blob: 78c3e4cd24c6b7744f463560569a9da0c298b4d8 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
549.. _globalvars:
550
551Global Variables
552----------------
553
554Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000555instead of run-time.
556
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000557Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000558
559Global variables in other translation units can also be declared, in which
560case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000561
Bob Wilson85b24f22014-06-12 20:40:33 +0000562Either global variable definitions or declarations may have an explicit section
563to be placed in and may have an optional explicit alignment specified.
564
Michael Gottesman006039c2013-01-31 05:48:48 +0000565A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000566the contents of the variable will **never** be modified (enabling better
567optimization, allowing the global data to be placed in the read-only
568section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000569initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000570variable.
571
572LLVM explicitly allows *declarations* of global variables to be marked
573constant, even if the final definition of the global is not. This
574capability can be used to enable slightly better optimization of the
575program, but requires the language definition to guarantee that
576optimizations based on the 'constantness' are valid for the translation
577units that do not include the definition.
578
579As SSA values, global variables define pointer values that are in scope
580(i.e. they dominate) all basic blocks in the program. Global variables
581always define a pointer to their "content" type because they describe a
582region of memory, and all memory objects in LLVM are accessed through
583pointers.
584
585Global variables can be marked with ``unnamed_addr`` which indicates
586that the address is not significant, only the content. Constants marked
587like this can be merged with other constants if they have the same
588initializer. Note that a constant with significant address *can* be
589merged with a ``unnamed_addr`` constant, the result being a constant
590whose address is significant.
591
592A global variable may be declared to reside in a target-specific
593numbered address space. For targets that support them, address spaces
594may affect how optimizations are performed and/or what target
595instructions are used to access the variable. The default address space
596is zero. The address space qualifier must precede any other attributes.
597
598LLVM allows an explicit section to be specified for globals. If the
599target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000600Additionally, the global can placed in a comdat if the target has the necessary
601support.
Sean Silvab084af42012-12-07 10:36:55 +0000602
Michael Gottesmane743a302013-02-04 03:22:00 +0000603By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000604variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000605initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000606true even for variables potentially accessible from outside the
607module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000608``@llvm.used`` or dllexported variables. This assumption may be suppressed
609by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000610
Sean Silvab084af42012-12-07 10:36:55 +0000611An explicit alignment may be specified for a global, which must be a
612power of 2. If not present, or if the alignment is set to zero, the
613alignment of the global is set by the target to whatever it feels
614convenient. If an explicit alignment is specified, the global is forced
615to have exactly that alignment. Targets and optimizers are not allowed
616to over-align the global if the global has an assigned section. In this
617case, the extra alignment could be observable: for example, code could
618assume that the globals are densely packed in their section and try to
619iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000620iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000621
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000622Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
623an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000624
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000625Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000626:ref:`Thread Local Storage Model <tls_model>`.
627
Nico Rieck7157bb72014-01-14 15:22:47 +0000628Syntax::
629
Rafael Espindola32483a72016-05-10 18:22:45 +0000630 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000631 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000632 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000633 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000634 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000635
Sean Silvab084af42012-12-07 10:36:55 +0000636For example, the following defines a global in a numbered address space
637with an initializer, section, and alignment:
638
639.. code-block:: llvm
640
641 @G = addrspace(5) constant float 1.0, section "foo", align 4
642
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000643The following example just declares a global variable
644
645.. code-block:: llvm
646
647 @G = external global i32
648
Sean Silvab084af42012-12-07 10:36:55 +0000649The following example defines a thread-local global with the
650``initialexec`` TLS model:
651
652.. code-block:: llvm
653
654 @G = thread_local(initialexec) global i32 0, align 4
655
656.. _functionstructure:
657
658Functions
659---------
660
661LLVM function definitions consist of the "``define``" keyword, an
662optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000663style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
664an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000665an optional ``unnamed_addr`` attribute, a return type, an optional
666:ref:`parameter attribute <paramattrs>` for the return type, a function
667name, a (possibly empty) argument list (each with optional :ref:`parameter
668attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000669an optional section, an optional alignment,
670an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000671an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000672an optional :ref:`prologue <prologuedata>`,
673an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000674an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000675an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000676
677LLVM function declarations consist of the "``declare``" keyword, an
678optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000679style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
680an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000681an optional ``unnamed_addr`` attribute, a return type, an optional
682:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000683name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000684:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
685and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000686
Bill Wendling6822ecb2013-10-27 05:09:12 +0000687A function definition contains a list of basic blocks, forming the CFG (Control
688Flow Graph) for the function. Each basic block may optionally start with a label
689(giving the basic block a symbol table entry), contains a list of instructions,
690and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
691function return). If an explicit label is not provided, a block is assigned an
692implicit numbered label, using the next value from the same counter as used for
693unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
694entry block does not have an explicit label, it will be assigned label "%0",
695then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000696
697The first basic block in a function is special in two ways: it is
698immediately executed on entrance to the function, and it is not allowed
699to have predecessor basic blocks (i.e. there can not be any branches to
700the entry block of a function). Because the block can have no
701predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
702
703LLVM allows an explicit section to be specified for functions. If the
704target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000705Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000706
707An explicit alignment may be specified for a function. If not present,
708or if the alignment is set to zero, the alignment of the function is set
709by the target to whatever it feels convenient. If an explicit alignment
710is specified, the function is forced to have at least that much
711alignment. All alignments must be a power of 2.
712
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000713If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000714be significant and two identical functions can be merged.
715
716Syntax::
717
Nico Rieck7157bb72014-01-14 15:22:47 +0000718 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000719 [cconv] [ret attrs]
720 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000721 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000722 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000723 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000724
Sean Silva706fba52015-08-06 22:56:24 +0000725The argument list is a comma separated sequence of arguments where each
726argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000727
728Syntax::
729
730 <type> [parameter Attrs] [name]
731
732
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000733.. _langref_aliases:
734
Sean Silvab084af42012-12-07 10:36:55 +0000735Aliases
736-------
737
Rafael Espindola64c1e182014-06-03 02:41:57 +0000738Aliases, unlike function or variables, don't create any new data. They
739are just a new symbol and metadata for an existing position.
740
741Aliases have a name and an aliasee that is either a global value or a
742constant expression.
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000745:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
746<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000747
748Syntax::
749
David Blaikie196582e2015-10-22 01:17:29 +0000750 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000751
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000752The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000753``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000754might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000755
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000756Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000757the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
758to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000759
Rafael Espindola64c1e182014-06-03 02:41:57 +0000760Since aliases are only a second name, some restrictions apply, of which
761some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000762
Rafael Espindola64c1e182014-06-03 02:41:57 +0000763* The expression defining the aliasee must be computable at assembly
764 time. Since it is just a name, no relocations can be used.
765
766* No alias in the expression can be weak as the possibility of the
767 intermediate alias being overridden cannot be represented in an
768 object file.
769
770* No global value in the expression can be a declaration, since that
771 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000772
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000773.. _langref_ifunc:
774
775IFuncs
776-------
777
778IFuncs, like as aliases, don't create any new data or func. They are just a new
779symbol that dynamic linker resolves at runtime by calling a resolver function.
780
781IFuncs have a name and a resolver that is a function called by dynamic linker
782that returns address of another function associated with the name.
783
784IFunc may have an optional :ref:`linkage type <linkage>` and an optional
785:ref:`visibility style <visibility>`.
786
787Syntax::
788
789 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
790
791
David Majnemerdad0a642014-06-27 18:19:56 +0000792.. _langref_comdats:
793
794Comdats
795-------
796
797Comdat IR provides access to COFF and ELF object file COMDAT functionality.
798
Sean Silvaa1190322015-08-06 22:56:48 +0000799Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000800specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000801that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000802aliasee computes to, if any.
803
804Comdats have a selection kind to provide input on how the linker should
805choose between keys in two different object files.
806
807Syntax::
808
809 $<Name> = comdat SelectionKind
810
811The selection kind must be one of the following:
812
813``any``
814 The linker may choose any COMDAT key, the choice is arbitrary.
815``exactmatch``
816 The linker may choose any COMDAT key but the sections must contain the
817 same data.
818``largest``
819 The linker will choose the section containing the largest COMDAT key.
820``noduplicates``
821 The linker requires that only section with this COMDAT key exist.
822``samesize``
823 The linker may choose any COMDAT key but the sections must contain the
824 same amount of data.
825
826Note that the Mach-O platform doesn't support COMDATs and ELF only supports
827``any`` as a selection kind.
828
829Here is an example of a COMDAT group where a function will only be selected if
830the COMDAT key's section is the largest:
831
832.. code-block:: llvm
833
834 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000835 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000836
Rafael Espindola83a362c2015-01-06 22:55:16 +0000837 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000838 ret void
839 }
840
Rafael Espindola83a362c2015-01-06 22:55:16 +0000841As a syntactic sugar the ``$name`` can be omitted if the name is the same as
842the global name:
843
844.. code-block:: llvm
845
846 $foo = comdat any
847 @foo = global i32 2, comdat
848
849
David Majnemerdad0a642014-06-27 18:19:56 +0000850In a COFF object file, this will create a COMDAT section with selection kind
851``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
852and another COMDAT section with selection kind
853``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000854section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000855
856There are some restrictions on the properties of the global object.
857It, or an alias to it, must have the same name as the COMDAT group when
858targeting COFF.
859The contents and size of this object may be used during link-time to determine
860which COMDAT groups get selected depending on the selection kind.
861Because the name of the object must match the name of the COMDAT group, the
862linkage of the global object must not be local; local symbols can get renamed
863if a collision occurs in the symbol table.
864
865The combined use of COMDATS and section attributes may yield surprising results.
866For example:
867
868.. code-block:: llvm
869
870 $foo = comdat any
871 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000872 @g1 = global i32 42, section "sec", comdat($foo)
873 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000874
875From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000876with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000877COMDAT groups and COMDATs, at the object file level, are represented by
878sections.
879
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000880Note that certain IR constructs like global variables and functions may
881create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000882COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000883in individual sections (e.g. when `-data-sections` or `-function-sections`
884is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000885
Sean Silvab084af42012-12-07 10:36:55 +0000886.. _namedmetadatastructure:
887
888Named Metadata
889--------------
890
891Named metadata is a collection of metadata. :ref:`Metadata
892nodes <metadata>` (but not metadata strings) are the only valid
893operands for a named metadata.
894
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000895#. Named metadata are represented as a string of characters with the
896 metadata prefix. The rules for metadata names are the same as for
897 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
898 are still valid, which allows any character to be part of a name.
899
Sean Silvab084af42012-12-07 10:36:55 +0000900Syntax::
901
902 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000903 !0 = !{!"zero"}
904 !1 = !{!"one"}
905 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000906 ; A named metadata.
907 !name = !{!0, !1, !2}
908
909.. _paramattrs:
910
911Parameter Attributes
912--------------------
913
914The return type and each parameter of a function type may have a set of
915*parameter attributes* associated with them. Parameter attributes are
916used to communicate additional information about the result or
917parameters of a function. Parameter attributes are considered to be part
918of the function, not of the function type, so functions with different
919parameter attributes can have the same function type.
920
921Parameter attributes are simple keywords that follow the type specified.
922If multiple parameter attributes are needed, they are space separated.
923For example:
924
925.. code-block:: llvm
926
927 declare i32 @printf(i8* noalias nocapture, ...)
928 declare i32 @atoi(i8 zeroext)
929 declare signext i8 @returns_signed_char()
930
931Note that any attributes for the function result (``nounwind``,
932``readonly``) come immediately after the argument list.
933
934Currently, only the following parameter attributes are defined:
935
936``zeroext``
937 This indicates to the code generator that the parameter or return
938 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000939 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000940``signext``
941 This indicates to the code generator that the parameter or return
942 value should be sign-extended to the extent required by the target's
943 ABI (which is usually 32-bits) by the caller (for a parameter) or
944 the callee (for a return value).
945``inreg``
946 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000947 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000948 a function call or return (usually, by putting it in a register as
949 opposed to memory, though some targets use it to distinguish between
950 two different kinds of registers). Use of this attribute is
951 target-specific.
952``byval``
953 This indicates that the pointer parameter should really be passed by
954 value to the function. The attribute implies that a hidden copy of
955 the pointee is made between the caller and the callee, so the callee
956 is unable to modify the value in the caller. This attribute is only
957 valid on LLVM pointer arguments. It is generally used to pass
958 structs and arrays by value, but is also valid on pointers to
959 scalars. The copy is considered to belong to the caller not the
960 callee (for example, ``readonly`` functions should not write to
961 ``byval`` parameters). This is not a valid attribute for return
962 values.
963
964 The byval attribute also supports specifying an alignment with the
965 align attribute. It indicates the alignment of the stack slot to
966 form and the known alignment of the pointer specified to the call
967 site. If the alignment is not specified, then the code generator
968 makes a target-specific assumption.
969
Reid Klecknera534a382013-12-19 02:14:12 +0000970.. _attr_inalloca:
971
972``inalloca``
973
Reid Kleckner60d3a832014-01-16 22:59:24 +0000974 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000975 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000976 be a pointer to stack memory produced by an ``alloca`` instruction.
977 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000978 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000979 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000980
Reid Kleckner436c42e2014-01-17 23:58:17 +0000981 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000982 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000983 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000984 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000985 ``inalloca`` attribute also disables LLVM's implicit lowering of
986 large aggregate return values, which means that frontend authors
987 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000988
Reid Kleckner60d3a832014-01-16 22:59:24 +0000989 When the call site is reached, the argument allocation must have
990 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000991 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000992 space after an argument allocation and before its call site, but it
993 must be cleared off with :ref:`llvm.stackrestore
994 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000995
996 See :doc:`InAlloca` for more information on how to use this
997 attribute.
998
Sean Silvab084af42012-12-07 10:36:55 +0000999``sret``
1000 This indicates that the pointer parameter specifies the address of a
1001 structure that is the return value of the function in the source
1002 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +00001003 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +00001004 not to trap and to be properly aligned. This may only be applied to
1005 the first parameter. This is not a valid attribute for return
1006 values.
Sean Silva1703e702014-04-08 21:06:22 +00001007
Hal Finkelccc70902014-07-22 16:58:55 +00001008``align <n>``
1009 This indicates that the pointer value may be assumed by the optimizer to
1010 have the specified alignment.
1011
1012 Note that this attribute has additional semantics when combined with the
1013 ``byval`` attribute.
1014
Sean Silva1703e702014-04-08 21:06:22 +00001015.. _noalias:
1016
Sean Silvab084af42012-12-07 10:36:55 +00001017``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001018 This indicates that objects accessed via pointer values
1019 :ref:`based <pointeraliasing>` on the argument or return value are not also
1020 accessed, during the execution of the function, via pointer values not
1021 *based* on the argument or return value. The attribute on a return value
1022 also has additional semantics described below. The caller shares the
1023 responsibility with the callee for ensuring that these requirements are met.
1024 For further details, please see the discussion of the NoAlias response in
1025 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001026
1027 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001028 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001029
1030 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001031 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1032 attribute on return values are stronger than the semantics of the attribute
1033 when used on function arguments. On function return values, the ``noalias``
1034 attribute indicates that the function acts like a system memory allocation
1035 function, returning a pointer to allocated storage disjoint from the
1036 storage for any other object accessible to the caller.
1037
Sean Silvab084af42012-12-07 10:36:55 +00001038``nocapture``
1039 This indicates that the callee does not make any copies of the
1040 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001041 attribute for return values. Addresses used in volatile operations
1042 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001043
1044.. _nest:
1045
1046``nest``
1047 This indicates that the pointer parameter can be excised using the
1048 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001049 attribute for return values and can only be applied to one parameter.
1050
1051``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001052 This indicates that the function always returns the argument as its return
1053 value. This is an optimization hint to the code generator when generating
1054 the caller, allowing tail call optimization and omission of register saves
1055 and restores in some cases; it is not checked or enforced when generating
1056 the callee. The parameter and the function return type must be valid
1057 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1058 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001059
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001060``nonnull``
1061 This indicates that the parameter or return pointer is not null. This
1062 attribute may only be applied to pointer typed parameters. This is not
1063 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001064 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001065 is non-null.
1066
Hal Finkelb0407ba2014-07-18 15:51:28 +00001067``dereferenceable(<n>)``
1068 This indicates that the parameter or return pointer is dereferenceable. This
1069 attribute may only be applied to pointer typed parameters. A pointer that
1070 is dereferenceable can be loaded from speculatively without a risk of
1071 trapping. The number of bytes known to be dereferenceable must be provided
1072 in parentheses. It is legal for the number of bytes to be less than the
1073 size of the pointee type. The ``nonnull`` attribute does not imply
1074 dereferenceability (consider a pointer to one element past the end of an
1075 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1076 ``addrspace(0)`` (which is the default address space).
1077
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001078``dereferenceable_or_null(<n>)``
1079 This indicates that the parameter or return value isn't both
1080 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001081 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001082 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1083 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1084 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1085 and in other address spaces ``dereferenceable_or_null(<n>)``
1086 implies that a pointer is at least one of ``dereferenceable(<n>)``
1087 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001088 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001089 pointer typed parameters.
1090
Manman Renf46262e2016-03-29 17:37:21 +00001091``swiftself``
1092 This indicates that the parameter is the self/context parameter. This is not
1093 a valid attribute for return values and can only be applied to one
1094 parameter.
1095
Manman Ren9bfd0d02016-04-01 21:41:15 +00001096``swifterror``
1097 This attribute is motivated to model and optimize Swift error handling. It
1098 can be applied to a parameter with pointer to pointer type or a
1099 pointer-sized alloca. At the call site, the actual argument that corresponds
1100 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca. A
1101 ``swifterror`` value (either the parameter or the alloca) can only be loaded
1102 and stored from, or used as a ``swifterror`` argument. This is not a valid
1103 attribute for return values and can only be applied to one parameter.
1104
1105 These constraints allow the calling convention to optimize access to
1106 ``swifterror`` variables by associating them with a specific register at
1107 call boundaries rather than placing them in memory. Since this does change
1108 the calling convention, a function which uses the ``swifterror`` attribute
1109 on a parameter is not ABI-compatible with one which does not.
1110
1111 These constraints also allow LLVM to assume that a ``swifterror`` argument
1112 does not alias any other memory visible within a function and that a
1113 ``swifterror`` alloca passed as an argument does not escape.
1114
Sean Silvab084af42012-12-07 10:36:55 +00001115.. _gc:
1116
Philip Reamesf80bbff2015-02-25 23:45:20 +00001117Garbage Collector Strategy Names
1118--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001119
Philip Reamesf80bbff2015-02-25 23:45:20 +00001120Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001121string:
1122
1123.. code-block:: llvm
1124
1125 define void @f() gc "name" { ... }
1126
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001127The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001128<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001129strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001130named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001131garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001132which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001133
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001134.. _prefixdata:
1135
1136Prefix Data
1137-----------
1138
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001139Prefix data is data associated with a function which the code
1140generator will emit immediately before the function's entrypoint.
1141The purpose of this feature is to allow frontends to associate
1142language-specific runtime metadata with specific functions and make it
1143available through the function pointer while still allowing the
1144function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001145
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001146To access the data for a given function, a program may bitcast the
1147function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001148index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001149the prefix data. For instance, take the example of a function annotated
1150with a single ``i32``,
1151
1152.. code-block:: llvm
1153
1154 define void @f() prefix i32 123 { ... }
1155
1156The prefix data can be referenced as,
1157
1158.. code-block:: llvm
1159
David Blaikie16a97eb2015-03-04 22:02:58 +00001160 %0 = bitcast void* () @f to i32*
1161 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001162 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001163
1164Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001165of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001166beginning of the prefix data is aligned. This means that if the size
1167of the prefix data is not a multiple of the alignment size, the
1168function's entrypoint will not be aligned. If alignment of the
1169function's entrypoint is desired, padding must be added to the prefix
1170data.
1171
Sean Silvaa1190322015-08-06 22:56:48 +00001172A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001173to the ``available_externally`` linkage in that the data may be used by the
1174optimizers but will not be emitted in the object file.
1175
1176.. _prologuedata:
1177
1178Prologue Data
1179-------------
1180
1181The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1182be inserted prior to the function body. This can be used for enabling
1183function hot-patching and instrumentation.
1184
1185To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001186have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001187bytes which decode to a sequence of machine instructions, valid for the
1188module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001189the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001190the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001191definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001192makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001193
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001194A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001195which encodes the ``nop`` instruction:
1196
1197.. code-block:: llvm
1198
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001199 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001200
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001201Generally prologue data can be formed by encoding a relative branch instruction
1202which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001203x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1204
1205.. code-block:: llvm
1206
1207 %0 = type <{ i8, i8, i8* }>
1208
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001209 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001210
Sean Silvaa1190322015-08-06 22:56:48 +00001211A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001212to the ``available_externally`` linkage in that the data may be used by the
1213optimizers but will not be emitted in the object file.
1214
David Majnemer7fddecc2015-06-17 20:52:32 +00001215.. _personalityfn:
1216
1217Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001218--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001219
1220The ``personality`` attribute permits functions to specify what function
1221to use for exception handling.
1222
Bill Wendling63b88192013-02-06 06:52:58 +00001223.. _attrgrp:
1224
1225Attribute Groups
1226----------------
1227
1228Attribute groups are groups of attributes that are referenced by objects within
1229the IR. They are important for keeping ``.ll`` files readable, because a lot of
1230functions will use the same set of attributes. In the degenerative case of a
1231``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1232group will capture the important command line flags used to build that file.
1233
1234An attribute group is a module-level object. To use an attribute group, an
1235object references the attribute group's ID (e.g. ``#37``). An object may refer
1236to more than one attribute group. In that situation, the attributes from the
1237different groups are merged.
1238
1239Here is an example of attribute groups for a function that should always be
1240inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1241
1242.. code-block:: llvm
1243
1244 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001245 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001246
1247 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001248 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001249
1250 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1251 define void @f() #0 #1 { ... }
1252
Sean Silvab084af42012-12-07 10:36:55 +00001253.. _fnattrs:
1254
1255Function Attributes
1256-------------------
1257
1258Function attributes are set to communicate additional information about
1259a function. Function attributes are considered to be part of the
1260function, not of the function type, so functions with different function
1261attributes can have the same function type.
1262
1263Function attributes are simple keywords that follow the type specified.
1264If multiple attributes are needed, they are space separated. For
1265example:
1266
1267.. code-block:: llvm
1268
1269 define void @f() noinline { ... }
1270 define void @f() alwaysinline { ... }
1271 define void @f() alwaysinline optsize { ... }
1272 define void @f() optsize { ... }
1273
Sean Silvab084af42012-12-07 10:36:55 +00001274``alignstack(<n>)``
1275 This attribute indicates that, when emitting the prologue and
1276 epilogue, the backend should forcibly align the stack pointer.
1277 Specify the desired alignment, which must be a power of two, in
1278 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001279``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1280 This attribute indicates that the annotated function will always return at
1281 least a given number of bytes (or null). Its arguments are zero-indexed
1282 parameter numbers; if one argument is provided, then it's assumed that at
1283 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1284 returned pointer. If two are provided, then it's assumed that
1285 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1286 available. The referenced parameters must be integer types. No assumptions
1287 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001288``alwaysinline``
1289 This attribute indicates that the inliner should attempt to inline
1290 this function into callers whenever possible, ignoring any active
1291 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001292``builtin``
1293 This indicates that the callee function at a call site should be
1294 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001295 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001296 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001297 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001298``cold``
1299 This attribute indicates that this function is rarely called. When
1300 computing edge weights, basic blocks post-dominated by a cold
1301 function call are also considered to be cold; and, thus, given low
1302 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001303``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001304 In some parallel execution models, there exist operations that cannot be
1305 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001306 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001307
Justin Lebar58535b12016-02-17 17:46:41 +00001308 The ``convergent`` attribute may appear on functions or call/invoke
1309 instructions. When it appears on a function, it indicates that calls to
1310 this function should not be made control-dependent on additional values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001311 For example, the intrinsic ``llvm.cuda.syncthreads`` is ``convergent``, so
1312 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001313 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001314
Justin Lebar58535b12016-02-17 17:46:41 +00001315 When it appears on a call/invoke, the ``convergent`` attribute indicates
1316 that we should treat the call as though we're calling a convergent
1317 function. This is particularly useful on indirect calls; without this we
1318 may treat such calls as though the target is non-convergent.
1319
1320 The optimizer may remove the ``convergent`` attribute on functions when it
1321 can prove that the function does not execute any convergent operations.
1322 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1323 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001324``inaccessiblememonly``
1325 This attribute indicates that the function may only access memory that
1326 is not accessible by the module being compiled. This is a weaker form
1327 of ``readnone``.
1328``inaccessiblemem_or_argmemonly``
1329 This attribute indicates that the function may only access memory that is
1330 either not accessible by the module being compiled, or is pointed to
1331 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001332``inlinehint``
1333 This attribute indicates that the source code contained a hint that
1334 inlining this function is desirable (such as the "inline" keyword in
1335 C/C++). It is just a hint; it imposes no requirements on the
1336 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001337``jumptable``
1338 This attribute indicates that the function should be added to a
1339 jump-instruction table at code-generation time, and that all address-taken
1340 references to this function should be replaced with a reference to the
1341 appropriate jump-instruction-table function pointer. Note that this creates
1342 a new pointer for the original function, which means that code that depends
1343 on function-pointer identity can break. So, any function annotated with
1344 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001345``minsize``
1346 This attribute suggests that optimization passes and code generator
1347 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001348 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001349 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001350``naked``
1351 This attribute disables prologue / epilogue emission for the
1352 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001353``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001354 This indicates that the callee function at a call site is not recognized as
1355 a built-in function. LLVM will retain the original call and not replace it
1356 with equivalent code based on the semantics of the built-in function, unless
1357 the call site uses the ``builtin`` attribute. This is valid at call sites
1358 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001359``noduplicate``
1360 This attribute indicates that calls to the function cannot be
1361 duplicated. A call to a ``noduplicate`` function may be moved
1362 within its parent function, but may not be duplicated within
1363 its parent function.
1364
1365 A function containing a ``noduplicate`` call may still
1366 be an inlining candidate, provided that the call is not
1367 duplicated by inlining. That implies that the function has
1368 internal linkage and only has one call site, so the original
1369 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001370``noimplicitfloat``
1371 This attributes disables implicit floating point instructions.
1372``noinline``
1373 This attribute indicates that the inliner should never inline this
1374 function in any situation. This attribute may not be used together
1375 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001376``nonlazybind``
1377 This attribute suppresses lazy symbol binding for the function. This
1378 may make calls to the function faster, at the cost of extra program
1379 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001380``noredzone``
1381 This attribute indicates that the code generator should not use a
1382 red zone, even if the target-specific ABI normally permits it.
1383``noreturn``
1384 This function attribute indicates that the function never returns
1385 normally. This produces undefined behavior at runtime if the
1386 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001387``norecurse``
1388 This function attribute indicates that the function does not call itself
1389 either directly or indirectly down any possible call path. This produces
1390 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001391``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001392 This function attribute indicates that the function never raises an
1393 exception. If the function does raise an exception, its runtime
1394 behavior is undefined. However, functions marked nounwind may still
1395 trap or generate asynchronous exceptions. Exception handling schemes
1396 that are recognized by LLVM to handle asynchronous exceptions, such
1397 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001398``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001399 This function attribute indicates that most optimization passes will skip
1400 this function, with the exception of interprocedural optimization passes.
1401 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001402 This attribute cannot be used together with the ``alwaysinline``
1403 attribute; this attribute is also incompatible
1404 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001405
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001406 This attribute requires the ``noinline`` attribute to be specified on
1407 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001408 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001409 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001410``optsize``
1411 This attribute suggests that optimization passes and code generator
1412 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001413 and otherwise do optimizations specifically to reduce code size as
1414 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001415``"patchable-function"``
1416 This attribute tells the code generator that the code
1417 generated for this function needs to follow certain conventions that
1418 make it possible for a runtime function to patch over it later.
1419 The exact effect of this attribute depends on its string value,
1420 for which there currently is one legal possiblity:
1421
1422 * ``"prologue-short-redirect"`` - This style of patchable
1423 function is intended to support patching a function prologue to
1424 redirect control away from the function in a thread safe
1425 manner. It guarantees that the first instruction of the
1426 function will be large enough to accommodate a short jump
1427 instruction, and will be sufficiently aligned to allow being
1428 fully changed via an atomic compare-and-swap instruction.
1429 While the first requirement can be satisfied by inserting large
1430 enough NOP, LLVM can and will try to re-purpose an existing
1431 instruction (i.e. one that would have to be emitted anyway) as
1432 the patchable instruction larger than a short jump.
1433
1434 ``"prologue-short-redirect"`` is currently only supported on
1435 x86-64.
1436
1437 This attribute by itself does not imply restrictions on
1438 inter-procedural optimizations. All of the semantic effects the
1439 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001440``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001441 On a function, this attribute indicates that the function computes its
1442 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001443 without dereferencing any pointer arguments or otherwise accessing
1444 any mutable state (e.g. memory, control registers, etc) visible to
1445 caller functions. It does not write through any pointer arguments
1446 (including ``byval`` arguments) and never changes any state visible
1447 to callers. This means that it cannot unwind exceptions by calling
1448 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001449
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001450 On an argument, this attribute indicates that the function does not
1451 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001452 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001453``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001454 On a function, this attribute indicates that the function does not write
1455 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001456 modify any state (e.g. memory, control registers, etc) visible to
1457 caller functions. It may dereference pointer arguments and read
1458 state that may be set in the caller. A readonly function always
1459 returns the same value (or unwinds an exception identically) when
1460 called with the same set of arguments and global state. It cannot
1461 unwind an exception by calling the ``C++`` exception throwing
1462 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001463
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001464 On an argument, this attribute indicates that the function does not write
1465 through this pointer argument, even though it may write to the memory that
1466 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001467``argmemonly``
1468 This attribute indicates that the only memory accesses inside function are
1469 loads and stores from objects pointed to by its pointer-typed arguments,
1470 with arbitrary offsets. Or in other words, all memory operations in the
1471 function can refer to memory only using pointers based on its function
1472 arguments.
1473 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1474 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001475``returns_twice``
1476 This attribute indicates that this function can return twice. The C
1477 ``setjmp`` is an example of such a function. The compiler disables
1478 some optimizations (like tail calls) in the caller of these
1479 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001480``safestack``
1481 This attribute indicates that
1482 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1483 protection is enabled for this function.
1484
1485 If a function that has a ``safestack`` attribute is inlined into a
1486 function that doesn't have a ``safestack`` attribute or which has an
1487 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1488 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001489``sanitize_address``
1490 This attribute indicates that AddressSanitizer checks
1491 (dynamic address safety analysis) are enabled for this function.
1492``sanitize_memory``
1493 This attribute indicates that MemorySanitizer checks (dynamic detection
1494 of accesses to uninitialized memory) are enabled for this function.
1495``sanitize_thread``
1496 This attribute indicates that ThreadSanitizer checks
1497 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001498``ssp``
1499 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001500 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001501 placed on the stack before the local variables that's checked upon
1502 return from the function to see if it has been overwritten. A
1503 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001504 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001505
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001506 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1507 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1508 - Calls to alloca() with variable sizes or constant sizes greater than
1509 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001510
Josh Magee24c7f062014-02-01 01:36:16 +00001511 Variables that are identified as requiring a protector will be arranged
1512 on the stack such that they are adjacent to the stack protector guard.
1513
Sean Silvab084af42012-12-07 10:36:55 +00001514 If a function that has an ``ssp`` attribute is inlined into a
1515 function that doesn't have an ``ssp`` attribute, then the resulting
1516 function will have an ``ssp`` attribute.
1517``sspreq``
1518 This attribute indicates that the function should *always* emit a
1519 stack smashing protector. This overrides the ``ssp`` function
1520 attribute.
1521
Josh Magee24c7f062014-02-01 01:36:16 +00001522 Variables that are identified as requiring a protector will be arranged
1523 on the stack such that they are adjacent to the stack protector guard.
1524 The specific layout rules are:
1525
1526 #. Large arrays and structures containing large arrays
1527 (``>= ssp-buffer-size``) are closest to the stack protector.
1528 #. Small arrays and structures containing small arrays
1529 (``< ssp-buffer-size``) are 2nd closest to the protector.
1530 #. Variables that have had their address taken are 3rd closest to the
1531 protector.
1532
Sean Silvab084af42012-12-07 10:36:55 +00001533 If a function that has an ``sspreq`` attribute is inlined into a
1534 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001535 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1536 an ``sspreq`` attribute.
1537``sspstrong``
1538 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001539 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001540 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001541 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001542
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001543 - Arrays of any size and type
1544 - Aggregates containing an array of any size and type.
1545 - Calls to alloca().
1546 - Local variables that have had their address taken.
1547
Josh Magee24c7f062014-02-01 01:36:16 +00001548 Variables that are identified as requiring a protector will be arranged
1549 on the stack such that they are adjacent to the stack protector guard.
1550 The specific layout rules are:
1551
1552 #. Large arrays and structures containing large arrays
1553 (``>= ssp-buffer-size``) are closest to the stack protector.
1554 #. Small arrays and structures containing small arrays
1555 (``< ssp-buffer-size``) are 2nd closest to the protector.
1556 #. Variables that have had their address taken are 3rd closest to the
1557 protector.
1558
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001559 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001560
1561 If a function that has an ``sspstrong`` attribute is inlined into a
1562 function that doesn't have an ``sspstrong`` attribute, then the
1563 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001564``"thunk"``
1565 This attribute indicates that the function will delegate to some other
1566 function with a tail call. The prototype of a thunk should not be used for
1567 optimization purposes. The caller is expected to cast the thunk prototype to
1568 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001569``uwtable``
1570 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001571 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001572 show that no exceptions passes by it. This is normally the case for
1573 the ELF x86-64 abi, but it can be disabled for some compilation
1574 units.
Sean Silvab084af42012-12-07 10:36:55 +00001575
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001576
1577.. _opbundles:
1578
1579Operand Bundles
1580---------------
1581
1582Note: operand bundles are a work in progress, and they should be
1583considered experimental at this time.
1584
1585Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001586with certain LLVM instructions (currently only ``call`` s and
1587``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001588incorrect and will change program semantics.
1589
1590Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001591
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001592 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001593 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1594 bundle operand ::= SSA value
1595 tag ::= string constant
1596
1597Operand bundles are **not** part of a function's signature, and a
1598given function may be called from multiple places with different kinds
1599of operand bundles. This reflects the fact that the operand bundles
1600are conceptually a part of the ``call`` (or ``invoke``), not the
1601callee being dispatched to.
1602
1603Operand bundles are a generic mechanism intended to support
1604runtime-introspection-like functionality for managed languages. While
1605the exact semantics of an operand bundle depend on the bundle tag,
1606there are certain limitations to how much the presence of an operand
1607bundle can influence the semantics of a program. These restrictions
1608are described as the semantics of an "unknown" operand bundle. As
1609long as the behavior of an operand bundle is describable within these
1610restrictions, LLVM does not need to have special knowledge of the
1611operand bundle to not miscompile programs containing it.
1612
David Majnemer34cacb42015-10-22 01:46:38 +00001613- The bundle operands for an unknown operand bundle escape in unknown
1614 ways before control is transferred to the callee or invokee.
1615- Calls and invokes with operand bundles have unknown read / write
1616 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001617 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001618 callsite specific attributes.
1619- An operand bundle at a call site cannot change the implementation
1620 of the called function. Inter-procedural optimizations work as
1621 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001622
Sanjoy Dascdafd842015-11-11 21:38:02 +00001623More specific types of operand bundles are described below.
1624
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001625.. _deopt_opbundles:
1626
Sanjoy Dascdafd842015-11-11 21:38:02 +00001627Deoptimization Operand Bundles
1628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1629
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001630Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001631operand bundle tag. These operand bundles represent an alternate
1632"safe" continuation for the call site they're attached to, and can be
1633used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001634specified call site. There can be at most one ``"deopt"`` operand
1635bundle attached to a call site. Exact details of deoptimization is
1636out of scope for the language reference, but it usually involves
1637rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001638
1639From the compiler's perspective, deoptimization operand bundles make
1640the call sites they're attached to at least ``readonly``. They read
1641through all of their pointer typed operands (even if they're not
1642otherwise escaped) and the entire visible heap. Deoptimization
1643operand bundles do not capture their operands except during
1644deoptimization, in which case control will not be returned to the
1645compiled frame.
1646
Sanjoy Das2d161452015-11-18 06:23:38 +00001647The inliner knows how to inline through calls that have deoptimization
1648operand bundles. Just like inlining through a normal call site
1649involves composing the normal and exceptional continuations, inlining
1650through a call site with a deoptimization operand bundle needs to
1651appropriately compose the "safe" deoptimization continuation. The
1652inliner does this by prepending the parent's deoptimization
1653continuation to every deoptimization continuation in the inlined body.
1654E.g. inlining ``@f`` into ``@g`` in the following example
1655
1656.. code-block:: llvm
1657
1658 define void @f() {
1659 call void @x() ;; no deopt state
1660 call void @y() [ "deopt"(i32 10) ]
1661 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1662 ret void
1663 }
1664
1665 define void @g() {
1666 call void @f() [ "deopt"(i32 20) ]
1667 ret void
1668 }
1669
1670will result in
1671
1672.. code-block:: llvm
1673
1674 define void @g() {
1675 call void @x() ;; still no deopt state
1676 call void @y() [ "deopt"(i32 20, i32 10) ]
1677 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1678 ret void
1679 }
1680
1681It is the frontend's responsibility to structure or encode the
1682deoptimization state in a way that syntactically prepending the
1683caller's deoptimization state to the callee's deoptimization state is
1684semantically equivalent to composing the caller's deoptimization
1685continuation after the callee's deoptimization continuation.
1686
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001687.. _ob_funclet:
1688
David Majnemer3bb88c02015-12-15 21:27:27 +00001689Funclet Operand Bundles
1690^^^^^^^^^^^^^^^^^^^^^^^
1691
1692Funclet operand bundles are characterized by the ``"funclet"``
1693operand bundle tag. These operand bundles indicate that a call site
1694is within a particular funclet. There can be at most one
1695``"funclet"`` operand bundle attached to a call site and it must have
1696exactly one bundle operand.
1697
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001698If any funclet EH pads have been "entered" but not "exited" (per the
1699`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1700it is undefined behavior to execute a ``call`` or ``invoke`` which:
1701
1702* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1703 intrinsic, or
1704* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1705 not-yet-exited funclet EH pad.
1706
1707Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1708executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1709
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001710GC Transition Operand Bundles
1711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1712
1713GC transition operand bundles are characterized by the
1714``"gc-transition"`` operand bundle tag. These operand bundles mark a
1715call as a transition between a function with one GC strategy to a
1716function with a different GC strategy. If coordinating the transition
1717between GC strategies requires additional code generation at the call
1718site, these bundles may contain any values that are needed by the
1719generated code. For more details, see :ref:`GC Transitions
1720<gc_transition_args>`.
1721
Sean Silvab084af42012-12-07 10:36:55 +00001722.. _moduleasm:
1723
1724Module-Level Inline Assembly
1725----------------------------
1726
1727Modules may contain "module-level inline asm" blocks, which corresponds
1728to the GCC "file scope inline asm" blocks. These blocks are internally
1729concatenated by LLVM and treated as a single unit, but may be separated
1730in the ``.ll`` file if desired. The syntax is very simple:
1731
1732.. code-block:: llvm
1733
1734 module asm "inline asm code goes here"
1735 module asm "more can go here"
1736
1737The strings can contain any character by escaping non-printable
1738characters. The escape sequence used is simply "\\xx" where "xx" is the
1739two digit hex code for the number.
1740
James Y Knightbc832ed2015-07-08 18:08:36 +00001741Note that the assembly string *must* be parseable by LLVM's integrated assembler
1742(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001743
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001744.. _langref_datalayout:
1745
Sean Silvab084af42012-12-07 10:36:55 +00001746Data Layout
1747-----------
1748
1749A module may specify a target specific data layout string that specifies
1750how data is to be laid out in memory. The syntax for the data layout is
1751simply:
1752
1753.. code-block:: llvm
1754
1755 target datalayout = "layout specification"
1756
1757The *layout specification* consists of a list of specifications
1758separated by the minus sign character ('-'). Each specification starts
1759with a letter and may include other information after the letter to
1760define some aspect of the data layout. The specifications accepted are
1761as follows:
1762
1763``E``
1764 Specifies that the target lays out data in big-endian form. That is,
1765 the bits with the most significance have the lowest address
1766 location.
1767``e``
1768 Specifies that the target lays out data in little-endian form. That
1769 is, the bits with the least significance have the lowest address
1770 location.
1771``S<size>``
1772 Specifies the natural alignment of the stack in bits. Alignment
1773 promotion of stack variables is limited to the natural stack
1774 alignment to avoid dynamic stack realignment. The stack alignment
1775 must be a multiple of 8-bits. If omitted, the natural stack
1776 alignment defaults to "unspecified", which does not prevent any
1777 alignment promotions.
1778``p[n]:<size>:<abi>:<pref>``
1779 This specifies the *size* of a pointer and its ``<abi>`` and
1780 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001781 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001782 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001783 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001784``i<size>:<abi>:<pref>``
1785 This specifies the alignment for an integer type of a given bit
1786 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1787``v<size>:<abi>:<pref>``
1788 This specifies the alignment for a vector type of a given bit
1789 ``<size>``.
1790``f<size>:<abi>:<pref>``
1791 This specifies the alignment for a floating point type of a given bit
1792 ``<size>``. Only values of ``<size>`` that are supported by the target
1793 will work. 32 (float) and 64 (double) are supported on all targets; 80
1794 or 128 (different flavors of long double) are also supported on some
1795 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001796``a:<abi>:<pref>``
1797 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001798``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001799 If present, specifies that llvm names are mangled in the output. The
1800 options are
1801
1802 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1803 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1804 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1805 symbols get a ``_`` prefix.
