blob: 25bf9cccb09f1b91905784590fc3739be3eb80bf [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
549.. _globalvars:
550
551Global Variables
552----------------
553
554Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000555instead of run-time.
556
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000557Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000558
559Global variables in other translation units can also be declared, in which
560case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000561
Bob Wilson85b24f22014-06-12 20:40:33 +0000562Either global variable definitions or declarations may have an explicit section
563to be placed in and may have an optional explicit alignment specified.
564
Michael Gottesman006039c2013-01-31 05:48:48 +0000565A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000566the contents of the variable will **never** be modified (enabling better
567optimization, allowing the global data to be placed in the read-only
568section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000569initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000570variable.
571
572LLVM explicitly allows *declarations* of global variables to be marked
573constant, even if the final definition of the global is not. This
574capability can be used to enable slightly better optimization of the
575program, but requires the language definition to guarantee that
576optimizations based on the 'constantness' are valid for the translation
577units that do not include the definition.
578
579As SSA values, global variables define pointer values that are in scope
580(i.e. they dominate) all basic blocks in the program. Global variables
581always define a pointer to their "content" type because they describe a
582region of memory, and all memory objects in LLVM are accessed through
583pointers.
584
585Global variables can be marked with ``unnamed_addr`` which indicates
586that the address is not significant, only the content. Constants marked
587like this can be merged with other constants if they have the same
588initializer. Note that a constant with significant address *can* be
589merged with a ``unnamed_addr`` constant, the result being a constant
590whose address is significant.
591
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000592If the ``local_unnamed_addr`` attribute is given, the address is known to
593not be significant within the module.
594
Sean Silvab084af42012-12-07 10:36:55 +0000595A global variable may be declared to reside in a target-specific
596numbered address space. For targets that support them, address spaces
597may affect how optimizations are performed and/or what target
598instructions are used to access the variable. The default address space
599is zero. The address space qualifier must precede any other attributes.
600
601LLVM allows an explicit section to be specified for globals. If the
602target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000603Additionally, the global can placed in a comdat if the target has the necessary
604support.
Sean Silvab084af42012-12-07 10:36:55 +0000605
Michael Gottesmane743a302013-02-04 03:22:00 +0000606By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000607variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000608initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000609true even for variables potentially accessible from outside the
610module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000611``@llvm.used`` or dllexported variables. This assumption may be suppressed
612by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000613
Sean Silvab084af42012-12-07 10:36:55 +0000614An explicit alignment may be specified for a global, which must be a
615power of 2. If not present, or if the alignment is set to zero, the
616alignment of the global is set by the target to whatever it feels
617convenient. If an explicit alignment is specified, the global is forced
618to have exactly that alignment. Targets and optimizers are not allowed
619to over-align the global if the global has an assigned section. In this
620case, the extra alignment could be observable: for example, code could
621assume that the globals are densely packed in their section and try to
622iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000623iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000625Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
626an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000627
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000628Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000629:ref:`Thread Local Storage Model <tls_model>`.
630
Nico Rieck7157bb72014-01-14 15:22:47 +0000631Syntax::
632
Rafael Espindola32483a72016-05-10 18:22:45 +0000633 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000634 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
635 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000636 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000637 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000638 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000639
Sean Silvab084af42012-12-07 10:36:55 +0000640For example, the following defines a global in a numbered address space
641with an initializer, section, and alignment:
642
643.. code-block:: llvm
644
645 @G = addrspace(5) constant float 1.0, section "foo", align 4
646
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000647The following example just declares a global variable
648
649.. code-block:: llvm
650
651 @G = external global i32
652
Sean Silvab084af42012-12-07 10:36:55 +0000653The following example defines a thread-local global with the
654``initialexec`` TLS model:
655
656.. code-block:: llvm
657
658 @G = thread_local(initialexec) global i32 0, align 4
659
660.. _functionstructure:
661
662Functions
663---------
664
665LLVM function definitions consist of the "``define``" keyword, an
666optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000667style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
668an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000669an optional ``unnamed_addr`` attribute, a return type, an optional
670:ref:`parameter attribute <paramattrs>` for the return type, a function
671name, a (possibly empty) argument list (each with optional :ref:`parameter
672attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000673an optional section, an optional alignment,
674an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000675an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000676an optional :ref:`prologue <prologuedata>`,
677an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000678an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000679an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000680
681LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
683<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
684optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
685or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
686attribute <paramattrs>` for the return type, a function name, a possibly
687empty list of arguments, an optional alignment, an optional :ref:`garbage
688collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
689:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000690
Bill Wendling6822ecb2013-10-27 05:09:12 +0000691A function definition contains a list of basic blocks, forming the CFG (Control
692Flow Graph) for the function. Each basic block may optionally start with a label
693(giving the basic block a symbol table entry), contains a list of instructions,
694and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
695function return). If an explicit label is not provided, a block is assigned an
696implicit numbered label, using the next value from the same counter as used for
697unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
698entry block does not have an explicit label, it will be assigned label "%0",
699then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000700
701The first basic block in a function is special in two ways: it is
702immediately executed on entrance to the function, and it is not allowed
703to have predecessor basic blocks (i.e. there can not be any branches to
704the entry block of a function). Because the block can have no
705predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
706
707LLVM allows an explicit section to be specified for functions. If the
708target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000709Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000710
711An explicit alignment may be specified for a function. If not present,
712or if the alignment is set to zero, the alignment of the function is set
713by the target to whatever it feels convenient. If an explicit alignment
714is specified, the function is forced to have at least that much
715alignment. All alignments must be a power of 2.
