, forming the CFG (Control
688Flow Graph) for the function. Each basic block may optionally start with a label
689(giving the basic block a symbol table entry), contains a list of instructions,
690and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
691function return). If an explicit label is not provided, a block is assigned an
692implicit numbered label, using the next value from the same counter as used for
693unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
694entry block does not have an explicit label, it will be assigned label "%0",
695then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000696
697The first basic block in a function is special in two ways: it is
698immediately executed on entrance to the function, and it is not allowed
699to have predecessor basic blocks (i.e. there can not be any branches to
700the entry block of a function). Because the block can have no
701predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
702
703LLVM allows an explicit section to be specified for functions. If the
704target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000705Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000706
707An explicit alignment may be specified for a function. If not present,
708or if the alignment is set to zero, the alignment of the function is set
709by the target to whatever it feels convenient. If an explicit alignment
710is specified, the function is forced to have at least that much
711alignment. All alignments must be a power of 2.
712
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000713If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000714be significant and two identical functions can be merged.
715
716Syntax::
717
Nico Rieck7157bb72014-01-14 15:22:47 +0000718 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000719 [cconv] [ret attrs]
720 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000721 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000722 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000723 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000724
Sean Silva706fba52015-08-06 22:56:24 +0000725The argument list is a comma separated sequence of arguments where each
726argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000727
728Syntax::
729
730 <type> [parameter Attrs] [name]
731
732
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000733.. _langref_aliases:
734
Sean Silvab084af42012-12-07 10:36:55 +0000735Aliases
736-------
737
Rafael Espindola64c1e182014-06-03 02:41:57 +0000738Aliases, unlike function or variables, don't create any new data. They
739are just a new symbol and metadata for an existing position.
740
741Aliases have a name and an aliasee that is either a global value or a
742constant expression.
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000745:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
746<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000747
748Syntax::
749
David Blaikie196582e2015-10-22 01:17:29 +0000750 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000751
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000752The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000753``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000754might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000755
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000756Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000757the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
758to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000759
Rafael Espindola64c1e182014-06-03 02:41:57 +0000760Since aliases are only a second name, some restrictions apply, of which
761some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000762
Rafael Espindola64c1e182014-06-03 02:41:57 +0000763* The expression defining the aliasee must be computable at assembly
764 time. Since it is just a name, no relocations can be used.
765
766* No alias in the expression can be weak as the possibility of the
767 intermediate alias being overridden cannot be represented in an
768 object file.
769
770* No global value in the expression can be a declaration, since that
771 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000772
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000773.. _langref_ifunc:
774
775IFuncs
776-------
777
778IFuncs, like as aliases, don't create any new data or func. They are just a new
779symbol that dynamic linker resolves at runtime by calling a resolver function.
780
781IFuncs have a name and a resolver that is a function called by dynamic linker
782that returns address of another function associated with the name.
783
784IFunc may have an optional :ref:`linkage type <linkage>` and an optional
785:ref:`visibility style <visibility>`.
786
787Syntax::
788
789 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
790
791
David Majnemerdad0a642014-06-27 18:19:56 +0000792.. _langref_comdats:
793
794Comdats
795-------
796
797Comdat IR provides access to COFF and ELF object file COMDAT functionality.
798
Sean Silvaa1190322015-08-06 22:56:48 +0000799Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000800specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000801that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000802aliasee computes to, if any.
803
804Comdats have a selection kind to provide input on how the linker should
805choose between keys in two different object files.
806
807Syntax::
808
809 $<Name> = comdat SelectionKind
810
811The selection kind must be one of the following:
812
813``any``
814 The linker may choose any COMDAT key, the choice is arbitrary.
815``exactmatch``
816 The linker may choose any COMDAT key but the sections must contain the
817 same data.
818``largest``
819 The linker will choose the section containing the largest COMDAT key.
820``noduplicates``
821 The linker requires that only section with this COMDAT key exist.
822``samesize``
823 The linker may choose any COMDAT key but the sections must contain the
824 same amount of data.
825
826Note that the Mach-O platform doesn't support COMDATs and ELF only supports
827``any`` as a selection kind.
828
829Here is an example of a COMDAT group where a function will only be selected if
830the COMDAT key's section is the largest:
831
832.. code-block:: llvm
833
834 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000835 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000836
Rafael Espindola83a362c2015-01-06 22:55:16 +0000837 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000838 ret void
839 }
840
Rafael Espindola83a362c2015-01-06 22:55:16 +0000841As a syntactic sugar the ``$name`` can be omitted if the name is the same as
842the global name:
843
844.. code-block:: llvm
845
846 $foo = comdat any
847 @foo = global i32 2, comdat
848
849
David Majnemerdad0a642014-06-27 18:19:56 +0000850In a COFF object file, this will create a COMDAT section with selection kind
851``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
852and another COMDAT section with selection kind
853``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000854section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000855
856There are some restrictions on the properties of the global object.
857It, or an alias to it, must have the same name as the COMDAT group when
858targeting COFF.
859The contents and size of this object may be used during link-time to determine
860which COMDAT groups get selected depending on the selection kind.
861Because the name of the object must match the name of the COMDAT group, the
862linkage of the global object must not be local; local symbols can get renamed
863if a collision occurs in the symbol table.
864
865The combined use of COMDATS and section attributes may yield surprising results.
866For example:
867
868.. code-block:: llvm
869
870 $foo = comdat any
871 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000872 @g1 = global i32 42, section "sec", comdat($foo)
873 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000874
875From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000876with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000877COMDAT groups and COMDATs, at the object file level, are represented by
878sections.
879
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000880Note that certain IR constructs like global variables and functions may
881create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000882COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000883in individual sections (e.g. when `-data-sections` or `-function-sections`
884is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000885
Sean Silvab084af42012-12-07 10:36:55 +0000886.. _namedmetadatastructure:
887
888Named Metadata
889--------------
890
891Named metadata is a collection of metadata. :ref:`Metadata
892nodes <metadata>` (but not metadata strings) are the only valid
893operands for a named metadata.
894
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000895#. Named metadata are represented as a string of characters with the
896 metadata prefix. The rules for metadata names are the same as for
897 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
898 are still valid, which allows any character to be part of a name.
899
Sean Silvab084af42012-12-07 10:36:55 +0000900Syntax::
901
902 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000903 !0 = !{!"zero"}
904 !1 = !{!"one"}
905 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000906 ; A named metadata.
907 !name = !{!0, !1, !2}
908
909.. _paramattrs:
910
911Parameter Attributes
912--------------------
913
914The return type and each parameter of a function type may have a set of
915*parameter attributes* associated with them. Parameter attributes are
916used to communicate additional information about the result or
917parameters of a function. Parameter attributes are considered to be part
918of the function, not of the function type, so functions with different
919parameter attributes can have the same function type.
920
921Parameter attributes are simple keywords that follow the type specified.
922If multiple parameter attributes are needed, they are space separated.
923For example:
924
925.. code-block:: llvm
926
927 declare i32 @printf(i8* noalias nocapture, ...)
928 declare i32 @atoi(i8 zeroext)
929 declare signext i8 @returns_signed_char()
930
931Note that any attributes for the function result (``nounwind``,
932``readonly``) come immediately after the argument list.
933
934Currently, only the following parameter attributes are defined:
935
936``zeroext``
937 This indicates to the code generator that the parameter or return
938 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000939 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000940``signext``
941 This indicates to the code generator that the parameter or return
942 value should be sign-extended to the extent required by the target's
943 ABI (which is usually 32-bits) by the caller (for a parameter) or
944 the callee (for a return value).
945``inreg``
946 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000947 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000948 a function call or return (usually, by putting it in a register as
949 opposed to memory, though some targets use it to distinguish between
950 two different kinds of registers). Use of this attribute is
951 target-specific.
952``byval``
953 This indicates that the pointer parameter should really be passed by
954 value to the function. The attribute implies that a hidden copy of
955 the pointee is made between the caller and the callee, so the callee
956 is unable to modify the value in the caller. This attribute is only
957 valid on LLVM pointer arguments. It is generally used to pass
958 structs and arrays by value, but is also valid on pointers to
959 scalars. The copy is considered to belong to the caller not the
960 callee (for example, ``readonly`` functions should not write to
961 ``byval`` parameters). This is not a valid attribute for return
962 values.
963
964 The byval attribute also supports specifying an alignment with the
965 align attribute. It indicates the alignment of the stack slot to
966 form and the known alignment of the pointer specified to the call
967 site. If the alignment is not specified, then the code generator
968 makes a target-specific assumption.
969
Reid Klecknera534a382013-12-19 02:14:12 +0000970.. _attr_inalloca:
971
972``inalloca``
973
Reid Kleckner60d3a832014-01-16 22:59:24 +0000974 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000975 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000976 be a pointer to stack memory produced by an ``alloca`` instruction.
977 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000978 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000979 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000980
Reid Kleckner436c42e2014-01-17 23:58:17 +0000981 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000982 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000983 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000984 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000985 ``inalloca`` attribute also disables LLVM's implicit lowering of
986 large aggregate return values, which means that frontend authors
987 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000988
Reid Kleckner60d3a832014-01-16 22:59:24 +0000989 When the call site is reached, the argument allocation must have
990 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000991 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000992 space after an argument allocation and before its call site, but it
993 must be cleared off with :ref:`llvm.stackrestore
994 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000995
996 See :doc:`InAlloca` for more information on how to use this
997 attribute.
998
Sean Silvab084af42012-12-07 10:36:55 +0000999``sret``
1000 This indicates that the pointer parameter specifies the address of a
1001 structure that is the return value of the function in the source
1002 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +00001003 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +00001004 not to trap and to be properly aligned. This may only be applied to
1005 the first parameter. This is not a valid attribute for return
1006 values.
Sean Silva1703e702014-04-08 21:06:22 +00001007
Hal Finkelccc70902014-07-22 16:58:55 +00001008``align <n>``
1009 This indicates that the pointer value may be assumed by the optimizer to
1010 have the specified alignment.
1011
1012 Note that this attribute has additional semantics when combined with the
1013 ``byval`` attribute.
1014
Sean Silva1703e702014-04-08 21:06:22 +00001015.. _noalias:
1016
Sean Silvab084af42012-12-07 10:36:55 +00001017``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001018 This indicates that objects accessed via pointer values
1019 :ref:`based <pointeraliasing>` on the argument or return value are not also
1020 accessed, during the execution of the function, via pointer values not
1021 *based* on the argument or return value. The attribute on a return value
1022 also has additional semantics described below. The caller shares the
1023 responsibility with the callee for ensuring that these requirements are met.
1024 For further details, please see the discussion of the NoAlias response in
1025 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001026
1027 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001028 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001029
1030 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001031 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1032 attribute on return values are stronger than the semantics of the attribute
1033 when used on function arguments. On function return values, the ``noalias``
1034 attribute indicates that the function acts like a system memory allocation
1035 function, returning a pointer to allocated storage disjoint from the
1036 storage for any other object accessible to the caller.
1037
Sean Silvab084af42012-12-07 10:36:55 +00001038``nocapture``
1039 This indicates that the callee does not make any copies of the
1040 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001041 attribute for return values. Addresses used in volatile operations
1042 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001043
1044.. _nest:
1045
1046``nest``
1047 This indicates that the pointer parameter can be excised using the
1048 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001049 attribute for return values and can only be applied to one parameter.
1050
1051``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001052 This indicates that the function always returns the argument as its return
1053 value. This is an optimization hint to the code generator when generating
1054 the caller, allowing tail call optimization and omission of register saves
1055 and restores in some cases; it is not checked or enforced when generating
1056 the callee. The parameter and the function return type must be valid
1057 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1058 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001059
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001060``nonnull``
1061 This indicates that the parameter or return pointer is not null. This
1062 attribute may only be applied to pointer typed parameters. This is not
1063 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001064 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001065 is non-null.
1066
Hal Finkelb0407ba2014-07-18 15:51:28 +00001067``dereferenceable(<n>)``
1068 This indicates that the parameter or return pointer is dereferenceable. This
1069 attribute may only be applied to pointer typed parameters. A pointer that
1070 is dereferenceable can be loaded from speculatively without a risk of
1071 trapping. The number of bytes known to be dereferenceable must be provided
1072 in parentheses. It is legal for the number of bytes to be less than the
1073 size of the pointee type. The ``nonnull`` attribute does not imply
1074 dereferenceability (consider a pointer to one element past the end of an
1075 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1076 ``addrspace(0)`` (which is the default address space).
1077
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001078``dereferenceable_or_null(<n>)``
1079 This indicates that the parameter or return value isn't both
1080 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001081 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001082 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1083 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1084 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1085 and in other address spaces ``dereferenceable_or_null(<n>)``
1086 implies that a pointer is at least one of ``dereferenceable(<n>)``
1087 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001088 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001089 pointer typed parameters.
1090
Manman Renf46262e2016-03-29 17:37:21 +00001091``swiftself``
1092 This indicates that the parameter is the self/context parameter. This is not
1093 a valid attribute for return values and can only be applied to one
1094 parameter.
1095
Manman Ren9bfd0d02016-04-01 21:41:15 +00001096``swifterror``
1097 This attribute is motivated to model and optimize Swift error handling. It
1098 can be applied to a parameter with pointer to pointer type or a
1099 pointer-sized alloca. At the call site, the actual argument that corresponds
1100 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca. A
1101 ``swifterror`` value (either the parameter or the alloca) can only be loaded
1102 and stored from, or used as a ``swifterror`` argument. This is not a valid
1103 attribute for return values and can only be applied to one parameter.
1104
1105 These constraints allow the calling convention to optimize access to
1106 ``swifterror`` variables by associating them with a specific register at
1107 call boundaries rather than placing them in memory. Since this does change
1108 the calling convention, a function which uses the ``swifterror`` attribute
1109 on a parameter is not ABI-compatible with one which does not.
1110
1111 These constraints also allow LLVM to assume that a ``swifterror`` argument
1112 does not alias any other memory visible within a function and that a
1113 ``swifterror`` alloca passed as an argument does not escape.
1114
Sean Silvab084af42012-12-07 10:36:55 +00001115.. _gc:
1116
Philip Reamesf80bbff2015-02-25 23:45:20 +00001117Garbage Collector Strategy Names
1118--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001119
Philip Reamesf80bbff2015-02-25 23:45:20 +00001120Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001121string:
1122
1123.. code-block:: llvm
1124
1125 define void @f() gc "name" { ... }
1126
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001127The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001128<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001129strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001130named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001131garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001132which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001133
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001134.. _prefixdata:
1135
1136Prefix Data
1137-----------
1138
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001139Prefix data is data associated with a function which the code
1140generator will emit immediately before the function's entrypoint.
1141The purpose of this feature is to allow frontends to associate
1142language-specific runtime metadata with specific functions and make it
1143available through the function pointer while still allowing the
1144function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001145
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001146To access the data for a given function, a program may bitcast the
1147function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001148index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001149the prefix data. For instance, take the example of a function annotated
1150with a single ``i32``,
1151
1152.. code-block:: llvm
1153
1154 define void @f() prefix i32 123 { ... }
1155
1156The prefix data can be referenced as,
1157
1158.. code-block:: llvm
1159
David Blaikie16a97eb2015-03-04 22:02:58 +00001160 %0 = bitcast void* () @f to i32*
1161 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001162 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001163
1164Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001165of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001166beginning of the prefix data is aligned. This means that if the size
1167of the prefix data is not a multiple of the alignment size, the
1168function's entrypoint will not be aligned. If alignment of the
1169function's entrypoint is desired, padding must be added to the prefix
1170data.
1171
Sean Silvaa1190322015-08-06 22:56:48 +00001172A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001173to the ``available_externally`` linkage in that the data may be used by the
1174optimizers but will not be emitted in the object file.
1175
1176.. _prologuedata:
1177
1178Prologue Data
1179-------------
1180
1181The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1182be inserted prior to the function body. This can be used for enabling
1183function hot-patching and instrumentation.
1184
1185To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001186have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001187bytes which decode to a sequence of machine instructions, valid for the
1188module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001189the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001190the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001191definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001192makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001193
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001194A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001195which encodes the ``nop`` instruction:
1196
1197.. code-block:: llvm
1198
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001199 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001200
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001201Generally prologue data can be formed by encoding a relative branch instruction
1202which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001203x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1204
1205.. code-block:: llvm
1206
1207 %0 = type <{ i8, i8, i8* }>
1208
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001209 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001210
Sean Silvaa1190322015-08-06 22:56:48 +00001211A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001212to the ``available_externally`` linkage in that the data may be used by the
1213optimizers but will not be emitted in the object file.
1214
David Majnemer7fddecc2015-06-17 20:52:32 +00001215.. _personalityfn:
1216
1217Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001218--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001219
1220The ``personality`` attribute permits functions to specify what function
1221to use for exception handling.
1222
Bill Wendling63b88192013-02-06 06:52:58 +00001223.. _attrgrp:
1224
1225Attribute Groups
1226----------------
1227
1228Attribute groups are groups of attributes that are referenced by objects within
1229the IR. They are important for keeping ``.ll`` files readable, because a lot of
1230functions will use the same set of attributes. In the degenerative case of a
1231``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1232group will capture the important command line flags used to build that file.
1233
1234An attribute group is a module-level object. To use an attribute group, an
1235object references the attribute group's ID (e.g. ``#37``). An object may refer
1236to more than one attribute group. In that situation, the attributes from the
1237different groups are merged.
1238
1239Here is an example of attribute groups for a function that should always be
1240inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1241
1242.. code-block:: llvm
1243
1244 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001245 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001246
1247 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001248 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001249
1250 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1251 define void @f() #0 #1 { ... }
1252
Sean Silvab084af42012-12-07 10:36:55 +00001253.. _fnattrs:
1254
1255Function Attributes
1256-------------------
1257
1258Function attributes are set to communicate additional information about
1259a function. Function attributes are considered to be part of the
1260function, not of the function type, so functions with different function
1261attributes can have the same function type.
1262
1263Function attributes are simple keywords that follow the type specified.
1264If multiple attributes are needed, they are space separated. For
1265example:
1266
1267.. code-block:: llvm
1268
1269 define void @f() noinline { ... }
1270 define void @f() alwaysinline { ... }
1271 define void @f() alwaysinline optsize { ... }
1272 define void @f() optsize { ... }
1273
Sean Silvab084af42012-12-07 10:36:55 +00001274``alignstack(<n>)``
1275 This attribute indicates that, when emitting the prologue and
1276 epilogue, the backend should forcibly align the stack pointer.
1277 Specify the desired alignment, which must be a power of two, in
1278 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001279``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1280 This attribute indicates that the annotated function will always return at
1281 least a given number of bytes (or null). Its arguments are zero-indexed
1282 parameter numbers; if one argument is provided, then it's assumed that at
1283 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1284 returned pointer. If two are provided, then it's assumed that
1285 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1286 available. The referenced parameters must be integer types. No assumptions
1287 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001288``alwaysinline``
1289 This attribute indicates that the inliner should attempt to inline
1290 this function into callers whenever possible, ignoring any active
1291 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001292``builtin``
1293 This indicates that the callee function at a call site should be
1294 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001295 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001296 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001297 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001298``cold``
1299 This attribute indicates that this function is rarely called. When
1300 computing edge weights, basic blocks post-dominated by a cold
1301 function call are also considered to be cold; and, thus, given low
1302 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001303``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001304 In some parallel execution models, there exist operations that cannot be
1305 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001306 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001307
Justin Lebar58535b12016-02-17 17:46:41 +00001308 The ``convergent`` attribute may appear on functions or call/invoke
1309 instructions. When it appears on a function, it indicates that calls to
1310 this function should not be made control-dependent on additional values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001311 For example, the intrinsic ``llvm.cuda.syncthreads`` is ``convergent``, so
1312 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001313 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001314
Justin Lebar58535b12016-02-17 17:46:41 +00001315 When it appears on a call/invoke, the ``convergent`` attribute indicates
1316 that we should treat the call as though we're calling a convergent
1317 function. This is particularly useful on indirect calls; without this we
1318 may treat such calls as though the target is non-convergent.
1319
1320 The optimizer may remove the ``convergent`` attribute on functions when it
1321 can prove that the function does not execute any convergent operations.
1322 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1323 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001324``inaccessiblememonly``
1325 This attribute indicates that the function may only access memory that
1326 is not accessible by the module being compiled. This is a weaker form
1327 of ``readnone``.
1328``inaccessiblemem_or_argmemonly``
1329 This attribute indicates that the function may only access memory that is
1330 either not accessible by the module being compiled, or is pointed to
1331 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001332``inlinehint``
1333 This attribute indicates that the source code contained a hint that
1334 inlining this function is desirable (such as the "inline" keyword in
1335 C/C++). It is just a hint; it imposes no requirements on the
1336 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001337``jumptable``
1338 This attribute indicates that the function should be added to a
1339 jump-instruction table at code-generation time, and that all address-taken
1340 references to this function should be replaced with a reference to the
1341 appropriate jump-instruction-table function pointer. Note that this creates
1342 a new pointer for the original function, which means that code that depends
1343 on function-pointer identity can break. So, any function annotated with
1344 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001345``minsize``
1346 This attribute suggests that optimization passes and code generator
1347 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001348 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001349 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001350``naked``
1351 This attribute disables prologue / epilogue emission for the
1352 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001353``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001354 This indicates that the callee function at a call site is not recognized as
1355 a built-in function. LLVM will retain the original call and not replace it
1356 with equivalent code based on the semantics of the built-in function, unless
1357 the call site uses the ``builtin`` attribute. This is valid at call sites
1358 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001359``noduplicate``
1360 This attribute indicates that calls to the function cannot be
1361 duplicated. A call to a ``noduplicate`` function may be moved
1362 within its parent function, but may not be duplicated within
1363 its parent function.
1364
1365 A function containing a ``noduplicate`` call may still
1366 be an inlining candidate, provided that the call is not
1367 duplicated by inlining. That implies that the function has
1368 internal linkage and only has one call site, so the original
1369 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001370``noimplicitfloat``
1371 This attributes disables implicit floating point instructions.
1372``noinline``
1373 This attribute indicates that the inliner should never inline this
1374 function in any situation. This attribute may not be used together
1375 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001376``nonlazybind``
1377 This attribute suppresses lazy symbol binding for the function. This
1378 may make calls to the function faster, at the cost of extra program
1379 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001380``noredzone``
1381 This attribute indicates that the code generator should not use a
1382 red zone, even if the target-specific ABI normally permits it.
1383``noreturn``
1384 This function attribute indicates that the function never returns
1385 normally. This produces undefined behavior at runtime if the
1386 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001387``norecurse``
1388 This function attribute indicates that the function does not call itself
1389 either directly or indirectly down any possible call path. This produces
1390 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001391``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001392 This function attribute indicates that the function never raises an
1393 exception. If the function does raise an exception, its runtime
1394 behavior is undefined. However, functions marked nounwind may still
1395 trap or generate asynchronous exceptions. Exception handling schemes
1396 that are recognized by LLVM to handle asynchronous exceptions, such
1397 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001398``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001399 This function attribute indicates that most optimization passes will skip
1400 this function, with the exception of interprocedural optimization passes.
1401 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001402 This attribute cannot be used together with the ``alwaysinline``
1403 attribute; this attribute is also incompatible
1404 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001405
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001406 This attribute requires the ``noinline`` attribute to be specified on
1407 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001408 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001409 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001410``optsize``
1411 This attribute suggests that optimization passes and code generator
1412 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001413 and otherwise do optimizations specifically to reduce code size as
1414 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001415``"patchable-function"``
1416 This attribute tells the code generator that the code
1417 generated for this function needs to follow certain conventions that
1418 make it possible for a runtime function to patch over it later.
1419 The exact effect of this attribute depends on its string value,
1420 for which there currently is one legal possiblity:
1421
1422 * ``"prologue-short-redirect"`` - This style of patchable
1423 function is intended to support patching a function prologue to
1424 redirect control away from the function in a thread safe
1425 manner. It guarantees that the first instruction of the
1426 function will be large enough to accommodate a short jump
1427 instruction, and will be sufficiently aligned to allow being
1428 fully changed via an atomic compare-and-swap instruction.
1429 While the first requirement can be satisfied by inserting large
1430 enough NOP, LLVM can and will try to re-purpose an existing
1431 instruction (i.e. one that would have to be emitted anyway) as
1432 the patchable instruction larger than a short jump.
1433
1434 ``"prologue-short-redirect"`` is currently only supported on
1435 x86-64.
1436
1437 This attribute by itself does not imply restrictions on
1438 inter-procedural optimizations. All of the semantic effects the
1439 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001440``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001441 On a function, this attribute indicates that the function computes its
1442 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001443 without dereferencing any pointer arguments or otherwise accessing
1444 any mutable state (e.g. memory, control registers, etc) visible to
1445 caller functions. It does not write through any pointer arguments
1446 (including ``byval`` arguments) and never changes any state visible
1447 to callers. This means that it cannot unwind exceptions by calling
1448 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001449
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001450 On an argument, this attribute indicates that the function does not
1451 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001452 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001453``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001454 On a function, this attribute indicates that the function does not write
1455 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001456 modify any state (e.g. memory, control registers, etc) visible to
1457 caller functions. It may dereference pointer arguments and read
1458 state that may be set in the caller. A readonly function always
1459 returns the same value (or unwinds an exception identically) when
1460 called with the same set of arguments and global state. It cannot
1461 unwind an exception by calling the ``C++`` exception throwing
1462 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001463
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001464 On an argument, this attribute indicates that the function does not write
1465 through this pointer argument, even though it may write to the memory that
1466 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001467``argmemonly``
1468 This attribute indicates that the only memory accesses inside function are
1469 loads and stores from objects pointed to by its pointer-typed arguments,
1470 with arbitrary offsets. Or in other words, all memory operations in the
1471 function can refer to memory only using pointers based on its function
1472 arguments.
1473 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1474 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001475``returns_twice``
1476 This attribute indicates that this function can return twice. The C
1477 ``setjmp`` is an example of such a function. The compiler disables
1478 some optimizations (like tail calls) in the caller of these
1479 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001480``safestack``
1481 This attribute indicates that
1482 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1483 protection is enabled for this function.
1484
1485 If a function that has a ``safestack`` attribute is inlined into a
1486 function that doesn't have a ``safestack`` attribute or which has an
1487 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1488 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001489``sanitize_address``
1490 This attribute indicates that AddressSanitizer checks
1491 (dynamic address safety analysis) are enabled for this function.
1492``sanitize_memory``
1493 This attribute indicates that MemorySanitizer checks (dynamic detection
1494 of accesses to uninitialized memory) are enabled for this function.
1495``sanitize_thread``
1496 This attribute indicates that ThreadSanitizer checks
1497 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001498``ssp``
1499 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001500 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001501 placed on the stack before the local variables that's checked upon
1502 return from the function to see if it has been overwritten. A
1503 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001504 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001505
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001506 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1507 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1508 - Calls to alloca() with variable sizes or constant sizes greater than
1509 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001510
Josh Magee24c7f062014-02-01 01:36:16 +00001511 Variables that are identified as requiring a protector will be arranged
1512 on the stack such that they are adjacent to the stack protector guard.
1513
Sean Silvab084af42012-12-07 10:36:55 +00001514 If a function that has an ``ssp`` attribute is inlined into a
1515 function that doesn't have an ``ssp`` attribute, then the resulting
1516 function will have an ``ssp`` attribute.
1517``sspreq``
1518 This attribute indicates that the function should *always* emit a
1519 stack smashing protector. This overrides the ``ssp`` function
1520 attribute.
1521
Josh Magee24c7f062014-02-01 01:36:16 +00001522 Variables that are identified as requiring a protector will be arranged
1523 on the stack such that they are adjacent to the stack protector guard.
1524 The specific layout rules are:
1525
1526 #. Large arrays and structures containing large arrays
1527 (``>= ssp-buffer-size``) are closest to the stack protector.
1528 #. Small arrays and structures containing small arrays
1529 (``< ssp-buffer-size``) are 2nd closest to the protector.
1530 #. Variables that have had their address taken are 3rd closest to the
1531 protector.
1532
Sean Silvab084af42012-12-07 10:36:55 +00001533 If a function that has an ``sspreq`` attribute is inlined into a
1534 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001535 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1536 an ``sspreq`` attribute.
1537``sspstrong``
1538 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001539 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001540 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001541 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001542
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001543 - Arrays of any size and type
1544 - Aggregates containing an array of any size and type.
1545 - Calls to alloca().
1546 - Local variables that have had their address taken.
1547
Josh Magee24c7f062014-02-01 01:36:16 +00001548 Variables that are identified as requiring a protector will be arranged
1549 on the stack such that they are adjacent to the stack protector guard.
1550 The specific layout rules are:
1551
1552 #. Large arrays and structures containing large arrays
1553 (``>= ssp-buffer-size``) are closest to the stack protector.
1554 #. Small arrays and structures containing small arrays
1555 (``< ssp-buffer-size``) are 2nd closest to the protector.
1556 #. Variables that have had their address taken are 3rd closest to the
1557 protector.
1558
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001559 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001560
1561 If a function that has an ``sspstrong`` attribute is inlined into a
1562 function that doesn't have an ``sspstrong`` attribute, then the
1563 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001564``"thunk"``
1565 This attribute indicates that the function will delegate to some other
1566 function with a tail call. The prototype of a thunk should not be used for
1567 optimization purposes. The caller is expected to cast the thunk prototype to
1568 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001569``uwtable``
1570 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001571 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001572 show that no exceptions passes by it. This is normally the case for
1573 the ELF x86-64 abi, but it can be disabled for some compilation
1574 units.
Sean Silvab084af42012-12-07 10:36:55 +00001575
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001576
1577.. _opbundles:
1578
1579Operand Bundles
1580---------------
1581
1582Note: operand bundles are a work in progress, and they should be
1583considered experimental at this time.
1584
1585Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001586with certain LLVM instructions (currently only ``call`` s and
1587``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001588incorrect and will change program semantics.
1589
1590Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001591
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001592 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001593 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1594 bundle operand ::= SSA value
1595 tag ::= string constant
1596
1597Operand bundles are **not** part of a function's signature, and a
1598given function may be called from multiple places with different kinds
1599of operand bundles. This reflects the fact that the operand bundles
1600are conceptually a part of the ``call`` (or ``invoke``), not the
1601callee being dispatched to.
1602
1603Operand bundles are a generic mechanism intended to support
1604runtime-introspection-like functionality for managed languages. While
1605the exact semantics of an operand bundle depend on the bundle tag,
1606there are certain limitations to how much the presence of an operand
1607bundle can influence the semantics of a program. These restrictions
1608are described as the semantics of an "unknown" operand bundle. As
1609long as the behavior of an operand bundle is describable within these
1610restrictions, LLVM does not need to have special knowledge of the
1611operand bundle to not miscompile programs containing it.
1612
David Majnemer34cacb42015-10-22 01:46:38 +00001613- The bundle operands for an unknown operand bundle escape in unknown
1614 ways before control is transferred to the callee or invokee.
1615- Calls and invokes with operand bundles have unknown read / write
1616 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001617 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001618 callsite specific attributes.
1619- An operand bundle at a call site cannot change the implementation
1620 of the called function. Inter-procedural optimizations work as
1621 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001622
Sanjoy Dascdafd842015-11-11 21:38:02 +00001623More specific types of operand bundles are described below.
1624
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001625.. _deopt_opbundles:
1626
Sanjoy Dascdafd842015-11-11 21:38:02 +00001627Deoptimization Operand Bundles
1628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1629
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001630Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001631operand bundle tag. These operand bundles represent an alternate
1632"safe" continuation for the call site they're attached to, and can be
1633used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001634specified call site. There can be at most one ``"deopt"`` operand
1635bundle attached to a call site. Exact details of deoptimization is
1636out of scope for the language reference, but it usually involves
1637rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001638
1639From the compiler's perspective, deoptimization operand bundles make
1640the call sites they're attached to at least ``readonly``. They read
1641through all of their pointer typed operands (even if they're not
1642otherwise escaped) and the entire visible heap. Deoptimization
1643operand bundles do not capture their operands except during
1644deoptimization, in which case control will not be returned to the
1645compiled frame.
1646
Sanjoy Das2d161452015-11-18 06:23:38 +00001647The inliner knows how to inline through calls that have deoptimization
1648operand bundles. Just like inlining through a normal call site
1649involves composing the normal and exceptional continuations, inlining
1650through a call site with a deoptimization operand bundle needs to
1651appropriately compose the "safe" deoptimization continuation. The
1652inliner does this by prepending the parent's deoptimization
1653continuation to every deoptimization continuation in the inlined body.
1654E.g. inlining ``@f`` into ``@g`` in the following example
1655
1656.. code-block:: llvm
1657
1658 define void @f() {
1659 call void @x() ;; no deopt state
1660 call void @y() [ "deopt"(i32 10) ]
1661 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1662 ret void
1663 }
1664
1665 define void @g() {
1666 call void @f() [ "deopt"(i32 20) ]
1667 ret void
1668 }
1669
1670will result in
1671
1672.. code-block:: llvm
1673
1674 define void @g() {
1675 call void @x() ;; still no deopt state
1676 call void @y() [ "deopt"(i32 20, i32 10) ]
1677 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1678 ret void
1679 }
1680
1681It is the frontend's responsibility to structure or encode the
1682deoptimization state in a way that syntactically prepending the
1683caller's deoptimization state to the callee's deoptimization state is
1684semantically equivalent to composing the caller's deoptimization
1685continuation after the callee's deoptimization continuation.
1686
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001687.. _ob_funclet:
1688
David Majnemer3bb88c02015-12-15 21:27:27 +00001689Funclet Operand Bundles
1690^^^^^^^^^^^^^^^^^^^^^^^
1691
1692Funclet operand bundles are characterized by the ``"funclet"``
1693operand bundle tag. These operand bundles indicate that a call site
1694is within a particular funclet. There can be at most one
1695``"funclet"`` operand bundle attached to a call site and it must have
1696exactly one bundle operand.
1697
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001698If any funclet EH pads have been "entered" but not "exited" (per the
1699`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1700it is undefined behavior to execute a ``call`` or ``invoke`` which:
1701
1702* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1703 intrinsic, or
1704* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1705 not-yet-exited funclet EH pad.
1706
1707Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1708executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1709
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001710GC Transition Operand Bundles
1711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1712
1713GC transition operand bundles are characterized by the
1714``"gc-transition"`` operand bundle tag. These operand bundles mark a
1715call as a transition between a function with one GC strategy to a
1716function with a different GC strategy. If coordinating the transition
1717between GC strategies requires additional code generation at the call
1718site, these bundles may contain any values that are needed by the
1719generated code. For more details, see :ref:`GC Transitions
1720<gc_transition_args>`.
1721
Sean Silvab084af42012-12-07 10:36:55 +00001722.. _moduleasm:
1723
1724Module-Level Inline Assembly
1725----------------------------
1726
1727Modules may contain "module-level inline asm" blocks, which corresponds
1728to the GCC "file scope inline asm" blocks. These blocks are internally
1729concatenated by LLVM and treated as a single unit, but may be separated
1730in the ``.ll`` file if desired. The syntax is very simple:
1731
1732.. code-block:: llvm
1733
1734 module asm "inline asm code goes here"
1735 module asm "more can go here"
1736
1737The strings can contain any character by escaping non-printable
1738characters. The escape sequence used is simply "\\xx" where "xx" is the
1739two digit hex code for the number.
1740
James Y Knightbc832ed2015-07-08 18:08:36 +00001741Note that the assembly string *must* be parseable by LLVM's integrated assembler
1742(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001743
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001744.. _langref_datalayout:
1745
Sean Silvab084af42012-12-07 10:36:55 +00001746Data Layout
1747-----------
1748
1749A module may specify a target specific data layout string that specifies
1750how data is to be laid out in memory. The syntax for the data layout is
1751simply:
1752
1753.. code-block:: llvm
1754
1755 target datalayout = "layout specification"
1756
1757The *layout specification* consists of a list of specifications
1758separated by the minus sign character ('-'). Each specification starts
1759with a letter and may include other information after the letter to
1760define some aspect of the data layout. The specifications accepted are
1761as follows:
1762
1763``E``
1764 Specifies that the target lays out data in big-endian form. That is,
1765 the bits with the most significance have the lowest address
1766 location.
1767``e``
1768 Specifies that the target lays out data in little-endian form. That
1769 is, the bits with the least significance have the lowest address
1770 location.
1771``S<size>``
1772 Specifies the natural alignment of the stack in bits. Alignment
1773 promotion of stack variables is limited to the natural stack
1774 alignment to avoid dynamic stack realignment. The stack alignment
1775 must be a multiple of 8-bits. If omitted, the natural stack
1776 alignment defaults to "unspecified", which does not prevent any
1777 alignment promotions.
1778``p[n]:<size>:<abi>:<pref>``
1779 This specifies the *size* of a pointer and its ``<abi>`` and
1780 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001781 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001782 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001783 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001784``i<size>:<abi>:<pref>``
1785 This specifies the alignment for an integer type of a given bit
1786 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1787``v<size>:<abi>:<pref>``
1788 This specifies the alignment for a vector type of a given bit
1789 ``<size>``.
1790``f<size>:<abi>:<pref>``
1791 This specifies the alignment for a floating point type of a given bit
1792 ``<size>``. Only values of ``<size>`` that are supported by the target
1793 will work. 32 (float) and 64 (double) are supported on all targets; 80
1794 or 128 (different flavors of long double) are also supported on some
1795 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001796``a:<abi>:<pref>``
1797 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001798``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001799 If present, specifies that llvm names are mangled in the output. The
1800 options are
1801
1802 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1803 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1804 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1805 symbols get a ``_`` prefix.
1806 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1807 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001808 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1809 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001810``n<size1>:<size2>:<size3>...``
1811 This specifies a set of native integer widths for the target CPU in
1812 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1813 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1814 this set are considered to support most general arithmetic operations
1815 efficiently.
1816
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001817On every specification that takes a ``<abi>:<pref>``, specifying the
1818``<pref>`` alignment is optional. If omitted, the preceding ``:``
1819should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1820
Sean Silvab084af42012-12-07 10:36:55 +00001821When constructing the data layout for a given target, LLVM starts with a
1822default set of specifications which are then (possibly) overridden by
1823the specifications in the ``datalayout`` keyword. The default
1824specifications are given in this list:
1825
1826- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001827- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1828- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1829 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001830- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001831- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1832- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1833- ``i16:16:16`` - i16 is 16-bit aligned
1834- ``i32:32:32`` - i32 is 32-bit aligned
1835- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1836 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001837- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001838- ``f32:32:32`` - float is 32-bit aligned
1839- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001840- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001841- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1842- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001843- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001844
1845When LLVM is determining the alignment for a given type, it uses the
1846following rules:
1847
1848#. If the type sought is an exact match for one of the specifications,
1849 that specification is used.
1850#. If no match is found, and the type sought is an integer type, then
1851 the smallest integer type that is larger than the bitwidth of the
1852 sought type is used. If none of the specifications are larger than
1853 the bitwidth then the largest integer type is used. For example,
1854 given the default specifications above, the i7 type will use the
1855 alignment of i8 (next largest) while both i65 and i256 will use the
1856 alignment of i64 (largest specified).
1857#. If no match is found, and the type sought is a vector type, then the
1858 largest vector type that is smaller than the sought vector type will
1859 be used as a fall back. This happens because <128 x double> can be
1860 implemented in terms of 64 <2 x double>, for example.
1861
1862The function of the data layout string may not be what you expect.
1863Notably, this is not a specification from the frontend of what alignment
1864the code generator should use.
1865
1866Instead, if specified, the target data layout is required to match what
1867the ultimate *code generator* expects. This string is used by the
1868mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001869what the ultimate code generator uses. There is no way to generate IR
1870that does not embed this target-specific detail into the IR. If you
1871don't specify the string, the default specifications will be used to
1872generate a Data Layout and the optimization phases will operate
1873accordingly and introduce target specificity into the IR with respect to
1874these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001875
Bill Wendling5cc90842013-10-18 23:41:25 +00001876.. _langref_triple:
1877
1878Target Triple
1879-------------
1880
1881A module may specify a target triple string that describes the target
1882host. The syntax for the target triple is simply:
1883
1884.. code-block:: llvm
1885
1886 target triple = "x86_64-apple-macosx10.7.0"
1887
1888The *target triple* string consists of a series of identifiers delimited
1889by the minus sign character ('-'). The canonical forms are:
1890
1891::
1892
1893 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1894 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1895
1896This information is passed along to the backend so that it generates
1897code for the proper architecture. It's possible to override this on the
1898command line with the ``-mtriple`` command line option.
1899
Sean Silvab084af42012-12-07 10:36:55 +00001900.. _pointeraliasing:
1901
1902Pointer Aliasing Rules
1903----------------------
1904
1905Any memory access must be done through a pointer value associated with
1906an address range of the memory access, otherwise the behavior is
1907undefined. Pointer values are associated with address ranges according
1908to the following rules:
1909
1910- A pointer value is associated with the addresses associated with any
1911 value it is *based* on.
1912- An address of a global variable is associated with the address range
1913 of the variable's storage.
1914- The result value of an allocation instruction is associated with the
1915 address range of the allocated storage.
1916- A null pointer in the default address-space is associated with no
1917 address.