1806 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1807 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001808 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1809 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001810``n<size1>:<size2>:<size3>...``
1811 This specifies a set of native integer widths for the target CPU in
1812 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1813 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1814 this set are considered to support most general arithmetic operations
1815 efficiently.
1816
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001817On every specification that takes a ``<abi>:<pref>``, specifying the
1818``<pref>`` alignment is optional. If omitted, the preceding ``:``
1819should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1820
Sean Silvab084af42012-12-07 10:36:55 +00001821When constructing the data layout for a given target, LLVM starts with a
1822default set of specifications which are then (possibly) overridden by
1823the specifications in the ``datalayout`` keyword. The default
1824specifications are given in this list:
1825
1826- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001827- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1828- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1829 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001830- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001831- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1832- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1833- ``i16:16:16`` - i16 is 16-bit aligned
1834- ``i32:32:32`` - i32 is 32-bit aligned
1835- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1836 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001837- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001838- ``f32:32:32`` - float is 32-bit aligned
1839- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001840- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001841- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1842- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001843- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001844
1845When LLVM is determining the alignment for a given type, it uses the
1846following rules:
1847
1848#. If the type sought is an exact match for one of the specifications,
1849 that specification is used.
1850#. If no match is found, and the type sought is an integer type, then
1851 the smallest integer type that is larger than the bitwidth of the
1852 sought type is used. If none of the specifications are larger than
1853 the bitwidth then the largest integer type is used. For example,
1854 given the default specifications above, the i7 type will use the
1855 alignment of i8 (next largest) while both i65 and i256 will use the
1856 alignment of i64 (largest specified).
1857#. If no match is found, and the type sought is a vector type, then the
1858 largest vector type that is smaller than the sought vector type will
1859 be used as a fall back. This happens because <128 x double> can be
1860 implemented in terms of 64 <2 x double>, for example.
1861
1862The function of the data layout string may not be what you expect.
1863Notably, this is not a specification from the frontend of what alignment
1864the code generator should use.
1865
1866Instead, if specified, the target data layout is required to match what
1867the ultimate *code generator* expects. This string is used by the
1868mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001869what the ultimate code generator uses. There is no way to generate IR
1870that does not embed this target-specific detail into the IR. If you
1871don't specify the string, the default specifications will be used to
1872generate a Data Layout and the optimization phases will operate
1873accordingly and introduce target specificity into the IR with respect to
1874these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001875
Bill Wendling5cc90842013-10-18 23:41:25 +00001876.. _langref_triple:
1877
1878Target Triple
1879-------------
1880
1881A module may specify a target triple string that describes the target
1882host. The syntax for the target triple is simply:
1883
1884.. code-block:: llvm
1885
1886 target triple = "x86_64-apple-macosx10.7.0"
1887
1888The *target triple* string consists of a series of identifiers delimited
1889by the minus sign character ('-'). The canonical forms are:
1890
1891::
1892
1893 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1894 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1895
1896This information is passed along to the backend so that it generates
1897code for the proper architecture. It's possible to override this on the
1898command line with the ``-mtriple`` command line option.
1899
Sean Silvab084af42012-12-07 10:36:55 +00001900.. _pointeraliasing:
1901
1902Pointer Aliasing Rules
1903----------------------
1904
1905Any memory access must be done through a pointer value associated with
1906an address range of the memory access, otherwise the behavior is
1907undefined. Pointer values are associated with address ranges according
1908to the following rules:
1909
1910- A pointer value is associated with the addresses associated with any
1911 value it is *based* on.
1912- An address of a global variable is associated with the address range
1913 of the variable's storage.
1914- The result value of an allocation instruction is associated with the
1915 address range of the allocated storage.
1916- A null pointer in the default address-space is associated with no
1917 address.
1918- An integer constant other than zero or a pointer value returned from
1919 a function not defined within LLVM may be associated with address
1920 ranges allocated through mechanisms other than those provided by
1921 LLVM. Such ranges shall not overlap with any ranges of addresses
1922 allocated by mechanisms provided by LLVM.
1923
1924A pointer value is *based* on another pointer value according to the
1925following rules:
1926
1927- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001928 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001929- The result value of a ``bitcast`` is *based* on the operand of the
1930 ``bitcast``.
1931- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1932 values that contribute (directly or indirectly) to the computation of
1933 the pointer's value.
1934- The "*based* on" relationship is transitive.
1935
1936Note that this definition of *"based"* is intentionally similar to the
1937definition of *"based"* in C99, though it is slightly weaker.
1938
1939LLVM IR does not associate types with memory. The result type of a
1940``load`` merely indicates the size and alignment of the memory from
1941which to load, as well as the interpretation of the value. The first
1942operand type of a ``store`` similarly only indicates the size and
1943alignment of the store.
1944
1945Consequently, type-based alias analysis, aka TBAA, aka
1946``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1947:ref:`Metadata <metadata>` may be used to encode additional information
1948which specialized optimization passes may use to implement type-based
1949alias analysis.
1950
1951.. _volatile:
1952
1953Volatile Memory Accesses
1954------------------------
1955
1956Certain memory accesses, such as :ref:`load <i_load>`'s,
1957:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1958marked ``volatile``. The optimizers must not change the number of
1959volatile operations or change their order of execution relative to other
1960volatile operations. The optimizers *may* change the order of volatile
1961operations relative to non-volatile operations. This is not Java's
1962"volatile" and has no cross-thread synchronization behavior.
1963
Andrew Trick89fc5a62013-01-30 21:19:35 +00001964IR-level volatile loads and stores cannot safely be optimized into
1965llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1966flagged volatile. Likewise, the backend should never split or merge
1967target-legal volatile load/store instructions.
1968
Andrew Trick7e6f9282013-01-31 00:49:39 +00001969.. admonition:: Rationale
1970
1971 Platforms may rely on volatile loads and stores of natively supported
1972 data width to be executed as single instruction. For example, in C
1973 this holds for an l-value of volatile primitive type with native
1974 hardware support, but not necessarily for aggregate types. The
1975 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001976 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001977 do not violate the frontend's contract with the language.
1978
Sean Silvab084af42012-12-07 10:36:55 +00001979.. _memmodel:
1980
1981Memory Model for Concurrent Operations
1982--------------------------------------
1983
1984The LLVM IR does not define any way to start parallel threads of
1985execution or to register signal handlers. Nonetheless, there are
1986platform-specific ways to create them, and we define LLVM IR's behavior
1987in their presence. This model is inspired by the C++0x memory model.
1988
1989For a more informal introduction to this model, see the :doc:`Atomics`.
1990
1991We define a *happens-before* partial order as the least partial order
1992that
1993
1994- Is a superset of single-thread program order, and
1995- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1996 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1997 techniques, like pthread locks, thread creation, thread joining,
1998 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1999 Constraints <ordering>`).
2000
2001Note that program order does not introduce *happens-before* edges
2002between a thread and signals executing inside that thread.
2003
2004Every (defined) read operation (load instructions, memcpy, atomic
2005loads/read-modify-writes, etc.) R reads a series of bytes written by
2006(defined) write operations (store instructions, atomic
2007stores/read-modify-writes, memcpy, etc.). For the purposes of this
2008section, initialized globals are considered to have a write of the
2009initializer which is atomic and happens before any other read or write
2010of the memory in question. For each byte of a read R, R\ :sub:`byte`
2011may see any write to the same byte, except:
2012
2013- If write\ :sub:`1` happens before write\ :sub:`2`, and
2014 write\ :sub:`2` happens before R\ :sub:`byte`, then
2015 R\ :sub:`byte` does not see write\ :sub:`1`.
2016- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2017 R\ :sub:`byte` does not see write\ :sub:`3`.
2018
2019Given that definition, R\ :sub:`byte` is defined as follows:
2020
2021- If R is volatile, the result is target-dependent. (Volatile is
2022 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002023 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002024 like normal memory. It does not generally provide cross-thread
2025 synchronization.)
2026- Otherwise, if there is no write to the same byte that happens before
2027 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2028- Otherwise, if R\ :sub:`byte` may see exactly one write,
2029 R\ :sub:`byte` returns the value written by that write.
2030- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2031 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2032 Memory Ordering Constraints <ordering>` section for additional
2033 constraints on how the choice is made.
2034- Otherwise R\ :sub:`byte` returns ``undef``.
2035
2036R returns the value composed of the series of bytes it read. This
2037implies that some bytes within the value may be ``undef`` **without**
2038the entire value being ``undef``. Note that this only defines the
2039semantics of the operation; it doesn't mean that targets will emit more
2040than one instruction to read the series of bytes.
2041
2042Note that in cases where none of the atomic intrinsics are used, this
2043model places only one restriction on IR transformations on top of what
2044is required for single-threaded execution: introducing a store to a byte
2045which might not otherwise be stored is not allowed in general.
2046(Specifically, in the case where another thread might write to and read
2047from an address, introducing a store can change a load that may see
2048exactly one write into a load that may see multiple writes.)
2049
2050.. _ordering:
2051
2052Atomic Memory Ordering Constraints
2053----------------------------------
2054
2055Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2056:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2057:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002058ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002059the same address they *synchronize with*. These semantics are borrowed
2060from Java and C++0x, but are somewhat more colloquial. If these
2061descriptions aren't precise enough, check those specs (see spec
2062references in the :doc:`atomics guide <Atomics>`).
2063:ref:`fence <i_fence>` instructions treat these orderings somewhat
2064differently since they don't take an address. See that instruction's
2065documentation for details.
2066
2067For a simpler introduction to the ordering constraints, see the
2068:doc:`Atomics`.
2069
2070``unordered``
2071 The set of values that can be read is governed by the happens-before
2072 partial order. A value cannot be read unless some operation wrote
2073 it. This is intended to provide a guarantee strong enough to model
2074 Java's non-volatile shared variables. This ordering cannot be
2075 specified for read-modify-write operations; it is not strong enough
2076 to make them atomic in any interesting way.
2077``monotonic``
2078 In addition to the guarantees of ``unordered``, there is a single
2079 total order for modifications by ``monotonic`` operations on each
2080 address. All modification orders must be compatible with the
2081 happens-before order. There is no guarantee that the modification
2082 orders can be combined to a global total order for the whole program
2083 (and this often will not be possible). The read in an atomic
2084 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2085 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2086 order immediately before the value it writes. If one atomic read
2087 happens before another atomic read of the same address, the later
2088 read must see the same value or a later value in the address's
2089 modification order. This disallows reordering of ``monotonic`` (or
2090 stronger) operations on the same address. If an address is written
2091 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2092 read that address repeatedly, the other threads must eventually see
2093 the write. This corresponds to the C++0x/C1x
2094 ``memory_order_relaxed``.
2095``acquire``
2096 In addition to the guarantees of ``monotonic``, a
2097 *synchronizes-with* edge may be formed with a ``release`` operation.
2098 This is intended to model C++'s ``memory_order_acquire``.
2099``release``
2100 In addition to the guarantees of ``monotonic``, if this operation
2101 writes a value which is subsequently read by an ``acquire``
2102 operation, it *synchronizes-with* that operation. (This isn't a
2103 complete description; see the C++0x definition of a release
2104 sequence.) This corresponds to the C++0x/C1x
2105 ``memory_order_release``.
2106``acq_rel`` (acquire+release)
2107 Acts as both an ``acquire`` and ``release`` operation on its
2108 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2109``seq_cst`` (sequentially consistent)
2110 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002111 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002112 writes), there is a global total order on all
2113 sequentially-consistent operations on all addresses, which is
2114 consistent with the *happens-before* partial order and with the
2115 modification orders of all the affected addresses. Each
2116 sequentially-consistent read sees the last preceding write to the
2117 same address in this global order. This corresponds to the C++0x/C1x
2118 ``memory_order_seq_cst`` and Java volatile.
2119
2120.. _singlethread:
2121
2122If an atomic operation is marked ``singlethread``, it only *synchronizes
2123with* or participates in modification and seq\_cst total orderings with
2124other operations running in the same thread (for example, in signal
2125handlers).
2126
2127.. _fastmath:
2128
2129Fast-Math Flags
2130---------------
2131
2132LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2133:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002134:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2135be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002136
2137``nnan``
2138 No NaNs - Allow optimizations to assume the arguments and result are not
2139 NaN. Such optimizations are required to retain defined behavior over
2140 NaNs, but the value of the result is undefined.
2141
2142``ninf``
2143 No Infs - Allow optimizations to assume the arguments and result are not
2144 +/-Inf. Such optimizations are required to retain defined behavior over
2145 +/-Inf, but the value of the result is undefined.
2146
2147``nsz``
2148 No Signed Zeros - Allow optimizations to treat the sign of a zero
2149 argument or result as insignificant.
2150
2151``arcp``
2152 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2153 argument rather than perform division.
2154
2155``fast``
2156 Fast - Allow algebraically equivalent transformations that may
2157 dramatically change results in floating point (e.g. reassociate). This
2158 flag implies all the others.
2159
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002160.. _uselistorder:
2161
2162Use-list Order Directives
2163-------------------------
2164
2165Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002166order to be recreated. ``<order-indexes>`` is a comma-separated list of
2167indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002168value's use-list is immediately sorted by these indexes.
2169
Sean Silvaa1190322015-08-06 22:56:48 +00002170Use-list directives may appear at function scope or global scope. They are not
2171instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002172function scope, they must appear after the terminator of the final basic block.
2173
2174If basic blocks have their address taken via ``blockaddress()`` expressions,
2175``uselistorder_bb`` can be used to reorder their use-lists from outside their
2176function's scope.
2177
2178:Syntax:
2179
2180::
2181
2182 uselistorder <ty> <value>, { <order-indexes> }
2183 uselistorder_bb @function, %block { <order-indexes> }
2184
2185:Examples:
2186
2187::
2188
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002189 define void @foo(i32 %arg1, i32 %arg2) {
2190 entry:
2191 ; ... instructions ...
2192 bb:
2193 ; ... instructions ...
2194
2195 ; At function scope.
2196 uselistorder i32 %arg1, { 1, 0, 2 }
2197 uselistorder label %bb, { 1, 0 }
2198 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002199
2200 ; At global scope.
2201 uselistorder i32* @global, { 1, 2, 0 }
2202 uselistorder i32 7, { 1, 0 }
2203 uselistorder i32 (i32) @bar, { 1, 0 }
2204 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2205
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002206.. _source_filename:
2207
2208Source Filename
2209---------------
2210
2211The *source filename* string is set to the original module identifier,
2212which will be the name of the compiled source file when compiling from
2213source through the clang front end, for example. It is then preserved through
2214the IR and bitcode.
2215
2216This is currently necessary to generate a consistent unique global
2217identifier for local functions used in profile data, which prepends the
2218source file name to the local function name.
2219
2220The syntax for the source file name is simply:
2221
2222.. code-block:: llvm
2223
2224 source_filename = "/path/to/source.c"
2225
Sean Silvab084af42012-12-07 10:36:55 +00002226.. _typesystem:
2227
2228Type System
2229===========
2230
2231The LLVM type system is one of the most important features of the
2232intermediate representation. Being typed enables a number of
2233optimizations to be performed on the intermediate representation
2234directly, without having to do extra analyses on the side before the
2235transformation. A strong type system makes it easier to read the
2236generated code and enables novel analyses and transformations that are
2237not feasible to perform on normal three address code representations.
2238
Rafael Espindola08013342013-12-07 19:34:20 +00002239.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002240
Rafael Espindola08013342013-12-07 19:34:20 +00002241Void Type
2242---------
Sean Silvab084af42012-12-07 10:36:55 +00002243
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002244:Overview:
2245
Rafael Espindola08013342013-12-07 19:34:20 +00002246
2247The void type does not represent any value and has no size.
2248
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002249:Syntax:
2250
Rafael Espindola08013342013-12-07 19:34:20 +00002251
2252::
2253
2254 void
Sean Silvab084af42012-12-07 10:36:55 +00002255
2256
Rafael Espindola08013342013-12-07 19:34:20 +00002257.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002258
Rafael Espindola08013342013-12-07 19:34:20 +00002259Function Type
2260-------------
Sean Silvab084af42012-12-07 10:36:55 +00002261
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002262:Overview:
2263
Sean Silvab084af42012-12-07 10:36:55 +00002264
Rafael Espindola08013342013-12-07 19:34:20 +00002265The function type can be thought of as a function signature. It consists of a
2266return type and a list of formal parameter types. The return type of a function
2267type is a void type or first class type --- except for :ref:`label <t_label>`
2268and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002269
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002270:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002271
Rafael Espindola08013342013-12-07 19:34:20 +00002272::
Sean Silvab084af42012-12-07 10:36:55 +00002273
Rafael Espindola08013342013-12-07 19:34:20 +00002274 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002275
Rafael Espindola08013342013-12-07 19:34:20 +00002276...where '``<parameter list>``' is a comma-separated list of type
2277specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002278indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002279argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002280handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002281except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002282
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002283:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002284
Rafael Espindola08013342013-12-07 19:34:20 +00002285+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2286| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2287+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2288| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2289+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2290| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2291+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2292| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2293+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2294
2295.. _t_firstclass:
2296
2297First Class Types
2298-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002299
2300The :ref:`first class <t_firstclass>` types are perhaps the most important.
2301Values of these types are the only ones which can be produced by
2302instructions.
2303
Rafael Espindola08013342013-12-07 19:34:20 +00002304.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002305
Rafael Espindola08013342013-12-07 19:34:20 +00002306Single Value Types
2307^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002308
Rafael Espindola08013342013-12-07 19:34:20 +00002309These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002310
2311.. _t_integer:
2312
2313Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002314""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002315
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002316:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002317
2318The integer type is a very simple type that simply specifies an
2319arbitrary bit width for the integer type desired. Any bit width from 1
2320bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002323
2324::
2325
2326 iN
2327
2328The number of bits the integer will occupy is specified by the ``N``
2329value.
2330
2331Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002332*********
Sean Silvab084af42012-12-07 10:36:55 +00002333
2334+----------------+------------------------------------------------+
2335| ``i1`` | a single-bit integer. |
2336+----------------+------------------------------------------------+
2337| ``i32`` | a 32-bit integer. |
2338+----------------+------------------------------------------------+
2339| ``i1942652`` | a really big integer of over 1 million bits. |
2340+----------------+------------------------------------------------+
2341
2342.. _t_floating:
2343
2344Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002345""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002346
2347.. list-table::
2348 :header-rows: 1
2349
2350 * - Type
2351 - Description
2352
2353 * - ``half``
2354 - 16-bit floating point value
2355
2356 * - ``float``
2357 - 32-bit floating point value
2358
2359 * - ``double``
2360 - 64-bit floating point value
2361
2362 * - ``fp128``
2363 - 128-bit floating point value (112-bit mantissa)
2364
2365 * - ``x86_fp80``
2366 - 80-bit floating point value (X87)
2367
2368 * - ``ppc_fp128``
2369 - 128-bit floating point value (two 64-bits)
2370
Reid Kleckner9a16d082014-03-05 02:41:37 +00002371X86_mmx Type
2372""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002373
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002374:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002375
Reid Kleckner9a16d082014-03-05 02:41:37 +00002376The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002377machine. The operations allowed on it are quite limited: parameters and
2378return values, load and store, and bitcast. User-specified MMX
2379instructions are represented as intrinsic or asm calls with arguments
2380and/or results of this type. There are no arrays, vectors or constants
2381of this type.
2382
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002383:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002384
2385::
2386
Reid Kleckner9a16d082014-03-05 02:41:37 +00002387 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002388
Sean Silvab084af42012-12-07 10:36:55 +00002389
Rafael Espindola08013342013-12-07 19:34:20 +00002390.. _t_pointer:
2391
2392Pointer Type
2393""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002394
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002395:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002396
Rafael Espindola08013342013-12-07 19:34:20 +00002397The pointer type is used to specify memory locations. Pointers are
2398commonly used to reference objects in memory.
2399
2400Pointer types may have an optional address space attribute defining the
2401numbered address space where the pointed-to object resides. The default
2402address space is number zero. The semantics of non-zero address spaces
2403are target-specific.
2404
2405Note that LLVM does not permit pointers to void (``void*``) nor does it
2406permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002407
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002408:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002409
2410::
2411
Rafael Espindola08013342013-12-07 19:34:20 +00002412 <type> *
2413
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002414:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002415
2416+-------------------------+--------------------------------------------------------------------------------------------------------------+
2417| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2418+-------------------------+--------------------------------------------------------------------------------------------------------------+
2419| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2420+-------------------------+--------------------------------------------------------------------------------------------------------------+
2421| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2422+-------------------------+--------------------------------------------------------------------------------------------------------------+
2423
2424.. _t_vector:
2425
2426Vector Type
2427"""""""""""
2428
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002429:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002430
2431A vector type is a simple derived type that represents a vector of
2432elements. Vector types are used when multiple primitive data are
2433operated in parallel using a single instruction (SIMD). A vector type
2434requires a size (number of elements) and an underlying primitive data
2435type. Vector types are considered :ref:`first class <t_firstclass>`.
2436
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002437:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002438
2439::
2440
2441 < <# elements> x <elementtype> >
2442
2443The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002444elementtype may be any integer, floating point or pointer type. Vectors
2445of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002446
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002447:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002448
2449+-------------------+--------------------------------------------------+
2450| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2451+-------------------+--------------------------------------------------+
2452| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2453+-------------------+--------------------------------------------------+
2454| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2455+-------------------+--------------------------------------------------+
2456| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2457+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002458
2459.. _t_label:
2460
2461Label Type
2462^^^^^^^^^^
2463
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002464:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002465
2466The label type represents code labels.
2467
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002468:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002469
2470::
2471
2472 label
2473
David Majnemerb611e3f2015-08-14 05:09:07 +00002474.. _t_token:
2475
2476Token Type
2477^^^^^^^^^^
2478
2479:Overview:
2480
2481The token type is used when a value is associated with an instruction
2482but all uses of the value must not attempt to introspect or obscure it.
2483As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2484:ref:`select <i_select>` of type token.
2485
2486:Syntax:
2487
2488::
2489
2490 token
2491
2492
2493
Sean Silvab084af42012-12-07 10:36:55 +00002494.. _t_metadata:
2495
2496Metadata Type
2497^^^^^^^^^^^^^
2498
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002499:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002500
2501The metadata type represents embedded metadata. No derived types may be
2502created from metadata except for :ref:`function <t_function>` arguments.
2503
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002504:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002505
2506::
2507
2508 metadata
2509
Sean Silvab084af42012-12-07 10:36:55 +00002510.. _t_aggregate:
2511
2512Aggregate Types
2513^^^^^^^^^^^^^^^
2514
2515Aggregate Types are a subset of derived types that can contain multiple
2516member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2517aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2518aggregate types.
2519
2520.. _t_array:
2521
2522Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002523""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002524
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002525:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002526
2527The array type is a very simple derived type that arranges elements
2528sequentially in memory. The array type requires a size (number of
2529elements) and an underlying data type.
2530
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002531:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002532
2533::
2534
2535 [<# elements> x <elementtype>]
2536
2537The number of elements is a constant integer value; ``elementtype`` may
2538be any type with a size.
2539
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002540:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002541
2542+------------------+--------------------------------------+
2543| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2544+------------------+--------------------------------------+
2545| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2546+------------------+--------------------------------------+
2547| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2548+------------------+--------------------------------------+
2549
2550Here are some examples of multidimensional arrays:
2551
2552+-----------------------------+----------------------------------------------------------+
2553| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2554+-----------------------------+----------------------------------------------------------+
2555| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2556+-----------------------------+----------------------------------------------------------+
2557| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2558+-----------------------------+----------------------------------------------------------+
2559
2560There is no restriction on indexing beyond the end of the array implied
2561by a static type (though there are restrictions on indexing beyond the
2562bounds of an allocated object in some cases). This means that
2563single-dimension 'variable sized array' addressing can be implemented in
2564LLVM with a zero length array type. An implementation of 'pascal style
2565arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2566example.
2567
Sean Silvab084af42012-12-07 10:36:55 +00002568.. _t_struct:
2569
2570Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002571""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002572
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002573:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002574
2575The structure type is used to represent a collection of data members
2576together in memory. The elements of a structure may be any type that has
2577a size.
2578
2579Structures in memory are accessed using '``load``' and '``store``' by
2580getting a pointer to a field with the '``getelementptr``' instruction.
2581Structures in registers are accessed using the '``extractvalue``' and
2582'``insertvalue``' instructions.
2583
2584Structures may optionally be "packed" structures, which indicate that
2585the alignment of the struct is one byte, and that there is no padding
2586between the elements. In non-packed structs, padding between field types
2587is inserted as defined by the DataLayout string in the module, which is
2588required to match what the underlying code generator expects.
2589
2590Structures can either be "literal" or "identified". A literal structure
2591is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2592identified types are always defined at the top level with a name.
2593Literal types are uniqued by their contents and can never be recursive
2594or opaque since there is no way to write one. Identified types can be
2595recursive, can be opaqued, and are never uniqued.
2596
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002597:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002598
2599::
2600
2601 %T1 = type { <type list> } ; Identified normal struct type
2602 %T2 = type <{ <type list> }> ; Identified packed struct type
2603
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002604:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002605
2606+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2607| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2608+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002609| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002610+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2611| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2612+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2613
2614.. _t_opaque:
2615
2616Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002617""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002618
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002619:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002620
2621Opaque structure types are used to represent named structure types that
2622do not have a body specified. This corresponds (for example) to the C
2623notion of a forward declared structure.
2624
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002625:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002626
2627::
2628
2629 %X = type opaque
2630 %52 = type opaque
2631
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002632:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002633
2634+--------------+-------------------+
2635| ``opaque`` | An opaque type. |
2636+--------------+-------------------+
2637
Sean Silva1703e702014-04-08 21:06:22 +00002638.. _constants:
2639
Sean Silvab084af42012-12-07 10:36:55 +00002640Constants
2641=========
2642
2643LLVM has several different basic types of constants. This section
2644describes them all and their syntax.
2645
2646Simple Constants
2647----------------
2648
2649**Boolean constants**
2650 The two strings '``true``' and '``false``' are both valid constants
2651 of the ``i1`` type.
2652**Integer constants**
2653 Standard integers (such as '4') are constants of the
2654 :ref:`integer <t_integer>` type. Negative numbers may be used with
2655 integer types.
2656**Floating point constants**
2657 Floating point constants use standard decimal notation (e.g.
2658 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2659 hexadecimal notation (see below). The assembler requires the exact
2660 decimal value of a floating-point constant. For example, the
2661 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2662 decimal in binary. Floating point constants must have a :ref:`floating
2663 point <t_floating>` type.
2664**Null pointer constants**
2665 The identifier '``null``' is recognized as a null pointer constant
2666 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002667**Token constants**
2668 The identifier '``none``' is recognized as an empty token constant
2669 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002670
2671The one non-intuitive notation for constants is the hexadecimal form of
2672floating point constants. For example, the form
2673'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2674than) '``double 4.5e+15``'. The only time hexadecimal floating point
2675constants are required (and the only time that they are generated by the
2676disassembler) is when a floating point constant must be emitted but it
2677cannot be represented as a decimal floating point number in a reasonable
2678number of digits. For example, NaN's, infinities, and other special
2679values are represented in their IEEE hexadecimal format so that assembly
2680and disassembly do not cause any bits to change in the constants.
2681
2682When using the hexadecimal form, constants of types half, float, and
2683double are represented using the 16-digit form shown above (which
2684matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002685must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002686precision, respectively. Hexadecimal format is always used for long
2687double, and there are three forms of long double. The 80-bit format used
2688by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2689128-bit format used by PowerPC (two adjacent doubles) is represented by
2690``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002691represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2692will only work if they match the long double format on your target.
2693The IEEE 16-bit format (half precision) is represented by ``0xH``
2694followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2695(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002696
Reid Kleckner9a16d082014-03-05 02:41:37 +00002697There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002698
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002699.. _complexconstants:
2700
Sean Silvab084af42012-12-07 10:36:55 +00002701Complex Constants
2702-----------------
2703
2704Complex constants are a (potentially recursive) combination of simple
2705constants and smaller complex constants.
2706
2707**Structure constants**
2708 Structure constants are represented with notation similar to
2709 structure type definitions (a comma separated list of elements,
2710 surrounded by braces (``{}``)). For example:
2711 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2712 "``@G = external global i32``". Structure constants must have
2713 :ref:`structure type <t_struct>`, and the number and types of elements
2714 must match those specified by the type.
2715**Array constants**
2716 Array constants are represented with notation similar to array type
2717 definitions (a comma separated list of elements, surrounded by
2718 square brackets (``[]``)). For example:
2719 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2720 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002721 match those specified by the type. As a special case, character array
2722 constants may also be represented as a double-quoted string using the ``c``
2723 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002724**Vector constants**
2725 Vector constants are represented with notation similar to vector
2726 type definitions (a comma separated list of elements, surrounded by
2727 less-than/greater-than's (``<>``)). For example:
2728 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2729 must have :ref:`vector type <t_vector>`, and the number and types of
2730 elements must match those specified by the type.
2731**Zero initialization**
2732 The string '``zeroinitializer``' can be used to zero initialize a
2733 value to zero of *any* type, including scalar and
2734 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2735 having to print large zero initializers (e.g. for large arrays) and
2736 is always exactly equivalent to using explicit zero initializers.
2737**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002738 A metadata node is a constant tuple without types. For example:
2739 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002740 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2741 Unlike other typed constants that are meant to be interpreted as part of
2742 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002743 information such as debug info.
2744
2745Global Variable and Function Addresses
2746--------------------------------------
2747
2748The addresses of :ref:`global variables <globalvars>` and
2749:ref:`functions <functionstructure>` are always implicitly valid
2750(link-time) constants. These constants are explicitly referenced when
2751the :ref:`identifier for the global <identifiers>` is used and always have
2752:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2753file:
2754
2755.. code-block:: llvm
2756
2757 @X = global i32 17
2758 @Y = global i32 42
2759 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2760
2761.. _undefvalues:
2762
2763Undefined Values
2764----------------
2765
2766The string '``undef``' can be used anywhere a constant is expected, and
2767indicates that the user of the value may receive an unspecified
2768bit-pattern. Undefined values may be of any type (other than '``label``'
2769or '``void``') and be used anywhere a constant is permitted.
2770
2771Undefined values are useful because they indicate to the compiler that
2772the program is well defined no matter what value is used. This gives the
2773compiler more freedom to optimize. Here are some examples of
2774(potentially surprising) transformations that are valid (in pseudo IR):
2775
2776.. code-block:: llvm
2777
2778 %A = add %X, undef
2779 %B = sub %X, undef
2780 %C = xor %X, undef
2781 Safe:
2782 %A = undef
2783 %B = undef
2784 %C = undef
2785
2786This is safe because all of the output bits are affected by the undef
2787bits. Any output bit can have a zero or one depending on the input bits.
2788
2789.. code-block:: llvm
2790
2791 %A = or %X, undef
2792 %B = and %X, undef
2793 Safe:
2794 %A = -1
2795 %B = 0
2796 Unsafe:
2797 %A = undef
2798 %B = undef
2799
2800These logical operations have bits that are not always affected by the
2801input. For example, if ``%X`` has a zero bit, then the output of the
2802'``and``' operation will always be a zero for that bit, no matter what
2803the corresponding bit from the '``undef``' is. As such, it is unsafe to
2804optimize or assume that the result of the '``and``' is '``undef``'.
2805However, it is safe to assume that all bits of the '``undef``' could be
28060, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2807all the bits of the '``undef``' operand to the '``or``' could be set,
2808allowing the '``or``' to be folded to -1.
2809
2810.. code-block:: llvm
2811
2812 %A = select undef, %X, %Y
2813 %B = select undef, 42, %Y
2814 %C = select %X, %Y, undef
2815 Safe:
2816 %A = %X (or %Y)
2817 %B = 42 (or %Y)
2818 %C = %Y
2819 Unsafe:
2820 %A = undef
2821 %B = undef
2822 %C = undef
2823
2824This set of examples shows that undefined '``select``' (and conditional
2825branch) conditions can go *either way*, but they have to come from one
2826of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2827both known to have a clear low bit, then ``%A`` would have to have a
2828cleared low bit. However, in the ``%C`` example, the optimizer is
2829allowed to assume that the '``undef``' operand could be the same as
2830``%Y``, allowing the whole '``select``' to be eliminated.
2831
2832.. code-block:: llvm
2833
2834 %A = xor undef, undef
2835
2836 %B = undef
2837 %C = xor %B, %B
2838
2839 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002840 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002841 %F = icmp gte %D, 4
2842
2843 Safe:
2844 %A = undef
2845 %B = undef
2846 %C = undef
2847 %D = undef
2848 %E = undef
2849 %F = undef
2850
2851This example points out that two '``undef``' operands are not
2852necessarily the same. This can be surprising to people (and also matches
2853C semantics) where they assume that "``X^X``" is always zero, even if
2854``X`` is undefined. This isn't true for a number of reasons, but the
2855short answer is that an '``undef``' "variable" can arbitrarily change
2856its value over its "live range". This is true because the variable
2857doesn't actually *have a live range*. Instead, the value is logically
2858read from arbitrary registers that happen to be around when needed, so
2859the value is not necessarily consistent over time. In fact, ``%A`` and
2860``%C`` need to have the same semantics or the core LLVM "replace all
2861uses with" concept would not hold.
2862
2863.. code-block:: llvm
2864
2865 %A = fdiv undef, %X
2866 %B = fdiv %X, undef
2867 Safe:
2868 %A = undef
2869 b: unreachable
2870
2871These examples show the crucial difference between an *undefined value*
2872and *undefined behavior*. An undefined value (like '``undef``') is
2873allowed to have an arbitrary bit-pattern. This means that the ``%A``
2874operation can be constant folded to '``undef``', because the '``undef``'
2875could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2876However, in the second example, we can make a more aggressive
2877assumption: because the ``undef`` is allowed to be an arbitrary value,
2878we are allowed to assume that it could be zero. Since a divide by zero
2879has *undefined behavior*, we are allowed to assume that the operation
2880does not execute at all. This allows us to delete the divide and all
2881code after it. Because the undefined operation "can't happen", the
2882optimizer can assume that it occurs in dead code.
2883
2884.. code-block:: llvm
2885
2886 a: store undef -> %X
2887 b: store %X -> undef
2888 Safe:
2889 a: <deleted>
2890 b: unreachable
2891
2892These examples reiterate the ``fdiv`` example: a store *of* an undefined
2893value can be assumed to not have any effect; we can assume that the
2894value is overwritten with bits that happen to match what was already
2895there. However, a store *to* an undefined location could clobber
2896arbitrary memory, therefore, it has undefined behavior.
2897
2898.. _poisonvalues:
2899
2900Poison Values
2901-------------
2902
2903Poison values are similar to :ref:`undef values <undefvalues>`, however
2904they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002905that cannot evoke side effects has nevertheless detected a condition
2906that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002907
2908There is currently no way of representing a poison value in the IR; they
2909only exist when produced by operations such as :ref:`add <i_add>` with
2910the ``nsw`` flag.
2911
2912Poison value behavior is defined in terms of value *dependence*:
2913
2914- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2915- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2916 their dynamic predecessor basic block.
2917- Function arguments depend on the corresponding actual argument values
2918 in the dynamic callers of their functions.
2919- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2920 instructions that dynamically transfer control back to them.
2921- :ref:`Invoke <i_invoke>` instructions depend on the
2922 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2923 call instructions that dynamically transfer control back to them.
2924- Non-volatile loads and stores depend on the most recent stores to all
2925 of the referenced memory addresses, following the order in the IR
2926 (including loads and stores implied by intrinsics such as
2927 :ref:`@llvm.memcpy <int_memcpy>`.)
2928- An instruction with externally visible side effects depends on the
2929 most recent preceding instruction with externally visible side
2930 effects, following the order in the IR. (This includes :ref:`volatile
2931 operations <volatile>`.)
2932- An instruction *control-depends* on a :ref:`terminator
2933 instruction <terminators>` if the terminator instruction has
2934 multiple successors and the instruction is always executed when
2935 control transfers to one of the successors, and may not be executed
2936 when control is transferred to another.
2937- Additionally, an instruction also *control-depends* on a terminator
2938 instruction if the set of instructions it otherwise depends on would
2939 be different if the terminator had transferred control to a different
2940 successor.
2941- Dependence is transitive.
2942
Richard Smith32dbdf62014-07-31 04:25:36 +00002943Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2944with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002945on a poison value has undefined behavior.
2946
2947Here are some examples:
2948
2949.. code-block:: llvm
2950
2951 entry:
2952 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2953 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002954 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002955 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2956
2957 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002958 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002959
2960 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2961
2962 %narrowaddr = bitcast i32* @g to i16*
2963 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002964 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2965 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002966
2967 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2968 br i1 %cmp, label %true, label %end ; Branch to either destination.
2969
2970 true:
2971 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2972 ; it has undefined behavior.
2973 br label %end
2974
2975 end:
2976 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2977 ; Both edges into this PHI are
2978 ; control-dependent on %cmp, so this
2979 ; always results in a poison value.
2980
2981 store volatile i32 0, i32* @g ; This would depend on the store in %true
2982 ; if %cmp is true, or the store in %entry
2983 ; otherwise, so this is undefined behavior.
2984
2985 br i1 %cmp, label %second_true, label %second_end
2986 ; The same branch again, but this time the
2987 ; true block doesn't have side effects.
2988
2989 second_true:
2990 ; No side effects!
2991 ret void
2992
2993 second_end:
2994 store volatile i32 0, i32* @g ; This time, the instruction always depends
2995 ; on the store in %end. Also, it is
2996 ; control-equivalent to %end, so this is
2997 ; well-defined (ignoring earlier undefined
2998 ; behavior in this example).
2999
3000.. _blockaddress:
3001
3002Addresses of Basic Blocks
3003-------------------------
3004
3005``blockaddress(@function, %block)``
3006
3007The '``blockaddress``' constant computes the address of the specified
3008basic block in the specified function, and always has an ``i8*`` type.
3009Taking the address of the entry block is illegal.
3010
3011This value only has defined behavior when used as an operand to the
3012':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3013against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003014undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003015no label is equal to the null pointer. This may be passed around as an
3016opaque pointer sized value as long as the bits are not inspected. This
3017allows ``ptrtoint`` and arithmetic to be performed on these values so
3018long as the original value is reconstituted before the ``indirectbr``
3019instruction.
3020
3021Finally, some targets may provide defined semantics when using the value
3022as the operand to an inline assembly, but that is target specific.
3023
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003024.. _constantexprs:
3025
Sean Silvab084af42012-12-07 10:36:55 +00003026Constant Expressions
3027--------------------
3028
3029Constant expressions are used to allow expressions involving other
3030constants to be used as constants. Constant expressions may be of any
3031:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3032that does not have side effects (e.g. load and call are not supported).
3033The following is the syntax for constant expressions:
3034
3035``trunc (CST to TYPE)``
3036 Truncate a constant to another type. The bit size of CST must be
3037 larger than the bit size of TYPE. Both types must be integers.
3038``zext (CST to TYPE)``
3039 Zero extend a constant to another type. The bit size of CST must be
3040 smaller than the bit size of TYPE. Both types must be integers.
3041``sext (CST to TYPE)``
3042 Sign extend a constant to another type. The bit size of CST must be
3043 smaller than the bit size of TYPE. Both types must be integers.
3044``fptrunc (CST to TYPE)``
3045 Truncate a floating point constant to another floating point type.
3046 The size of CST must be larger than the size of TYPE. Both types
3047 must be floating point.
3048``fpext (CST to TYPE)``
3049 Floating point extend a constant to another type. The size of CST
3050 must be smaller or equal to the size of TYPE. Both types must be
3051 floating point.
3052``fptoui (CST to TYPE)``
3053 Convert a floating point constant to the corresponding unsigned
3054 integer constant. TYPE must be a scalar or vector integer type. CST
3055 must be of scalar or vector floating point type. Both CST and TYPE
3056 must be scalars, or vectors of the same number of elements. If the
3057 value won't fit in the integer type, the results are undefined.
3058``fptosi (CST to TYPE)``
3059 Convert a floating point constant to the corresponding signed
3060 integer constant. TYPE must be a scalar or vector integer type. CST
3061 must be of scalar or vector floating point type. Both CST and TYPE
3062 must be scalars, or vectors of the same number of elements. If the
3063 value won't fit in the integer type, the results are undefined.
3064``uitofp (CST to TYPE)``
3065 Convert an unsigned integer constant to the corresponding floating
3066 point constant. TYPE must be a scalar or vector floating point type.
3067 CST must be of scalar or vector integer type. Both CST and TYPE must
3068 be scalars, or vectors of the same number of elements. If the value
3069 won't fit in the floating point type, the results are undefined.
3070``sitofp (CST to TYPE)``
3071 Convert a signed integer constant to the corresponding floating
3072 point constant. TYPE must be a scalar or vector floating point type.
3073 CST must be of scalar or vector integer type. Both CST and TYPE must
3074 be scalars, or vectors of the same number of elements. If the value
3075 won't fit in the floating point type, the results are undefined.
3076``ptrtoint (CST to TYPE)``
3077 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003078 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003079 pointer type. The ``CST`` value is zero extended, truncated, or
3080 unchanged to make it fit in ``TYPE``.
3081``inttoptr (CST to TYPE)``
3082 Convert an integer constant to a pointer constant. TYPE must be a
3083 pointer type. CST must be of integer type. The CST value is zero
3084 extended, truncated, or unchanged to make it fit in a pointer size.