716
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000717If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000718be significant and two identical functions can be merged.
719
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000720If the ``local_unnamed_addr`` attribute is given, the address is known to
721not be significant within the module.
722
Sean Silvab084af42012-12-07 10:36:55 +0000723Syntax::
724
Nico Rieck7157bb72014-01-14 15:22:47 +0000725 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000726 [cconv] [ret attrs]
727 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000728 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
729 [comdat [($name)]] [align N] [gc] [prefix Constant]
730 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000731
Sean Silva706fba52015-08-06 22:56:24 +0000732The argument list is a comma separated sequence of arguments where each
733argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000734
735Syntax::
736
737 <type> [parameter Attrs] [name]
738
739
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000740.. _langref_aliases:
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Aliases
743-------
744
Rafael Espindola64c1e182014-06-03 02:41:57 +0000745Aliases, unlike function or variables, don't create any new data. They
746are just a new symbol and metadata for an existing position.
747
748Aliases have a name and an aliasee that is either a global value or a
749constant expression.
750
Nico Rieck7157bb72014-01-14 15:22:47 +0000751Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000752:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
753<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000754
755Syntax::
756
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000757 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000758
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000759The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000760``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000761might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000762
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000763Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000764the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
765to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000766
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000767If the ``local_unnamed_addr`` attribute is given, the address is known to
768not be significant within the module.
769
Rafael Espindola64c1e182014-06-03 02:41:57 +0000770Since aliases are only a second name, some restrictions apply, of which
771some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000772
Rafael Espindola64c1e182014-06-03 02:41:57 +0000773* The expression defining the aliasee must be computable at assembly
774 time. Since it is just a name, no relocations can be used.
775
776* No alias in the expression can be weak as the possibility of the
777 intermediate alias being overridden cannot be represented in an
778 object file.
779
780* No global value in the expression can be a declaration, since that
781 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000782
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000783.. _langref_ifunc:
784
785IFuncs
786-------
787
788IFuncs, like as aliases, don't create any new data or func. They are just a new
789symbol that dynamic linker resolves at runtime by calling a resolver function.
790
791IFuncs have a name and a resolver that is a function called by dynamic linker
792that returns address of another function associated with the name.
793
794IFunc may have an optional :ref:`linkage type <linkage>` and an optional
795:ref:`visibility style <visibility>`.
796
797Syntax::
798
799 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
800
801
David Majnemerdad0a642014-06-27 18:19:56 +0000802.. _langref_comdats:
803
804Comdats
805-------
806
807Comdat IR provides access to COFF and ELF object file COMDAT functionality.
808
Sean Silvaa1190322015-08-06 22:56:48 +0000809Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000810specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000811that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000812aliasee computes to, if any.
813
814Comdats have a selection kind to provide input on how the linker should
815choose between keys in two different object files.
816
817Syntax::
818
819 $<Name> = comdat SelectionKind
820
821The selection kind must be one of the following:
822
823``any``
824 The linker may choose any COMDAT key, the choice is arbitrary.
825``exactmatch``
826 The linker may choose any COMDAT key but the sections must contain the
827 same data.
828``largest``
829 The linker will choose the section containing the largest COMDAT key.
830``noduplicates``
831 The linker requires that only section with this COMDAT key exist.
832``samesize``
833 The linker may choose any COMDAT key but the sections must contain the
834 same amount of data.