1918- An integer constant other than zero or a pointer value returned from
1919 a function not defined within LLVM may be associated with address
1920 ranges allocated through mechanisms other than those provided by
1921 LLVM. Such ranges shall not overlap with any ranges of addresses
1922 allocated by mechanisms provided by LLVM.
1923
1924A pointer value is *based* on another pointer value according to the
1925following rules:
1926
1927- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001928 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001929- The result value of a ``bitcast`` is *based* on the operand of the
1930 ``bitcast``.
1931- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1932 values that contribute (directly or indirectly) to the computation of
1933 the pointer's value.
1934- The "*based* on" relationship is transitive.
1935
1936Note that this definition of *"based"* is intentionally similar to the
1937definition of *"based"* in C99, though it is slightly weaker.
1938
1939LLVM IR does not associate types with memory. The result type of a
1940``load`` merely indicates the size and alignment of the memory from
1941which to load, as well as the interpretation of the value. The first
1942operand type of a ``store`` similarly only indicates the size and
1943alignment of the store.
1944
1945Consequently, type-based alias analysis, aka TBAA, aka
1946``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1947:ref:`Metadata <metadata>` may be used to encode additional information
1948which specialized optimization passes may use to implement type-based
1949alias analysis.
1950
1951.. _volatile:
1952
1953Volatile Memory Accesses
1954------------------------
1955
1956Certain memory accesses, such as :ref:`load <i_load>`'s,
1957:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1958marked ``volatile``. The optimizers must not change the number of
1959volatile operations or change their order of execution relative to other
1960volatile operations. The optimizers *may* change the order of volatile
1961operations relative to non-volatile operations. This is not Java's
1962"volatile" and has no cross-thread synchronization behavior.
1963
Andrew Trick89fc5a62013-01-30 21:19:35 +00001964IR-level volatile loads and stores cannot safely be optimized into
1965llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1966flagged volatile. Likewise, the backend should never split or merge
1967target-legal volatile load/store instructions.
1968
Andrew Trick7e6f9282013-01-31 00:49:39 +00001969.. admonition:: Rationale
1970
1971 Platforms may rely on volatile loads and stores of natively supported
1972 data width to be executed as single instruction. For example, in C
1973 this holds for an l-value of volatile primitive type with native
1974 hardware support, but not necessarily for aggregate types. The
1975 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001976 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001977 do not violate the frontend's contract with the language.
1978
Sean Silvab084af42012-12-07 10:36:55 +00001979.. _memmodel:
1980
1981Memory Model for Concurrent Operations
1982--------------------------------------
1983
1984The LLVM IR does not define any way to start parallel threads of
1985execution or to register signal handlers. Nonetheless, there are
1986platform-specific ways to create them, and we define LLVM IR's behavior
1987in their presence. This model is inspired by the C++0x memory model.
1988
1989For a more informal introduction to this model, see the :doc:`Atomics`.
1990
1991We define a *happens-before* partial order as the least partial order
1992that
1993
1994- Is a superset of single-thread program order, and
1995- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1996 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1997 techniques, like pthread locks, thread creation, thread joining,
1998 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1999 Constraints <ordering>`).
2000
2001Note that program order does not introduce *happens-before* edges
2002between a thread and signals executing inside that thread.
2003
2004Every (defined) read operation (load instructions, memcpy, atomic
2005loads/read-modify-writes, etc.) R reads a series of bytes written by
2006(defined) write operations (store instructions, atomic
2007stores/read-modify-writes, memcpy, etc.). For the purposes of this
2008section, initialized globals are considered to have a write of the
2009initializer which is atomic and happens before any other read or write
2010of the memory in question. For each byte of a read R, R\ :sub:`byte`
2011may see any write to the same byte, except:
2012
2013- If write\ :sub:`1` happens before write\ :sub:`2`, and
2014 write\ :sub:`2` happens before R\ :sub:`byte`, then
2015 R\ :sub:`byte` does not see write\ :sub:`1`.
2016- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2017 R\ :sub:`byte` does not see write\ :sub:`3`.
2018
2019Given that definition, R\ :sub:`byte` is defined as follows:
2020
2021- If R is volatile, the result is target-dependent. (Volatile is
2022 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002023 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002024 like normal memory. It does not generally provide cross-thread
2025 synchronization.)
2026- Otherwise, if there is no write to the same byte that happens before
2027 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2028- Otherwise, if R\ :sub:`byte` may see exactly one write,
2029 R\ :sub:`byte` returns the value written by that write.
2030- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2031 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2032 Memory Ordering Constraints <ordering>` section for additional
2033 constraints on how the choice is made.
2034- Otherwise R\ :sub:`byte` returns ``undef``.
2035
2036R returns the value composed of the series of bytes it read. This
2037implies that some bytes within the value may be ``undef`` **without**
2038the entire value being ``undef``. Note that this only defines the
2039semantics of the operation; it doesn't mean that targets will emit more
2040than one instruction to read the series of bytes.
2041
2042Note that in cases where none of the atomic intrinsics are used, this
2043model places only one restriction on IR transformations on top of what
2044is required for single-threaded execution: introducing a store to a byte
2045which might not otherwise be stored is not allowed in general.
2046(Specifically, in the case where another thread might write to and read
2047from an address, introducing a store can change a load that may see
2048exactly one write into a load that may see multiple writes.)
2049
2050.. _ordering:
2051
2052Atomic Memory Ordering Constraints
2053----------------------------------
2054
2055Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2056:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2057:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002058ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002059the same address they *synchronize with*. These semantics are borrowed
2060from Java and C++0x, but are somewhat more colloquial. If these
2061descriptions aren't precise enough, check those specs (see spec
2062references in the :doc:`atomics guide <Atomics>`).
2063:ref:`fence <i_fence>` instructions treat these orderings somewhat
2064differently since they don't take an address. See that instruction's
2065documentation for details.
2066
2067For a simpler introduction to the ordering constraints, see the
2068:doc:`Atomics`.
2069
2070``unordered``
2071 The set of values that can be read is governed by the happens-before
2072 partial order. A value cannot be read unless some operation wrote
2073 it. This is intended to provide a guarantee strong enough to model
2074 Java's non-volatile shared variables. This ordering cannot be
2075 specified for read-modify-write operations; it is not strong enough
2076 to make them atomic in any interesting way.
2077``monotonic``
2078 In addition to the guarantees of ``unordered``, there is a single
2079 total order for modifications by ``monotonic`` operations on each
2080 address. All modification orders must be compatible with the
2081 happens-before order. There is no guarantee that the modification
2082 orders can be combined to a global total order for the whole program
2083 (and this often will not be possible). The read in an atomic
2084 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2085 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2086 order immediately before the value it writes. If one atomic read
2087 happens before another atomic read of the same address, the later
2088 read must see the same value or a later value in the address's
2089 modification order. This disallows reordering of ``monotonic`` (or
2090 stronger) operations on the same address. If an address is written
2091 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2092 read that address repeatedly, the other threads must eventually see
2093 the write. This corresponds to the C++0x/C1x
2094 ``memory_order_relaxed``.
2095``acquire``
2096 In addition to the guarantees of ``monotonic``, a
2097 *synchronizes-with* edge may be formed with a ``release`` operation.
2098 This is intended to model C++'s ``memory_order_acquire``.
2099``release``
2100 In addition to the guarantees of ``monotonic``, if this operation
2101 writes a value which is subsequently read by an ``acquire``
2102 operation, it *synchronizes-with* that operation. (This isn't a
2103 complete description; see the C++0x definition of a release
2104 sequence.) This corresponds to the C++0x/C1x
2105 ``memory_order_release``.
2106``acq_rel`` (acquire+release)
2107 Acts as both an ``acquire`` and ``release`` operation on its
2108 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2109``seq_cst`` (sequentially consistent)
2110 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002111 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002112 writes), there is a global total order on all
2113 sequentially-consistent operations on all addresses, which is
2114 consistent with the *happens-before* partial order and with the
2115 modification orders of all the affected addresses. Each
2116 sequentially-consistent read sees the last preceding write to the
2117 same address in this global order. This corresponds to the C++0x/C1x
2118 ``memory_order_seq_cst`` and Java volatile.
2119
2120.. _singlethread:
2121
2122If an atomic operation is marked ``singlethread``, it only *synchronizes
2123with* or participates in modification and seq\_cst total orderings with
2124other operations running in the same thread (for example, in signal
2125handlers).
2126
2127.. _fastmath:
2128
2129Fast-Math Flags
2130---------------
2131
2132LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2133:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002134:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2135be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002136
2137``nnan``
2138 No NaNs - Allow optimizations to assume the arguments and result are not
2139 NaN. Such optimizations are required to retain defined behavior over
2140 NaNs, but the value of the result is undefined.
2141
2142``ninf``
2143 No Infs - Allow optimizations to assume the arguments and result are not
2144 +/-Inf. Such optimizations are required to retain defined behavior over
2145 +/-Inf, but the value of the result is undefined.
2146
2147``nsz``
2148 No Signed Zeros - Allow optimizations to treat the sign of a zero
2149 argument or result as insignificant.
2150
2151``arcp``
2152 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2153 argument rather than perform division.
2154
2155``fast``
2156 Fast - Allow algebraically equivalent transformations that may
2157 dramatically change results in floating point (e.g. reassociate). This
2158 flag implies all the others.
2159
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002160.. _uselistorder:
2161
2162Use-list Order Directives
2163-------------------------
2164
2165Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002166order to be recreated. ``<order-indexes>`` is a comma-separated list of
2167indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002168value's use-list is immediately sorted by these indexes.
2169
Sean Silvaa1190322015-08-06 22:56:48 +00002170Use-list directives may appear at function scope or global scope. They are not
2171instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002172function scope, they must appear after the terminator of the final basic block.
2173
2174If basic blocks have their address taken via ``blockaddress()`` expressions,
2175``uselistorder_bb`` can be used to reorder their use-lists from outside their
2176function's scope.
2177
2178:Syntax:
2179
2180::
2181
2182 uselistorder <ty> <value>, { <order-indexes> }
2183 uselistorder_bb @function, %block { <order-indexes> }
2184
2185:Examples:
2186
2187::
2188
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002189 define void @foo(i32 %arg1, i32 %arg2) {
2190 entry:
2191 ; ... instructions ...
2192 bb:
2193 ; ... instructions ...
2194
2195 ; At function scope.
2196 uselistorder i32 %arg1, { 1, 0, 2 }
2197 uselistorder label %bb, { 1, 0 }
2198 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002199
2200 ; At global scope.
2201 uselistorder i32* @global, { 1, 2, 0 }
2202 uselistorder i32 7, { 1, 0 }
2203 uselistorder i32 (i32) @bar, { 1, 0 }
2204 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2205
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002206.. _source_filename:
2207
2208Source Filename
2209---------------
2210
2211The *source filename* string is set to the original module identifier,
2212which will be the name of the compiled source file when compiling from
2213source through the clang front end, for example. It is then preserved through
2214the IR and bitcode.
2215
2216This is currently necessary to generate a consistent unique global
2217identifier for local functions used in profile data, which prepends the
2218source file name to the local function name.
2219
2220The syntax for the source file name is simply:
2221
2222.. code-block:: llvm
2223
2224 source_filename = "/path/to/source.c"
2225
Sean Silvab084af42012-12-07 10:36:55 +00002226.. _typesystem:
2227
2228Type System
2229===========
2230
2231The LLVM type system is one of the most important features of the
2232intermediate representation. Being typed enables a number of
2233optimizations to be performed on the intermediate representation
2234directly, without having to do extra analyses on the side before the
2235transformation. A strong type system makes it easier to read the
2236generated code and enables novel analyses and transformations that are
2237not feasible to perform on normal three address code representations.
2238
Rafael Espindola08013342013-12-07 19:34:20 +00002239.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002240
Rafael Espindola08013342013-12-07 19:34:20 +00002241Void Type
2242---------
Sean Silvab084af42012-12-07 10:36:55 +00002243
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002244:Overview:
2245
Rafael Espindola08013342013-12-07 19:34:20 +00002246
2247The void type does not represent any value and has no size.
2248
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002249:Syntax:
2250
Rafael Espindola08013342013-12-07 19:34:20 +00002251
2252::
2253
2254 void
Sean Silvab084af42012-12-07 10:36:55 +00002255
2256
Rafael Espindola08013342013-12-07 19:34:20 +00002257.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002258
Rafael Espindola08013342013-12-07 19:34:20 +00002259Function Type
2260-------------
Sean Silvab084af42012-12-07 10:36:55 +00002261
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002262:Overview:
2263
Sean Silvab084af42012-12-07 10:36:55 +00002264
Rafael Espindola08013342013-12-07 19:34:20 +00002265The function type can be thought of as a function signature. It consists of a
2266return type and a list of formal parameter types. The return type of a function
2267type is a void type or first class type --- except for :ref:`label <t_label>`
2268and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002269
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002270:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002271
Rafael Espindola08013342013-12-07 19:34:20 +00002272::
Sean Silvab084af42012-12-07 10:36:55 +00002273
Rafael Espindola08013342013-12-07 19:34:20 +00002274 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002275
Rafael Espindola08013342013-12-07 19:34:20 +00002276...where '``<parameter list>``' is a comma-separated list of type
2277specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002278indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002279argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002280handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002281except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002282
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002283:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002284
Rafael Espindola08013342013-12-07 19:34:20 +00002285+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2286| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2287+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2288| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2289+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2290| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2291+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2292| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2293+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2294
2295.. _t_firstclass:
2296
2297First Class Types
2298-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002299
2300The :ref:`first class <t_firstclass>` types are perhaps the most important.
2301Values of these types are the only ones which can be produced by
2302instructions.
2303
Rafael Espindola08013342013-12-07 19:34:20 +00002304.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002305
Rafael Espindola08013342013-12-07 19:34:20 +00002306Single Value Types
2307^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002308
Rafael Espindola08013342013-12-07 19:34:20 +00002309These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002310
2311.. _t_integer:
2312
2313Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002314""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002315
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002316:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002317
2318The integer type is a very simple type that simply specifies an
2319arbitrary bit width for the integer type desired. Any bit width from 1
2320bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002323
2324::
2325
2326 iN
2327
2328The number of bits the integer will occupy is specified by the ``N``
2329value.
2330
2331Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002332*********
Sean Silvab084af42012-12-07 10:36:55 +00002333
2334+----------------+------------------------------------------------+
2335| ``i1`` | a single-bit integer. |
2336+----------------+------------------------------------------------+
2337| ``i32`` | a 32-bit integer. |
2338+----------------+------------------------------------------------+
2339| ``i1942652`` | a really big integer of over 1 million bits. |
2340+----------------+------------------------------------------------+
2341
2342.. _t_floating:
2343
2344Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002345""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002346
2347.. list-table::
2348 :header-rows: 1
2349
2350 * - Type
2351 - Description
2352
2353 * - ``half``
2354 - 16-bit floating point value
2355
2356 * - ``float``
2357 - 32-bit floating point value
2358
2359 * - ``double``
2360 - 64-bit floating point value
2361
2362 * - ``fp128``
2363 - 128-bit floating point value (112-bit mantissa)
2364
2365 * - ``x86_fp80``
2366 - 80-bit floating point value (X87)
2367
2368 * - ``ppc_fp128``
2369 - 128-bit floating point value (two 64-bits)
2370
Reid Kleckner9a16d082014-03-05 02:41:37 +00002371X86_mmx Type
2372""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002373
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002374:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002375
Reid Kleckner9a16d082014-03-05 02:41:37 +00002376The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002377machine. The operations allowed on it are quite limited: parameters and
2378return values, load and store, and bitcast. User-specified MMX
2379instructions are represented as intrinsic or asm calls with arguments
2380and/or results of this type. There are no arrays, vectors or constants
2381of this type.
2382
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002383:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002384
2385::
2386
Reid Kleckner9a16d082014-03-05 02:41:37 +00002387 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002388
Sean Silvab084af42012-12-07 10:36:55 +00002389
Rafael Espindola08013342013-12-07 19:34:20 +00002390.. _t_pointer:
2391
2392Pointer Type
2393""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002394
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002395:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002396
Rafael Espindola08013342013-12-07 19:34:20 +00002397The pointer type is used to specify memory locations. Pointers are
2398commonly used to reference objects in memory.
2399
2400Pointer types may have an optional address space attribute defining the
2401numbered address space where the pointed-to object resides. The default
2402address space is number zero. The semantics of non-zero address spaces
2403are target-specific.
2404
2405Note that LLVM does not permit pointers to void (``void*``) nor does it
2406permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002407
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002408:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002409
2410::
2411
Rafael Espindola08013342013-12-07 19:34:20 +00002412 <type> *
2413
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002414:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002415
2416+-------------------------+--------------------------------------------------------------------------------------------------------------+
2417| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2418+-------------------------+--------------------------------------------------------------------------------------------------------------+
2419| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2420+-------------------------+--------------------------------------------------------------------------------------------------------------+
2421| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2422+-------------------------+--------------------------------------------------------------------------------------------------------------+
2423
2424.. _t_vector:
2425
2426Vector Type
2427"""""""""""
2428
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002429:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002430
2431A vector type is a simple derived type that represents a vector of
2432elements. Vector types are used when multiple primitive data are
2433operated in parallel using a single instruction (SIMD). A vector type
2434requires a size (number of elements) and an underlying primitive data
2435type. Vector types are considered :ref:`first class <t_firstclass>`.
2436
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002437:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002438
2439::
2440
2441 < <# elements> x <elementtype> >
2442
2443The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002444elementtype may be any integer, floating point or pointer type. Vectors
2445of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002446
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002447:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002448
2449+-------------------+--------------------------------------------------+
2450| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2451+-------------------+--------------------------------------------------+
2452| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2453+-------------------+--------------------------------------------------+
2454| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2455+-------------------+--------------------------------------------------+
2456| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2457+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002458
2459.. _t_label:
2460
2461Label Type
2462^^^^^^^^^^
2463
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002464:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002465
2466The label type represents code labels.
2467
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002468:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002469
2470::
2471
2472 label
2473
David Majnemerb611e3f2015-08-14 05:09:07 +00002474.. _t_token:
2475
2476Token Type
2477^^^^^^^^^^
2478
2479:Overview:
2480
2481The token type is used when a value is associated with an instruction
2482but all uses of the value must not attempt to introspect or obscure it.
2483As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2484:ref:`select <i_select>` of type token.
2485
2486:Syntax:
2487
2488::
2489
2490 token
2491
2492
2493
Sean Silvab084af42012-12-07 10:36:55 +00002494.. _t_metadata:
2495
2496Metadata Type
2497^^^^^^^^^^^^^
2498
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002499:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002500
2501The metadata type represents embedded metadata. No derived types may be
2502created from metadata except for :ref:`function <t_function>` arguments.
2503
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002504:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002505
2506::
2507
2508 metadata
2509
Sean Silvab084af42012-12-07 10:36:55 +00002510.. _t_aggregate:
2511
2512Aggregate Types
2513^^^^^^^^^^^^^^^
2514
2515Aggregate Types are a subset of derived types that can contain multiple
2516member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2517aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2518aggregate types.
2519
2520.. _t_array:
2521
2522Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002523""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002524
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002525:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002526
2527The array type is a very simple derived type that arranges elements
2528sequentially in memory. The array type requires a size (number of
2529elements) and an underlying data type.
2530
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002531:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002532
2533::
2534
2535 [<# elements> x <elementtype>]
2536
2537The number of elements is a constant integer value; ``elementtype`` may
2538be any type with a size.
2539
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002540:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002541
2542+------------------+--------------------------------------+
2543| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2544+------------------+--------------------------------------+
2545| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2546+------------------+--------------------------------------+
2547| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2548+------------------+--------------------------------------+
2549
2550Here are some examples of multidimensional arrays:
2551
2552+-----------------------------+----------------------------------------------------------+
2553| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2554+-----------------------------+----------------------------------------------------------+
2555| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2556+-----------------------------+----------------------------------------------------------+
2557| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2558+-----------------------------+----------------------------------------------------------+
2559
2560There is no restriction on indexing beyond the end of the array implied
2561by a static type (though there are restrictions on indexing beyond the
2562bounds of an allocated object in some cases). This means that
2563single-dimension 'variable sized array' addressing can be implemented in
2564LLVM with a zero length array type. An implementation of 'pascal style
2565arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2566example.
2567
Sean Silvab084af42012-12-07 10:36:55 +00002568.. _t_struct:
2569
2570Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002571""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002572
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002573:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002574
2575The structure type is used to represent a collection of data members
2576together in memory. The elements of a structure may be any type that has
2577a size.
2578
2579Structures in memory are accessed using '``load``' and '``store``' by
2580getting a pointer to a field with the '``getelementptr``' instruction.
2581Structures in registers are accessed using the '``extractvalue``' and
2582'``insertvalue``' instructions.
2583
2584Structures may optionally be "packed" structures, which indicate that
2585the alignment of the struct is one byte, and that there is no padding
2586between the elements. In non-packed structs, padding between field types
2587is inserted as defined by the DataLayout string in the module, which is
2588required to match what the underlying code generator expects.
2589
2590Structures can either be "literal" or "identified". A literal structure
2591is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2592identified types are always defined at the top level with a name.
2593Literal types are uniqued by their contents and can never be recursive
2594or opaque since there is no way to write one. Identified types can be
2595recursive, can be opaqued, and are never uniqued.
2596
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002597:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002598
2599::
2600
2601 %T1 = type { <type list> } ; Identified normal struct type
2602 %T2 = type <{ <type list> }> ; Identified packed struct type
2603
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002604:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002605
2606+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2607| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2608+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002609| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002610+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2611| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2612+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2613
2614.. _t_opaque:
2615
2616Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002617""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002618
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002619:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002620
2621Opaque structure types are used to represent named structure types that
2622do not have a body specified. This corresponds (for example) to the C
2623notion of a forward declared structure.
2624
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002625:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002626
2627::
2628
2629 %X = type opaque
2630 %52 = type opaque
2631
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002632:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002633
2634+--------------+-------------------+
2635| ``opaque`` | An opaque type. |
2636+--------------+-------------------+
2637
Sean Silva1703e702014-04-08 21:06:22 +00002638.. _constants:
2639
Sean Silvab084af42012-12-07 10:36:55 +00002640Constants
2641=========
2642
2643LLVM has several different basic types of constants. This section
2644describes them all and their syntax.
2645
2646Simple Constants
2647----------------
2648
2649**Boolean constants**
2650 The two strings '``true``' and '``false``' are both valid constants
2651 of the ``i1`` type.
2652**Integer constants**
2653 Standard integers (such as '4') are constants of the
2654 :ref:`integer <t_integer>` type. Negative numbers may be used with
2655 integer types.
2656**Floating point constants**
2657 Floating point constants use standard decimal notation (e.g.
2658 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2659 hexadecimal notation (see below). The assembler requires the exact
2660 decimal value of a floating-point constant. For example, the
2661 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2662 decimal in binary. Floating point constants must have a :ref:`floating
2663 point <t_floating>` type.
2664**Null pointer constants**
2665 The identifier '``null``' is recognized as a null pointer constant
2666 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002667**Token constants**
2668 The identifier '``none``' is recognized as an empty token constant
2669 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002670
2671The one non-intuitive notation for constants is the hexadecimal form of
2672floating point constants. For example, the form
2673'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2674than) '``double 4.5e+15``'. The only time hexadecimal floating point
2675constants are required (and the only time that they are generated by the
2676disassembler) is when a floating point constant must be emitted but it
2677cannot be represented as a decimal floating point number in a reasonable
2678number of digits. For example, NaN's, infinities, and other special
2679values are represented in their IEEE hexadecimal format so that assembly
2680and disassembly do not cause any bits to change in the constants.
2681
2682When using the hexadecimal form, constants of types half, float, and
2683double are represented using the 16-digit form shown above (which
2684matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002685must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002686precision, respectively. Hexadecimal format is always used for long
2687double, and there are three forms of long double. The 80-bit format used
2688by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2689128-bit format used by PowerPC (two adjacent doubles) is represented by
2690``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002691represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2692will only work if they match the long double format on your target.
2693The IEEE 16-bit format (half precision) is represented by ``0xH``
2694followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2695(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002696
Reid Kleckner9a16d082014-03-05 02:41:37 +00002697There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002698
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002699.. _complexconstants:
2700
Sean Silvab084af42012-12-07 10:36:55 +00002701Complex Constants
2702-----------------
2703
2704Complex constants are a (potentially recursive) combination of simple
2705constants and smaller complex constants.
2706
2707**Structure constants**
2708 Structure constants are represented with notation similar to
2709 structure type definitions (a comma separated list of elements,
2710 surrounded by braces (``{}``)). For example:
2711 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2712 "``@G = external global i32``". Structure constants must have
2713 :ref:`structure type <t_struct>`, and the number and types of elements
2714 must match those specified by the type.
2715**Array constants**
2716 Array constants are represented with notation similar to array type
2717 definitions (a comma separated list of elements, surrounded by
2718 square brackets (``[]``)). For example:
2719 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2720 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002721 match those specified by the type. As a special case, character array
2722 constants may also be represented as a double-quoted string using the ``c``
2723 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002724**Vector constants**
2725 Vector constants are represented with notation similar to vector
2726 type definitions (a comma separated list of elements, surrounded by
2727 less-than/greater-than's (``<>``)). For example:
2728 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2729 must have :ref:`vector type <t_vector>`, and the number and types of
2730 elements must match those specified by the type.
2731**Zero initialization**
2732 The string '``zeroinitializer``' can be used to zero initialize a
2733 value to zero of *any* type, including scalar and
2734 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2735 having to print large zero initializers (e.g. for large arrays) and
2736 is always exactly equivalent to using explicit zero initializers.
2737**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002738 A metadata node is a constant tuple without types. For example:
2739 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002740 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2741 Unlike other typed constants that are meant to be interpreted as part of
2742 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002743 information such as debug info.
2744
2745Global Variable and Function Addresses
2746--------------------------------------
2747
2748The addresses of :ref:`global variables <globalvars>` and
2749:ref:`functions <functionstructure>` are always implicitly valid
2750(link-time) constants. These constants are explicitly referenced when
2751the :ref:`identifier for the global <identifiers>` is used and always have
2752:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2753file:
2754
2755.. code-block:: llvm
2756
2757 @X = global i32 17
2758 @Y = global i32 42
2759 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2760
2761.. _undefvalues:
2762
2763Undefined Values
2764----------------
2765
2766The string '``undef``' can be used anywhere a constant is expected, and
2767indicates that the user of the value may receive an unspecified
2768bit-pattern. Undefined values may be of any type (other than '``label``'
2769or '``void``') and be used anywhere a constant is permitted.
2770
2771Undefined values are useful because they indicate to the compiler that
2772the program is well defined no matter what value is used. This gives the
2773compiler more freedom to optimize. Here are some examples of
2774(potentially surprising) transformations that are valid (in pseudo IR):
2775
2776.. code-block:: llvm
2777
2778 %A = add %X, undef
2779 %B = sub %X, undef
2780 %C = xor %X, undef
2781 Safe:
2782 %A = undef
2783 %B = undef
2784 %C = undef
2785
2786This is safe because all of the output bits are affected by the undef
2787bits. Any output bit can have a zero or one depending on the input bits.
2788
2789.. code-block:: llvm
2790
2791 %A = or %X, undef
2792 %B = and %X, undef
2793 Safe:
2794 %A = -1
2795 %B = 0
2796 Unsafe:
2797 %A = undef
2798 %B = undef
2799
2800These logical operations have bits that are not always affected by the
2801input. For example, if ``%X`` has a zero bit, then the output of the
2802'``and``' operation will always be a zero for that bit, no matter what
2803the corresponding bit from the '``undef``' is. As such, it is unsafe to
2804optimize or assume that the result of the '``and``' is '``undef``'.
2805However, it is safe to assume that all bits of the '``undef``' could be
28060, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2807all the bits of the '``undef``' operand to the '``or``' could be set,
2808allowing the '``or``' to be folded to -1.
2809
2810.. code-block:: llvm
2811
2812 %A = select undef, %X, %Y
2813 %B = select undef, 42, %Y
2814 %C = select %X, %Y, undef
2815 Safe:
2816 %A = %X (or %Y)
2817 %B = 42 (or %Y)
2818 %C = %Y
2819 Unsafe:
2820 %A = undef
2821 %B = undef
2822 %C = undef
2823
2824This set of examples shows that undefined '``select``' (and conditional
2825branch) conditions can go *either way*, but they have to come from one
2826of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2827both known to have a clear low bit, then ``%A`` would have to have a
2828cleared low bit. However, in the ``%C`` example, the optimizer is
2829allowed to assume that the '``undef``' operand could be the same as
2830``%Y``, allowing the whole '``select``' to be eliminated.
2831
2832.. code-block:: llvm
2833
2834 %A = xor undef, undef
2835
2836 %B = undef
2837 %C = xor %B, %B
2838
2839 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002840 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002841 %F = icmp gte %D, 4
2842
2843 Safe:
2844 %A = undef
2845 %B = undef
2846 %C = undef
2847 %D = undef
2848 %E = undef
2849 %F = undef
2850
2851This example points out that two '``undef``' operands are not
2852necessarily the same. This can be surprising to people (and also matches
2853C semantics) where they assume that "``X^X``" is always zero, even if
2854``X`` is undefined. This isn't true for a number of reasons, but the
2855short answer is that an '``undef``' "variable" can arbitrarily change
2856its value over its "live range". This is true because the variable
2857doesn't actually *have a live range*. Instead, the value is logically
2858read from arbitrary registers that happen to be around when needed, so
2859the value is not necessarily consistent over time. In fact, ``%A`` and
2860``%C`` need to have the same semantics or the core LLVM "replace all
2861uses with" concept would not hold.
2862
2863.. code-block:: llvm
2864
2865 %A = fdiv undef, %X
2866 %B = fdiv %X, undef
2867 Safe:
2868 %A = undef
2869 b: unreachable
2870
2871These examples show the crucial difference between an *undefined value*
2872and *undefined behavior*. An undefined value (like '``undef``') is
2873allowed to have an arbitrary bit-pattern. This means that the ``%A``
2874operation can be constant folded to '``undef``', because the '``undef``'
2875could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2876However, in the second example, we can make a more aggressive
2877assumption: because the ``undef`` is allowed to be an arbitrary value,
2878we are allowed to assume that it could be zero. Since a divide by zero
2879has *undefined behavior*, we are allowed to assume that the operation
2880does not execute at all. This allows us to delete the divide and all
2881code after it. Because the undefined operation "can't happen", the
2882optimizer can assume that it occurs in dead code.
2883
2884.. code-block:: llvm
2885
2886 a: store undef -> %X
2887 b: store %X -> undef
2888 Safe:
2889 a: <deleted>
2890 b: unreachable
2891
2892These examples reiterate the ``fdiv`` example: a store *of* an undefined
2893value can be assumed to not have any effect; we can assume that the
2894value is overwritten with bits that happen to match what was already
2895there. However, a store *to* an undefined location could clobber
2896arbitrary memory, therefore, it has undefined behavior.
2897
2898.. _poisonvalues:
2899
2900Poison Values
2901-------------
2902
2903Poison values are similar to :ref:`undef values <undefvalues>`, however
2904they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002905that cannot evoke side effects has nevertheless detected a condition
2906that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002907
2908There is currently no way of representing a poison value in the IR; they
2909only exist when produced by operations such as :ref:`add <i_add>` with
2910the ``nsw`` flag.
2911
2912Poison value behavior is defined in terms of value *dependence*:
2913
2914- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2915- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2916 their dynamic predecessor basic block.
2917- Function arguments depend on the corresponding actual argument values
2918 in the dynamic callers of their functions.
2919- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2920 instructions that dynamically transfer control back to them.
2921- :ref:`Invoke <i_invoke>` instructions depend on the
2922 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2923 call instructions that dynamically transfer control back to them.
2924- Non-volatile loads and stores depend on the most recent stores to all
2925 of the referenced memory addresses, following the order in the IR
2926 (including loads and stores implied by intrinsics such as
2927 :ref:`@llvm.memcpy <int_memcpy>`.)
2928- An instruction with externally visible side effects depends on the
2929 most recent preceding instruction with externally visible side
2930 effects, following the order in the IR. (This includes :ref:`volatile
2931 operations <volatile>`.)
2932- An instruction *control-depends* on a :ref:`terminator
2933 instruction <terminators>` if the terminator instruction has
2934 multiple successors and the instruction is always executed when
2935 control transfers to one of the successors, and may not be executed
2936 when control is transferred to another.
2937- Additionally, an instruction also *control-depends* on a terminator
2938 instruction if the set of instructions it otherwise depends on would
2939 be different if the terminator had transferred control to a different
2940 successor.
2941- Dependence is transitive.
2942
Richard Smith32dbdf62014-07-31 04:25:36 +00002943Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2944with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002945on a poison value has undefined behavior.
2946
2947Here are some examples:
2948
2949.. code-block:: llvm
2950
2951 entry:
2952 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2953 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002954 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002955 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2956
2957 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002958 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002959
2960 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2961
2962 %narrowaddr = bitcast i32* @g to i16*
2963 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002964 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2965 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002966
2967 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2968 br i1 %cmp, label %true, label %end ; Branch to either destination.
2969
2970 true:
2971 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2972 ; it has undefined behavior.
2973 br label %end
2974
2975 end:
2976 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2977 ; Both edges into this PHI are
2978 ; control-dependent on %cmp, so this
2979 ; always results in a poison value.
2980
2981 store volatile i32 0, i32* @g ; This would depend on the store in %true
2982 ; if %cmp is true, or the store in %entry
2983 ; otherwise, so this is undefined behavior.
2984
2985 br i1 %cmp, label %second_true, label %second_end
2986 ; The same branch again, but this time the
2987 ; true block doesn't have side effects.
2988
2989 second_true:
2990 ; No side effects!
2991 ret void
2992
2993 second_end:
2994 store volatile i32 0, i32* @g ; This time, the instruction always depends
2995 ; on the store in %end. Also, it is
2996 ; control-equivalent to %end, so this is
2997 ; well-defined (ignoring earlier undefined
2998 ; behavior in this example).
2999
3000.. _blockaddress:
3001
3002Addresses of Basic Blocks
3003-------------------------
3004
3005``blockaddress(@function, %block)``
3006
3007The '``blockaddress``' constant computes the address of the specified
3008basic block in the specified function, and always has an ``i8*`` type.
3009Taking the address of the entry block is illegal.
3010
3011This value only has defined behavior when used as an operand to the
3012':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3013against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003014undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003015no label is equal to the null pointer. This may be passed around as an
3016opaque pointer sized value as long as the bits are not inspected. This
3017allows ``ptrtoint`` and arithmetic to be performed on these values so
3018long as the original value is reconstituted before the ``indirectbr``
3019instruction.
3020
3021Finally, some targets may provide defined semantics when using the value
3022as the operand to an inline assembly, but that is target specific.
3023
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003024.. _constantexprs:
3025
Sean Silvab084af42012-12-07 10:36:55 +00003026Constant Expressions
3027--------------------
3028
3029Constant expressions are used to allow expressions involving other
3030constants to be used as constants. Constant expressions may be of any
3031:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3032that does not have side effects (e.g. load and call are not supported).
3033The following is the syntax for constant expressions:
3034
3035``trunc (CST to TYPE)``
3036 Truncate a constant to another type. The bit size of CST must be
3037 larger than the bit size of TYPE. Both types must be integers.
3038``zext (CST to TYPE)``
3039 Zero extend a constant to another type. The bit size of CST must be
3040 smaller than the bit size of TYPE. Both types must be integers.
3041``sext (CST to TYPE)``
3042 Sign extend a constant to another type. The bit size of CST must be
3043 smaller than the bit size of TYPE. Both types must be integers.
3044``fptrunc (CST to TYPE)``
3045 Truncate a floating point constant to another floating point type.
3046 The size of CST must be larger than the size of TYPE. Both types
3047 must be floating point.
3048``fpext (CST to TYPE)``
3049 Floating point extend a constant to another type. The size of CST
3050 must be smaller or equal to the size of TYPE. Both types must be
3051 floating point.
3052``fptoui (CST to TYPE)``
3053 Convert a floating point constant to the corresponding unsigned
3054 integer constant. TYPE must be a scalar or vector integer type. CST
3055 must be of scalar or vector floating point type. Both CST and TYPE
3056 must be scalars, or vectors of the same number of elements. If the
3057 value won't fit in the integer type, the results are undefined.
3058``fptosi (CST to TYPE)``
3059 Convert a floating point constant to the corresponding signed
3060 integer constant. TYPE must be a scalar or vector integer type. CST
3061 must be of scalar or vector floating point type. Both CST and TYPE
3062 must be scalars, or vectors of the same number of elements. If the
3063 value won't fit in the integer type, the results are undefined.
3064``uitofp (CST to TYPE)``
3065 Convert an unsigned integer constant to the corresponding floating
3066 point constant. TYPE must be a scalar or vector floating point type.
3067 CST must be of scalar or vector integer type. Both CST and TYPE must
3068 be scalars, or vectors of the same number of elements. If the value
3069 won't fit in the floating point type, the results are undefined.
3070``sitofp (CST to TYPE)``
3071 Convert a signed integer constant to the corresponding floating
3072 point constant. TYPE must be a scalar or vector floating point type.
3073 CST must be of scalar or vector integer type. Both CST and TYPE must
3074 be scalars, or vectors of the same number of elements. If the value
3075 won't fit in the floating point type, the results are undefined.
3076``ptrtoint (CST to TYPE)``
3077 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003078 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003079 pointer type. The ``CST`` value is zero extended, truncated, or
3080 unchanged to make it fit in ``TYPE``.
3081``inttoptr (CST to TYPE)``
3082 Convert an integer constant to a pointer constant. TYPE must be a
3083 pointer type. CST must be of integer type. The CST value is zero
3084 extended, truncated, or unchanged to make it fit in a pointer size.
3085 This one is *really* dangerous!
3086``bitcast (CST to TYPE)``
3087 Convert a constant, CST, to another TYPE. The constraints of the
3088 operands are the same as those for the :ref:`bitcast
3089 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003090``addrspacecast (CST to TYPE)``
3091 Convert a constant pointer or constant vector of pointer, CST, to another
3092 TYPE in a different address space. The constraints of the operands are the
3093 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003094``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003095 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3096 constants. As with the :ref:`getelementptr <i_getelementptr>`
3097 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003098 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003099``select (COND, VAL1, VAL2)``
3100 Perform the :ref:`select operation <i_select>` on constants.
3101``icmp COND (VAL1, VAL2)``
3102 Performs the :ref:`icmp operation <i_icmp>` on constants.
3103``fcmp COND (VAL1, VAL2)``
3104 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3105``extractelement (VAL, IDX)``
3106 Perform the :ref:`extractelement operation <i_extractelement>` on
3107 constants.
3108``insertelement (VAL, ELT, IDX)``
3109 Perform the :ref:`insertelement operation <i_insertelement>` on
3110 constants.
3111``shufflevector (VEC1, VEC2, IDXMASK)``
3112 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3113 constants.
3114``extractvalue (VAL, IDX0, IDX1, ...)``
3115 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3116 constants. The index list is interpreted in a similar manner as
3117 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3118 least one index value must be specified.
3119``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3120 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3121 The index list is interpreted in a similar manner as indices in a
3122 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3123 value must be specified.
3124``OPCODE (LHS, RHS)``
3125 Perform the specified operation of the LHS and RHS constants. OPCODE
3126 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3127 binary <bitwiseops>` operations. The constraints on operands are
3128 the same as those for the corresponding instruction (e.g. no bitwise
3129 operations on floating point values are allowed).
3130
3131Other Values
3132============
3133
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003134.. _inlineasmexprs:
3135
Sean Silvab084af42012-12-07 10:36:55 +00003136Inline Assembler Expressions
3137----------------------------
3138
3139LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003140Inline Assembly <moduleasm>`) through the use of a special value. This value
3141represents the inline assembler as a template string (containing the
3142instructions to emit), a list of operand constraints (stored as a string), a
3143flag that indicates whether or not the inline asm expression has side effects,
3144and a flag indicating whether the function containing the asm needs to align its
3145stack conservatively.
3146
3147The template string supports argument substitution of the operands using "``$``"
3148followed by a number, to indicate substitution of the given register/memory
3149location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3150be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3151operand (See :ref:`inline-asm-modifiers`).
3152
3153A literal "``$``" may be included by using "``$$``" in the template. To include
3154other special characters into the output, the usual "``\XX``" escapes may be
3155used, just as in other strings. Note that after template substitution, the
3156resulting assembly string is parsed by LLVM's integrated assembler unless it is
3157disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3158syntax known to LLVM.
3159
3160LLVM's support for inline asm is modeled closely on the requirements of Clang's
3161GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3162modifier codes listed here are similar or identical to those in GCC's inline asm
3163support. However, to be clear, the syntax of the template and constraint strings
3164described here is *not* the same as the syntax accepted by GCC and Clang, and,
3165while most constraint letters are passed through as-is by Clang, some get
3166translated to other codes when converting from the C source to the LLVM
3167assembly.