3085 This one is *really* dangerous!
3086``bitcast (CST to TYPE)``
3087 Convert a constant, CST, to another TYPE. The constraints of the
3088 operands are the same as those for the :ref:`bitcast
3089 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003090``addrspacecast (CST to TYPE)``
3091 Convert a constant pointer or constant vector of pointer, CST, to another
3092 TYPE in a different address space. The constraints of the operands are the
3093 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003094``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003095 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3096 constants. As with the :ref:`getelementptr <i_getelementptr>`
3097 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003098 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003099``select (COND, VAL1, VAL2)``
3100 Perform the :ref:`select operation <i_select>` on constants.
3101``icmp COND (VAL1, VAL2)``
3102 Performs the :ref:`icmp operation <i_icmp>` on constants.
3103``fcmp COND (VAL1, VAL2)``
3104 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3105``extractelement (VAL, IDX)``
3106 Perform the :ref:`extractelement operation <i_extractelement>` on
3107 constants.
3108``insertelement (VAL, ELT, IDX)``
3109 Perform the :ref:`insertelement operation <i_insertelement>` on
3110 constants.
3111``shufflevector (VEC1, VEC2, IDXMASK)``
3112 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3113 constants.
3114``extractvalue (VAL, IDX0, IDX1, ...)``
3115 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3116 constants. The index list is interpreted in a similar manner as
3117 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3118 least one index value must be specified.
3119``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3120 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3121 The index list is interpreted in a similar manner as indices in a
3122 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3123 value must be specified.
3124``OPCODE (LHS, RHS)``
3125 Perform the specified operation of the LHS and RHS constants. OPCODE
3126 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3127 binary <bitwiseops>` operations. The constraints on operands are
3128 the same as those for the corresponding instruction (e.g. no bitwise
3129 operations on floating point values are allowed).
3130
3131Other Values
3132============
3133
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003134.. _inlineasmexprs:
3135
Sean Silvab084af42012-12-07 10:36:55 +00003136Inline Assembler Expressions
3137----------------------------
3138
3139LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003140Inline Assembly <moduleasm>`) through the use of a special value. This value
3141represents the inline assembler as a template string (containing the
3142instructions to emit), a list of operand constraints (stored as a string), a
3143flag that indicates whether or not the inline asm expression has side effects,
3144and a flag indicating whether the function containing the asm needs to align its
3145stack conservatively.
3146
3147The template string supports argument substitution of the operands using "``$``"
3148followed by a number, to indicate substitution of the given register/memory
3149location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3150be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3151operand (See :ref:`inline-asm-modifiers`).
3152
3153A literal "``$``" may be included by using "``$$``" in the template. To include
3154other special characters into the output, the usual "``\XX``" escapes may be
3155used, just as in other strings. Note that after template substitution, the
3156resulting assembly string is parsed by LLVM's integrated assembler unless it is
3157disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3158syntax known to LLVM.
3159
3160LLVM's support for inline asm is modeled closely on the requirements of Clang's
3161GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3162modifier codes listed here are similar or identical to those in GCC's inline asm
3163support. However, to be clear, the syntax of the template and constraint strings
3164described here is *not* the same as the syntax accepted by GCC and Clang, and,
3165while most constraint letters are passed through as-is by Clang, some get
3166translated to other codes when converting from the C source to the LLVM
3167assembly.
3168
3169An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003170
3171.. code-block:: llvm
3172
3173 i32 (i32) asm "bswap $0", "=r,r"
3174
3175Inline assembler expressions may **only** be used as the callee operand
3176of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3177Thus, typically we have:
3178
3179.. code-block:: llvm
3180
3181 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3182
3183Inline asms with side effects not visible in the constraint list must be
3184marked as having side effects. This is done through the use of the
3185'``sideeffect``' keyword, like so:
3186
3187.. code-block:: llvm
3188
3189 call void asm sideeffect "eieio", ""()
3190
3191In some cases inline asms will contain code that will not work unless
3192the stack is aligned in some way, such as calls or SSE instructions on
3193x86, yet will not contain code that does that alignment within the asm.
3194The compiler should make conservative assumptions about what the asm
3195might contain and should generate its usual stack alignment code in the
3196prologue if the '``alignstack``' keyword is present:
3197
3198.. code-block:: llvm
3199
3200 call void asm alignstack "eieio", ""()
3201
3202Inline asms also support using non-standard assembly dialects. The
3203assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3204the inline asm is using the Intel dialect. Currently, ATT and Intel are
3205the only supported dialects. An example is:
3206
3207.. code-block:: llvm
3208
3209 call void asm inteldialect "eieio", ""()
3210
3211If multiple keywords appear the '``sideeffect``' keyword must come
3212first, the '``alignstack``' keyword second and the '``inteldialect``'
3213keyword last.
3214
James Y Knightbc832ed2015-07-08 18:08:36 +00003215Inline Asm Constraint String
3216^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3217
3218The constraint list is a comma-separated string, each element containing one or
3219more constraint codes.
3220
3221For each element in the constraint list an appropriate register or memory
3222operand will be chosen, and it will be made available to assembly template
3223string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3224second, etc.
3225
3226There are three different types of constraints, which are distinguished by a
3227prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3228constraints must always be given in that order: outputs first, then inputs, then
3229clobbers. They cannot be intermingled.
3230
3231There are also three different categories of constraint codes:
3232
3233- Register constraint. This is either a register class, or a fixed physical
3234 register. This kind of constraint will allocate a register, and if necessary,
3235 bitcast the argument or result to the appropriate type.
3236- Memory constraint. This kind of constraint is for use with an instruction
3237 taking a memory operand. Different constraints allow for different addressing
3238 modes used by the target.
3239- Immediate value constraint. This kind of constraint is for an integer or other
3240 immediate value which can be rendered directly into an instruction. The
3241 various target-specific constraints allow the selection of a value in the
3242 proper range for the instruction you wish to use it with.
3243
3244Output constraints
3245""""""""""""""""""
3246
3247Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3248indicates that the assembly will write to this operand, and the operand will
3249then be made available as a return value of the ``asm`` expression. Output
3250constraints do not consume an argument from the call instruction. (Except, see
3251below about indirect outputs).
3252
3253Normally, it is expected that no output locations are written to by the assembly
3254expression until *all* of the inputs have been read. As such, LLVM may assign
3255the same register to an output and an input. If this is not safe (e.g. if the
3256assembly contains two instructions, where the first writes to one output, and
3257the second reads an input and writes to a second output), then the "``&``"
3258modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003259"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003260will not use the same register for any inputs (other than an input tied to this
3261output).
3262
3263Input constraints
3264"""""""""""""""""
3265
3266Input constraints do not have a prefix -- just the constraint codes. Each input
3267constraint will consume one argument from the call instruction. It is not
3268permitted for the asm to write to any input register or memory location (unless
3269that input is tied to an output). Note also that multiple inputs may all be
3270assigned to the same register, if LLVM can determine that they necessarily all
3271contain the same value.
3272
3273Instead of providing a Constraint Code, input constraints may also "tie"
3274themselves to an output constraint, by providing an integer as the constraint
3275string. Tied inputs still consume an argument from the call instruction, and
3276take up a position in the asm template numbering as is usual -- they will simply
3277be constrained to always use the same register as the output they've been tied
3278to. For example, a constraint string of "``=r,0``" says to assign a register for
3279output, and use that register as an input as well (it being the 0'th
3280constraint).
3281
3282It is permitted to tie an input to an "early-clobber" output. In that case, no
3283*other* input may share the same register as the input tied to the early-clobber
3284(even when the other input has the same value).
3285
3286You may only tie an input to an output which has a register constraint, not a
3287memory constraint. Only a single input may be tied to an output.
3288
3289There is also an "interesting" feature which deserves a bit of explanation: if a
3290register class constraint allocates a register which is too small for the value
3291type operand provided as input, the input value will be split into multiple
3292registers, and all of them passed to the inline asm.
3293
3294However, this feature is often not as useful as you might think.
3295
3296Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3297architectures that have instructions which operate on multiple consecutive
3298instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3299SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3300hardware then loads into both the named register, and the next register. This
3301feature of inline asm would not be useful to support that.)
3302
3303A few of the targets provide a template string modifier allowing explicit access
3304to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3305``D``). On such an architecture, you can actually access the second allocated
3306register (yet, still, not any subsequent ones). But, in that case, you're still
3307probably better off simply splitting the value into two separate operands, for
3308clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3309despite existing only for use with this feature, is not really a good idea to
3310use)
3311
3312Indirect inputs and outputs
3313"""""""""""""""""""""""""""
3314
3315Indirect output or input constraints can be specified by the "``*``" modifier
3316(which goes after the "``=``" in case of an output). This indicates that the asm
3317will write to or read from the contents of an *address* provided as an input
3318argument. (Note that in this way, indirect outputs act more like an *input* than
3319an output: just like an input, they consume an argument of the call expression,
3320rather than producing a return value. An indirect output constraint is an
3321"output" only in that the asm is expected to write to the contents of the input
3322memory location, instead of just read from it).
3323
3324This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3325address of a variable as a value.
3326
3327It is also possible to use an indirect *register* constraint, but only on output
3328(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3329value normally, and then, separately emit a store to the address provided as
3330input, after the provided inline asm. (It's not clear what value this
3331functionality provides, compared to writing the store explicitly after the asm
3332statement, and it can only produce worse code, since it bypasses many
3333optimization passes. I would recommend not using it.)
3334
3335
3336Clobber constraints
3337"""""""""""""""""""
3338
3339A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3340consume an input operand, nor generate an output. Clobbers cannot use any of the
3341general constraint code letters -- they may use only explicit register
3342constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3343"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3344memory locations -- not only the memory pointed to by a declared indirect
3345output.
3346
3347
3348Constraint Codes
3349""""""""""""""""
3350After a potential prefix comes constraint code, or codes.
3351
3352A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3353followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3354(e.g. "``{eax}``").
3355
3356The one and two letter constraint codes are typically chosen to be the same as
3357GCC's constraint codes.
3358
3359A single constraint may include one or more than constraint code in it, leaving
3360it up to LLVM to choose which one to use. This is included mainly for
3361compatibility with the translation of GCC inline asm coming from clang.
3362
3363There are two ways to specify alternatives, and either or both may be used in an
3364inline asm constraint list:
3365
33661) Append the codes to each other, making a constraint code set. E.g. "``im``"
3367 or "``{eax}m``". This means "choose any of the options in the set". The
3368 choice of constraint is made independently for each constraint in the
3369 constraint list.
3370
33712) Use "``|``" between constraint code sets, creating alternatives. Every
3372 constraint in the constraint list must have the same number of alternative
3373 sets. With this syntax, the same alternative in *all* of the items in the
3374 constraint list will be chosen together.
3375
3376Putting those together, you might have a two operand constraint string like
3377``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3378operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3379may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3380
3381However, the use of either of the alternatives features is *NOT* recommended, as
3382LLVM is not able to make an intelligent choice about which one to use. (At the
3383point it currently needs to choose, not enough information is available to do so
3384in a smart way.) Thus, it simply tries to make a choice that's most likely to
3385compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3386always choose to use memory, not registers). And, if given multiple registers,
3387or multiple register classes, it will simply choose the first one. (In fact, it
3388doesn't currently even ensure explicitly specified physical registers are
3389unique, so specifying multiple physical registers as alternatives, like
3390``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3391intended.)
3392
3393Supported Constraint Code List
3394""""""""""""""""""""""""""""""
3395
3396The constraint codes are, in general, expected to behave the same way they do in
3397GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3398inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3399and GCC likely indicates a bug in LLVM.
3400
3401Some constraint codes are typically supported by all targets:
3402
3403- ``r``: A register in the target's general purpose register class.
3404- ``m``: A memory address operand. It is target-specific what addressing modes
3405 are supported, typical examples are register, or register + register offset,
3406 or register + immediate offset (of some target-specific size).
3407- ``i``: An integer constant (of target-specific width). Allows either a simple
3408 immediate, or a relocatable value.
3409- ``n``: An integer constant -- *not* including relocatable values.
3410- ``s``: An integer constant, but allowing *only* relocatable values.
3411- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3412 useful to pass a label for an asm branch or call.
3413
3414 .. FIXME: but that surely isn't actually okay to jump out of an asm
3415 block without telling llvm about the control transfer???)
3416
3417- ``{register-name}``: Requires exactly the named physical register.
3418
3419Other constraints are target-specific:
3420
3421AArch64:
3422
3423- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3424- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3425 i.e. 0 to 4095 with optional shift by 12.
3426- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3427 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3428- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3429 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3430- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3431 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3432- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3433 32-bit register. This is a superset of ``K``: in addition to the bitmask
3434 immediate, also allows immediate integers which can be loaded with a single
3435 ``MOVZ`` or ``MOVL`` instruction.
3436- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3437 64-bit register. This is a superset of ``L``.
3438- ``Q``: Memory address operand must be in a single register (no
3439 offsets). (However, LLVM currently does this for the ``m`` constraint as
3440 well.)
3441- ``r``: A 32 or 64-bit integer register (W* or X*).
3442- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3443- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3444
3445AMDGPU:
3446
3447- ``r``: A 32 or 64-bit integer register.
3448- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3449- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3450
3451
3452All ARM modes:
3453
3454- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3455 operand. Treated the same as operand ``m``, at the moment.
3456
3457ARM and ARM's Thumb2 mode:
3458
3459- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3460- ``I``: An immediate integer valid for a data-processing instruction.
3461- ``J``: An immediate integer between -4095 and 4095.
3462- ``K``: An immediate integer whose bitwise inverse is valid for a
3463 data-processing instruction. (Can be used with template modifier "``B``" to
3464 print the inverted value).
3465- ``L``: An immediate integer whose negation is valid for a data-processing
3466 instruction. (Can be used with template modifier "``n``" to print the negated
3467 value).
3468- ``M``: A power of two or a integer between 0 and 32.
3469- ``N``: Invalid immediate constraint.
3470- ``O``: Invalid immediate constraint.
3471- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3472- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3473 as ``r``.
3474- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3475 invalid.
3476- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3477 ``d0-d31``, or ``q0-q15``.
3478- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3479 ``d0-d7``, or ``q0-q3``.
3480- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3481 ``s0-s31``.
3482
3483ARM's Thumb1 mode:
3484
3485- ``I``: An immediate integer between 0 and 255.
3486- ``J``: An immediate integer between -255 and -1.
3487- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3488 some amount.
3489- ``L``: An immediate integer between -7 and 7.
3490- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3491- ``N``: An immediate integer between 0 and 31.
3492- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3493- ``r``: A low 32-bit GPR register (``r0-r7``).
3494- ``l``: A low 32-bit GPR register (``r0-r7``).
3495- ``h``: A high GPR register (``r0-r7``).
3496- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3497 ``d0-d31``, or ``q0-q15``.
3498- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3499 ``d0-d7``, or ``q0-q3``.
3500- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3501 ``s0-s31``.
3502
3503
3504Hexagon:
3505
3506- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3507 at the moment.
3508- ``r``: A 32 or 64-bit register.
3509
3510MSP430:
3511
3512- ``r``: An 8 or 16-bit register.
3513
3514MIPS:
3515
3516- ``I``: An immediate signed 16-bit integer.
3517- ``J``: An immediate integer zero.
3518- ``K``: An immediate unsigned 16-bit integer.
3519- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3520- ``N``: An immediate integer between -65535 and -1.
3521- ``O``: An immediate signed 15-bit integer.
3522- ``P``: An immediate integer between 1 and 65535.
3523- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3524 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3525- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3526 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3527 ``m``.
3528- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3529 ``sc`` instruction on the given subtarget (details vary).
3530- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3531- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003532 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3533 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003534- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3535 ``25``).
3536- ``l``: The ``lo`` register, 32 or 64-bit.
3537- ``x``: Invalid.
3538
3539NVPTX:
3540
3541- ``b``: A 1-bit integer register.
3542- ``c`` or ``h``: A 16-bit integer register.
3543- ``r``: A 32-bit integer register.
3544- ``l`` or ``N``: A 64-bit integer register.
3545- ``f``: A 32-bit float register.
3546- ``d``: A 64-bit float register.
3547
3548
3549PowerPC:
3550
3551- ``I``: An immediate signed 16-bit integer.
3552- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3553- ``K``: An immediate unsigned 16-bit integer.
3554- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3555- ``M``: An immediate integer greater than 31.
3556- ``N``: An immediate integer that is an exact power of 2.
3557- ``O``: The immediate integer constant 0.
3558- ``P``: An immediate integer constant whose negation is a signed 16-bit
3559 constant.
3560- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3561 treated the same as ``m``.
3562- ``r``: A 32 or 64-bit integer register.
3563- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3564 ``R1-R31``).
3565- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3566 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3567- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3568 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3569 altivec vector register (``V0-V31``).
3570
3571 .. FIXME: is this a bug that v accepts QPX registers? I think this
3572 is supposed to only use the altivec vector registers?
3573
3574- ``y``: Condition register (``CR0-CR7``).
3575- ``wc``: An individual CR bit in a CR register.
3576- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3577 register set (overlapping both the floating-point and vector register files).
3578- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3579 set.
3580
3581Sparc:
3582
3583- ``I``: An immediate 13-bit signed integer.
3584- ``r``: A 32-bit integer register.
3585
3586SystemZ:
3587
3588- ``I``: An immediate unsigned 8-bit integer.
3589- ``J``: An immediate unsigned 12-bit integer.
3590- ``K``: An immediate signed 16-bit integer.
3591- ``L``: An immediate signed 20-bit integer.
3592- ``M``: An immediate integer 0x7fffffff.
Ulrich Weigand79564612016-06-09 15:19:16 +00003593- ``Q``, ``R``: A memory address operand with a base address and a 12-bit
3594 immediate unsigned displacement.
3595- ``S``, ``T``: A memory address operand with a base address and a 20-bit
3596 immediate signed displacement.
James Y Knightbc832ed2015-07-08 18:08:36 +00003597- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3598- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3599 address context evaluates as zero).
3600- ``h``: A 32-bit value in the high part of a 64bit data register
3601 (LLVM-specific)
3602- ``f``: A 32, 64, or 128-bit floating point register.
3603
3604X86:
3605
3606- ``I``: An immediate integer between 0 and 31.
3607- ``J``: An immediate integer between 0 and 64.
3608- ``K``: An immediate signed 8-bit integer.
3609- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3610 0xffffffff.
3611- ``M``: An immediate integer between 0 and 3.
3612- ``N``: An immediate unsigned 8-bit integer.
3613- ``O``: An immediate integer between 0 and 127.
3614- ``e``: An immediate 32-bit signed integer.
3615- ``Z``: An immediate 32-bit unsigned integer.
3616- ``o``, ``v``: Treated the same as ``m``, at the moment.
3617- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3618 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3619 registers, and on X86-64, it is all of the integer registers.
3620- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3621 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3622- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3623- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3624 existed since i386, and can be accessed without the REX prefix.
3625- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3626- ``y``: A 64-bit MMX register, if MMX is enabled.
3627- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3628 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3629 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3630 512-bit vector operand in an AVX512 register, Otherwise, an error.
3631- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3632- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3633 32-bit mode, a 64-bit integer operand will get split into two registers). It
3634 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3635 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3636 you're better off splitting it yourself, before passing it to the asm
3637 statement.
3638
3639XCore:
3640
3641- ``r``: A 32-bit integer register.
3642
3643
3644.. _inline-asm-modifiers:
3645
3646Asm template argument modifiers
3647^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3648
3649In the asm template string, modifiers can be used on the operand reference, like
3650"``${0:n}``".
3651
3652The modifiers are, in general, expected to behave the same way they do in
3653GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3654inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3655and GCC likely indicates a bug in LLVM.
3656
3657Target-independent:
3658
Sean Silvaa1190322015-08-06 22:56:48 +00003659- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003660 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3661- ``n``: Negate and print immediate integer constant unadorned, without the
3662 target-specific immediate punctuation (e.g. no ``$`` prefix).
3663- ``l``: Print as an unadorned label, without the target-specific label
3664 punctuation (e.g. no ``$`` prefix).
3665
3666AArch64:
3667
3668- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3669 instead of ``x30``, print ``w30``.
3670- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3671- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3672 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3673 ``v*``.
3674
3675AMDGPU:
3676
3677- ``r``: No effect.
3678
3679ARM:
3680
3681- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3682 register).
3683- ``P``: No effect.
3684- ``q``: No effect.
3685- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3686 as ``d4[1]`` instead of ``s9``)
3687- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3688 prefix.
3689- ``L``: Print the low 16-bits of an immediate integer constant.
3690- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3691 register operands subsequent to the specified one (!), so use carefully.
3692- ``Q``: Print the low-order register of a register-pair, or the low-order
3693 register of a two-register operand.
3694- ``R``: Print the high-order register of a register-pair, or the high-order
3695 register of a two-register operand.
3696- ``H``: Print the second register of a register-pair. (On a big-endian system,
3697 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3698 to ``R``.)
3699
3700 .. FIXME: H doesn't currently support printing the second register
3701 of a two-register operand.
3702
3703- ``e``: Print the low doubleword register of a NEON quad register.
3704- ``f``: Print the high doubleword register of a NEON quad register.
3705- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3706 adornment.
3707
3708Hexagon:
3709
3710- ``L``: Print the second register of a two-register operand. Requires that it
3711 has been allocated consecutively to the first.
3712
3713 .. FIXME: why is it restricted to consecutive ones? And there's
3714 nothing that ensures that happens, is there?
3715
3716- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3717 nothing. Used to print 'addi' vs 'add' instructions.
3718
3719MSP430:
3720
3721No additional modifiers.
3722
3723MIPS:
3724
3725- ``X``: Print an immediate integer as hexadecimal
3726- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3727- ``d``: Print an immediate integer as decimal.
3728- ``m``: Subtract one and print an immediate integer as decimal.
3729- ``z``: Print $0 if an immediate zero, otherwise print normally.
3730- ``L``: Print the low-order register of a two-register operand, or prints the
3731 address of the low-order word of a double-word memory operand.
3732
3733 .. FIXME: L seems to be missing memory operand support.
3734
3735- ``M``: Print the high-order register of a two-register operand, or prints the
3736 address of the high-order word of a double-word memory operand.
3737
3738 .. FIXME: M seems to be missing memory operand support.
3739
3740- ``D``: Print the second register of a two-register operand, or prints the
3741 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3742 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3743 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003744- ``w``: No effect. Provided for compatibility with GCC which requires this
3745 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3746 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003747
3748NVPTX:
3749
3750- ``r``: No effect.
3751
3752PowerPC:
3753
3754- ``L``: Print the second register of a two-register operand. Requires that it
3755 has been allocated consecutively to the first.
3756
3757 .. FIXME: why is it restricted to consecutive ones? And there's
3758 nothing that ensures that happens, is there?
3759
3760- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3761 nothing. Used to print 'addi' vs 'add' instructions.
3762- ``y``: For a memory operand, prints formatter for a two-register X-form
3763 instruction. (Currently always prints ``r0,OPERAND``).
3764- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3765 otherwise. (NOTE: LLVM does not support update form, so this will currently
3766 always print nothing)
3767- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3768 not support indexed form, so this will currently always print nothing)
3769
3770Sparc:
3771
3772- ``r``: No effect.
3773
3774SystemZ:
3775
3776SystemZ implements only ``n``, and does *not* support any of the other
3777target-independent modifiers.
3778
3779X86:
3780
3781- ``c``: Print an unadorned integer or symbol name. (The latter is
3782 target-specific behavior for this typically target-independent modifier).
3783- ``A``: Print a register name with a '``*``' before it.
3784- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3785 operand.
3786- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3787 memory operand.
3788- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3789 operand.
3790- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3791 operand.
3792- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3793 available, otherwise the 32-bit register name; do nothing on a memory operand.
3794- ``n``: Negate and print an unadorned integer, or, for operands other than an
3795 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3796 the operand. (The behavior for relocatable symbol expressions is a
3797 target-specific behavior for this typically target-independent modifier)
3798- ``H``: Print a memory reference with additional offset +8.
3799- ``P``: Print a memory reference or operand for use as the argument of a call
3800 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3801
3802XCore:
3803
3804No additional modifiers.
3805
3806
Sean Silvab084af42012-12-07 10:36:55 +00003807Inline Asm Metadata
3808^^^^^^^^^^^^^^^^^^^
3809
3810The call instructions that wrap inline asm nodes may have a
3811"``!srcloc``" MDNode attached to it that contains a list of constant
3812integers. If present, the code generator will use the integer as the
3813location cookie value when report errors through the ``LLVMContext``
3814error reporting mechanisms. This allows a front-end to correlate backend
3815errors that occur with inline asm back to the source code that produced
3816it. For example:
3817
3818.. code-block:: llvm
3819
3820 call void asm sideeffect "something bad", ""(), !srcloc !42
3821 ...
3822 !42 = !{ i32 1234567 }
3823
3824It is up to the front-end to make sense of the magic numbers it places
3825in the IR. If the MDNode contains multiple constants, the code generator
3826will use the one that corresponds to the line of the asm that the error
3827occurs on.
3828
3829.. _metadata:
3830
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003831Metadata
3832========
Sean Silvab084af42012-12-07 10:36:55 +00003833
3834LLVM IR allows metadata to be attached to instructions in the program
3835that can convey extra information about the code to the optimizers and
3836code generator. One example application of metadata is source-level
3837debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003838
Sean Silvaa1190322015-08-06 22:56:48 +00003839Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003840``call`` instruction, it uses the ``metadata`` type.
3841
3842All metadata are identified in syntax by a exclamation point ('``!``').
3843
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003844.. _metadata-string:
3845
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003846Metadata Nodes and Metadata Strings
3847-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003848
3849A metadata string is a string surrounded by double quotes. It can
3850contain any character by escaping non-printable characters with
3851"``\xx``" where "``xx``" is the two digit hex code. For example:
3852"``!"test\00"``".
3853
3854Metadata nodes are represented with notation similar to structure
3855constants (a comma separated list of elements, surrounded by braces and
3856preceded by an exclamation point). Metadata nodes can have any values as
3857their operand. For example:
3858
3859.. code-block:: llvm
3860
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003861 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003862
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003863Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3864
3865.. code-block:: llvm
3866
3867 !0 = distinct !{!"test\00", i32 10}
3868
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003869``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003870content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003871when metadata operands change.
3872
Sean Silvab084af42012-12-07 10:36:55 +00003873A :ref:`named metadata <namedmetadatastructure>` is a collection of
3874metadata nodes, which can be looked up in the module symbol table. For
3875example:
3876
3877.. code-block:: llvm
3878
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003879 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003880
3881Metadata can be used as function arguments. Here ``llvm.dbg.value``
3882function is using two metadata arguments:
3883
3884.. code-block:: llvm
3885
3886 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3887
Peter Collingbourne50108682015-11-06 02:41:02 +00003888Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3889to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003890
3891.. code-block:: llvm
3892
3893 %indvar.next = add i64 %indvar, 1, !dbg !21
3894
Peter Collingbourne50108682015-11-06 02:41:02 +00003895Metadata can also be attached to a function definition. Here metadata ``!22``
3896is attached to the ``foo`` function using the ``!dbg`` identifier:
3897
3898.. code-block:: llvm
3899
3900 define void @foo() !dbg !22 {
3901 ret void
3902 }
3903
Sean Silvab084af42012-12-07 10:36:55 +00003904More information about specific metadata nodes recognized by the
3905optimizers and code generator is found below.
3906
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003907.. _specialized-metadata:
3908
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003909Specialized Metadata Nodes
3910^^^^^^^^^^^^^^^^^^^^^^^^^^
3911
3912Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003913to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003914order.
3915
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003916These aren't inherently debug info centric, but currently all the specialized
3917metadata nodes are related to debug info.
3918
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003919.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003920
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003921DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003922"""""""""""""
3923
Sean Silvaa1190322015-08-06 22:56:48 +00003924``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003925``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3926fields are tuples containing the debug info to be emitted along with the compile
3927unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003928references to them from instructions).
3929
3930.. code-block:: llvm
3931
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003932 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003933 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003934 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003935 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003936 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003937
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003938Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003939specific compilation unit. File descriptors are defined using this scope.
3940These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003941keep track of subprograms, global variables, type information, and imported
3942entities (declarations and namespaces).
3943
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003944.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003945
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003946DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003947""""""
3948
Sean Silvaa1190322015-08-06 22:56:48 +00003949``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003950
3951.. code-block:: llvm
3952
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003953 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003954
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003955Files are sometimes used in ``scope:`` fields, and are the only valid target
3956for ``file:`` fields.
3957
Michael Kuperstein605308a2015-05-14 10:58:59 +00003958.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003959
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003960DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003961"""""""""""
3962
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003963``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003964``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003965
3966.. code-block:: llvm
3967
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003968 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003969 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003970 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003971
Sean Silvaa1190322015-08-06 22:56:48 +00003972The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003973following:
3974
3975.. code-block:: llvm
3976
3977 DW_ATE_address = 1
3978 DW_ATE_boolean = 2
3979 DW_ATE_float = 4
3980 DW_ATE_signed = 5
3981 DW_ATE_signed_char = 6
3982 DW_ATE_unsigned = 7
3983 DW_ATE_unsigned_char = 8
3984
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003985.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003986
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003987DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003988""""""""""""""""
3989
Sean Silvaa1190322015-08-06 22:56:48 +00003990``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003991refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003992types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003993represents a function with no return value (such as ``void foo() {}`` in C++).
3994
3995.. code-block:: llvm
3996
3997 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3998 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003999 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004000
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004001.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004002
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004003DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004004"""""""""""""
4005
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004006``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004007qualified types.
4008
4009.. code-block:: llvm
4010
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004011 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004012 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004013 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004014 align: 32)
4015
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004016The following ``tag:`` values are valid:
4017
4018.. code-block:: llvm
4019
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004020 DW_TAG_member = 13
4021 DW_TAG_pointer_type = 15
4022 DW_TAG_reference_type = 16
4023 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004024 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004025 DW_TAG_ptr_to_member_type = 31
4026 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004027 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004028 DW_TAG_volatile_type = 53
4029 DW_TAG_restrict_type = 55
4030
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004031.. _DIDerivedTypeMember:
4032
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004033``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004034<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004035``offset:`` is the member's bit offset. If the composite type has an ODR
4036``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4037uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004038
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004039``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4040field of :ref:`composite types <DICompositeType>` to describe parents and
4041friends.
4042
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004043``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4044
4045``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
4046``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
4047``baseType:``.
4048
4049Note that the ``void *`` type is expressed as a type derived from NULL.
4050
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004051.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004052
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004053DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004054"""""""""""""""
4055
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004056``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004057structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004058
4059If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004060identifier used for type merging between modules. When specified,
4061:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4062derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4063``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004064
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004065For a given ``identifier:``, there should only be a single composite type that
4066does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4067together will unique such definitions at parse time via the ``identifier:``
4068field, even if the nodes are ``distinct``.
4069
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004070.. code-block:: llvm
4071
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004072 !0 = !DIEnumerator(name: "SixKind", value: 7)
4073 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4074 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4075 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004076 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4077 elements: !{!0, !1, !2})
4078
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004079The following ``tag:`` values are valid:
4080
4081.. code-block:: llvm
4082
4083 DW_TAG_array_type = 1
4084 DW_TAG_class_type = 2
4085 DW_TAG_enumeration_type = 4
4086 DW_TAG_structure_type = 19
4087 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004088
4089For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004090descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004091level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004092array type is a native packed vector.
4093
4094For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004095descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004096value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004097``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004098
4099For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4100``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004101<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4102``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4103``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004104
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004105.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004106
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004107DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004108""""""""""
4109
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004110``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004111:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004112
4113.. code-block:: llvm
4114
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004115 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4116 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4117 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004118
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004119.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004120
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004121DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004122""""""""""""
4123
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004124``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4125variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004126
4127.. code-block:: llvm
4128
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004129 !0 = !DIEnumerator(name: "SixKind", value: 7)
4130 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4131 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004132
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004133DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004134"""""""""""""""""""""""
4135
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004136``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004137language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004138:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004139
4140.. code-block:: llvm
4141
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004142 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004143
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004144DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004145""""""""""""""""""""""""
4146
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004147``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004148language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004149but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004150``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004151:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004152
4153.. code-block:: llvm
4154
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004155 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004156
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004157DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004158"""""""""""
4159
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004160``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004161
4162.. code-block:: llvm
4163
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004164 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004165
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004166DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004167""""""""""""""""
4168
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004169``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004170
4171.. code-block:: llvm
4172
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004173 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004174 file: !2, line: 7, type: !3, isLocal: true,
4175 isDefinition: false, variable: i32* @foo,
4176 declaration: !4)
4177
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004178All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004179:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004180
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004181.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004182
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004183DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004184""""""""""""
4185
Peter Collingbourne50108682015-11-06 02:41:02 +00004186``DISubprogram`` nodes represent functions from the source language. A
4187``DISubprogram`` may be attached to a function definition using ``!dbg``
4188metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4189that must be retained, even if their IR counterparts are optimized out of
4190the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004191
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004192.. _DISubprogramDeclaration:
4193
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004194When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004195tree as opposed to a definition of a function. If the scope is a composite
4196type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4197then the subprogram declaration is uniqued based only on its ``linkageName:``
4198and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004199
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004200.. code-block:: llvm
4201
Peter Collingbourne50108682015-11-06 02:41:02 +00004202 define void @_Z3foov() !dbg !0 {
4203 ...
4204 }
4205
4206 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4207 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004208 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004209 containingType: !4,
4210 virtuality: DW_VIRTUALITY_pure_virtual,
4211 virtualIndex: 10, flags: DIFlagPrototyped,
4212 isOptimized: true, templateParams: !5,
4213 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004214
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004215.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004216
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004217DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004218""""""""""""""
4219
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004220``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004221<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004222two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004223fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004224
4225.. code-block:: llvm
4226
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004227 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004228
4229Usually lexical blocks are ``distinct`` to prevent node merging based on
4230operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004231
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004232.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004233
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004234DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004235""""""""""""""""""
4236
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004237``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004238:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004239indicate textual inclusion, or the ``discriminator:`` field can be used to
4240discriminate between control flow within a single block in the source language.
4241
4242.. code-block:: llvm
4243
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004244 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4245 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4246 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004247
Michael Kuperstein605308a2015-05-14 10:58:59 +00004248.. _DILocation:
4249
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004250DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004251""""""""""
4252
Sean Silvaa1190322015-08-06 22:56:48 +00004253``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004254mandatory, and points at an :ref:`DILexicalBlockFile`, an
4255:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004256
4257.. code-block:: llvm
4258
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004259 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004260
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004261.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004262
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004263DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004264"""""""""""""""
4265
Sean Silvaa1190322015-08-06 22:56:48 +00004266``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004267the ``arg:`` field is set to non-zero, then this variable is a subprogram
4268parameter, and it will be included in the ``variables:`` field of its
4269:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004270
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004271.. code-block:: llvm
4272
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004273 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4274 type: !3, flags: DIFlagArtificial)
4275 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4276 type: !3)
4277 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004278
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004279DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004280""""""""""""
4281
Sean Silvaa1190322015-08-06 22:56:48 +00004282``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004283:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4284describe how the referenced LLVM variable relates to the source language
4285variable.
4286
4287The current supported vocabulary is limited:
4288
4289- ``DW_OP_deref`` dereferences the working expression.
4290- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4291- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4292 here, respectively) of the variable piece from the working expression.
4293
4294.. code-block:: llvm
4295
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004296 !0 = !DIExpression(DW_OP_deref)
4297 !1 = !DIExpression(DW_OP_plus, 3)
4298 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4299 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004300
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004301DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004302""""""""""""""
4303
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004304``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004305
4306.. code-block:: llvm
4307
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004308 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004309 getter: "getFoo", attributes: 7, type: !2)
4310
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004311DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004312""""""""""""""""
4313
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004314``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004315compile unit.
4316
4317.. code-block:: llvm
4318
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004319 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004320 entity: !1, line: 7)
4321
Amjad Abouda9bcf162015-12-10 12:56:35 +00004322DIMacro
4323"""""""
4324
4325``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4326The ``name:`` field is the macro identifier, followed by macro parameters when
4327definining a function-like macro, and the ``value`` field is the token-string
4328used to expand the macro identifier.
4329
4330.. code-block:: llvm
4331
4332 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4333 value: "((x) + 1)")
4334 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4335
4336DIMacroFile
4337"""""""""""
4338
4339``DIMacroFile`` nodes represent inclusion of source files.
4340The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4341appear in the included source file.
4342
4343.. code-block:: llvm
4344
4345 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4346 nodes: !3)
4347
Sean Silvab084af42012-12-07 10:36:55 +00004348'``tbaa``' Metadata
4349^^^^^^^^^^^^^^^^^^^
4350
4351In LLVM IR, memory does not have types, so LLVM's own type system is not
4352suitable for doing TBAA. Instead, metadata is added to the IR to
4353describe a type system of a higher level language. This can be used to
4354implement typical C/C++ TBAA, but it can also be used to implement
4355custom alias analysis behavior for other languages.
4356
4357The current metadata format is very simple. TBAA metadata nodes have up
4358to three fields, e.g.:
4359
4360.. code-block:: llvm
4361
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004362 !0 = !{ !"an example type tree" }
4363 !1 = !{ !"int", !0 }
4364 !2 = !{ !"float", !0 }
4365 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004366
4367The first field is an identity field. It can be any value, usually a
4368metadata string, which uniquely identifies the type. The most important
4369name in the tree is the name of the root node. Two trees with different
4370root node names are entirely disjoint, even if they have leaves with
4371common names.
4372
4373The second field identifies the type's parent node in the tree, or is
4374null or omitted for a root node. A type is considered to alias all of
4375its descendants and all of its ancestors in the tree. Also, a type is
4376considered to alias all types in other trees, so that bitcode produced
4377from multiple front-ends is handled conservatively.
4378
4379If the third field is present, it's an integer which if equal to 1
4380indicates that the type is "constant" (meaning
4381``pointsToConstantMemory`` should return true; see `other useful
4382AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4383
4384'``tbaa.struct``' Metadata
4385^^^^^^^^^^^^^^^^^^^^^^^^^^
4386
4387The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4388aggregate assignment operations in C and similar languages, however it
4389is defined to copy a contiguous region of memory, which is more than
4390strictly necessary for aggregate types which contain holes due to
4391padding. Also, it doesn't contain any TBAA information about the fields
4392of the aggregate.
4393
4394``!tbaa.struct`` metadata can describe which memory subregions in a
4395memcpy are padding and what the TBAA tags of the struct are.
4396
4397The current metadata format is very simple. ``!tbaa.struct`` metadata
4398nodes are a list of operands which are in conceptual groups of three.
4399For each group of three, the first operand gives the byte offset of a
4400field in bytes, the second gives its size in bytes, and the third gives
4401its tbaa tag. e.g.:
4402
4403.. code-block:: llvm
4404
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004405 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004406
4407This describes a struct with two fields. The first is at offset 0 bytes
4408with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4409and has size 4 bytes and has tbaa tag !2.
4410
4411Note that the fields need not be contiguous. In this example, there is a
44124 byte gap between the two fields. This gap represents padding which
4413does not carry useful data and need not be preserved.
4414
Hal Finkel94146652014-07-24 14:25:39 +00004415'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004416^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004417
4418``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4419noalias memory-access sets. This means that some collection of memory access
4420instructions (loads, stores, memory-accessing calls, etc.) that carry
4421``noalias`` metadata can specifically be specified not to alias with some other
4422collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004423Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004424a domain.
4425
4426When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004427of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004428subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004429instruction's ``noalias`` list, then the two memory accesses are assumed not to
4430alias.
Hal Finkel94146652014-07-24 14:25:39 +00004431
Adam Nemet569a5b32016-04-27 00:52:48 +00004432Because scopes in one domain don't affect scopes in other domains, separate
4433domains can be used to compose multiple independent noalias sets. This is
4434used for example during inlining. As the noalias function parameters are
4435turned into noalias scope metadata, a new domain is used every time the
4436function is inlined.
4437
Hal Finkel029cde62014-07-25 15:50:02 +00004438The metadata identifying each domain is itself a list containing one or two
4439entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004440string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004441self-reference can be used to create globally unique domain names. A
4442descriptive string may optionally be provided as a second list entry.
4443
4444The metadata identifying each scope is also itself a list containing two or
4445three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004446is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004447self-reference can be used to create globally unique scope names. A metadata
4448reference to the scope's domain is the second entry. A descriptive string may
4449optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004450
4451For example,
4452
4453.. code-block:: llvm
4454
Hal Finkel029cde62014-07-25 15:50:02 +00004455 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004456 !0 = !{!0}
4457 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004458
Hal Finkel029cde62014-07-25 15:50:02 +00004459 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004460 !2 = !{!2, !0}
4461 !3 = !{!3, !0}
4462 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004463
Hal Finkel029cde62014-07-25 15:50:02 +00004464 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004465 !5 = !{!4} ; A list containing only scope !4
4466 !6 = !{!4, !3, !2}
4467 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004468
4469 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004470 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004471 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004472
Hal Finkel029cde62014-07-25 15:50:02 +00004473 ; These two instructions also don't alias (for domain !1, the set of scopes
4474 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004475 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004476 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004477
Adam Nemet0a8416f2015-05-11 08:30:28 +00004478 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004479 ; the !noalias list is not a superset of, or equal to, the scopes in the
4480 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004481 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004482 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004483
Sean Silvab084af42012-12-07 10:36:55 +00004484'``fpmath``' Metadata
4485^^^^^^^^^^^^^^^^^^^^^
4486
4487``fpmath`` metadata may be attached to any instruction of floating point
4488type. It can be used to express the maximum acceptable error in the
4489result of that instruction, in ULPs, thus potentially allowing the
4490compiler to use a more efficient but less accurate method of computing
4491it. ULP is defined as follows:
4492
4493 If ``x`` is a real number that lies between two finite consecutive
4494 floating-point numbers ``a`` and ``b``, without being equal to one
4495 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4496 distance between the two non-equal finite floating-point numbers
4497 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4498
4499The metadata node shall consist of a single positive floating point
4500number representing the maximum relative error, for example:
4501
4502.. code-block:: llvm
4503
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004504 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004505
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004506.. _range-metadata:
4507
Sean Silvab084af42012-12-07 10:36:55 +00004508'``range``' Metadata
4509^^^^^^^^^^^^^^^^^^^^
4510
Jingyue Wu37fcb592014-06-19 16:50:16 +00004511``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4512integer types. It expresses the possible ranges the loaded value or the value
4513returned by the called function at this call site is in. The ranges are
4514represented with a flattened list of integers. The loaded value or the value
4515returned is known to be in the union of the ranges defined by each consecutive
4516pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004517
4518- The type must match the type loaded by the instruction.