835
836Note that the Mach-O platform doesn't support COMDATs and ELF only supports
837``any`` as a selection kind.
838
839Here is an example of a COMDAT group where a function will only be selected if
840the COMDAT key's section is the largest:
841
842.. code-block:: llvm
843
844 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000845 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000846
Rafael Espindola83a362c2015-01-06 22:55:16 +0000847 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000848 ret void
849 }
850
Rafael Espindola83a362c2015-01-06 22:55:16 +0000851As a syntactic sugar the ``$name`` can be omitted if the name is the same as
852the global name:
853
854.. code-block:: llvm
855
856 $foo = comdat any
857 @foo = global i32 2, comdat
858
859
David Majnemerdad0a642014-06-27 18:19:56 +0000860In a COFF object file, this will create a COMDAT section with selection kind
861``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
862and another COMDAT section with selection kind
863``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000864section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000865
866There are some restrictions on the properties of the global object.
867It, or an alias to it, must have the same name as the COMDAT group when
868targeting COFF.
869The contents and size of this object may be used during link-time to determine
870which COMDAT groups get selected depending on the selection kind.
871Because the name of the object must match the name of the COMDAT group, the
872linkage of the global object must not be local; local symbols can get renamed
873if a collision occurs in the symbol table.
874
875The combined use of COMDATS and section attributes may yield surprising results.
876For example:
877
878.. code-block:: llvm
879
880 $foo = comdat any
881 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000882 @g1 = global i32 42, section "sec", comdat($foo)
883 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000886with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000887COMDAT groups and COMDATs, at the object file level, are represented by
888sections.
889
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000890Note that certain IR constructs like global variables and functions may
891create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000892COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000893in individual sections (e.g. when `-data-sections` or `-function-sections`
894is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000895
Sean Silvab084af42012-12-07 10:36:55 +0000896.. _namedmetadatastructure:
897
898Named Metadata
899--------------
900
901Named metadata is a collection of metadata. :ref:`Metadata
902nodes <metadata>` (but not metadata strings) are the only valid
903operands for a named metadata.
904
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000905#. Named metadata are represented as a string of characters with the
906 metadata prefix. The rules for metadata names are the same as for
907 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
908 are still valid, which allows any character to be part of a name.
909
Sean Silvab084af42012-12-07 10:36:55 +0000910Syntax::
911
912 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000913 !0 = !{!"zero"}
914 !1 = !{!"one"}
915 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000916 ; A named metadata.
917 !name = !{!0, !1, !2}
918
919.. _paramattrs:
920
921Parameter Attributes
922--------------------
923
924The return type and each parameter of a function type may have a set of
925*parameter attributes* associated with them. Parameter attributes are
926used to communicate additional information about the result or
927parameters of a function. Parameter attributes are considered to be part
928of the function, not of the function type, so functions with different
929parameter attributes can have the same function type.
930
931Parameter attributes are simple keywords that follow the type specified.
932If multiple parameter attributes are needed, they are space separated.
933For example:
934
935.. code-block:: llvm
936
937 declare i32 @printf(i8* noalias nocapture, ...)
938 declare i32 @atoi(i8 zeroext)
939 declare signext i8 @returns_signed_char()
940
941Note that any attributes for the function result (``nounwind``,
942``readonly``) come immediately after the argument list.
943
944Currently, only the following parameter attributes are defined:
945
946``zeroext``
947 This indicates to the code generator that the parameter or return
948 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000949 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000950``signext``
951 This indicates to the code generator that the parameter or return
952 value should be sign-extended to the extent required by the target's
953 ABI (which is usually 32-bits) by the caller (for a parameter) or
954 the callee (for a return value).
955``inreg``
956 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000957 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000958 a function call or return (usually, by putting it in a register as
959 opposed to memory, though some targets use it to distinguish between
960 two different kinds of registers). Use of this attribute is
961 target-specific.
962``byval``
963 This indicates that the pointer parameter should really be passed by
964 value to the function. The attribute implies that a hidden copy of
965 the pointee is made between the caller and the callee, so the callee
966 is unable to modify the value in the caller. This attribute is only
967 valid on LLVM pointer arguments. It is generally used to pass
968 structs and arrays by value, but is also valid on pointers to
969 scalars. The copy is considered to belong to the caller not the
970 callee (for example, ``readonly`` functions should not write to
971 ``byval`` parameters). This is not a valid attribute for return
972 values.
973
974 The byval attribute also supports specifying an alignment with the
975 align attribute. It indicates the alignment of the stack slot to
976 form and the known alignment of the pointer specified to the call
977 site. If the alignment is not specified, then the code generator
978 makes a target-specific assumption.