3168
3169An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003170
3171.. code-block:: llvm
3172
3173 i32 (i32) asm "bswap $0", "=r,r"
3174
3175Inline assembler expressions may **only** be used as the callee operand
3176of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3177Thus, typically we have:
3178
3179.. code-block:: llvm
3180
3181 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3182
3183Inline asms with side effects not visible in the constraint list must be
3184marked as having side effects. This is done through the use of the
3185'``sideeffect``' keyword, like so:
3186
3187.. code-block:: llvm
3188
3189 call void asm sideeffect "eieio", ""()
3190
3191In some cases inline asms will contain code that will not work unless
3192the stack is aligned in some way, such as calls or SSE instructions on
3193x86, yet will not contain code that does that alignment within the asm.
3194The compiler should make conservative assumptions about what the asm
3195might contain and should generate its usual stack alignment code in the
3196prologue if the '``alignstack``' keyword is present:
3197
3198.. code-block:: llvm
3199
3200 call void asm alignstack "eieio", ""()
3201
3202Inline asms also support using non-standard assembly dialects. The
3203assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3204the inline asm is using the Intel dialect. Currently, ATT and Intel are
3205the only supported dialects. An example is:
3206
3207.. code-block:: llvm
3208
3209 call void asm inteldialect "eieio", ""()
3210
3211If multiple keywords appear the '``sideeffect``' keyword must come
3212first, the '``alignstack``' keyword second and the '``inteldialect``'
3213keyword last.
3214
James Y Knightbc832ed2015-07-08 18:08:36 +00003215Inline Asm Constraint String
3216^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3217
3218The constraint list is a comma-separated string, each element containing one or
3219more constraint codes.
3220
3221For each element in the constraint list an appropriate register or memory
3222operand will be chosen, and it will be made available to assembly template
3223string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3224second, etc.
3225
3226There are three different types of constraints, which are distinguished by a
3227prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3228constraints must always be given in that order: outputs first, then inputs, then
3229clobbers. They cannot be intermingled.
3230
3231There are also three different categories of constraint codes:
3232
3233- Register constraint. This is either a register class, or a fixed physical
3234 register. This kind of constraint will allocate a register, and if necessary,
3235 bitcast the argument or result to the appropriate type.
3236- Memory constraint. This kind of constraint is for use with an instruction
3237 taking a memory operand. Different constraints allow for different addressing
3238 modes used by the target.
3239- Immediate value constraint. This kind of constraint is for an integer or other
3240 immediate value which can be rendered directly into an instruction. The
3241 various target-specific constraints allow the selection of a value in the
3242 proper range for the instruction you wish to use it with.
3243
3244Output constraints
3245""""""""""""""""""
3246
3247Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3248indicates that the assembly will write to this operand, and the operand will
3249then be made available as a return value of the ``asm`` expression. Output
3250constraints do not consume an argument from the call instruction. (Except, see
3251below about indirect outputs).
3252
3253Normally, it is expected that no output locations are written to by the assembly
3254expression until *all* of the inputs have been read. As such, LLVM may assign
3255the same register to an output and an input. If this is not safe (e.g. if the
3256assembly contains two instructions, where the first writes to one output, and
3257the second reads an input and writes to a second output), then the "``&``"
3258modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003259"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003260will not use the same register for any inputs (other than an input tied to this
3261output).
3262
3263Input constraints
3264"""""""""""""""""
3265
3266Input constraints do not have a prefix -- just the constraint codes. Each input
3267constraint will consume one argument from the call instruction. It is not
3268permitted for the asm to write to any input register or memory location (unless
3269that input is tied to an output). Note also that multiple inputs may all be
3270assigned to the same register, if LLVM can determine that they necessarily all
3271contain the same value.
3272
3273Instead of providing a Constraint Code, input constraints may also "tie"
3274themselves to an output constraint, by providing an integer as the constraint
3275string. Tied inputs still consume an argument from the call instruction, and
3276take up a position in the asm template numbering as is usual -- they will simply
3277be constrained to always use the same register as the output they've been tied
3278to. For example, a constraint string of "``=r,0``" says to assign a register for
3279output, and use that register as an input as well (it being the 0'th
3280constraint).
3281
3282It is permitted to tie an input to an "early-clobber" output. In that case, no
3283*other* input may share the same register as the input tied to the early-clobber
3284(even when the other input has the same value).
3285
3286You may only tie an input to an output which has a register constraint, not a
3287memory constraint. Only a single input may be tied to an output.
3288
3289There is also an "interesting" feature which deserves a bit of explanation: if a
3290register class constraint allocates a register which is too small for the value
3291type operand provided as input, the input value will be split into multiple
3292registers, and all of them passed to the inline asm.
3293
3294However, this feature is often not as useful as you might think.
3295
3296Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3297architectures that have instructions which operate on multiple consecutive
3298instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3299SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3300hardware then loads into both the named register, and the next register. This
3301feature of inline asm would not be useful to support that.)
3302
3303A few of the targets provide a template string modifier allowing explicit access
3304to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3305``D``). On such an architecture, you can actually access the second allocated
3306register (yet, still, not any subsequent ones). But, in that case, you're still
3307probably better off simply splitting the value into two separate operands, for
3308clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3309despite existing only for use with this feature, is not really a good idea to
3310use)
3311
3312Indirect inputs and outputs
3313"""""""""""""""""""""""""""
3314
3315Indirect output or input constraints can be specified by the "``*``" modifier
3316(which goes after the "``=``" in case of an output). This indicates that the asm
3317will write to or read from the contents of an *address* provided as an input
3318argument. (Note that in this way, indirect outputs act more like an *input* than
3319an output: just like an input, they consume an argument of the call expression,
3320rather than producing a return value. An indirect output constraint is an
3321"output" only in that the asm is expected to write to the contents of the input
3322memory location, instead of just read from it).
3323
3324This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3325address of a variable as a value.
3326
3327It is also possible to use an indirect *register* constraint, but only on output
3328(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3329value normally, and then, separately emit a store to the address provided as
3330input, after the provided inline asm. (It's not clear what value this
3331functionality provides, compared to writing the store explicitly after the asm
3332statement, and it can only produce worse code, since it bypasses many
3333optimization passes. I would recommend not using it.)
3334
3335
3336Clobber constraints
3337"""""""""""""""""""
3338
3339A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3340consume an input operand, nor generate an output. Clobbers cannot use any of the
3341general constraint code letters -- they may use only explicit register
3342constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3343"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3344memory locations -- not only the memory pointed to by a declared indirect
3345output.
3346
3347
3348Constraint Codes
3349""""""""""""""""
3350After a potential prefix comes constraint code, or codes.
3351
3352A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3353followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3354(e.g. "``{eax}``").
3355
3356The one and two letter constraint codes are typically chosen to be the same as
3357GCC's constraint codes.
3358
3359A single constraint may include one or more than constraint code in it, leaving
3360it up to LLVM to choose which one to use. This is included mainly for
3361compatibility with the translation of GCC inline asm coming from clang.
3362
3363There are two ways to specify alternatives, and either or both may be used in an
3364inline asm constraint list:
3365
33661) Append the codes to each other, making a constraint code set. E.g. "``im``"
3367 or "``{eax}m``". This means "choose any of the options in the set". The
3368 choice of constraint is made independently for each constraint in the
3369 constraint list.
3370
33712) Use "``|``" between constraint code sets, creating alternatives. Every
3372 constraint in the constraint list must have the same number of alternative
3373 sets. With this syntax, the same alternative in *all* of the items in the
3374 constraint list will be chosen together.
3375
3376Putting those together, you might have a two operand constraint string like
3377``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3378operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3379may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3380
3381However, the use of either of the alternatives features is *NOT* recommended, as
3382LLVM is not able to make an intelligent choice about which one to use. (At the
3383point it currently needs to choose, not enough information is available to do so
3384in a smart way.) Thus, it simply tries to make a choice that's most likely to
3385compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3386always choose to use memory, not registers). And, if given multiple registers,
3387or multiple register classes, it will simply choose the first one. (In fact, it
3388doesn't currently even ensure explicitly specified physical registers are
3389unique, so specifying multiple physical registers as alternatives, like
3390``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3391intended.)
3392
3393Supported Constraint Code List
3394""""""""""""""""""""""""""""""
3395
3396The constraint codes are, in general, expected to behave the same way they do in
3397GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3398inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3399and GCC likely indicates a bug in LLVM.
3400
3401Some constraint codes are typically supported by all targets:
3402
3403- ``r``: A register in the target's general purpose register class.
3404- ``m``: A memory address operand. It is target-specific what addressing modes
3405 are supported, typical examples are register, or register + register offset,
3406 or register + immediate offset (of some target-specific size).
3407- ``i``: An integer constant (of target-specific width). Allows either a simple
3408 immediate, or a relocatable value.
3409- ``n``: An integer constant -- *not* including relocatable values.
3410- ``s``: An integer constant, but allowing *only* relocatable values.
3411- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3412 useful to pass a label for an asm branch or call.
3413
3414 .. FIXME: but that surely isn't actually okay to jump out of an asm
3415 block without telling llvm about the control transfer???)
3416
3417- ``{register-name}``: Requires exactly the named physical register.
3418
3419Other constraints are target-specific:
3420
3421AArch64:
3422
3423- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3424- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3425 i.e. 0 to 4095 with optional shift by 12.
3426- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3427 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3428- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3429 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3430- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3431 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3432- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3433 32-bit register. This is a superset of ``K``: in addition to the bitmask
3434 immediate, also allows immediate integers which can be loaded with a single
3435 ``MOVZ`` or ``MOVL`` instruction.
3436- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3437 64-bit register. This is a superset of ``L``.
3438- ``Q``: Memory address operand must be in a single register (no
3439 offsets). (However, LLVM currently does this for the ``m`` constraint as
3440 well.)
3441- ``r``: A 32 or 64-bit integer register (W* or X*).
3442- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3443- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3444
3445AMDGPU:
3446
3447- ``r``: A 32 or 64-bit integer register.
3448- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3449- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3450
3451
3452All ARM modes:
3453
3454- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3455 operand. Treated the same as operand ``m``, at the moment.
3456
3457ARM and ARM's Thumb2 mode:
3458
3459- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3460- ``I``: An immediate integer valid for a data-processing instruction.
3461- ``J``: An immediate integer between -4095 and 4095.
3462- ``K``: An immediate integer whose bitwise inverse is valid for a
3463 data-processing instruction. (Can be used with template modifier "``B``" to
3464 print the inverted value).
3465- ``L``: An immediate integer whose negation is valid for a data-processing
3466 instruction. (Can be used with template modifier "``n``" to print the negated
3467 value).
3468- ``M``: A power of two or a integer between 0 and 32.
3469- ``N``: Invalid immediate constraint.
3470- ``O``: Invalid immediate constraint.
3471- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3472- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3473 as ``r``.
3474- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3475 invalid.
3476- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3477 ``d0-d31``, or ``q0-q15``.
3478- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3479 ``d0-d7``, or ``q0-q3``.
3480- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3481 ``s0-s31``.
3482
3483ARM's Thumb1 mode:
3484
3485- ``I``: An immediate integer between 0 and 255.
3486- ``J``: An immediate integer between -255 and -1.
3487- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3488 some amount.
3489- ``L``: An immediate integer between -7 and 7.
3490- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3491- ``N``: An immediate integer between 0 and 31.
3492- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3493- ``r``: A low 32-bit GPR register (``r0-r7``).
3494- ``l``: A low 32-bit GPR register (``r0-r7``).
3495- ``h``: A high GPR register (``r0-r7``).
3496- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3497 ``d0-d31``, or ``q0-q15``.
3498- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3499 ``d0-d7``, or ``q0-q3``.
3500- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3501 ``s0-s31``.
3502
3503
3504Hexagon:
3505
3506- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3507 at the moment.
3508- ``r``: A 32 or 64-bit register.
3509
3510MSP430:
3511
3512- ``r``: An 8 or 16-bit register.
3513
3514MIPS:
3515
3516- ``I``: An immediate signed 16-bit integer.
3517- ``J``: An immediate integer zero.
3518- ``K``: An immediate unsigned 16-bit integer.
3519- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3520- ``N``: An immediate integer between -65535 and -1.
3521- ``O``: An immediate signed 15-bit integer.
3522- ``P``: An immediate integer between 1 and 65535.
3523- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3524 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3525- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3526 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3527 ``m``.
3528- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3529 ``sc`` instruction on the given subtarget (details vary).
3530- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3531- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003532 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3533 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003534- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3535 ``25``).
3536- ``l``: The ``lo`` register, 32 or 64-bit.
3537- ``x``: Invalid.
3538
3539NVPTX:
3540
3541- ``b``: A 1-bit integer register.
3542- ``c`` or ``h``: A 16-bit integer register.
3543- ``r``: A 32-bit integer register.
3544- ``l`` or ``N``: A 64-bit integer register.
3545- ``f``: A 32-bit float register.
3546- ``d``: A 64-bit float register.
3547
3548
3549PowerPC:
3550
3551- ``I``: An immediate signed 16-bit integer.
3552- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3553- ``K``: An immediate unsigned 16-bit integer.
3554- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3555- ``M``: An immediate integer greater than 31.
3556- ``N``: An immediate integer that is an exact power of 2.
3557- ``O``: The immediate integer constant 0.
3558- ``P``: An immediate integer constant whose negation is a signed 16-bit
3559 constant.
3560- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3561 treated the same as ``m``.
3562- ``r``: A 32 or 64-bit integer register.
3563- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3564 ``R1-R31``).
3565- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3566 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3567- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3568 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3569 altivec vector register (``V0-V31``).
3570
3571 .. FIXME: is this a bug that v accepts QPX registers? I think this
3572 is supposed to only use the altivec vector registers?
3573
3574- ``y``: Condition register (``CR0-CR7``).
3575- ``wc``: An individual CR bit in a CR register.
3576- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3577 register set (overlapping both the floating-point and vector register files).
3578- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3579 set.
3580
3581Sparc:
3582
3583- ``I``: An immediate 13-bit signed integer.
3584- ``r``: A 32-bit integer register.
3585
3586SystemZ:
3587
3588- ``I``: An immediate unsigned 8-bit integer.
3589- ``J``: An immediate unsigned 12-bit integer.
3590- ``K``: An immediate signed 16-bit integer.
3591- ``L``: An immediate signed 20-bit integer.
3592- ``M``: An immediate integer 0x7fffffff.
3593- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3594 ``m``, at the moment.
3595- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3596- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3597 address context evaluates as zero).
3598- ``h``: A 32-bit value in the high part of a 64bit data register
3599 (LLVM-specific)
3600- ``f``: A 32, 64, or 128-bit floating point register.
3601
3602X86:
3603
3604- ``I``: An immediate integer between 0 and 31.
3605- ``J``: An immediate integer between 0 and 64.
3606- ``K``: An immediate signed 8-bit integer.
3607- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3608 0xffffffff.
3609- ``M``: An immediate integer between 0 and 3.
3610- ``N``: An immediate unsigned 8-bit integer.
3611- ``O``: An immediate integer between 0 and 127.
3612- ``e``: An immediate 32-bit signed integer.
3613- ``Z``: An immediate 32-bit unsigned integer.
3614- ``o``, ``v``: Treated the same as ``m``, at the moment.
3615- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3616 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3617 registers, and on X86-64, it is all of the integer registers.
3618- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3619 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3620- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3621- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3622 existed since i386, and can be accessed without the REX prefix.
3623- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3624- ``y``: A 64-bit MMX register, if MMX is enabled.
3625- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3626 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3627 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3628 512-bit vector operand in an AVX512 register, Otherwise, an error.
3629- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3630- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3631 32-bit mode, a 64-bit integer operand will get split into two registers). It
3632 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3633 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3634 you're better off splitting it yourself, before passing it to the asm
3635 statement.
3636
3637XCore:
3638
3639- ``r``: A 32-bit integer register.
3640
3641
3642.. _inline-asm-modifiers:
3643
3644Asm template argument modifiers
3645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3646
3647In the asm template string, modifiers can be used on the operand reference, like
3648"``${0:n}``".
3649
3650The modifiers are, in general, expected to behave the same way they do in
3651GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3652inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3653and GCC likely indicates a bug in LLVM.
3654
3655Target-independent:
3656
Sean Silvaa1190322015-08-06 22:56:48 +00003657- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003658 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3659- ``n``: Negate and print immediate integer constant unadorned, without the
3660 target-specific immediate punctuation (e.g. no ``$`` prefix).
3661- ``l``: Print as an unadorned label, without the target-specific label
3662 punctuation (e.g. no ``$`` prefix).
3663
3664AArch64:
3665
3666- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3667 instead of ``x30``, print ``w30``.
3668- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3669- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3670 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3671 ``v*``.
3672
3673AMDGPU:
3674
3675- ``r``: No effect.
3676
3677ARM:
3678
3679- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3680 register).
3681- ``P``: No effect.
3682- ``q``: No effect.
3683- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3684 as ``d4[1]`` instead of ``s9``)
3685- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3686 prefix.
3687- ``L``: Print the low 16-bits of an immediate integer constant.
3688- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3689 register operands subsequent to the specified one (!), so use carefully.
3690- ``Q``: Print the low-order register of a register-pair, or the low-order
3691 register of a two-register operand.
3692- ``R``: Print the high-order register of a register-pair, or the high-order
3693 register of a two-register operand.
3694- ``H``: Print the second register of a register-pair. (On a big-endian system,
3695 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3696 to ``R``.)
3697
3698 .. FIXME: H doesn't currently support printing the second register
3699 of a two-register operand.
3700
3701- ``e``: Print the low doubleword register of a NEON quad register.
3702- ``f``: Print the high doubleword register of a NEON quad register.
3703- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3704 adornment.
3705
3706Hexagon:
3707
3708- ``L``: Print the second register of a two-register operand. Requires that it
3709 has been allocated consecutively to the first.
3710
3711 .. FIXME: why is it restricted to consecutive ones? And there's
3712 nothing that ensures that happens, is there?
3713
3714- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3715 nothing. Used to print 'addi' vs 'add' instructions.
3716
3717MSP430:
3718
3719No additional modifiers.
3720
3721MIPS:
3722
3723- ``X``: Print an immediate integer as hexadecimal
3724- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3725- ``d``: Print an immediate integer as decimal.
3726- ``m``: Subtract one and print an immediate integer as decimal.
3727- ``z``: Print $0 if an immediate zero, otherwise print normally.
3728- ``L``: Print the low-order register of a two-register operand, or prints the
3729 address of the low-order word of a double-word memory operand.
3730
3731 .. FIXME: L seems to be missing memory operand support.
3732
3733- ``M``: Print the high-order register of a two-register operand, or prints the
3734 address of the high-order word of a double-word memory operand.
3735
3736 .. FIXME: M seems to be missing memory operand support.
3737
3738- ``D``: Print the second register of a two-register operand, or prints the
3739 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3740 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3741 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003742- ``w``: No effect. Provided for compatibility with GCC which requires this
3743 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3744 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003745
3746NVPTX:
3747
3748- ``r``: No effect.
3749
3750PowerPC:
3751
3752- ``L``: Print the second register of a two-register operand. Requires that it
3753 has been allocated consecutively to the first.
3754
3755 .. FIXME: why is it restricted to consecutive ones? And there's
3756 nothing that ensures that happens, is there?
3757
3758- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3759 nothing. Used to print 'addi' vs 'add' instructions.
3760- ``y``: For a memory operand, prints formatter for a two-register X-form
3761 instruction. (Currently always prints ``r0,OPERAND``).
3762- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3763 otherwise. (NOTE: LLVM does not support update form, so this will currently
3764 always print nothing)
3765- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3766 not support indexed form, so this will currently always print nothing)
3767
3768Sparc:
3769
3770- ``r``: No effect.
3771
3772SystemZ:
3773
3774SystemZ implements only ``n``, and does *not* support any of the other
3775target-independent modifiers.
3776
3777X86:
3778
3779- ``c``: Print an unadorned integer or symbol name. (The latter is
3780 target-specific behavior for this typically target-independent modifier).
3781- ``A``: Print a register name with a '``*``' before it.
3782- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3783 operand.
3784- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3785 memory operand.
3786- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3787 operand.
3788- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3789 operand.
3790- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3791 available, otherwise the 32-bit register name; do nothing on a memory operand.
3792- ``n``: Negate and print an unadorned integer, or, for operands other than an
3793 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3794 the operand. (The behavior for relocatable symbol expressions is a
3795 target-specific behavior for this typically target-independent modifier)
3796- ``H``: Print a memory reference with additional offset +8.
3797- ``P``: Print a memory reference or operand for use as the argument of a call
3798 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3799
3800XCore:
3801
3802No additional modifiers.
3803
3804
Sean Silvab084af42012-12-07 10:36:55 +00003805Inline Asm Metadata
3806^^^^^^^^^^^^^^^^^^^
3807
3808The call instructions that wrap inline asm nodes may have a
3809"``!srcloc``" MDNode attached to it that contains a list of constant
3810integers. If present, the code generator will use the integer as the
3811location cookie value when report errors through the ``LLVMContext``
3812error reporting mechanisms. This allows a front-end to correlate backend
3813errors that occur with inline asm back to the source code that produced
3814it. For example:
3815
3816.. code-block:: llvm
3817
3818 call void asm sideeffect "something bad", ""(), !srcloc !42
3819 ...
3820 !42 = !{ i32 1234567 }
3821
3822It is up to the front-end to make sense of the magic numbers it places
3823in the IR. If the MDNode contains multiple constants, the code generator
3824will use the one that corresponds to the line of the asm that the error
3825occurs on.
3826
3827.. _metadata:
3828
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003829Metadata
3830========
Sean Silvab084af42012-12-07 10:36:55 +00003831
3832LLVM IR allows metadata to be attached to instructions in the program
3833that can convey extra information about the code to the optimizers and
3834code generator. One example application of metadata is source-level
3835debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003836
Sean Silvaa1190322015-08-06 22:56:48 +00003837Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003838``call`` instruction, it uses the ``metadata`` type.
3839
3840All metadata are identified in syntax by a exclamation point ('``!``').
3841
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003842.. _metadata-string:
3843
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003844Metadata Nodes and Metadata Strings
3845-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003846
3847A metadata string is a string surrounded by double quotes. It can
3848contain any character by escaping non-printable characters with
3849"``\xx``" where "``xx``" is the two digit hex code. For example:
3850"``!"test\00"``".
3851
3852Metadata nodes are represented with notation similar to structure
3853constants (a comma separated list of elements, surrounded by braces and
3854preceded by an exclamation point). Metadata nodes can have any values as
3855their operand. For example:
3856
3857.. code-block:: llvm
3858
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003859 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003860
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003861Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3862
3863.. code-block:: llvm
3864
3865 !0 = distinct !{!"test\00", i32 10}
3866
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003867``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003868content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003869when metadata operands change.
3870
Sean Silvab084af42012-12-07 10:36:55 +00003871A :ref:`named metadata <namedmetadatastructure>` is a collection of
3872metadata nodes, which can be looked up in the module symbol table. For
3873example:
3874
3875.. code-block:: llvm
3876
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003877 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003878
3879Metadata can be used as function arguments. Here ``llvm.dbg.value``
3880function is using two metadata arguments:
3881
3882.. code-block:: llvm
3883
3884 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3885
Peter Collingbourne50108682015-11-06 02:41:02 +00003886Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3887to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003888
3889.. code-block:: llvm
3890
3891 %indvar.next = add i64 %indvar, 1, !dbg !21
3892
Peter Collingbourne50108682015-11-06 02:41:02 +00003893Metadata can also be attached to a function definition. Here metadata ``!22``
3894is attached to the ``foo`` function using the ``!dbg`` identifier:
3895
3896.. code-block:: llvm
3897
3898 define void @foo() !dbg !22 {
3899 ret void
3900 }
3901
Sean Silvab084af42012-12-07 10:36:55 +00003902More information about specific metadata nodes recognized by the
3903optimizers and code generator is found below.
3904
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003905.. _specialized-metadata:
3906
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003907Specialized Metadata Nodes
3908^^^^^^^^^^^^^^^^^^^^^^^^^^
3909
3910Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003911to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003912order.
3913
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003914These aren't inherently debug info centric, but currently all the specialized
3915metadata nodes are related to debug info.
3916
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003917.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003918
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003919DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003920"""""""""""""
3921
Sean Silvaa1190322015-08-06 22:56:48 +00003922``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003923``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3924fields are tuples containing the debug info to be emitted along with the compile
3925unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003926references to them from instructions).
3927
3928.. code-block:: llvm
3929
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003930 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003931 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003932 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003933 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003934 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003935
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003936Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003937specific compilation unit. File descriptors are defined using this scope.
3938These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003939keep track of subprograms, global variables, type information, and imported
3940entities (declarations and namespaces).
3941
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003942.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003943
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003944DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003945""""""
3946
Sean Silvaa1190322015-08-06 22:56:48 +00003947``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003948
3949.. code-block:: llvm
3950
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003951 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003952
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003953Files are sometimes used in ``scope:`` fields, and are the only valid target
3954for ``file:`` fields.
3955
Michael Kuperstein605308a2015-05-14 10:58:59 +00003956.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003957
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003958DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003959"""""""""""
3960
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003961``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003962``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003963
3964.. code-block:: llvm
3965
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003966 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003967 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003968 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003969
Sean Silvaa1190322015-08-06 22:56:48 +00003970The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003971following:
3972
3973.. code-block:: llvm
3974
3975 DW_ATE_address = 1
3976 DW_ATE_boolean = 2
3977 DW_ATE_float = 4
3978 DW_ATE_signed = 5
3979 DW_ATE_signed_char = 6
3980 DW_ATE_unsigned = 7
3981 DW_ATE_unsigned_char = 8
3982
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003983.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003984
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003985DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003986""""""""""""""""
3987
Sean Silvaa1190322015-08-06 22:56:48 +00003988``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003989refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003990types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003991represents a function with no return value (such as ``void foo() {}`` in C++).
3992
3993.. code-block:: llvm
3994
3995 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3996 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003997 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003998
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003999.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004000
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004001DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004002"""""""""""""
4003
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004004``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004005qualified types.
4006
4007.. code-block:: llvm
4008
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004009 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004010 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004011 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004012 align: 32)
4013
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004014The following ``tag:`` values are valid:
4015
4016.. code-block:: llvm
4017
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004018 DW_TAG_member = 13
4019 DW_TAG_pointer_type = 15
4020 DW_TAG_reference_type = 16
4021 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004022 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004023 DW_TAG_ptr_to_member_type = 31
4024 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004025 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004026 DW_TAG_volatile_type = 53
4027 DW_TAG_restrict_type = 55
4028
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004029.. _DIDerivedTypeMember:
4030
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004031``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004032<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004033``offset:`` is the member's bit offset. If the composite type has an ODR
4034``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4035uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004036
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004037``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4038field of :ref:`composite types <DICompositeType>` to describe parents and
4039friends.
4040
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004041``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4042
4043``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
4044``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
4045``baseType:``.
4046
4047Note that the ``void *`` type is expressed as a type derived from NULL.
4048
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004049.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004050
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004051DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004052"""""""""""""""
4053
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004054``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004055structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004056
4057If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004058identifier used for type merging between modules. When specified,
4059:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4060derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4061``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004062
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004063For a given ``identifier:``, there should only be a single composite type that
4064does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4065together will unique such definitions at parse time via the ``identifier:``
4066field, even if the nodes are ``distinct``.
4067
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004068.. code-block:: llvm
4069
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004070 !0 = !DIEnumerator(name: "SixKind", value: 7)
4071 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4072 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4073 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004074 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4075 elements: !{!0, !1, !2})
4076
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004077The following ``tag:`` values are valid:
4078
4079.. code-block:: llvm
4080
4081 DW_TAG_array_type = 1
4082 DW_TAG_class_type = 2
4083 DW_TAG_enumeration_type = 4
4084 DW_TAG_structure_type = 19
4085 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004086
4087For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004088descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004089level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004090array type is a native packed vector.
4091
4092For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004093descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004094value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004095``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004096
4097For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4098``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004099<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4100``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4101``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004102
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004103.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004104
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004105DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004106""""""""""
4107
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004108``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004109:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004110
4111.. code-block:: llvm
4112
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004113 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4114 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4115 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004116
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004117.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004118
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004119DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004120""""""""""""
4121
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004122``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4123variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004124
4125.. code-block:: llvm
4126
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004127 !0 = !DIEnumerator(name: "SixKind", value: 7)
4128 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4129 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004130
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004131DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004132"""""""""""""""""""""""
4133
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004134``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004135language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004136:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004137
4138.. code-block:: llvm
4139
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004140 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004141
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004142DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004143""""""""""""""""""""""""
4144
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004145``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004146language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004147but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004148``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004149:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004150
4151.. code-block:: llvm
4152
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004153 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004154
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004155DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004156"""""""""""
4157
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004158``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004159
4160.. code-block:: llvm
4161
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004162 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004163
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004164DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004165""""""""""""""""
4166
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004167``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004168
4169.. code-block:: llvm
4170
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004171 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004172 file: !2, line: 7, type: !3, isLocal: true,
4173 isDefinition: false, variable: i32* @foo,
4174 declaration: !4)
4175
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004176All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004177:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004178
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004179.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004180
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004181DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004182""""""""""""
4183
Peter Collingbourne50108682015-11-06 02:41:02 +00004184``DISubprogram`` nodes represent functions from the source language. A
4185``DISubprogram`` may be attached to a function definition using ``!dbg``
4186metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4187that must be retained, even if their IR counterparts are optimized out of
4188the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004189
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004190.. _DISubprogramDeclaration:
4191
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004192When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004193tree as opposed to a definition of a function. If the scope is a composite
4194type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4195then the subprogram declaration is uniqued based only on its ``linkageName:``
4196and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004197
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004198.. code-block:: llvm
4199
Peter Collingbourne50108682015-11-06 02:41:02 +00004200 define void @_Z3foov() !dbg !0 {
4201 ...
4202 }
4203
4204 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4205 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004206 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004207 containingType: !4,
4208 virtuality: DW_VIRTUALITY_pure_virtual,
4209 virtualIndex: 10, flags: DIFlagPrototyped,
4210 isOptimized: true, templateParams: !5,
4211 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004212
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004213.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004214
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004215DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004216""""""""""""""
4217
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004218``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004219<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004220two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004221fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004222
4223.. code-block:: llvm
4224
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004225 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004226
4227Usually lexical blocks are ``distinct`` to prevent node merging based on
4228operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004229
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004230.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004231
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004232DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004233""""""""""""""""""
4234
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004235``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004236:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004237indicate textual inclusion, or the ``discriminator:`` field can be used to
4238discriminate between control flow within a single block in the source language.
4239
4240.. code-block:: llvm
4241
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004242 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4243 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4244 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004245
Michael Kuperstein605308a2015-05-14 10:58:59 +00004246.. _DILocation:
4247
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004248DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004249""""""""""
4250
Sean Silvaa1190322015-08-06 22:56:48 +00004251``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004252mandatory, and points at an :ref:`DILexicalBlockFile`, an
4253:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004254
4255.. code-block:: llvm
4256
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004257 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004258
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004259.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004260
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004261DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004262"""""""""""""""
4263
Sean Silvaa1190322015-08-06 22:56:48 +00004264``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004265the ``arg:`` field is set to non-zero, then this variable is a subprogram
4266parameter, and it will be included in the ``variables:`` field of its
4267:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004268
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004269.. code-block:: llvm
4270
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004271 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4272 type: !3, flags: DIFlagArtificial)
4273 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4274 type: !3)
4275 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004276
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004277DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004278""""""""""""
4279
Sean Silvaa1190322015-08-06 22:56:48 +00004280``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004281:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4282describe how the referenced LLVM variable relates to the source language
4283variable.
4284
4285The current supported vocabulary is limited:
4286
4287- ``DW_OP_deref`` dereferences the working expression.
4288- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4289- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4290 here, respectively) of the variable piece from the working expression.
4291
4292.. code-block:: llvm
4293
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004294 !0 = !DIExpression(DW_OP_deref)
4295 !1 = !DIExpression(DW_OP_plus, 3)
4296 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4297 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004298
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004299DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004300""""""""""""""
4301
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004302``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004303
4304.. code-block:: llvm
4305
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004306 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004307 getter: "getFoo", attributes: 7, type: !2)
4308
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004309DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004310""""""""""""""""
4311
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004312``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004313compile unit.
4314
4315.. code-block:: llvm
4316
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004317 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004318 entity: !1, line: 7)
4319
Amjad Abouda9bcf162015-12-10 12:56:35 +00004320DIMacro
4321"""""""
4322
4323``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4324The ``name:`` field is the macro identifier, followed by macro parameters when
4325definining a function-like macro, and the ``value`` field is the token-string
4326used to expand the macro identifier.
4327
4328.. code-block:: llvm
4329
4330 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4331 value: "((x) + 1)")
4332 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4333
4334DIMacroFile
4335"""""""""""
4336
4337``DIMacroFile`` nodes represent inclusion of source files.
4338The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4339appear in the included source file.
4340
4341.. code-block:: llvm
4342
4343 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4344 nodes: !3)
4345
Sean Silvab084af42012-12-07 10:36:55 +00004346'``tbaa``' Metadata
4347^^^^^^^^^^^^^^^^^^^
4348
4349In LLVM IR, memory does not have types, so LLVM's own type system is not
4350suitable for doing TBAA. Instead, metadata is added to the IR to
4351describe a type system of a higher level language. This can be used to
4352implement typical C/C++ TBAA, but it can also be used to implement
4353custom alias analysis behavior for other languages.
4354
4355The current metadata format is very simple. TBAA metadata nodes have up
4356to three fields, e.g.:
4357
4358.. code-block:: llvm
4359
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004360 !0 = !{ !"an example type tree" }
4361 !1 = !{ !"int", !0 }
4362 !2 = !{ !"float", !0 }
4363 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004364
4365The first field is an identity field. It can be any value, usually a
4366metadata string, which uniquely identifies the type. The most important
4367name in the tree is the name of the root node. Two trees with different
4368root node names are entirely disjoint, even if they have leaves with
4369common names.
4370
4371The second field identifies the type's parent node in the tree, or is
4372null or omitted for a root node. A type is considered to alias all of
4373its descendants and all of its ancestors in the tree. Also, a type is
4374considered to alias all types in other trees, so that bitcode produced
4375from multiple front-ends is handled conservatively.
4376
4377If the third field is present, it's an integer which if equal to 1
4378indicates that the type is "constant" (meaning
4379``pointsToConstantMemory`` should return true; see `other useful
4380AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4381
4382'``tbaa.struct``' Metadata
4383^^^^^^^^^^^^^^^^^^^^^^^^^^
4384
4385The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4386aggregate assignment operations in C and similar languages, however it
4387is defined to copy a contiguous region of memory, which is more than
4388strictly necessary for aggregate types which contain holes due to
4389padding. Also, it doesn't contain any TBAA information about the fields
4390of the aggregate.
4391
4392``!tbaa.struct`` metadata can describe which memory subregions in a
4393memcpy are padding and what the TBAA tags of the struct are.
4394
4395The current metadata format is very simple. ``!tbaa.struct`` metadata
4396nodes are a list of operands which are in conceptual groups of three.
4397For each group of three, the first operand gives the byte offset of a
4398field in bytes, the second gives its size in bytes, and the third gives
4399its tbaa tag. e.g.:
4400
4401.. code-block:: llvm
4402
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004403 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004404
4405This describes a struct with two fields. The first is at offset 0 bytes
4406with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4407and has size 4 bytes and has tbaa tag !2.
4408
4409Note that the fields need not be contiguous. In this example, there is a
44104 byte gap between the two fields. This gap represents padding which
4411does not carry useful data and need not be preserved.
4412
Hal Finkel94146652014-07-24 14:25:39 +00004413'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004415
4416``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4417noalias memory-access sets. This means that some collection of memory access
4418instructions (loads, stores, memory-accessing calls, etc.) that carry
4419``noalias`` metadata can specifically be specified not to alias with some other
4420collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004421Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004422a domain.
4423
4424When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004425of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004426subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004427instruction's ``noalias`` list, then the two memory accesses are assumed not to
4428alias.
Hal Finkel94146652014-07-24 14:25:39 +00004429
Adam Nemet569a5b32016-04-27 00:52:48 +00004430Because scopes in one domain don't affect scopes in other domains, separate
4431domains can be used to compose multiple independent noalias sets. This is
4432used for example during inlining. As the noalias function parameters are
4433turned into noalias scope metadata, a new domain is used every time the
4434function is inlined.
4435
Hal Finkel029cde62014-07-25 15:50:02 +00004436The metadata identifying each domain is itself a list containing one or two
4437entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004438string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004439self-reference can be used to create globally unique domain names. A
4440descriptive string may optionally be provided as a second list entry.
4441
4442The metadata identifying each scope is also itself a list containing two or
4443three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004444is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004445self-reference can be used to create globally unique scope names. A metadata
4446reference to the scope's domain is the second entry. A descriptive string may
4447optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004448
4449For example,
4450
4451.. code-block:: llvm
4452
Hal Finkel029cde62014-07-25 15:50:02 +00004453 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004454 !0 = !{!0}
4455 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004456
Hal Finkel029cde62014-07-25 15:50:02 +00004457 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004458 !2 = !{!2, !0}
4459 !3 = !{!3, !0}
4460 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004461
Hal Finkel029cde62014-07-25 15:50:02 +00004462 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004463 !5 = !{!4} ; A list containing only scope !4
4464 !6 = !{!4, !3, !2}
4465 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004466
4467 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004468 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004469 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004470
Hal Finkel029cde62014-07-25 15:50:02 +00004471 ; These two instructions also don't alias (for domain !1, the set of scopes
4472 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004473 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004474 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004475
Adam Nemet0a8416f2015-05-11 08:30:28 +00004476 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004477 ; the !noalias list is not a superset of, or equal to, the scopes in the
4478 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004479 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004480 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004481
Sean Silvab084af42012-12-07 10:36:55 +00004482'``fpmath``' Metadata
4483^^^^^^^^^^^^^^^^^^^^^
4484
4485``fpmath`` metadata may be attached to any instruction of floating point
4486type. It can be used to express the maximum acceptable error in the
4487result of that instruction, in ULPs, thus potentially allowing the
4488compiler to use a more efficient but less accurate method of computing
4489it. ULP is defined as follows:
4490
4491 If ``x`` is a real number that lies between two finite consecutive
4492 floating-point numbers ``a`` and ``b``, without being equal to one
4493 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4494 distance between the two non-equal finite floating-point numbers
4495 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4496
4497The metadata node shall consist of a single positive floating point
4498number representing the maximum relative error, for example:
4499
4500.. code-block:: llvm
4501
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004502 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004503
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004504.. _range-metadata:
4505
Sean Silvab084af42012-12-07 10:36:55 +00004506'``range``' Metadata
4507^^^^^^^^^^^^^^^^^^^^
4508
Jingyue Wu37fcb592014-06-19 16:50:16 +00004509``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4510integer types. It expresses the possible ranges the loaded value or the value
4511returned by the called function at this call site is in. The ranges are
4512represented with a flattened list of integers. The loaded value or the value
4513returned is known to be in the union of the ranges defined by each consecutive
4514pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004515
4516- The type must match the type loaded by the instruction.
4517- The pair ``a,b`` represents the range ``[a,b)``.
4518- Both ``a`` and ``b`` are constants.
4519- The range is allowed to wrap.
4520- The range should not represent the full or empty set. That is,
4521 ``a!=b``.
4522
4523In addition, the pairs must be in signed order of the lower bound and
4524they must be non-contiguous.
4525
4526Examples:
4527
4528.. code-block:: llvm
4529
David Blaikiec7aabbb2015-03-04 22:06:14 +00004530 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4531 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004532 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4533 %d = invoke i8 @bar() to label %cont
4534 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004535 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004536 !0 = !{ i8 0, i8 2 }
4537 !1 = !{ i8 255, i8 2 }
4538 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4539 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004540
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004541'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004542^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004543
4544``unpredictable`` metadata may be attached to any branch or switch
4545instruction. It can be used to express the unpredictability of control
4546flow. Similar to the llvm.expect intrinsic, it may be used to alter
4547optimizations related to compare and branch instructions. The metadata
4548is treated as a boolean value; if it exists, it signals that the branch
4549or switch that it is attached to is completely unpredictable.
4550
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004551'``llvm.loop``'
4552^^^^^^^^^^^^^^^
4553
4554It is sometimes useful to attach information to loop constructs. Currently,
4555loop metadata is implemented as metadata attached to the branch instruction
4556in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004557guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004558specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004559
4560The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004561itself to avoid merging it with any other identifier metadata, e.g.,
4562during module linkage or function inlining. That is, each loop should refer
4563to their own identification metadata even if they reside in separate functions.
4564The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004565constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004566
4567.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004568
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004569 !0 = !{!0}
4570 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004571
Mark Heffernan893752a2014-07-18 19:24:51 +00004572The loop identifier metadata can be used to specify additional
4573per-loop metadata. Any operands after the first operand can be treated
4574as user-defined metadata. For example the ``llvm.loop.unroll.count``
4575suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004576
Paul Redmond5fdf8362013-05-28 20:00:34 +00004577.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004578
Paul Redmond5fdf8362013-05-28 20:00:34 +00004579 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4580 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004581 !0 = !{!0, !1}
4582 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004583
Mark Heffernan9d20e422014-07-21 23:11:03 +00004584'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004586
Mark Heffernan9d20e422014-07-21 23:11:03 +00004587Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4588used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004589vectorization width and interleave count. These metadata should be used in
4590conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004591``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4592optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004593it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004594which contains information about loop-carried memory dependencies can be helpful
4595in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004596
Mark Heffernan9d20e422014-07-21 23:11:03 +00004597'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4599
Mark Heffernan9d20e422014-07-21 23:11:03 +00004600This metadata suggests an interleave count to the loop interleaver.