4519- The pair ``a,b`` represents the range ``[a,b)``.
4520- Both ``a`` and ``b`` are constants.
4521- The range is allowed to wrap.
4522- The range should not represent the full or empty set. That is,
4523 ``a!=b``.
4524
4525In addition, the pairs must be in signed order of the lower bound and
4526they must be non-contiguous.
4527
4528Examples:
4529
4530.. code-block:: llvm
4531
David Blaikiec7aabbb2015-03-04 22:06:14 +00004532 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4533 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004534 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4535 %d = invoke i8 @bar() to label %cont
4536 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004537 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004538 !0 = !{ i8 0, i8 2 }
4539 !1 = !{ i8 255, i8 2 }
4540 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4541 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004542
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004543'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004544^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004545
4546``unpredictable`` metadata may be attached to any branch or switch
4547instruction. It can be used to express the unpredictability of control
4548flow. Similar to the llvm.expect intrinsic, it may be used to alter
4549optimizations related to compare and branch instructions. The metadata
4550is treated as a boolean value; if it exists, it signals that the branch
4551or switch that it is attached to is completely unpredictable.
4552
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004553'``llvm.loop``'
4554^^^^^^^^^^^^^^^
4555
4556It is sometimes useful to attach information to loop constructs. Currently,
4557loop metadata is implemented as metadata attached to the branch instruction
4558in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004559guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004560specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004561
4562The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004563itself to avoid merging it with any other identifier metadata, e.g.,
4564during module linkage or function inlining. That is, each loop should refer
4565to their own identification metadata even if they reside in separate functions.
4566The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004567constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004568
4569.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004570
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004571 !0 = !{!0}
4572 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004573
Mark Heffernan893752a2014-07-18 19:24:51 +00004574The loop identifier metadata can be used to specify additional
4575per-loop metadata. Any operands after the first operand can be treated
4576as user-defined metadata. For example the ``llvm.loop.unroll.count``
4577suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004578
Paul Redmond5fdf8362013-05-28 20:00:34 +00004579.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004580
Paul Redmond5fdf8362013-05-28 20:00:34 +00004581 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4582 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004583 !0 = !{!0, !1}
4584 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004585
Mark Heffernan9d20e422014-07-21 23:11:03 +00004586'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4587^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004588
Mark Heffernan9d20e422014-07-21 23:11:03 +00004589Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4590used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004591vectorization width and interleave count. These metadata should be used in
4592conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004593``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4594optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004595it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004596which contains information about loop-carried memory dependencies can be helpful
4597in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004598
Mark Heffernan9d20e422014-07-21 23:11:03 +00004599'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4601
Mark Heffernan9d20e422014-07-21 23:11:03 +00004602This metadata suggests an interleave count to the loop interleaver.
4603The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004604second operand is an integer specifying the interleave count. For
4605example:
4606
4607.. code-block:: llvm
4608
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004609 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004610
Mark Heffernan9d20e422014-07-21 23:11:03 +00004611Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004612multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004613then the interleave count will be determined automatically.
4614
4615'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004616^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004617
4618This metadata selectively enables or disables vectorization for the loop. The
4619first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004620is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000046210 disables vectorization:
4622
4623.. code-block:: llvm
4624
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004625 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4626 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004627
4628'``llvm.loop.vectorize.width``' Metadata
4629^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4630
4631This metadata sets the target width of the vectorizer. The first
4632operand is the string ``llvm.loop.vectorize.width`` and the second
4633operand is an integer specifying the width. For example:
4634
4635.. code-block:: llvm
4636
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004637 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004638
4639Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004640vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000046410 or if the loop does not have this metadata the width will be
4642determined automatically.
4643
4644'``llvm.loop.unroll``'
4645^^^^^^^^^^^^^^^^^^^^^^
4646
4647Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4648optimization hints such as the unroll factor. ``llvm.loop.unroll``
4649metadata should be used in conjunction with ``llvm.loop`` loop
4650identification metadata. The ``llvm.loop.unroll`` metadata are only
4651optimization hints and the unrolling will only be performed if the
4652optimizer believes it is safe to do so.
4653
Mark Heffernan893752a2014-07-18 19:24:51 +00004654'``llvm.loop.unroll.count``' Metadata
4655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4656
4657This metadata suggests an unroll factor to the loop unroller. The
4658first operand is the string ``llvm.loop.unroll.count`` and the second
4659operand is a positive integer specifying the unroll factor. For
4660example:
4661
4662.. code-block:: llvm
4663
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004664 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004665
4666If the trip count of the loop is less than the unroll count the loop
4667will be partially unrolled.
4668
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004669'``llvm.loop.unroll.disable``' Metadata
4670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4671
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004672This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004673which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004674
4675.. code-block:: llvm
4676
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004677 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004678
Kevin Qin715b01e2015-03-09 06:14:18 +00004679'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004681
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004682This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004683operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004684
4685.. code-block:: llvm
4686
4687 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4688
Mark Heffernan89391542015-08-10 17:28:08 +00004689'``llvm.loop.unroll.enable``' Metadata
4690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4691
4692This metadata suggests that the loop should be fully unrolled if the trip count
4693is known at compile time and partially unrolled if the trip count is not known
4694at compile time. The metadata has a single operand which is the string
4695``llvm.loop.unroll.enable``. For example:
4696
4697.. code-block:: llvm
4698
4699 !0 = !{!"llvm.loop.unroll.enable"}
4700
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004701'``llvm.loop.unroll.full``' Metadata
4702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4703
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004704This metadata suggests that the loop should be unrolled fully. The
4705metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004706For example:
4707
4708.. code-block:: llvm
4709
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004710 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004711
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004712'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004714
4715This metadata indicates that the loop should not be versioned for the purpose
4716of enabling loop-invariant code motion (LICM). The metadata has a single operand
4717which is the string ``llvm.loop.licm_versioning.disable``. For example:
4718
4719.. code-block:: llvm
4720
4721 !0 = !{!"llvm.loop.licm_versioning.disable"}
4722
Adam Nemetd2fa4142016-04-27 05:28:18 +00004723'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004724^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004725
4726Loop distribution allows splitting a loop into multiple loops. Currently,
4727this is only performed if the entire loop cannot be vectorized due to unsafe
4728memory dependencies. The transformation will atempt to isolate the unsafe
4729dependencies into their own loop.
4730
4731This metadata can be used to selectively enable or disable distribution of the
4732loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4733second operand is a bit. If the bit operand value is 1 distribution is
4734enabled. A value of 0 disables distribution:
4735
4736.. code-block:: llvm
4737
4738 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4739 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4740
4741This metadata should be used in conjunction with ``llvm.loop`` loop
4742identification metadata.
4743
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004744'``llvm.mem``'
4745^^^^^^^^^^^^^^^
4746
4747Metadata types used to annotate memory accesses with information helpful
4748for optimizations are prefixed with ``llvm.mem``.
4749
4750'``llvm.mem.parallel_loop_access``' Metadata
4751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4752
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004753The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4754or metadata containing a list of loop identifiers for nested loops.
4755The metadata is attached to memory accessing instructions and denotes that
4756no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004757with the same loop identifier. The metadata on memory reads also implies that
4758if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004759
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004760Precisely, given two instructions ``m1`` and ``m2`` that both have the
4761``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4762set of loops associated with that metadata, respectively, then there is no loop
4763carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004764``L2``.
4765
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004766As a special case, if all memory accessing instructions in a loop have
4767``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4768loop has no loop carried memory dependences and is considered to be a parallel
4769loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004770
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004771Note that if not all memory access instructions have such metadata referring to
4772the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004773memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004774safe mechanism, this causes loops that were originally parallel to be considered
4775sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004776insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004777
4778Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004779both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004780metadata types that refer to the same loop identifier metadata.
4781
4782.. code-block:: llvm
4783
4784 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004785 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004786 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004787 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004788 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004789 ...
4790 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004791
4792 for.end:
4793 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004794 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004795
4796It is also possible to have nested parallel loops. In that case the
4797memory accesses refer to a list of loop identifier metadata nodes instead of
4798the loop identifier metadata node directly:
4799
4800.. code-block:: llvm
4801
4802 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004803 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004804 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004805 ...
4806 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004807
4808 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004809 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004810 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004811 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004812 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004813 ...
4814 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004815
4816 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004817 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004818 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004819 ...
4820 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004821
4822 outer.for.end: ; preds = %for.body
4823 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004824 !0 = !{!1, !2} ; a list of loop identifiers
4825 !1 = !{!1} ; an identifier for the inner loop
4826 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004827
Peter Collingbournee6909c82015-02-20 20:30:47 +00004828'``llvm.bitsets``'
4829^^^^^^^^^^^^^^^^^^
4830
4831The ``llvm.bitsets`` global metadata is used to implement
4832:doc:`bitsets <BitSets>`.
4833
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004834'``invariant.group``' Metadata
4835^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4836
4837The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4838The existence of the ``invariant.group`` metadata on the instruction tells
4839the optimizer that every ``load`` and ``store`` to the same pointer operand
4840within the same invariant group can be assumed to load or store the same
4841value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4842when two pointers are considered the same).
4843
4844Examples:
4845
4846.. code-block:: llvm
4847
4848 @unknownPtr = external global i8
4849 ...
4850 %ptr = alloca i8
4851 store i8 42, i8* %ptr, !invariant.group !0
4852 call void @foo(i8* %ptr)
4853
4854 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4855 call void @foo(i8* %ptr)
4856 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4857
4858 %newPtr = call i8* @getPointer(i8* %ptr)
4859 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4860
4861 %unknownValue = load i8, i8* @unknownPtr
4862 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4863
4864 call void @foo(i8* %ptr)
4865 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4866 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4867
4868 ...
4869 declare void @foo(i8*)
4870 declare i8* @getPointer(i8*)
4871 declare i8* @llvm.invariant.group.barrier(i8*)
4872
4873 !0 = !{!"magic ptr"}
4874 !1 = !{!"other ptr"}
4875
4876
4877
Sean Silvab084af42012-12-07 10:36:55 +00004878Module Flags Metadata
4879=====================
4880
4881Information about the module as a whole is difficult to convey to LLVM's
4882subsystems. The LLVM IR isn't sufficient to transmit this information.
4883The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004884this. These flags are in the form of key / value pairs --- much like a
4885dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004886look it up.
4887
4888The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4889Each triplet has the following form:
4890
4891- The first element is a *behavior* flag, which specifies the behavior
4892 when two (or more) modules are merged together, and it encounters two
4893 (or more) metadata with the same ID. The supported behaviors are
4894 described below.
4895- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004896 metadata. Each module may only have one flag entry for each unique ID (not
4897 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004898- The third element is the value of the flag.
4899
4900When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004901``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4902each unique metadata ID string, there will be exactly one entry in the merged
4903modules ``llvm.module.flags`` metadata table, and the value for that entry will
4904be determined by the merge behavior flag, as described below. The only exception
4905is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004906
4907The following behaviors are supported:
4908
4909.. list-table::
4910 :header-rows: 1
4911 :widths: 10 90
4912
4913 * - Value
4914 - Behavior
4915
4916 * - 1
4917 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004918 Emits an error if two values disagree, otherwise the resulting value
4919 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004920
4921 * - 2
4922 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004923 Emits a warning if two values disagree. The result value will be the
4924 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004925
4926 * - 3
4927 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004928 Adds a requirement that another module flag be present and have a
4929 specified value after linking is performed. The value must be a
4930 metadata pair, where the first element of the pair is the ID of the
4931 module flag to be restricted, and the second element of the pair is
4932 the value the module flag should be restricted to. This behavior can
4933 be used to restrict the allowable results (via triggering of an
4934 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004935
4936 * - 4
4937 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004938 Uses the specified value, regardless of the behavior or value of the
4939 other module. If both modules specify **Override**, but the values
4940 differ, an error will be emitted.
4941
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004942 * - 5
4943 - **Append**
4944 Appends the two values, which are required to be metadata nodes.
4945
4946 * - 6
4947 - **AppendUnique**
4948 Appends the two values, which are required to be metadata
4949 nodes. However, duplicate entries in the second list are dropped
4950 during the append operation.
4951
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004952It is an error for a particular unique flag ID to have multiple behaviors,
4953except in the case of **Require** (which adds restrictions on another metadata
4954value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004955
4956An example of module flags:
4957
4958.. code-block:: llvm
4959
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004960 !0 = !{ i32 1, !"foo", i32 1 }
4961 !1 = !{ i32 4, !"bar", i32 37 }
4962 !2 = !{ i32 2, !"qux", i32 42 }
4963 !3 = !{ i32 3, !"qux",
4964 !{
4965 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004966 }
4967 }
4968 !llvm.module.flags = !{ !0, !1, !2, !3 }
4969
4970- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4971 if two or more ``!"foo"`` flags are seen is to emit an error if their
4972 values are not equal.
4973
4974- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4975 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004976 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004977
4978- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4979 behavior if two or more ``!"qux"`` flags are seen is to emit a
4980 warning if their values are not equal.
4981
4982- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4983
4984 ::
4985
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004986 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004987
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004988 The behavior is to emit an error if the ``llvm.module.flags`` does not
4989 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4990 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004991
4992Objective-C Garbage Collection Module Flags Metadata
4993----------------------------------------------------
4994
4995On the Mach-O platform, Objective-C stores metadata about garbage
4996collection in a special section called "image info". The metadata
4997consists of a version number and a bitmask specifying what types of
4998garbage collection are supported (if any) by the file. If two or more
4999modules are linked together their garbage collection metadata needs to
5000be merged rather than appended together.
5001
5002The Objective-C garbage collection module flags metadata consists of the
5003following key-value pairs:
5004
5005.. list-table::
5006 :header-rows: 1
5007 :widths: 30 70
5008
5009 * - Key
5010 - Value
5011
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005012 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005013 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005014
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005015 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005016 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005017 always 0.
5018
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005019 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005020 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005021 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5022 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5023 Objective-C ABI version 2.
5024
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005025 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005026 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005027 not. Valid values are 0, for no garbage collection, and 2, for garbage
5028 collection supported.
5029
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005030 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005031 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005032 If present, its value must be 6. This flag requires that the
5033 ``Objective-C Garbage Collection`` flag have the value 2.
5034
5035Some important flag interactions:
5036
5037- If a module with ``Objective-C Garbage Collection`` set to 0 is
5038 merged with a module with ``Objective-C Garbage Collection`` set to
5039 2, then the resulting module has the
5040 ``Objective-C Garbage Collection`` flag set to 0.
5041- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5042 merged with a module with ``Objective-C GC Only`` set to 6.
5043
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005044Automatic Linker Flags Module Flags Metadata
5045--------------------------------------------
5046
5047Some targets support embedding flags to the linker inside individual object
5048files. Typically this is used in conjunction with language extensions which
5049allow source files to explicitly declare the libraries they depend on, and have
5050these automatically be transmitted to the linker via object files.
5051
5052These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005053using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005054to be ``AppendUnique``, and the value for the key is expected to be a metadata
5055node which should be a list of other metadata nodes, each of which should be a
5056list of metadata strings defining linker options.
5057
5058For example, the following metadata section specifies two separate sets of
5059linker options, presumably to link against ``libz`` and the ``Cocoa``
5060framework::
5061
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005062 !0 = !{ i32 6, !"Linker Options",
5063 !{
5064 !{ !"-lz" },
5065 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005066 !llvm.module.flags = !{ !0 }
5067
5068The metadata encoding as lists of lists of options, as opposed to a collapsed
5069list of options, is chosen so that the IR encoding can use multiple option
5070strings to specify e.g., a single library, while still having that specifier be
5071preserved as an atomic element that can be recognized by a target specific
5072assembly writer or object file emitter.
5073
5074Each individual option is required to be either a valid option for the target's
5075linker, or an option that is reserved by the target specific assembly writer or
5076object file emitter. No other aspect of these options is defined by the IR.
5077
Oliver Stannard5dc29342014-06-20 10:08:11 +00005078C type width Module Flags Metadata
5079----------------------------------
5080
5081The ARM backend emits a section into each generated object file describing the
5082options that it was compiled with (in a compiler-independent way) to prevent
5083linking incompatible objects, and to allow automatic library selection. Some
5084of these options are not visible at the IR level, namely wchar_t width and enum
5085width.
5086
5087To pass this information to the backend, these options are encoded in module
5088flags metadata, using the following key-value pairs:
5089
5090.. list-table::
5091 :header-rows: 1
5092 :widths: 30 70
5093
5094 * - Key
5095 - Value
5096
5097 * - short_wchar
5098 - * 0 --- sizeof(wchar_t) == 4
5099 * 1 --- sizeof(wchar_t) == 2
5100
5101 * - short_enum
5102 - * 0 --- Enums are at least as large as an ``int``.
5103 * 1 --- Enums are stored in the smallest integer type which can
5104 represent all of its values.
5105
5106For example, the following metadata section specifies that the module was
5107compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5108enum is the smallest type which can represent all of its values::
5109
5110 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005111 !0 = !{i32 1, !"short_wchar", i32 1}
5112 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005113
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005114.. _intrinsicglobalvariables:
5115
Sean Silvab084af42012-12-07 10:36:55 +00005116Intrinsic Global Variables
5117==========================
5118
5119LLVM has a number of "magic" global variables that contain data that
5120affect code generation or other IR semantics. These are documented here.
5121All globals of this sort should have a section specified as
5122"``llvm.metadata``". This section and all globals that start with
5123"``llvm.``" are reserved for use by LLVM.
5124
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005125.. _gv_llvmused:
5126
Sean Silvab084af42012-12-07 10:36:55 +00005127The '``llvm.used``' Global Variable
5128-----------------------------------
5129
Rafael Espindola74f2e462013-04-22 14:58:02 +00005130The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005131:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005132pointers to named global variables, functions and aliases which may optionally
5133have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005134use of it is:
5135
5136.. code-block:: llvm
5137
5138 @X = global i8 4
5139 @Y = global i32 123
5140
5141 @llvm.used = appending global [2 x i8*] [
5142 i8* @X,
5143 i8* bitcast (i32* @Y to i8*)
5144 ], section "llvm.metadata"
5145
Rafael Espindola74f2e462013-04-22 14:58:02 +00005146If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5147and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005148symbol that it cannot see (which is why they have to be named). For example, if
5149a variable has internal linkage and no references other than that from the
5150``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5151references from inline asms and other things the compiler cannot "see", and
5152corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005153
5154On some targets, the code generator must emit a directive to the
5155assembler or object file to prevent the assembler and linker from
5156molesting the symbol.
5157
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005158.. _gv_llvmcompilerused:
5159
Sean Silvab084af42012-12-07 10:36:55 +00005160The '``llvm.compiler.used``' Global Variable
5161--------------------------------------------
5162
5163The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5164directive, except that it only prevents the compiler from touching the
5165symbol. On targets that support it, this allows an intelligent linker to
5166optimize references to the symbol without being impeded as it would be
5167by ``@llvm.used``.
5168
5169This is a rare construct that should only be used in rare circumstances,
5170and should not be exposed to source languages.
5171
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005172.. _gv_llvmglobalctors:
5173
Sean Silvab084af42012-12-07 10:36:55 +00005174The '``llvm.global_ctors``' Global Variable
5175-------------------------------------------
5176
5177.. code-block:: llvm
5178
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005179 %0 = type { i32, void ()*, i8* }
5180 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005181
5182The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005183functions, priorities, and an optional associated global or function.
5184The functions referenced by this array will be called in ascending order
5185of priority (i.e. lowest first) when the module is loaded. The order of
5186functions with the same priority is not defined.
5187
5188If the third field is present, non-null, and points to a global variable
5189or function, the initializer function will only run if the associated
5190data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005191
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005192.. _llvmglobaldtors:
5193
Sean Silvab084af42012-12-07 10:36:55 +00005194The '``llvm.global_dtors``' Global Variable
5195-------------------------------------------
5196
5197.. code-block:: llvm
5198
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005199 %0 = type { i32, void ()*, i8* }
5200 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005201
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005202The ``@llvm.global_dtors`` array contains a list of destructor
5203functions, priorities, and an optional associated global or function.
5204The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005205order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005206order of functions with the same priority is not defined.
5207
5208If the third field is present, non-null, and points to a global variable
5209or function, the destructor function will only run if the associated
5210data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005211
5212Instruction Reference
5213=====================
5214
5215The LLVM instruction set consists of several different classifications
5216of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5217instructions <binaryops>`, :ref:`bitwise binary
5218instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5219:ref:`other instructions <otherops>`.
5220
5221.. _terminators:
5222
5223Terminator Instructions
5224-----------------------
5225
5226As mentioned :ref:`previously <functionstructure>`, every basic block in a
5227program ends with a "Terminator" instruction, which indicates which
5228block should be executed after the current block is finished. These
5229terminator instructions typically yield a '``void``' value: they produce
5230control flow, not values (the one exception being the
5231':ref:`invoke <i_invoke>`' instruction).
5232
5233The terminator instructions are: ':ref:`ret <i_ret>`',
5234':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5235':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005236':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005237':ref:`catchret <i_catchret>`',
5238':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005239and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005240
5241.. _i_ret:
5242
5243'``ret``' Instruction
5244^^^^^^^^^^^^^^^^^^^^^
5245
5246Syntax:
5247"""""""
5248
5249::
5250
5251 ret <type> <value> ; Return a value from a non-void function
5252 ret void ; Return from void function
5253
5254Overview:
5255"""""""""
5256
5257The '``ret``' instruction is used to return control flow (and optionally
5258a value) from a function back to the caller.
5259
5260There are two forms of the '``ret``' instruction: one that returns a
5261value and then causes control flow, and one that just causes control
5262flow to occur.
5263
5264Arguments:
5265""""""""""
5266
5267The '``ret``' instruction optionally accepts a single argument, the
5268return value. The type of the return value must be a ':ref:`first
5269class <t_firstclass>`' type.
5270
5271A function is not :ref:`well formed <wellformed>` if it it has a non-void
5272return type and contains a '``ret``' instruction with no return value or
5273a return value with a type that does not match its type, or if it has a
5274void return type and contains a '``ret``' instruction with a return
5275value.
5276
5277Semantics:
5278""""""""""
5279
5280When the '``ret``' instruction is executed, control flow returns back to
5281the calling function's context. If the caller is a
5282":ref:`call <i_call>`" instruction, execution continues at the
5283instruction after the call. If the caller was an
5284":ref:`invoke <i_invoke>`" instruction, execution continues at the
5285beginning of the "normal" destination block. If the instruction returns
5286a value, that value shall set the call or invoke instruction's return
5287value.
5288
5289Example:
5290""""""""
5291
5292.. code-block:: llvm
5293
5294 ret i32 5 ; Return an integer value of 5
5295 ret void ; Return from a void function
5296 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5297
5298.. _i_br:
5299
5300'``br``' Instruction
5301^^^^^^^^^^^^^^^^^^^^
5302
5303Syntax:
5304"""""""
5305
5306::
5307
5308 br i1 <cond>, label <iftrue>, label <iffalse>
5309 br label <dest> ; Unconditional branch
5310
5311Overview:
5312"""""""""
5313
5314The '``br``' instruction is used to cause control flow to transfer to a
5315different basic block in the current function. There are two forms of
5316this instruction, corresponding to a conditional branch and an
5317unconditional branch.
5318
5319Arguments:
5320""""""""""
5321
5322The conditional branch form of the '``br``' instruction takes a single
5323'``i1``' value and two '``label``' values. The unconditional form of the
5324'``br``' instruction takes a single '``label``' value as a target.
5325
5326Semantics:
5327""""""""""
5328
5329Upon execution of a conditional '``br``' instruction, the '``i1``'
5330argument is evaluated. If the value is ``true``, control flows to the
5331'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5332to the '``iffalse``' ``label`` argument.
5333
5334Example:
5335""""""""
5336
5337.. code-block:: llvm
5338
5339 Test:
5340 %cond = icmp eq i32 %a, %b
5341 br i1 %cond, label %IfEqual, label %IfUnequal
5342 IfEqual:
5343 ret i32 1
5344 IfUnequal:
5345 ret i32 0
5346
5347.. _i_switch:
5348
5349'``switch``' Instruction
5350^^^^^^^^^^^^^^^^^^^^^^^^
5351
5352Syntax:
5353"""""""
5354
5355::
5356
5357 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5358
5359Overview:
5360"""""""""
5361
5362The '``switch``' instruction is used to transfer control flow to one of
5363several different places. It is a generalization of the '``br``'
5364instruction, allowing a branch to occur to one of many possible
5365destinations.
5366
5367Arguments:
5368""""""""""
5369
5370The '``switch``' instruction uses three parameters: an integer
5371comparison value '``value``', a default '``label``' destination, and an
5372array of pairs of comparison value constants and '``label``'s. The table
5373is not allowed to contain duplicate constant entries.
5374
5375Semantics:
5376""""""""""
5377
5378The ``switch`` instruction specifies a table of values and destinations.
5379When the '``switch``' instruction is executed, this table is searched
5380for the given value. If the value is found, control flow is transferred
5381to the corresponding destination; otherwise, control flow is transferred
5382to the default destination.
5383
5384Implementation:
5385"""""""""""""""
5386
5387Depending on properties of the target machine and the particular
5388``switch`` instruction, this instruction may be code generated in
5389different ways. For example, it could be generated as a series of
5390chained conditional branches or with a lookup table.
5391
5392Example:
5393""""""""
5394
5395.. code-block:: llvm
5396
5397 ; Emulate a conditional br instruction
5398 %Val = zext i1 %value to i32
5399 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5400
5401 ; Emulate an unconditional br instruction
5402 switch i32 0, label %dest [ ]
5403
5404 ; Implement a jump table:
5405 switch i32 %val, label %otherwise [ i32 0, label %onzero
5406 i32 1, label %onone
5407 i32 2, label %ontwo ]
5408
5409.. _i_indirectbr:
5410
5411'``indirectbr``' Instruction
5412^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5413
5414Syntax:
5415"""""""
5416
5417::
5418
5419 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5420
5421Overview:
5422"""""""""
5423
5424The '``indirectbr``' instruction implements an indirect branch to a
5425label within the current function, whose address is specified by
5426"``address``". Address must be derived from a
5427:ref:`blockaddress <blockaddress>` constant.
5428
5429Arguments:
5430""""""""""
5431
5432The '``address``' argument is the address of the label to jump to. The
5433rest of the arguments indicate the full set of possible destinations
5434that the address may point to. Blocks are allowed to occur multiple
5435times in the destination list, though this isn't particularly useful.
5436
5437This destination list is required so that dataflow analysis has an
5438accurate understanding of the CFG.
5439
5440Semantics:
5441""""""""""
5442
5443Control transfers to the block specified in the address argument. All
5444possible destination blocks must be listed in the label list, otherwise
5445this instruction has undefined behavior. This implies that jumps to
5446labels defined in other functions have undefined behavior as well.
5447
5448Implementation:
5449"""""""""""""""
5450
5451This is typically implemented with a jump through a register.
5452
5453Example:
5454""""""""
5455
5456.. code-block:: llvm
5457
5458 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5459
5460.. _i_invoke:
5461
5462'``invoke``' Instruction
5463^^^^^^^^^^^^^^^^^^^^^^^^
5464
5465Syntax:
5466"""""""
5467
5468::
5469
5470 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005471 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005472
5473Overview:
5474"""""""""
5475
5476The '``invoke``' instruction causes control to transfer to a specified
5477function, with the possibility of control flow transfer to either the
5478'``normal``' label or the '``exception``' label. If the callee function
5479returns with the "``ret``" instruction, control flow will return to the
5480"normal" label. If the callee (or any indirect callees) returns via the
5481":ref:`resume <i_resume>`" instruction or other exception handling
5482mechanism, control is interrupted and continued at the dynamically
5483nearest "exception" label.
5484
5485The '``exception``' label is a `landing
5486pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5487'``exception``' label is required to have the
5488":ref:`landingpad <i_landingpad>`" instruction, which contains the
5489information about the behavior of the program after unwinding happens,
5490as its first non-PHI instruction. The restrictions on the
5491"``landingpad``" instruction's tightly couples it to the "``invoke``"
5492instruction, so that the important information contained within the
5493"``landingpad``" instruction can't be lost through normal code motion.
5494
5495Arguments:
5496""""""""""
5497
5498This instruction requires several arguments:
5499
5500#. The optional "cconv" marker indicates which :ref:`calling
5501 convention <callingconv>` the call should use. If none is
5502 specified, the call defaults to using C calling conventions.
5503#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5504 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5505 are valid here.
5506#. '``ptr to function ty``': shall be the signature of the pointer to
5507 function value being invoked. In most cases, this is a direct
5508 function invocation, but indirect ``invoke``'s are just as possible,
5509 branching off an arbitrary pointer to function value.
5510#. '``function ptr val``': An LLVM value containing a pointer to a
5511 function to be invoked.
5512#. '``function args``': argument list whose types match the function
5513 signature argument types and parameter attributes. All arguments must
5514 be of :ref:`first class <t_firstclass>` type. If the function signature
5515 indicates the function accepts a variable number of arguments, the
5516 extra arguments can be specified.
5517#. '``normal label``': the label reached when the called function
5518 executes a '``ret``' instruction.
5519#. '``exception label``': the label reached when a callee returns via
5520 the :ref:`resume <i_resume>` instruction or other exception handling
5521 mechanism.
5522#. The optional :ref:`function attributes <fnattrs>` list. Only
5523 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5524 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005525#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005526
5527Semantics:
5528""""""""""
5529
5530This instruction is designed to operate as a standard '``call``'
5531instruction in most regards. The primary difference is that it
5532establishes an association with a label, which is used by the runtime
5533library to unwind the stack.
5534
5535This instruction is used in languages with destructors to ensure that
5536proper cleanup is performed in the case of either a ``longjmp`` or a
5537thrown exception. Additionally, this is important for implementation of
5538'``catch``' clauses in high-level languages that support them.
5539
5540For the purposes of the SSA form, the definition of the value returned
5541by the '``invoke``' instruction is deemed to occur on the edge from the
5542current block to the "normal" label. If the callee unwinds then no
5543return value is available.
5544
5545Example:
5546""""""""
5547
5548.. code-block:: llvm
5549
5550 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005551 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005552 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005553 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005554
5555.. _i_resume:
5556
5557'``resume``' Instruction
5558^^^^^^^^^^^^^^^^^^^^^^^^
5559
5560Syntax:
5561"""""""
5562
5563::
5564
5565 resume <type> <value>
5566
5567Overview:
5568"""""""""
5569
5570The '``resume``' instruction is a terminator instruction that has no
5571successors.
5572
5573Arguments:
5574""""""""""
5575
5576The '``resume``' instruction requires one argument, which must have the
5577same type as the result of any '``landingpad``' instruction in the same
5578function.
5579
5580Semantics:
5581""""""""""
5582
5583The '``resume``' instruction resumes propagation of an existing
5584(in-flight) exception whose unwinding was interrupted with a
5585:ref:`landingpad <i_landingpad>` instruction.
5586
5587Example:
5588""""""""
5589
5590.. code-block:: llvm
5591
5592 resume { i8*, i32 } %exn
5593
David Majnemer8a1c45d2015-12-12 05:38:55 +00005594.. _i_catchswitch:
5595
5596'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005598
5599Syntax:
5600"""""""
5601
5602::
5603
5604 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5605 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5606
5607Overview:
5608"""""""""
5609
5610The '``catchswitch``' instruction is used by `LLVM's exception handling system
5611<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5612that may be executed by the :ref:`EH personality routine <personalityfn>`.
5613
5614Arguments:
5615""""""""""
5616
5617The ``parent`` argument is the token of the funclet that contains the
5618``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5619this operand may be the token ``none``.
5620
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005621The ``default`` argument is the label of another basic block beginning with
5622either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5623must be a legal target with respect to the ``parent`` links, as described in
5624the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005625
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005626The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005627:ref:`catchpad <i_catchpad>` instruction.
5628
5629Semantics:
5630""""""""""
5631
5632Executing this instruction transfers control to one of the successors in
5633``handlers``, if appropriate, or continues to unwind via the unwind label if
5634present.
5635
5636The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5637it must be both the first non-phi instruction and last instruction in the basic
5638block. Therefore, it must be the only non-phi instruction in the block.
5639
5640Example:
5641""""""""
5642
5643.. code-block:: llvm
5644
5645 dispatch1:
5646 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5647 dispatch2:
5648 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5649
David Majnemer654e1302015-07-31 17:58:14 +00005650.. _i_catchret:
5651
5652'``catchret``' Instruction
5653^^^^^^^^^^^^^^^^^^^^^^^^^^
5654
5655Syntax:
5656"""""""
5657
5658::
5659
David Majnemer8a1c45d2015-12-12 05:38:55 +00005660 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005661
5662Overview:
5663"""""""""
5664
5665The '``catchret``' instruction is a terminator instruction that has a
5666single successor.
5667
5668
5669Arguments:
5670""""""""""
5671
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005672The first argument to a '``catchret``' indicates which ``catchpad`` it
5673exits. It must be a :ref:`catchpad <i_catchpad>`.
5674The second argument to a '``catchret``' specifies where control will
5675transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005676
5677Semantics:
5678""""""""""
5679
David Majnemer8a1c45d2015-12-12 05:38:55 +00005680The '``catchret``' instruction ends an existing (in-flight) exception whose
5681unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5682:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5683code to, for example, destroy the active exception. Control then transfers to
5684``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005685
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005686The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5687If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5688funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5689the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005690
5691Example:
5692""""""""
5693
5694.. code-block:: llvm
5695
David Majnemer8a1c45d2015-12-12 05:38:55 +00005696 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005697
David Majnemer654e1302015-07-31 17:58:14 +00005698.. _i_cleanupret:
5699
5700'``cleanupret``' Instruction
5701^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5702
5703Syntax:
5704"""""""
5705
5706::
5707
David Majnemer8a1c45d2015-12-12 05:38:55 +00005708 cleanupret from <value> unwind label <continue>
5709 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005710
5711Overview:
5712"""""""""
5713
5714The '``cleanupret``' instruction is a terminator instruction that has
5715an optional successor.
5716
5717
5718Arguments:
5719""""""""""
5720
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005721The '``cleanupret``' instruction requires one argument, which indicates
5722which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005723If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5724funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5725the ``cleanupret``'s behavior is undefined.
5726
5727The '``cleanupret``' instruction also has an optional successor, ``continue``,
5728which must be the label of another basic block beginning with either a
5729``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5730be a legal target with respect to the ``parent`` links, as described in the
5731`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005732
5733Semantics:
5734""""""""""
5735
5736The '``cleanupret``' instruction indicates to the
5737:ref:`personality function <personalityfn>` that one
5738:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5739It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005740
David Majnemer654e1302015-07-31 17:58:14 +00005741Example:
5742""""""""
5743
5744.. code-block:: llvm
5745
David Majnemer8a1c45d2015-12-12 05:38:55 +00005746 cleanupret from %cleanup unwind to caller
5747 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005748
Sean Silvab084af42012-12-07 10:36:55 +00005749.. _i_unreachable:
5750
5751'``unreachable``' Instruction
5752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5753
5754Syntax:
5755"""""""
5756
5757::
5758
5759 unreachable
5760
5761Overview:
5762"""""""""
5763
5764The '``unreachable``' instruction has no defined semantics. This
5765instruction is used to inform the optimizer that a particular portion of
5766the code is not reachable. This can be used to indicate that the code
5767after a no-return function cannot be reached, and other facts.
5768
5769Semantics:
5770""""""""""
5771
5772The '``unreachable``' instruction has no defined semantics.
5773
5774.. _binaryops:
5775
5776Binary Operations
5777-----------------
5778
5779Binary operators are used to do most of the computation in a program.
5780They require two operands of the same type, execute an operation on
5781them, and produce a single value. The operands might represent multiple
5782data, as is the case with the :ref:`vector <t_vector>` data type. The
5783result value has the same type as its operands.
5784
5785There are several different binary operators:
5786
5787.. _i_add:
5788
5789'``add``' Instruction
5790^^^^^^^^^^^^^^^^^^^^^
5791
5792Syntax:
5793"""""""
5794
5795::
5796
Tim Northover675a0962014-06-13 14:24:23 +00005797 <result> = add <ty> <op1>, <op2> ; yields ty:result
5798 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5799 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5800 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005801
5802Overview:
5803"""""""""
5804
5805The '``add``' instruction returns the sum of its two operands.
5806
5807Arguments:
5808""""""""""
5809
5810The two arguments to the '``add``' instruction must be
5811:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5812arguments must have identical types.
5813
5814Semantics:
5815""""""""""
5816
5817The value produced is the integer sum of the two operands.
5818
5819If the sum has unsigned overflow, the result returned is the
5820mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5821the result.
5822
5823Because LLVM integers use a two's complement representation, this
5824instruction is appropriate for both signed and unsigned integers.
5825
5826``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5827respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5828result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5829unsigned and/or signed overflow, respectively, occurs.
5830
5831Example:
5832""""""""
5833
5834.. code-block:: llvm
5835
Tim Northover675a0962014-06-13 14:24:23 +00005836 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005837
5838.. _i_fadd:
5839
5840'``fadd``' Instruction
5841^^^^^^^^^^^^^^^^^^^^^^
5842
5843Syntax:
5844"""""""
5845
5846::
5847
Tim Northover675a0962014-06-13 14:24:23 +00005848 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005849
5850Overview:
5851"""""""""
5852
5853The '``fadd``' instruction returns the sum of its two operands.
5854
5855Arguments:
5856""""""""""
5857
5858The two arguments to the '``fadd``' instruction must be :ref:`floating
5859point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5860Both arguments must have identical types.
5861
5862Semantics:
5863""""""""""
5864
5865The value produced is the floating point sum of the two operands. This
5866instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5867which are optimization hints to enable otherwise unsafe floating point
5868optimizations:
5869
5870Example:
5871""""""""
5872
5873.. code-block:: llvm
5874
Tim Northover675a0962014-06-13 14:24:23 +00005875 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005876
5877'``sub``' Instruction
5878^^^^^^^^^^^^^^^^^^^^^
5879
5880Syntax:
5881"""""""
5882
5883::
5884
Tim Northover675a0962014-06-13 14:24:23 +00005885 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5886 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5887 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5888 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005889
5890Overview:
5891"""""""""
5892
5893The '``sub``' instruction returns the difference of its two operands.
5894
5895Note that the '``sub``' instruction is used to represent the '``neg``'
5896instruction present in most other intermediate representations.
5897
5898Arguments:
5899""""""""""
5900
5901The two arguments to the '``sub``' instruction must be
5902:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5903arguments must have identical types.
5904
5905Semantics:
5906""""""""""
5907
5908The value produced is the integer difference of the two operands.
5909
5910If the difference has unsigned overflow, the result returned is the
5911mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5912the result.
5913
5914Because LLVM integers use a two's complement representation, this
5915instruction is appropriate for both signed and unsigned integers.
5916
5917``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5918respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5919result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5920unsigned and/or signed overflow, respectively, occurs.
5921
5922Example:
5923""""""""
5924
5925.. code-block:: llvm
5926
Tim Northover675a0962014-06-13 14:24:23 +00005927 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5928 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005929
5930.. _i_fsub:
5931
5932'``fsub``' Instruction
5933^^^^^^^^^^^^^^^^^^^^^^
5934
5935Syntax:
5936"""""""
5937
5938::
5939
Tim Northover675a0962014-06-13 14:24:23 +00005940 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005941
5942Overview:
5943"""""""""
5944
5945The '``fsub``' instruction returns the difference of its two operands.
5946
5947Note that the '``fsub``' instruction is used to represent the '``fneg``'
5948instruction present in most other intermediate representations.
5949
5950Arguments:
5951""""""""""
5952
5953The two arguments to the '``fsub``' instruction must be :ref:`floating
5954point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5955Both arguments must have identical types.
5956
5957Semantics:
5958""""""""""
5959
5960The value produced is the floating point difference of the two operands.
5961This instruction can also take any number of :ref:`fast-math
5962flags <fastmath>`, which are optimization hints to enable otherwise
5963unsafe floating point optimizations:
5964
5965Example:
5966""""""""
5967
5968.. code-block:: llvm
5969
Tim Northover675a0962014-06-13 14:24:23 +00005970 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5971 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005972
5973'``mul``' Instruction
5974^^^^^^^^^^^^^^^^^^^^^
5975
5976Syntax:
5977"""""""
5978
5979::
5980
Tim Northover675a0962014-06-13 14:24:23 +00005981 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5982 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5983 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5984 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005985
5986Overview:
5987"""""""""
5988
5989The '``mul``' instruction returns the product of its two operands.
5990
5991Arguments:
5992""""""""""
5993
5994The two arguments to the '``mul``' instruction must be
5995:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5996arguments must have identical types.
5997
5998Semantics:
5999""""""""""
6000
6001The value produced is the integer product of the two operands.
6002
6003If the result of the multiplication has unsigned overflow, the result
6004returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6005bit width of the result.
6006
6007Because LLVM integers use a two's complement representation, and the
6008result is the same width as the operands, this instruction returns the
6009correct result for both signed and unsigned integers. If a full product
6010(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6011sign-extended or zero-extended as appropriate to the width of the full
6012product.
6013
6014``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6015respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6016result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6017unsigned and/or signed overflow, respectively, occurs.