979
Reid Klecknera534a382013-12-19 02:14:12 +0000980.. _attr_inalloca:
981
982``inalloca``
983
Reid Kleckner60d3a832014-01-16 22:59:24 +0000984 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000985 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000986 be a pointer to stack memory produced by an ``alloca`` instruction.
987 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000988 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000989 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000990
Reid Kleckner436c42e2014-01-17 23:58:17 +0000991 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000992 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000993 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000994 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000995 ``inalloca`` attribute also disables LLVM's implicit lowering of
996 large aggregate return values, which means that frontend authors
997 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000998
Reid Kleckner60d3a832014-01-16 22:59:24 +0000999 When the call site is reached, the argument allocation must have
1000 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001001 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001002 space after an argument allocation and before its call site, but it
1003 must be cleared off with :ref:`llvm.stackrestore
1004 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001005
1006 See :doc:`InAlloca` for more information on how to use this
1007 attribute.
1008
Sean Silvab084af42012-12-07 10:36:55 +00001009``sret``
1010 This indicates that the pointer parameter specifies the address of a
1011 structure that is the return value of the function in the source
1012 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +00001013 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +00001014 not to trap and to be properly aligned. This may only be applied to
1015 the first parameter. This is not a valid attribute for return
1016 values.
Sean Silva1703e702014-04-08 21:06:22 +00001017
Hal Finkelccc70902014-07-22 16:58:55 +00001018``align <n>``
1019 This indicates that the pointer value may be assumed by the optimizer to
1020 have the specified alignment.
1021
1022 Note that this attribute has additional semantics when combined with the
1023 ``byval`` attribute.
1024
Sean Silva1703e702014-04-08 21:06:22 +00001025.. _noalias:
1026
Sean Silvab084af42012-12-07 10:36:55 +00001027``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001028 This indicates that objects accessed via pointer values
1029 :ref:`based <pointeraliasing>` on the argument or return value are not also
1030 accessed, during the execution of the function, via pointer values not
1031 *based* on the argument or return value. The attribute on a return value
1032 also has additional semantics described below. The caller shares the
1033 responsibility with the callee for ensuring that these requirements are met.
1034 For further details, please see the discussion of the NoAlias response in
1035 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001036
1037 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001038 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001039
1040 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001041 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1042 attribute on return values are stronger than the semantics of the attribute
1043 when used on function arguments. On function return values, the ``noalias``
1044 attribute indicates that the function acts like a system memory allocation
1045 function, returning a pointer to allocated storage disjoint from the
1046 storage for any other object accessible to the caller.
1047
Sean Silvab084af42012-12-07 10:36:55 +00001048``nocapture``
1049 This indicates that the callee does not make any copies of the
1050 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001051 attribute for return values. Addresses used in volatile operations
1052 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001053
1054.. _nest:
1055
1056``nest``
1057 This indicates that the pointer parameter can be excised using the
1058 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001059 attribute for return values and can only be applied to one parameter.
1060
1061``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001062 This indicates that the function always returns the argument as its return
1063 value. This is an optimization hint to the code generator when generating
1064 the caller, allowing tail call optimization and omission of register saves
1065 and restores in some cases; it is not checked or enforced when generating
1066 the callee. The parameter and the function return type must be valid
1067 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1068 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001069
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001070``nonnull``
1071 This indicates that the parameter or return pointer is not null. This
1072 attribute may only be applied to pointer typed parameters. This is not
1073 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001074 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001075 is non-null.
1076
Hal Finkelb0407ba2014-07-18 15:51:28 +00001077``dereferenceable(<n>)``
1078 This indicates that the parameter or return pointer is dereferenceable. This
1079 attribute may only be applied to pointer typed parameters. A pointer that
1080 is dereferenceable can be loaded from speculatively without a risk of
1081 trapping. The number of bytes known to be dereferenceable must be provided
1082 in parentheses. It is legal for the number of bytes to be less than the
1083 size of the pointee type. The ``nonnull`` attribute does not imply
1084 dereferenceability (consider a pointer to one element past the end of an
1085 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1086 ``addrspace(0)`` (which is the default address space).
1087
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001088``dereferenceable_or_null(<n>)``
1089 This indicates that the parameter or return value isn't both
1090 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001091 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001092 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1093 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1094 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1095 and in other address spaces ``dereferenceable_or_null(<n>)``
1096 implies that a pointer is at least one of ``dereferenceable(<n>)``
1097 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001098 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001099 pointer typed parameters.