4601The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004602second operand is an integer specifying the interleave count. For
4603example:
4604
4605.. code-block:: llvm
4606
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004607 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004608
Mark Heffernan9d20e422014-07-21 23:11:03 +00004609Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004610multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004611then the interleave count will be determined automatically.
4612
4613'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004615
4616This metadata selectively enables or disables vectorization for the loop. The
4617first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004618is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000046190 disables vectorization:
4620
4621.. code-block:: llvm
4622
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004623 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4624 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004625
4626'``llvm.loop.vectorize.width``' Metadata
4627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4628
4629This metadata sets the target width of the vectorizer. The first
4630operand is the string ``llvm.loop.vectorize.width`` and the second
4631operand is an integer specifying the width. For example:
4632
4633.. code-block:: llvm
4634
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004635 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004636
4637Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004638vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000046390 or if the loop does not have this metadata the width will be
4640determined automatically.
4641
4642'``llvm.loop.unroll``'
4643^^^^^^^^^^^^^^^^^^^^^^
4644
4645Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4646optimization hints such as the unroll factor. ``llvm.loop.unroll``
4647metadata should be used in conjunction with ``llvm.loop`` loop
4648identification metadata. The ``llvm.loop.unroll`` metadata are only
4649optimization hints and the unrolling will only be performed if the
4650optimizer believes it is safe to do so.
4651
Mark Heffernan893752a2014-07-18 19:24:51 +00004652'``llvm.loop.unroll.count``' Metadata
4653^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4654
4655This metadata suggests an unroll factor to the loop unroller. The
4656first operand is the string ``llvm.loop.unroll.count`` and the second
4657operand is a positive integer specifying the unroll factor. For
4658example:
4659
4660.. code-block:: llvm
4661
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004662 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004663
4664If the trip count of the loop is less than the unroll count the loop
4665will be partially unrolled.
4666
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004667'``llvm.loop.unroll.disable``' Metadata
4668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4669
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004670This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004671which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004672
4673.. code-block:: llvm
4674
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004675 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004676
Kevin Qin715b01e2015-03-09 06:14:18 +00004677'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004679
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004680This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004681operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004682
4683.. code-block:: llvm
4684
4685 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4686
Mark Heffernan89391542015-08-10 17:28:08 +00004687'``llvm.loop.unroll.enable``' Metadata
4688^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4689
4690This metadata suggests that the loop should be fully unrolled if the trip count
4691is known at compile time and partially unrolled if the trip count is not known
4692at compile time. The metadata has a single operand which is the string
4693``llvm.loop.unroll.enable``. For example:
4694
4695.. code-block:: llvm
4696
4697 !0 = !{!"llvm.loop.unroll.enable"}
4698
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004699'``llvm.loop.unroll.full``' Metadata
4700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4701
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004702This metadata suggests that the loop should be unrolled fully. The
4703metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004704For example:
4705
4706.. code-block:: llvm
4707
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004708 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004709
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004710'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004712
4713This metadata indicates that the loop should not be versioned for the purpose
4714of enabling loop-invariant code motion (LICM). The metadata has a single operand
4715which is the string ``llvm.loop.licm_versioning.disable``. For example:
4716
4717.. code-block:: llvm
4718
4719 !0 = !{!"llvm.loop.licm_versioning.disable"}
4720
Adam Nemetd2fa4142016-04-27 05:28:18 +00004721'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004722^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004723
4724Loop distribution allows splitting a loop into multiple loops. Currently,
4725this is only performed if the entire loop cannot be vectorized due to unsafe
4726memory dependencies. The transformation will atempt to isolate the unsafe
4727dependencies into their own loop.
4728
4729This metadata can be used to selectively enable or disable distribution of the
4730loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4731second operand is a bit. If the bit operand value is 1 distribution is
4732enabled. A value of 0 disables distribution:
4733
4734.. code-block:: llvm
4735
4736 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4737 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4738
4739This metadata should be used in conjunction with ``llvm.loop`` loop
4740identification metadata.
4741
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004742'``llvm.mem``'
4743^^^^^^^^^^^^^^^
4744
4745Metadata types used to annotate memory accesses with information helpful
4746for optimizations are prefixed with ``llvm.mem``.
4747
4748'``llvm.mem.parallel_loop_access``' Metadata
4749^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4750
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004751The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4752or metadata containing a list of loop identifiers for nested loops.
4753The metadata is attached to memory accessing instructions and denotes that
4754no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004755with the same loop identifier. The metadata on memory reads also implies that
4756if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004757
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004758Precisely, given two instructions ``m1`` and ``m2`` that both have the
4759``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4760set of loops associated with that metadata, respectively, then there is no loop
4761carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004762``L2``.
4763
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004764As a special case, if all memory accessing instructions in a loop have
4765``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4766loop has no loop carried memory dependences and is considered to be a parallel
4767loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004768
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004769Note that if not all memory access instructions have such metadata referring to
4770the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004771memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004772safe mechanism, this causes loops that were originally parallel to be considered
4773sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004774insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004775
4776Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004777both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004778metadata types that refer to the same loop identifier metadata.
4779
4780.. code-block:: llvm
4781
4782 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004783 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004784 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004785 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004786 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004787 ...
4788 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004789
4790 for.end:
4791 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004792 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004793
4794It is also possible to have nested parallel loops. In that case the
4795memory accesses refer to a list of loop identifier metadata nodes instead of
4796the loop identifier metadata node directly:
4797
4798.. code-block:: llvm
4799
4800 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004801 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004802 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004803 ...
4804 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004805
4806 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004807 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004808 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004809 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004810 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004811 ...
4812 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004813
4814 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004815 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004816 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004817 ...
4818 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004819
4820 outer.for.end: ; preds = %for.body
4821 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004822 !0 = !{!1, !2} ; a list of loop identifiers
4823 !1 = !{!1} ; an identifier for the inner loop
4824 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004825
Peter Collingbournee6909c82015-02-20 20:30:47 +00004826'``llvm.bitsets``'
4827^^^^^^^^^^^^^^^^^^
4828
4829The ``llvm.bitsets`` global metadata is used to implement
4830:doc:`bitsets <BitSets>`.
4831
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004832'``invariant.group``' Metadata
4833^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4834
4835The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4836The existence of the ``invariant.group`` metadata on the instruction tells
4837the optimizer that every ``load`` and ``store`` to the same pointer operand
4838within the same invariant group can be assumed to load or store the same
4839value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4840when two pointers are considered the same).
4841
4842Examples:
4843
4844.. code-block:: llvm
4845
4846 @unknownPtr = external global i8
4847 ...
4848 %ptr = alloca i8
4849 store i8 42, i8* %ptr, !invariant.group !0
4850 call void @foo(i8* %ptr)
4851
4852 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4853 call void @foo(i8* %ptr)
4854 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4855
4856 %newPtr = call i8* @getPointer(i8* %ptr)
4857 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4858
4859 %unknownValue = load i8, i8* @unknownPtr
4860 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4861
4862 call void @foo(i8* %ptr)
4863 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4864 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4865
4866 ...
4867 declare void @foo(i8*)
4868 declare i8* @getPointer(i8*)
4869 declare i8* @llvm.invariant.group.barrier(i8*)
4870
4871 !0 = !{!"magic ptr"}
4872 !1 = !{!"other ptr"}
4873
4874
4875
Sean Silvab084af42012-12-07 10:36:55 +00004876Module Flags Metadata
4877=====================
4878
4879Information about the module as a whole is difficult to convey to LLVM's
4880subsystems. The LLVM IR isn't sufficient to transmit this information.
4881The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004882this. These flags are in the form of key / value pairs --- much like a
4883dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004884look it up.
4885
4886The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4887Each triplet has the following form:
4888
4889- The first element is a *behavior* flag, which specifies the behavior
4890 when two (or more) modules are merged together, and it encounters two
4891 (or more) metadata with the same ID. The supported behaviors are
4892 described below.
4893- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004894 metadata. Each module may only have one flag entry for each unique ID (not
4895 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004896- The third element is the value of the flag.
4897
4898When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004899``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4900each unique metadata ID string, there will be exactly one entry in the merged
4901modules ``llvm.module.flags`` metadata table, and the value for that entry will
4902be determined by the merge behavior flag, as described below. The only exception
4903is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004904
4905The following behaviors are supported:
4906
4907.. list-table::
4908 :header-rows: 1
4909 :widths: 10 90
4910
4911 * - Value
4912 - Behavior
4913
4914 * - 1
4915 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004916 Emits an error if two values disagree, otherwise the resulting value
4917 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004918
4919 * - 2
4920 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004921 Emits a warning if two values disagree. The result value will be the
4922 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004923
4924 * - 3
4925 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004926 Adds a requirement that another module flag be present and have a
4927 specified value after linking is performed. The value must be a
4928 metadata pair, where the first element of the pair is the ID of the
4929 module flag to be restricted, and the second element of the pair is
4930 the value the module flag should be restricted to. This behavior can
4931 be used to restrict the allowable results (via triggering of an
4932 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004933
4934 * - 4
4935 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004936 Uses the specified value, regardless of the behavior or value of the
4937 other module. If both modules specify **Override**, but the values
4938 differ, an error will be emitted.
4939
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004940 * - 5
4941 - **Append**
4942 Appends the two values, which are required to be metadata nodes.
4943
4944 * - 6
4945 - **AppendUnique**
4946 Appends the two values, which are required to be metadata
4947 nodes. However, duplicate entries in the second list are dropped
4948 during the append operation.
4949
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004950It is an error for a particular unique flag ID to have multiple behaviors,
4951except in the case of **Require** (which adds restrictions on another metadata
4952value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004953
4954An example of module flags:
4955
4956.. code-block:: llvm
4957
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004958 !0 = !{ i32 1, !"foo", i32 1 }
4959 !1 = !{ i32 4, !"bar", i32 37 }
4960 !2 = !{ i32 2, !"qux", i32 42 }
4961 !3 = !{ i32 3, !"qux",
4962 !{
4963 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004964 }
4965 }
4966 !llvm.module.flags = !{ !0, !1, !2, !3 }
4967
4968- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4969 if two or more ``!"foo"`` flags are seen is to emit an error if their
4970 values are not equal.
4971
4972- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4973 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004974 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004975
4976- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4977 behavior if two or more ``!"qux"`` flags are seen is to emit a
4978 warning if their values are not equal.
4979
4980- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4981
4982 ::
4983
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004984 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004985
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004986 The behavior is to emit an error if the ``llvm.module.flags`` does not
4987 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4988 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004989
4990Objective-C Garbage Collection Module Flags Metadata
4991----------------------------------------------------
4992
4993On the Mach-O platform, Objective-C stores metadata about garbage
4994collection in a special section called "image info". The metadata
4995consists of a version number and a bitmask specifying what types of
4996garbage collection are supported (if any) by the file. If two or more
4997modules are linked together their garbage collection metadata needs to
4998be merged rather than appended together.
4999
5000The Objective-C garbage collection module flags metadata consists of the
5001following key-value pairs:
5002
5003.. list-table::
5004 :header-rows: 1
5005 :widths: 30 70
5006
5007 * - Key
5008 - Value
5009
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005010 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005011 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005012
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005013 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005014 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005015 always 0.
5016
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005017 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005018 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005019 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5020 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5021 Objective-C ABI version 2.
5022
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005023 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005024 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005025 not. Valid values are 0, for no garbage collection, and 2, for garbage
5026 collection supported.
5027
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005028 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005029 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005030 If present, its value must be 6. This flag requires that the
5031 ``Objective-C Garbage Collection`` flag have the value 2.
5032
5033Some important flag interactions:
5034
5035- If a module with ``Objective-C Garbage Collection`` set to 0 is
5036 merged with a module with ``Objective-C Garbage Collection`` set to
5037 2, then the resulting module has the
5038 ``Objective-C Garbage Collection`` flag set to 0.
5039- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5040 merged with a module with ``Objective-C GC Only`` set to 6.
5041
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005042Automatic Linker Flags Module Flags Metadata
5043--------------------------------------------
5044
5045Some targets support embedding flags to the linker inside individual object
5046files. Typically this is used in conjunction with language extensions which
5047allow source files to explicitly declare the libraries they depend on, and have
5048these automatically be transmitted to the linker via object files.
5049
5050These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005051using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005052to be ``AppendUnique``, and the value for the key is expected to be a metadata
5053node which should be a list of other metadata nodes, each of which should be a
5054list of metadata strings defining linker options.
5055
5056For example, the following metadata section specifies two separate sets of
5057linker options, presumably to link against ``libz`` and the ``Cocoa``
5058framework::
5059
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005060 !0 = !{ i32 6, !"Linker Options",
5061 !{
5062 !{ !"-lz" },
5063 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005064 !llvm.module.flags = !{ !0 }
5065
5066The metadata encoding as lists of lists of options, as opposed to a collapsed
5067list of options, is chosen so that the IR encoding can use multiple option
5068strings to specify e.g., a single library, while still having that specifier be
5069preserved as an atomic element that can be recognized by a target specific
5070assembly writer or object file emitter.
5071
5072Each individual option is required to be either a valid option for the target's
5073linker, or an option that is reserved by the target specific assembly writer or
5074object file emitter. No other aspect of these options is defined by the IR.
5075
Oliver Stannard5dc29342014-06-20 10:08:11 +00005076C type width Module Flags Metadata
5077----------------------------------
5078
5079The ARM backend emits a section into each generated object file describing the
5080options that it was compiled with (in a compiler-independent way) to prevent
5081linking incompatible objects, and to allow automatic library selection. Some
5082of these options are not visible at the IR level, namely wchar_t width and enum
5083width.
5084
5085To pass this information to the backend, these options are encoded in module
5086flags metadata, using the following key-value pairs:
5087
5088.. list-table::
5089 :header-rows: 1
5090 :widths: 30 70
5091
5092 * - Key
5093 - Value
5094
5095 * - short_wchar
5096 - * 0 --- sizeof(wchar_t) == 4
5097 * 1 --- sizeof(wchar_t) == 2
5098
5099 * - short_enum
5100 - * 0 --- Enums are at least as large as an ``int``.
5101 * 1 --- Enums are stored in the smallest integer type which can
5102 represent all of its values.
5103
5104For example, the following metadata section specifies that the module was
5105compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5106enum is the smallest type which can represent all of its values::
5107
5108 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005109 !0 = !{i32 1, !"short_wchar", i32 1}
5110 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005111
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005112.. _intrinsicglobalvariables:
5113
Sean Silvab084af42012-12-07 10:36:55 +00005114Intrinsic Global Variables
5115==========================
5116
5117LLVM has a number of "magic" global variables that contain data that
5118affect code generation or other IR semantics. These are documented here.
5119All globals of this sort should have a section specified as
5120"``llvm.metadata``". This section and all globals that start with
5121"``llvm.``" are reserved for use by LLVM.
5122
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005123.. _gv_llvmused:
5124
Sean Silvab084af42012-12-07 10:36:55 +00005125The '``llvm.used``' Global Variable
5126-----------------------------------
5127
Rafael Espindola74f2e462013-04-22 14:58:02 +00005128The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005129:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005130pointers to named global variables, functions and aliases which may optionally
5131have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005132use of it is:
5133
5134.. code-block:: llvm
5135
5136 @X = global i8 4
5137 @Y = global i32 123
5138
5139 @llvm.used = appending global [2 x i8*] [
5140 i8* @X,
5141 i8* bitcast (i32* @Y to i8*)
5142 ], section "llvm.metadata"
5143
Rafael Espindola74f2e462013-04-22 14:58:02 +00005144If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5145and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005146symbol that it cannot see (which is why they have to be named). For example, if
5147a variable has internal linkage and no references other than that from the
5148``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5149references from inline asms and other things the compiler cannot "see", and
5150corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005151
5152On some targets, the code generator must emit a directive to the
5153assembler or object file to prevent the assembler and linker from
5154molesting the symbol.
5155
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005156.. _gv_llvmcompilerused:
5157
Sean Silvab084af42012-12-07 10:36:55 +00005158The '``llvm.compiler.used``' Global Variable
5159--------------------------------------------
5160
5161The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5162directive, except that it only prevents the compiler from touching the
5163symbol. On targets that support it, this allows an intelligent linker to
5164optimize references to the symbol without being impeded as it would be
5165by ``@llvm.used``.
5166
5167This is a rare construct that should only be used in rare circumstances,
5168and should not be exposed to source languages.
5169
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005170.. _gv_llvmglobalctors:
5171
Sean Silvab084af42012-12-07 10:36:55 +00005172The '``llvm.global_ctors``' Global Variable
5173-------------------------------------------
5174
5175.. code-block:: llvm
5176
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005177 %0 = type { i32, void ()*, i8* }
5178 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005179
5180The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005181functions, priorities, and an optional associated global or function.
5182The functions referenced by this array will be called in ascending order
5183of priority (i.e. lowest first) when the module is loaded. The order of
5184functions with the same priority is not defined.
5185
5186If the third field is present, non-null, and points to a global variable
5187or function, the initializer function will only run if the associated
5188data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005189
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005190.. _llvmglobaldtors:
5191
Sean Silvab084af42012-12-07 10:36:55 +00005192The '``llvm.global_dtors``' Global Variable
5193-------------------------------------------
5194
5195.. code-block:: llvm
5196
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005197 %0 = type { i32, void ()*, i8* }
5198 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005199
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005200The ``@llvm.global_dtors`` array contains a list of destructor
5201functions, priorities, and an optional associated global or function.
5202The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005203order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005204order of functions with the same priority is not defined.
5205
5206If the third field is present, non-null, and points to a global variable
5207or function, the destructor function will only run if the associated
5208data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005209
5210Instruction Reference
5211=====================
5212
5213The LLVM instruction set consists of several different classifications
5214of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5215instructions <binaryops>`, :ref:`bitwise binary
5216instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5217:ref:`other instructions <otherops>`.
5218
5219.. _terminators:
5220
5221Terminator Instructions
5222-----------------------
5223
5224As mentioned :ref:`previously <functionstructure>`, every basic block in a
5225program ends with a "Terminator" instruction, which indicates which
5226block should be executed after the current block is finished. These
5227terminator instructions typically yield a '``void``' value: they produce
5228control flow, not values (the one exception being the
5229':ref:`invoke <i_invoke>`' instruction).
5230
5231The terminator instructions are: ':ref:`ret <i_ret>`',
5232':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5233':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005234':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005235':ref:`catchret <i_catchret>`',
5236':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005237and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005238
5239.. _i_ret:
5240
5241'``ret``' Instruction
5242^^^^^^^^^^^^^^^^^^^^^
5243
5244Syntax:
5245"""""""
5246
5247::
5248
5249 ret <type> <value> ; Return a value from a non-void function
5250 ret void ; Return from void function
5251
5252Overview:
5253"""""""""
5254
5255The '``ret``' instruction is used to return control flow (and optionally
5256a value) from a function back to the caller.
5257
5258There are two forms of the '``ret``' instruction: one that returns a
5259value and then causes control flow, and one that just causes control
5260flow to occur.
5261
5262Arguments:
5263""""""""""
5264
5265The '``ret``' instruction optionally accepts a single argument, the
5266return value. The type of the return value must be a ':ref:`first
5267class <t_firstclass>`' type.
5268
5269A function is not :ref:`well formed <wellformed>` if it it has a non-void
5270return type and contains a '``ret``' instruction with no return value or
5271a return value with a type that does not match its type, or if it has a
5272void return type and contains a '``ret``' instruction with a return
5273value.
5274
5275Semantics:
5276""""""""""
5277
5278When the '``ret``' instruction is executed, control flow returns back to
5279the calling function's context. If the caller is a
5280":ref:`call <i_call>`" instruction, execution continues at the
5281instruction after the call. If the caller was an
5282":ref:`invoke <i_invoke>`" instruction, execution continues at the
5283beginning of the "normal" destination block. If the instruction returns
5284a value, that value shall set the call or invoke instruction's return
5285value.
5286
5287Example:
5288""""""""
5289
5290.. code-block:: llvm
5291
5292 ret i32 5 ; Return an integer value of 5
5293 ret void ; Return from a void function
5294 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5295
5296.. _i_br:
5297
5298'``br``' Instruction
5299^^^^^^^^^^^^^^^^^^^^
5300
5301Syntax:
5302"""""""
5303
5304::
5305
5306 br i1 <cond>, label <iftrue>, label <iffalse>
5307 br label <dest> ; Unconditional branch
5308
5309Overview:
5310"""""""""
5311
5312The '``br``' instruction is used to cause control flow to transfer to a
5313different basic block in the current function. There are two forms of
5314this instruction, corresponding to a conditional branch and an
5315unconditional branch.
5316
5317Arguments:
5318""""""""""
5319
5320The conditional branch form of the '``br``' instruction takes a single
5321'``i1``' value and two '``label``' values. The unconditional form of the
5322'``br``' instruction takes a single '``label``' value as a target.
5323
5324Semantics:
5325""""""""""
5326
5327Upon execution of a conditional '``br``' instruction, the '``i1``'
5328argument is evaluated. If the value is ``true``, control flows to the
5329'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5330to the '``iffalse``' ``label`` argument.
5331
5332Example:
5333""""""""
5334
5335.. code-block:: llvm
5336
5337 Test:
5338 %cond = icmp eq i32 %a, %b
5339 br i1 %cond, label %IfEqual, label %IfUnequal
5340 IfEqual:
5341 ret i32 1
5342 IfUnequal:
5343 ret i32 0
5344
5345.. _i_switch:
5346
5347'``switch``' Instruction
5348^^^^^^^^^^^^^^^^^^^^^^^^
5349
5350Syntax:
5351"""""""
5352
5353::
5354
5355 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5356
5357Overview:
5358"""""""""
5359
5360The '``switch``' instruction is used to transfer control flow to one of
5361several different places. It is a generalization of the '``br``'
5362instruction, allowing a branch to occur to one of many possible
5363destinations.
5364
5365Arguments:
5366""""""""""
5367
5368The '``switch``' instruction uses three parameters: an integer
5369comparison value '``value``', a default '``label``' destination, and an
5370array of pairs of comparison value constants and '``label``'s. The table
5371is not allowed to contain duplicate constant entries.
5372
5373Semantics:
5374""""""""""
5375
5376The ``switch`` instruction specifies a table of values and destinations.
5377When the '``switch``' instruction is executed, this table is searched
5378for the given value. If the value is found, control flow is transferred
5379to the corresponding destination; otherwise, control flow is transferred
5380to the default destination.
5381
5382Implementation:
5383"""""""""""""""
5384
5385Depending on properties of the target machine and the particular
5386``switch`` instruction, this instruction may be code generated in
5387different ways. For example, it could be generated as a series of
5388chained conditional branches or with a lookup table.
5389
5390Example:
5391""""""""
5392
5393.. code-block:: llvm
5394
5395 ; Emulate a conditional br instruction
5396 %Val = zext i1 %value to i32
5397 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5398
5399 ; Emulate an unconditional br instruction
5400 switch i32 0, label %dest [ ]
5401
5402 ; Implement a jump table:
5403 switch i32 %val, label %otherwise [ i32 0, label %onzero
5404 i32 1, label %onone
5405 i32 2, label %ontwo ]
5406
5407.. _i_indirectbr:
5408
5409'``indirectbr``' Instruction
5410^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5411
5412Syntax:
5413"""""""
5414
5415::
5416
5417 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5418
5419Overview:
5420"""""""""
5421
5422The '``indirectbr``' instruction implements an indirect branch to a
5423label within the current function, whose address is specified by
5424"``address``". Address must be derived from a
5425:ref:`blockaddress <blockaddress>` constant.
5426
5427Arguments:
5428""""""""""
5429
5430The '``address``' argument is the address of the label to jump to. The
5431rest of the arguments indicate the full set of possible destinations
5432that the address may point to. Blocks are allowed to occur multiple
5433times in the destination list, though this isn't particularly useful.
5434
5435This destination list is required so that dataflow analysis has an
5436accurate understanding of the CFG.
5437
5438Semantics:
5439""""""""""
5440
5441Control transfers to the block specified in the address argument. All
5442possible destination blocks must be listed in the label list, otherwise
5443this instruction has undefined behavior. This implies that jumps to
5444labels defined in other functions have undefined behavior as well.
5445
5446Implementation:
5447"""""""""""""""
5448
5449This is typically implemented with a jump through a register.
5450
5451Example:
5452""""""""
5453
5454.. code-block:: llvm
5455
5456 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5457
5458.. _i_invoke:
5459
5460'``invoke``' Instruction
5461^^^^^^^^^^^^^^^^^^^^^^^^
5462
5463Syntax:
5464"""""""
5465
5466::
5467
5468 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005469 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005470
5471Overview:
5472"""""""""
5473
5474The '``invoke``' instruction causes control to transfer to a specified
5475function, with the possibility of control flow transfer to either the
5476'``normal``' label or the '``exception``' label. If the callee function
5477returns with the "``ret``" instruction, control flow will return to the
5478"normal" label. If the callee (or any indirect callees) returns via the
5479":ref:`resume <i_resume>`" instruction or other exception handling
5480mechanism, control is interrupted and continued at the dynamically
5481nearest "exception" label.
5482
5483The '``exception``' label is a `landing
5484pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5485'``exception``' label is required to have the
5486":ref:`landingpad <i_landingpad>`" instruction, which contains the
5487information about the behavior of the program after unwinding happens,
5488as its first non-PHI instruction. The restrictions on the
5489"``landingpad``" instruction's tightly couples it to the "``invoke``"
5490instruction, so that the important information contained within the
5491"``landingpad``" instruction can't be lost through normal code motion.
5492
5493Arguments:
5494""""""""""
5495
5496This instruction requires several arguments:
5497
5498#. The optional "cconv" marker indicates which :ref:`calling
5499 convention <callingconv>` the call should use. If none is
5500 specified, the call defaults to using C calling conventions.
5501#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5502 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5503 are valid here.
5504#. '``ptr to function ty``': shall be the signature of the pointer to
5505 function value being invoked. In most cases, this is a direct
5506 function invocation, but indirect ``invoke``'s are just as possible,
5507 branching off an arbitrary pointer to function value.
5508#. '``function ptr val``': An LLVM value containing a pointer to a
5509 function to be invoked.
5510#. '``function args``': argument list whose types match the function
5511 signature argument types and parameter attributes. All arguments must
5512 be of :ref:`first class <t_firstclass>` type. If the function signature
5513 indicates the function accepts a variable number of arguments, the
5514 extra arguments can be specified.
5515#. '``normal label``': the label reached when the called function
5516 executes a '``ret``' instruction.
5517#. '``exception label``': the label reached when a callee returns via
5518 the :ref:`resume <i_resume>` instruction or other exception handling
5519 mechanism.
5520#. The optional :ref:`function attributes <fnattrs>` list. Only
5521 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5522 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005523#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005524
5525Semantics:
5526""""""""""
5527
5528This instruction is designed to operate as a standard '``call``'
5529instruction in most regards. The primary difference is that it
5530establishes an association with a label, which is used by the runtime
5531library to unwind the stack.
5532
5533This instruction is used in languages with destructors to ensure that
5534proper cleanup is performed in the case of either a ``longjmp`` or a
5535thrown exception. Additionally, this is important for implementation of
5536'``catch``' clauses in high-level languages that support them.
5537
5538For the purposes of the SSA form, the definition of the value returned
5539by the '``invoke``' instruction is deemed to occur on the edge from the
5540current block to the "normal" label. If the callee unwinds then no
5541return value is available.
5542
5543Example:
5544""""""""
5545
5546.. code-block:: llvm
5547
5548 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005549 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005550 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005551 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005552
5553.. _i_resume:
5554
5555'``resume``' Instruction
5556^^^^^^^^^^^^^^^^^^^^^^^^
5557
5558Syntax:
5559"""""""
5560
5561::
5562
5563 resume <type> <value>
5564
5565Overview:
5566"""""""""
5567
5568The '``resume``' instruction is a terminator instruction that has no
5569successors.
5570
5571Arguments:
5572""""""""""
5573
5574The '``resume``' instruction requires one argument, which must have the
5575same type as the result of any '``landingpad``' instruction in the same
5576function.
5577
5578Semantics:
5579""""""""""
5580
5581The '``resume``' instruction resumes propagation of an existing
5582(in-flight) exception whose unwinding was interrupted with a
5583:ref:`landingpad <i_landingpad>` instruction.
5584
5585Example:
5586""""""""
5587
5588.. code-block:: llvm
5589
5590 resume { i8*, i32 } %exn
5591
David Majnemer8a1c45d2015-12-12 05:38:55 +00005592.. _i_catchswitch:
5593
5594'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005596
5597Syntax:
5598"""""""
5599
5600::
5601
5602 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5603 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5604
5605Overview:
5606"""""""""
5607
5608The '``catchswitch``' instruction is used by `LLVM's exception handling system
5609<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5610that may be executed by the :ref:`EH personality routine <personalityfn>`.
5611
5612Arguments:
5613""""""""""
5614
5615The ``parent`` argument is the token of the funclet that contains the
5616``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5617this operand may be the token ``none``.
5618
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005619The ``default`` argument is the label of another basic block beginning with
5620either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5621must be a legal target with respect to the ``parent`` links, as described in
5622the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005623
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005624The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005625:ref:`catchpad <i_catchpad>` instruction.
5626
5627Semantics:
5628""""""""""
5629
5630Executing this instruction transfers control to one of the successors in
5631``handlers``, if appropriate, or continues to unwind via the unwind label if
5632present.
5633
5634The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5635it must be both the first non-phi instruction and last instruction in the basic
5636block. Therefore, it must be the only non-phi instruction in the block.
5637
5638Example:
5639""""""""
5640
5641.. code-block:: llvm
5642
5643 dispatch1:
5644 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5645 dispatch2:
5646 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5647
David Majnemer654e1302015-07-31 17:58:14 +00005648.. _i_catchret:
5649
5650'``catchret``' Instruction
5651^^^^^^^^^^^^^^^^^^^^^^^^^^
5652
5653Syntax:
5654"""""""
5655
5656::
5657
David Majnemer8a1c45d2015-12-12 05:38:55 +00005658 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005659
5660Overview:
5661"""""""""
5662
5663The '``catchret``' instruction is a terminator instruction that has a
5664single successor.
5665
5666
5667Arguments:
5668""""""""""
5669
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005670The first argument to a '``catchret``' indicates which ``catchpad`` it
5671exits. It must be a :ref:`catchpad <i_catchpad>`.
5672The second argument to a '``catchret``' specifies where control will
5673transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005674
5675Semantics:
5676""""""""""
5677
David Majnemer8a1c45d2015-12-12 05:38:55 +00005678The '``catchret``' instruction ends an existing (in-flight) exception whose
5679unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5680:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5681code to, for example, destroy the active exception. Control then transfers to
5682``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005683
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005684The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5685If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5686funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5687the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005688
5689Example:
5690""""""""
5691
5692.. code-block:: llvm
5693
David Majnemer8a1c45d2015-12-12 05:38:55 +00005694 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005695
David Majnemer654e1302015-07-31 17:58:14 +00005696.. _i_cleanupret:
5697
5698'``cleanupret``' Instruction
5699^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5700
5701Syntax:
5702"""""""
5703
5704::
5705
David Majnemer8a1c45d2015-12-12 05:38:55 +00005706 cleanupret from <value> unwind label <continue>
5707 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005708
5709Overview:
5710"""""""""
5711
5712The '``cleanupret``' instruction is a terminator instruction that has
5713an optional successor.
5714
5715
5716Arguments:
5717""""""""""
5718
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005719The '``cleanupret``' instruction requires one argument, which indicates
5720which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005721If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5722funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5723the ``cleanupret``'s behavior is undefined.
5724
5725The '``cleanupret``' instruction also has an optional successor, ``continue``,
5726which must be the label of another basic block beginning with either a
5727``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5728be a legal target with respect to the ``parent`` links, as described in the
5729`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005730
5731Semantics:
5732""""""""""
5733
5734The '``cleanupret``' instruction indicates to the
5735:ref:`personality function <personalityfn>` that one
5736:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5737It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005738
David Majnemer654e1302015-07-31 17:58:14 +00005739Example:
5740""""""""
5741
5742.. code-block:: llvm
5743
David Majnemer8a1c45d2015-12-12 05:38:55 +00005744 cleanupret from %cleanup unwind to caller
5745 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005746
Sean Silvab084af42012-12-07 10:36:55 +00005747.. _i_unreachable:
5748
5749'``unreachable``' Instruction
5750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5751
5752Syntax:
5753"""""""
5754
5755::
5756
5757 unreachable
5758
5759Overview:
5760"""""""""
5761
5762The '``unreachable``' instruction has no defined semantics. This
5763instruction is used to inform the optimizer that a particular portion of
5764the code is not reachable. This can be used to indicate that the code
5765after a no-return function cannot be reached, and other facts.
5766
5767Semantics:
5768""""""""""
5769
5770The '``unreachable``' instruction has no defined semantics.
5771
5772.. _binaryops:
5773
5774Binary Operations
5775-----------------
5776
5777Binary operators are used to do most of the computation in a program.
5778They require two operands of the same type, execute an operation on
5779them, and produce a single value. The operands might represent multiple
5780data, as is the case with the :ref:`vector <t_vector>` data type. The
5781result value has the same type as its operands.
5782
5783There are several different binary operators:
5784
5785.. _i_add:
5786
5787'``add``' Instruction
5788^^^^^^^^^^^^^^^^^^^^^
5789
5790Syntax:
5791"""""""
5792
5793::
5794
Tim Northover675a0962014-06-13 14:24:23 +00005795 <result> = add <ty> <op1>, <op2> ; yields ty:result
5796 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5797 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5798 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005799
5800Overview:
5801"""""""""
5802
5803The '``add``' instruction returns the sum of its two operands.
5804
5805Arguments:
5806""""""""""
5807
5808The two arguments to the '``add``' instruction must be
5809:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5810arguments must have identical types.
5811
5812Semantics:
5813""""""""""
5814
5815The value produced is the integer sum of the two operands.
5816
5817If the sum has unsigned overflow, the result returned is the
5818mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5819the result.
5820
5821Because LLVM integers use a two's complement representation, this
5822instruction is appropriate for both signed and unsigned integers.
5823
5824``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5825respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5826result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5827unsigned and/or signed overflow, respectively, occurs.
5828
5829Example:
5830""""""""
5831
5832.. code-block:: llvm
5833
Tim Northover675a0962014-06-13 14:24:23 +00005834 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005835
5836.. _i_fadd:
5837
5838'``fadd``' Instruction
5839^^^^^^^^^^^^^^^^^^^^^^
5840
5841Syntax:
5842"""""""
5843
5844::
5845
Tim Northover675a0962014-06-13 14:24:23 +00005846 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005847
5848Overview:
5849"""""""""
5850
5851The '``fadd``' instruction returns the sum of its two operands.
5852
5853Arguments:
5854""""""""""
5855
5856The two arguments to the '``fadd``' instruction must be :ref:`floating
5857point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5858Both arguments must have identical types.
5859
5860Semantics:
5861""""""""""
5862
5863The value produced is the floating point sum of the two operands. This
5864instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5865which are optimization hints to enable otherwise unsafe floating point
5866optimizations:
5867
5868Example:
5869""""""""
5870
5871.. code-block:: llvm
5872
Tim Northover675a0962014-06-13 14:24:23 +00005873 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005874
5875'``sub``' Instruction
5876^^^^^^^^^^^^^^^^^^^^^
5877
5878Syntax:
5879"""""""
5880
5881::
5882
Tim Northover675a0962014-06-13 14:24:23 +00005883 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5884 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5885 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5886 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005887
5888Overview:
5889"""""""""
5890
5891The '``sub``' instruction returns the difference of its two operands.
5892
5893Note that the '``sub``' instruction is used to represent the '``neg``'
5894instruction present in most other intermediate representations.
5895
5896Arguments:
5897""""""""""
5898
5899The two arguments to the '``sub``' instruction must be
5900:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5901arguments must have identical types.
5902
5903Semantics:
5904""""""""""
5905
5906The value produced is the integer difference of the two operands.
5907
5908If the difference has unsigned overflow, the result returned is the
5909mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5910the result.
5911
5912Because LLVM integers use a two's complement representation, this
5913instruction is appropriate for both signed and unsigned integers.
5914
5915``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5916respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5917result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5918unsigned and/or signed overflow, respectively, occurs.
5919
5920Example:
5921""""""""
5922
5923.. code-block:: llvm
5924
Tim Northover675a0962014-06-13 14:24:23 +00005925 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5926 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005927
5928.. _i_fsub:
5929
5930'``fsub``' Instruction
5931^^^^^^^^^^^^^^^^^^^^^^
5932
5933Syntax:
5934"""""""
5935
5936::
5937
Tim Northover675a0962014-06-13 14:24:23 +00005938 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005939
5940Overview:
5941"""""""""
5942
5943The '``fsub``' instruction returns the difference of its two operands.
5944
5945Note that the '``fsub``' instruction is used to represent the '``fneg``'
5946instruction present in most other intermediate representations.
5947
5948Arguments:
5949""""""""""
5950
5951The two arguments to the '``fsub``' instruction must be :ref:`floating
5952point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5953Both arguments must have identical types.
5954
5955Semantics:
5956""""""""""
5957
5958The value produced is the floating point difference of the two operands.
5959This instruction can also take any number of :ref:`fast-math
5960flags <fastmath>`, which are optimization hints to enable otherwise
5961unsafe floating point optimizations:
5962
5963Example:
5964""""""""
5965
5966.. code-block:: llvm
5967
Tim Northover675a0962014-06-13 14:24:23 +00005968 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5969 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005970
5971'``mul``' Instruction
5972^^^^^^^^^^^^^^^^^^^^^
5973
5974Syntax:
5975"""""""
5976
5977::
5978
Tim Northover675a0962014-06-13 14:24:23 +00005979 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5980 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5981 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5982 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005983
5984Overview:
5985"""""""""
5986
5987The '``mul``' instruction returns the product of its two operands.
5988
5989Arguments:
5990""""""""""
5991
5992The two arguments to the '``mul``' instruction must be
5993:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5994arguments must have identical types.
5995
5996Semantics:
5997""""""""""
5998
5999The value produced is the integer product of the two operands.
6000
6001If the result of the multiplication has unsigned overflow, the result
6002returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6003bit width of the result.
6004
6005Because LLVM integers use a two's complement representation, and the
6006result is the same width as the operands, this instruction returns the
6007correct result for both signed and unsigned integers. If a full product
6008(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6009sign-extended or zero-extended as appropriate to the width of the full
6010product.
6011
6012``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6013respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6014result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6015unsigned and/or signed overflow, respectively, occurs.
6016
6017Example:
6018""""""""
6019
6020.. code-block:: llvm
6021
Tim Northover675a0962014-06-13 14:24:23 +00006022 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006023
6024.. _i_fmul:
6025
6026'``fmul``' Instruction
6027^^^^^^^^^^^^^^^^^^^^^^
6028
6029Syntax:
6030"""""""
6031
6032::
6033
Tim Northover675a0962014-06-13 14:24:23 +00006034 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006035
6036Overview:
6037"""""""""
6038
6039The '``fmul``' instruction returns the product of its two operands.
6040
6041Arguments:
6042""""""""""
6043
6044The two arguments to the '``fmul``' instruction must be :ref:`floating
6045point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6046Both arguments must have identical types.
6047
6048Semantics:
6049""""""""""
6050
6051The value produced is the floating point product of the two operands.
6052This instruction can also take any number of :ref:`fast-math
6053flags <fastmath>`, which are optimization hints to enable otherwise
6054unsafe floating point optimizations:
6055
6056Example:
6057""""""""
6058
6059.. code-block:: llvm
6060
Tim Northover675a0962014-06-13 14:24:23 +00006061 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006062
6063'``udiv``' Instruction
6064^^^^^^^^^^^^^^^^^^^^^^
6065
6066Syntax:
6067"""""""
6068
6069::
6070
Tim Northover675a0962014-06-13 14:24:23 +00006071 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6072 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006073
6074Overview:
6075"""""""""
6076
6077The '``udiv``' instruction returns the quotient of its two operands.
6078
6079Arguments:
6080""""""""""
6081
6082The two arguments to the '``udiv``' instruction must be
6083:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6084arguments must have identical types.
6085
6086Semantics:
6087""""""""""
6088
6089The value produced is the unsigned integer quotient of the two operands.
6090
6091Note that unsigned integer division and signed integer division are
6092distinct operations; for signed integer division, use '``sdiv``'.
6093
6094Division by zero leads to undefined behavior.
6095
6096If the ``exact`` keyword is present, the result value of the ``udiv`` is
6097a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6098such, "((a udiv exact b) mul b) == a").
6099
6100Example:
6101""""""""
6102
6103.. code-block:: llvm
6104
Tim Northover675a0962014-06-13 14:24:23 +00006105 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006106
6107'``sdiv``' Instruction
6108^^^^^^^^^^^^^^^^^^^^^^
6109
6110Syntax:
6111"""""""
6112
6113::
6114
Tim Northover675a0962014-06-13 14:24:23 +00006115 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6116 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006117
6118Overview:
6119"""""""""
6120
6121The '``sdiv``' instruction returns the quotient of its two operands.