6018
6019Example:
6020""""""""
6021
6022.. code-block:: llvm
6023
Tim Northover675a0962014-06-13 14:24:23 +00006024 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006025
6026.. _i_fmul:
6027
6028'``fmul``' Instruction
6029^^^^^^^^^^^^^^^^^^^^^^
6030
6031Syntax:
6032"""""""
6033
6034::
6035
Tim Northover675a0962014-06-13 14:24:23 +00006036 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006037
6038Overview:
6039"""""""""
6040
6041The '``fmul``' instruction returns the product of its two operands.
6042
6043Arguments:
6044""""""""""
6045
6046The two arguments to the '``fmul``' instruction must be :ref:`floating
6047point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6048Both arguments must have identical types.
6049
6050Semantics:
6051""""""""""
6052
6053The value produced is the floating point product of the two operands.
6054This instruction can also take any number of :ref:`fast-math
6055flags <fastmath>`, which are optimization hints to enable otherwise
6056unsafe floating point optimizations:
6057
6058Example:
6059""""""""
6060
6061.. code-block:: llvm
6062
Tim Northover675a0962014-06-13 14:24:23 +00006063 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006064
6065'``udiv``' Instruction
6066^^^^^^^^^^^^^^^^^^^^^^
6067
6068Syntax:
6069"""""""
6070
6071::
6072
Tim Northover675a0962014-06-13 14:24:23 +00006073 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6074 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006075
6076Overview:
6077"""""""""
6078
6079The '``udiv``' instruction returns the quotient of its two operands.
6080
6081Arguments:
6082""""""""""
6083
6084The two arguments to the '``udiv``' instruction must be
6085:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6086arguments must have identical types.
6087
6088Semantics:
6089""""""""""
6090
6091The value produced is the unsigned integer quotient of the two operands.
6092
6093Note that unsigned integer division and signed integer division are
6094distinct operations; for signed integer division, use '``sdiv``'.
6095
6096Division by zero leads to undefined behavior.
6097
6098If the ``exact`` keyword is present, the result value of the ``udiv`` is
6099a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6100such, "((a udiv exact b) mul b) == a").
6101
6102Example:
6103""""""""
6104
6105.. code-block:: llvm
6106
Tim Northover675a0962014-06-13 14:24:23 +00006107 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006108
6109'``sdiv``' Instruction
6110^^^^^^^^^^^^^^^^^^^^^^
6111
6112Syntax:
6113"""""""
6114
6115::
6116
Tim Northover675a0962014-06-13 14:24:23 +00006117 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6118 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006119
6120Overview:
6121"""""""""
6122
6123The '``sdiv``' instruction returns the quotient of its two operands.
6124
6125Arguments:
6126""""""""""
6127
6128The two arguments to the '``sdiv``' instruction must be
6129:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6130arguments must have identical types.
6131
6132Semantics:
6133""""""""""
6134
6135The value produced is the signed integer quotient of the two operands
6136rounded towards zero.
6137
6138Note that signed integer division and unsigned integer division are
6139distinct operations; for unsigned integer division, use '``udiv``'.
6140
6141Division by zero leads to undefined behavior. Overflow also leads to
6142undefined behavior; this is a rare case, but can occur, for example, by
6143doing a 32-bit division of -2147483648 by -1.
6144
6145If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6146a :ref:`poison value <poisonvalues>` if the result would be rounded.
6147
6148Example:
6149""""""""
6150
6151.. code-block:: llvm
6152
Tim Northover675a0962014-06-13 14:24:23 +00006153 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006154
6155.. _i_fdiv:
6156
6157'``fdiv``' Instruction
6158^^^^^^^^^^^^^^^^^^^^^^
6159
6160Syntax:
6161"""""""
6162
6163::
6164
Tim Northover675a0962014-06-13 14:24:23 +00006165 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006166
6167Overview:
6168"""""""""
6169
6170The '``fdiv``' instruction returns the quotient of its two operands.
6171
6172Arguments:
6173""""""""""
6174
6175The two arguments to the '``fdiv``' instruction must be :ref:`floating
6176point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6177Both arguments must have identical types.
6178
6179Semantics:
6180""""""""""
6181
6182The value produced is the floating point quotient of the two operands.
6183This instruction can also take any number of :ref:`fast-math
6184flags <fastmath>`, which are optimization hints to enable otherwise
6185unsafe floating point optimizations:
6186
6187Example:
6188""""""""
6189
6190.. code-block:: llvm
6191
Tim Northover675a0962014-06-13 14:24:23 +00006192 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006193
6194'``urem``' Instruction
6195^^^^^^^^^^^^^^^^^^^^^^
6196
6197Syntax:
6198"""""""
6199
6200::
6201
Tim Northover675a0962014-06-13 14:24:23 +00006202 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006203
6204Overview:
6205"""""""""
6206
6207The '``urem``' instruction returns the remainder from the unsigned
6208division of its two arguments.
6209
6210Arguments:
6211""""""""""
6212
6213The two arguments to the '``urem``' instruction must be
6214:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6215arguments must have identical types.
6216
6217Semantics:
6218""""""""""
6219
6220This instruction returns the unsigned integer *remainder* of a division.
6221This instruction always performs an unsigned division to get the
6222remainder.
6223
6224Note that unsigned integer remainder and signed integer remainder are
6225distinct operations; for signed integer remainder, use '``srem``'.
6226
6227Taking the remainder of a division by zero leads to undefined behavior.
6228
6229Example:
6230""""""""
6231
6232.. code-block:: llvm
6233
Tim Northover675a0962014-06-13 14:24:23 +00006234 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006235
6236'``srem``' Instruction
6237^^^^^^^^^^^^^^^^^^^^^^
6238
6239Syntax:
6240"""""""
6241
6242::
6243
Tim Northover675a0962014-06-13 14:24:23 +00006244 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006245
6246Overview:
6247"""""""""
6248
6249The '``srem``' instruction returns the remainder from the signed
6250division of its two operands. This instruction can also take
6251:ref:`vector <t_vector>` versions of the values in which case the elements
6252must be integers.
6253
6254Arguments:
6255""""""""""
6256
6257The two arguments to the '``srem``' instruction must be
6258:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6259arguments must have identical types.
6260
6261Semantics:
6262""""""""""
6263
6264This instruction returns the *remainder* of a division (where the result
6265is either zero or has the same sign as the dividend, ``op1``), not the
6266*modulo* operator (where the result is either zero or has the same sign
6267as the divisor, ``op2``) of a value. For more information about the
6268difference, see `The Math
6269Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6270table of how this is implemented in various languages, please see
6271`Wikipedia: modulo
6272operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6273
6274Note that signed integer remainder and unsigned integer remainder are
6275distinct operations; for unsigned integer remainder, use '``urem``'.
6276
6277Taking the remainder of a division by zero leads to undefined behavior.
6278Overflow also leads to undefined behavior; this is a rare case, but can
6279occur, for example, by taking the remainder of a 32-bit division of
6280-2147483648 by -1. (The remainder doesn't actually overflow, but this
6281rule lets srem be implemented using instructions that return both the
6282result of the division and the remainder.)
6283
6284Example:
6285""""""""
6286
6287.. code-block:: llvm
6288
Tim Northover675a0962014-06-13 14:24:23 +00006289 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006290
6291.. _i_frem:
6292
6293'``frem``' Instruction
6294^^^^^^^^^^^^^^^^^^^^^^
6295
6296Syntax:
6297"""""""
6298
6299::
6300
Tim Northover675a0962014-06-13 14:24:23 +00006301 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006302
6303Overview:
6304"""""""""
6305
6306The '``frem``' instruction returns the remainder from the division of
6307its two operands.
6308
6309Arguments:
6310""""""""""
6311
6312The two arguments to the '``frem``' instruction must be :ref:`floating
6313point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6314Both arguments must have identical types.
6315
6316Semantics:
6317""""""""""
6318
6319This instruction returns the *remainder* of a division. The remainder
6320has the same sign as the dividend. This instruction can also take any
6321number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6322to enable otherwise unsafe floating point optimizations:
6323
6324Example:
6325""""""""
6326
6327.. code-block:: llvm
6328
Tim Northover675a0962014-06-13 14:24:23 +00006329 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006330
6331.. _bitwiseops:
6332
6333Bitwise Binary Operations
6334-------------------------
6335
6336Bitwise binary operators are used to do various forms of bit-twiddling
6337in a program. They are generally very efficient instructions and can
6338commonly be strength reduced from other instructions. They require two
6339operands of the same type, execute an operation on them, and produce a
6340single value. The resulting value is the same type as its operands.
6341
6342'``shl``' Instruction
6343^^^^^^^^^^^^^^^^^^^^^
6344
6345Syntax:
6346"""""""
6347
6348::
6349
Tim Northover675a0962014-06-13 14:24:23 +00006350 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6351 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6352 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6353 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006354
6355Overview:
6356"""""""""
6357
6358The '``shl``' instruction returns the first operand shifted to the left
6359a specified number of bits.
6360
6361Arguments:
6362""""""""""
6363
6364Both arguments to the '``shl``' instruction must be the same
6365:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6366'``op2``' is treated as an unsigned value.
6367
6368Semantics:
6369""""""""""
6370
6371The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6372where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006373dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006374``op1``, the result is undefined. If the arguments are vectors, each
6375vector element of ``op1`` is shifted by the corresponding shift amount
6376in ``op2``.
6377
6378If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6379value <poisonvalues>` if it shifts out any non-zero bits. If the
6380``nsw`` keyword is present, then the shift produces a :ref:`poison
6381value <poisonvalues>` if it shifts out any bits that disagree with the
6382resultant sign bit. As such, NUW/NSW have the same semantics as they
6383would if the shift were expressed as a mul instruction with the same
6384nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6385
6386Example:
6387""""""""
6388
6389.. code-block:: llvm
6390
Tim Northover675a0962014-06-13 14:24:23 +00006391 <result> = shl i32 4, %var ; yields i32: 4 << %var
6392 <result> = shl i32 4, 2 ; yields i32: 16
6393 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006394 <result> = shl i32 1, 32 ; undefined
6395 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6396
6397'``lshr``' Instruction
6398^^^^^^^^^^^^^^^^^^^^^^
6399
6400Syntax:
6401"""""""
6402
6403::
6404
Tim Northover675a0962014-06-13 14:24:23 +00006405 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6406 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006407
6408Overview:
6409"""""""""
6410
6411The '``lshr``' instruction (logical shift right) returns the first
6412operand shifted to the right a specified number of bits with zero fill.
6413
6414Arguments:
6415""""""""""
6416
6417Both arguments to the '``lshr``' instruction must be the same
6418:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6419'``op2``' is treated as an unsigned value.
6420
6421Semantics:
6422""""""""""
6423
6424This instruction always performs a logical shift right operation. The
6425most significant bits of the result will be filled with zero bits after
6426the shift. If ``op2`` is (statically or dynamically) equal to or larger
6427than the number of bits in ``op1``, the result is undefined. If the
6428arguments are vectors, each vector element of ``op1`` is shifted by the
6429corresponding shift amount in ``op2``.
6430
6431If the ``exact`` keyword is present, the result value of the ``lshr`` is
6432a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6433non-zero.
6434
6435Example:
6436""""""""
6437
6438.. code-block:: llvm
6439
Tim Northover675a0962014-06-13 14:24:23 +00006440 <result> = lshr i32 4, 1 ; yields i32:result = 2
6441 <result> = lshr i32 4, 2 ; yields i32:result = 1
6442 <result> = lshr i8 4, 3 ; yields i8:result = 0
6443 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006444 <result> = lshr i32 1, 32 ; undefined
6445 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6446
6447'``ashr``' Instruction
6448^^^^^^^^^^^^^^^^^^^^^^
6449
6450Syntax:
6451"""""""
6452
6453::
6454
Tim Northover675a0962014-06-13 14:24:23 +00006455 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6456 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006457
6458Overview:
6459"""""""""
6460
6461The '``ashr``' instruction (arithmetic shift right) returns the first
6462operand shifted to the right a specified number of bits with sign
6463extension.
6464
6465Arguments:
6466""""""""""
6467
6468Both arguments to the '``ashr``' instruction must be the same
6469:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6470'``op2``' is treated as an unsigned value.
6471
6472Semantics:
6473""""""""""
6474
6475This instruction always performs an arithmetic shift right operation,
6476The most significant bits of the result will be filled with the sign bit
6477of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6478than the number of bits in ``op1``, the result is undefined. If the
6479arguments are vectors, each vector element of ``op1`` is shifted by the
6480corresponding shift amount in ``op2``.
6481
6482If the ``exact`` keyword is present, the result value of the ``ashr`` is
6483a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6484non-zero.
6485
6486Example:
6487""""""""
6488
6489.. code-block:: llvm
6490
Tim Northover675a0962014-06-13 14:24:23 +00006491 <result> = ashr i32 4, 1 ; yields i32:result = 2
6492 <result> = ashr i32 4, 2 ; yields i32:result = 1
6493 <result> = ashr i8 4, 3 ; yields i8:result = 0
6494 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006495 <result> = ashr i32 1, 32 ; undefined
6496 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6497
6498'``and``' Instruction
6499^^^^^^^^^^^^^^^^^^^^^
6500
6501Syntax:
6502"""""""
6503
6504::
6505
Tim Northover675a0962014-06-13 14:24:23 +00006506 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006507
6508Overview:
6509"""""""""
6510
6511The '``and``' instruction returns the bitwise logical and of its two
6512operands.
6513
6514Arguments:
6515""""""""""
6516
6517The two arguments to the '``and``' instruction must be
6518:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6519arguments must have identical types.
6520
6521Semantics:
6522""""""""""
6523
6524The truth table used for the '``and``' instruction is:
6525
6526+-----+-----+-----+
6527| In0 | In1 | Out |
6528+-----+-----+-----+
6529| 0 | 0 | 0 |
6530+-----+-----+-----+
6531| 0 | 1 | 0 |
6532+-----+-----+-----+
6533| 1 | 0 | 0 |
6534+-----+-----+-----+
6535| 1 | 1 | 1 |
6536+-----+-----+-----+
6537
6538Example:
6539""""""""
6540
6541.. code-block:: llvm
6542
Tim Northover675a0962014-06-13 14:24:23 +00006543 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6544 <result> = and i32 15, 40 ; yields i32:result = 8
6545 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006546
6547'``or``' Instruction
6548^^^^^^^^^^^^^^^^^^^^
6549
6550Syntax:
6551"""""""
6552
6553::
6554
Tim Northover675a0962014-06-13 14:24:23 +00006555 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006556
6557Overview:
6558"""""""""
6559
6560The '``or``' instruction returns the bitwise logical inclusive or of its
6561two operands.
6562
6563Arguments:
6564""""""""""
6565
6566The two arguments to the '``or``' instruction must be
6567:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6568arguments must have identical types.
6569
6570Semantics:
6571""""""""""
6572
6573The truth table used for the '``or``' instruction is:
6574
6575+-----+-----+-----+
6576| In0 | In1 | Out |
6577+-----+-----+-----+
6578| 0 | 0 | 0 |
6579+-----+-----+-----+
6580| 0 | 1 | 1 |
6581+-----+-----+-----+
6582| 1 | 0 | 1 |
6583+-----+-----+-----+
6584| 1 | 1 | 1 |
6585+-----+-----+-----+
6586
6587Example:
6588""""""""
6589
6590::
6591
Tim Northover675a0962014-06-13 14:24:23 +00006592 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6593 <result> = or i32 15, 40 ; yields i32:result = 47
6594 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006595
6596'``xor``' Instruction
6597^^^^^^^^^^^^^^^^^^^^^
6598
6599Syntax:
6600"""""""
6601
6602::
6603
Tim Northover675a0962014-06-13 14:24:23 +00006604 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006605
6606Overview:
6607"""""""""
6608
6609The '``xor``' instruction returns the bitwise logical exclusive or of
6610its two operands. The ``xor`` is used to implement the "one's
6611complement" operation, which is the "~" operator in C.
6612
6613Arguments:
6614""""""""""
6615
6616The two arguments to the '``xor``' instruction must be
6617:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6618arguments must have identical types.
6619
6620Semantics:
6621""""""""""
6622
6623The truth table used for the '``xor``' instruction is:
6624
6625+-----+-----+-----+
6626| In0 | In1 | Out |
6627+-----+-----+-----+
6628| 0 | 0 | 0 |
6629+-----+-----+-----+
6630| 0 | 1 | 1 |
6631+-----+-----+-----+
6632| 1 | 0 | 1 |
6633+-----+-----+-----+
6634| 1 | 1 | 0 |
6635+-----+-----+-----+
6636
6637Example:
6638""""""""
6639
6640.. code-block:: llvm
6641
Tim Northover675a0962014-06-13 14:24:23 +00006642 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6643 <result> = xor i32 15, 40 ; yields i32:result = 39
6644 <result> = xor i32 4, 8 ; yields i32:result = 12
6645 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006646
6647Vector Operations
6648-----------------
6649
6650LLVM supports several instructions to represent vector operations in a
6651target-independent manner. These instructions cover the element-access
6652and vector-specific operations needed to process vectors effectively.
6653While LLVM does directly support these vector operations, many
6654sophisticated algorithms will want to use target-specific intrinsics to
6655take full advantage of a specific target.
6656
6657.. _i_extractelement:
6658
6659'``extractelement``' Instruction
6660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6661
6662Syntax:
6663"""""""
6664
6665::
6666
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006667 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006668
6669Overview:
6670"""""""""
6671
6672The '``extractelement``' instruction extracts a single scalar element
6673from a vector at a specified index.
6674
6675Arguments:
6676""""""""""
6677
6678The first operand of an '``extractelement``' instruction is a value of
6679:ref:`vector <t_vector>` type. The second operand is an index indicating
6680the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006681variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006682
6683Semantics:
6684""""""""""
6685
6686The result is a scalar of the same type as the element type of ``val``.
6687Its value is the value at position ``idx`` of ``val``. If ``idx``
6688exceeds the length of ``val``, the results are undefined.
6689
6690Example:
6691""""""""
6692
6693.. code-block:: llvm
6694
6695 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6696
6697.. _i_insertelement:
6698
6699'``insertelement``' Instruction
6700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6701
6702Syntax:
6703"""""""
6704
6705::
6706
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006707 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006708
6709Overview:
6710"""""""""
6711
6712The '``insertelement``' instruction inserts a scalar element into a
6713vector at a specified index.
6714
6715Arguments:
6716""""""""""
6717
6718The first operand of an '``insertelement``' instruction is a value of
6719:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6720type must equal the element type of the first operand. The third operand
6721is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006722index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006723
6724Semantics:
6725""""""""""
6726
6727The result is a vector of the same type as ``val``. Its element values
6728are those of ``val`` except at position ``idx``, where it gets the value
6729``elt``. If ``idx`` exceeds the length of ``val``, the results are
6730undefined.
6731
6732Example:
6733""""""""
6734
6735.. code-block:: llvm
6736
6737 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6738
6739.. _i_shufflevector:
6740
6741'``shufflevector``' Instruction
6742^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6743
6744Syntax:
6745"""""""
6746
6747::
6748
6749 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6750
6751Overview:
6752"""""""""
6753
6754The '``shufflevector``' instruction constructs a permutation of elements
6755from two input vectors, returning a vector with the same element type as
6756the input and length that is the same as the shuffle mask.
6757
6758Arguments:
6759""""""""""
6760
6761The first two operands of a '``shufflevector``' instruction are vectors
6762with the same type. The third argument is a shuffle mask whose element
6763type is always 'i32'. The result of the instruction is a vector whose
6764length is the same as the shuffle mask and whose element type is the
6765same as the element type of the first two operands.
6766
6767The shuffle mask operand is required to be a constant vector with either
6768constant integer or undef values.
6769
6770Semantics:
6771""""""""""
6772
6773The elements of the two input vectors are numbered from left to right
6774across both of the vectors. The shuffle mask operand specifies, for each
6775element of the result vector, which element of the two input vectors the
6776result element gets. The element selector may be undef (meaning "don't
6777care") and the second operand may be undef if performing a shuffle from
6778only one vector.
6779
6780Example:
6781""""""""
6782
6783.. code-block:: llvm
6784
6785 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6786 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6787 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6788 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6789 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6790 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6791 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6792 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6793
6794Aggregate Operations
6795--------------------
6796
6797LLVM supports several instructions for working with
6798:ref:`aggregate <t_aggregate>` values.
6799
6800.. _i_extractvalue:
6801
6802'``extractvalue``' Instruction
6803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6804
6805Syntax:
6806"""""""
6807
6808::
6809
6810 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6811
6812Overview:
6813"""""""""
6814
6815The '``extractvalue``' instruction extracts the value of a member field
6816from an :ref:`aggregate <t_aggregate>` value.
6817
6818Arguments:
6819""""""""""
6820
6821The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006822:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006823constant indices to specify which value to extract in a similar manner
6824as indices in a '``getelementptr``' instruction.
6825
6826The major differences to ``getelementptr`` indexing are:
6827
6828- Since the value being indexed is not a pointer, the first index is
6829 omitted and assumed to be zero.
6830- At least one index must be specified.
6831- Not only struct indices but also array indices must be in bounds.
6832
6833Semantics:
6834""""""""""
6835
6836The result is the value at the position in the aggregate specified by
6837the index operands.
6838
6839Example:
6840""""""""
6841
6842.. code-block:: llvm
6843
6844 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6845
6846.. _i_insertvalue:
6847
6848'``insertvalue``' Instruction
6849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6850
6851Syntax:
6852"""""""
6853
6854::
6855
6856 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6857
6858Overview:
6859"""""""""
6860
6861The '``insertvalue``' instruction inserts a value into a member field in
6862an :ref:`aggregate <t_aggregate>` value.
6863
6864Arguments:
6865""""""""""
6866
6867The first operand of an '``insertvalue``' instruction is a value of
6868:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6869a first-class value to insert. The following operands are constant
6870indices indicating the position at which to insert the value in a
6871similar manner as indices in a '``extractvalue``' instruction. The value
6872to insert must have the same type as the value identified by the
6873indices.
6874
6875Semantics:
6876""""""""""
6877
6878The result is an aggregate of the same type as ``val``. Its value is
6879that of ``val`` except that the value at the position specified by the
6880indices is that of ``elt``.
6881
6882Example:
6883""""""""
6884
6885.. code-block:: llvm
6886
6887 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6888 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006889 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006890
6891.. _memoryops:
6892
6893Memory Access and Addressing Operations
6894---------------------------------------
6895
6896A key design point of an SSA-based representation is how it represents
6897memory. In LLVM, no memory locations are in SSA form, which makes things
6898very simple. This section describes how to read, write, and allocate
6899memory in LLVM.
6900
6901.. _i_alloca:
6902
6903'``alloca``' Instruction
6904^^^^^^^^^^^^^^^^^^^^^^^^
6905
6906Syntax:
6907"""""""
6908
6909::
6910
Tim Northover675a0962014-06-13 14:24:23 +00006911 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006912
6913Overview:
6914"""""""""
6915
6916The '``alloca``' instruction allocates memory on the stack frame of the
6917currently executing function, to be automatically released when this
6918function returns to its caller. The object is always allocated in the
6919generic address space (address space zero).
6920
6921Arguments:
6922""""""""""
6923
6924The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6925bytes of memory on the runtime stack, returning a pointer of the
6926appropriate type to the program. If "NumElements" is specified, it is
6927the number of elements allocated, otherwise "NumElements" is defaulted
6928to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006929allocation is guaranteed to be aligned to at least that boundary. The
6930alignment may not be greater than ``1 << 29``. If not specified, or if
6931zero, the target can choose to align the allocation on any convenient
6932boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006933
6934'``type``' may be any sized type.
6935
6936Semantics:
6937""""""""""
6938
6939Memory is allocated; a pointer is returned. The operation is undefined
6940if there is insufficient stack space for the allocation. '``alloca``'d
6941memory is automatically released when the function returns. The
6942'``alloca``' instruction is commonly used to represent automatic
6943variables that must have an address available. When the function returns
6944(either with the ``ret`` or ``resume`` instructions), the memory is
6945reclaimed. Allocating zero bytes is legal, but the result is undefined.
6946The order in which memory is allocated (ie., which way the stack grows)
6947is not specified.
6948
6949Example:
6950""""""""
6951
6952.. code-block:: llvm
6953
Tim Northover675a0962014-06-13 14:24:23 +00006954 %ptr = alloca i32 ; yields i32*:ptr
6955 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6956 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6957 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006958
6959.. _i_load:
6960
6961'``load``' Instruction
6962^^^^^^^^^^^^^^^^^^^^^^
6963
6964Syntax:
6965"""""""
6966
6967::
6968
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006969 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00006970 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006971 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006972 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006973 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006974
6975Overview:
6976"""""""""
6977
6978The '``load``' instruction is used to read from memory.
6979
6980Arguments:
6981""""""""""
6982
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00006983The argument to the ``load`` instruction specifies the memory address from which
6984to load. The type specified must be a :ref:`first class <t_firstclass>` type of
6985known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
6986the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
6987modify the number or order of execution of this ``load`` with other
6988:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00006989
JF Bastiend1fb5852015-12-17 22:09:19 +00006990If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6991<ordering>` and optional ``singlethread`` argument. The ``release`` and
6992``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
6993produce :ref:`defined <memmodel>` results when they may see multiple atomic
6994stores. The type of the pointee must be an integer, pointer, or floating-point
6995type whose bit width is a power of two greater than or equal to eight and less
6996than or equal to a target-specific size limit. ``align`` must be explicitly
6997specified on atomic loads, and the load has undefined behavior if the alignment
6998is not set to a value which is at least the size in bytes of the
6999pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007000
7001The optional constant ``align`` argument specifies the alignment of the
7002operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007003or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007004alignment for the target. It is the responsibility of the code emitter
7005to ensure that the alignment information is correct. Overestimating the
7006alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007007may produce less efficient code. An alignment of 1 is always safe. The
7008maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007009
7010The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007011metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007012``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007013metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007014that this load is not expected to be reused in the cache. The code
7015generator may select special instructions to save cache bandwidth, such
7016as the ``MOVNT`` instruction on x86.
7017
7018The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007019metadata name ``<index>`` corresponding to a metadata node with no
7020entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00007021instruction tells the optimizer and code generator that the address
7022operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007023Being invariant does not imply that a location is dereferenceable,
7024but it does imply that once the location is known dereferenceable
7025its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00007026
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007027The optional ``!invariant.group`` metadata must reference a single metadata name
7028 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7029
Philip Reamescdb72f32014-10-20 22:40:55 +00007030The optional ``!nonnull`` metadata must reference a single
7031metadata name ``<index>`` corresponding to a metadata node with no
7032entries. The existence of the ``!nonnull`` metadata on the
7033instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007034never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007035on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007036to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007037
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007038The optional ``!dereferenceable`` metadata must reference a single metadata
7039name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007040entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007041tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007042The number of bytes known to be dereferenceable is specified by the integer
7043value in the metadata node. This is analogous to the ''dereferenceable''
7044attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007045to loads of a pointer type.
7046
7047The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007048metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7049``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007050instruction tells the optimizer that the value loaded is known to be either
7051dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007052The number of bytes known to be dereferenceable is specified by the integer
7053value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7054attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007055to loads of a pointer type.
7056
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007057The optional ``!align`` metadata must reference a single metadata name
7058``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7059The existence of the ``!align`` metadata on the instruction tells the
7060optimizer that the value loaded is known to be aligned to a boundary specified
7061by the integer value in the metadata node. The alignment must be a power of 2.
7062This is analogous to the ''align'' attribute on parameters and return values.
7063This metadata can only be applied to loads of a pointer type.
7064
Sean Silvab084af42012-12-07 10:36:55 +00007065Semantics:
7066""""""""""
7067
7068The location of memory pointed to is loaded. If the value being loaded
7069is of scalar type then the number of bytes read does not exceed the
7070minimum number of bytes needed to hold all bits of the type. For
7071example, loading an ``i24`` reads at most three bytes. When loading a
7072value of a type like ``i20`` with a size that is not an integral number
7073of bytes, the result is undefined if the value was not originally
7074written using a store of the same type.
7075
7076Examples:
7077"""""""""
7078
7079.. code-block:: llvm
7080
Tim Northover675a0962014-06-13 14:24:23 +00007081 %ptr = alloca i32 ; yields i32*:ptr
7082 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007083 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007084
7085.. _i_store:
7086
7087'``store``' Instruction
7088^^^^^^^^^^^^^^^^^^^^^^^
7089
7090Syntax:
7091"""""""
7092
7093::
7094
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007095 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7096 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007097
7098Overview:
7099"""""""""
7100
7101The '``store``' instruction is used to write to memory.
7102
7103Arguments:
7104""""""""""
7105
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007106There are two arguments to the ``store`` instruction: a value to store and an
7107address at which to store it. The type of the ``<pointer>`` operand must be a
7108pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7109operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7110allowed to modify the number or order of execution of this ``store`` with other
7111:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7112<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7113structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007114
JF Bastiend1fb5852015-12-17 22:09:19 +00007115If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7116<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7117``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7118produce :ref:`defined <memmodel>` results when they may see multiple atomic
7119stores. The type of the pointee must be an integer, pointer, or floating-point
7120type whose bit width is a power of two greater than or equal to eight and less
7121than or equal to a target-specific size limit. ``align`` must be explicitly
7122specified on atomic stores, and the store has undefined behavior if the
7123alignment is not set to a value which is at least the size in bytes of the
7124pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007125
Eli Benderskyca380842013-04-17 17:17:20 +00007126The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007127operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007128or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007129alignment for the target. It is the responsibility of the code emitter
7130to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007131alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007132alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007133safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007134
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007135The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007136name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007137value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007138tells the optimizer and code generator that this load is not expected to
7139be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007140instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007141x86.
7142
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007143The optional ``!invariant.group`` metadata must reference a
7144single metadata name ``<index>``. See ``invariant.group`` metadata.
7145
Sean Silvab084af42012-12-07 10:36:55 +00007146Semantics:
7147""""""""""
7148
Eli Benderskyca380842013-04-17 17:17:20 +00007149The contents of memory are updated to contain ``<value>`` at the
7150location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007151of scalar type then the number of bytes written does not exceed the
7152minimum number of bytes needed to hold all bits of the type. For
7153example, storing an ``i24`` writes at most three bytes. When writing a
7154value of a type like ``i20`` with a size that is not an integral number
7155of bytes, it is unspecified what happens to the extra bits that do not
7156belong to the type, but they will typically be overwritten.
7157
7158Example:
7159""""""""
7160
7161.. code-block:: llvm
7162
Tim Northover675a0962014-06-13 14:24:23 +00007163 %ptr = alloca i32 ; yields i32*:ptr
7164 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007165 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007166
7167.. _i_fence:
7168
7169'``fence``' Instruction
7170^^^^^^^^^^^^^^^^^^^^^^^
7171
7172Syntax:
7173"""""""
7174
7175::
7176
Tim Northover675a0962014-06-13 14:24:23 +00007177 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007178
7179Overview:
7180"""""""""
7181
7182The '``fence``' instruction is used to introduce happens-before edges
7183between operations.
7184
7185Arguments:
7186""""""""""
7187
7188'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7189defines what *synchronizes-with* edges they add. They can only be given
7190``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7191
7192Semantics:
7193""""""""""
7194
7195A fence A which has (at least) ``release`` ordering semantics
7196*synchronizes with* a fence B with (at least) ``acquire`` ordering
7197semantics if and only if there exist atomic operations X and Y, both
7198operating on some atomic object M, such that A is sequenced before X, X
7199modifies M (either directly or through some side effect of a sequence
7200headed by X), Y is sequenced before B, and Y observes M. This provides a
7201*happens-before* dependency between A and B. Rather than an explicit
7202``fence``, one (but not both) of the atomic operations X or Y might
7203provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7204still *synchronize-with* the explicit ``fence`` and establish the
7205*happens-before* edge.
7206
7207A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7208``acquire`` and ``release`` semantics specified above, participates in
7209the global program order of other ``seq_cst`` operations and/or fences.
7210
7211The optional ":ref:`singlethread <singlethread>`" argument specifies
7212that the fence only synchronizes with other fences in the same thread.
7213(This is useful for interacting with signal handlers.)
7214
7215Example:
7216""""""""
7217
7218.. code-block:: llvm
7219
Tim Northover675a0962014-06-13 14:24:23 +00007220 fence acquire ; yields void
7221 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007222
7223.. _i_cmpxchg:
7224
7225'``cmpxchg``' Instruction
7226^^^^^^^^^^^^^^^^^^^^^^^^^
7227
7228Syntax:
7229"""""""
7230
7231::
7232
Tim Northover675a0962014-06-13 14:24:23 +00007233 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007234
7235Overview:
7236"""""""""
7237
7238The '``cmpxchg``' instruction is used to atomically modify memory. It
7239loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007240equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007241
7242Arguments:
7243""""""""""
7244
7245There are three arguments to the '``cmpxchg``' instruction: an address
7246to operate on, a value to compare to the value currently be at that
7247address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007248are equal. The type of '<cmp>' must be an integer or pointer type whose
7249bit width is a power of two greater than or equal to eight and less
7250than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7251have the same type, and the type of '<pointer>' must be a pointer to
7252that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7253optimizer is not allowed to modify the number or order of execution of
7254this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007255
Tim Northovere94a5182014-03-11 10:48:52 +00007256The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007257``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7258must be at least ``monotonic``, the ordering constraint on failure must be no
7259stronger than that on success, and the failure ordering cannot be either
7260``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007261
7262The optional "``singlethread``" argument declares that the ``cmpxchg``
7263is only atomic with respect to code (usually signal handlers) running in
7264the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7265respect to all other code in the system.
7266
7267The pointer passed into cmpxchg must have alignment greater than or
7268equal to the size in memory of the operand.
7269
7270Semantics:
7271""""""""""
7272
Tim Northover420a2162014-06-13 14:24:07 +00007273The contents of memory at the location specified by the '``<pointer>``' operand
7274is read and compared to '``<cmp>``'; if the read value is the equal, the
7275'``<new>``' is written. The original value at the location is returned, together
7276with a flag indicating success (true) or failure (false).
7277
7278If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7279permitted: the operation may not write ``<new>`` even if the comparison
7280matched.
7281
7282If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7283if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007284
Tim Northovere94a5182014-03-11 10:48:52 +00007285A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7286identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7287load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007288
7289Example:
7290""""""""
7291
7292.. code-block:: llvm
7293
7294 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007295 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007296 br label %loop
7297
7298 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007299 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007300 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007301 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007302 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7303 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007304 br i1 %success, label %done, label %loop
7305
7306 done:
7307 ...
7308
7309.. _i_atomicrmw:
7310
7311'``atomicrmw``' Instruction
7312^^^^^^^^^^^^^^^^^^^^^^^^^^^
7313
7314Syntax:
7315"""""""
7316
7317::
7318
Tim Northover675a0962014-06-13 14:24:23 +00007319 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007320
7321Overview:
7322"""""""""
7323
7324The '``atomicrmw``' instruction is used to atomically modify memory.
7325
7326Arguments:
7327""""""""""
7328
7329There are three arguments to the '``atomicrmw``' instruction: an
7330operation to apply, an address whose value to modify, an argument to the
7331operation. The operation must be one of the following keywords:
7332
7333- xchg
7334- add
7335- sub
7336- and
7337- nand
7338- or
7339- xor
7340- max
7341- min
7342- umax
7343- umin
7344
7345The type of '<value>' must be an integer type whose bit width is a power
7346of two greater than or equal to eight and less than or equal to a
7347target-specific size limit. The type of the '``<pointer>``' operand must
7348be a pointer to that type. If the ``atomicrmw`` is marked as
7349``volatile``, then the optimizer is not allowed to modify the number or
7350order of execution of this ``atomicrmw`` with other :ref:`volatile
7351operations <volatile>`.
7352
7353Semantics:
7354""""""""""
7355
7356The contents of memory at the location specified by the '``<pointer>``'
7357operand are atomically read, modified, and written back. The original
7358value at the location is returned. The modification is specified by the
7359operation argument:
7360
7361- xchg: ``*ptr = val``
7362- add: ``*ptr = *ptr + val``
7363- sub: ``*ptr = *ptr - val``
7364- and: ``*ptr = *ptr & val``
7365- nand: ``*ptr = ~(*ptr & val)``
7366- or: ``*ptr = *ptr | val``
7367- xor: ``*ptr = *ptr ^ val``
7368- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7369- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7370- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7371 comparison)
7372- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7373 comparison)
7374
7375Example:
7376""""""""
7377
7378.. code-block:: llvm
7379
Tim Northover675a0962014-06-13 14:24:23 +00007380 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007381
7382.. _i_getelementptr:
7383
7384'``getelementptr``' Instruction
7385^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7386
7387Syntax:
7388"""""""
7389
7390::
7391
David Blaikie16a97eb2015-03-04 22:02:58 +00007392 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7393 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7394 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007395
7396Overview:
7397"""""""""
7398
7399The '``getelementptr``' instruction is used to get the address of a
7400subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007401address calculation only and does not access memory. The instruction can also
7402be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007403
7404Arguments:
7405""""""""""
7406
David Blaikie16a97eb2015-03-04 22:02:58 +00007407The first argument is always a type used as the basis for the calculations.
7408The second argument is always a pointer or a vector of pointers, and is the
7409base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007410that indicate which of the elements of the aggregate object are indexed.
7411The interpretation of each index is dependent on the type being indexed
7412into. The first index always indexes the pointer value given as the
7413first argument, the second index indexes a value of the type pointed to
7414(not necessarily the value directly pointed to, since the first index
7415can be non-zero), etc. The first type indexed into must be a pointer
7416value, subsequent types can be arrays, vectors, and structs. Note that
7417subsequent types being indexed into can never be pointers, since that
7418would require loading the pointer before continuing calculation.
7419
7420The type of each index argument depends on the type it is indexing into.
7421When indexing into a (optionally packed) structure, only ``i32`` integer
7422**constants** are allowed (when using a vector of indices they must all
7423be the **same** ``i32`` integer constant). When indexing into an array,
7424pointer or vector, integers of any width are allowed, and they are not
7425required to be constant. These integers are treated as signed values
7426where relevant.
7427
7428For example, let's consider a C code fragment and how it gets compiled
7429to LLVM:
7430
7431.. code-block:: c
7432
7433 struct RT {
7434 char A;
7435 int B[10][20];
7436 char C;
7437 };
7438 struct ST {
7439 int X;
7440 double Y;
7441 struct RT Z;
7442 };
7443
7444 int *foo(struct ST *s) {
7445 return &s[1].Z.B[5][13];
7446 }
7447
7448The LLVM code generated by Clang is:
7449
7450.. code-block:: llvm
7451
7452 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7453 %struct.ST = type { i32, double, %struct.RT }
7454
7455 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7456 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007457 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007458 ret i32* %arrayidx
7459 }
7460
7461Semantics:
7462""""""""""
7463
7464In the example above, the first index is indexing into the
7465'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7466= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7467indexes into the third element of the structure, yielding a
7468'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7469structure. The third index indexes into the second element of the
7470structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7471dimensions of the array are subscripted into, yielding an '``i32``'
7472type. The '``getelementptr``' instruction returns a pointer to this
7473element, thus computing a value of '``i32*``' type.
7474
7475Note that it is perfectly legal to index partially through a structure,
7476returning a pointer to an inner element. Because of this, the LLVM code
7477for the given testcase is equivalent to:
7478
7479.. code-block:: llvm
7480
7481 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007482 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7483 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7484 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7485 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7486 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007487 ret i32* %t5
7488 }
7489
7490If the ``inbounds`` keyword is present, the result value of the
7491``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7492pointer is not an *in bounds* address of an allocated object, or if any
7493of the addresses that would be formed by successive addition of the
7494offsets implied by the indices to the base address with infinitely
7495precise signed arithmetic are not an *in bounds* address of that
7496allocated object. The *in bounds* addresses for an allocated object are
7497all the addresses that point into the object, plus the address one byte
7498past the end. In cases where the base is a vector of pointers the
7499``inbounds`` keyword applies to each of the computations element-wise.
7500
7501If the ``inbounds`` keyword is not present, the offsets are added to the
7502base address with silently-wrapping two's complement arithmetic. If the
7503offsets have a different width from the pointer, they are sign-extended
7504or truncated to the width of the pointer. The result value of the
7505``getelementptr`` may be outside the object pointed to by the base
7506pointer. The result value may not necessarily be used to access memory
7507though, even if it happens to point into allocated storage. See the
7508:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7509information.
7510
7511The getelementptr instruction is often confusing. For some more insight
7512into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7513
7514Example:
7515""""""""
7516
7517.. code-block:: llvm
7518
7519 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007520 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007521 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007522 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007523 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007524 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007525 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007526 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007527
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007528Vector of pointers:
7529"""""""""""""""""""
7530
7531The ``getelementptr`` returns a vector of pointers, instead of a single address,
7532when one or more of its arguments is a vector. In such cases, all vector
7533arguments should have the same number of elements, and every scalar argument
7534will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007535
7536.. code-block:: llvm
7537
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007538 ; All arguments are vectors:
7539 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7540 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007541
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007542 ; Add the same scalar offset to each pointer of a vector:
7543 ; A[i] = ptrs[i] + offset*sizeof(i8)
7544 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007545
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007546 ; Add distinct offsets to the same pointer:
7547 ; A[i] = ptr + offsets[i]*sizeof(i8)
7548 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007549
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007550 ; In all cases described above the type of the result is <4 x i8*>
7551
7552The two following instructions are equivalent:
7553
7554.. code-block:: llvm
7555
7556 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7557 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7558 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7559 <4 x i32> %ind4,
7560 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007561
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007562 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7563 i32 2, i32 1, <4 x i32> %ind4, i64 13
7564
7565Let's look at the C code, where the vector version of ``getelementptr``
7566makes sense:
7567
7568.. code-block:: c
7569
7570 // Let's assume that we vectorize the following loop:
7571 double *A, B; int *C;
7572 for (int i = 0; i < size; ++i) {
7573 A[i] = B[C[i]];
7574 }
7575
7576.. code-block:: llvm
7577
7578 ; get pointers for 8 elements from array B
7579 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7580 ; load 8 elements from array B into A
7581 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7582 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007583
7584Conversion Operations
7585---------------------
7586
7587The instructions in this category are the conversion instructions
7588(casting) which all take a single operand and a type. They perform
7589various bit conversions on the operand.