1100
Manman Renf46262e2016-03-29 17:37:21 +00001101``swiftself``
1102 This indicates that the parameter is the self/context parameter. This is not
1103 a valid attribute for return values and can only be applied to one
1104 parameter.
1105
Manman Ren9bfd0d02016-04-01 21:41:15 +00001106``swifterror``
1107 This attribute is motivated to model and optimize Swift error handling. It
1108 can be applied to a parameter with pointer to pointer type or a
1109 pointer-sized alloca. At the call site, the actual argument that corresponds
1110 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca. A
1111 ``swifterror`` value (either the parameter or the alloca) can only be loaded
1112 and stored from, or used as a ``swifterror`` argument. This is not a valid
1113 attribute for return values and can only be applied to one parameter.
1114
1115 These constraints allow the calling convention to optimize access to
1116 ``swifterror`` variables by associating them with a specific register at
1117 call boundaries rather than placing them in memory. Since this does change
1118 the calling convention, a function which uses the ``swifterror`` attribute
1119 on a parameter is not ABI-compatible with one which does not.
1120
1121 These constraints also allow LLVM to assume that a ``swifterror`` argument
1122 does not alias any other memory visible within a function and that a
1123 ``swifterror`` alloca passed as an argument does not escape.
1124
Sean Silvab084af42012-12-07 10:36:55 +00001125.. _gc:
1126
Philip Reamesf80bbff2015-02-25 23:45:20 +00001127Garbage Collector Strategy Names
1128--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001129
Philip Reamesf80bbff2015-02-25 23:45:20 +00001130Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001131string:
1132
1133.. code-block:: llvm
1134
1135 define void @f() gc "name" { ... }
1136
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001137The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001138<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001139strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001140named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001141garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001142which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001143
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001144.. _prefixdata:
1145
1146Prefix Data
1147-----------
1148
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001149Prefix data is data associated with a function which the code
1150generator will emit immediately before the function's entrypoint.
1151The purpose of this feature is to allow frontends to associate
1152language-specific runtime metadata with specific functions and make it
1153available through the function pointer while still allowing the
1154function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001155
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001156To access the data for a given function, a program may bitcast the
1157function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001158index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001159the prefix data. For instance, take the example of a function annotated
1160with a single ``i32``,
1161
1162.. code-block:: llvm
1163
1164 define void @f() prefix i32 123 { ... }
1165
1166The prefix data can be referenced as,
1167
1168.. code-block:: llvm
1169
David Blaikie16a97eb2015-03-04 22:02:58 +00001170 %0 = bitcast void* () @f to i32*
1171 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001172 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001173
1174Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001175of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176beginning of the prefix data is aligned. This means that if the size
1177of the prefix data is not a multiple of the alignment size, the
1178function's entrypoint will not be aligned. If alignment of the
1179function's entrypoint is desired, padding must be added to the prefix
1180data.
1181
Sean Silvaa1190322015-08-06 22:56:48 +00001182A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001183to the ``available_externally`` linkage in that the data may be used by the
1184optimizers but will not be emitted in the object file.
1185
1186.. _prologuedata:
1187
1188Prologue Data
1189-------------
1190
1191The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1192be inserted prior to the function body. This can be used for enabling
1193function hot-patching and instrumentation.
1194
1195To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001196have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001197bytes which decode to a sequence of machine instructions, valid for the
1198module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001199the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001200the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001201definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001203
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001204A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001205which encodes the ``nop`` instruction:
1206
1207.. code-block:: llvm
1208
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001209 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001210
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001211Generally prologue data can be formed by encoding a relative branch instruction
1212which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001213x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1214
1215.. code-block:: llvm
1216
1217 %0 = type <{ i8, i8, i8* }>
1218
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001219 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220
Sean Silvaa1190322015-08-06 22:56:48 +00001221A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001222to the ``available_externally`` linkage in that the data may be used by the
1223optimizers but will not be emitted in the object file.
1224
David Majnemer7fddecc2015-06-17 20:52:32 +00001225.. _personalityfn:
1226
1227Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001228--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001229
1230The ``personality`` attribute permits functions to specify what function
1231to use for exception handling.
1232
Bill Wendling63b88192013-02-06 06:52:58 +00001233.. _attrgrp:
1234
1235Attribute Groups
1236----------------
1237
1238Attribute groups are groups of attributes that are referenced by objects within
1239the IR. They are important for keeping ``.ll`` files readable, because a lot of
1240functions will use the same set of attributes. In the degenerative case of a
1241``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1242group will capture the important command line flags used to build that file.