6122
6123Arguments:
6124""""""""""
6125
6126The two arguments to the '``sdiv``' instruction must be
6127:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6128arguments must have identical types.
6129
6130Semantics:
6131""""""""""
6132
6133The value produced is the signed integer quotient of the two operands
6134rounded towards zero.
6135
6136Note that signed integer division and unsigned integer division are
6137distinct operations; for unsigned integer division, use '``udiv``'.
6138
6139Division by zero leads to undefined behavior. Overflow also leads to
6140undefined behavior; this is a rare case, but can occur, for example, by
6141doing a 32-bit division of -2147483648 by -1.
6142
6143If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6144a :ref:`poison value <poisonvalues>` if the result would be rounded.
6145
6146Example:
6147""""""""
6148
6149.. code-block:: llvm
6150
Tim Northover675a0962014-06-13 14:24:23 +00006151 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006152
6153.. _i_fdiv:
6154
6155'``fdiv``' Instruction
6156^^^^^^^^^^^^^^^^^^^^^^
6157
6158Syntax:
6159"""""""
6160
6161::
6162
Tim Northover675a0962014-06-13 14:24:23 +00006163 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006164
6165Overview:
6166"""""""""
6167
6168The '``fdiv``' instruction returns the quotient of its two operands.
6169
6170Arguments:
6171""""""""""
6172
6173The two arguments to the '``fdiv``' instruction must be :ref:`floating
6174point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6175Both arguments must have identical types.
6176
6177Semantics:
6178""""""""""
6179
6180The value produced is the floating point quotient of the two operands.
6181This instruction can also take any number of :ref:`fast-math
6182flags <fastmath>`, which are optimization hints to enable otherwise
6183unsafe floating point optimizations:
6184
6185Example:
6186""""""""
6187
6188.. code-block:: llvm
6189
Tim Northover675a0962014-06-13 14:24:23 +00006190 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006191
6192'``urem``' Instruction
6193^^^^^^^^^^^^^^^^^^^^^^
6194
6195Syntax:
6196"""""""
6197
6198::
6199
Tim Northover675a0962014-06-13 14:24:23 +00006200 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006201
6202Overview:
6203"""""""""
6204
6205The '``urem``' instruction returns the remainder from the unsigned
6206division of its two arguments.
6207
6208Arguments:
6209""""""""""
6210
6211The two arguments to the '``urem``' instruction must be
6212:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6213arguments must have identical types.
6214
6215Semantics:
6216""""""""""
6217
6218This instruction returns the unsigned integer *remainder* of a division.
6219This instruction always performs an unsigned division to get the
6220remainder.
6221
6222Note that unsigned integer remainder and signed integer remainder are
6223distinct operations; for signed integer remainder, use '``srem``'.
6224
6225Taking the remainder of a division by zero leads to undefined behavior.
6226
6227Example:
6228""""""""
6229
6230.. code-block:: llvm
6231
Tim Northover675a0962014-06-13 14:24:23 +00006232 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006233
6234'``srem``' Instruction
6235^^^^^^^^^^^^^^^^^^^^^^
6236
6237Syntax:
6238"""""""
6239
6240::
6241
Tim Northover675a0962014-06-13 14:24:23 +00006242 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006243
6244Overview:
6245"""""""""
6246
6247The '``srem``' instruction returns the remainder from the signed
6248division of its two operands. This instruction can also take
6249:ref:`vector <t_vector>` versions of the values in which case the elements
6250must be integers.
6251
6252Arguments:
6253""""""""""
6254
6255The two arguments to the '``srem``' instruction must be
6256:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6257arguments must have identical types.
6258
6259Semantics:
6260""""""""""
6261
6262This instruction returns the *remainder* of a division (where the result
6263is either zero or has the same sign as the dividend, ``op1``), not the
6264*modulo* operator (where the result is either zero or has the same sign
6265as the divisor, ``op2``) of a value. For more information about the
6266difference, see `The Math
6267Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6268table of how this is implemented in various languages, please see
6269`Wikipedia: modulo
6270operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6271
6272Note that signed integer remainder and unsigned integer remainder are
6273distinct operations; for unsigned integer remainder, use '``urem``'.
6274
6275Taking the remainder of a division by zero leads to undefined behavior.
6276Overflow also leads to undefined behavior; this is a rare case, but can
6277occur, for example, by taking the remainder of a 32-bit division of
6278-2147483648 by -1. (The remainder doesn't actually overflow, but this
6279rule lets srem be implemented using instructions that return both the
6280result of the division and the remainder.)
6281
6282Example:
6283""""""""
6284
6285.. code-block:: llvm
6286
Tim Northover675a0962014-06-13 14:24:23 +00006287 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006288
6289.. _i_frem:
6290
6291'``frem``' Instruction
6292^^^^^^^^^^^^^^^^^^^^^^
6293
6294Syntax:
6295"""""""
6296
6297::
6298
Tim Northover675a0962014-06-13 14:24:23 +00006299 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006300
6301Overview:
6302"""""""""
6303
6304The '``frem``' instruction returns the remainder from the division of
6305its two operands.
6306
6307Arguments:
6308""""""""""
6309
6310The two arguments to the '``frem``' instruction must be :ref:`floating
6311point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6312Both arguments must have identical types.
6313
6314Semantics:
6315""""""""""
6316
6317This instruction returns the *remainder* of a division. The remainder
6318has the same sign as the dividend. This instruction can also take any
6319number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6320to enable otherwise unsafe floating point optimizations:
6321
6322Example:
6323""""""""
6324
6325.. code-block:: llvm
6326
Tim Northover675a0962014-06-13 14:24:23 +00006327 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006328
6329.. _bitwiseops:
6330
6331Bitwise Binary Operations
6332-------------------------
6333
6334Bitwise binary operators are used to do various forms of bit-twiddling
6335in a program. They are generally very efficient instructions and can
6336commonly be strength reduced from other instructions. They require two
6337operands of the same type, execute an operation on them, and produce a
6338single value. The resulting value is the same type as its operands.
6339
6340'``shl``' Instruction
6341^^^^^^^^^^^^^^^^^^^^^
6342
6343Syntax:
6344"""""""
6345
6346::
6347
Tim Northover675a0962014-06-13 14:24:23 +00006348 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6349 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6350 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6351 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006352
6353Overview:
6354"""""""""
6355
6356The '``shl``' instruction returns the first operand shifted to the left
6357a specified number of bits.
6358
6359Arguments:
6360""""""""""
6361
6362Both arguments to the '``shl``' instruction must be the same
6363:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6364'``op2``' is treated as an unsigned value.
6365
6366Semantics:
6367""""""""""
6368
6369The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6370where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006371dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006372``op1``, the result is undefined. If the arguments are vectors, each
6373vector element of ``op1`` is shifted by the corresponding shift amount
6374in ``op2``.
6375
6376If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6377value <poisonvalues>` if it shifts out any non-zero bits. If the
6378``nsw`` keyword is present, then the shift produces a :ref:`poison
6379value <poisonvalues>` if it shifts out any bits that disagree with the
6380resultant sign bit. As such, NUW/NSW have the same semantics as they
6381would if the shift were expressed as a mul instruction with the same
6382nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6383
6384Example:
6385""""""""
6386
6387.. code-block:: llvm
6388
Tim Northover675a0962014-06-13 14:24:23 +00006389 <result> = shl i32 4, %var ; yields i32: 4 << %var
6390 <result> = shl i32 4, 2 ; yields i32: 16
6391 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006392 <result> = shl i32 1, 32 ; undefined
6393 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6394
6395'``lshr``' Instruction
6396^^^^^^^^^^^^^^^^^^^^^^
6397
6398Syntax:
6399"""""""
6400
6401::
6402
Tim Northover675a0962014-06-13 14:24:23 +00006403 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6404 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006405
6406Overview:
6407"""""""""
6408
6409The '``lshr``' instruction (logical shift right) returns the first
6410operand shifted to the right a specified number of bits with zero fill.
6411
6412Arguments:
6413""""""""""
6414
6415Both arguments to the '``lshr``' instruction must be the same
6416:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6417'``op2``' is treated as an unsigned value.
6418
6419Semantics:
6420""""""""""
6421
6422This instruction always performs a logical shift right operation. The
6423most significant bits of the result will be filled with zero bits after
6424the shift. If ``op2`` is (statically or dynamically) equal to or larger
6425than the number of bits in ``op1``, the result is undefined. If the
6426arguments are vectors, each vector element of ``op1`` is shifted by the
6427corresponding shift amount in ``op2``.
6428
6429If the ``exact`` keyword is present, the result value of the ``lshr`` is
6430a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6431non-zero.
6432
6433Example:
6434""""""""
6435
6436.. code-block:: llvm
6437
Tim Northover675a0962014-06-13 14:24:23 +00006438 <result> = lshr i32 4, 1 ; yields i32:result = 2
6439 <result> = lshr i32 4, 2 ; yields i32:result = 1
6440 <result> = lshr i8 4, 3 ; yields i8:result = 0
6441 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006442 <result> = lshr i32 1, 32 ; undefined
6443 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6444
6445'``ashr``' Instruction
6446^^^^^^^^^^^^^^^^^^^^^^
6447
6448Syntax:
6449"""""""
6450
6451::
6452
Tim Northover675a0962014-06-13 14:24:23 +00006453 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6454 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006455
6456Overview:
6457"""""""""
6458
6459The '``ashr``' instruction (arithmetic shift right) returns the first
6460operand shifted to the right a specified number of bits with sign
6461extension.
6462
6463Arguments:
6464""""""""""
6465
6466Both arguments to the '``ashr``' instruction must be the same
6467:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6468'``op2``' is treated as an unsigned value.
6469
6470Semantics:
6471""""""""""
6472
6473This instruction always performs an arithmetic shift right operation,
6474The most significant bits of the result will be filled with the sign bit
6475of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6476than the number of bits in ``op1``, the result is undefined. If the
6477arguments are vectors, each vector element of ``op1`` is shifted by the
6478corresponding shift amount in ``op2``.
6479
6480If the ``exact`` keyword is present, the result value of the ``ashr`` is
6481a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6482non-zero.
6483
6484Example:
6485""""""""
6486
6487.. code-block:: llvm
6488
Tim Northover675a0962014-06-13 14:24:23 +00006489 <result> = ashr i32 4, 1 ; yields i32:result = 2
6490 <result> = ashr i32 4, 2 ; yields i32:result = 1
6491 <result> = ashr i8 4, 3 ; yields i8:result = 0
6492 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006493 <result> = ashr i32 1, 32 ; undefined
6494 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6495
6496'``and``' Instruction
6497^^^^^^^^^^^^^^^^^^^^^
6498
6499Syntax:
6500"""""""
6501
6502::
6503
Tim Northover675a0962014-06-13 14:24:23 +00006504 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006505
6506Overview:
6507"""""""""
6508
6509The '``and``' instruction returns the bitwise logical and of its two
6510operands.
6511
6512Arguments:
6513""""""""""
6514
6515The two arguments to the '``and``' instruction must be
6516:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6517arguments must have identical types.
6518
6519Semantics:
6520""""""""""
6521
6522The truth table used for the '``and``' instruction is:
6523
6524+-----+-----+-----+
6525| In0 | In1 | Out |
6526+-----+-----+-----+
6527| 0 | 0 | 0 |
6528+-----+-----+-----+
6529| 0 | 1 | 0 |
6530+-----+-----+-----+
6531| 1 | 0 | 0 |
6532+-----+-----+-----+
6533| 1 | 1 | 1 |
6534+-----+-----+-----+
6535
6536Example:
6537""""""""
6538
6539.. code-block:: llvm
6540
Tim Northover675a0962014-06-13 14:24:23 +00006541 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6542 <result> = and i32 15, 40 ; yields i32:result = 8
6543 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006544
6545'``or``' Instruction
6546^^^^^^^^^^^^^^^^^^^^
6547
6548Syntax:
6549"""""""
6550
6551::
6552
Tim Northover675a0962014-06-13 14:24:23 +00006553 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006554
6555Overview:
6556"""""""""
6557
6558The '``or``' instruction returns the bitwise logical inclusive or of its
6559two operands.
6560
6561Arguments:
6562""""""""""
6563
6564The two arguments to the '``or``' instruction must be
6565:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6566arguments must have identical types.
6567
6568Semantics:
6569""""""""""
6570
6571The truth table used for the '``or``' instruction is:
6572
6573+-----+-----+-----+
6574| In0 | In1 | Out |
6575+-----+-----+-----+
6576| 0 | 0 | 0 |
6577+-----+-----+-----+
6578| 0 | 1 | 1 |
6579+-----+-----+-----+
6580| 1 | 0 | 1 |
6581+-----+-----+-----+
6582| 1 | 1 | 1 |
6583+-----+-----+-----+
6584
6585Example:
6586""""""""
6587
6588::
6589
Tim Northover675a0962014-06-13 14:24:23 +00006590 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6591 <result> = or i32 15, 40 ; yields i32:result = 47
6592 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006593
6594'``xor``' Instruction
6595^^^^^^^^^^^^^^^^^^^^^
6596
6597Syntax:
6598"""""""
6599
6600::
6601
Tim Northover675a0962014-06-13 14:24:23 +00006602 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006603
6604Overview:
6605"""""""""
6606
6607The '``xor``' instruction returns the bitwise logical exclusive or of
6608its two operands. The ``xor`` is used to implement the "one's
6609complement" operation, which is the "~" operator in C.
6610
6611Arguments:
6612""""""""""
6613
6614The two arguments to the '``xor``' instruction must be
6615:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6616arguments must have identical types.
6617
6618Semantics:
6619""""""""""
6620
6621The truth table used for the '``xor``' instruction is:
6622
6623+-----+-----+-----+
6624| In0 | In1 | Out |
6625+-----+-----+-----+
6626| 0 | 0 | 0 |
6627+-----+-----+-----+
6628| 0 | 1 | 1 |
6629+-----+-----+-----+
6630| 1 | 0 | 1 |
6631+-----+-----+-----+
6632| 1 | 1 | 0 |
6633+-----+-----+-----+
6634
6635Example:
6636""""""""
6637
6638.. code-block:: llvm
6639
Tim Northover675a0962014-06-13 14:24:23 +00006640 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6641 <result> = xor i32 15, 40 ; yields i32:result = 39
6642 <result> = xor i32 4, 8 ; yields i32:result = 12
6643 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006644
6645Vector Operations
6646-----------------
6647
6648LLVM supports several instructions to represent vector operations in a
6649target-independent manner. These instructions cover the element-access
6650and vector-specific operations needed to process vectors effectively.
6651While LLVM does directly support these vector operations, many
6652sophisticated algorithms will want to use target-specific intrinsics to
6653take full advantage of a specific target.
6654
6655.. _i_extractelement:
6656
6657'``extractelement``' Instruction
6658^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6659
6660Syntax:
6661"""""""
6662
6663::
6664
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006665 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006666
6667Overview:
6668"""""""""
6669
6670The '``extractelement``' instruction extracts a single scalar element
6671from a vector at a specified index.
6672
6673Arguments:
6674""""""""""
6675
6676The first operand of an '``extractelement``' instruction is a value of
6677:ref:`vector <t_vector>` type. The second operand is an index indicating
6678the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006679variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006680
6681Semantics:
6682""""""""""
6683
6684The result is a scalar of the same type as the element type of ``val``.
6685Its value is the value at position ``idx`` of ``val``. If ``idx``
6686exceeds the length of ``val``, the results are undefined.
6687
6688Example:
6689""""""""
6690
6691.. code-block:: llvm
6692
6693 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6694
6695.. _i_insertelement:
6696
6697'``insertelement``' Instruction
6698^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6699
6700Syntax:
6701"""""""
6702
6703::
6704
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006705 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006706
6707Overview:
6708"""""""""
6709
6710The '``insertelement``' instruction inserts a scalar element into a
6711vector at a specified index.
6712
6713Arguments:
6714""""""""""
6715
6716The first operand of an '``insertelement``' instruction is a value of
6717:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6718type must equal the element type of the first operand. The third operand
6719is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006720index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006721
6722Semantics:
6723""""""""""
6724
6725The result is a vector of the same type as ``val``. Its element values
6726are those of ``val`` except at position ``idx``, where it gets the value
6727``elt``. If ``idx`` exceeds the length of ``val``, the results are
6728undefined.
6729
6730Example:
6731""""""""
6732
6733.. code-block:: llvm
6734
6735 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6736
6737.. _i_shufflevector:
6738
6739'``shufflevector``' Instruction
6740^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6741
6742Syntax:
6743"""""""
6744
6745::
6746
6747 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6748
6749Overview:
6750"""""""""
6751
6752The '``shufflevector``' instruction constructs a permutation of elements
6753from two input vectors, returning a vector with the same element type as
6754the input and length that is the same as the shuffle mask.
6755
6756Arguments:
6757""""""""""
6758
6759The first two operands of a '``shufflevector``' instruction are vectors
6760with the same type. The third argument is a shuffle mask whose element
6761type is always 'i32'. The result of the instruction is a vector whose
6762length is the same as the shuffle mask and whose element type is the
6763same as the element type of the first two operands.
6764
6765The shuffle mask operand is required to be a constant vector with either
6766constant integer or undef values.
6767
6768Semantics:
6769""""""""""
6770
6771The elements of the two input vectors are numbered from left to right
6772across both of the vectors. The shuffle mask operand specifies, for each
6773element of the result vector, which element of the two input vectors the
6774result element gets. The element selector may be undef (meaning "don't
6775care") and the second operand may be undef if performing a shuffle from
6776only one vector.
6777
6778Example:
6779""""""""
6780
6781.. code-block:: llvm
6782
6783 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6784 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6785 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6786 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6787 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6788 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6789 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6790 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6791
6792Aggregate Operations
6793--------------------
6794
6795LLVM supports several instructions for working with
6796:ref:`aggregate <t_aggregate>` values.
6797
6798.. _i_extractvalue:
6799
6800'``extractvalue``' Instruction
6801^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6802
6803Syntax:
6804"""""""
6805
6806::
6807
6808 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6809
6810Overview:
6811"""""""""
6812
6813The '``extractvalue``' instruction extracts the value of a member field
6814from an :ref:`aggregate <t_aggregate>` value.
6815
6816Arguments:
6817""""""""""
6818
6819The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006820:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006821constant indices to specify which value to extract in a similar manner
6822as indices in a '``getelementptr``' instruction.
6823
6824The major differences to ``getelementptr`` indexing are:
6825
6826- Since the value being indexed is not a pointer, the first index is
6827 omitted and assumed to be zero.
6828- At least one index must be specified.
6829- Not only struct indices but also array indices must be in bounds.
6830
6831Semantics:
6832""""""""""
6833
6834The result is the value at the position in the aggregate specified by
6835the index operands.
6836
6837Example:
6838""""""""
6839
6840.. code-block:: llvm
6841
6842 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6843
6844.. _i_insertvalue:
6845
6846'``insertvalue``' Instruction
6847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6848
6849Syntax:
6850"""""""
6851
6852::
6853
6854 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6855
6856Overview:
6857"""""""""
6858
6859The '``insertvalue``' instruction inserts a value into a member field in
6860an :ref:`aggregate <t_aggregate>` value.
6861
6862Arguments:
6863""""""""""
6864
6865The first operand of an '``insertvalue``' instruction is a value of
6866:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6867a first-class value to insert. The following operands are constant
6868indices indicating the position at which to insert the value in a
6869similar manner as indices in a '``extractvalue``' instruction. The value
6870to insert must have the same type as the value identified by the
6871indices.
6872
6873Semantics:
6874""""""""""
6875
6876The result is an aggregate of the same type as ``val``. Its value is
6877that of ``val`` except that the value at the position specified by the
6878indices is that of ``elt``.
6879
6880Example:
6881""""""""
6882
6883.. code-block:: llvm
6884
6885 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6886 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006887 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006888
6889.. _memoryops:
6890
6891Memory Access and Addressing Operations
6892---------------------------------------
6893
6894A key design point of an SSA-based representation is how it represents
6895memory. In LLVM, no memory locations are in SSA form, which makes things
6896very simple. This section describes how to read, write, and allocate
6897memory in LLVM.
6898
6899.. _i_alloca:
6900
6901'``alloca``' Instruction
6902^^^^^^^^^^^^^^^^^^^^^^^^
6903
6904Syntax:
6905"""""""
6906
6907::
6908
Tim Northover675a0962014-06-13 14:24:23 +00006909 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006910
6911Overview:
6912"""""""""
6913
6914The '``alloca``' instruction allocates memory on the stack frame of the
6915currently executing function, to be automatically released when this
6916function returns to its caller. The object is always allocated in the
6917generic address space (address space zero).
6918
6919Arguments:
6920""""""""""
6921
6922The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6923bytes of memory on the runtime stack, returning a pointer of the
6924appropriate type to the program. If "NumElements" is specified, it is
6925the number of elements allocated, otherwise "NumElements" is defaulted
6926to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006927allocation is guaranteed to be aligned to at least that boundary. The
6928alignment may not be greater than ``1 << 29``. If not specified, or if
6929zero, the target can choose to align the allocation on any convenient
6930boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006931
6932'``type``' may be any sized type.
6933
6934Semantics:
6935""""""""""
6936
6937Memory is allocated; a pointer is returned. The operation is undefined
6938if there is insufficient stack space for the allocation. '``alloca``'d
6939memory is automatically released when the function returns. The
6940'``alloca``' instruction is commonly used to represent automatic
6941variables that must have an address available. When the function returns
6942(either with the ``ret`` or ``resume`` instructions), the memory is
6943reclaimed. Allocating zero bytes is legal, but the result is undefined.
6944The order in which memory is allocated (ie., which way the stack grows)
6945is not specified.
6946
6947Example:
6948""""""""
6949
6950.. code-block:: llvm
6951
Tim Northover675a0962014-06-13 14:24:23 +00006952 %ptr = alloca i32 ; yields i32*:ptr
6953 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6954 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6955 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006956
6957.. _i_load:
6958
6959'``load``' Instruction
6960^^^^^^^^^^^^^^^^^^^^^^
6961
6962Syntax:
6963"""""""
6964
6965::
6966
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006967 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00006968 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006969 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006970 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006971 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006972
6973Overview:
6974"""""""""
6975
6976The '``load``' instruction is used to read from memory.
6977
6978Arguments:
6979""""""""""
6980
Eli Bendersky239a78b2013-04-17 20:17:08 +00006981The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006982from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006983class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6984then the optimizer is not allowed to modify the number or order of
6985execution of this ``load`` with other :ref:`volatile
6986operations <volatile>`.
6987
JF Bastiend1fb5852015-12-17 22:09:19 +00006988If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6989<ordering>` and optional ``singlethread`` argument. The ``release`` and
6990``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
6991produce :ref:`defined <memmodel>` results when they may see multiple atomic
6992stores. The type of the pointee must be an integer, pointer, or floating-point
6993type whose bit width is a power of two greater than or equal to eight and less
6994than or equal to a target-specific size limit. ``align`` must be explicitly
6995specified on atomic loads, and the load has undefined behavior if the alignment
6996is not set to a value which is at least the size in bytes of the
6997pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00006998
6999The optional constant ``align`` argument specifies the alignment of the
7000operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007001or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007002alignment for the target. It is the responsibility of the code emitter
7003to ensure that the alignment information is correct. Overestimating the
7004alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007005may produce less efficient code. An alignment of 1 is always safe. The
7006maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007007
7008The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007009metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007010``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007011metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007012that this load is not expected to be reused in the cache. The code
7013generator may select special instructions to save cache bandwidth, such
7014as the ``MOVNT`` instruction on x86.
7015
7016The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007017metadata name ``<index>`` corresponding to a metadata node with no
7018entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00007019instruction tells the optimizer and code generator that the address
7020operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007021Being invariant does not imply that a location is dereferenceable,
7022but it does imply that once the location is known dereferenceable
7023its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00007024
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007025The optional ``!invariant.group`` metadata must reference a single metadata name
7026 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7027
Philip Reamescdb72f32014-10-20 22:40:55 +00007028The optional ``!nonnull`` metadata must reference a single
7029metadata name ``<index>`` corresponding to a metadata node with no
7030entries. The existence of the ``!nonnull`` metadata on the
7031instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007032never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007033on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007034to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007035
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007036The optional ``!dereferenceable`` metadata must reference a single metadata
7037name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007038entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007039tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007040The number of bytes known to be dereferenceable is specified by the integer
7041value in the metadata node. This is analogous to the ''dereferenceable''
7042attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007043to loads of a pointer type.
7044
7045The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007046metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7047``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007048instruction tells the optimizer that the value loaded is known to be either
7049dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007050The number of bytes known to be dereferenceable is specified by the integer
7051value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7052attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007053to loads of a pointer type.
7054
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007055The optional ``!align`` metadata must reference a single metadata name
7056``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7057The existence of the ``!align`` metadata on the instruction tells the
7058optimizer that the value loaded is known to be aligned to a boundary specified
7059by the integer value in the metadata node. The alignment must be a power of 2.
7060This is analogous to the ''align'' attribute on parameters and return values.
7061This metadata can only be applied to loads of a pointer type.
7062
Sean Silvab084af42012-12-07 10:36:55 +00007063Semantics:
7064""""""""""
7065
7066The location of memory pointed to is loaded. If the value being loaded
7067is of scalar type then the number of bytes read does not exceed the
7068minimum number of bytes needed to hold all bits of the type. For
7069example, loading an ``i24`` reads at most three bytes. When loading a
7070value of a type like ``i20`` with a size that is not an integral number
7071of bytes, the result is undefined if the value was not originally
7072written using a store of the same type.
7073
7074Examples:
7075"""""""""
7076
7077.. code-block:: llvm
7078
Tim Northover675a0962014-06-13 14:24:23 +00007079 %ptr = alloca i32 ; yields i32*:ptr
7080 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007081 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007082
7083.. _i_store:
7084
7085'``store``' Instruction
7086^^^^^^^^^^^^^^^^^^^^^^^
7087
7088Syntax:
7089"""""""
7090
7091::
7092
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007093 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7094 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007095
7096Overview:
7097"""""""""
7098
7099The '``store``' instruction is used to write to memory.
7100
7101Arguments:
7102""""""""""
7103
Eli Benderskyca380842013-04-17 17:17:20 +00007104There are two arguments to the ``store`` instruction: a value to store
7105and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00007106operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00007107the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00007108then the optimizer is not allowed to modify the number or order of
7109execution of this ``store`` with other :ref:`volatile
7110operations <volatile>`.
7111
JF Bastiend1fb5852015-12-17 22:09:19 +00007112If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7113<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7114``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7115produce :ref:`defined <memmodel>` results when they may see multiple atomic
7116stores. The type of the pointee must be an integer, pointer, or floating-point
7117type whose bit width is a power of two greater than or equal to eight and less
7118than or equal to a target-specific size limit. ``align`` must be explicitly
7119specified on atomic stores, and the store has undefined behavior if the
7120alignment is not set to a value which is at least the size in bytes of the
7121pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007122
Eli Benderskyca380842013-04-17 17:17:20 +00007123The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007124operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007125or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007126alignment for the target. It is the responsibility of the code emitter
7127to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007128alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007129alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007130safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007131
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007132The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007133name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007134value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007135tells the optimizer and code generator that this load is not expected to
7136be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007137instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007138x86.
7139
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007140The optional ``!invariant.group`` metadata must reference a
7141single metadata name ``<index>``. See ``invariant.group`` metadata.
7142
Sean Silvab084af42012-12-07 10:36:55 +00007143Semantics:
7144""""""""""
7145
Eli Benderskyca380842013-04-17 17:17:20 +00007146The contents of memory are updated to contain ``<value>`` at the
7147location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007148of scalar type then the number of bytes written does not exceed the
7149minimum number of bytes needed to hold all bits of the type. For
7150example, storing an ``i24`` writes at most three bytes. When writing a
7151value of a type like ``i20`` with a size that is not an integral number
7152of bytes, it is unspecified what happens to the extra bits that do not
7153belong to the type, but they will typically be overwritten.
7154
7155Example:
7156""""""""
7157
7158.. code-block:: llvm
7159
Tim Northover675a0962014-06-13 14:24:23 +00007160 %ptr = alloca i32 ; yields i32*:ptr
7161 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007162 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007163
7164.. _i_fence:
7165
7166'``fence``' Instruction
7167^^^^^^^^^^^^^^^^^^^^^^^
7168
7169Syntax:
7170"""""""
7171
7172::
7173
Tim Northover675a0962014-06-13 14:24:23 +00007174 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007175
7176Overview:
7177"""""""""
7178
7179The '``fence``' instruction is used to introduce happens-before edges
7180between operations.
7181
7182Arguments:
7183""""""""""
7184
7185'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7186defines what *synchronizes-with* edges they add. They can only be given
7187``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7188
7189Semantics:
7190""""""""""
7191
7192A fence A which has (at least) ``release`` ordering semantics
7193*synchronizes with* a fence B with (at least) ``acquire`` ordering
7194semantics if and only if there exist atomic operations X and Y, both
7195operating on some atomic object M, such that A is sequenced before X, X
7196modifies M (either directly or through some side effect of a sequence
7197headed by X), Y is sequenced before B, and Y observes M. This provides a
7198*happens-before* dependency between A and B. Rather than an explicit
7199``fence``, one (but not both) of the atomic operations X or Y might
7200provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7201still *synchronize-with* the explicit ``fence`` and establish the
7202*happens-before* edge.
7203
7204A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7205``acquire`` and ``release`` semantics specified above, participates in
7206the global program order of other ``seq_cst`` operations and/or fences.
7207
7208The optional ":ref:`singlethread <singlethread>`" argument specifies
7209that the fence only synchronizes with other fences in the same thread.
7210(This is useful for interacting with signal handlers.)
7211
7212Example:
7213""""""""
7214
7215.. code-block:: llvm
7216
Tim Northover675a0962014-06-13 14:24:23 +00007217 fence acquire ; yields void
7218 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007219
7220.. _i_cmpxchg:
7221
7222'``cmpxchg``' Instruction
7223^^^^^^^^^^^^^^^^^^^^^^^^^
7224
7225Syntax:
7226"""""""
7227
7228::
7229
Tim Northover675a0962014-06-13 14:24:23 +00007230 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007231
7232Overview:
7233"""""""""
7234
7235The '``cmpxchg``' instruction is used to atomically modify memory. It
7236loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007237equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007238
7239Arguments:
7240""""""""""
7241
7242There are three arguments to the '``cmpxchg``' instruction: an address
7243to operate on, a value to compare to the value currently be at that
7244address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007245are equal. The type of '<cmp>' must be an integer or pointer type whose
7246bit width is a power of two greater than or equal to eight and less
7247than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7248have the same type, and the type of '<pointer>' must be a pointer to
7249that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7250optimizer is not allowed to modify the number or order of execution of
7251this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007252
Tim Northovere94a5182014-03-11 10:48:52 +00007253The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007254``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7255must be at least ``monotonic``, the ordering constraint on failure must be no
7256stronger than that on success, and the failure ordering cannot be either
7257``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007258
7259The optional "``singlethread``" argument declares that the ``cmpxchg``
7260is only atomic with respect to code (usually signal handlers) running in
7261the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7262respect to all other code in the system.
7263
7264The pointer passed into cmpxchg must have alignment greater than or
7265equal to the size in memory of the operand.
7266
7267Semantics:
7268""""""""""
7269
Tim Northover420a2162014-06-13 14:24:07 +00007270The contents of memory at the location specified by the '``<pointer>``' operand
7271is read and compared to '``<cmp>``'; if the read value is the equal, the
7272'``<new>``' is written. The original value at the location is returned, together
7273with a flag indicating success (true) or failure (false).
7274
7275If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7276permitted: the operation may not write ``<new>`` even if the comparison
7277matched.
7278
7279If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7280if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007281
Tim Northovere94a5182014-03-11 10:48:52 +00007282A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7283identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7284load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007285
7286Example:
7287""""""""
7288
7289.. code-block:: llvm
7290
7291 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007292 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007293 br label %loop
7294
7295 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007296 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007297 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007298 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007299 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7300 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007301 br i1 %success, label %done, label %loop
7302
7303 done:
7304 ...
7305
7306.. _i_atomicrmw:
7307
7308'``atomicrmw``' Instruction
7309^^^^^^^^^^^^^^^^^^^^^^^^^^^
7310
7311Syntax:
7312"""""""
7313
7314::
7315
Tim Northover675a0962014-06-13 14:24:23 +00007316 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007317
7318Overview:
7319"""""""""
7320
7321The '``atomicrmw``' instruction is used to atomically modify memory.
7322
7323Arguments:
7324""""""""""
7325
7326There are three arguments to the '``atomicrmw``' instruction: an
7327operation to apply, an address whose value to modify, an argument to the
7328operation. The operation must be one of the following keywords:
7329
7330- xchg
7331- add
7332- sub
7333- and
7334- nand
7335- or
7336- xor
7337- max
7338- min
7339- umax
7340- umin
7341
7342The type of '<value>' must be an integer type whose bit width is a power
7343of two greater than or equal to eight and less than or equal to a
7344target-specific size limit. The type of the '``<pointer>``' operand must
7345be a pointer to that type. If the ``atomicrmw`` is marked as
7346``volatile``, then the optimizer is not allowed to modify the number or
7347order of execution of this ``atomicrmw`` with other :ref:`volatile
7348operations <volatile>`.
7349
7350Semantics:
7351""""""""""
7352
7353The contents of memory at the location specified by the '``<pointer>``'
7354operand are atomically read, modified, and written back. The original
7355value at the location is returned. The modification is specified by the
7356operation argument:
7357
7358- xchg: ``*ptr = val``
7359- add: ``*ptr = *ptr + val``
7360- sub: ``*ptr = *ptr - val``
7361- and: ``*ptr = *ptr & val``
7362- nand: ``*ptr = ~(*ptr & val)``
7363- or: ``*ptr = *ptr | val``
7364- xor: ``*ptr = *ptr ^ val``
7365- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7366- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7367- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7368 comparison)
7369- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7370 comparison)
7371
7372Example:
7373""""""""
7374
7375.. code-block:: llvm
7376
Tim Northover675a0962014-06-13 14:24:23 +00007377 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007378
7379.. _i_getelementptr:
7380
7381'``getelementptr``' Instruction
7382^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7383
7384Syntax:
7385"""""""
7386
7387::
7388
David Blaikie16a97eb2015-03-04 22:02:58 +00007389 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7390 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7391 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007392
7393Overview:
7394"""""""""
7395
7396The '``getelementptr``' instruction is used to get the address of a
7397subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007398address calculation only and does not access memory. The instruction can also
7399be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007400
7401Arguments:
7402""""""""""
7403
David Blaikie16a97eb2015-03-04 22:02:58 +00007404The first argument is always a type used as the basis for the calculations.
7405The second argument is always a pointer or a vector of pointers, and is the
7406base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007407that indicate which of the elements of the aggregate object are indexed.
7408The interpretation of each index is dependent on the type being indexed
7409into. The first index always indexes the pointer value given as the
7410first argument, the second index indexes a value of the type pointed to
7411(not necessarily the value directly pointed to, since the first index
7412can be non-zero), etc. The first type indexed into must be a pointer
7413value, subsequent types can be arrays, vectors, and structs. Note that
7414subsequent types being indexed into can never be pointers, since that
7415would require loading the pointer before continuing calculation.
7416
7417The type of each index argument depends on the type it is indexing into.
7418When indexing into a (optionally packed) structure, only ``i32`` integer
7419**constants** are allowed (when using a vector of indices they must all
7420be the **same** ``i32`` integer constant). When indexing into an array,
7421pointer or vector, integers of any width are allowed, and they are not
7422required to be constant. These integers are treated as signed values
7423where relevant.
7424
7425For example, let's consider a C code fragment and how it gets compiled
7426to LLVM:
7427
7428.. code-block:: c
7429
7430 struct RT {
7431 char A;
7432 int B[10][20];
7433 char C;
7434 };
7435 struct ST {
7436 int X;
7437 double Y;
7438 struct RT Z;
7439 };
7440
7441 int *foo(struct ST *s) {
7442 return &s[1].Z.B[5][13];
7443 }
7444
7445The LLVM code generated by Clang is:
7446
7447.. code-block:: llvm
7448
7449 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7450 %struct.ST = type { i32, double, %struct.RT }
7451
7452 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7453 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007454 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007455 ret i32* %arrayidx
7456 }
7457
7458Semantics:
7459""""""""""
7460
7461In the example above, the first index is indexing into the
7462'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7463= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7464indexes into the third element of the structure, yielding a
7465'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7466structure. The third index indexes into the second element of the
7467structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7468dimensions of the array are subscripted into, yielding an '``i32``'
7469type. The '``getelementptr``' instruction returns a pointer to this
7470element, thus computing a value of '``i32*``' type.
7471
7472Note that it is perfectly legal to index partially through a structure,
7473returning a pointer to an inner element. Because of this, the LLVM code
7474for the given testcase is equivalent to:
7475
7476.. code-block:: llvm
7477
7478 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007479 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7480 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7481 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7482 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7483 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007484 ret i32* %t5
7485 }
7486
7487If the ``inbounds`` keyword is present, the result value of the
7488``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7489pointer is not an *in bounds* address of an allocated object, or if any
7490of the addresses that would be formed by successive addition of the
7491offsets implied by the indices to the base address with infinitely
7492precise signed arithmetic are not an *in bounds* address of that
7493allocated object. The *in bounds* addresses for an allocated object are
7494all the addresses that point into the object, plus the address one byte
7495past the end. In cases where the base is a vector of pointers the
7496``inbounds`` keyword applies to each of the computations element-wise.
7497
7498If the ``inbounds`` keyword is not present, the offsets are added to the
7499base address with silently-wrapping two's complement arithmetic. If the
7500offsets have a different width from the pointer, they are sign-extended
7501or truncated to the width of the pointer. The result value of the
7502``getelementptr`` may be outside the object pointed to by the base
7503pointer. The result value may not necessarily be used to access memory
7504though, even if it happens to point into allocated storage. See the
7505:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7506information.
7507
7508The getelementptr instruction is often confusing. For some more insight
7509into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7510
7511Example:
7512""""""""
7513
7514.. code-block:: llvm
7515
7516 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007517 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007518 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007519 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007520 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007521 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007522 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007523 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007524
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007525Vector of pointers:
7526"""""""""""""""""""
7527
7528The ``getelementptr`` returns a vector of pointers, instead of a single address,
7529when one or more of its arguments is a vector. In such cases, all vector
7530arguments should have the same number of elements, and every scalar argument
7531will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007532
7533.. code-block:: llvm
7534
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007535 ; All arguments are vectors:
7536 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7537 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007538
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007539 ; Add the same scalar offset to each pointer of a vector:
7540 ; A[i] = ptrs[i] + offset*sizeof(i8)
7541 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007542
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007543 ; Add distinct offsets to the same pointer:
7544 ; A[i] = ptr + offsets[i]*sizeof(i8)
7545 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007546
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007547 ; In all cases described above the type of the result is <4 x i8*>
7548
7549The two following instructions are equivalent:
7550
7551.. code-block:: llvm
7552
7553 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7554 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7555 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7556 <4 x i32> %ind4,
7557 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007558
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007559 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7560 i32 2, i32 1, <4 x i32> %ind4, i64 13
7561
7562Let's look at the C code, where the vector version of ``getelementptr``
7563makes sense:
7564
7565.. code-block:: c
7566
7567 // Let's assume that we vectorize the following loop:
7568 double *A, B; int *C;
7569 for (int i = 0; i < size; ++i) {
7570 A[i] = B[C[i]];
7571 }
7572
7573.. code-block:: llvm
7574
7575 ; get pointers for 8 elements from array B
7576 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7577 ; load 8 elements from array B into A
7578 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7579 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007580
7581Conversion Operations
7582---------------------
7583
7584The instructions in this category are the conversion instructions
7585(casting) which all take a single operand and a type. They perform
7586various bit conversions on the operand.
7587
7588'``trunc .. to``' Instruction
7589^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7590
7591Syntax:
7592"""""""
7593
7594::
7595
7596 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7597
7598Overview:
7599"""""""""
7600
7601The '``trunc``' instruction truncates its operand to the type ``ty2``.
7602
7603Arguments:
7604""""""""""
7605
7606The '``trunc``' instruction takes a value to trunc, and a type to trunc
7607it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7608of the same number of integers. The bit size of the ``value`` must be
7609larger than the bit size of the destination type, ``ty2``. Equal sized
7610types are not allowed.
7611
7612Semantics:
7613""""""""""
7614
7615The '``trunc``' instruction truncates the high order bits in ``value``
7616and converts the remaining bits to ``ty2``. Since the source size must
7617be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7618It will always truncate bits.
7619
7620Example:
7621""""""""
7622
7623.. code-block:: llvm
7624
7625 %X = trunc i32 257 to i8 ; yields i8:1
7626 %Y = trunc i32 123 to i1 ; yields i1:true
7627 %Z = trunc i32 122 to i1 ; yields i1:false
7628 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7629
7630'``zext .. to``' Instruction
7631^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7632
7633Syntax:
7634"""""""
7635
7636::
7637
7638 <result> = zext <ty> <value> to <ty2> ; yields ty2
7639
7640Overview:
7641"""""""""
7642
7643The '``zext``' instruction zero extends its operand to type ``ty2``.