7590
7591'``trunc .. to``' Instruction
7592^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7593
7594Syntax:
7595"""""""
7596
7597::
7598
7599 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7600
7601Overview:
7602"""""""""
7603
7604The '``trunc``' instruction truncates its operand to the type ``ty2``.
7605
7606Arguments:
7607""""""""""
7608
7609The '``trunc``' instruction takes a value to trunc, and a type to trunc
7610it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7611of the same number of integers. The bit size of the ``value`` must be
7612larger than the bit size of the destination type, ``ty2``. Equal sized
7613types are not allowed.
7614
7615Semantics:
7616""""""""""
7617
7618The '``trunc``' instruction truncates the high order bits in ``value``
7619and converts the remaining bits to ``ty2``. Since the source size must
7620be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7621It will always truncate bits.
7622
7623Example:
7624""""""""
7625
7626.. code-block:: llvm
7627
7628 %X = trunc i32 257 to i8 ; yields i8:1
7629 %Y = trunc i32 123 to i1 ; yields i1:true
7630 %Z = trunc i32 122 to i1 ; yields i1:false
7631 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7632
7633'``zext .. to``' Instruction
7634^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7635
7636Syntax:
7637"""""""
7638
7639::
7640
7641 <result> = zext <ty> <value> to <ty2> ; yields ty2
7642
7643Overview:
7644"""""""""
7645
7646The '``zext``' instruction zero extends its operand to type ``ty2``.
7647
7648Arguments:
7649""""""""""
7650
7651The '``zext``' instruction takes a value to cast, and a type to cast it
7652to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7653the same number of integers. The bit size of the ``value`` must be
7654smaller than the bit size of the destination type, ``ty2``.
7655
7656Semantics:
7657""""""""""
7658
7659The ``zext`` fills the high order bits of the ``value`` with zero bits
7660until it reaches the size of the destination type, ``ty2``.
7661
7662When zero extending from i1, the result will always be either 0 or 1.
7663
7664Example:
7665""""""""
7666
7667.. code-block:: llvm
7668
7669 %X = zext i32 257 to i64 ; yields i64:257
7670 %Y = zext i1 true to i32 ; yields i32:1
7671 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7672
7673'``sext .. to``' Instruction
7674^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7675
7676Syntax:
7677"""""""
7678
7679::
7680
7681 <result> = sext <ty> <value> to <ty2> ; yields ty2
7682
7683Overview:
7684"""""""""
7685
7686The '``sext``' sign extends ``value`` to the type ``ty2``.
7687
7688Arguments:
7689""""""""""
7690
7691The '``sext``' instruction takes a value to cast, and a type to cast it
7692to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7693the same number of integers. The bit size of the ``value`` must be
7694smaller than the bit size of the destination type, ``ty2``.
7695
7696Semantics:
7697""""""""""
7698
7699The '``sext``' instruction performs a sign extension by copying the sign
7700bit (highest order bit) of the ``value`` until it reaches the bit size
7701of the type ``ty2``.
7702
7703When sign extending from i1, the extension always results in -1 or 0.
7704
7705Example:
7706""""""""
7707
7708.. code-block:: llvm
7709
7710 %X = sext i8 -1 to i16 ; yields i16 :65535
7711 %Y = sext i1 true to i32 ; yields i32:-1
7712 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7713
7714'``fptrunc .. to``' Instruction
7715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7716
7717Syntax:
7718"""""""
7719
7720::
7721
7722 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7723
7724Overview:
7725"""""""""
7726
7727The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7728
7729Arguments:
7730""""""""""
7731
7732The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7733value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7734The size of ``value`` must be larger than the size of ``ty2``. This
7735implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7736
7737Semantics:
7738""""""""""
7739
Dan Liew50456fb2015-09-03 18:43:56 +00007740The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007741:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007742point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7743destination type, ``ty2``, then the results are undefined. If the cast produces
7744an inexact result, how rounding is performed (e.g. truncation, also known as
7745round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007746
7747Example:
7748""""""""
7749
7750.. code-block:: llvm
7751
7752 %X = fptrunc double 123.0 to float ; yields float:123.0
7753 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7754
7755'``fpext .. to``' Instruction
7756^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7757
7758Syntax:
7759"""""""
7760
7761::
7762
7763 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7764
7765Overview:
7766"""""""""
7767
7768The '``fpext``' extends a floating point ``value`` to a larger floating
7769point value.
7770
7771Arguments:
7772""""""""""
7773
7774The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7775``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7776to. The source type must be smaller than the destination type.
7777
7778Semantics:
7779""""""""""
7780
7781The '``fpext``' instruction extends the ``value`` from a smaller
7782:ref:`floating point <t_floating>` type to a larger :ref:`floating
7783point <t_floating>` type. The ``fpext`` cannot be used to make a
7784*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7785*no-op cast* for a floating point cast.
7786
7787Example:
7788""""""""
7789
7790.. code-block:: llvm
7791
7792 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7793 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7794
7795'``fptoui .. to``' Instruction
7796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7797
7798Syntax:
7799"""""""
7800
7801::
7802
7803 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7804
7805Overview:
7806"""""""""
7807
7808The '``fptoui``' converts a floating point ``value`` to its unsigned
7809integer equivalent of type ``ty2``.
7810
7811Arguments:
7812""""""""""
7813
7814The '``fptoui``' instruction takes a value to cast, which must be a
7815scalar or vector :ref:`floating point <t_floating>` value, and a type to
7816cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7817``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7818type with the same number of elements as ``ty``
7819
7820Semantics:
7821""""""""""
7822
7823The '``fptoui``' instruction converts its :ref:`floating
7824point <t_floating>` operand into the nearest (rounding towards zero)
7825unsigned integer value. If the value cannot fit in ``ty2``, the results
7826are undefined.
7827
7828Example:
7829""""""""
7830
7831.. code-block:: llvm
7832
7833 %X = fptoui double 123.0 to i32 ; yields i32:123
7834 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7835 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7836
7837'``fptosi .. to``' Instruction
7838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7839
7840Syntax:
7841"""""""
7842
7843::
7844
7845 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7846
7847Overview:
7848"""""""""
7849
7850The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7851``value`` to type ``ty2``.
7852
7853Arguments:
7854""""""""""
7855
7856The '``fptosi``' instruction takes a value to cast, which must be a
7857scalar or vector :ref:`floating point <t_floating>` value, and a type to
7858cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7859``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7860type with the same number of elements as ``ty``
7861
7862Semantics:
7863""""""""""
7864
7865The '``fptosi``' instruction converts its :ref:`floating
7866point <t_floating>` operand into the nearest (rounding towards zero)
7867signed integer value. If the value cannot fit in ``ty2``, the results
7868are undefined.
7869
7870Example:
7871""""""""
7872
7873.. code-block:: llvm
7874
7875 %X = fptosi double -123.0 to i32 ; yields i32:-123
7876 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7877 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7878
7879'``uitofp .. to``' Instruction
7880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7881
7882Syntax:
7883"""""""
7884
7885::
7886
7887 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7888
7889Overview:
7890"""""""""
7891
7892The '``uitofp``' instruction regards ``value`` as an unsigned integer
7893and converts that value to the ``ty2`` type.
7894
7895Arguments:
7896""""""""""
7897
7898The '``uitofp``' instruction takes a value to cast, which must be a
7899scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7900``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7901``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7902type with the same number of elements as ``ty``
7903
7904Semantics:
7905""""""""""
7906
7907The '``uitofp``' instruction interprets its operand as an unsigned
7908integer quantity and converts it to the corresponding floating point
7909value. If the value cannot fit in the floating point value, the results
7910are undefined.
7911
7912Example:
7913""""""""
7914
7915.. code-block:: llvm
7916
7917 %X = uitofp i32 257 to float ; yields float:257.0
7918 %Y = uitofp i8 -1 to double ; yields double:255.0
7919
7920'``sitofp .. to``' Instruction
7921^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7922
7923Syntax:
7924"""""""
7925
7926::
7927
7928 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7929
7930Overview:
7931"""""""""
7932
7933The '``sitofp``' instruction regards ``value`` as a signed integer and
7934converts that value to the ``ty2`` type.
7935
7936Arguments:
7937""""""""""
7938
7939The '``sitofp``' instruction takes a value to cast, which must be a
7940scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7941``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7942``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7943type with the same number of elements as ``ty``
7944
7945Semantics:
7946""""""""""
7947
7948The '``sitofp``' instruction interprets its operand as a signed integer
7949quantity and converts it to the corresponding floating point value. If
7950the value cannot fit in the floating point value, the results are
7951undefined.
7952
7953Example:
7954""""""""
7955
7956.. code-block:: llvm
7957
7958 %X = sitofp i32 257 to float ; yields float:257.0
7959 %Y = sitofp i8 -1 to double ; yields double:-1.0
7960
7961.. _i_ptrtoint:
7962
7963'``ptrtoint .. to``' Instruction
7964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7965
7966Syntax:
7967"""""""
7968
7969::
7970
7971 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7972
7973Overview:
7974"""""""""
7975
7976The '``ptrtoint``' instruction converts the pointer or a vector of
7977pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7978
7979Arguments:
7980""""""""""
7981
7982The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007983a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007984type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7985a vector of integers type.
7986
7987Semantics:
7988""""""""""
7989
7990The '``ptrtoint``' instruction converts ``value`` to integer type
7991``ty2`` by interpreting the pointer value as an integer and either
7992truncating or zero extending that value to the size of the integer type.
7993If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7994``value`` is larger than ``ty2`` then a truncation is done. If they are
7995the same size, then nothing is done (*no-op cast*) other than a type
7996change.
7997
7998Example:
7999""""""""
8000
8001.. code-block:: llvm
8002
8003 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8004 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8005 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8006
8007.. _i_inttoptr:
8008
8009'``inttoptr .. to``' Instruction
8010^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8011
8012Syntax:
8013"""""""
8014
8015::
8016
8017 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8018
8019Overview:
8020"""""""""
8021
8022The '``inttoptr``' instruction converts an integer ``value`` to a
8023pointer type, ``ty2``.
8024
8025Arguments:
8026""""""""""
8027
8028The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8029cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8030type.
8031
8032Semantics:
8033""""""""""
8034
8035The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8036applying either a zero extension or a truncation depending on the size
8037of the integer ``value``. If ``value`` is larger than the size of a
8038pointer then a truncation is done. If ``value`` is smaller than the size
8039of a pointer then a zero extension is done. If they are the same size,
8040nothing is done (*no-op cast*).
8041
8042Example:
8043""""""""
8044
8045.. code-block:: llvm
8046
8047 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8048 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8049 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8050 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8051
8052.. _i_bitcast:
8053
8054'``bitcast .. to``' Instruction
8055^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8056
8057Syntax:
8058"""""""
8059
8060::
8061
8062 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8063
8064Overview:
8065"""""""""
8066
8067The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8068changing any bits.
8069
8070Arguments:
8071""""""""""
8072
8073The '``bitcast``' instruction takes a value to cast, which must be a
8074non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008075also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8076bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008077identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008078also be a pointer of the same size. This instruction supports bitwise
8079conversion of vectors to integers and to vectors of other types (as
8080long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008081
8082Semantics:
8083""""""""""
8084
Matt Arsenault24b49c42013-07-31 17:49:08 +00008085The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8086is always a *no-op cast* because no bits change with this
8087conversion. The conversion is done as if the ``value`` had been stored
8088to memory and read back as type ``ty2``. Pointer (or vector of
8089pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008090pointers) types with the same address space through this instruction.
8091To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8092or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008093
8094Example:
8095""""""""
8096
8097.. code-block:: llvm
8098
8099 %X = bitcast i8 255 to i8 ; yields i8 :-1
8100 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8101 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8102 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8103
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008104.. _i_addrspacecast:
8105
8106'``addrspacecast .. to``' Instruction
8107^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8108
8109Syntax:
8110"""""""
8111
8112::
8113
8114 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8115
8116Overview:
8117"""""""""
8118
8119The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8120address space ``n`` to type ``pty2`` in address space ``m``.
8121
8122Arguments:
8123""""""""""
8124
8125The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8126to cast and a pointer type to cast it to, which must have a different
8127address space.
8128
8129Semantics:
8130""""""""""
8131
8132The '``addrspacecast``' instruction converts the pointer value
8133``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008134value modification, depending on the target and the address space
8135pair. Pointer conversions within the same address space must be
8136performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008137conversion is legal then both result and operand refer to the same memory
8138location.
8139
8140Example:
8141""""""""
8142
8143.. code-block:: llvm
8144
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008145 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8146 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8147 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008148
Sean Silvab084af42012-12-07 10:36:55 +00008149.. _otherops:
8150
8151Other Operations
8152----------------
8153
8154The instructions in this category are the "miscellaneous" instructions,
8155which defy better classification.
8156
8157.. _i_icmp:
8158
8159'``icmp``' Instruction
8160^^^^^^^^^^^^^^^^^^^^^^
8161
8162Syntax:
8163"""""""
8164
8165::
8166
Tim Northover675a0962014-06-13 14:24:23 +00008167 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008168
8169Overview:
8170"""""""""
8171
8172The '``icmp``' instruction returns a boolean value or a vector of
8173boolean values based on comparison of its two integer, integer vector,
8174pointer, or pointer vector operands.
8175
8176Arguments:
8177""""""""""
8178
8179The '``icmp``' instruction takes three operands. The first operand is
8180the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008181not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008182
8183#. ``eq``: equal
8184#. ``ne``: not equal
8185#. ``ugt``: unsigned greater than
8186#. ``uge``: unsigned greater or equal
8187#. ``ult``: unsigned less than
8188#. ``ule``: unsigned less or equal
8189#. ``sgt``: signed greater than
8190#. ``sge``: signed greater or equal
8191#. ``slt``: signed less than
8192#. ``sle``: signed less or equal
8193
8194The remaining two arguments must be :ref:`integer <t_integer>` or
8195:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8196must also be identical types.
8197
8198Semantics:
8199""""""""""
8200
8201The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8202code given as ``cond``. The comparison performed always yields either an
8203:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8204
8205#. ``eq``: yields ``true`` if the operands are equal, ``false``
8206 otherwise. No sign interpretation is necessary or performed.
8207#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8208 otherwise. No sign interpretation is necessary or performed.
8209#. ``ugt``: interprets the operands as unsigned values and yields
8210 ``true`` if ``op1`` is greater than ``op2``.
8211#. ``uge``: interprets the operands as unsigned values and yields
8212 ``true`` if ``op1`` is greater than or equal to ``op2``.
8213#. ``ult``: interprets the operands as unsigned values and yields
8214 ``true`` if ``op1`` is less than ``op2``.
8215#. ``ule``: interprets the operands as unsigned values and yields
8216 ``true`` if ``op1`` is less than or equal to ``op2``.
8217#. ``sgt``: interprets the operands as signed values and yields ``true``
8218 if ``op1`` is greater than ``op2``.
8219#. ``sge``: interprets the operands as signed values and yields ``true``
8220 if ``op1`` is greater than or equal to ``op2``.
8221#. ``slt``: interprets the operands as signed values and yields ``true``
8222 if ``op1`` is less than ``op2``.
8223#. ``sle``: interprets the operands as signed values and yields ``true``
8224 if ``op1`` is less than or equal to ``op2``.
8225
8226If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8227are compared as if they were integers.
8228
8229If the operands are integer vectors, then they are compared element by
8230element. The result is an ``i1`` vector with the same number of elements
8231as the values being compared. Otherwise, the result is an ``i1``.
8232
8233Example:
8234""""""""
8235
8236.. code-block:: llvm
8237
8238 <result> = icmp eq i32 4, 5 ; yields: result=false
8239 <result> = icmp ne float* %X, %X ; yields: result=false
8240 <result> = icmp ult i16 4, 5 ; yields: result=true
8241 <result> = icmp sgt i16 4, 5 ; yields: result=false
8242 <result> = icmp ule i16 -4, 5 ; yields: result=false
8243 <result> = icmp sge i16 4, 5 ; yields: result=false
8244
Sean Silvab084af42012-12-07 10:36:55 +00008245.. _i_fcmp:
8246
8247'``fcmp``' Instruction
8248^^^^^^^^^^^^^^^^^^^^^^
8249
8250Syntax:
8251"""""""
8252
8253::
8254
James Molloy88eb5352015-07-10 12:52:00 +00008255 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008256
8257Overview:
8258"""""""""
8259
8260The '``fcmp``' instruction returns a boolean value or vector of boolean
8261values based on comparison of its operands.
8262
8263If the operands are floating point scalars, then the result type is a
8264boolean (:ref:`i1 <t_integer>`).
8265
8266If the operands are floating point vectors, then the result type is a
8267vector of boolean with the same number of elements as the operands being
8268compared.
8269
8270Arguments:
8271""""""""""
8272
8273The '``fcmp``' instruction takes three operands. The first operand is
8274the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008275not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008276
8277#. ``false``: no comparison, always returns false
8278#. ``oeq``: ordered and equal
8279#. ``ogt``: ordered and greater than
8280#. ``oge``: ordered and greater than or equal
8281#. ``olt``: ordered and less than
8282#. ``ole``: ordered and less than or equal
8283#. ``one``: ordered and not equal
8284#. ``ord``: ordered (no nans)
8285#. ``ueq``: unordered or equal
8286#. ``ugt``: unordered or greater than
8287#. ``uge``: unordered or greater than or equal
8288#. ``ult``: unordered or less than
8289#. ``ule``: unordered or less than or equal
8290#. ``une``: unordered or not equal
8291#. ``uno``: unordered (either nans)
8292#. ``true``: no comparison, always returns true
8293
8294*Ordered* means that neither operand is a QNAN while *unordered* means
8295that either operand may be a QNAN.
8296
8297Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8298point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8299type. They must have identical types.
8300
8301Semantics:
8302""""""""""
8303
8304The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8305condition code given as ``cond``. If the operands are vectors, then the
8306vectors are compared element by element. Each comparison performed
8307always yields an :ref:`i1 <t_integer>` result, as follows:
8308
8309#. ``false``: always yields ``false``, regardless of operands.
8310#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8311 is equal to ``op2``.
8312#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8313 is greater than ``op2``.
8314#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8315 is greater than or equal to ``op2``.
8316#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8317 is less than ``op2``.
8318#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8319 is less than or equal to ``op2``.
8320#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8321 is not equal to ``op2``.
8322#. ``ord``: yields ``true`` if both operands are not a QNAN.
8323#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8324 equal to ``op2``.
8325#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8326 greater than ``op2``.
8327#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8328 greater than or equal to ``op2``.
8329#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8330 less than ``op2``.
8331#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8332 less than or equal to ``op2``.
8333#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8334 not equal to ``op2``.
8335#. ``uno``: yields ``true`` if either operand is a QNAN.
8336#. ``true``: always yields ``true``, regardless of operands.
8337
James Molloy88eb5352015-07-10 12:52:00 +00008338The ``fcmp`` instruction can also optionally take any number of
8339:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8340otherwise unsafe floating point optimizations.
8341
8342Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8343only flags that have any effect on its semantics are those that allow
8344assumptions to be made about the values of input arguments; namely
8345``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8346
Sean Silvab084af42012-12-07 10:36:55 +00008347Example:
8348""""""""
8349
8350.. code-block:: llvm
8351
8352 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8353 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8354 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8355 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8356
Sean Silvab084af42012-12-07 10:36:55 +00008357.. _i_phi:
8358
8359'``phi``' Instruction
8360^^^^^^^^^^^^^^^^^^^^^
8361
8362Syntax:
8363"""""""
8364
8365::
8366
8367 <result> = phi <ty> [ <val0>, <label0>], ...
8368
8369Overview:
8370"""""""""
8371
8372The '``phi``' instruction is used to implement the φ node in the SSA
8373graph representing the function.
8374
8375Arguments:
8376""""""""""
8377
8378The type of the incoming values is specified with the first type field.
8379After this, the '``phi``' instruction takes a list of pairs as
8380arguments, with one pair for each predecessor basic block of the current
8381block. Only values of :ref:`first class <t_firstclass>` type may be used as
8382the value arguments to the PHI node. Only labels may be used as the
8383label arguments.
8384
8385There must be no non-phi instructions between the start of a basic block
8386and the PHI instructions: i.e. PHI instructions must be first in a basic
8387block.
8388
8389For the purposes of the SSA form, the use of each incoming value is
8390deemed to occur on the edge from the corresponding predecessor block to
8391the current block (but after any definition of an '``invoke``'
8392instruction's return value on the same edge).
8393
8394Semantics:
8395""""""""""
8396
8397At runtime, the '``phi``' instruction logically takes on the value
8398specified by the pair corresponding to the predecessor basic block that
8399executed just prior to the current block.
8400
8401Example:
8402""""""""
8403
8404.. code-block:: llvm
8405
8406 Loop: ; Infinite loop that counts from 0 on up...
8407 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8408 %nextindvar = add i32 %indvar, 1
8409 br label %Loop
8410
8411.. _i_select:
8412
8413'``select``' Instruction
8414^^^^^^^^^^^^^^^^^^^^^^^^
8415
8416Syntax:
8417"""""""
8418
8419::
8420
8421 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8422
8423 selty is either i1 or {<N x i1>}
8424
8425Overview:
8426"""""""""
8427
8428The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008429condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008430
8431Arguments:
8432""""""""""
8433
8434The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8435values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008436class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008437
8438Semantics:
8439""""""""""
8440
8441If the condition is an i1 and it evaluates to 1, the instruction returns
8442the first value argument; otherwise, it returns the second value
8443argument.
8444
8445If the condition is a vector of i1, then the value arguments must be
8446vectors of the same size, and the selection is done element by element.
8447
David Majnemer40a0b592015-03-03 22:45:47 +00008448If the condition is an i1 and the value arguments are vectors of the
8449same size, then an entire vector is selected.
8450
Sean Silvab084af42012-12-07 10:36:55 +00008451Example:
8452""""""""
8453
8454.. code-block:: llvm
8455
8456 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8457
8458.. _i_call:
8459
8460'``call``' Instruction
8461^^^^^^^^^^^^^^^^^^^^^^
8462
8463Syntax:
8464"""""""
8465
8466::
8467
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008468 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008469 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008470
8471Overview:
8472"""""""""
8473
8474The '``call``' instruction represents a simple function call.
8475
8476Arguments:
8477""""""""""
8478
8479This instruction requires several arguments:
8480
Reid Kleckner5772b772014-04-24 20:14:34 +00008481#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008482 should perform tail call optimization. The ``tail`` marker is a hint that
8483 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008484 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008485 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008486
8487 #. The call will not cause unbounded stack growth if it is part of a
8488 recursive cycle in the call graph.
8489 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8490 forwarded in place.
8491
8492 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008493 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008494 rules:
8495
8496 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8497 or a pointer bitcast followed by a ret instruction.
8498 - The ret instruction must return the (possibly bitcasted) value
8499 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008500 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008501 parameters or return types may differ in pointee type, but not
8502 in address space.
8503 - The calling conventions of the caller and callee must match.
8504 - All ABI-impacting function attributes, such as sret, byval, inreg,
8505 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008506 - The callee must be varargs iff the caller is varargs. Bitcasting a
8507 non-varargs function to the appropriate varargs type is legal so
8508 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008509
8510 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8511 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008512
8513 - Caller and callee both have the calling convention ``fastcc``.
8514 - The call is in tail position (ret immediately follows call and ret
8515 uses value of call or is void).
8516 - Option ``-tailcallopt`` is enabled, or
8517 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008518 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008519 met. <CodeGenerator.html#tailcallopt>`_
8520
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008521#. The optional ``notail`` marker indicates that the optimizers should not add
8522 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8523 call optimization from being performed on the call.
8524
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008525#. The optional ``fast-math flags`` marker indicates that the call has one or more
8526 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8527 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8528 for calls that return a floating-point scalar or vector type.
8529
Sean Silvab084af42012-12-07 10:36:55 +00008530#. The optional "cconv" marker indicates which :ref:`calling
8531 convention <callingconv>` the call should use. If none is
8532 specified, the call defaults to using C calling conventions. The
8533 calling convention of the call must match the calling convention of
8534 the target function, or else the behavior is undefined.
8535#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8536 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8537 are valid here.
8538#. '``ty``': the type of the call instruction itself which is also the
8539 type of the return value. Functions that return no value are marked
8540 ``void``.
8541#. '``fnty``': shall be the signature of the pointer to function value
8542 being invoked. The argument types must match the types implied by
8543 this signature. This type can be omitted if the function is not
8544 varargs and if the function type does not return a pointer to a
8545 function.
8546#. '``fnptrval``': An LLVM value containing a pointer to a function to
8547 be invoked. In most cases, this is a direct function invocation, but
8548 indirect ``call``'s are just as possible, calling an arbitrary pointer
8549 to function value.
8550#. '``function args``': argument list whose types match the function
8551 signature argument types and parameter attributes. All arguments must
8552 be of :ref:`first class <t_firstclass>` type. If the function signature
8553 indicates the function accepts a variable number of arguments, the
8554 extra arguments can be specified.
8555#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008556 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8557 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008558#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008559
8560Semantics:
8561""""""""""
8562
8563The '``call``' instruction is used to cause control flow to transfer to
8564a specified function, with its incoming arguments bound to the specified
8565values. Upon a '``ret``' instruction in the called function, control
8566flow continues with the instruction after the function call, and the
8567return value of the function is bound to the result argument.
8568
8569Example:
8570""""""""
8571
8572.. code-block:: llvm
8573
8574 %retval = call i32 @test(i32 %argc)
8575 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8576 %X = tail call i32 @foo() ; yields i32
8577 %Y = tail call fastcc i32 @foo() ; yields i32
8578 call void %foo(i8 97 signext)
8579
8580 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008581 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008582 %gr = extractvalue %struct.A %r, 0 ; yields i32
8583 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8584 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8585 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8586
8587llvm treats calls to some functions with names and arguments that match
8588the standard C99 library as being the C99 library functions, and may
8589perform optimizations or generate code for them under that assumption.
8590This is something we'd like to change in the future to provide better
8591support for freestanding environments and non-C-based languages.
8592
8593.. _i_va_arg:
8594
8595'``va_arg``' Instruction
8596^^^^^^^^^^^^^^^^^^^^^^^^
8597
8598Syntax:
8599"""""""
8600
8601::
8602
8603 <resultval> = va_arg <va_list*> <arglist>, <argty>
8604
8605Overview:
8606"""""""""
8607
8608The '``va_arg``' instruction is used to access arguments passed through
8609the "variable argument" area of a function call. It is used to implement
8610the ``va_arg`` macro in C.
8611
8612Arguments:
8613""""""""""
8614
8615This instruction takes a ``va_list*`` value and the type of the
8616argument. It returns a value of the specified argument type and
8617increments the ``va_list`` to point to the next argument. The actual
8618type of ``va_list`` is target specific.
8619
8620Semantics:
8621""""""""""
8622
8623The '``va_arg``' instruction loads an argument of the specified type
8624from the specified ``va_list`` and causes the ``va_list`` to point to
8625the next argument. For more information, see the variable argument
8626handling :ref:`Intrinsic Functions <int_varargs>`.
8627
8628It is legal for this instruction to be called in a function which does
8629not take a variable number of arguments, for example, the ``vfprintf``
8630function.
8631
8632``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8633function <intrinsics>` because it takes a type as an argument.
8634
8635Example:
8636""""""""
8637
8638See the :ref:`variable argument processing <int_varargs>` section.
8639
8640Note that the code generator does not yet fully support va\_arg on many
8641targets. Also, it does not currently support va\_arg with aggregate
8642types on any target.
8643
8644.. _i_landingpad:
8645
8646'``landingpad``' Instruction
8647^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8648
8649Syntax:
8650"""""""
8651
8652::
8653
David Majnemer7fddecc2015-06-17 20:52:32 +00008654 <resultval> = landingpad <resultty> <clause>+
8655 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008656
8657 <clause> := catch <type> <value>
8658 <clause> := filter <array constant type> <array constant>
8659
8660Overview:
8661"""""""""
8662
8663The '``landingpad``' instruction is used by `LLVM's exception handling
8664system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008665is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008666code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008667defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008668re-entry to the function. The ``resultval`` has the type ``resultty``.
8669
8670Arguments:
8671""""""""""
8672
David Majnemer7fddecc2015-06-17 20:52:32 +00008673The optional
Sean Silvab084af42012-12-07 10:36:55 +00008674``cleanup`` flag indicates that the landing pad block is a cleanup.
8675
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008676A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008677contains the global variable representing the "type" that may be caught
8678or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8679clause takes an array constant as its argument. Use
8680"``[0 x i8**] undef``" for a filter which cannot throw. The
8681'``landingpad``' instruction must contain *at least* one ``clause`` or
8682the ``cleanup`` flag.
8683
8684Semantics:
8685""""""""""
8686
8687The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008688:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008689therefore the "result type" of the ``landingpad`` instruction. As with
8690calling conventions, how the personality function results are
8691represented in LLVM IR is target specific.
8692
8693The clauses are applied in order from top to bottom. If two
8694``landingpad`` instructions are merged together through inlining, the
8695clauses from the calling function are appended to the list of clauses.
8696When the call stack is being unwound due to an exception being thrown,
8697the exception is compared against each ``clause`` in turn. If it doesn't
8698match any of the clauses, and the ``cleanup`` flag is not set, then
8699unwinding continues further up the call stack.
8700
8701The ``landingpad`` instruction has several restrictions:
8702
8703- A landing pad block is a basic block which is the unwind destination
8704 of an '``invoke``' instruction.
8705- A landing pad block must have a '``landingpad``' instruction as its
8706 first non-PHI instruction.
8707- There can be only one '``landingpad``' instruction within the landing
8708 pad block.
8709- A basic block that is not a landing pad block may not include a
8710 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008711
8712Example:
8713""""""""
8714
8715.. code-block:: llvm
8716
8717 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008718 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008719 catch i8** @_ZTIi
8720 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008721 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008722 cleanup
8723 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008724 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008725 catch i8** @_ZTIi
8726 filter [1 x i8**] [@_ZTId]
8727
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008728.. _i_catchpad:
8729
8730'``catchpad``' Instruction
8731^^^^^^^^^^^^^^^^^^^^^^^^^^
8732
8733Syntax:
8734"""""""
8735
8736::
8737
8738 <resultval> = catchpad within <catchswitch> [<args>*]
8739
8740Overview:
8741"""""""""
8742
8743The '``catchpad``' instruction is used by `LLVM's exception handling
8744system <ExceptionHandling.html#overview>`_ to specify that a basic block
8745begins a catch handler --- one where a personality routine attempts to transfer
8746control to catch an exception.
8747
8748Arguments:
8749""""""""""
8750
8751The ``catchswitch`` operand must always be a token produced by a
8752:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8753ensures that each ``catchpad`` has exactly one predecessor block, and it always
8754terminates in a ``catchswitch``.
8755
8756The ``args`` correspond to whatever information the personality routine
8757requires to know if this is an appropriate handler for the exception. Control
8758will transfer to the ``catchpad`` if this is the first appropriate handler for
8759the exception.
8760
8761The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8762``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8763pads.
8764
8765Semantics:
8766""""""""""
8767
8768When the call stack is being unwound due to an exception being thrown, the
8769exception is compared against the ``args``. If it doesn't match, control will
8770not reach the ``catchpad`` instruction. The representation of ``args`` is
8771entirely target and personality function-specific.
8772
8773Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8774instruction must be the first non-phi of its parent basic block.
8775
8776The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8777instructions is described in the
8778`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8779
8780When a ``catchpad`` has been "entered" but not yet "exited" (as
8781described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8782it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8783that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8784
8785Example:
8786""""""""
8787
8788.. code-block:: llvm
8789
8790 dispatch:
8791 %cs = catchswitch within none [label %handler0] unwind to caller
8792 ;; A catch block which can catch an integer.
8793 handler0:
8794 %tok = catchpad within %cs [i8** @_ZTIi]
8795
David Majnemer654e1302015-07-31 17:58:14 +00008796.. _i_cleanuppad:
8797
8798'``cleanuppad``' Instruction
8799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8800
8801Syntax:
8802"""""""
8803
8804::
8805
David Majnemer8a1c45d2015-12-12 05:38:55 +00008806 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008807
8808Overview:
8809"""""""""
8810
8811The '``cleanuppad``' instruction is used by `LLVM's exception handling
8812system <ExceptionHandling.html#overview>`_ to specify that a basic block
8813is a cleanup block --- one where a personality routine attempts to
8814transfer control to run cleanup actions.
8815The ``args`` correspond to whatever additional
8816information the :ref:`personality function <personalityfn>` requires to
8817execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008818The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008819match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8820The ``parent`` argument is the token of the funclet that contains the
8821``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8822this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008823
8824Arguments:
8825""""""""""
8826
8827The instruction takes a list of arbitrary values which are interpreted
8828by the :ref:`personality function <personalityfn>`.
8829
8830Semantics:
8831""""""""""
8832
David Majnemer654e1302015-07-31 17:58:14 +00008833When the call stack is being unwound due to an exception being thrown,
8834the :ref:`personality function <personalityfn>` transfers control to the
8835``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008836As with calling conventions, how the personality function results are
8837represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008838
8839The ``cleanuppad`` instruction has several restrictions:
8840
8841- A cleanup block is a basic block which is the unwind destination of
8842 an exceptional instruction.
8843- A cleanup block must have a '``cleanuppad``' instruction as its
8844 first non-PHI instruction.
8845- There can be only one '``cleanuppad``' instruction within the
8846 cleanup block.
8847- A basic block that is not a cleanup block may not include a
8848 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008849
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008850When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8851described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8852it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8853that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008854
David Majnemer654e1302015-07-31 17:58:14 +00008855Example:
8856""""""""
8857
8858.. code-block:: llvm
8859
David Majnemer8a1c45d2015-12-12 05:38:55 +00008860 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008861
Sean Silvab084af42012-12-07 10:36:55 +00008862.. _intrinsics:
8863
8864Intrinsic Functions
8865===================
8866
8867LLVM supports the notion of an "intrinsic function". These functions
8868have well known names and semantics and are required to follow certain
8869restrictions. Overall, these intrinsics represent an extension mechanism
8870for the LLVM language that does not require changing all of the
8871transformations in LLVM when adding to the language (or the bitcode
8872reader/writer, the parser, etc...).
8873
8874Intrinsic function names must all start with an "``llvm.``" prefix. This
8875prefix is reserved in LLVM for intrinsic names; thus, function names may
8876not begin with this prefix. Intrinsic functions must always be external
8877functions: you cannot define the body of intrinsic functions. Intrinsic
8878functions may only be used in call or invoke instructions: it is illegal
8879to take the address of an intrinsic function. Additionally, because
8880intrinsic functions are part of the LLVM language, it is required if any
8881are added that they be documented here.
8882
8883Some intrinsic functions can be overloaded, i.e., the intrinsic
8884represents a family of functions that perform the same operation but on
8885different data types. Because LLVM can represent over 8 million
8886different integer types, overloading is used commonly to allow an
8887intrinsic function to operate on any integer type. One or more of the
8888argument types or the result type can be overloaded to accept any
8889integer type. Argument types may also be defined as exactly matching a
8890previous argument's type or the result type. This allows an intrinsic
8891function which accepts multiple arguments, but needs all of them to be
8892of the same type, to only be overloaded with respect to a single
8893argument or the result.
8894
8895Overloaded intrinsics will have the names of its overloaded argument
8896types encoded into its function name, each preceded by a period. Only
8897those types which are overloaded result in a name suffix. Arguments
8898whose type is matched against another type do not. For example, the
8899``llvm.ctpop`` function can take an integer of any width and returns an
8900integer of exactly the same integer width. This leads to a family of
8901functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8902``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8903overloaded, and only one type suffix is required. Because the argument's
8904type is matched against the return type, it does not require its own
8905name suffix.
8906
8907To learn how to add an intrinsic function, please see the `Extending
8908LLVM Guide <ExtendingLLVM.html>`_.
8909
8910.. _int_varargs:
8911
8912Variable Argument Handling Intrinsics
8913-------------------------------------
8914
8915Variable argument support is defined in LLVM with the
8916:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8917functions. These functions are related to the similarly named macros
8918defined in the ``<stdarg.h>`` header file.
8919
8920All of these functions operate on arguments that use a target-specific
8921value type "``va_list``". The LLVM assembly language reference manual
8922does not define what this type is, so all transformations should be
8923prepared to handle these functions regardless of the type used.
8924
8925This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8926variable argument handling intrinsic functions are used.
8927
8928.. code-block:: llvm
8929
Tim Northoverab60bb92014-11-02 01:21:51 +00008930 ; This struct is different for every platform. For most platforms,
8931 ; it is merely an i8*.
8932 %struct.va_list = type { i8* }
8933
8934 ; For Unix x86_64 platforms, va_list is the following struct:
8935 ; %struct.va_list = type { i32, i32, i8*, i8* }
8936
Sean Silvab084af42012-12-07 10:36:55 +00008937 define i32 @test(i32 %X, ...) {
8938 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008939 %ap = alloca %struct.va_list
8940 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008941 call void @llvm.va_start(i8* %ap2)
8942
8943 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008944 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008945
8946 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8947 %aq = alloca i8*
8948 %aq2 = bitcast i8** %aq to i8*
8949 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8950 call void @llvm.va_end(i8* %aq2)
8951
8952 ; Stop processing of arguments.
8953 call void @llvm.va_end(i8* %ap2)
8954 ret i32 %tmp
8955 }
8956
8957 declare void @llvm.va_start(i8*)
8958 declare void @llvm.va_copy(i8*, i8*)
8959 declare void @llvm.va_end(i8*)
8960
8961.. _int_va_start:
8962
8963'``llvm.va_start``' Intrinsic
8964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8965
8966Syntax:
8967"""""""
8968
8969::
8970
Nick Lewycky04f6de02013-09-11 22:04:52 +00008971 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008972
8973Overview:
8974"""""""""
8975
8976The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8977subsequent use by ``va_arg``.
8978
8979Arguments:
8980""""""""""
8981
8982The argument is a pointer to a ``va_list`` element to initialize.
8983
8984Semantics:
8985""""""""""
8986
8987The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8988available in C. In a target-dependent way, it initializes the
8989``va_list`` element to which the argument points, so that the next call
8990to ``va_arg`` will produce the first variable argument passed to the
8991function. Unlike the C ``va_start`` macro, this intrinsic does not need
8992to know the last argument of the function as the compiler can figure
8993that out.
8994
8995'``llvm.va_end``' Intrinsic
8996^^^^^^^^^^^^^^^^^^^^^^^^^^^
8997
8998Syntax:
8999"""""""
9000
9001::
9002
9003 declare void @llvm.va_end(i8* <arglist>)
9004
9005Overview:
9006"""""""""
9007
9008The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9009initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9010
9011Arguments:
9012""""""""""
9013
9014The argument is a pointer to a ``va_list`` to destroy.
9015
9016Semantics:
9017""""""""""
9018
9019The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9020available in C. In a target-dependent way, it destroys the ``va_list``
9021element to which the argument points. Calls to
9022:ref:`llvm.va_start <int_va_start>` and
9023:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9024``llvm.va_end``.
9025
9026.. _int_va_copy:
9027
9028'``llvm.va_copy``' Intrinsic
9029^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9030
9031Syntax:
9032"""""""
9033
9034::
9035
9036 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9037
9038Overview:
9039"""""""""
9040
9041The '``llvm.va_copy``' intrinsic copies the current argument position
9042from the source argument list to the destination argument list.
9043
9044Arguments:
9045""""""""""
9046
9047The first argument is a pointer to a ``va_list`` element to initialize.
9048The second argument is a pointer to a ``va_list`` element to copy from.
9049
9050Semantics:
9051""""""""""
9052
9053The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9054available in C. In a target-dependent way, it copies the source
9055``va_list`` element into the destination ``va_list`` element. This
9056intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9057arbitrarily complex and require, for example, memory allocation.
9058
9059Accurate Garbage Collection Intrinsics
9060--------------------------------------
9061
Philip Reamesc5b0f562015-02-25 23:52:06 +00009062LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009063(GC) requires the frontend to generate code containing appropriate intrinsic
9064calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009065intrinsics in a manner which is appropriate for the target collector.
9066
Sean Silvab084af42012-12-07 10:36:55 +00009067These intrinsics allow identification of :ref:`GC roots on the
9068stack <int_gcroot>`, as well as garbage collector implementations that
9069require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009070Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009071these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009072details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009073
Philip Reamesf80bbff2015-02-25 23:45:20 +00009074Experimental Statepoint Intrinsics
9075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9076
9077LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009078collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009079to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009080:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009081differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009082<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009083described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009084
9085.. _int_gcroot:
9086
9087'``llvm.gcroot``' Intrinsic
9088^^^^^^^^^^^^^^^^^^^^^^^^^^^
9089
9090Syntax:
9091"""""""
9092
9093::
9094
9095 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9096
9097Overview:
9098"""""""""
9099
9100The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9101the code generator, and allows some metadata to be associated with it.
9102
9103Arguments:
9104""""""""""
9105
9106The first argument specifies the address of a stack object that contains
9107the root pointer. The second pointer (which must be either a constant or
9108a global value address) contains the meta-data to be associated with the
9109root.
9110
9111Semantics:
9112""""""""""
9113
9114At runtime, a call to this intrinsic stores a null pointer into the
9115"ptrloc" location. At compile-time, the code generator generates
9116information to allow the runtime to find the pointer at GC safe points.