1243
1244An attribute group is a module-level object. To use an attribute group, an
1245object references the attribute group's ID (e.g. ``#37``). An object may refer
1246to more than one attribute group. In that situation, the attributes from the
1247different groups are merged.
1248
1249Here is an example of attribute groups for a function that should always be
1250inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1251
1252.. code-block:: llvm
1253
1254 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001255 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001256
1257 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001258 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001259
1260 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1261 define void @f() #0 #1 { ... }
1262
Sean Silvab084af42012-12-07 10:36:55 +00001263.. _fnattrs:
1264
1265Function Attributes
1266-------------------
1267
1268Function attributes are set to communicate additional information about
1269a function. Function attributes are considered to be part of the
1270function, not of the function type, so functions with different function
1271attributes can have the same function type.
1272
1273Function attributes are simple keywords that follow the type specified.
1274If multiple attributes are needed, they are space separated. For
1275example:
1276
1277.. code-block:: llvm
1278
1279 define void @f() noinline { ... }
1280 define void @f() alwaysinline { ... }
1281 define void @f() alwaysinline optsize { ... }
1282 define void @f() optsize { ... }
1283
Sean Silvab084af42012-12-07 10:36:55 +00001284``alignstack(<n>)``
1285 This attribute indicates that, when emitting the prologue and
1286 epilogue, the backend should forcibly align the stack pointer.
1287 Specify the desired alignment, which must be a power of two, in
1288 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001289``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1290 This attribute indicates that the annotated function will always return at
1291 least a given number of bytes (or null). Its arguments are zero-indexed
1292 parameter numbers; if one argument is provided, then it's assumed that at
1293 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1294 returned pointer. If two are provided, then it's assumed that
1295 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1296 available. The referenced parameters must be integer types. No assumptions
1297 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001298``alwaysinline``
1299 This attribute indicates that the inliner should attempt to inline
1300 this function into callers whenever possible, ignoring any active
1301 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001302``builtin``
1303 This indicates that the callee function at a call site should be
1304 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001305 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001306 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001307 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001308``cold``
1309 This attribute indicates that this function is rarely called. When
1310 computing edge weights, basic blocks post-dominated by a cold
1311 function call are also considered to be cold; and, thus, given low
1312 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001313``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001314 In some parallel execution models, there exist operations that cannot be
1315 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001316 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001317
Justin Lebar58535b12016-02-17 17:46:41 +00001318 The ``convergent`` attribute may appear on functions or call/invoke
1319 instructions. When it appears on a function, it indicates that calls to
1320 this function should not be made control-dependent on additional values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001321 For example, the intrinsic ``llvm.cuda.syncthreads`` is ``convergent``, so
1322 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001323 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001324
Justin Lebar58535b12016-02-17 17:46:41 +00001325 When it appears on a call/invoke, the ``convergent`` attribute indicates
1326 that we should treat the call as though we're calling a convergent
1327 function. This is particularly useful on indirect calls; without this we
1328 may treat such calls as though the target is non-convergent.
1329
1330 The optimizer may remove the ``convergent`` attribute on functions when it
1331 can prove that the function does not execute any convergent operations.
1332 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1333 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001334``inaccessiblememonly``
1335 This attribute indicates that the function may only access memory that
1336 is not accessible by the module being compiled. This is a weaker form
1337 of ``readnone``.
1338``inaccessiblemem_or_argmemonly``
1339 This attribute indicates that the function may only access memory that is
1340 either not accessible by the module being compiled, or is pointed to
1341 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001342``inlinehint``
1343 This attribute indicates that the source code contained a hint that
1344 inlining this function is desirable (such as the "inline" keyword in
1345 C/C++). It is just a hint; it imposes no requirements on the
1346 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001347``jumptable``
1348 This attribute indicates that the function should be added to a
1349 jump-instruction table at code-generation time, and that all address-taken
1350 references to this function should be replaced with a reference to the
1351 appropriate jump-instruction-table function pointer. Note that this creates
1352 a new pointer for the original function, which means that code that depends
1353 on function-pointer identity can break. So, any function annotated with
1354 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001355``minsize``
1356 This attribute suggests that optimization passes and code generator
1357 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001358 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001359 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001360``naked``
1361 This attribute disables prologue / epilogue emission for the
1362 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001363``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001364 This indicates that the callee function at a call site is not recognized as
1365 a built-in function. LLVM will retain the original call and not replace it
1366 with equivalent code based on the semantics of the built-in function, unless
1367 the call site uses the ``builtin`` attribute. This is valid at call sites
1368 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001369``noduplicate``
1370 This attribute indicates that calls to the function cannot be
1371 duplicated. A call to a ``noduplicate`` function may be moved
1372 within its parent function, but may not be duplicated within
1373 its parent function.