7644
7645Arguments:
7646""""""""""
7647
7648The '``zext``' instruction takes a value to cast, and a type to cast it
7649to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7650the same number of integers. The bit size of the ``value`` must be
7651smaller than the bit size of the destination type, ``ty2``.
7652
7653Semantics:
7654""""""""""
7655
7656The ``zext`` fills the high order bits of the ``value`` with zero bits
7657until it reaches the size of the destination type, ``ty2``.
7658
7659When zero extending from i1, the result will always be either 0 or 1.
7660
7661Example:
7662""""""""
7663
7664.. code-block:: llvm
7665
7666 %X = zext i32 257 to i64 ; yields i64:257
7667 %Y = zext i1 true to i32 ; yields i32:1
7668 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7669
7670'``sext .. to``' Instruction
7671^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7672
7673Syntax:
7674"""""""
7675
7676::
7677
7678 <result> = sext <ty> <value> to <ty2> ; yields ty2
7679
7680Overview:
7681"""""""""
7682
7683The '``sext``' sign extends ``value`` to the type ``ty2``.
7684
7685Arguments:
7686""""""""""
7687
7688The '``sext``' instruction takes a value to cast, and a type to cast it
7689to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7690the same number of integers. The bit size of the ``value`` must be
7691smaller than the bit size of the destination type, ``ty2``.
7692
7693Semantics:
7694""""""""""
7695
7696The '``sext``' instruction performs a sign extension by copying the sign
7697bit (highest order bit) of the ``value`` until it reaches the bit size
7698of the type ``ty2``.
7699
7700When sign extending from i1, the extension always results in -1 or 0.
7701
7702Example:
7703""""""""
7704
7705.. code-block:: llvm
7706
7707 %X = sext i8 -1 to i16 ; yields i16 :65535
7708 %Y = sext i1 true to i32 ; yields i32:-1
7709 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7710
7711'``fptrunc .. to``' Instruction
7712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7713
7714Syntax:
7715"""""""
7716
7717::
7718
7719 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7720
7721Overview:
7722"""""""""
7723
7724The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7725
7726Arguments:
7727""""""""""
7728
7729The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7730value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7731The size of ``value`` must be larger than the size of ``ty2``. This
7732implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7733
7734Semantics:
7735""""""""""
7736
Dan Liew50456fb2015-09-03 18:43:56 +00007737The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007738:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007739point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7740destination type, ``ty2``, then the results are undefined. If the cast produces
7741an inexact result, how rounding is performed (e.g. truncation, also known as
7742round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007743
7744Example:
7745""""""""
7746
7747.. code-block:: llvm
7748
7749 %X = fptrunc double 123.0 to float ; yields float:123.0
7750 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7751
7752'``fpext .. to``' Instruction
7753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7754
7755Syntax:
7756"""""""
7757
7758::
7759
7760 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7761
7762Overview:
7763"""""""""
7764
7765The '``fpext``' extends a floating point ``value`` to a larger floating
7766point value.
7767
7768Arguments:
7769""""""""""
7770
7771The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7772``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7773to. The source type must be smaller than the destination type.
7774
7775Semantics:
7776""""""""""
7777
7778The '``fpext``' instruction extends the ``value`` from a smaller
7779:ref:`floating point <t_floating>` type to a larger :ref:`floating
7780point <t_floating>` type. The ``fpext`` cannot be used to make a
7781*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7782*no-op cast* for a floating point cast.
7783
7784Example:
7785""""""""
7786
7787.. code-block:: llvm
7788
7789 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7790 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7791
7792'``fptoui .. to``' Instruction
7793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7794
7795Syntax:
7796"""""""
7797
7798::
7799
7800 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7801
7802Overview:
7803"""""""""
7804
7805The '``fptoui``' converts a floating point ``value`` to its unsigned
7806integer equivalent of type ``ty2``.
7807
7808Arguments:
7809""""""""""
7810
7811The '``fptoui``' instruction takes a value to cast, which must be a
7812scalar or vector :ref:`floating point <t_floating>` value, and a type to
7813cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7814``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7815type with the same number of elements as ``ty``
7816
7817Semantics:
7818""""""""""
7819
7820The '``fptoui``' instruction converts its :ref:`floating
7821point <t_floating>` operand into the nearest (rounding towards zero)
7822unsigned integer value. If the value cannot fit in ``ty2``, the results
7823are undefined.
7824
7825Example:
7826""""""""
7827
7828.. code-block:: llvm
7829
7830 %X = fptoui double 123.0 to i32 ; yields i32:123
7831 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7832 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7833
7834'``fptosi .. to``' Instruction
7835^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7836
7837Syntax:
7838"""""""
7839
7840::
7841
7842 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7843
7844Overview:
7845"""""""""
7846
7847The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7848``value`` to type ``ty2``.
7849
7850Arguments:
7851""""""""""
7852
7853The '``fptosi``' instruction takes a value to cast, which must be a
7854scalar or vector :ref:`floating point <t_floating>` value, and a type to
7855cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7856``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7857type with the same number of elements as ``ty``
7858
7859Semantics:
7860""""""""""
7861
7862The '``fptosi``' instruction converts its :ref:`floating
7863point <t_floating>` operand into the nearest (rounding towards zero)
7864signed integer value. If the value cannot fit in ``ty2``, the results
7865are undefined.
7866
7867Example:
7868""""""""
7869
7870.. code-block:: llvm
7871
7872 %X = fptosi double -123.0 to i32 ; yields i32:-123
7873 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7874 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7875
7876'``uitofp .. to``' Instruction
7877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7878
7879Syntax:
7880"""""""
7881
7882::
7883
7884 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7885
7886Overview:
7887"""""""""
7888
7889The '``uitofp``' instruction regards ``value`` as an unsigned integer
7890and converts that value to the ``ty2`` type.
7891
7892Arguments:
7893""""""""""
7894
7895The '``uitofp``' instruction takes a value to cast, which must be a
7896scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7897``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7898``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7899type with the same number of elements as ``ty``
7900
7901Semantics:
7902""""""""""
7903
7904The '``uitofp``' instruction interprets its operand as an unsigned
7905integer quantity and converts it to the corresponding floating point
7906value. If the value cannot fit in the floating point value, the results
7907are undefined.
7908
7909Example:
7910""""""""
7911
7912.. code-block:: llvm
7913
7914 %X = uitofp i32 257 to float ; yields float:257.0
7915 %Y = uitofp i8 -1 to double ; yields double:255.0
7916
7917'``sitofp .. to``' Instruction
7918^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7919
7920Syntax:
7921"""""""
7922
7923::
7924
7925 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7926
7927Overview:
7928"""""""""
7929
7930The '``sitofp``' instruction regards ``value`` as a signed integer and
7931converts that value to the ``ty2`` type.
7932
7933Arguments:
7934""""""""""
7935
7936The '``sitofp``' instruction takes a value to cast, which must be a
7937scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7938``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7939``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7940type with the same number of elements as ``ty``
7941
7942Semantics:
7943""""""""""
7944
7945The '``sitofp``' instruction interprets its operand as a signed integer
7946quantity and converts it to the corresponding floating point value. If
7947the value cannot fit in the floating point value, the results are
7948undefined.
7949
7950Example:
7951""""""""
7952
7953.. code-block:: llvm
7954
7955 %X = sitofp i32 257 to float ; yields float:257.0
7956 %Y = sitofp i8 -1 to double ; yields double:-1.0
7957
7958.. _i_ptrtoint:
7959
7960'``ptrtoint .. to``' Instruction
7961^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7962
7963Syntax:
7964"""""""
7965
7966::
7967
7968 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7969
7970Overview:
7971"""""""""
7972
7973The '``ptrtoint``' instruction converts the pointer or a vector of
7974pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7975
7976Arguments:
7977""""""""""
7978
7979The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007980a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007981type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7982a vector of integers type.
7983
7984Semantics:
7985""""""""""
7986
7987The '``ptrtoint``' instruction converts ``value`` to integer type
7988``ty2`` by interpreting the pointer value as an integer and either
7989truncating or zero extending that value to the size of the integer type.
7990If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7991``value`` is larger than ``ty2`` then a truncation is done. If they are
7992the same size, then nothing is done (*no-op cast*) other than a type
7993change.
7994
7995Example:
7996""""""""
7997
7998.. code-block:: llvm
7999
8000 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8001 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8002 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8003
8004.. _i_inttoptr:
8005
8006'``inttoptr .. to``' Instruction
8007^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8008
8009Syntax:
8010"""""""
8011
8012::
8013
8014 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8015
8016Overview:
8017"""""""""
8018
8019The '``inttoptr``' instruction converts an integer ``value`` to a
8020pointer type, ``ty2``.
8021
8022Arguments:
8023""""""""""
8024
8025The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8026cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8027type.
8028
8029Semantics:
8030""""""""""
8031
8032The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8033applying either a zero extension or a truncation depending on the size
8034of the integer ``value``. If ``value`` is larger than the size of a
8035pointer then a truncation is done. If ``value`` is smaller than the size
8036of a pointer then a zero extension is done. If they are the same size,
8037nothing is done (*no-op cast*).
8038
8039Example:
8040""""""""
8041
8042.. code-block:: llvm
8043
8044 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8045 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8046 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8047 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8048
8049.. _i_bitcast:
8050
8051'``bitcast .. to``' Instruction
8052^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8053
8054Syntax:
8055"""""""
8056
8057::
8058
8059 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8060
8061Overview:
8062"""""""""
8063
8064The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8065changing any bits.
8066
8067Arguments:
8068""""""""""
8069
8070The '``bitcast``' instruction takes a value to cast, which must be a
8071non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008072also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8073bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008074identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008075also be a pointer of the same size. This instruction supports bitwise
8076conversion of vectors to integers and to vectors of other types (as
8077long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008078
8079Semantics:
8080""""""""""
8081
Matt Arsenault24b49c42013-07-31 17:49:08 +00008082The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8083is always a *no-op cast* because no bits change with this
8084conversion. The conversion is done as if the ``value`` had been stored
8085to memory and read back as type ``ty2``. Pointer (or vector of
8086pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008087pointers) types with the same address space through this instruction.
8088To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8089or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008090
8091Example:
8092""""""""
8093
8094.. code-block:: llvm
8095
8096 %X = bitcast i8 255 to i8 ; yields i8 :-1
8097 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8098 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8099 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8100
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008101.. _i_addrspacecast:
8102
8103'``addrspacecast .. to``' Instruction
8104^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8105
8106Syntax:
8107"""""""
8108
8109::
8110
8111 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8112
8113Overview:
8114"""""""""
8115
8116The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8117address space ``n`` to type ``pty2`` in address space ``m``.
8118
8119Arguments:
8120""""""""""
8121
8122The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8123to cast and a pointer type to cast it to, which must have a different
8124address space.
8125
8126Semantics:
8127""""""""""
8128
8129The '``addrspacecast``' instruction converts the pointer value
8130``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008131value modification, depending on the target and the address space
8132pair. Pointer conversions within the same address space must be
8133performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008134conversion is legal then both result and operand refer to the same memory
8135location.
8136
8137Example:
8138""""""""
8139
8140.. code-block:: llvm
8141
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008142 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8143 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8144 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008145
Sean Silvab084af42012-12-07 10:36:55 +00008146.. _otherops:
8147
8148Other Operations
8149----------------
8150
8151The instructions in this category are the "miscellaneous" instructions,
8152which defy better classification.
8153
8154.. _i_icmp:
8155
8156'``icmp``' Instruction
8157^^^^^^^^^^^^^^^^^^^^^^
8158
8159Syntax:
8160"""""""
8161
8162::
8163
Tim Northover675a0962014-06-13 14:24:23 +00008164 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008165
8166Overview:
8167"""""""""
8168
8169The '``icmp``' instruction returns a boolean value or a vector of
8170boolean values based on comparison of its two integer, integer vector,
8171pointer, or pointer vector operands.
8172
8173Arguments:
8174""""""""""
8175
8176The '``icmp``' instruction takes three operands. The first operand is
8177the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008178not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008179
8180#. ``eq``: equal
8181#. ``ne``: not equal
8182#. ``ugt``: unsigned greater than
8183#. ``uge``: unsigned greater or equal
8184#. ``ult``: unsigned less than
8185#. ``ule``: unsigned less or equal
8186#. ``sgt``: signed greater than
8187#. ``sge``: signed greater or equal
8188#. ``slt``: signed less than
8189#. ``sle``: signed less or equal
8190
8191The remaining two arguments must be :ref:`integer <t_integer>` or
8192:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8193must also be identical types.
8194
8195Semantics:
8196""""""""""
8197
8198The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8199code given as ``cond``. The comparison performed always yields either an
8200:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8201
8202#. ``eq``: yields ``true`` if the operands are equal, ``false``
8203 otherwise. No sign interpretation is necessary or performed.
8204#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8205 otherwise. No sign interpretation is necessary or performed.
8206#. ``ugt``: interprets the operands as unsigned values and yields
8207 ``true`` if ``op1`` is greater than ``op2``.
8208#. ``uge``: interprets the operands as unsigned values and yields
8209 ``true`` if ``op1`` is greater than or equal to ``op2``.
8210#. ``ult``: interprets the operands as unsigned values and yields
8211 ``true`` if ``op1`` is less than ``op2``.
8212#. ``ule``: interprets the operands as unsigned values and yields
8213 ``true`` if ``op1`` is less than or equal to ``op2``.
8214#. ``sgt``: interprets the operands as signed values and yields ``true``
8215 if ``op1`` is greater than ``op2``.
8216#. ``sge``: interprets the operands as signed values and yields ``true``
8217 if ``op1`` is greater than or equal to ``op2``.
8218#. ``slt``: interprets the operands as signed values and yields ``true``
8219 if ``op1`` is less than ``op2``.
8220#. ``sle``: interprets the operands as signed values and yields ``true``
8221 if ``op1`` is less than or equal to ``op2``.
8222
8223If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8224are compared as if they were integers.
8225
8226If the operands are integer vectors, then they are compared element by
8227element. The result is an ``i1`` vector with the same number of elements
8228as the values being compared. Otherwise, the result is an ``i1``.
8229
8230Example:
8231""""""""
8232
8233.. code-block:: llvm
8234
8235 <result> = icmp eq i32 4, 5 ; yields: result=false
8236 <result> = icmp ne float* %X, %X ; yields: result=false
8237 <result> = icmp ult i16 4, 5 ; yields: result=true
8238 <result> = icmp sgt i16 4, 5 ; yields: result=false
8239 <result> = icmp ule i16 -4, 5 ; yields: result=false
8240 <result> = icmp sge i16 4, 5 ; yields: result=false
8241
Sean Silvab084af42012-12-07 10:36:55 +00008242.. _i_fcmp:
8243
8244'``fcmp``' Instruction
8245^^^^^^^^^^^^^^^^^^^^^^
8246
8247Syntax:
8248"""""""
8249
8250::
8251
James Molloy88eb5352015-07-10 12:52:00 +00008252 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008253
8254Overview:
8255"""""""""
8256
8257The '``fcmp``' instruction returns a boolean value or vector of boolean
8258values based on comparison of its operands.
8259
8260If the operands are floating point scalars, then the result type is a
8261boolean (:ref:`i1 <t_integer>`).
8262
8263If the operands are floating point vectors, then the result type is a
8264vector of boolean with the same number of elements as the operands being
8265compared.
8266
8267Arguments:
8268""""""""""
8269
8270The '``fcmp``' instruction takes three operands. The first operand is
8271the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008272not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008273
8274#. ``false``: no comparison, always returns false
8275#. ``oeq``: ordered and equal
8276#. ``ogt``: ordered and greater than
8277#. ``oge``: ordered and greater than or equal
8278#. ``olt``: ordered and less than
8279#. ``ole``: ordered and less than or equal
8280#. ``one``: ordered and not equal
8281#. ``ord``: ordered (no nans)
8282#. ``ueq``: unordered or equal
8283#. ``ugt``: unordered or greater than
8284#. ``uge``: unordered or greater than or equal
8285#. ``ult``: unordered or less than
8286#. ``ule``: unordered or less than or equal
8287#. ``une``: unordered or not equal
8288#. ``uno``: unordered (either nans)
8289#. ``true``: no comparison, always returns true
8290
8291*Ordered* means that neither operand is a QNAN while *unordered* means
8292that either operand may be a QNAN.
8293
8294Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8295point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8296type. They must have identical types.
8297
8298Semantics:
8299""""""""""
8300
8301The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8302condition code given as ``cond``. If the operands are vectors, then the
8303vectors are compared element by element. Each comparison performed
8304always yields an :ref:`i1 <t_integer>` result, as follows:
8305
8306#. ``false``: always yields ``false``, regardless of operands.
8307#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8308 is equal to ``op2``.
8309#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8310 is greater than ``op2``.
8311#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8312 is greater than or equal to ``op2``.
8313#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8314 is less than ``op2``.
8315#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8316 is less than or equal to ``op2``.
8317#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8318 is not equal to ``op2``.
8319#. ``ord``: yields ``true`` if both operands are not a QNAN.
8320#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8321 equal to ``op2``.
8322#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8323 greater than ``op2``.
8324#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8325 greater than or equal to ``op2``.
8326#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8327 less than ``op2``.
8328#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8329 less than or equal to ``op2``.
8330#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8331 not equal to ``op2``.
8332#. ``uno``: yields ``true`` if either operand is a QNAN.
8333#. ``true``: always yields ``true``, regardless of operands.
8334
James Molloy88eb5352015-07-10 12:52:00 +00008335The ``fcmp`` instruction can also optionally take any number of
8336:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8337otherwise unsafe floating point optimizations.
8338
8339Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8340only flags that have any effect on its semantics are those that allow
8341assumptions to be made about the values of input arguments; namely
8342``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8343
Sean Silvab084af42012-12-07 10:36:55 +00008344Example:
8345""""""""
8346
8347.. code-block:: llvm
8348
8349 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8350 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8351 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8352 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8353
Sean Silvab084af42012-12-07 10:36:55 +00008354.. _i_phi:
8355
8356'``phi``' Instruction
8357^^^^^^^^^^^^^^^^^^^^^
8358
8359Syntax:
8360"""""""
8361
8362::
8363
8364 <result> = phi <ty> [ <val0>, <label0>], ...
8365
8366Overview:
8367"""""""""
8368
8369The '``phi``' instruction is used to implement the φ node in the SSA
8370graph representing the function.
8371
8372Arguments:
8373""""""""""
8374
8375The type of the incoming values is specified with the first type field.
8376After this, the '``phi``' instruction takes a list of pairs as
8377arguments, with one pair for each predecessor basic block of the current
8378block. Only values of :ref:`first class <t_firstclass>` type may be used as
8379the value arguments to the PHI node. Only labels may be used as the
8380label arguments.
8381
8382There must be no non-phi instructions between the start of a basic block
8383and the PHI instructions: i.e. PHI instructions must be first in a basic
8384block.
8385
8386For the purposes of the SSA form, the use of each incoming value is
8387deemed to occur on the edge from the corresponding predecessor block to
8388the current block (but after any definition of an '``invoke``'
8389instruction's return value on the same edge).
8390
8391Semantics:
8392""""""""""
8393
8394At runtime, the '``phi``' instruction logically takes on the value
8395specified by the pair corresponding to the predecessor basic block that
8396executed just prior to the current block.
8397
8398Example:
8399""""""""
8400
8401.. code-block:: llvm
8402
8403 Loop: ; Infinite loop that counts from 0 on up...
8404 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8405 %nextindvar = add i32 %indvar, 1
8406 br label %Loop
8407
8408.. _i_select:
8409
8410'``select``' Instruction
8411^^^^^^^^^^^^^^^^^^^^^^^^
8412
8413Syntax:
8414"""""""
8415
8416::
8417
8418 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8419
8420 selty is either i1 or {<N x i1>}
8421
8422Overview:
8423"""""""""
8424
8425The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008426condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008427
8428Arguments:
8429""""""""""
8430
8431The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8432values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008433class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008434
8435Semantics:
8436""""""""""
8437
8438If the condition is an i1 and it evaluates to 1, the instruction returns
8439the first value argument; otherwise, it returns the second value
8440argument.
8441
8442If the condition is a vector of i1, then the value arguments must be
8443vectors of the same size, and the selection is done element by element.
8444
David Majnemer40a0b592015-03-03 22:45:47 +00008445If the condition is an i1 and the value arguments are vectors of the
8446same size, then an entire vector is selected.
8447
Sean Silvab084af42012-12-07 10:36:55 +00008448Example:
8449""""""""
8450
8451.. code-block:: llvm
8452
8453 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8454
8455.. _i_call:
8456
8457'``call``' Instruction
8458^^^^^^^^^^^^^^^^^^^^^^
8459
8460Syntax:
8461"""""""
8462
8463::
8464
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008465 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008466 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008467
8468Overview:
8469"""""""""
8470
8471The '``call``' instruction represents a simple function call.
8472
8473Arguments:
8474""""""""""
8475
8476This instruction requires several arguments:
8477
Reid Kleckner5772b772014-04-24 20:14:34 +00008478#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008479 should perform tail call optimization. The ``tail`` marker is a hint that
8480 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008481 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008482 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008483
8484 #. The call will not cause unbounded stack growth if it is part of a
8485 recursive cycle in the call graph.
8486 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8487 forwarded in place.
8488
8489 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008490 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008491 rules:
8492
8493 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8494 or a pointer bitcast followed by a ret instruction.
8495 - The ret instruction must return the (possibly bitcasted) value
8496 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008497 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008498 parameters or return types may differ in pointee type, but not
8499 in address space.
8500 - The calling conventions of the caller and callee must match.
8501 - All ABI-impacting function attributes, such as sret, byval, inreg,
8502 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008503 - The callee must be varargs iff the caller is varargs. Bitcasting a
8504 non-varargs function to the appropriate varargs type is legal so
8505 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008506
8507 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8508 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008509
8510 - Caller and callee both have the calling convention ``fastcc``.
8511 - The call is in tail position (ret immediately follows call and ret
8512 uses value of call or is void).
8513 - Option ``-tailcallopt`` is enabled, or
8514 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008515 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008516 met. <CodeGenerator.html#tailcallopt>`_
8517
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008518#. The optional ``notail`` marker indicates that the optimizers should not add
8519 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8520 call optimization from being performed on the call.
8521
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008522#. The optional ``fast-math flags`` marker indicates that the call has one or more
8523 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8524 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8525 for calls that return a floating-point scalar or vector type.
8526
Sean Silvab084af42012-12-07 10:36:55 +00008527#. The optional "cconv" marker indicates which :ref:`calling
8528 convention <callingconv>` the call should use. If none is
8529 specified, the call defaults to using C calling conventions. The
8530 calling convention of the call must match the calling convention of
8531 the target function, or else the behavior is undefined.
8532#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8533 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8534 are valid here.
8535#. '``ty``': the type of the call instruction itself which is also the
8536 type of the return value. Functions that return no value are marked
8537 ``void``.
8538#. '``fnty``': shall be the signature of the pointer to function value
8539 being invoked. The argument types must match the types implied by
8540 this signature. This type can be omitted if the function is not
8541 varargs and if the function type does not return a pointer to a
8542 function.
8543#. '``fnptrval``': An LLVM value containing a pointer to a function to
8544 be invoked. In most cases, this is a direct function invocation, but
8545 indirect ``call``'s are just as possible, calling an arbitrary pointer
8546 to function value.
8547#. '``function args``': argument list whose types match the function
8548 signature argument types and parameter attributes. All arguments must
8549 be of :ref:`first class <t_firstclass>` type. If the function signature
8550 indicates the function accepts a variable number of arguments, the
8551 extra arguments can be specified.
8552#. The optional :ref:`function attributes <fnattrs>` list. Only
8553 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8554 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008555#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008556
8557Semantics:
8558""""""""""
8559
8560The '``call``' instruction is used to cause control flow to transfer to
8561a specified function, with its incoming arguments bound to the specified
8562values. Upon a '``ret``' instruction in the called function, control
8563flow continues with the instruction after the function call, and the
8564return value of the function is bound to the result argument.
8565
8566Example:
8567""""""""
8568
8569.. code-block:: llvm
8570
8571 %retval = call i32 @test(i32 %argc)
8572 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8573 %X = tail call i32 @foo() ; yields i32
8574 %Y = tail call fastcc i32 @foo() ; yields i32
8575 call void %foo(i8 97 signext)
8576
8577 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008578 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008579 %gr = extractvalue %struct.A %r, 0 ; yields i32
8580 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8581 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8582 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8583
8584llvm treats calls to some functions with names and arguments that match
8585the standard C99 library as being the C99 library functions, and may
8586perform optimizations or generate code for them under that assumption.
8587This is something we'd like to change in the future to provide better
8588support for freestanding environments and non-C-based languages.
8589
8590.. _i_va_arg:
8591
8592'``va_arg``' Instruction
8593^^^^^^^^^^^^^^^^^^^^^^^^
8594
8595Syntax:
8596"""""""
8597
8598::
8599
8600 <resultval> = va_arg <va_list*> <arglist>, <argty>
8601
8602Overview:
8603"""""""""
8604
8605The '``va_arg``' instruction is used to access arguments passed through
8606the "variable argument" area of a function call. It is used to implement
8607the ``va_arg`` macro in C.
8608
8609Arguments:
8610""""""""""
8611
8612This instruction takes a ``va_list*`` value and the type of the
8613argument. It returns a value of the specified argument type and
8614increments the ``va_list`` to point to the next argument. The actual
8615type of ``va_list`` is target specific.
8616
8617Semantics:
8618""""""""""
8619
8620The '``va_arg``' instruction loads an argument of the specified type
8621from the specified ``va_list`` and causes the ``va_list`` to point to
8622the next argument. For more information, see the variable argument
8623handling :ref:`Intrinsic Functions <int_varargs>`.
8624
8625It is legal for this instruction to be called in a function which does
8626not take a variable number of arguments, for example, the ``vfprintf``
8627function.
8628
8629``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8630function <intrinsics>` because it takes a type as an argument.
8631
8632Example:
8633""""""""
8634
8635See the :ref:`variable argument processing <int_varargs>` section.
8636
8637Note that the code generator does not yet fully support va\_arg on many
8638targets. Also, it does not currently support va\_arg with aggregate
8639types on any target.
8640
8641.. _i_landingpad:
8642
8643'``landingpad``' Instruction
8644^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8645
8646Syntax:
8647"""""""
8648
8649::
8650
David Majnemer7fddecc2015-06-17 20:52:32 +00008651 <resultval> = landingpad <resultty> <clause>+
8652 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008653
8654 <clause> := catch <type> <value>
8655 <clause> := filter <array constant type> <array constant>
8656
8657Overview:
8658"""""""""
8659
8660The '``landingpad``' instruction is used by `LLVM's exception handling
8661system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008662is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008663code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008664defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008665re-entry to the function. The ``resultval`` has the type ``resultty``.
8666
8667Arguments:
8668""""""""""
8669
David Majnemer7fddecc2015-06-17 20:52:32 +00008670The optional
Sean Silvab084af42012-12-07 10:36:55 +00008671``cleanup`` flag indicates that the landing pad block is a cleanup.
8672
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008673A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008674contains the global variable representing the "type" that may be caught
8675or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8676clause takes an array constant as its argument. Use
8677"``[0 x i8**] undef``" for a filter which cannot throw. The
8678'``landingpad``' instruction must contain *at least* one ``clause`` or
8679the ``cleanup`` flag.
8680
8681Semantics:
8682""""""""""
8683
8684The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008685:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008686therefore the "result type" of the ``landingpad`` instruction. As with
8687calling conventions, how the personality function results are
8688represented in LLVM IR is target specific.
8689
8690The clauses are applied in order from top to bottom. If two
8691``landingpad`` instructions are merged together through inlining, the
8692clauses from the calling function are appended to the list of clauses.
8693When the call stack is being unwound due to an exception being thrown,
8694the exception is compared against each ``clause`` in turn. If it doesn't
8695match any of the clauses, and the ``cleanup`` flag is not set, then
8696unwinding continues further up the call stack.
8697
8698The ``landingpad`` instruction has several restrictions:
8699
8700- A landing pad block is a basic block which is the unwind destination
8701 of an '``invoke``' instruction.
8702- A landing pad block must have a '``landingpad``' instruction as its
8703 first non-PHI instruction.
8704- There can be only one '``landingpad``' instruction within the landing
8705 pad block.
8706- A basic block that is not a landing pad block may not include a
8707 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008708
8709Example:
8710""""""""
8711
8712.. code-block:: llvm
8713
8714 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008715 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008716 catch i8** @_ZTIi
8717 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008718 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008719 cleanup
8720 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008721 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008722 catch i8** @_ZTIi
8723 filter [1 x i8**] [@_ZTId]
8724
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008725.. _i_catchpad:
8726
8727'``catchpad``' Instruction
8728^^^^^^^^^^^^^^^^^^^^^^^^^^
8729
8730Syntax:
8731"""""""
8732
8733::
8734
8735 <resultval> = catchpad within <catchswitch> [<args>*]
8736
8737Overview:
8738"""""""""
8739
8740The '``catchpad``' instruction is used by `LLVM's exception handling
8741system <ExceptionHandling.html#overview>`_ to specify that a basic block
8742begins a catch handler --- one where a personality routine attempts to transfer
8743control to catch an exception.
8744
8745Arguments:
8746""""""""""
8747
8748The ``catchswitch`` operand must always be a token produced by a
8749:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8750ensures that each ``catchpad`` has exactly one predecessor block, and it always
8751terminates in a ``catchswitch``.
8752
8753The ``args`` correspond to whatever information the personality routine
8754requires to know if this is an appropriate handler for the exception. Control
8755will transfer to the ``catchpad`` if this is the first appropriate handler for
8756the exception.
8757
8758The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8759``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8760pads.
8761
8762Semantics:
8763""""""""""
8764
8765When the call stack is being unwound due to an exception being thrown, the
8766exception is compared against the ``args``. If it doesn't match, control will
8767not reach the ``catchpad`` instruction. The representation of ``args`` is
8768entirely target and personality function-specific.
8769
8770Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8771instruction must be the first non-phi of its parent basic block.
8772
8773The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8774instructions is described in the
8775`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8776
8777When a ``catchpad`` has been "entered" but not yet "exited" (as
8778described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8779it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8780that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8781
8782Example:
8783""""""""
8784
8785.. code-block:: llvm
8786
8787 dispatch:
8788 %cs = catchswitch within none [label %handler0] unwind to caller
8789 ;; A catch block which can catch an integer.
8790 handler0:
8791 %tok = catchpad within %cs [i8** @_ZTIi]
8792
David Majnemer654e1302015-07-31 17:58:14 +00008793.. _i_cleanuppad:
8794
8795'``cleanuppad``' Instruction
8796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8797
8798Syntax:
8799"""""""
8800
8801::
8802
David Majnemer8a1c45d2015-12-12 05:38:55 +00008803 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008804
8805Overview:
8806"""""""""
8807
8808The '``cleanuppad``' instruction is used by `LLVM's exception handling
8809system <ExceptionHandling.html#overview>`_ to specify that a basic block
8810is a cleanup block --- one where a personality routine attempts to
8811transfer control to run cleanup actions.
8812The ``args`` correspond to whatever additional
8813information the :ref:`personality function <personalityfn>` requires to
8814execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008815The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008816match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8817The ``parent`` argument is the token of the funclet that contains the
8818``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8819this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008820
8821Arguments:
8822""""""""""
8823
8824The instruction takes a list of arbitrary values which are interpreted
8825by the :ref:`personality function <personalityfn>`.
8826
8827Semantics:
8828""""""""""
8829
David Majnemer654e1302015-07-31 17:58:14 +00008830When the call stack is being unwound due to an exception being thrown,
8831the :ref:`personality function <personalityfn>` transfers control to the
8832``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008833As with calling conventions, how the personality function results are
8834represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008835
8836The ``cleanuppad`` instruction has several restrictions:
8837
8838- A cleanup block is a basic block which is the unwind destination of
8839 an exceptional instruction.
8840- A cleanup block must have a '``cleanuppad``' instruction as its
8841 first non-PHI instruction.
8842- There can be only one '``cleanuppad``' instruction within the
8843 cleanup block.
8844- A basic block that is not a cleanup block may not include a
8845 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008846
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008847When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8848described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8849it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8850that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008851
David Majnemer654e1302015-07-31 17:58:14 +00008852Example:
8853""""""""
8854
8855.. code-block:: llvm
8856
David Majnemer8a1c45d2015-12-12 05:38:55 +00008857 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008858
Sean Silvab084af42012-12-07 10:36:55 +00008859.. _intrinsics:
8860
8861Intrinsic Functions
8862===================
8863
8864LLVM supports the notion of an "intrinsic function". These functions
8865have well known names and semantics and are required to follow certain
8866restrictions. Overall, these intrinsics represent an extension mechanism
8867for the LLVM language that does not require changing all of the
8868transformations in LLVM when adding to the language (or the bitcode
8869reader/writer, the parser, etc...).
8870
8871Intrinsic function names must all start with an "``llvm.``" prefix. This
8872prefix is reserved in LLVM for intrinsic names; thus, function names may
8873not begin with this prefix. Intrinsic functions must always be external
8874functions: you cannot define the body of intrinsic functions. Intrinsic
8875functions may only be used in call or invoke instructions: it is illegal
8876to take the address of an intrinsic function. Additionally, because
8877intrinsic functions are part of the LLVM language, it is required if any
8878are added that they be documented here.
8879
8880Some intrinsic functions can be overloaded, i.e., the intrinsic
8881represents a family of functions that perform the same operation but on
8882different data types. Because LLVM can represent over 8 million
8883different integer types, overloading is used commonly to allow an
8884intrinsic function to operate on any integer type. One or more of the
8885argument types or the result type can be overloaded to accept any
8886integer type. Argument types may also be defined as exactly matching a
8887previous argument's type or the result type. This allows an intrinsic
8888function which accepts multiple arguments, but needs all of them to be
8889of the same type, to only be overloaded with respect to a single
8890argument or the result.
8891
8892Overloaded intrinsics will have the names of its overloaded argument
8893types encoded into its function name, each preceded by a period. Only
8894those types which are overloaded result in a name suffix. Arguments
8895whose type is matched against another type do not. For example, the
8896``llvm.ctpop`` function can take an integer of any width and returns an
8897integer of exactly the same integer width. This leads to a family of
8898functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8899``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8900overloaded, and only one type suffix is required. Because the argument's
8901type is matched against the return type, it does not require its own
8902name suffix.
8903
8904To learn how to add an intrinsic function, please see the `Extending
8905LLVM Guide <ExtendingLLVM.html>`_.
8906
8907.. _int_varargs:
8908
8909Variable Argument Handling Intrinsics
8910-------------------------------------
8911
8912Variable argument support is defined in LLVM with the
8913:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8914functions. These functions are related to the similarly named macros
8915defined in the ``<stdarg.h>`` header file.
8916
8917All of these functions operate on arguments that use a target-specific
8918value type "``va_list``". The LLVM assembly language reference manual
8919does not define what this type is, so all transformations should be
8920prepared to handle these functions regardless of the type used.
8921
8922This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8923variable argument handling intrinsic functions are used.
8924
8925.. code-block:: llvm
8926
Tim Northoverab60bb92014-11-02 01:21:51 +00008927 ; This struct is different for every platform. For most platforms,
8928 ; it is merely an i8*.
8929 %struct.va_list = type { i8* }
8930
8931 ; For Unix x86_64 platforms, va_list is the following struct:
8932 ; %struct.va_list = type { i32, i32, i8*, i8* }
8933
Sean Silvab084af42012-12-07 10:36:55 +00008934 define i32 @test(i32 %X, ...) {
8935 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008936 %ap = alloca %struct.va_list
8937 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008938 call void @llvm.va_start(i8* %ap2)
8939
8940 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008941 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008942
8943 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8944 %aq = alloca i8*
8945 %aq2 = bitcast i8** %aq to i8*
8946 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8947 call void @llvm.va_end(i8* %aq2)
8948
8949 ; Stop processing of arguments.
8950 call void @llvm.va_end(i8* %ap2)
8951 ret i32 %tmp
8952 }
8953
8954 declare void @llvm.va_start(i8*)
8955 declare void @llvm.va_copy(i8*, i8*)
8956 declare void @llvm.va_end(i8*)
8957
8958.. _int_va_start:
8959
8960'``llvm.va_start``' Intrinsic
8961^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8962
8963Syntax:
8964"""""""
8965
8966::
8967
Nick Lewycky04f6de02013-09-11 22:04:52 +00008968 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008969
8970Overview:
8971"""""""""
8972
8973The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8974subsequent use by ``va_arg``.
8975
8976Arguments:
8977""""""""""
8978
8979The argument is a pointer to a ``va_list`` element to initialize.
8980
8981Semantics:
8982""""""""""
8983
8984The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8985available in C. In a target-dependent way, it initializes the
8986``va_list`` element to which the argument points, so that the next call
8987to ``va_arg`` will produce the first variable argument passed to the
8988function. Unlike the C ``va_start`` macro, this intrinsic does not need
8989to know the last argument of the function as the compiler can figure
8990that out.
8991
8992'``llvm.va_end``' Intrinsic
8993^^^^^^^^^^^^^^^^^^^^^^^^^^^
8994
8995Syntax:
8996"""""""
8997
8998::
8999
9000 declare void @llvm.va_end(i8* <arglist>)
9001
9002Overview:
9003"""""""""
9004
9005The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9006initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9007
9008Arguments:
9009""""""""""
9010
9011The argument is a pointer to a ``va_list`` to destroy.
9012
9013Semantics:
9014""""""""""
9015
9016The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9017available in C. In a target-dependent way, it destroys the ``va_list``
9018element to which the argument points. Calls to
9019:ref:`llvm.va_start <int_va_start>` and
9020:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9021``llvm.va_end``.
9022
9023.. _int_va_copy:
9024
9025'``llvm.va_copy``' Intrinsic
9026^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9027
9028Syntax:
9029"""""""
9030
9031::
9032
9033 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9034
9035Overview:
9036"""""""""
9037
9038The '``llvm.va_copy``' intrinsic copies the current argument position
9039from the source argument list to the destination argument list.
9040
9041Arguments:
9042""""""""""
9043
9044The first argument is a pointer to a ``va_list`` element to initialize.
9045The second argument is a pointer to a ``va_list`` element to copy from.
9046
9047Semantics:
9048""""""""""
9049
9050The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9051available in C. In a target-dependent way, it copies the source
9052``va_list`` element into the destination ``va_list`` element. This
9053intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9054arbitrarily complex and require, for example, memory allocation.
9055
9056Accurate Garbage Collection Intrinsics
9057--------------------------------------
9058
Philip Reamesc5b0f562015-02-25 23:52:06 +00009059LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009060(GC) requires the frontend to generate code containing appropriate intrinsic
9061calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009062intrinsics in a manner which is appropriate for the target collector.
9063
Sean Silvab084af42012-12-07 10:36:55 +00009064These intrinsics allow identification of :ref:`GC roots on the
9065stack <int_gcroot>`, as well as garbage collector implementations that
9066require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009067Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009068these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009069details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009070
Philip Reamesf80bbff2015-02-25 23:45:20 +00009071Experimental Statepoint Intrinsics
9072^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9073
9074LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009075collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009076to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009077:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009078differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009079<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009080described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009081
9082.. _int_gcroot:
9083
9084'``llvm.gcroot``' Intrinsic
9085^^^^^^^^^^^^^^^^^^^^^^^^^^^
9086
9087Syntax:
9088"""""""
9089
9090::
9091
9092 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9093
9094Overview:
9095"""""""""
9096
9097The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9098the code generator, and allows some metadata to be associated with it.
9099
9100Arguments:
9101""""""""""
9102
9103The first argument specifies the address of a stack object that contains
9104the root pointer. The second pointer (which must be either a constant or
9105a global value address) contains the meta-data to be associated with the
9106root.
9107
9108Semantics:
9109""""""""""
9110
9111At runtime, a call to this intrinsic stores a null pointer into the
9112"ptrloc" location. At compile-time, the code generator generates
9113information to allow the runtime to find the pointer at GC safe points.
9114The '``llvm.gcroot``' intrinsic may only be used in a function which
9115:ref:`specifies a GC algorithm <gc>`.
9116
9117.. _int_gcread:
9118
9119'``llvm.gcread``' Intrinsic
9120^^^^^^^^^^^^^^^^^^^^^^^^^^^
9121
9122Syntax:
9123"""""""
9124
9125::
9126
9127 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9128
9129Overview:
9130"""""""""
9131
9132The '``llvm.gcread``' intrinsic identifies reads of references from heap
9133locations, allowing garbage collector implementations that require read
9134barriers.
9135
9136Arguments:
9137""""""""""
9138
9139The second argument is the address to read from, which should be an
9140address allocated from the garbage collector. The first object is a
9141pointer to the start of the referenced object, if needed by the language
9142runtime (otherwise null).
9143
9144Semantics:
9145""""""""""
9146
9147The '``llvm.gcread``' intrinsic has the same semantics as a load
9148instruction, but may be replaced with substantially more complex code by
9149the garbage collector runtime, as needed. The '``llvm.gcread``'
9150intrinsic may only be used in a function which :ref:`specifies a GC
9151algorithm <gc>`.