9117The '``llvm.gcroot``' intrinsic may only be used in a function which
9118:ref:`specifies a GC algorithm <gc>`.
9119
9120.. _int_gcread:
9121
9122'``llvm.gcread``' Intrinsic
9123^^^^^^^^^^^^^^^^^^^^^^^^^^^
9124
9125Syntax:
9126"""""""
9127
9128::
9129
9130 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9131
9132Overview:
9133"""""""""
9134
9135The '``llvm.gcread``' intrinsic identifies reads of references from heap
9136locations, allowing garbage collector implementations that require read
9137barriers.
9138
9139Arguments:
9140""""""""""
9141
9142The second argument is the address to read from, which should be an
9143address allocated from the garbage collector. The first object is a
9144pointer to the start of the referenced object, if needed by the language
9145runtime (otherwise null).
9146
9147Semantics:
9148""""""""""
9149
9150The '``llvm.gcread``' intrinsic has the same semantics as a load
9151instruction, but may be replaced with substantially more complex code by
9152the garbage collector runtime, as needed. The '``llvm.gcread``'
9153intrinsic may only be used in a function which :ref:`specifies a GC
9154algorithm <gc>`.
9155
9156.. _int_gcwrite:
9157
9158'``llvm.gcwrite``' Intrinsic
9159^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9160
9161Syntax:
9162"""""""
9163
9164::
9165
9166 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9167
9168Overview:
9169"""""""""
9170
9171The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9172locations, allowing garbage collector implementations that require write
9173barriers (such as generational or reference counting collectors).
9174
9175Arguments:
9176""""""""""
9177
9178The first argument is the reference to store, the second is the start of
9179the object to store it to, and the third is the address of the field of
9180Obj to store to. If the runtime does not require a pointer to the
9181object, Obj may be null.
9182
9183Semantics:
9184""""""""""
9185
9186The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9187instruction, but may be replaced with substantially more complex code by
9188the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9189intrinsic may only be used in a function which :ref:`specifies a GC
9190algorithm <gc>`.
9191
9192Code Generator Intrinsics
9193-------------------------
9194
9195These intrinsics are provided by LLVM to expose special features that
9196may only be implemented with code generator support.
9197
9198'``llvm.returnaddress``' Intrinsic
9199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9200
9201Syntax:
9202"""""""
9203
9204::
9205
9206 declare i8 *@llvm.returnaddress(i32 <level>)
9207
9208Overview:
9209"""""""""
9210
9211The '``llvm.returnaddress``' intrinsic attempts to compute a
9212target-specific value indicating the return address of the current
9213function or one of its callers.
9214
9215Arguments:
9216""""""""""
9217
9218The argument to this intrinsic indicates which function to return the
9219address for. Zero indicates the calling function, one indicates its
9220caller, etc. The argument is **required** to be a constant integer
9221value.
9222
9223Semantics:
9224""""""""""
9225
9226The '``llvm.returnaddress``' intrinsic either returns a pointer
9227indicating the return address of the specified call frame, or zero if it
9228cannot be identified. The value returned by this intrinsic is likely to
9229be incorrect or 0 for arguments other than zero, so it should only be
9230used for debugging purposes.
9231
9232Note that calling this intrinsic does not prevent function inlining or
9233other aggressive transformations, so the value returned may not be that
9234of the obvious source-language caller.
9235
9236'``llvm.frameaddress``' Intrinsic
9237^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9238
9239Syntax:
9240"""""""
9241
9242::
9243
9244 declare i8* @llvm.frameaddress(i32 <level>)
9245
9246Overview:
9247"""""""""
9248
9249The '``llvm.frameaddress``' intrinsic attempts to return the
9250target-specific frame pointer value for the specified stack frame.
9251
9252Arguments:
9253""""""""""
9254
9255The argument to this intrinsic indicates which function to return the
9256frame pointer for. Zero indicates the calling function, one indicates
9257its caller, etc. The argument is **required** to be a constant integer
9258value.
9259
9260Semantics:
9261""""""""""
9262
9263The '``llvm.frameaddress``' intrinsic either returns a pointer
9264indicating the frame address of the specified call frame, or zero if it
9265cannot be identified. The value returned by this intrinsic is likely to
9266be incorrect or 0 for arguments other than zero, so it should only be
9267used for debugging purposes.
9268
9269Note that calling this intrinsic does not prevent function inlining or
9270other aggressive transformations, so the value returned may not be that
9271of the obvious source-language caller.
9272
Reid Kleckner60381792015-07-07 22:25:32 +00009273'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9275
9276Syntax:
9277"""""""
9278
9279::
9280
Reid Kleckner60381792015-07-07 22:25:32 +00009281 declare void @llvm.localescape(...)
9282 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009283
9284Overview:
9285"""""""""
9286
Reid Kleckner60381792015-07-07 22:25:32 +00009287The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9288allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009289live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009290computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009291
9292Arguments:
9293""""""""""
9294
Reid Kleckner60381792015-07-07 22:25:32 +00009295All arguments to '``llvm.localescape``' must be pointers to static allocas or
9296casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009297once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009298
Reid Kleckner60381792015-07-07 22:25:32 +00009299The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009300bitcasted pointer to a function defined in the current module. The code
9301generator cannot determine the frame allocation offset of functions defined in
9302other modules.
9303
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009304The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9305call frame that is currently live. The return value of '``llvm.localaddress``'
9306is one way to produce such a value, but various runtimes also expose a suitable
9307pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009308
Reid Kleckner60381792015-07-07 22:25:32 +00009309The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9310'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009311
Reid Klecknere9b89312015-01-13 00:48:10 +00009312Semantics:
9313""""""""""
9314
Reid Kleckner60381792015-07-07 22:25:32 +00009315These intrinsics allow a group of functions to share access to a set of local
9316stack allocations of a one parent function. The parent function may call the
9317'``llvm.localescape``' intrinsic once from the function entry block, and the
9318child functions can use '``llvm.localrecover``' to access the escaped allocas.
9319The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9320the escaped allocas are allocated, which would break attempts to use
9321'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009322
Renato Golinc7aea402014-05-06 16:51:25 +00009323.. _int_read_register:
9324.. _int_write_register:
9325
9326'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9327^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9328
9329Syntax:
9330"""""""
9331
9332::
9333
9334 declare i32 @llvm.read_register.i32(metadata)
9335 declare i64 @llvm.read_register.i64(metadata)
9336 declare void @llvm.write_register.i32(metadata, i32 @value)
9337 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009338 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009339
9340Overview:
9341"""""""""
9342
9343The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9344provides access to the named register. The register must be valid on
9345the architecture being compiled to. The type needs to be compatible
9346with the register being read.
9347
9348Semantics:
9349""""""""""
9350
9351The '``llvm.read_register``' intrinsic returns the current value of the
9352register, where possible. The '``llvm.write_register``' intrinsic sets
9353the current value of the register, where possible.
9354
9355This is useful to implement named register global variables that need
9356to always be mapped to a specific register, as is common practice on
9357bare-metal programs including OS kernels.
9358
9359The compiler doesn't check for register availability or use of the used
9360register in surrounding code, including inline assembly. Because of that,
9361allocatable registers are not supported.
9362
9363Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009364architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009365work is needed to support other registers and even more so, allocatable
9366registers.
9367
Sean Silvab084af42012-12-07 10:36:55 +00009368.. _int_stacksave:
9369
9370'``llvm.stacksave``' Intrinsic
9371^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9372
9373Syntax:
9374"""""""
9375
9376::
9377
9378 declare i8* @llvm.stacksave()
9379
9380Overview:
9381"""""""""
9382
9383The '``llvm.stacksave``' intrinsic is used to remember the current state
9384of the function stack, for use with
9385:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9386implementing language features like scoped automatic variable sized
9387arrays in C99.
9388
9389Semantics:
9390""""""""""
9391
9392This intrinsic returns a opaque pointer value that can be passed to
9393:ref:`llvm.stackrestore <int_stackrestore>`. When an
9394``llvm.stackrestore`` intrinsic is executed with a value saved from
9395``llvm.stacksave``, it effectively restores the state of the stack to
9396the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9397practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9398were allocated after the ``llvm.stacksave`` was executed.
9399
9400.. _int_stackrestore:
9401
9402'``llvm.stackrestore``' Intrinsic
9403^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9404
9405Syntax:
9406"""""""
9407
9408::
9409
9410 declare void @llvm.stackrestore(i8* %ptr)
9411
9412Overview:
9413"""""""""
9414
9415The '``llvm.stackrestore``' intrinsic is used to restore the state of
9416the function stack to the state it was in when the corresponding
9417:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9418useful for implementing language features like scoped automatic variable
9419sized arrays in C99.
9420
9421Semantics:
9422""""""""""
9423
9424See the description for :ref:`llvm.stacksave <int_stacksave>`.
9425
Yury Gribovd7dbb662015-12-01 11:40:55 +00009426.. _int_get_dynamic_area_offset:
9427
9428'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009430
9431Syntax:
9432"""""""
9433
9434::
9435
9436 declare i32 @llvm.get.dynamic.area.offset.i32()
9437 declare i64 @llvm.get.dynamic.area.offset.i64()
9438
9439 Overview:
9440 """""""""
9441
9442 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9443 get the offset from native stack pointer to the address of the most
9444 recent dynamic alloca on the caller's stack. These intrinsics are
9445 intendend for use in combination with
9446 :ref:`llvm.stacksave <int_stacksave>` to get a
9447 pointer to the most recent dynamic alloca. This is useful, for example,
9448 for AddressSanitizer's stack unpoisoning routines.
9449
9450Semantics:
9451""""""""""
9452
9453 These intrinsics return a non-negative integer value that can be used to
9454 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9455 on the caller's stack. In particular, for targets where stack grows downwards,
9456 adding this offset to the native stack pointer would get the address of the most
9457 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9458 complicated, because substracting this value from stack pointer would get the address
9459 one past the end of the most recent dynamic alloca.
9460
9461 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9462 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9463 compile-time-known constant value.
9464
9465 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9466 must match the target's generic address space's (address space 0) pointer type.
9467
Sean Silvab084af42012-12-07 10:36:55 +00009468'``llvm.prefetch``' Intrinsic
9469^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9470
9471Syntax:
9472"""""""
9473
9474::
9475
9476 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9477
9478Overview:
9479"""""""""
9480
9481The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9482insert a prefetch instruction if supported; otherwise, it is a noop.
9483Prefetches have no effect on the behavior of the program but can change
9484its performance characteristics.
9485
9486Arguments:
9487""""""""""
9488
9489``address`` is the address to be prefetched, ``rw`` is the specifier
9490determining if the fetch should be for a read (0) or write (1), and
9491``locality`` is a temporal locality specifier ranging from (0) - no
9492locality, to (3) - extremely local keep in cache. The ``cache type``
9493specifies whether the prefetch is performed on the data (1) or
9494instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9495arguments must be constant integers.
9496
9497Semantics:
9498""""""""""
9499
9500This intrinsic does not modify the behavior of the program. In
9501particular, prefetches cannot trap and do not produce a value. On
9502targets that support this intrinsic, the prefetch can provide hints to
9503the processor cache for better performance.
9504
9505'``llvm.pcmarker``' Intrinsic
9506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9507
9508Syntax:
9509"""""""
9510
9511::
9512
9513 declare void @llvm.pcmarker(i32 <id>)
9514
9515Overview:
9516"""""""""
9517
9518The '``llvm.pcmarker``' intrinsic is a method to export a Program
9519Counter (PC) in a region of code to simulators and other tools. The
9520method is target specific, but it is expected that the marker will use
9521exported symbols to transmit the PC of the marker. The marker makes no
9522guarantees that it will remain with any specific instruction after
9523optimizations. It is possible that the presence of a marker will inhibit
9524optimizations. The intended use is to be inserted after optimizations to
9525allow correlations of simulation runs.
9526
9527Arguments:
9528""""""""""
9529
9530``id`` is a numerical id identifying the marker.
9531
9532Semantics:
9533""""""""""
9534
9535This intrinsic does not modify the behavior of the program. Backends
9536that do not support this intrinsic may ignore it.
9537
9538'``llvm.readcyclecounter``' Intrinsic
9539^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9540
9541Syntax:
9542"""""""
9543
9544::
9545
9546 declare i64 @llvm.readcyclecounter()
9547
9548Overview:
9549"""""""""
9550
9551The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9552counter register (or similar low latency, high accuracy clocks) on those
9553targets that support it. On X86, it should map to RDTSC. On Alpha, it
9554should map to RPCC. As the backing counters overflow quickly (on the
9555order of 9 seconds on alpha), this should only be used for small
9556timings.
9557
9558Semantics:
9559""""""""""
9560
9561When directly supported, reading the cycle counter should not modify any
9562memory. Implementations are allowed to either return a application
9563specific value or a system wide value. On backends without support, this
9564is lowered to a constant 0.
9565
Tim Northoverbc933082013-05-23 19:11:20 +00009566Note that runtime support may be conditional on the privilege-level code is
9567running at and the host platform.
9568
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009569'``llvm.clear_cache``' Intrinsic
9570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9571
9572Syntax:
9573"""""""
9574
9575::
9576
9577 declare void @llvm.clear_cache(i8*, i8*)
9578
9579Overview:
9580"""""""""
9581
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009582The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9583in the specified range to the execution unit of the processor. On
9584targets with non-unified instruction and data cache, the implementation
9585flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009586
9587Semantics:
9588""""""""""
9589
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009590On platforms with coherent instruction and data caches (e.g. x86), this
9591intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009592cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009593instructions or a system call, if cache flushing requires special
9594privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009595
Sean Silvad02bf3e2014-04-07 22:29:53 +00009596The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009597time library.
Renato Golin93010e62014-03-26 14:01:32 +00009598
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009599This instrinsic does *not* empty the instruction pipeline. Modifications
9600of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009601
Justin Bogner61ba2e32014-12-08 18:02:35 +00009602'``llvm.instrprof_increment``' Intrinsic
9603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9604
9605Syntax:
9606"""""""
9607
9608::
9609
9610 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9611 i32 <num-counters>, i32 <index>)
9612
9613Overview:
9614"""""""""
9615
9616The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9617frontend for use with instrumentation based profiling. These will be
9618lowered by the ``-instrprof`` pass to generate execution counts of a
9619program at runtime.
9620
9621Arguments:
9622""""""""""
9623
9624The first argument is a pointer to a global variable containing the
9625name of the entity being instrumented. This should generally be the
9626(mangled) function name for a set of counters.
9627
9628The second argument is a hash value that can be used by the consumer
9629of the profile data to detect changes to the instrumented source, and
9630the third is the number of counters associated with ``name``. It is an
9631error if ``hash`` or ``num-counters`` differ between two instances of
9632``instrprof_increment`` that refer to the same name.
9633
9634The last argument refers to which of the counters for ``name`` should
9635be incremented. It should be a value between 0 and ``num-counters``.
9636
9637Semantics:
9638""""""""""
9639
9640This intrinsic represents an increment of a profiling counter. It will
9641cause the ``-instrprof`` pass to generate the appropriate data
9642structures and the code to increment the appropriate value, in a
9643format that can be written out by a compiler runtime and consumed via
9644the ``llvm-profdata`` tool.
9645
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009646'``llvm.instrprof_value_profile``' Intrinsic
9647^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9648
9649Syntax:
9650"""""""
9651
9652::
9653
9654 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9655 i64 <value>, i32 <value_kind>,
9656 i32 <index>)
9657
9658Overview:
9659"""""""""
9660
9661The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9662frontend for use with instrumentation based profiling. This will be
9663lowered by the ``-instrprof`` pass to find out the target values,
9664instrumented expressions take in a program at runtime.
9665
9666Arguments:
9667""""""""""
9668
9669The first argument is a pointer to a global variable containing the
9670name of the entity being instrumented. ``name`` should generally be the
9671(mangled) function name for a set of counters.
9672
9673The second argument is a hash value that can be used by the consumer
9674of the profile data to detect changes to the instrumented source. It
9675is an error if ``hash`` differs between two instances of
9676``llvm.instrprof_*`` that refer to the same name.
9677
9678The third argument is the value of the expression being profiled. The profiled
9679expression's value should be representable as an unsigned 64-bit value. The
9680fourth argument represents the kind of value profiling that is being done. The
9681supported value profiling kinds are enumerated through the
9682``InstrProfValueKind`` type declared in the
9683``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9684index of the instrumented expression within ``name``. It should be >= 0.
9685
9686Semantics:
9687""""""""""
9688
9689This intrinsic represents the point where a call to a runtime routine
9690should be inserted for value profiling of target expressions. ``-instrprof``
9691pass will generate the appropriate data structures and replace the
9692``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9693runtime library with proper arguments.
9694
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009695'``llvm.thread.pointer``' Intrinsic
9696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9697
9698Syntax:
9699"""""""
9700
9701::
9702
9703 declare i8* @llvm.thread.pointer()
9704
9705Overview:
9706"""""""""
9707
9708The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9709pointer.
9710
9711Semantics:
9712""""""""""
9713
9714The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9715for the current thread. The exact semantics of this value are target
9716specific: it may point to the start of TLS area, to the end, or somewhere
9717in the middle. Depending on the target, this intrinsic may read a register,
9718call a helper function, read from an alternate memory space, or perform
9719other operations necessary to locate the TLS area. Not all targets support
9720this intrinsic.
9721
Sean Silvab084af42012-12-07 10:36:55 +00009722Standard C Library Intrinsics
9723-----------------------------
9724
9725LLVM provides intrinsics for a few important standard C library
9726functions. These intrinsics allow source-language front-ends to pass
9727information about the alignment of the pointer arguments to the code
9728generator, providing opportunity for more efficient code generation.
9729
9730.. _int_memcpy:
9731
9732'``llvm.memcpy``' Intrinsic
9733^^^^^^^^^^^^^^^^^^^^^^^^^^^
9734
9735Syntax:
9736"""""""
9737
9738This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9739integer bit width and for different address spaces. Not all targets
9740support all bit widths however.
9741
9742::
9743
9744 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9745 i32 <len>, i32 <align>, i1 <isvolatile>)
9746 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9747 i64 <len>, i32 <align>, i1 <isvolatile>)
9748
9749Overview:
9750"""""""""
9751
9752The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9753source location to the destination location.
9754
9755Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9756intrinsics do not return a value, takes extra alignment/isvolatile
9757arguments and the pointers can be in specified address spaces.
9758
9759Arguments:
9760""""""""""
9761
9762The first argument is a pointer to the destination, the second is a
9763pointer to the source. The third argument is an integer argument
9764specifying the number of bytes to copy, the fourth argument is the
9765alignment of the source and destination locations, and the fifth is a
9766boolean indicating a volatile access.
9767
9768If the call to this intrinsic has an alignment value that is not 0 or 1,
9769then the caller guarantees that both the source and destination pointers
9770are aligned to that boundary.
9771
9772If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9773a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9774very cleanly specified and it is unwise to depend on it.
9775
9776Semantics:
9777""""""""""
9778
9779The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9780source location to the destination location, which are not allowed to
9781overlap. It copies "len" bytes of memory over. If the argument is known
9782to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009783argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009784
9785'``llvm.memmove``' Intrinsic
9786^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9787
9788Syntax:
9789"""""""
9790
9791This is an overloaded intrinsic. You can use llvm.memmove on any integer
9792bit width and for different address space. Not all targets support all
9793bit widths however.
9794
9795::
9796
9797 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9798 i32 <len>, i32 <align>, i1 <isvolatile>)
9799 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9800 i64 <len>, i32 <align>, i1 <isvolatile>)
9801
9802Overview:
9803"""""""""
9804
9805The '``llvm.memmove.*``' intrinsics move a block of memory from the
9806source location to the destination location. It is similar to the
9807'``llvm.memcpy``' intrinsic but allows the two memory locations to
9808overlap.
9809
9810Note that, unlike the standard libc function, the ``llvm.memmove.*``
9811intrinsics do not return a value, takes extra alignment/isvolatile
9812arguments and the pointers can be in specified address spaces.
9813
9814Arguments:
9815""""""""""
9816
9817The first argument is a pointer to the destination, the second is a
9818pointer to the source. The third argument is an integer argument
9819specifying the number of bytes to copy, the fourth argument is the
9820alignment of the source and destination locations, and the fifth is a
9821boolean indicating a volatile access.
9822
9823If the call to this intrinsic has an alignment value that is not 0 or 1,
9824then the caller guarantees that the source and destination pointers are
9825aligned to that boundary.
9826
9827If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9828is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9829not very cleanly specified and it is unwise to depend on it.
9830
9831Semantics:
9832""""""""""
9833
9834The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9835source location to the destination location, which may overlap. It
9836copies "len" bytes of memory over. If the argument is known to be
9837aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009838otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009839
9840'``llvm.memset.*``' Intrinsics
9841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9842
9843Syntax:
9844"""""""
9845
9846This is an overloaded intrinsic. You can use llvm.memset on any integer
9847bit width and for different address spaces. However, not all targets
9848support all bit widths.
9849
9850::
9851
9852 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9853 i32 <len>, i32 <align>, i1 <isvolatile>)
9854 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9855 i64 <len>, i32 <align>, i1 <isvolatile>)
9856
9857Overview:
9858"""""""""
9859
9860The '``llvm.memset.*``' intrinsics fill a block of memory with a
9861particular byte value.
9862
9863Note that, unlike the standard libc function, the ``llvm.memset``
9864intrinsic does not return a value and takes extra alignment/volatile
9865arguments. Also, the destination can be in an arbitrary address space.
9866
9867Arguments:
9868""""""""""
9869
9870The first argument is a pointer to the destination to fill, the second
9871is the byte value with which to fill it, the third argument is an
9872integer argument specifying the number of bytes to fill, and the fourth
9873argument is the known alignment of the destination location.
9874
9875If the call to this intrinsic has an alignment value that is not 0 or 1,
9876then the caller guarantees that the destination pointer is aligned to
9877that boundary.
9878
9879If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9880a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9881very cleanly specified and it is unwise to depend on it.
9882
9883Semantics:
9884""""""""""
9885
9886The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9887at the destination location. If the argument is known to be aligned to
9888some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009889it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009890
9891'``llvm.sqrt.*``' Intrinsic
9892^^^^^^^^^^^^^^^^^^^^^^^^^^^
9893
9894Syntax:
9895"""""""
9896
9897This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9898floating point or vector of floating point type. Not all targets support
9899all types however.
9900
9901::
9902
9903 declare float @llvm.sqrt.f32(float %Val)
9904 declare double @llvm.sqrt.f64(double %Val)
9905 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9906 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9907 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9908
9909Overview:
9910"""""""""
9911
9912The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9913returning the same value as the libm '``sqrt``' functions would. Unlike
9914``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9915negative numbers other than -0.0 (which allows for better optimization,
9916because there is no need to worry about errno being set).
9917``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9918
9919Arguments:
9920""""""""""
9921
9922The argument and return value are floating point numbers of the same
9923type.
9924
9925Semantics:
9926""""""""""
9927
9928This function returns the sqrt of the specified operand if it is a
9929nonnegative floating point number.
9930
9931'``llvm.powi.*``' Intrinsic
9932^^^^^^^^^^^^^^^^^^^^^^^^^^^
9933
9934Syntax:
9935"""""""
9936
9937This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9938floating point or vector of floating point type. Not all targets support
9939all types however.
9940
9941::
9942
9943 declare float @llvm.powi.f32(float %Val, i32 %power)
9944 declare double @llvm.powi.f64(double %Val, i32 %power)
9945 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9946 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9947 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9948
9949Overview:
9950"""""""""
9951
9952The '``llvm.powi.*``' intrinsics return the first operand raised to the
9953specified (positive or negative) power. The order of evaluation of
9954multiplications is not defined. When a vector of floating point type is
9955used, the second argument remains a scalar integer value.
9956
9957Arguments:
9958""""""""""
9959
9960The second argument is an integer power, and the first is a value to
9961raise to that power.
9962
9963Semantics:
9964""""""""""
9965
9966This function returns the first value raised to the second power with an
9967unspecified sequence of rounding operations.
9968
9969'``llvm.sin.*``' Intrinsic
9970^^^^^^^^^^^^^^^^^^^^^^^^^^
9971
9972Syntax:
9973"""""""
9974
9975This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9976floating point or vector of floating point type. Not all targets support
9977all types however.
9978
9979::
9980
9981 declare float @llvm.sin.f32(float %Val)
9982 declare double @llvm.sin.f64(double %Val)
9983 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9984 declare fp128 @llvm.sin.f128(fp128 %Val)
9985 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9986
9987Overview:
9988"""""""""
9989
9990The '``llvm.sin.*``' intrinsics return the sine of the operand.
9991
9992Arguments:
9993""""""""""
9994
9995The argument and return value are floating point numbers of the same
9996type.
9997
9998Semantics:
9999""""""""""
10000
10001This function returns the sine of the specified operand, returning the
10002same values as the libm ``sin`` functions would, and handles error
10003conditions in the same way.
10004
10005'``llvm.cos.*``' Intrinsic
10006^^^^^^^^^^^^^^^^^^^^^^^^^^
10007
10008Syntax:
10009"""""""
10010
10011This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10012floating point or vector of floating point type. Not all targets support
10013all types however.
10014
10015::
10016
10017 declare float @llvm.cos.f32(float %Val)
10018 declare double @llvm.cos.f64(double %Val)
10019 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10020 declare fp128 @llvm.cos.f128(fp128 %Val)
10021 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10022
10023Overview:
10024"""""""""
10025
10026The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10027
10028Arguments:
10029""""""""""
10030
10031The argument and return value are floating point numbers of the same
10032type.
10033
10034Semantics:
10035""""""""""
10036
10037This function returns the cosine of the specified operand, returning the
10038same values as the libm ``cos`` functions would, and handles error
10039conditions in the same way.
10040
10041'``llvm.pow.*``' Intrinsic
10042^^^^^^^^^^^^^^^^^^^^^^^^^^
10043
10044Syntax:
10045"""""""
10046
10047This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10048floating point or vector of floating point type. Not all targets support
10049all types however.
10050
10051::
10052
10053 declare float @llvm.pow.f32(float %Val, float %Power)
10054 declare double @llvm.pow.f64(double %Val, double %Power)
10055 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10056 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10057 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10058
10059Overview:
10060"""""""""
10061
10062The '``llvm.pow.*``' intrinsics return the first operand raised to the
10063specified (positive or negative) power.
10064
10065Arguments:
10066""""""""""
10067
10068The second argument is a floating point power, and the first is a value
10069to raise to that power.
10070
10071Semantics:
10072""""""""""
10073
10074This function returns the first value raised to the second power,
10075returning the same values as the libm ``pow`` functions would, and
10076handles error conditions in the same way.
10077
10078'``llvm.exp.*``' Intrinsic
10079^^^^^^^^^^^^^^^^^^^^^^^^^^
10080
10081Syntax:
10082"""""""
10083
10084This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10085floating point or vector of floating point type. Not all targets support
10086all types however.
10087
10088::
10089
10090 declare float @llvm.exp.f32(float %Val)
10091 declare double @llvm.exp.f64(double %Val)
10092 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10093 declare fp128 @llvm.exp.f128(fp128 %Val)
10094 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10095
10096Overview:
10097"""""""""
10098
10099The '``llvm.exp.*``' intrinsics perform the exp function.
10100
10101Arguments:
10102""""""""""
10103
10104The argument and return value are floating point numbers of the same
10105type.
10106
10107Semantics:
10108""""""""""
10109
10110This function returns the same values as the libm ``exp`` functions
10111would, and handles error conditions in the same way.
10112
10113'``llvm.exp2.*``' Intrinsic
10114^^^^^^^^^^^^^^^^^^^^^^^^^^^
10115
10116Syntax:
10117"""""""
10118
10119This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10120floating point or vector of floating point type. Not all targets support
10121all types however.
10122
10123::
10124
10125 declare float @llvm.exp2.f32(float %Val)
10126 declare double @llvm.exp2.f64(double %Val)
10127 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10128 declare fp128 @llvm.exp2.f128(fp128 %Val)
10129 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10130
10131Overview:
10132"""""""""
10133
10134The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10135
10136Arguments:
10137""""""""""
10138
10139The argument and return value are floating point numbers of the same
10140type.
10141
10142Semantics:
10143""""""""""
10144
10145This function returns the same values as the libm ``exp2`` functions
10146would, and handles error conditions in the same way.
10147
10148'``llvm.log.*``' Intrinsic
10149^^^^^^^^^^^^^^^^^^^^^^^^^^
10150
10151Syntax:
10152"""""""
10153
10154This is an overloaded intrinsic. You can use ``llvm.log`` on any
10155floating point or vector of floating point type. Not all targets support
10156all types however.
10157
10158::
10159
10160 declare float @llvm.log.f32(float %Val)
10161 declare double @llvm.log.f64(double %Val)
10162 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10163 declare fp128 @llvm.log.f128(fp128 %Val)
10164 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10165
10166Overview:
10167"""""""""
10168
10169The '``llvm.log.*``' intrinsics perform the log function.
10170
10171Arguments:
10172""""""""""
10173
10174The argument and return value are floating point numbers of the same
10175type.
10176
10177Semantics:
10178""""""""""
10179
10180This function returns the same values as the libm ``log`` functions
10181would, and handles error conditions in the same way.
10182
10183'``llvm.log10.*``' Intrinsic
10184^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10185
10186Syntax:
10187"""""""
10188
10189This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10190floating point or vector of floating point type. Not all targets support
10191all types however.
10192
10193::
10194
10195 declare float @llvm.log10.f32(float %Val)
10196 declare double @llvm.log10.f64(double %Val)
10197 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10198 declare fp128 @llvm.log10.f128(fp128 %Val)
10199 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10200
10201Overview:
10202"""""""""
10203
10204The '``llvm.log10.*``' intrinsics perform the log10 function.
10205
10206Arguments:
10207""""""""""
10208
10209The argument and return value are floating point numbers of the same
10210type.
10211
10212Semantics:
10213""""""""""
10214
10215This function returns the same values as the libm ``log10`` functions
10216would, and handles error conditions in the same way.
10217
10218'``llvm.log2.*``' Intrinsic
10219^^^^^^^^^^^^^^^^^^^^^^^^^^^
10220
10221Syntax:
10222"""""""
10223
10224This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10225floating point or vector of floating point type. Not all targets support
10226all types however.
10227
10228::
10229
10230 declare float @llvm.log2.f32(float %Val)
10231 declare double @llvm.log2.f64(double %Val)
10232 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10233 declare fp128 @llvm.log2.f128(fp128 %Val)
10234 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10235
10236Overview:
10237"""""""""
10238
10239The '``llvm.log2.*``' intrinsics perform the log2 function.
10240
10241Arguments:
10242""""""""""
10243
10244The argument and return value are floating point numbers of the same
10245type.
10246
10247Semantics:
10248""""""""""
10249
10250This function returns the same values as the libm ``log2`` functions
10251would, and handles error conditions in the same way.
10252
10253'``llvm.fma.*``' Intrinsic
10254^^^^^^^^^^^^^^^^^^^^^^^^^^
10255
10256Syntax:
10257"""""""
10258
10259This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10260floating point or vector of floating point type. Not all targets support
10261all types however.
10262
10263::
10264
10265 declare float @llvm.fma.f32(float %a, float %b, float %c)
10266 declare double @llvm.fma.f64(double %a, double %b, double %c)
10267 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10268 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10269 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10270
10271Overview:
10272"""""""""
10273
10274The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10275operation.
10276
10277Arguments:
10278""""""""""
10279
10280The argument and return value are floating point numbers of the same
10281type.
10282
10283Semantics:
10284""""""""""
10285
10286This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010287would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010288
10289'``llvm.fabs.*``' Intrinsic
10290^^^^^^^^^^^^^^^^^^^^^^^^^^^
10291
10292Syntax:
10293"""""""
10294
10295This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10296floating point or vector of floating point type. Not all targets support
10297all types however.
10298
10299::
10300
10301 declare float @llvm.fabs.f32(float %Val)
10302 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010303 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010304 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010305 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010306
10307Overview:
10308"""""""""
10309
10310The '``llvm.fabs.*``' intrinsics return the absolute value of the
10311operand.
10312
10313Arguments:
10314""""""""""
10315
10316The argument and return value are floating point numbers of the same
10317type.
10318
10319Semantics:
10320""""""""""
10321
10322This function returns the same values as the libm ``fabs`` functions
10323would, and handles error conditions in the same way.
10324
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010325'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010326^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010327
10328Syntax:
10329"""""""
10330
10331This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10332floating point or vector of floating point type. Not all targets support
10333all types however.
10334
10335::
10336
Matt Arsenault64313c92014-10-22 18:25:02 +000010337 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10338 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10339 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10340 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10341 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010342
10343Overview:
10344"""""""""
10345
10346The '``llvm.minnum.*``' intrinsics return the minimum of the two
10347arguments.
10348
10349
10350Arguments:
10351""""""""""
10352
10353The arguments and return value are floating point numbers of the same
10354type.
10355
10356Semantics:
10357""""""""""
10358
10359Follows the IEEE-754 semantics for minNum, which also match for libm's
10360fmin.
10361
10362If either operand is a NaN, returns the other non-NaN operand. Returns
10363NaN only if both operands are NaN. If the operands compare equal,
10364returns a value that compares equal to both operands. This means that
10365fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10366
10367'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010368^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010369
10370Syntax:
10371"""""""
10372
10373This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10374floating point or vector of floating point type. Not all targets support
10375all types however.
10376
10377::
10378
Matt Arsenault64313c92014-10-22 18:25:02 +000010379 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10380 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10381 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10382 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10383 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010384
10385Overview:
10386"""""""""
10387
10388The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10389arguments.
10390
10391
10392Arguments:
10393""""""""""
10394
10395The arguments and return value are floating point numbers of the same
10396type.
10397
10398Semantics:
10399""""""""""
10400Follows the IEEE-754 semantics for maxNum, which also match for libm's
10401fmax.
10402
10403If either operand is a NaN, returns the other non-NaN operand. Returns
10404NaN only if both operands are NaN. If the operands compare equal,
10405returns a value that compares equal to both operands. This means that
10406fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10407
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010408'``llvm.copysign.*``' Intrinsic
10409^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10410
10411Syntax:
10412"""""""
10413
10414This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10415floating point or vector of floating point type. Not all targets support
10416all types however.
10417
10418::
10419
10420 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10421 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10422 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10423 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10424 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10425
10426Overview:
10427"""""""""
10428
10429The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10430first operand and the sign of the second operand.
10431
10432Arguments:
10433""""""""""
10434
10435The arguments and return value are floating point numbers of the same
10436type.
10437
10438Semantics:
10439""""""""""
10440
10441This function returns the same values as the libm ``copysign``
10442functions would, and handles error conditions in the same way.
10443
Sean Silvab084af42012-12-07 10:36:55 +000010444'``llvm.floor.*``' Intrinsic
10445^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10446
10447Syntax:
10448"""""""
10449
10450This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10451floating point or vector of floating point type. Not all targets support
10452all types however.
10453
10454::
10455
10456 declare float @llvm.floor.f32(float %Val)
10457 declare double @llvm.floor.f64(double %Val)
10458 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10459 declare fp128 @llvm.floor.f128(fp128 %Val)
10460 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10461
10462Overview:
10463"""""""""
10464
10465The '``llvm.floor.*``' intrinsics return the floor of the operand.
10466
10467Arguments:
10468""""""""""
10469
10470The argument and return value are floating point numbers of the same
10471type.
10472
10473Semantics:
10474""""""""""
10475
10476This function returns the same values as the libm ``floor`` functions
10477would, and handles error conditions in the same way.
10478
10479'``llvm.ceil.*``' Intrinsic
10480^^^^^^^^^^^^^^^^^^^^^^^^^^^
10481
10482Syntax:
10483"""""""
10484
10485This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10486floating point or vector of floating point type. Not all targets support
10487all types however.
10488
10489::
10490
10491 declare float @llvm.ceil.f32(float %Val)
10492 declare double @llvm.ceil.f64(double %Val)
10493 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10494 declare fp128 @llvm.ceil.f128(fp128 %Val)
10495 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10496
10497Overview:
10498"""""""""
10499
10500The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10501
10502Arguments:
10503""""""""""
10504
10505The argument and return value are floating point numbers of the same
10506type.
10507
10508Semantics:
10509""""""""""
10510
10511This function returns the same values as the libm ``ceil`` functions
10512would, and handles error conditions in the same way.
10513
10514'``llvm.trunc.*``' Intrinsic
10515^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10516
10517Syntax:
10518"""""""
10519
10520This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10521floating point or vector of floating point type. Not all targets support
10522all types however.
10523
10524::
10525
10526 declare float @llvm.trunc.f32(float %Val)
10527 declare double @llvm.trunc.f64(double %Val)
10528 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10529 declare fp128 @llvm.trunc.f128(fp128 %Val)
10530 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10531
10532Overview:
10533"""""""""
10534
10535The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10536nearest integer not larger in magnitude than the operand.
10537
10538Arguments:
10539""""""""""
10540
10541The argument and return value are floating point numbers of the same
10542type.
10543
10544Semantics:
10545""""""""""
10546
10547This function returns the same values as the libm ``trunc`` functions
10548would, and handles error conditions in the same way.
10549
10550'``llvm.rint.*``' Intrinsic
10551^^^^^^^^^^^^^^^^^^^^^^^^^^^
10552
10553Syntax:
10554"""""""
10555
10556This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10557floating point or vector of floating point type. Not all targets support
10558all types however.
10559
10560::
10561
10562 declare float @llvm.rint.f32(float %Val)
10563 declare double @llvm.rint.f64(double %Val)
10564 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10565 declare fp128 @llvm.rint.f128(fp128 %Val)
10566 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10567
10568Overview:
10569"""""""""
10570
10571The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10572nearest integer. It may raise an inexact floating-point exception if the
10573operand isn't an integer.
10574
10575Arguments:
10576""""""""""
10577
10578The argument and return value are floating point numbers of the same
10579type.
10580
10581Semantics:
10582""""""""""
10583
10584This function returns the same values as the libm ``rint`` functions
10585would, and handles error conditions in the same way.
10586
10587'``llvm.nearbyint.*``' Intrinsic
10588^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10589
10590Syntax:
10591"""""""
10592
10593This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10594floating point or vector of floating point type. Not all targets support
10595all types however.
10596
10597::
10598
10599 declare float @llvm.nearbyint.f32(float %Val)
10600 declare double @llvm.nearbyint.f64(double %Val)
10601 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10602 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10603 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10604
10605Overview:
10606"""""""""
10607
10608The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10609nearest integer.
10610
10611Arguments:
10612""""""""""
10613
10614The argument and return value are floating point numbers of the same
10615type.
10616
10617Semantics:
10618""""""""""
10619
10620This function returns the same values as the libm ``nearbyint``
10621functions would, and handles error conditions in the same way.
10622
Hal Finkel171817e2013-08-07 22:49:12 +000010623'``llvm.round.*``' Intrinsic
10624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10625
10626Syntax:
10627"""""""
10628
10629This is an overloaded intrinsic. You can use ``llvm.round`` on any
10630floating point or vector of floating point type. Not all targets support
10631all types however.
10632
10633::
10634
10635 declare float @llvm.round.f32(float %Val)
10636 declare double @llvm.round.f64(double %Val)
10637 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10638 declare fp128 @llvm.round.f128(fp128 %Val)
10639 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10640
10641Overview:
10642"""""""""
10643
10644The '``llvm.round.*``' intrinsics returns the operand rounded to the
10645nearest integer.
10646
10647Arguments:
10648""""""""""
10649
10650The argument and return value are floating point numbers of the same
10651type.
10652
10653Semantics:
10654""""""""""
10655
10656This function returns the same values as the libm ``round``
10657functions would, and handles error conditions in the same way.
10658
Sean Silvab084af42012-12-07 10:36:55 +000010659Bit Manipulation Intrinsics
10660---------------------------
10661
10662LLVM provides intrinsics for a few important bit manipulation
10663operations. These allow efficient code generation for some algorithms.
10664
James Molloy90111f72015-11-12 12:29:09 +000010665'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010666^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010667
10668Syntax:
10669"""""""
10670
10671This is an overloaded intrinsic function. You can use bitreverse on any
10672integer type.
10673
10674::
10675
10676 declare i16 @llvm.bitreverse.i16(i16 <id>)
10677 declare i32 @llvm.bitreverse.i32(i32 <id>)
10678 declare i64 @llvm.bitreverse.i64(i64 <id>)
10679
10680Overview:
10681"""""""""
10682
10683The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010684bitpattern of an integer value; for example ``0b10110110`` becomes
10685``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010686
10687Semantics:
10688""""""""""
10689
10690The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10691``M`` in the input moved to bit ``N-M`` in the output.
10692
Sean Silvab084af42012-12-07 10:36:55 +000010693'``llvm.bswap.*``' Intrinsics
10694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10695
10696Syntax:
10697"""""""
10698
10699This is an overloaded intrinsic function. You can use bswap on any
10700integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10701
10702::
10703
10704 declare i16 @llvm.bswap.i16(i16 <id>)
10705 declare i32 @llvm.bswap.i32(i32 <id>)
10706 declare i64 @llvm.bswap.i64(i64 <id>)
10707
10708Overview:
10709"""""""""
10710
10711The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10712values with an even number of bytes (positive multiple of 16 bits).
10713These are useful for performing operations on data that is not in the
10714target's native byte order.
10715
10716Semantics:
10717""""""""""
10718
10719The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10720and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10721intrinsic returns an i32 value that has the four bytes of the input i32
10722swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10723returned i32 will have its bytes in 3, 2, 1, 0 order. The
10724``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10725concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10726respectively).
10727
10728'``llvm.ctpop.*``' Intrinsic
10729^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10730
10731Syntax:
10732"""""""
10733
10734This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10735bit width, or on any vector with integer elements. Not all targets
10736support all bit widths or vector types, however.