1374
1375 A function containing a ``noduplicate`` call may still
1376 be an inlining candidate, provided that the call is not
1377 duplicated by inlining. That implies that the function has
1378 internal linkage and only has one call site, so the original
1379 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001380``noimplicitfloat``
1381 This attributes disables implicit floating point instructions.
1382``noinline``
1383 This attribute indicates that the inliner should never inline this
1384 function in any situation. This attribute may not be used together
1385 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001386``nonlazybind``
1387 This attribute suppresses lazy symbol binding for the function. This
1388 may make calls to the function faster, at the cost of extra program
1389 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001390``noredzone``
1391 This attribute indicates that the code generator should not use a
1392 red zone, even if the target-specific ABI normally permits it.
1393``noreturn``
1394 This function attribute indicates that the function never returns
1395 normally. This produces undefined behavior at runtime if the
1396 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001397``norecurse``
1398 This function attribute indicates that the function does not call itself
1399 either directly or indirectly down any possible call path. This produces
1400 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001401``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001402 This function attribute indicates that the function never raises an
1403 exception. If the function does raise an exception, its runtime
1404 behavior is undefined. However, functions marked nounwind may still
1405 trap or generate asynchronous exceptions. Exception handling schemes
1406 that are recognized by LLVM to handle asynchronous exceptions, such
1407 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001408``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001409 This function attribute indicates that most optimization passes will skip
1410 this function, with the exception of interprocedural optimization passes.
1411 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001412 This attribute cannot be used together with the ``alwaysinline``
1413 attribute; this attribute is also incompatible
1414 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001415
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001416 This attribute requires the ``noinline`` attribute to be specified on
1417 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001418 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001419 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001420``optsize``
1421 This attribute suggests that optimization passes and code generator
1422 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001423 and otherwise do optimizations specifically to reduce code size as
1424 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001425``"patchable-function"``
1426 This attribute tells the code generator that the code
1427 generated for this function needs to follow certain conventions that
1428 make it possible for a runtime function to patch over it later.
1429 The exact effect of this attribute depends on its string value,
1430 for which there currently is one legal possiblity:
1431
1432 * ``"prologue-short-redirect"`` - This style of patchable
1433 function is intended to support patching a function prologue to
1434 redirect control away from the function in a thread safe
1435 manner. It guarantees that the first instruction of the
1436 function will be large enough to accommodate a short jump
1437 instruction, and will be sufficiently aligned to allow being
1438 fully changed via an atomic compare-and-swap instruction.
1439 While the first requirement can be satisfied by inserting large
1440 enough NOP, LLVM can and will try to re-purpose an existing
1441 instruction (i.e. one that would have to be emitted anyway) as
1442 the patchable instruction larger than a short jump.
1443
1444 ``"prologue-short-redirect"`` is currently only supported on
1445 x86-64.
1446
1447 This attribute by itself does not imply restrictions on
1448 inter-procedural optimizations. All of the semantic effects the
1449 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001450``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001451 On a function, this attribute indicates that the function computes its
1452 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001453 without dereferencing any pointer arguments or otherwise accessing
1454 any mutable state (e.g. memory, control registers, etc) visible to
1455 caller functions. It does not write through any pointer arguments
1456 (including ``byval`` arguments) and never changes any state visible
1457 to callers. This means that it cannot unwind exceptions by calling
1458 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001459
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001460 On an argument, this attribute indicates that the function does not
1461 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001462 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001463``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001464 On a function, this attribute indicates that the function does not write
1465 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001466 modify any state (e.g. memory, control registers, etc) visible to
1467 caller functions. It may dereference pointer arguments and read
1468 state that may be set in the caller. A readonly function always
1469 returns the same value (or unwinds an exception identically) when
1470 called with the same set of arguments and global state. It cannot
1471 unwind an exception by calling the ``C++`` exception throwing
1472 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001473
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001474 On an argument, this attribute indicates that the function does not write
1475 through this pointer argument, even though it may write to the memory that
1476 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001477``argmemonly``
1478 This attribute indicates that the only memory accesses inside function are
1479 loads and stores from objects pointed to by its pointer-typed arguments,
1480 with arbitrary offsets. Or in other words, all memory operations in the
1481 function can refer to memory only using pointers based on its function
1482 arguments.