9152
9153.. _int_gcwrite:
9154
9155'``llvm.gcwrite``' Intrinsic
9156^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9157
9158Syntax:
9159"""""""
9160
9161::
9162
9163 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9164
9165Overview:
9166"""""""""
9167
9168The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9169locations, allowing garbage collector implementations that require write
9170barriers (such as generational or reference counting collectors).
9171
9172Arguments:
9173""""""""""
9174
9175The first argument is the reference to store, the second is the start of
9176the object to store it to, and the third is the address of the field of
9177Obj to store to. If the runtime does not require a pointer to the
9178object, Obj may be null.
9179
9180Semantics:
9181""""""""""
9182
9183The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9184instruction, but may be replaced with substantially more complex code by
9185the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9186intrinsic may only be used in a function which :ref:`specifies a GC
9187algorithm <gc>`.
9188
9189Code Generator Intrinsics
9190-------------------------
9191
9192These intrinsics are provided by LLVM to expose special features that
9193may only be implemented with code generator support.
9194
9195'``llvm.returnaddress``' Intrinsic
9196^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9197
9198Syntax:
9199"""""""
9200
9201::
9202
9203 declare i8 *@llvm.returnaddress(i32 <level>)
9204
9205Overview:
9206"""""""""
9207
9208The '``llvm.returnaddress``' intrinsic attempts to compute a
9209target-specific value indicating the return address of the current
9210function or one of its callers.
9211
9212Arguments:
9213""""""""""
9214
9215The argument to this intrinsic indicates which function to return the
9216address for. Zero indicates the calling function, one indicates its
9217caller, etc. The argument is **required** to be a constant integer
9218value.
9219
9220Semantics:
9221""""""""""
9222
9223The '``llvm.returnaddress``' intrinsic either returns a pointer
9224indicating the return address of the specified call frame, or zero if it
9225cannot be identified. The value returned by this intrinsic is likely to
9226be incorrect or 0 for arguments other than zero, so it should only be
9227used for debugging purposes.
9228
9229Note that calling this intrinsic does not prevent function inlining or
9230other aggressive transformations, so the value returned may not be that
9231of the obvious source-language caller.
9232
9233'``llvm.frameaddress``' Intrinsic
9234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9235
9236Syntax:
9237"""""""
9238
9239::
9240
9241 declare i8* @llvm.frameaddress(i32 <level>)
9242
9243Overview:
9244"""""""""
9245
9246The '``llvm.frameaddress``' intrinsic attempts to return the
9247target-specific frame pointer value for the specified stack frame.
9248
9249Arguments:
9250""""""""""
9251
9252The argument to this intrinsic indicates which function to return the
9253frame pointer for. Zero indicates the calling function, one indicates
9254its caller, etc. The argument is **required** to be a constant integer
9255value.
9256
9257Semantics:
9258""""""""""
9259
9260The '``llvm.frameaddress``' intrinsic either returns a pointer
9261indicating the frame address of the specified call frame, or zero if it
9262cannot be identified. The value returned by this intrinsic is likely to
9263be incorrect or 0 for arguments other than zero, so it should only be
9264used for debugging purposes.
9265
9266Note that calling this intrinsic does not prevent function inlining or
9267other aggressive transformations, so the value returned may not be that
9268of the obvious source-language caller.
9269
Reid Kleckner60381792015-07-07 22:25:32 +00009270'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009271^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9272
9273Syntax:
9274"""""""
9275
9276::
9277
Reid Kleckner60381792015-07-07 22:25:32 +00009278 declare void @llvm.localescape(...)
9279 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009280
9281Overview:
9282"""""""""
9283
Reid Kleckner60381792015-07-07 22:25:32 +00009284The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9285allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009286live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009287computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009288
9289Arguments:
9290""""""""""
9291
Reid Kleckner60381792015-07-07 22:25:32 +00009292All arguments to '``llvm.localescape``' must be pointers to static allocas or
9293casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009294once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009295
Reid Kleckner60381792015-07-07 22:25:32 +00009296The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009297bitcasted pointer to a function defined in the current module. The code
9298generator cannot determine the frame allocation offset of functions defined in
9299other modules.
9300
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009301The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9302call frame that is currently live. The return value of '``llvm.localaddress``'
9303is one way to produce such a value, but various runtimes also expose a suitable
9304pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009305
Reid Kleckner60381792015-07-07 22:25:32 +00009306The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9307'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009308
Reid Klecknere9b89312015-01-13 00:48:10 +00009309Semantics:
9310""""""""""
9311
Reid Kleckner60381792015-07-07 22:25:32 +00009312These intrinsics allow a group of functions to share access to a set of local
9313stack allocations of a one parent function. The parent function may call the
9314'``llvm.localescape``' intrinsic once from the function entry block, and the
9315child functions can use '``llvm.localrecover``' to access the escaped allocas.
9316The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9317the escaped allocas are allocated, which would break attempts to use
9318'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009319
Renato Golinc7aea402014-05-06 16:51:25 +00009320.. _int_read_register:
9321.. _int_write_register:
9322
9323'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9324^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9325
9326Syntax:
9327"""""""
9328
9329::
9330
9331 declare i32 @llvm.read_register.i32(metadata)
9332 declare i64 @llvm.read_register.i64(metadata)
9333 declare void @llvm.write_register.i32(metadata, i32 @value)
9334 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009335 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009336
9337Overview:
9338"""""""""
9339
9340The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9341provides access to the named register. The register must be valid on
9342the architecture being compiled to. The type needs to be compatible
9343with the register being read.
9344
9345Semantics:
9346""""""""""
9347
9348The '``llvm.read_register``' intrinsic returns the current value of the
9349register, where possible. The '``llvm.write_register``' intrinsic sets
9350the current value of the register, where possible.
9351
9352This is useful to implement named register global variables that need
9353to always be mapped to a specific register, as is common practice on
9354bare-metal programs including OS kernels.
9355
9356The compiler doesn't check for register availability or use of the used
9357register in surrounding code, including inline assembly. Because of that,
9358allocatable registers are not supported.
9359
9360Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009361architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009362work is needed to support other registers and even more so, allocatable
9363registers.
9364
Sean Silvab084af42012-12-07 10:36:55 +00009365.. _int_stacksave:
9366
9367'``llvm.stacksave``' Intrinsic
9368^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9369
9370Syntax:
9371"""""""
9372
9373::
9374
9375 declare i8* @llvm.stacksave()
9376
9377Overview:
9378"""""""""
9379
9380The '``llvm.stacksave``' intrinsic is used to remember the current state
9381of the function stack, for use with
9382:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9383implementing language features like scoped automatic variable sized
9384arrays in C99.
9385
9386Semantics:
9387""""""""""
9388
9389This intrinsic returns a opaque pointer value that can be passed to
9390:ref:`llvm.stackrestore <int_stackrestore>`. When an
9391``llvm.stackrestore`` intrinsic is executed with a value saved from
9392``llvm.stacksave``, it effectively restores the state of the stack to
9393the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9394practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9395were allocated after the ``llvm.stacksave`` was executed.
9396
9397.. _int_stackrestore:
9398
9399'``llvm.stackrestore``' Intrinsic
9400^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9401
9402Syntax:
9403"""""""
9404
9405::
9406
9407 declare void @llvm.stackrestore(i8* %ptr)
9408
9409Overview:
9410"""""""""
9411
9412The '``llvm.stackrestore``' intrinsic is used to restore the state of
9413the function stack to the state it was in when the corresponding
9414:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9415useful for implementing language features like scoped automatic variable
9416sized arrays in C99.
9417
9418Semantics:
9419""""""""""
9420
9421See the description for :ref:`llvm.stacksave <int_stacksave>`.
9422
Yury Gribovd7dbb662015-12-01 11:40:55 +00009423.. _int_get_dynamic_area_offset:
9424
9425'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009426^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009427
9428Syntax:
9429"""""""
9430
9431::
9432
9433 declare i32 @llvm.get.dynamic.area.offset.i32()
9434 declare i64 @llvm.get.dynamic.area.offset.i64()
9435
9436 Overview:
9437 """""""""
9438
9439 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9440 get the offset from native stack pointer to the address of the most
9441 recent dynamic alloca on the caller's stack. These intrinsics are
9442 intendend for use in combination with
9443 :ref:`llvm.stacksave <int_stacksave>` to get a
9444 pointer to the most recent dynamic alloca. This is useful, for example,
9445 for AddressSanitizer's stack unpoisoning routines.
9446
9447Semantics:
9448""""""""""
9449
9450 These intrinsics return a non-negative integer value that can be used to
9451 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9452 on the caller's stack. In particular, for targets where stack grows downwards,
9453 adding this offset to the native stack pointer would get the address of the most
9454 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9455 complicated, because substracting this value from stack pointer would get the address
9456 one past the end of the most recent dynamic alloca.
9457
9458 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9459 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9460 compile-time-known constant value.
9461
9462 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9463 must match the target's generic address space's (address space 0) pointer type.
9464
Sean Silvab084af42012-12-07 10:36:55 +00009465'``llvm.prefetch``' Intrinsic
9466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9467
9468Syntax:
9469"""""""
9470
9471::
9472
9473 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9474
9475Overview:
9476"""""""""
9477
9478The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9479insert a prefetch instruction if supported; otherwise, it is a noop.
9480Prefetches have no effect on the behavior of the program but can change
9481its performance characteristics.
9482
9483Arguments:
9484""""""""""
9485
9486``address`` is the address to be prefetched, ``rw`` is the specifier
9487determining if the fetch should be for a read (0) or write (1), and
9488``locality`` is a temporal locality specifier ranging from (0) - no
9489locality, to (3) - extremely local keep in cache. The ``cache type``
9490specifies whether the prefetch is performed on the data (1) or
9491instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9492arguments must be constant integers.
9493
9494Semantics:
9495""""""""""
9496
9497This intrinsic does not modify the behavior of the program. In
9498particular, prefetches cannot trap and do not produce a value. On
9499targets that support this intrinsic, the prefetch can provide hints to
9500the processor cache for better performance.
9501
9502'``llvm.pcmarker``' Intrinsic
9503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9504
9505Syntax:
9506"""""""
9507
9508::
9509
9510 declare void @llvm.pcmarker(i32 <id>)
9511
9512Overview:
9513"""""""""
9514
9515The '``llvm.pcmarker``' intrinsic is a method to export a Program
9516Counter (PC) in a region of code to simulators and other tools. The
9517method is target specific, but it is expected that the marker will use
9518exported symbols to transmit the PC of the marker. The marker makes no
9519guarantees that it will remain with any specific instruction after
9520optimizations. It is possible that the presence of a marker will inhibit
9521optimizations. The intended use is to be inserted after optimizations to
9522allow correlations of simulation runs.
9523
9524Arguments:
9525""""""""""
9526
9527``id`` is a numerical id identifying the marker.
9528
9529Semantics:
9530""""""""""
9531
9532This intrinsic does not modify the behavior of the program. Backends
9533that do not support this intrinsic may ignore it.
9534
9535'``llvm.readcyclecounter``' Intrinsic
9536^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9537
9538Syntax:
9539"""""""
9540
9541::
9542
9543 declare i64 @llvm.readcyclecounter()
9544
9545Overview:
9546"""""""""
9547
9548The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9549counter register (or similar low latency, high accuracy clocks) on those
9550targets that support it. On X86, it should map to RDTSC. On Alpha, it
9551should map to RPCC. As the backing counters overflow quickly (on the
9552order of 9 seconds on alpha), this should only be used for small
9553timings.
9554
9555Semantics:
9556""""""""""
9557
9558When directly supported, reading the cycle counter should not modify any
9559memory. Implementations are allowed to either return a application
9560specific value or a system wide value. On backends without support, this
9561is lowered to a constant 0.
9562
Tim Northoverbc933082013-05-23 19:11:20 +00009563Note that runtime support may be conditional on the privilege-level code is
9564running at and the host platform.
9565
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009566'``llvm.clear_cache``' Intrinsic
9567^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9568
9569Syntax:
9570"""""""
9571
9572::
9573
9574 declare void @llvm.clear_cache(i8*, i8*)
9575
9576Overview:
9577"""""""""
9578
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009579The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9580in the specified range to the execution unit of the processor. On
9581targets with non-unified instruction and data cache, the implementation
9582flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009583
9584Semantics:
9585""""""""""
9586
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009587On platforms with coherent instruction and data caches (e.g. x86), this
9588intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009589cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009590instructions or a system call, if cache flushing requires special
9591privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009592
Sean Silvad02bf3e2014-04-07 22:29:53 +00009593The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009594time library.
Renato Golin93010e62014-03-26 14:01:32 +00009595
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009596This instrinsic does *not* empty the instruction pipeline. Modifications
9597of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009598
Justin Bogner61ba2e32014-12-08 18:02:35 +00009599'``llvm.instrprof_increment``' Intrinsic
9600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9601
9602Syntax:
9603"""""""
9604
9605::
9606
9607 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9608 i32 <num-counters>, i32 <index>)
9609
9610Overview:
9611"""""""""
9612
9613The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9614frontend for use with instrumentation based profiling. These will be
9615lowered by the ``-instrprof`` pass to generate execution counts of a
9616program at runtime.
9617
9618Arguments:
9619""""""""""
9620
9621The first argument is a pointer to a global variable containing the
9622name of the entity being instrumented. This should generally be the
9623(mangled) function name for a set of counters.
9624
9625The second argument is a hash value that can be used by the consumer
9626of the profile data to detect changes to the instrumented source, and
9627the third is the number of counters associated with ``name``. It is an
9628error if ``hash`` or ``num-counters`` differ between two instances of
9629``instrprof_increment`` that refer to the same name.
9630
9631The last argument refers to which of the counters for ``name`` should
9632be incremented. It should be a value between 0 and ``num-counters``.
9633
9634Semantics:
9635""""""""""
9636
9637This intrinsic represents an increment of a profiling counter. It will
9638cause the ``-instrprof`` pass to generate the appropriate data
9639structures and the code to increment the appropriate value, in a
9640format that can be written out by a compiler runtime and consumed via
9641the ``llvm-profdata`` tool.
9642
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009643'``llvm.instrprof_value_profile``' Intrinsic
9644^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9645
9646Syntax:
9647"""""""
9648
9649::
9650
9651 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9652 i64 <value>, i32 <value_kind>,
9653 i32 <index>)
9654
9655Overview:
9656"""""""""
9657
9658The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9659frontend for use with instrumentation based profiling. This will be
9660lowered by the ``-instrprof`` pass to find out the target values,
9661instrumented expressions take in a program at runtime.
9662
9663Arguments:
9664""""""""""
9665
9666The first argument is a pointer to a global variable containing the
9667name of the entity being instrumented. ``name`` should generally be the
9668(mangled) function name for a set of counters.
9669
9670The second argument is a hash value that can be used by the consumer
9671of the profile data to detect changes to the instrumented source. It
9672is an error if ``hash`` differs between two instances of
9673``llvm.instrprof_*`` that refer to the same name.
9674
9675The third argument is the value of the expression being profiled. The profiled
9676expression's value should be representable as an unsigned 64-bit value. The
9677fourth argument represents the kind of value profiling that is being done. The
9678supported value profiling kinds are enumerated through the
9679``InstrProfValueKind`` type declared in the
9680``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9681index of the instrumented expression within ``name``. It should be >= 0.
9682
9683Semantics:
9684""""""""""
9685
9686This intrinsic represents the point where a call to a runtime routine
9687should be inserted for value profiling of target expressions. ``-instrprof``
9688pass will generate the appropriate data structures and replace the
9689``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9690runtime library with proper arguments.
9691
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009692'``llvm.thread.pointer``' Intrinsic
9693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9694
9695Syntax:
9696"""""""
9697
9698::
9699
9700 declare i8* @llvm.thread.pointer()
9701
9702Overview:
9703"""""""""
9704
9705The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9706pointer.
9707
9708Semantics:
9709""""""""""
9710
9711The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9712for the current thread. The exact semantics of this value are target
9713specific: it may point to the start of TLS area, to the end, or somewhere
9714in the middle. Depending on the target, this intrinsic may read a register,
9715call a helper function, read from an alternate memory space, or perform
9716other operations necessary to locate the TLS area. Not all targets support
9717this intrinsic.
9718
Sean Silvab084af42012-12-07 10:36:55 +00009719Standard C Library Intrinsics
9720-----------------------------
9721
9722LLVM provides intrinsics for a few important standard C library
9723functions. These intrinsics allow source-language front-ends to pass
9724information about the alignment of the pointer arguments to the code
9725generator, providing opportunity for more efficient code generation.
9726
9727.. _int_memcpy:
9728
9729'``llvm.memcpy``' Intrinsic
9730^^^^^^^^^^^^^^^^^^^^^^^^^^^
9731
9732Syntax:
9733"""""""
9734
9735This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9736integer bit width and for different address spaces. Not all targets
9737support all bit widths however.
9738
9739::
9740
9741 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9742 i32 <len>, i32 <align>, i1 <isvolatile>)
9743 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9744 i64 <len>, i32 <align>, i1 <isvolatile>)
9745
9746Overview:
9747"""""""""
9748
9749The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9750source location to the destination location.
9751
9752Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9753intrinsics do not return a value, takes extra alignment/isvolatile
9754arguments and the pointers can be in specified address spaces.
9755
9756Arguments:
9757""""""""""
9758
9759The first argument is a pointer to the destination, the second is a
9760pointer to the source. The third argument is an integer argument
9761specifying the number of bytes to copy, the fourth argument is the
9762alignment of the source and destination locations, and the fifth is a
9763boolean indicating a volatile access.
9764
9765If the call to this intrinsic has an alignment value that is not 0 or 1,
9766then the caller guarantees that both the source and destination pointers
9767are aligned to that boundary.
9768
9769If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9770a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9771very cleanly specified and it is unwise to depend on it.
9772
9773Semantics:
9774""""""""""
9775
9776The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9777source location to the destination location, which are not allowed to
9778overlap. It copies "len" bytes of memory over. If the argument is known
9779to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009780argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009781
9782'``llvm.memmove``' Intrinsic
9783^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9784
9785Syntax:
9786"""""""
9787
9788This is an overloaded intrinsic. You can use llvm.memmove on any integer
9789bit width and for different address space. Not all targets support all
9790bit widths however.
9791
9792::
9793
9794 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9795 i32 <len>, i32 <align>, i1 <isvolatile>)
9796 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9797 i64 <len>, i32 <align>, i1 <isvolatile>)
9798
9799Overview:
9800"""""""""
9801
9802The '``llvm.memmove.*``' intrinsics move a block of memory from the
9803source location to the destination location. It is similar to the
9804'``llvm.memcpy``' intrinsic but allows the two memory locations to
9805overlap.
9806
9807Note that, unlike the standard libc function, the ``llvm.memmove.*``
9808intrinsics do not return a value, takes extra alignment/isvolatile
9809arguments and the pointers can be in specified address spaces.
9810
9811Arguments:
9812""""""""""
9813
9814The first argument is a pointer to the destination, the second is a
9815pointer to the source. The third argument is an integer argument
9816specifying the number of bytes to copy, the fourth argument is the
9817alignment of the source and destination locations, and the fifth is a
9818boolean indicating a volatile access.
9819
9820If the call to this intrinsic has an alignment value that is not 0 or 1,
9821then the caller guarantees that the source and destination pointers are
9822aligned to that boundary.
9823
9824If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9825is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9826not very cleanly specified and it is unwise to depend on it.
9827
9828Semantics:
9829""""""""""
9830
9831The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9832source location to the destination location, which may overlap. It
9833copies "len" bytes of memory over. If the argument is known to be
9834aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009835otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009836
9837'``llvm.memset.*``' Intrinsics
9838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9839
9840Syntax:
9841"""""""
9842
9843This is an overloaded intrinsic. You can use llvm.memset on any integer
9844bit width and for different address spaces. However, not all targets
9845support all bit widths.
9846
9847::
9848
9849 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9850 i32 <len>, i32 <align>, i1 <isvolatile>)
9851 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9852 i64 <len>, i32 <align>, i1 <isvolatile>)
9853
9854Overview:
9855"""""""""
9856
9857The '``llvm.memset.*``' intrinsics fill a block of memory with a
9858particular byte value.
9859
9860Note that, unlike the standard libc function, the ``llvm.memset``
9861intrinsic does not return a value and takes extra alignment/volatile
9862arguments. Also, the destination can be in an arbitrary address space.
9863
9864Arguments:
9865""""""""""
9866
9867The first argument is a pointer to the destination to fill, the second
9868is the byte value with which to fill it, the third argument is an
9869integer argument specifying the number of bytes to fill, and the fourth
9870argument is the known alignment of the destination location.
9871
9872If the call to this intrinsic has an alignment value that is not 0 or 1,
9873then the caller guarantees that the destination pointer is aligned to
9874that boundary.
9875
9876If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9877a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9878very cleanly specified and it is unwise to depend on it.
9879
9880Semantics:
9881""""""""""
9882
9883The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9884at the destination location. If the argument is known to be aligned to
9885some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009886it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009887
9888'``llvm.sqrt.*``' Intrinsic
9889^^^^^^^^^^^^^^^^^^^^^^^^^^^
9890
9891Syntax:
9892"""""""
9893
9894This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9895floating point or vector of floating point type. Not all targets support
9896all types however.
9897
9898::
9899
9900 declare float @llvm.sqrt.f32(float %Val)
9901 declare double @llvm.sqrt.f64(double %Val)
9902 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9903 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9904 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9905
9906Overview:
9907"""""""""
9908
9909The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9910returning the same value as the libm '``sqrt``' functions would. Unlike
9911``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9912negative numbers other than -0.0 (which allows for better optimization,
9913because there is no need to worry about errno being set).
9914``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9915
9916Arguments:
9917""""""""""
9918
9919The argument and return value are floating point numbers of the same
9920type.
9921
9922Semantics:
9923""""""""""
9924
9925This function returns the sqrt of the specified operand if it is a
9926nonnegative floating point number.
9927
9928'``llvm.powi.*``' Intrinsic
9929^^^^^^^^^^^^^^^^^^^^^^^^^^^
9930
9931Syntax:
9932"""""""
9933
9934This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9935floating point or vector of floating point type. Not all targets support
9936all types however.
9937
9938::
9939
9940 declare float @llvm.powi.f32(float %Val, i32 %power)
9941 declare double @llvm.powi.f64(double %Val, i32 %power)
9942 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9943 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9944 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9945
9946Overview:
9947"""""""""
9948
9949The '``llvm.powi.*``' intrinsics return the first operand raised to the
9950specified (positive or negative) power. The order of evaluation of
9951multiplications is not defined. When a vector of floating point type is
9952used, the second argument remains a scalar integer value.
9953
9954Arguments:
9955""""""""""
9956
9957The second argument is an integer power, and the first is a value to
9958raise to that power.
9959
9960Semantics:
9961""""""""""
9962
9963This function returns the first value raised to the second power with an
9964unspecified sequence of rounding operations.
9965
9966'``llvm.sin.*``' Intrinsic
9967^^^^^^^^^^^^^^^^^^^^^^^^^^
9968
9969Syntax:
9970"""""""
9971
9972This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9973floating point or vector of floating point type. Not all targets support
9974all types however.
9975
9976::
9977
9978 declare float @llvm.sin.f32(float %Val)
9979 declare double @llvm.sin.f64(double %Val)
9980 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9981 declare fp128 @llvm.sin.f128(fp128 %Val)
9982 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9983
9984Overview:
9985"""""""""
9986
9987The '``llvm.sin.*``' intrinsics return the sine of the operand.
9988
9989Arguments:
9990""""""""""
9991
9992The argument and return value are floating point numbers of the same
9993type.
9994
9995Semantics:
9996""""""""""
9997
9998This function returns the sine of the specified operand, returning the
9999same values as the libm ``sin`` functions would, and handles error
10000conditions in the same way.
10001
10002'``llvm.cos.*``' Intrinsic
10003^^^^^^^^^^^^^^^^^^^^^^^^^^
10004
10005Syntax:
10006"""""""
10007
10008This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10009floating point or vector of floating point type. Not all targets support
10010all types however.
10011
10012::
10013
10014 declare float @llvm.cos.f32(float %Val)
10015 declare double @llvm.cos.f64(double %Val)
10016 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10017 declare fp128 @llvm.cos.f128(fp128 %Val)
10018 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10019
10020Overview:
10021"""""""""
10022
10023The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10024
10025Arguments:
10026""""""""""
10027
10028The argument and return value are floating point numbers of the same
10029type.
10030
10031Semantics:
10032""""""""""
10033
10034This function returns the cosine of the specified operand, returning the
10035same values as the libm ``cos`` functions would, and handles error
10036conditions in the same way.
10037
10038'``llvm.pow.*``' Intrinsic
10039^^^^^^^^^^^^^^^^^^^^^^^^^^
10040
10041Syntax:
10042"""""""
10043
10044This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10045floating point or vector of floating point type. Not all targets support
10046all types however.
10047
10048::
10049
10050 declare float @llvm.pow.f32(float %Val, float %Power)
10051 declare double @llvm.pow.f64(double %Val, double %Power)
10052 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10053 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10054 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10055
10056Overview:
10057"""""""""
10058
10059The '``llvm.pow.*``' intrinsics return the first operand raised to the
10060specified (positive or negative) power.
10061
10062Arguments:
10063""""""""""
10064
10065The second argument is a floating point power, and the first is a value
10066to raise to that power.
10067
10068Semantics:
10069""""""""""
10070
10071This function returns the first value raised to the second power,
10072returning the same values as the libm ``pow`` functions would, and
10073handles error conditions in the same way.
10074
10075'``llvm.exp.*``' Intrinsic
10076^^^^^^^^^^^^^^^^^^^^^^^^^^
10077
10078Syntax:
10079"""""""
10080
10081This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10082floating point or vector of floating point type. Not all targets support
10083all types however.
10084
10085::
10086
10087 declare float @llvm.exp.f32(float %Val)
10088 declare double @llvm.exp.f64(double %Val)
10089 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10090 declare fp128 @llvm.exp.f128(fp128 %Val)
10091 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10092
10093Overview:
10094"""""""""
10095
10096The '``llvm.exp.*``' intrinsics perform the exp function.
10097
10098Arguments:
10099""""""""""
10100
10101The argument and return value are floating point numbers of the same
10102type.
10103
10104Semantics:
10105""""""""""
10106
10107This function returns the same values as the libm ``exp`` functions
10108would, and handles error conditions in the same way.
10109
10110'``llvm.exp2.*``' Intrinsic
10111^^^^^^^^^^^^^^^^^^^^^^^^^^^
10112
10113Syntax:
10114"""""""
10115
10116This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10117floating point or vector of floating point type. Not all targets support
10118all types however.
10119
10120::
10121
10122 declare float @llvm.exp2.f32(float %Val)
10123 declare double @llvm.exp2.f64(double %Val)
10124 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10125 declare fp128 @llvm.exp2.f128(fp128 %Val)
10126 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10127
10128Overview:
10129"""""""""
10130
10131The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10132
10133Arguments:
10134""""""""""
10135
10136The argument and return value are floating point numbers of the same
10137type.
10138
10139Semantics:
10140""""""""""
10141
10142This function returns the same values as the libm ``exp2`` functions
10143would, and handles error conditions in the same way.
10144
10145'``llvm.log.*``' Intrinsic
10146^^^^^^^^^^^^^^^^^^^^^^^^^^
10147
10148Syntax:
10149"""""""
10150
10151This is an overloaded intrinsic. You can use ``llvm.log`` on any
10152floating point or vector of floating point type. Not all targets support
10153all types however.
10154
10155::
10156
10157 declare float @llvm.log.f32(float %Val)
10158 declare double @llvm.log.f64(double %Val)
10159 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10160 declare fp128 @llvm.log.f128(fp128 %Val)
10161 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10162
10163Overview:
10164"""""""""
10165
10166The '``llvm.log.*``' intrinsics perform the log function.
10167
10168Arguments:
10169""""""""""
10170
10171The argument and return value are floating point numbers of the same
10172type.
10173
10174Semantics:
10175""""""""""
10176
10177This function returns the same values as the libm ``log`` functions
10178would, and handles error conditions in the same way.
10179
10180'``llvm.log10.*``' Intrinsic
10181^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10182
10183Syntax:
10184"""""""
10185
10186This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10187floating point or vector of floating point type. Not all targets support
10188all types however.
10189
10190::
10191
10192 declare float @llvm.log10.f32(float %Val)
10193 declare double @llvm.log10.f64(double %Val)
10194 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10195 declare fp128 @llvm.log10.f128(fp128 %Val)
10196 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10197
10198Overview:
10199"""""""""
10200
10201The '``llvm.log10.*``' intrinsics perform the log10 function.
10202
10203Arguments:
10204""""""""""
10205
10206The argument and return value are floating point numbers of the same
10207type.
10208
10209Semantics:
10210""""""""""
10211
10212This function returns the same values as the libm ``log10`` functions
10213would, and handles error conditions in the same way.
10214
10215'``llvm.log2.*``' Intrinsic
10216^^^^^^^^^^^^^^^^^^^^^^^^^^^
10217
10218Syntax:
10219"""""""
10220
10221This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10222floating point or vector of floating point type. Not all targets support
10223all types however.
10224
10225::
10226
10227 declare float @llvm.log2.f32(float %Val)
10228 declare double @llvm.log2.f64(double %Val)
10229 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10230 declare fp128 @llvm.log2.f128(fp128 %Val)
10231 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10232
10233Overview:
10234"""""""""
10235
10236The '``llvm.log2.*``' intrinsics perform the log2 function.
10237
10238Arguments:
10239""""""""""
10240
10241The argument and return value are floating point numbers of the same
10242type.
10243
10244Semantics:
10245""""""""""
10246
10247This function returns the same values as the libm ``log2`` functions
10248would, and handles error conditions in the same way.
10249
10250'``llvm.fma.*``' Intrinsic
10251^^^^^^^^^^^^^^^^^^^^^^^^^^
10252
10253Syntax:
10254"""""""
10255
10256This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10257floating point or vector of floating point type. Not all targets support
10258all types however.
10259
10260::
10261
10262 declare float @llvm.fma.f32(float %a, float %b, float %c)
10263 declare double @llvm.fma.f64(double %a, double %b, double %c)
10264 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10265 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10266 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10267
10268Overview:
10269"""""""""
10270
10271The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10272operation.
10273
10274Arguments:
10275""""""""""
10276
10277The argument and return value are floating point numbers of the same
10278type.
10279
10280Semantics:
10281""""""""""
10282
10283This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010284would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010285
10286'``llvm.fabs.*``' Intrinsic
10287^^^^^^^^^^^^^^^^^^^^^^^^^^^
10288
10289Syntax:
10290"""""""
10291
10292This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10293floating point or vector of floating point type. Not all targets support
10294all types however.
10295
10296::
10297
10298 declare float @llvm.fabs.f32(float %Val)
10299 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010300 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010301 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010302 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010303
10304Overview:
10305"""""""""
10306
10307The '``llvm.fabs.*``' intrinsics return the absolute value of the
10308operand.
10309
10310Arguments:
10311""""""""""
10312
10313The argument and return value are floating point numbers of the same
10314type.
10315
10316Semantics:
10317""""""""""
10318
10319This function returns the same values as the libm ``fabs`` functions
10320would, and handles error conditions in the same way.
10321
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010322'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010323^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010324
10325Syntax:
10326"""""""
10327
10328This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10329floating point or vector of floating point type. Not all targets support
10330all types however.
10331
10332::
10333
Matt Arsenault64313c92014-10-22 18:25:02 +000010334 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10335 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10336 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10337 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10338 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010339
10340Overview:
10341"""""""""
10342
10343The '``llvm.minnum.*``' intrinsics return the minimum of the two
10344arguments.
10345
10346
10347Arguments:
10348""""""""""
10349
10350The arguments and return value are floating point numbers of the same
10351type.
10352
10353Semantics:
10354""""""""""
10355
10356Follows the IEEE-754 semantics for minNum, which also match for libm's
10357fmin.
10358
10359If either operand is a NaN, returns the other non-NaN operand. Returns
10360NaN only if both operands are NaN. If the operands compare equal,
10361returns a value that compares equal to both operands. This means that
10362fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10363
10364'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010365^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010366
10367Syntax:
10368"""""""
10369
10370This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10371floating point or vector of floating point type. Not all targets support
10372all types however.
10373
10374::
10375
Matt Arsenault64313c92014-10-22 18:25:02 +000010376 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10377 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10378 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10379 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10380 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010381
10382Overview:
10383"""""""""
10384
10385The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10386arguments.
10387
10388
10389Arguments:
10390""""""""""
10391
10392The arguments and return value are floating point numbers of the same
10393type.
10394
10395Semantics:
10396""""""""""
10397Follows the IEEE-754 semantics for maxNum, which also match for libm's
10398fmax.
10399
10400If either operand is a NaN, returns the other non-NaN operand. Returns
10401NaN only if both operands are NaN. If the operands compare equal,
10402returns a value that compares equal to both operands. This means that
10403fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10404
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010405'``llvm.copysign.*``' Intrinsic
10406^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10407
10408Syntax:
10409"""""""
10410
10411This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10412floating point or vector of floating point type. Not all targets support
10413all types however.
10414
10415::
10416
10417 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10418 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10419 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10420 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10421 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10422
10423Overview:
10424"""""""""
10425
10426The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10427first operand and the sign of the second operand.
10428
10429Arguments:
10430""""""""""
10431
10432The arguments and return value are floating point numbers of the same
10433type.
10434
10435Semantics:
10436""""""""""
10437
10438This function returns the same values as the libm ``copysign``
10439functions would, and handles error conditions in the same way.
10440
Sean Silvab084af42012-12-07 10:36:55 +000010441'``llvm.floor.*``' Intrinsic
10442^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10443
10444Syntax:
10445"""""""
10446
10447This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10448floating point or vector of floating point type. Not all targets support
10449all types however.
10450
10451::
10452
10453 declare float @llvm.floor.f32(float %Val)
10454 declare double @llvm.floor.f64(double %Val)
10455 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10456 declare fp128 @llvm.floor.f128(fp128 %Val)
10457 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10458
10459Overview:
10460"""""""""
10461
10462The '``llvm.floor.*``' intrinsics return the floor of the operand.
10463
10464Arguments:
10465""""""""""
10466
10467The argument and return value are floating point numbers of the same
10468type.
10469
10470Semantics:
10471""""""""""
10472
10473This function returns the same values as the libm ``floor`` functions
10474would, and handles error conditions in the same way.
10475
10476'``llvm.ceil.*``' Intrinsic
10477^^^^^^^^^^^^^^^^^^^^^^^^^^^
10478
10479Syntax:
10480"""""""
10481
10482This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10483floating point or vector of floating point type. Not all targets support
10484all types however.
10485
10486::
10487
10488 declare float @llvm.ceil.f32(float %Val)
10489 declare double @llvm.ceil.f64(double %Val)
10490 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10491 declare fp128 @llvm.ceil.f128(fp128 %Val)
10492 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10493
10494Overview:
10495"""""""""
10496
10497The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10498
10499Arguments:
10500""""""""""
10501
10502The argument and return value are floating point numbers of the same
10503type.
10504
10505Semantics:
10506""""""""""
10507
10508This function returns the same values as the libm ``ceil`` functions
10509would, and handles error conditions in the same way.
10510
10511'``llvm.trunc.*``' Intrinsic
10512^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10513
10514Syntax:
10515"""""""
10516
10517This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10518floating point or vector of floating point type. Not all targets support
10519all types however.
10520
10521::
10522
10523 declare float @llvm.trunc.f32(float %Val)
10524 declare double @llvm.trunc.f64(double %Val)
10525 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10526 declare fp128 @llvm.trunc.f128(fp128 %Val)
10527 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10528
10529Overview:
10530"""""""""
10531
10532The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10533nearest integer not larger in magnitude than the operand.
10534
10535Arguments:
10536""""""""""
10537
10538The argument and return value are floating point numbers of the same
10539type.
10540
10541Semantics:
10542""""""""""
10543
10544This function returns the same values as the libm ``trunc`` functions
10545would, and handles error conditions in the same way.
10546
10547'``llvm.rint.*``' Intrinsic
10548^^^^^^^^^^^^^^^^^^^^^^^^^^^
10549
10550Syntax:
10551"""""""
10552
10553This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10554floating point or vector of floating point type. Not all targets support
10555all types however.
10556
10557::
10558
10559 declare float @llvm.rint.f32(float %Val)
10560 declare double @llvm.rint.f64(double %Val)
10561 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10562 declare fp128 @llvm.rint.f128(fp128 %Val)
10563 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10564
10565Overview:
10566"""""""""
10567
10568The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10569nearest integer. It may raise an inexact floating-point exception if the
10570operand isn't an integer.
10571
10572Arguments:
10573""""""""""
10574
10575The argument and return value are floating point numbers of the same
10576type.
10577
10578Semantics:
10579""""""""""
10580
10581This function returns the same values as the libm ``rint`` functions
10582would, and handles error conditions in the same way.
10583
10584'``llvm.nearbyint.*``' Intrinsic
10585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10586
10587Syntax:
10588"""""""
10589
10590This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10591floating point or vector of floating point type. Not all targets support
10592all types however.
10593
10594::
10595
10596 declare float @llvm.nearbyint.f32(float %Val)
10597 declare double @llvm.nearbyint.f64(double %Val)
10598 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10599 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10600 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10601
10602Overview:
10603"""""""""
10604
10605The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10606nearest integer.
10607
10608Arguments:
10609""""""""""
10610
10611The argument and return value are floating point numbers of the same
10612type.
10613
10614Semantics:
10615""""""""""
10616
10617This function returns the same values as the libm ``nearbyint``
10618functions would, and handles error conditions in the same way.
10619
Hal Finkel171817e2013-08-07 22:49:12 +000010620'``llvm.round.*``' Intrinsic
10621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10622
10623Syntax:
10624"""""""
10625
10626This is an overloaded intrinsic. You can use ``llvm.round`` on any
10627floating point or vector of floating point type. Not all targets support
10628all types however.
10629
10630::
10631
10632 declare float @llvm.round.f32(float %Val)
10633 declare double @llvm.round.f64(double %Val)
10634 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10635 declare fp128 @llvm.round.f128(fp128 %Val)
10636 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10637
10638Overview:
10639"""""""""
10640
10641The '``llvm.round.*``' intrinsics returns the operand rounded to the
10642nearest integer.
10643
10644Arguments:
10645""""""""""
10646
10647The argument and return value are floating point numbers of the same
10648type.
10649
10650Semantics:
10651""""""""""
10652
10653This function returns the same values as the libm ``round``
10654functions would, and handles error conditions in the same way.
10655
Sean Silvab084af42012-12-07 10:36:55 +000010656Bit Manipulation Intrinsics
10657---------------------------
10658
10659LLVM provides intrinsics for a few important bit manipulation
10660operations. These allow efficient code generation for some algorithms.
10661
James Molloy90111f72015-11-12 12:29:09 +000010662'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010664
10665Syntax:
10666"""""""
10667
10668This is an overloaded intrinsic function. You can use bitreverse on any
10669integer type.
10670
10671::
10672
10673 declare i16 @llvm.bitreverse.i16(i16 <id>)
10674 declare i32 @llvm.bitreverse.i32(i32 <id>)
10675 declare i64 @llvm.bitreverse.i64(i64 <id>)
10676
10677Overview:
10678"""""""""
10679
10680The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010681bitpattern of an integer value; for example ``0b10110110`` becomes
10682``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010683
10684Semantics:
10685""""""""""
10686
10687The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10688``M`` in the input moved to bit ``N-M`` in the output.
10689
Sean Silvab084af42012-12-07 10:36:55 +000010690'``llvm.bswap.*``' Intrinsics
10691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10692
10693Syntax:
10694"""""""
10695
10696This is an overloaded intrinsic function. You can use bswap on any
10697integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10698
10699::
10700
10701 declare i16 @llvm.bswap.i16(i16 <id>)
10702 declare i32 @llvm.bswap.i32(i32 <id>)
10703 declare i64 @llvm.bswap.i64(i64 <id>)
10704
10705Overview:
10706"""""""""
10707
10708The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10709values with an even number of bytes (positive multiple of 16 bits).
10710These are useful for performing operations on data that is not in the
10711target's native byte order.
10712
10713Semantics:
10714""""""""""
10715
10716The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10717and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10718intrinsic returns an i32 value that has the four bytes of the input i32
10719swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10720returned i32 will have its bytes in 3, 2, 1, 0 order. The
10721``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10722concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10723respectively).
10724
10725'``llvm.ctpop.*``' Intrinsic
10726^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10727
10728Syntax:
10729"""""""
10730
10731This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10732bit width, or on any vector with integer elements. Not all targets
10733support all bit widths or vector types, however.
10734
10735::
10736
10737 declare i8 @llvm.ctpop.i8(i8 <src>)
10738 declare i16 @llvm.ctpop.i16(i16 <src>)
10739 declare i32 @llvm.ctpop.i32(i32 <src>)
10740 declare i64 @llvm.ctpop.i64(i64 <src>)
10741 declare i256 @llvm.ctpop.i256(i256 <src>)
10742 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10743
10744Overview:
10745"""""""""
10746
10747The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10748in a value.