10737
10738::
10739
10740 declare i8 @llvm.ctpop.i8(i8 <src>)
10741 declare i16 @llvm.ctpop.i16(i16 <src>)
10742 declare i32 @llvm.ctpop.i32(i32 <src>)
10743 declare i64 @llvm.ctpop.i64(i64 <src>)
10744 declare i256 @llvm.ctpop.i256(i256 <src>)
10745 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10746
10747Overview:
10748"""""""""
10749
10750The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10751in a value.
10752
10753Arguments:
10754""""""""""
10755
10756The only argument is the value to be counted. The argument may be of any
10757integer type, or a vector with integer elements. The return type must
10758match the argument type.
10759
10760Semantics:
10761""""""""""
10762
10763The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10764each element of a vector.
10765
10766'``llvm.ctlz.*``' Intrinsic
10767^^^^^^^^^^^^^^^^^^^^^^^^^^^
10768
10769Syntax:
10770"""""""
10771
10772This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10773integer bit width, or any vector whose elements are integers. Not all
10774targets support all bit widths or vector types, however.
10775
10776::
10777
10778 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10779 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10780 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10781 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10782 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010783 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010784
10785Overview:
10786"""""""""
10787
10788The '``llvm.ctlz``' family of intrinsic functions counts the number of
10789leading zeros in a variable.
10790
10791Arguments:
10792""""""""""
10793
10794The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010795any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010796type must match the first argument type.
10797
10798The second argument must be a constant and is a flag to indicate whether
10799the intrinsic should ensure that a zero as the first argument produces a
10800defined result. Historically some architectures did not provide a
10801defined result for zero values as efficiently, and many algorithms are
10802now predicated on avoiding zero-value inputs.
10803
10804Semantics:
10805""""""""""
10806
10807The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10808zeros in a variable, or within each element of the vector. If
10809``src == 0`` then the result is the size in bits of the type of ``src``
10810if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10811``llvm.ctlz(i32 2) = 30``.
10812
10813'``llvm.cttz.*``' Intrinsic
10814^^^^^^^^^^^^^^^^^^^^^^^^^^^
10815
10816Syntax:
10817"""""""
10818
10819This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10820integer bit width, or any vector of integer elements. Not all targets
10821support all bit widths or vector types, however.
10822
10823::
10824
10825 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10826 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10827 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10828 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10829 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010830 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010831
10832Overview:
10833"""""""""
10834
10835The '``llvm.cttz``' family of intrinsic functions counts the number of
10836trailing zeros.
10837
10838Arguments:
10839""""""""""
10840
10841The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010842any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010843type must match the first argument type.
10844
10845The second argument must be a constant and is a flag to indicate whether
10846the intrinsic should ensure that a zero as the first argument produces a
10847defined result. Historically some architectures did not provide a
10848defined result for zero values as efficiently, and many algorithms are
10849now predicated on avoiding zero-value inputs.
10850
10851Semantics:
10852""""""""""
10853
10854The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10855zeros in a variable, or within each element of a vector. If ``src == 0``
10856then the result is the size in bits of the type of ``src`` if
10857``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10858``llvm.cttz(2) = 1``.
10859
Philip Reames34843ae2015-03-05 05:55:55 +000010860.. _int_overflow:
10861
Sean Silvab084af42012-12-07 10:36:55 +000010862Arithmetic with Overflow Intrinsics
10863-----------------------------------
10864
John Regehr6a493f22016-05-12 20:55:09 +000010865LLVM provides intrinsics for fast arithmetic overflow checking.
10866
10867Each of these intrinsics returns a two-element struct. The first
10868element of this struct contains the result of the corresponding
10869arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
10870the result. Therefore, for example, the first element of the struct
10871returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
10872result of a 32-bit ``add`` instruction with the same operands, where
10873the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
10874
10875The second element of the result is an ``i1`` that is 1 if the
10876arithmetic operation overflowed and 0 otherwise. An operation
10877overflows if, for any values of its operands ``A`` and ``B`` and for
10878any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
10879not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
10880``sext`` for signed overflow and ``zext`` for unsigned overflow, and
10881``op`` is the underlying arithmetic operation.
10882
10883The behavior of these intrinsics is well-defined for all argument
10884values.
Sean Silvab084af42012-12-07 10:36:55 +000010885
10886'``llvm.sadd.with.overflow.*``' Intrinsics
10887^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10888
10889Syntax:
10890"""""""
10891
10892This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10893on any integer bit width.
10894
10895::
10896
10897 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10898 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10899 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10900
10901Overview:
10902"""""""""
10903
10904The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10905a signed addition of the two arguments, and indicate whether an overflow
10906occurred during the signed summation.
10907
10908Arguments:
10909""""""""""
10910
10911The arguments (%a and %b) and the first element of the result structure
10912may be of integer types of any bit width, but they must have the same
10913bit width. The second element of the result structure must be of type
10914``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10915addition.
10916
10917Semantics:
10918""""""""""
10919
10920The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010921a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010922first element of which is the signed summation, and the second element
10923of which is a bit specifying if the signed summation resulted in an
10924overflow.
10925
10926Examples:
10927"""""""""
10928
10929.. code-block:: llvm
10930
10931 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10932 %sum = extractvalue {i32, i1} %res, 0
10933 %obit = extractvalue {i32, i1} %res, 1
10934 br i1 %obit, label %overflow, label %normal
10935
10936'``llvm.uadd.with.overflow.*``' Intrinsics
10937^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10938
10939Syntax:
10940"""""""
10941
10942This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10943on any integer bit width.
10944
10945::
10946
10947 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10948 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10949 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10950
10951Overview:
10952"""""""""
10953
10954The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10955an unsigned addition of the two arguments, and indicate whether a carry
10956occurred during the unsigned summation.
10957
10958Arguments:
10959""""""""""
10960
10961The arguments (%a and %b) and the first element of the result structure
10962may be of integer types of any bit width, but they must have the same
10963bit width. The second element of the result structure must be of type
10964``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10965addition.
10966
10967Semantics:
10968""""""""""
10969
10970The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010971an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010972first element of which is the sum, and the second element of which is a
10973bit specifying if the unsigned summation resulted in a carry.
10974
10975Examples:
10976"""""""""
10977
10978.. code-block:: llvm
10979
10980 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10981 %sum = extractvalue {i32, i1} %res, 0
10982 %obit = extractvalue {i32, i1} %res, 1
10983 br i1 %obit, label %carry, label %normal
10984
10985'``llvm.ssub.with.overflow.*``' Intrinsics
10986^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10987
10988Syntax:
10989"""""""
10990
10991This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10992on any integer bit width.
10993
10994::
10995
10996 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10997 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10998 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10999
11000Overview:
11001"""""""""
11002
11003The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11004a signed subtraction of the two arguments, and indicate whether an
11005overflow occurred during the signed subtraction.
11006
11007Arguments:
11008""""""""""
11009
11010The arguments (%a and %b) and the first element of the result structure
11011may be of integer types of any bit width, but they must have the same
11012bit width. The second element of the result structure must be of type
11013``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11014subtraction.
11015
11016Semantics:
11017""""""""""
11018
11019The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011020a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011021first element of which is the subtraction, and the second element of
11022which is a bit specifying if the signed subtraction resulted in an
11023overflow.
11024
11025Examples:
11026"""""""""
11027
11028.. code-block:: llvm
11029
11030 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11031 %sum = extractvalue {i32, i1} %res, 0
11032 %obit = extractvalue {i32, i1} %res, 1
11033 br i1 %obit, label %overflow, label %normal
11034
11035'``llvm.usub.with.overflow.*``' Intrinsics
11036^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11037
11038Syntax:
11039"""""""
11040
11041This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11042on any integer bit width.
11043
11044::
11045
11046 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11047 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11048 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11049
11050Overview:
11051"""""""""
11052
11053The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11054an unsigned subtraction of the two arguments, and indicate whether an
11055overflow occurred during the unsigned subtraction.
11056
11057Arguments:
11058""""""""""
11059
11060The arguments (%a and %b) and the first element of the result structure
11061may be of integer types of any bit width, but they must have the same
11062bit width. The second element of the result structure must be of type
11063``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11064subtraction.
11065
11066Semantics:
11067""""""""""
11068
11069The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011070an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011071the first element of which is the subtraction, and the second element of
11072which is a bit specifying if the unsigned subtraction resulted in an
11073overflow.
11074
11075Examples:
11076"""""""""
11077
11078.. code-block:: llvm
11079
11080 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11081 %sum = extractvalue {i32, i1} %res, 0
11082 %obit = extractvalue {i32, i1} %res, 1
11083 br i1 %obit, label %overflow, label %normal
11084
11085'``llvm.smul.with.overflow.*``' Intrinsics
11086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11087
11088Syntax:
11089"""""""
11090
11091This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11092on any integer bit width.
11093
11094::
11095
11096 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11097 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11098 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11099
11100Overview:
11101"""""""""
11102
11103The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11104a signed multiplication of the two arguments, and indicate whether an
11105overflow occurred during the signed multiplication.
11106
11107Arguments:
11108""""""""""
11109
11110The arguments (%a and %b) and the first element of the result structure
11111may be of integer types of any bit width, but they must have the same
11112bit width. The second element of the result structure must be of type
11113``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11114multiplication.
11115
11116Semantics:
11117""""""""""
11118
11119The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011120a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011121the first element of which is the multiplication, and the second element
11122of which is a bit specifying if the signed multiplication resulted in an
11123overflow.
11124
11125Examples:
11126"""""""""
11127
11128.. code-block:: llvm
11129
11130 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11131 %sum = extractvalue {i32, i1} %res, 0
11132 %obit = extractvalue {i32, i1} %res, 1
11133 br i1 %obit, label %overflow, label %normal
11134
11135'``llvm.umul.with.overflow.*``' Intrinsics
11136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11137
11138Syntax:
11139"""""""
11140
11141This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11142on any integer bit width.
11143
11144::
11145
11146 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11147 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11148 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11149
11150Overview:
11151"""""""""
11152
11153The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11154a unsigned multiplication of the two arguments, and indicate whether an
11155overflow occurred during the unsigned multiplication.
11156
11157Arguments:
11158""""""""""
11159
11160The arguments (%a and %b) and the first element of the result structure
11161may be of integer types of any bit width, but they must have the same
11162bit width. The second element of the result structure must be of type
11163``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11164multiplication.
11165
11166Semantics:
11167""""""""""
11168
11169The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011170an unsigned multiplication of the two arguments. They return a structure ---
11171the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011172element of which is a bit specifying if the unsigned multiplication
11173resulted in an overflow.
11174
11175Examples:
11176"""""""""
11177
11178.. code-block:: llvm
11179
11180 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11181 %sum = extractvalue {i32, i1} %res, 0
11182 %obit = extractvalue {i32, i1} %res, 1
11183 br i1 %obit, label %overflow, label %normal
11184
11185Specialised Arithmetic Intrinsics
11186---------------------------------
11187
Owen Anderson1056a922015-07-11 07:01:27 +000011188'``llvm.canonicalize.*``' Intrinsic
11189^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11190
11191Syntax:
11192"""""""
11193
11194::
11195
11196 declare float @llvm.canonicalize.f32(float %a)
11197 declare double @llvm.canonicalize.f64(double %b)
11198
11199Overview:
11200"""""""""
11201
11202The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011203encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011204implementing certain numeric primitives such as frexp. The canonical encoding is
11205defined by IEEE-754-2008 to be:
11206
11207::
11208
11209 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011210 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011211 numbers, infinities, and NaNs, especially in decimal formats.
11212
11213This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011214conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011215according to section 6.2.
11216
11217Examples of non-canonical encodings:
11218
Sean Silvaa1190322015-08-06 22:56:48 +000011219- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011220 converted to a canonical representation per hardware-specific protocol.
11221- Many normal decimal floating point numbers have non-canonical alternative
11222 encodings.
11223- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011224 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011225 a zero of the same sign by this operation.
11226
11227Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11228default exception handling must signal an invalid exception, and produce a
11229quiet NaN result.
11230
11231This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011232that the compiler does not constant fold the operation. Likewise, division by
112331.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011234-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11235
Sean Silvaa1190322015-08-06 22:56:48 +000011236``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011237
11238- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11239- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11240 to ``(x == y)``
11241
11242Additionally, the sign of zero must be conserved:
11243``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11244
11245The payload bits of a NaN must be conserved, with two exceptions.
11246First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011247must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011248usual methods.
11249
11250The canonicalization operation may be optimized away if:
11251
Sean Silvaa1190322015-08-06 22:56:48 +000011252- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011253 floating-point operation that is required by the standard to be canonical.
11254- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011255 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011256
Sean Silvab084af42012-12-07 10:36:55 +000011257'``llvm.fmuladd.*``' Intrinsic
11258^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11259
11260Syntax:
11261"""""""
11262
11263::
11264
11265 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11266 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11267
11268Overview:
11269"""""""""
11270
11271The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011272expressions that can be fused if the code generator determines that (a) the
11273target instruction set has support for a fused operation, and (b) that the
11274fused operation is more efficient than the equivalent, separate pair of mul
11275and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011276
11277Arguments:
11278""""""""""
11279
11280The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11281multiplicands, a and b, and an addend c.
11282
11283Semantics:
11284""""""""""
11285
11286The expression:
11287
11288::
11289
11290 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11291
11292is equivalent to the expression a \* b + c, except that rounding will
11293not be performed between the multiplication and addition steps if the
11294code generator fuses the operations. Fusion is not guaranteed, even if
11295the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011296corresponding llvm.fma.\* intrinsic function should be used
11297instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011298
11299Examples:
11300"""""""""
11301
11302.. code-block:: llvm
11303
Tim Northover675a0962014-06-13 14:24:23 +000011304 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011305
11306Half Precision Floating Point Intrinsics
11307----------------------------------------
11308
11309For most target platforms, half precision floating point is a
11310storage-only format. This means that it is a dense encoding (in memory)
11311but does not support computation in the format.
11312
11313This means that code must first load the half-precision floating point
11314value as an i16, then convert it to float with
11315:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11316then be performed on the float value (including extending to double
11317etc). To store the value back to memory, it is first converted to float
11318if needed, then converted to i16 with
11319:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11320i16 value.
11321
11322.. _int_convert_to_fp16:
11323
11324'``llvm.convert.to.fp16``' Intrinsic
11325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11326
11327Syntax:
11328"""""""
11329
11330::
11331
Tim Northoverfd7e4242014-07-17 10:51:23 +000011332 declare i16 @llvm.convert.to.fp16.f32(float %a)
11333 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011334
11335Overview:
11336"""""""""
11337
Tim Northoverfd7e4242014-07-17 10:51:23 +000011338The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11339conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011340
11341Arguments:
11342""""""""""
11343
11344The intrinsic function contains single argument - the value to be
11345converted.
11346
11347Semantics:
11348""""""""""
11349
Tim Northoverfd7e4242014-07-17 10:51:23 +000011350The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11351conventional floating point format to half precision floating point format. The
11352return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011353
11354Examples:
11355"""""""""
11356
11357.. code-block:: llvm
11358
Tim Northoverfd7e4242014-07-17 10:51:23 +000011359 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011360 store i16 %res, i16* @x, align 2
11361
11362.. _int_convert_from_fp16:
11363
11364'``llvm.convert.from.fp16``' Intrinsic
11365^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11366
11367Syntax:
11368"""""""
11369
11370::
11371
Tim Northoverfd7e4242014-07-17 10:51:23 +000011372 declare float @llvm.convert.from.fp16.f32(i16 %a)
11373 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011374
11375Overview:
11376"""""""""
11377
11378The '``llvm.convert.from.fp16``' intrinsic function performs a
11379conversion from half precision floating point format to single precision
11380floating point format.
11381
11382Arguments:
11383""""""""""
11384
11385The intrinsic function contains single argument - the value to be
11386converted.
11387
11388Semantics:
11389""""""""""
11390
11391The '``llvm.convert.from.fp16``' intrinsic function performs a
11392conversion from half single precision floating point format to single
11393precision floating point format. The input half-float value is
11394represented by an ``i16`` value.
11395
11396Examples:
11397"""""""""
11398
11399.. code-block:: llvm
11400
David Blaikiec7aabbb2015-03-04 22:06:14 +000011401 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011402 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011403
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011404.. _dbg_intrinsics:
11405
Sean Silvab084af42012-12-07 10:36:55 +000011406Debugger Intrinsics
11407-------------------
11408
11409The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11410prefix), are described in the `LLVM Source Level
11411Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11412document.
11413
11414Exception Handling Intrinsics
11415-----------------------------
11416
11417The LLVM exception handling intrinsics (which all start with
11418``llvm.eh.`` prefix), are described in the `LLVM Exception
11419Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11420
11421.. _int_trampoline:
11422
11423Trampoline Intrinsics
11424---------------------
11425
11426These intrinsics make it possible to excise one parameter, marked with
11427the :ref:`nest <nest>` attribute, from a function. The result is a
11428callable function pointer lacking the nest parameter - the caller does
11429not need to provide a value for it. Instead, the value to use is stored
11430in advance in a "trampoline", a block of memory usually allocated on the
11431stack, which also contains code to splice the nest value into the
11432argument list. This is used to implement the GCC nested function address
11433extension.
11434
11435For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11436then the resulting function pointer has signature ``i32 (i32, i32)*``.
11437It can be created as follows:
11438
11439.. code-block:: llvm
11440
11441 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011442 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011443 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11444 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11445 %fp = bitcast i8* %p to i32 (i32, i32)*
11446
11447The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11448``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11449
11450.. _int_it:
11451
11452'``llvm.init.trampoline``' Intrinsic
11453^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11454
11455Syntax:
11456"""""""
11457
11458::
11459
11460 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11461
11462Overview:
11463"""""""""
11464
11465This fills the memory pointed to by ``tramp`` with executable code,
11466turning it into a trampoline.
11467
11468Arguments:
11469""""""""""
11470
11471The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11472pointers. The ``tramp`` argument must point to a sufficiently large and
11473sufficiently aligned block of memory; this memory is written to by the
11474intrinsic. Note that the size and the alignment are target-specific -
11475LLVM currently provides no portable way of determining them, so a
11476front-end that generates this intrinsic needs to have some
11477target-specific knowledge. The ``func`` argument must hold a function
11478bitcast to an ``i8*``.
11479
11480Semantics:
11481""""""""""
11482
11483The block of memory pointed to by ``tramp`` is filled with target
11484dependent code, turning it into a function. Then ``tramp`` needs to be
11485passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11486be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11487function's signature is the same as that of ``func`` with any arguments
11488marked with the ``nest`` attribute removed. At most one such ``nest``
11489argument is allowed, and it must be of pointer type. Calling the new
11490function is equivalent to calling ``func`` with the same argument list,
11491but with ``nval`` used for the missing ``nest`` argument. If, after
11492calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11493modified, then the effect of any later call to the returned function
11494pointer is undefined.
11495
11496.. _int_at:
11497
11498'``llvm.adjust.trampoline``' Intrinsic
11499^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11500
11501Syntax:
11502"""""""
11503
11504::
11505
11506 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11507
11508Overview:
11509"""""""""
11510
11511This performs any required machine-specific adjustment to the address of
11512a trampoline (passed as ``tramp``).
11513
11514Arguments:
11515""""""""""
11516
11517``tramp`` must point to a block of memory which already has trampoline
11518code filled in by a previous call to
11519:ref:`llvm.init.trampoline <int_it>`.
11520
11521Semantics:
11522""""""""""
11523
11524On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011525different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011526intrinsic returns the executable address corresponding to ``tramp``
11527after performing the required machine specific adjustments. The pointer
11528returned can then be :ref:`bitcast and executed <int_trampoline>`.
11529
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011530.. _int_mload_mstore:
11531
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011532Masked Vector Load and Store Intrinsics
11533---------------------------------------
11534
11535LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11536
11537.. _int_mload:
11538
11539'``llvm.masked.load.*``' Intrinsics
11540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11541
11542Syntax:
11543"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011544This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011545
11546::
11547
Adam Nemet7aab6482016-04-14 08:47:17 +000011548 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11549 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011550 ;; The data is a vector of pointers to double
Adam Nemet7aab6482016-04-14 08:47:17 +000011551 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011552 ;; The data is a vector of function pointers
Adam Nemet7aab6482016-04-14 08:47:17 +000011553 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011554
11555Overview:
11556"""""""""
11557
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011558Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011559
11560
11561Arguments:
11562""""""""""
11563
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011564The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011565
11566
11567Semantics:
11568""""""""""
11569
11570The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11571The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11572
11573
11574::
11575
Adam Nemet7aab6482016-04-14 08:47:17 +000011576 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011577
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011578 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011579 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011580 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011581
11582.. _int_mstore:
11583
11584'``llvm.masked.store.*``' Intrinsics
11585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11586
11587Syntax:
11588"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011589This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011590
11591::
11592
Adam Nemet7aab6482016-04-14 08:47:17 +000011593 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11594 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011595 ;; The data is a vector of pointers to double
Adam Nemet7aab6482016-04-14 08:47:17 +000011596 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011597 ;; The data is a vector of function pointers
Adam Nemet7aab6482016-04-14 08:47:17 +000011598 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011599
11600Overview:
11601"""""""""
11602
11603Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11604
11605Arguments:
11606""""""""""
11607
11608The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11609
11610
11611Semantics:
11612""""""""""
11613
11614The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11615The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11616
11617::
11618
Adam Nemet7aab6482016-04-14 08:47:17 +000011619 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011620
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011621 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011622 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011623 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11624 store <16 x float> %res, <16 x float>* %ptr, align 4
11625
11626
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011627Masked Vector Gather and Scatter Intrinsics
11628-------------------------------------------
11629
11630LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11631
11632.. _int_mgather:
11633
11634'``llvm.masked.gather.*``' Intrinsics
11635^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11636
11637Syntax:
11638"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011639This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011640
11641::
11642
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011643 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11644 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11645 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011646
11647Overview:
11648"""""""""
11649
11650Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11651
11652
11653Arguments:
11654""""""""""
11655
11656The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11657
11658
11659Semantics:
11660""""""""""
11661
11662The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11663The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11664
11665
11666::
11667
11668 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11669
11670 ;; The gather with all-true mask is equivalent to the following instruction sequence
11671 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11672 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11673 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11674 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11675
11676 %val0 = load double, double* %ptr0, align 8
11677 %val1 = load double, double* %ptr1, align 8
11678 %val2 = load double, double* %ptr2, align 8
11679 %val3 = load double, double* %ptr3, align 8
11680
11681 %vec0 = insertelement <4 x double>undef, %val0, 0
11682 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11683 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11684 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11685
11686.. _int_mscatter:
11687
11688'``llvm.masked.scatter.*``' Intrinsics
11689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11690
11691Syntax:
11692"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011693This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011694
11695::
11696
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011697 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11698 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11699 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011700
11701Overview:
11702"""""""""
11703
11704Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11705
11706Arguments:
11707""""""""""
11708
11709The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11710
11711
11712Semantics:
11713""""""""""
11714
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011715The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011716
11717::
11718
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011719 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011720 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11721
11722 ;; It is equivalent to a list of scalar stores
11723 %val0 = extractelement <8 x i32> %value, i32 0
11724 %val1 = extractelement <8 x i32> %value, i32 1
11725 ..
11726 %val7 = extractelement <8 x i32> %value, i32 7
11727 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11728 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11729 ..
11730 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11731 ;; Note: the order of the following stores is important when they overlap:
11732 store i32 %val0, i32* %ptr0, align 4
11733 store i32 %val1, i32* %ptr1, align 4
11734 ..
11735 store i32 %val7, i32* %ptr7, align 4
11736
11737
Sean Silvab084af42012-12-07 10:36:55 +000011738Memory Use Markers
11739------------------
11740
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011741This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011742memory objects and ranges where variables are immutable.
11743
Reid Klecknera534a382013-12-19 02:14:12 +000011744.. _int_lifestart:
11745
Sean Silvab084af42012-12-07 10:36:55 +000011746'``llvm.lifetime.start``' Intrinsic
11747^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11748
11749Syntax:
11750"""""""
11751
11752::
11753
11754 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11755
11756Overview:
11757"""""""""
11758
11759The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11760object's lifetime.
11761
11762Arguments:
11763""""""""""
11764
11765The first argument is a constant integer representing the size of the
11766object, or -1 if it is variable sized. The second argument is a pointer
11767to the object.
11768
11769Semantics:
11770""""""""""
11771
11772This intrinsic indicates that before this point in the code, the value
11773of the memory pointed to by ``ptr`` is dead. This means that it is known
11774to never be used and has an undefined value. A load from the pointer
11775that precedes this intrinsic can be replaced with ``'undef'``.
11776
Reid Klecknera534a382013-12-19 02:14:12 +000011777.. _int_lifeend:
11778
Sean Silvab084af42012-12-07 10:36:55 +000011779'``llvm.lifetime.end``' Intrinsic
11780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11781
11782Syntax:
11783"""""""
11784
11785::
11786
11787 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11788
11789Overview:
11790"""""""""
11791
11792The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11793object's lifetime.
11794
11795Arguments:
11796""""""""""
11797
11798The first argument is a constant integer representing the size of the
11799object, or -1 if it is variable sized. The second argument is a pointer
11800to the object.
11801
11802Semantics:
11803""""""""""
11804
11805This intrinsic indicates that after this point in the code, the value of
11806the memory pointed to by ``ptr`` is dead. This means that it is known to
11807never be used and has an undefined value. Any stores into the memory
11808object following this intrinsic may be removed as dead.
11809
11810'``llvm.invariant.start``' Intrinsic
11811^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11812
11813Syntax:
11814"""""""
11815
11816::
11817
11818 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11819
11820Overview:
11821"""""""""
11822
11823The '``llvm.invariant.start``' intrinsic specifies that the contents of
11824a memory object will not change.
11825
11826Arguments:
11827""""""""""
11828
11829The first argument is a constant integer representing the size of the
11830object, or -1 if it is variable sized. The second argument is a pointer
11831to the object.
11832
11833Semantics:
11834""""""""""
11835
11836This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11837the return value, the referenced memory location is constant and
11838unchanging.
11839
11840'``llvm.invariant.end``' Intrinsic
11841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11842
11843Syntax:
11844"""""""
11845
11846::
11847
11848 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11849
11850Overview:
11851"""""""""
11852
11853The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11854memory object are mutable.
11855
11856Arguments:
11857""""""""""
11858
11859The first argument is the matching ``llvm.invariant.start`` intrinsic.
11860The second argument is a constant integer representing the size of the
11861object, or -1 if it is variable sized and the third argument is a
11862pointer to the object.
11863
11864Semantics:
11865""""""""""
11866
11867This intrinsic indicates that the memory is mutable again.
11868
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011869'``llvm.invariant.group.barrier``' Intrinsic
11870^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11871
11872Syntax:
11873"""""""
11874
11875::
11876
11877 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11878
11879Overview:
11880"""""""""
11881
11882The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11883established by invariant.group metadata no longer holds, to obtain a new pointer
11884value that does not carry the invariant information.
11885
11886
11887Arguments:
11888""""""""""
11889
11890The ``llvm.invariant.group.barrier`` takes only one argument, which is
11891the pointer to the memory for which the ``invariant.group`` no longer holds.
11892
11893Semantics:
11894""""""""""
11895
11896Returns another pointer that aliases its argument but which is considered different
11897for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11898
Sean Silvab084af42012-12-07 10:36:55 +000011899General Intrinsics
11900------------------
11901
11902This class of intrinsics is designed to be generic and has no specific
11903purpose.
11904
11905'``llvm.var.annotation``' Intrinsic
11906^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11907
11908Syntax:
11909"""""""
11910
11911::
11912
11913 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11914
11915Overview:
11916"""""""""
11917
11918The '``llvm.var.annotation``' intrinsic.
11919
11920Arguments:
11921""""""""""
11922
11923The first argument is a pointer to a value, the second is a pointer to a
11924global string, the third is a pointer to a global string which is the
11925source file name, and the last argument is the line number.
11926
11927Semantics:
11928""""""""""
11929
11930This intrinsic allows annotation of local variables with arbitrary
11931strings. This can be useful for special purpose optimizations that want
11932to look for these annotations. These have no other defined use; they are
11933ignored by code generation and optimization.
11934
Michael Gottesman88d18832013-03-26 00:34:27 +000011935'``llvm.ptr.annotation.*``' Intrinsic
11936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11937
11938Syntax:
11939"""""""
11940
11941This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11942pointer to an integer of any width. *NOTE* you must specify an address space for
11943the pointer. The identifier for the default address space is the integer
11944'``0``'.
11945
11946::
11947
11948 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11949 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11950 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11951 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11952 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11953
11954Overview:
11955"""""""""
11956
11957The '``llvm.ptr.annotation``' intrinsic.
11958
11959Arguments:
11960""""""""""
11961
11962The first argument is a pointer to an integer value of arbitrary bitwidth
11963(result of some expression), the second is a pointer to a global string, the
11964third is a pointer to a global string which is the source file name, and the
11965last argument is the line number. It returns the value of the first argument.
11966
11967Semantics:
11968""""""""""
11969
11970This intrinsic allows annotation of a pointer to an integer with arbitrary
11971strings. This can be useful for special purpose optimizations that want to look
11972for these annotations. These have no other defined use; they are ignored by code
11973generation and optimization.
11974
Sean Silvab084af42012-12-07 10:36:55 +000011975'``llvm.annotation.*``' Intrinsic
11976^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11977
11978Syntax:
11979"""""""
11980
11981This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11982any integer bit width.
11983
11984::
11985
11986 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11987 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11988 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11989 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11990 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11991
11992Overview:
11993"""""""""
11994
11995The '``llvm.annotation``' intrinsic.
11996
11997Arguments:
11998""""""""""
11999
12000The first argument is an integer value (result of some expression), the
12001second is a pointer to a global string, the third is a pointer to a
12002global string which is the source file name, and the last argument is
12003the line number. It returns the value of the first argument.
12004
12005Semantics:
12006""""""""""
12007
12008This intrinsic allows annotations to be put on arbitrary expressions
12009with arbitrary strings. This can be useful for special purpose
12010optimizations that want to look for these annotations. These have no
12011other defined use; they are ignored by code generation and optimization.
12012
12013'``llvm.trap``' Intrinsic
12014^^^^^^^^^^^^^^^^^^^^^^^^^
12015
12016Syntax:
12017"""""""
12018
12019::
12020
12021 declare void @llvm.trap() noreturn nounwind
12022
12023Overview:
12024"""""""""
12025
12026The '``llvm.trap``' intrinsic.
12027
12028Arguments:
12029""""""""""
12030
12031None.
12032
12033Semantics:
12034""""""""""
12035
12036This intrinsic is lowered to the target dependent trap instruction. If
12037the target does not have a trap instruction, this intrinsic will be
12038lowered to a call of the ``abort()`` function.
12039
12040'``llvm.debugtrap``' Intrinsic
12041^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12042
12043Syntax:
12044"""""""
12045
12046::
12047
12048 declare void @llvm.debugtrap() nounwind
12049
12050Overview:
12051"""""""""
12052
12053The '``llvm.debugtrap``' intrinsic.
12054
12055Arguments:
12056""""""""""
12057
12058None.
12059
12060Semantics:
12061""""""""""
12062
12063This intrinsic is lowered to code which is intended to cause an
12064execution trap with the intention of requesting the attention of a
12065debugger.
12066
12067'``llvm.stackprotector``' Intrinsic
12068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12069
12070Syntax:
12071"""""""
12072
12073::
12074
12075 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12076
12077Overview:
12078"""""""""
12079
12080The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12081onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12082is placed on the stack before local variables.
12083
12084Arguments:
12085""""""""""
12086
12087The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12088The first argument is the value loaded from the stack guard
12089``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12090enough space to hold the value of the guard.
12091
12092Semantics:
12093""""""""""
12094
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012095This intrinsic causes the prologue/epilogue inserter to force the position of
12096the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12097to ensure that if a local variable on the stack is overwritten, it will destroy
12098the value of the guard. When the function exits, the guard on the stack is
12099checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12100different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12101calling the ``__stack_chk_fail()`` function.
12102
Tim Shene885d5e2016-04-19 19:40:37 +000012103'``llvm.stackguard``' Intrinsic
12104^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12105
12106Syntax:
12107"""""""
12108
12109::
12110
12111 declare i8* @llvm.stackguard()
12112
12113Overview:
12114"""""""""
12115
12116The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12117
12118It should not be generated by frontends, since it is only for internal usage.
12119The reason why we create this intrinsic is that we still support IR form Stack
12120Protector in FastISel.
12121
12122Arguments:
12123""""""""""
12124
12125None.
12126
12127Semantics:
12128""""""""""
12129
12130On some platforms, the value returned by this intrinsic remains unchanged
12131between loads in the same thread. On other platforms, it returns the same
12132global variable value, if any, e.g. ``@__stack_chk_guard``.
12133
12134Currently some platforms have IR-level customized stack guard loading (e.g.
12135X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12136in the future.
12137
Sean Silvab084af42012-12-07 10:36:55 +000012138'``llvm.objectsize``' Intrinsic
12139^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12140
12141Syntax:
12142"""""""
12143
12144::
12145
12146 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12147 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12148
12149Overview:
12150"""""""""
12151
12152The ``llvm.objectsize`` intrinsic is designed to provide information to
12153the optimizers to determine at compile time whether a) an operation
12154(like memcpy) will overflow a buffer that corresponds to an object, or
12155b) that a runtime check for overflow isn't necessary. An object in this
12156context means an allocation of a specific class, structure, array, or
12157other object.
12158
12159Arguments:
12160""""""""""
12161
12162The ``llvm.objectsize`` intrinsic takes two arguments. The first
12163argument is a pointer to or into the ``object``. The second argument is
12164a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12165or -1 (if false) when the object size is unknown. The second argument
12166only accepts constants.
12167
12168Semantics:
12169""""""""""
12170
12171The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12172the size of the object concerned. If the size cannot be determined at
12173compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12174on the ``min`` argument).
12175
12176'``llvm.expect``' Intrinsic
12177^^^^^^^^^^^^^^^^^^^^^^^^^^^
12178
12179Syntax:
12180"""""""
12181
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012182This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12183integer bit width.
12184
Sean Silvab084af42012-12-07 10:36:55 +000012185::
12186
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012187 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012188 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12189 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12190
12191Overview:
12192"""""""""
12193
12194The ``llvm.expect`` intrinsic provides information about expected (the
12195most probable) value of ``val``, which can be used by optimizers.
12196
12197Arguments:
12198""""""""""
12199
12200The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12201a value. The second argument is an expected value, this needs to be a
12202constant value, variables are not allowed.
12203
12204Semantics:
12205""""""""""
12206
12207This intrinsic is lowered to the ``val``.
12208
Philip Reamese0e90832015-04-26 22:23:12 +000012209.. _int_assume:
12210
Hal Finkel93046912014-07-25 21:13:35 +000012211'``llvm.assume``' Intrinsic
12212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12213
12214Syntax:
12215"""""""
12216
12217::
12218
12219 declare void @llvm.assume(i1 %cond)
12220
12221Overview:
12222"""""""""
12223
12224The ``llvm.assume`` allows the optimizer to assume that the provided
12225condition is true. This information can then be used in simplifying other parts
12226of the code.
12227
12228Arguments:
12229""""""""""
12230
12231The condition which the optimizer may assume is always true.
12232
12233Semantics:
12234""""""""""
12235
12236The intrinsic allows the optimizer to assume that the provided condition is
12237always true whenever the control flow reaches the intrinsic call. No code is
12238generated for this intrinsic, and instructions that contribute only to the
12239provided condition are not used for code generation. If the condition is
12240violated during execution, the behavior is undefined.
12241
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012242Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012243used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12244only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012245if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012246sufficient overall improvement in code quality. For this reason,
12247``llvm.assume`` should not be used to document basic mathematical invariants
12248that the optimizer can otherwise deduce or facts that are of little use to the
12249optimizer.
12250
Peter Collingbournee6909c82015-02-20 20:30:47 +000012251.. _bitset.test:
12252
12253'``llvm.bitset.test``' Intrinsic
12254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12255
12256Syntax:
12257"""""""
12258
12259::
12260
12261 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12262
12263
12264Arguments:
12265""""""""""
12266
12267The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012268metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012269
12270Overview:
12271"""""""""
12272
12273The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12274member of the given bitset.
12275
Sean Silvab084af42012-12-07 10:36:55 +000012276'``llvm.donothing``' Intrinsic
12277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12278
12279Syntax:
12280"""""""
12281
12282::
12283
12284 declare void @llvm.donothing() nounwind readnone
12285
12286Overview:
12287"""""""""
12288
Juergen Ributzkac9161192014-10-23 22:36:13 +000012289The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012290three intrinsics (besides ``llvm.experimental.patchpoint`` and
12291``llvm.experimental.gc.statepoint``) that can be called with an invoke
12292instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012293
12294Arguments:
12295""""""""""
12296
12297None.
12298
12299Semantics:
12300""""""""""
12301
12302This intrinsic does nothing, and it's removed by optimizers and ignored
12303by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012304
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012305'``llvm.experimental.deoptimize``' Intrinsic
12306^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12307
12308Syntax:
12309"""""""
12310
12311::
12312
12313 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12314
12315Overview:
12316"""""""""
12317
12318This intrinsic, together with :ref:`deoptimization operand bundles
12319<deopt_opbundles>`, allow frontends to express transfer of control and
12320frame-local state from the currently executing (typically more specialized,
12321hence faster) version of a function into another (typically more generic, hence
12322slower) version.
12323
12324In languages with a fully integrated managed runtime like Java and JavaScript
12325this intrinsic can be used to implement "uncommon trap" or "side exit" like
12326functionality. In unmanaged languages like C and C++, this intrinsic can be
12327used to represent the slow paths of specialized functions.
12328
12329
12330Arguments:
12331""""""""""
12332
12333The intrinsic takes an arbitrary number of arguments, whose meaning is
12334decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12335
12336Semantics:
12337""""""""""
12338
12339The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12340deoptimization continuation (denoted using a :ref:`deoptimization
12341operand bundle <deopt_opbundles>`) and returns the value returned by
12342the deoptimization continuation. Defining the semantic properties of
12343the continuation itself is out of scope of the language reference --
12344as far as LLVM is concerned, the deoptimization continuation can
12345invoke arbitrary side effects, including reading from and writing to
12346the entire heap.
12347
12348Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12349continue execution to the end of the physical frame containing them, so all
12350calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12351
12352 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12353 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12354 - The ``ret`` instruction must return the value produced by the
12355 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12356
12357Note that the above restrictions imply that the return type for a call to
12358``@llvm.experimental.deoptimize`` will match the return type of its immediate
12359caller.
12360
12361The inliner composes the ``"deopt"`` continuations of the caller into the
12362``"deopt"`` continuations present in the inlinee, and also updates calls to this
12363intrinsic to return directly from the frame of the function it inlined into.
12364
Sanjoy Dase0aa4142016-05-12 01:17:38 +000012365All declarations of ``@llvm.experimental.deoptimize`` must share the
12366same calling convention.
12367
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012368.. _deoptimize_lowering:
12369
12370Lowering:
12371"""""""""
12372
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012373Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12374symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12375ensure that this symbol is defined). The call arguments to
12376``@llvm.experimental.deoptimize`` are lowered as if they were formal
12377arguments of the specified types, and not as varargs.
12378
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012379
Sanjoy Das021de052016-03-31 00:18:46 +000012380'``llvm.experimental.guard``' Intrinsic
12381^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12382
12383Syntax:
12384"""""""
12385
12386::
12387
12388 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12389
12390Overview:
12391"""""""""
12392
12393This intrinsic, together with :ref:`deoptimization operand bundles
12394<deopt_opbundles>`, allows frontends to express guards or checks on
12395optimistic assumptions made during compilation. The semantics of
12396``@llvm.experimental.guard`` is defined in terms of
12397``@llvm.experimental.deoptimize`` -- its body is defined to be
12398equivalent to:
12399
12400.. code-block:: llvm
12401
12402 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12403 %realPred = and i1 %pred, undef
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012404 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000012405
12406 leave:
12407 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12408 ret void
12409
12410 continue:
12411 ret void
12412 }
12413
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012414
12415with the optional ``[, !make.implicit !{}]`` present if and only if it
12416is present on the call site. For more details on ``!make.implicit``,
12417see :doc:`FaultMaps`.
12418
Sanjoy Das021de052016-03-31 00:18:46 +000012419In words, ``@llvm.experimental.guard`` executes the attached
12420``"deopt"`` continuation if (but **not** only if) its first argument
12421is ``false``. Since the optimizer is allowed to replace the ``undef``
12422with an arbitrary value, it can optimize guard to fail "spuriously",
12423i.e. without the original condition being false (hence the "not only
12424if"); and this allows for "check widening" type optimizations.
12425
12426``@llvm.experimental.guard`` cannot be invoked.
12427
12428
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012429'``llvm.load.relative``' Intrinsic
12430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12431
12432Syntax:
12433"""""""
12434
12435::
12436
12437 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12438
12439Overview:
12440"""""""""
12441
12442This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12443adds ``%ptr`` to that value and returns it. The constant folder specifically
12444recognizes the form of this intrinsic and the constant initializers it may
12445load from; if a loaded constant initializer is known to have the form
12446``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12447
12448LLVM provides that the calculation of such a constant initializer will
12449not overflow at link time under the medium code model if ``x`` is an
12450``unnamed_addr`` function. However, it does not provide this guarantee for
12451a constant initializer folded into a function body. This intrinsic can be
12452used to avoid the possibility of overflows when loading from such a constant.
12453
Andrew Trick5e029ce2013-12-24 02:57:25 +000012454Stack Map Intrinsics
12455--------------------
12456
12457LLVM provides experimental intrinsics to support runtime patching
12458mechanisms commonly desired in dynamic language JITs. These intrinsics
12459are described in :doc:`StackMaps`.