10749
10750Arguments:
10751""""""""""
10752
10753The only argument is the value to be counted. The argument may be of any
10754integer type, or a vector with integer elements. The return type must
10755match the argument type.
10756
10757Semantics:
10758""""""""""
10759
10760The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10761each element of a vector.
10762
10763'``llvm.ctlz.*``' Intrinsic
10764^^^^^^^^^^^^^^^^^^^^^^^^^^^
10765
10766Syntax:
10767"""""""
10768
10769This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10770integer bit width, or any vector whose elements are integers. Not all
10771targets support all bit widths or vector types, however.
10772
10773::
10774
10775 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10776 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10777 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10778 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10779 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010780 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010781
10782Overview:
10783"""""""""
10784
10785The '``llvm.ctlz``' family of intrinsic functions counts the number of
10786leading zeros in a variable.
10787
10788Arguments:
10789""""""""""
10790
10791The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010792any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010793type must match the first argument type.
10794
10795The second argument must be a constant and is a flag to indicate whether
10796the intrinsic should ensure that a zero as the first argument produces a
10797defined result. Historically some architectures did not provide a
10798defined result for zero values as efficiently, and many algorithms are
10799now predicated on avoiding zero-value inputs.
10800
10801Semantics:
10802""""""""""
10803
10804The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10805zeros in a variable, or within each element of the vector. If
10806``src == 0`` then the result is the size in bits of the type of ``src``
10807if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10808``llvm.ctlz(i32 2) = 30``.
10809
10810'``llvm.cttz.*``' Intrinsic
10811^^^^^^^^^^^^^^^^^^^^^^^^^^^
10812
10813Syntax:
10814"""""""
10815
10816This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10817integer bit width, or any vector of integer elements. Not all targets
10818support all bit widths or vector types, however.
10819
10820::
10821
10822 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10823 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10824 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10825 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10826 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010827 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010828
10829Overview:
10830"""""""""
10831
10832The '``llvm.cttz``' family of intrinsic functions counts the number of
10833trailing zeros.
10834
10835Arguments:
10836""""""""""
10837
10838The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010839any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010840type must match the first argument type.
10841
10842The second argument must be a constant and is a flag to indicate whether
10843the intrinsic should ensure that a zero as the first argument produces a
10844defined result. Historically some architectures did not provide a
10845defined result for zero values as efficiently, and many algorithms are
10846now predicated on avoiding zero-value inputs.
10847
10848Semantics:
10849""""""""""
10850
10851The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10852zeros in a variable, or within each element of a vector. If ``src == 0``
10853then the result is the size in bits of the type of ``src`` if
10854``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10855``llvm.cttz(2) = 1``.
10856
Philip Reames34843ae2015-03-05 05:55:55 +000010857.. _int_overflow:
10858
Sean Silvab084af42012-12-07 10:36:55 +000010859Arithmetic with Overflow Intrinsics
10860-----------------------------------
10861
John Regehr6a493f22016-05-12 20:55:09 +000010862LLVM provides intrinsics for fast arithmetic overflow checking.
10863
10864Each of these intrinsics returns a two-element struct. The first
10865element of this struct contains the result of the corresponding
10866arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
10867the result. Therefore, for example, the first element of the struct
10868returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
10869result of a 32-bit ``add`` instruction with the same operands, where
10870the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
10871
10872The second element of the result is an ``i1`` that is 1 if the
10873arithmetic operation overflowed and 0 otherwise. An operation
10874overflows if, for any values of its operands ``A`` and ``B`` and for
10875any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
10876not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
10877``sext`` for signed overflow and ``zext`` for unsigned overflow, and
10878``op`` is the underlying arithmetic operation.
10879
10880The behavior of these intrinsics is well-defined for all argument
10881values.
Sean Silvab084af42012-12-07 10:36:55 +000010882
10883'``llvm.sadd.with.overflow.*``' Intrinsics
10884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10885
10886Syntax:
10887"""""""
10888
10889This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10890on any integer bit width.
10891
10892::
10893
10894 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10895 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10896 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10897
10898Overview:
10899"""""""""
10900
10901The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10902a signed addition of the two arguments, and indicate whether an overflow
10903occurred during the signed summation.
10904
10905Arguments:
10906""""""""""
10907
10908The arguments (%a and %b) and the first element of the result structure
10909may be of integer types of any bit width, but they must have the same
10910bit width. The second element of the result structure must be of type
10911``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10912addition.
10913
10914Semantics:
10915""""""""""
10916
10917The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010918a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010919first element of which is the signed summation, and the second element
10920of which is a bit specifying if the signed summation resulted in an
10921overflow.
10922
10923Examples:
10924"""""""""
10925
10926.. code-block:: llvm
10927
10928 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10929 %sum = extractvalue {i32, i1} %res, 0
10930 %obit = extractvalue {i32, i1} %res, 1
10931 br i1 %obit, label %overflow, label %normal
10932
10933'``llvm.uadd.with.overflow.*``' Intrinsics
10934^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10935
10936Syntax:
10937"""""""
10938
10939This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10940on any integer bit width.
10941
10942::
10943
10944 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10945 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10946 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10947
10948Overview:
10949"""""""""
10950
10951The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10952an unsigned addition of the two arguments, and indicate whether a carry
10953occurred during the unsigned summation.
10954
10955Arguments:
10956""""""""""
10957
10958The arguments (%a and %b) and the first element of the result structure
10959may be of integer types of any bit width, but they must have the same
10960bit width. The second element of the result structure must be of type
10961``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10962addition.
10963
10964Semantics:
10965""""""""""
10966
10967The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010968an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010969first element of which is the sum, and the second element of which is a
10970bit specifying if the unsigned summation resulted in a carry.
10971
10972Examples:
10973"""""""""
10974
10975.. code-block:: llvm
10976
10977 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10978 %sum = extractvalue {i32, i1} %res, 0
10979 %obit = extractvalue {i32, i1} %res, 1
10980 br i1 %obit, label %carry, label %normal
10981
10982'``llvm.ssub.with.overflow.*``' Intrinsics
10983^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10984
10985Syntax:
10986"""""""
10987
10988This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10989on any integer bit width.
10990
10991::
10992
10993 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10994 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10995 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10996
10997Overview:
10998"""""""""
10999
11000The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11001a signed subtraction of the two arguments, and indicate whether an
11002overflow occurred during the signed subtraction.
11003
11004Arguments:
11005""""""""""
11006
11007The arguments (%a and %b) and the first element of the result structure
11008may be of integer types of any bit width, but they must have the same
11009bit width. The second element of the result structure must be of type
11010``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11011subtraction.
11012
11013Semantics:
11014""""""""""
11015
11016The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011017a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011018first element of which is the subtraction, and the second element of
11019which is a bit specifying if the signed subtraction resulted in an
11020overflow.
11021
11022Examples:
11023"""""""""
11024
11025.. code-block:: llvm
11026
11027 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11028 %sum = extractvalue {i32, i1} %res, 0
11029 %obit = extractvalue {i32, i1} %res, 1
11030 br i1 %obit, label %overflow, label %normal
11031
11032'``llvm.usub.with.overflow.*``' Intrinsics
11033^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11034
11035Syntax:
11036"""""""
11037
11038This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11039on any integer bit width.
11040
11041::
11042
11043 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11044 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11045 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11046
11047Overview:
11048"""""""""
11049
11050The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11051an unsigned subtraction of the two arguments, and indicate whether an
11052overflow occurred during the unsigned subtraction.
11053
11054Arguments:
11055""""""""""
11056
11057The arguments (%a and %b) and the first element of the result structure
11058may be of integer types of any bit width, but they must have the same
11059bit width. The second element of the result structure must be of type
11060``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11061subtraction.
11062
11063Semantics:
11064""""""""""
11065
11066The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011067an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011068the first element of which is the subtraction, and the second element of
11069which is a bit specifying if the unsigned subtraction resulted in an
11070overflow.
11071
11072Examples:
11073"""""""""
11074
11075.. code-block:: llvm
11076
11077 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11078 %sum = extractvalue {i32, i1} %res, 0
11079 %obit = extractvalue {i32, i1} %res, 1
11080 br i1 %obit, label %overflow, label %normal
11081
11082'``llvm.smul.with.overflow.*``' Intrinsics
11083^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11084
11085Syntax:
11086"""""""
11087
11088This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11089on any integer bit width.
11090
11091::
11092
11093 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11094 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11095 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11096
11097Overview:
11098"""""""""
11099
11100The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11101a signed multiplication of the two arguments, and indicate whether an
11102overflow occurred during the signed multiplication.
11103
11104Arguments:
11105""""""""""
11106
11107The arguments (%a and %b) and the first element of the result structure
11108may be of integer types of any bit width, but they must have the same
11109bit width. The second element of the result structure must be of type
11110``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11111multiplication.
11112
11113Semantics:
11114""""""""""
11115
11116The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011117a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011118the first element of which is the multiplication, and the second element
11119of which is a bit specifying if the signed multiplication resulted in an
11120overflow.
11121
11122Examples:
11123"""""""""
11124
11125.. code-block:: llvm
11126
11127 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11128 %sum = extractvalue {i32, i1} %res, 0
11129 %obit = extractvalue {i32, i1} %res, 1
11130 br i1 %obit, label %overflow, label %normal
11131
11132'``llvm.umul.with.overflow.*``' Intrinsics
11133^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11134
11135Syntax:
11136"""""""
11137
11138This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11139on any integer bit width.
11140
11141::
11142
11143 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11144 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11145 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11146
11147Overview:
11148"""""""""
11149
11150The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11151a unsigned multiplication of the two arguments, and indicate whether an
11152overflow occurred during the unsigned multiplication.
11153
11154Arguments:
11155""""""""""
11156
11157The arguments (%a and %b) and the first element of the result structure
11158may be of integer types of any bit width, but they must have the same
11159bit width. The second element of the result structure must be of type
11160``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11161multiplication.
11162
11163Semantics:
11164""""""""""
11165
11166The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011167an unsigned multiplication of the two arguments. They return a structure ---
11168the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011169element of which is a bit specifying if the unsigned multiplication
11170resulted in an overflow.
11171
11172Examples:
11173"""""""""
11174
11175.. code-block:: llvm
11176
11177 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11178 %sum = extractvalue {i32, i1} %res, 0
11179 %obit = extractvalue {i32, i1} %res, 1
11180 br i1 %obit, label %overflow, label %normal
11181
11182Specialised Arithmetic Intrinsics
11183---------------------------------
11184
Owen Anderson1056a922015-07-11 07:01:27 +000011185'``llvm.canonicalize.*``' Intrinsic
11186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11187
11188Syntax:
11189"""""""
11190
11191::
11192
11193 declare float @llvm.canonicalize.f32(float %a)
11194 declare double @llvm.canonicalize.f64(double %b)
11195
11196Overview:
11197"""""""""
11198
11199The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011200encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011201implementing certain numeric primitives such as frexp. The canonical encoding is
11202defined by IEEE-754-2008 to be:
11203
11204::
11205
11206 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011207 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011208 numbers, infinities, and NaNs, especially in decimal formats.
11209
11210This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011211conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011212according to section 6.2.
11213
11214Examples of non-canonical encodings:
11215
Sean Silvaa1190322015-08-06 22:56:48 +000011216- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011217 converted to a canonical representation per hardware-specific protocol.
11218- Many normal decimal floating point numbers have non-canonical alternative
11219 encodings.
11220- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011221 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011222 a zero of the same sign by this operation.
11223
11224Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11225default exception handling must signal an invalid exception, and produce a
11226quiet NaN result.
11227
11228This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011229that the compiler does not constant fold the operation. Likewise, division by
112301.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011231-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11232
Sean Silvaa1190322015-08-06 22:56:48 +000011233``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011234
11235- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11236- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11237 to ``(x == y)``
11238
11239Additionally, the sign of zero must be conserved:
11240``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11241
11242The payload bits of a NaN must be conserved, with two exceptions.
11243First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011244must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011245usual methods.
11246
11247The canonicalization operation may be optimized away if:
11248
Sean Silvaa1190322015-08-06 22:56:48 +000011249- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011250 floating-point operation that is required by the standard to be canonical.
11251- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011252 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011253
Sean Silvab084af42012-12-07 10:36:55 +000011254'``llvm.fmuladd.*``' Intrinsic
11255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11256
11257Syntax:
11258"""""""
11259
11260::
11261
11262 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11263 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11264
11265Overview:
11266"""""""""
11267
11268The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011269expressions that can be fused if the code generator determines that (a) the
11270target instruction set has support for a fused operation, and (b) that the
11271fused operation is more efficient than the equivalent, separate pair of mul
11272and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011273
11274Arguments:
11275""""""""""
11276
11277The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11278multiplicands, a and b, and an addend c.
11279
11280Semantics:
11281""""""""""
11282
11283The expression:
11284
11285::
11286
11287 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11288
11289is equivalent to the expression a \* b + c, except that rounding will
11290not be performed between the multiplication and addition steps if the
11291code generator fuses the operations. Fusion is not guaranteed, even if
11292the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011293corresponding llvm.fma.\* intrinsic function should be used
11294instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011295
11296Examples:
11297"""""""""
11298
11299.. code-block:: llvm
11300
Tim Northover675a0962014-06-13 14:24:23 +000011301 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011302
11303Half Precision Floating Point Intrinsics
11304----------------------------------------
11305
11306For most target platforms, half precision floating point is a
11307storage-only format. This means that it is a dense encoding (in memory)
11308but does not support computation in the format.
11309
11310This means that code must first load the half-precision floating point
11311value as an i16, then convert it to float with
11312:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11313then be performed on the float value (including extending to double
11314etc). To store the value back to memory, it is first converted to float
11315if needed, then converted to i16 with
11316:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11317i16 value.
11318
11319.. _int_convert_to_fp16:
11320
11321'``llvm.convert.to.fp16``' Intrinsic
11322^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11323
11324Syntax:
11325"""""""
11326
11327::
11328
Tim Northoverfd7e4242014-07-17 10:51:23 +000011329 declare i16 @llvm.convert.to.fp16.f32(float %a)
11330 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011331
11332Overview:
11333"""""""""
11334
Tim Northoverfd7e4242014-07-17 10:51:23 +000011335The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11336conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011337
11338Arguments:
11339""""""""""
11340
11341The intrinsic function contains single argument - the value to be
11342converted.
11343
11344Semantics:
11345""""""""""
11346
Tim Northoverfd7e4242014-07-17 10:51:23 +000011347The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11348conventional floating point format to half precision floating point format. The
11349return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011350
11351Examples:
11352"""""""""
11353
11354.. code-block:: llvm
11355
Tim Northoverfd7e4242014-07-17 10:51:23 +000011356 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011357 store i16 %res, i16* @x, align 2
11358
11359.. _int_convert_from_fp16:
11360
11361'``llvm.convert.from.fp16``' Intrinsic
11362^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11363
11364Syntax:
11365"""""""
11366
11367::
11368
Tim Northoverfd7e4242014-07-17 10:51:23 +000011369 declare float @llvm.convert.from.fp16.f32(i16 %a)
11370 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011371
11372Overview:
11373"""""""""
11374
11375The '``llvm.convert.from.fp16``' intrinsic function performs a
11376conversion from half precision floating point format to single precision
11377floating point format.
11378
11379Arguments:
11380""""""""""
11381
11382The intrinsic function contains single argument - the value to be
11383converted.
11384
11385Semantics:
11386""""""""""
11387
11388The '``llvm.convert.from.fp16``' intrinsic function performs a
11389conversion from half single precision floating point format to single
11390precision floating point format. The input half-float value is
11391represented by an ``i16`` value.
11392
11393Examples:
11394"""""""""
11395
11396.. code-block:: llvm
11397
David Blaikiec7aabbb2015-03-04 22:06:14 +000011398 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011399 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011400
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011401.. _dbg_intrinsics:
11402
Sean Silvab084af42012-12-07 10:36:55 +000011403Debugger Intrinsics
11404-------------------
11405
11406The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11407prefix), are described in the `LLVM Source Level
11408Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11409document.
11410
11411Exception Handling Intrinsics
11412-----------------------------
11413
11414The LLVM exception handling intrinsics (which all start with
11415``llvm.eh.`` prefix), are described in the `LLVM Exception
11416Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11417
11418.. _int_trampoline:
11419
11420Trampoline Intrinsics
11421---------------------
11422
11423These intrinsics make it possible to excise one parameter, marked with
11424the :ref:`nest <nest>` attribute, from a function. The result is a
11425callable function pointer lacking the nest parameter - the caller does
11426not need to provide a value for it. Instead, the value to use is stored
11427in advance in a "trampoline", a block of memory usually allocated on the
11428stack, which also contains code to splice the nest value into the
11429argument list. This is used to implement the GCC nested function address
11430extension.
11431
11432For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11433then the resulting function pointer has signature ``i32 (i32, i32)*``.
11434It can be created as follows:
11435
11436.. code-block:: llvm
11437
11438 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011439 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011440 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11441 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11442 %fp = bitcast i8* %p to i32 (i32, i32)*
11443
11444The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11445``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11446
11447.. _int_it:
11448
11449'``llvm.init.trampoline``' Intrinsic
11450^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11451
11452Syntax:
11453"""""""
11454
11455::
11456
11457 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11458
11459Overview:
11460"""""""""
11461
11462This fills the memory pointed to by ``tramp`` with executable code,
11463turning it into a trampoline.
11464
11465Arguments:
11466""""""""""
11467
11468The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11469pointers. The ``tramp`` argument must point to a sufficiently large and
11470sufficiently aligned block of memory; this memory is written to by the
11471intrinsic. Note that the size and the alignment are target-specific -
11472LLVM currently provides no portable way of determining them, so a
11473front-end that generates this intrinsic needs to have some
11474target-specific knowledge. The ``func`` argument must hold a function
11475bitcast to an ``i8*``.
11476
11477Semantics:
11478""""""""""
11479
11480The block of memory pointed to by ``tramp`` is filled with target
11481dependent code, turning it into a function. Then ``tramp`` needs to be
11482passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11483be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11484function's signature is the same as that of ``func`` with any arguments
11485marked with the ``nest`` attribute removed. At most one such ``nest``
11486argument is allowed, and it must be of pointer type. Calling the new
11487function is equivalent to calling ``func`` with the same argument list,
11488but with ``nval`` used for the missing ``nest`` argument. If, after
11489calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11490modified, then the effect of any later call to the returned function
11491pointer is undefined.
11492
11493.. _int_at:
11494
11495'``llvm.adjust.trampoline``' Intrinsic
11496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11497
11498Syntax:
11499"""""""
11500
11501::
11502
11503 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11504
11505Overview:
11506"""""""""
11507
11508This performs any required machine-specific adjustment to the address of
11509a trampoline (passed as ``tramp``).
11510
11511Arguments:
11512""""""""""
11513
11514``tramp`` must point to a block of memory which already has trampoline
11515code filled in by a previous call to
11516:ref:`llvm.init.trampoline <int_it>`.
11517
11518Semantics:
11519""""""""""
11520
11521On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011522different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011523intrinsic returns the executable address corresponding to ``tramp``
11524after performing the required machine specific adjustments. The pointer
11525returned can then be :ref:`bitcast and executed <int_trampoline>`.
11526
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011527.. _int_mload_mstore:
11528
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011529Masked Vector Load and Store Intrinsics
11530---------------------------------------
11531
11532LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11533
11534.. _int_mload:
11535
11536'``llvm.masked.load.*``' Intrinsics
11537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11538
11539Syntax:
11540"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011541This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011542
11543::
11544
Adam Nemet7aab6482016-04-14 08:47:17 +000011545 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11546 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011547 ;; The data is a vector of pointers to double
Adam Nemet7aab6482016-04-14 08:47:17 +000011548 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011549 ;; The data is a vector of function pointers
Adam Nemet7aab6482016-04-14 08:47:17 +000011550 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011551
11552Overview:
11553"""""""""
11554
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011555Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011556
11557
11558Arguments:
11559""""""""""
11560
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011561The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011562
11563
11564Semantics:
11565""""""""""
11566
11567The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11568The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11569
11570
11571::
11572
Adam Nemet7aab6482016-04-14 08:47:17 +000011573 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011574
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011575 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011576 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011577 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011578
11579.. _int_mstore:
11580
11581'``llvm.masked.store.*``' Intrinsics
11582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11583
11584Syntax:
11585"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011586This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011587
11588::
11589
Adam Nemet7aab6482016-04-14 08:47:17 +000011590 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11591 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011592 ;; The data is a vector of pointers to double
Adam Nemet7aab6482016-04-14 08:47:17 +000011593 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011594 ;; The data is a vector of function pointers
Adam Nemet7aab6482016-04-14 08:47:17 +000011595 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011596
11597Overview:
11598"""""""""
11599
11600Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11601
11602Arguments:
11603""""""""""
11604
11605The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11606
11607
11608Semantics:
11609""""""""""
11610
11611The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11612The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11613
11614::
11615
Adam Nemet7aab6482016-04-14 08:47:17 +000011616 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011617
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011618 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011619 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011620 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11621 store <16 x float> %res, <16 x float>* %ptr, align 4
11622
11623
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011624Masked Vector Gather and Scatter Intrinsics
11625-------------------------------------------
11626
11627LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11628
11629.. _int_mgather:
11630
11631'``llvm.masked.gather.*``' Intrinsics
11632^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11633
11634Syntax:
11635"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011636This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011637
11638::
11639
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011640 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11641 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11642 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011643
11644Overview:
11645"""""""""
11646
11647Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11648
11649
11650Arguments:
11651""""""""""
11652
11653The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11654
11655
11656Semantics:
11657""""""""""
11658
11659The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11660The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11661
11662
11663::
11664
11665 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11666
11667 ;; The gather with all-true mask is equivalent to the following instruction sequence
11668 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11669 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11670 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11671 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11672
11673 %val0 = load double, double* %ptr0, align 8
11674 %val1 = load double, double* %ptr1, align 8
11675 %val2 = load double, double* %ptr2, align 8
11676 %val3 = load double, double* %ptr3, align 8
11677
11678 %vec0 = insertelement <4 x double>undef, %val0, 0
11679 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11680 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11681 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11682
11683.. _int_mscatter:
11684
11685'``llvm.masked.scatter.*``' Intrinsics
11686^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11687
11688Syntax:
11689"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011690This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011691
11692::
11693
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011694 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11695 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11696 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011697
11698Overview:
11699"""""""""
11700
11701Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11702
11703Arguments:
11704""""""""""
11705
11706The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11707
11708
11709Semantics:
11710""""""""""
11711
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011712The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011713
11714::
11715
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011716 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011717 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11718
11719 ;; It is equivalent to a list of scalar stores
11720 %val0 = extractelement <8 x i32> %value, i32 0
11721 %val1 = extractelement <8 x i32> %value, i32 1
11722 ..
11723 %val7 = extractelement <8 x i32> %value, i32 7
11724 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11725 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11726 ..
11727 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11728 ;; Note: the order of the following stores is important when they overlap:
11729 store i32 %val0, i32* %ptr0, align 4
11730 store i32 %val1, i32* %ptr1, align 4
11731 ..
11732 store i32 %val7, i32* %ptr7, align 4
11733
11734
Sean Silvab084af42012-12-07 10:36:55 +000011735Memory Use Markers
11736------------------
11737
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011738This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011739memory objects and ranges where variables are immutable.
11740
Reid Klecknera534a382013-12-19 02:14:12 +000011741.. _int_lifestart:
11742
Sean Silvab084af42012-12-07 10:36:55 +000011743'``llvm.lifetime.start``' Intrinsic
11744^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11745
11746Syntax:
11747"""""""
11748
11749::
11750
11751 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11752
11753Overview:
11754"""""""""
11755
11756The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11757object's lifetime.
11758
11759Arguments:
11760""""""""""
11761
11762The first argument is a constant integer representing the size of the
11763object, or -1 if it is variable sized. The second argument is a pointer
11764to the object.
11765
11766Semantics:
11767""""""""""
11768
11769This intrinsic indicates that before this point in the code, the value
11770of the memory pointed to by ``ptr`` is dead. This means that it is known
11771to never be used and has an undefined value. A load from the pointer
11772that precedes this intrinsic can be replaced with ``'undef'``.
11773
Reid Klecknera534a382013-12-19 02:14:12 +000011774.. _int_lifeend:
11775
Sean Silvab084af42012-12-07 10:36:55 +000011776'``llvm.lifetime.end``' Intrinsic
11777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11778
11779Syntax:
11780"""""""
11781
11782::
11783
11784 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11785
11786Overview:
11787"""""""""
11788
11789The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11790object's lifetime.
11791
11792Arguments:
11793""""""""""
11794
11795The first argument is a constant integer representing the size of the
11796object, or -1 if it is variable sized. The second argument is a pointer
11797to the object.
11798
11799Semantics:
11800""""""""""
11801
11802This intrinsic indicates that after this point in the code, the value of
11803the memory pointed to by ``ptr`` is dead. This means that it is known to
11804never be used and has an undefined value. Any stores into the memory
11805object following this intrinsic may be removed as dead.
11806
11807'``llvm.invariant.start``' Intrinsic
11808^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11809
11810Syntax:
11811"""""""
11812
11813::
11814
11815 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11816
11817Overview:
11818"""""""""
11819
11820The '``llvm.invariant.start``' intrinsic specifies that the contents of
11821a memory object will not change.
11822
11823Arguments:
11824""""""""""
11825
11826The first argument is a constant integer representing the size of the
11827object, or -1 if it is variable sized. The second argument is a pointer
11828to the object.
11829
11830Semantics:
11831""""""""""
11832
11833This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11834the return value, the referenced memory location is constant and
11835unchanging.
11836
11837'``llvm.invariant.end``' Intrinsic
11838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11839
11840Syntax:
11841"""""""
11842
11843::
11844
11845 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11846
11847Overview:
11848"""""""""
11849
11850The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11851memory object are mutable.
11852
11853Arguments:
11854""""""""""
11855
11856The first argument is the matching ``llvm.invariant.start`` intrinsic.
11857The second argument is a constant integer representing the size of the
11858object, or -1 if it is variable sized and the third argument is a
11859pointer to the object.
11860
11861Semantics:
11862""""""""""
11863
11864This intrinsic indicates that the memory is mutable again.
11865
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011866'``llvm.invariant.group.barrier``' Intrinsic
11867^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11868
11869Syntax:
11870"""""""
11871
11872::
11873
11874 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11875
11876Overview:
11877"""""""""
11878
11879The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11880established by invariant.group metadata no longer holds, to obtain a new pointer
11881value that does not carry the invariant information.
11882
11883
11884Arguments:
11885""""""""""
11886
11887The ``llvm.invariant.group.barrier`` takes only one argument, which is
11888the pointer to the memory for which the ``invariant.group`` no longer holds.
11889
11890Semantics:
11891""""""""""
11892
11893Returns another pointer that aliases its argument but which is considered different
11894for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11895
Sean Silvab084af42012-12-07 10:36:55 +000011896General Intrinsics
11897------------------
11898
11899This class of intrinsics is designed to be generic and has no specific
11900purpose.
11901
11902'``llvm.var.annotation``' Intrinsic
11903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11904
11905Syntax:
11906"""""""
11907
11908::
11909
11910 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11911
11912Overview:
11913"""""""""
11914
11915The '``llvm.var.annotation``' intrinsic.
11916
11917Arguments:
11918""""""""""
11919
11920The first argument is a pointer to a value, the second is a pointer to a
11921global string, the third is a pointer to a global string which is the
11922source file name, and the last argument is the line number.
11923
11924Semantics:
11925""""""""""
11926
11927This intrinsic allows annotation of local variables with arbitrary
11928strings. This can be useful for special purpose optimizations that want
11929to look for these annotations. These have no other defined use; they are
11930ignored by code generation and optimization.
11931
Michael Gottesman88d18832013-03-26 00:34:27 +000011932'``llvm.ptr.annotation.*``' Intrinsic
11933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11934
11935Syntax:
11936"""""""
11937
11938This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11939pointer to an integer of any width. *NOTE* you must specify an address space for
11940the pointer. The identifier for the default address space is the integer
11941'``0``'.
11942
11943::
11944
11945 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11946 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11947 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11948 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11949 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11950
11951Overview:
11952"""""""""
11953
11954The '``llvm.ptr.annotation``' intrinsic.
11955
11956Arguments:
11957""""""""""
11958
11959The first argument is a pointer to an integer value of arbitrary bitwidth
11960(result of some expression), the second is a pointer to a global string, the
11961third is a pointer to a global string which is the source file name, and the
11962last argument is the line number. It returns the value of the first argument.
11963
11964Semantics:
11965""""""""""
11966
11967This intrinsic allows annotation of a pointer to an integer with arbitrary
11968strings. This can be useful for special purpose optimizations that want to look
11969for these annotations. These have no other defined use; they are ignored by code
11970generation and optimization.
11971
Sean Silvab084af42012-12-07 10:36:55 +000011972'``llvm.annotation.*``' Intrinsic
11973^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11974
11975Syntax:
11976"""""""
11977
11978This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11979any integer bit width.
11980
11981::
11982
11983 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11984 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11985 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11986 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11987 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11988
11989Overview:
11990"""""""""
11991
11992The '``llvm.annotation``' intrinsic.
11993
11994Arguments:
11995""""""""""
11996
11997The first argument is an integer value (result of some expression), the
11998second is a pointer to a global string, the third is a pointer to a
11999global string which is the source file name, and the last argument is
12000the line number. It returns the value of the first argument.
12001
12002Semantics:
12003""""""""""
12004
12005This intrinsic allows annotations to be put on arbitrary expressions
12006with arbitrary strings. This can be useful for special purpose
12007optimizations that want to look for these annotations. These have no
12008other defined use; they are ignored by code generation and optimization.
12009
12010'``llvm.trap``' Intrinsic
12011^^^^^^^^^^^^^^^^^^^^^^^^^
12012
12013Syntax:
12014"""""""
12015
12016::
12017
12018 declare void @llvm.trap() noreturn nounwind
12019
12020Overview:
12021"""""""""
12022
12023The '``llvm.trap``' intrinsic.
12024
12025Arguments:
12026""""""""""
12027
12028None.
12029
12030Semantics:
12031""""""""""
12032
12033This intrinsic is lowered to the target dependent trap instruction. If
12034the target does not have a trap instruction, this intrinsic will be
12035lowered to a call of the ``abort()`` function.
12036
12037'``llvm.debugtrap``' Intrinsic
12038^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12039
12040Syntax:
12041"""""""
12042
12043::
12044
12045 declare void @llvm.debugtrap() nounwind
12046
12047Overview:
12048"""""""""
12049
12050The '``llvm.debugtrap``' intrinsic.
12051
12052Arguments:
12053""""""""""
12054
12055None.
12056
12057Semantics:
12058""""""""""
12059
12060This intrinsic is lowered to code which is intended to cause an
12061execution trap with the intention of requesting the attention of a
12062debugger.
12063
12064'``llvm.stackprotector``' Intrinsic
12065^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12066
12067Syntax:
12068"""""""
12069
12070::
12071
12072 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12073
12074Overview:
12075"""""""""
12076
12077The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12078onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12079is placed on the stack before local variables.
12080
12081Arguments:
12082""""""""""
12083
12084The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12085The first argument is the value loaded from the stack guard
12086``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12087enough space to hold the value of the guard.
12088
12089Semantics:
12090""""""""""
12091
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012092This intrinsic causes the prologue/epilogue inserter to force the position of
12093the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12094to ensure that if a local variable on the stack is overwritten, it will destroy
12095the value of the guard. When the function exits, the guard on the stack is
12096checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12097different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12098calling the ``__stack_chk_fail()`` function.
12099
Tim Shene885d5e2016-04-19 19:40:37 +000012100'``llvm.stackguard``' Intrinsic
12101^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12102
12103Syntax:
12104"""""""
12105
12106::
12107
12108 declare i8* @llvm.stackguard()
12109
12110Overview:
12111"""""""""
12112
12113The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12114
12115It should not be generated by frontends, since it is only for internal usage.
12116The reason why we create this intrinsic is that we still support IR form Stack
12117Protector in FastISel.
12118
12119Arguments:
12120""""""""""
12121
12122None.
12123
12124Semantics:
12125""""""""""
12126
12127On some platforms, the value returned by this intrinsic remains unchanged
12128between loads in the same thread. On other platforms, it returns the same
12129global variable value, if any, e.g. ``@__stack_chk_guard``.
12130
12131Currently some platforms have IR-level customized stack guard loading (e.g.
12132X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12133in the future.
12134
Sean Silvab084af42012-12-07 10:36:55 +000012135'``llvm.objectsize``' Intrinsic
12136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12137
12138Syntax:
12139"""""""
12140
12141::
12142
12143 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12144 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12145
12146Overview:
12147"""""""""
12148
12149The ``llvm.objectsize`` intrinsic is designed to provide information to
12150the optimizers to determine at compile time whether a) an operation
12151(like memcpy) will overflow a buffer that corresponds to an object, or
12152b) that a runtime check for overflow isn't necessary. An object in this
12153context means an allocation of a specific class, structure, array, or
12154other object.
12155
12156Arguments:
12157""""""""""
12158
12159The ``llvm.objectsize`` intrinsic takes two arguments. The first
12160argument is a pointer to or into the ``object``. The second argument is
12161a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12162or -1 (if false) when the object size is unknown. The second argument
12163only accepts constants.
12164
12165Semantics:
12166""""""""""
12167
12168The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12169the size of the object concerned. If the size cannot be determined at
12170compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12171on the ``min`` argument).
12172
12173'``llvm.expect``' Intrinsic
12174^^^^^^^^^^^^^^^^^^^^^^^^^^^
12175
12176Syntax:
12177"""""""
12178
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012179This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12180integer bit width.
12181
Sean Silvab084af42012-12-07 10:36:55 +000012182::
12183
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012184 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012185 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12186 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12187
12188Overview:
12189"""""""""
12190
12191The ``llvm.expect`` intrinsic provides information about expected (the
12192most probable) value of ``val``, which can be used by optimizers.
12193
12194Arguments:
12195""""""""""
12196
12197The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12198a value. The second argument is an expected value, this needs to be a
12199constant value, variables are not allowed.
12200
12201Semantics:
12202""""""""""
12203
12204This intrinsic is lowered to the ``val``.
12205
Philip Reamese0e90832015-04-26 22:23:12 +000012206.. _int_assume:
12207
Hal Finkel93046912014-07-25 21:13:35 +000012208'``llvm.assume``' Intrinsic
12209^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12210
12211Syntax:
12212"""""""
12213
12214::
12215
12216 declare void @llvm.assume(i1 %cond)
12217
12218Overview:
12219"""""""""
12220
12221The ``llvm.assume`` allows the optimizer to assume that the provided
12222condition is true. This information can then be used in simplifying other parts
12223of the code.
12224
12225Arguments:
12226""""""""""
12227
12228The condition which the optimizer may assume is always true.
12229
12230Semantics:
12231""""""""""
12232
12233The intrinsic allows the optimizer to assume that the provided condition is
12234always true whenever the control flow reaches the intrinsic call. No code is
12235generated for this intrinsic, and instructions that contribute only to the
12236provided condition are not used for code generation. If the condition is
12237violated during execution, the behavior is undefined.
12238
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012239Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012240used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12241only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012242if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012243sufficient overall improvement in code quality. For this reason,
12244``llvm.assume`` should not be used to document basic mathematical invariants
12245that the optimizer can otherwise deduce or facts that are of little use to the
12246optimizer.
12247
Peter Collingbournee6909c82015-02-20 20:30:47 +000012248.. _bitset.test:
12249
12250'``llvm.bitset.test``' Intrinsic
12251^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12252
12253Syntax:
12254"""""""
12255
12256::
12257
12258 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12259
12260
12261Arguments:
12262""""""""""
12263
12264The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012265metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012266
12267Overview:
12268"""""""""
12269
12270The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12271member of the given bitset.
12272
Sean Silvab084af42012-12-07 10:36:55 +000012273'``llvm.donothing``' Intrinsic
12274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12275
12276Syntax:
12277"""""""
12278
12279::
12280
12281 declare void @llvm.donothing() nounwind readnone
12282
12283Overview:
12284"""""""""
12285
Juergen Ributzkac9161192014-10-23 22:36:13 +000012286The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012287three intrinsics (besides ``llvm.experimental.patchpoint`` and
12288``llvm.experimental.gc.statepoint``) that can be called with an invoke
12289instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012290
12291Arguments:
12292""""""""""
12293
12294None.
12295
12296Semantics:
12297""""""""""
12298
12299This intrinsic does nothing, and it's removed by optimizers and ignored
12300by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012301
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012302'``llvm.experimental.deoptimize``' Intrinsic
12303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12304
12305Syntax:
12306"""""""
12307
12308::
12309
12310 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12311
12312Overview:
12313"""""""""
12314
12315This intrinsic, together with :ref:`deoptimization operand bundles
12316<deopt_opbundles>`, allow frontends to express transfer of control and
12317frame-local state from the currently executing (typically more specialized,
12318hence faster) version of a function into another (typically more generic, hence
12319slower) version.
12320
12321In languages with a fully integrated managed runtime like Java and JavaScript
12322this intrinsic can be used to implement "uncommon trap" or "side exit" like
12323functionality. In unmanaged languages like C and C++, this intrinsic can be
12324used to represent the slow paths of specialized functions.
12325
12326
12327Arguments:
12328""""""""""
12329
12330The intrinsic takes an arbitrary number of arguments, whose meaning is
12331decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12332
12333Semantics:
12334""""""""""
12335
12336The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12337deoptimization continuation (denoted using a :ref:`deoptimization
12338operand bundle <deopt_opbundles>`) and returns the value returned by
12339the deoptimization continuation. Defining the semantic properties of
12340the continuation itself is out of scope of the language reference --
12341as far as LLVM is concerned, the deoptimization continuation can
12342invoke arbitrary side effects, including reading from and writing to
12343the entire heap.
12344
12345Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12346continue execution to the end of the physical frame containing them, so all
12347calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12348
12349 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12350 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12351 - The ``ret`` instruction must return the value produced by the
12352 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12353
12354Note that the above restrictions imply that the return type for a call to
12355``@llvm.experimental.deoptimize`` will match the return type of its immediate
12356caller.
12357
12358The inliner composes the ``"deopt"`` continuations of the caller into the
12359``"deopt"`` continuations present in the inlinee, and also updates calls to this
12360intrinsic to return directly from the frame of the function it inlined into.
12361
Sanjoy Dase0aa4142016-05-12 01:17:38 +000012362All declarations of ``@llvm.experimental.deoptimize`` must share the
12363same calling convention.
12364
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012365.. _deoptimize_lowering:
12366
12367Lowering:
12368"""""""""
12369
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012370Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12371symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12372ensure that this symbol is defined). The call arguments to
12373``@llvm.experimental.deoptimize`` are lowered as if they were formal
12374arguments of the specified types, and not as varargs.
12375
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012376
Sanjoy Das021de052016-03-31 00:18:46 +000012377'``llvm.experimental.guard``' Intrinsic
12378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12379
12380Syntax:
12381"""""""
12382
12383::
12384
12385 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12386
12387Overview:
12388"""""""""
12389
12390This intrinsic, together with :ref:`deoptimization operand bundles
12391<deopt_opbundles>`, allows frontends to express guards or checks on
12392optimistic assumptions made during compilation. The semantics of
12393``@llvm.experimental.guard`` is defined in terms of
12394``@llvm.experimental.deoptimize`` -- its body is defined to be
12395equivalent to:
12396
12397.. code-block:: llvm
12398
12399 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12400 %realPred = and i1 %pred, undef
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012401 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000012402
12403 leave:
12404 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12405 ret void
12406
12407 continue:
12408 ret void
12409 }
12410
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012411
12412with the optional ``[, !make.implicit !{}]`` present if and only if it
12413is present on the call site. For more details on ``!make.implicit``,
12414see :doc:`FaultMaps`.
12415
Sanjoy Das021de052016-03-31 00:18:46 +000012416In words, ``@llvm.experimental.guard`` executes the attached
12417``"deopt"`` continuation if (but **not** only if) its first argument
12418is ``false``. Since the optimizer is allowed to replace the ``undef``
12419with an arbitrary value, it can optimize guard to fail "spuriously",
12420i.e. without the original condition being false (hence the "not only
12421if"); and this allows for "check widening" type optimizations.
12422
12423``@llvm.experimental.guard`` cannot be invoked.
12424
12425
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012426'``llvm.load.relative``' Intrinsic
12427^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12428
12429Syntax:
12430"""""""
12431
12432::
12433
12434 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12435
12436Overview:
12437"""""""""
12438
12439This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12440adds ``%ptr`` to that value and returns it. The constant folder specifically
12441recognizes the form of this intrinsic and the constant initializers it may
12442load from; if a loaded constant initializer is known to have the form
12443``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12444
12445LLVM provides that the calculation of such a constant initializer will
12446not overflow at link time under the medium code model if ``x`` is an
12447``unnamed_addr`` function. However, it does not provide this guarantee for
12448a constant initializer folded into a function body. This intrinsic can be
12449used to avoid the possibility of overflows when loading from such a constant.
12450
Andrew Trick5e029ce2013-12-24 02:57:25 +000012451Stack Map Intrinsics
12452--------------------
12453
12454LLVM provides experimental intrinsics to support runtime patching
12455mechanisms commonly desired in dynamic language JITs. These intrinsics
12456are described in :doc:`StackMaps`.