1483 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1484 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001485``returns_twice``
1486 This attribute indicates that this function can return twice. The C
1487 ``setjmp`` is an example of such a function. The compiler disables
1488 some optimizations (like tail calls) in the caller of these
1489 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001490``safestack``
1491 This attribute indicates that
1492 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1493 protection is enabled for this function.
1494
1495 If a function that has a ``safestack`` attribute is inlined into a
1496 function that doesn't have a ``safestack`` attribute or which has an
1497 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1498 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001499``sanitize_address``
1500 This attribute indicates that AddressSanitizer checks
1501 (dynamic address safety analysis) are enabled for this function.
1502``sanitize_memory``
1503 This attribute indicates that MemorySanitizer checks (dynamic detection
1504 of accesses to uninitialized memory) are enabled for this function.
1505``sanitize_thread``
1506 This attribute indicates that ThreadSanitizer checks
1507 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001508``ssp``
1509 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001510 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001511 placed on the stack before the local variables that's checked upon
1512 return from the function to see if it has been overwritten. A
1513 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001514 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001515
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001516 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1517 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1518 - Calls to alloca() with variable sizes or constant sizes greater than
1519 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001520
Josh Magee24c7f062014-02-01 01:36:16 +00001521 Variables that are identified as requiring a protector will be arranged
1522 on the stack such that they are adjacent to the stack protector guard.
1523
Sean Silvab084af42012-12-07 10:36:55 +00001524 If a function that has an ``ssp`` attribute is inlined into a
1525 function that doesn't have an ``ssp`` attribute, then the resulting
1526 function will have an ``ssp`` attribute.
1527``sspreq``
1528 This attribute indicates that the function should *always* emit a
1529 stack smashing protector. This overrides the ``ssp`` function
1530 attribute.
1531
Josh Magee24c7f062014-02-01 01:36:16 +00001532 Variables that are identified as requiring a protector will be arranged
1533 on the stack such that they are adjacent to the stack protector guard.
1534 The specific layout rules are:
1535
1536 #. Large arrays and structures containing large arrays
1537 (``>= ssp-buffer-size``) are closest to the stack protector.
1538 #. Small arrays and structures containing small arrays
1539 (``< ssp-buffer-size``) are 2nd closest to the protector.
1540 #. Variables that have had their address taken are 3rd closest to the
1541 protector.
1542
Sean Silvab084af42012-12-07 10:36:55 +00001543 If a function that has an ``sspreq`` attribute is inlined into a
1544 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001545 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1546 an ``sspreq`` attribute.
1547``sspstrong``
1548 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001549 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001550 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001551 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001552
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001553 - Arrays of any size and type
1554 - Aggregates containing an array of any size and type.
1555 - Calls to alloca().
1556 - Local variables that have had their address taken.
1557
Josh Magee24c7f062014-02-01 01:36:16 +00001558 Variables that are identified as requiring a protector will be arranged
1559 on the stack such that they are adjacent to the stack protector guard.
1560 The specific layout rules are:
1561
1562 #. Large arrays and structures containing large arrays
1563 (``>= ssp-buffer-size``) are closest to the stack protector.
1564 #. Small arrays and structures containing small arrays
1565 (``< ssp-buffer-size``) are 2nd closest to the protector.
1566 #. Variables that have had their address taken are 3rd closest to the
1567 protector.
1568
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001569 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001570
1571 If a function that has an ``sspstrong`` attribute is inlined into a
1572 function that doesn't have an ``sspstrong`` attribute, then the
1573 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001574``"thunk"``
1575 This attribute indicates that the function will delegate to some other
1576 function with a tail call. The prototype of a thunk should not be used for
1577 optimization purposes. The caller is expected to cast the thunk prototype to
1578 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001579``uwtable``
1580 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001581 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001582 show that no exceptions passes by it. This is normally the case for
1583 the ELF x86-64 abi, but it can be disabled for some compilation
1584 units.
Sean Silvab084af42012-12-07 10:36:55 +00001585
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001586
1587.. _opbundles:
1588
1589Operand Bundles
1590---------------
1591
1592Note: operand bundles are a work in progress, and they should be
1593considered experimental at this time.
1594
1595Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001596with certain LLVM instructions (currently only ``call`` s and
1597``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001598incorrect and will change program semantics.
1599
1600Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001601
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001602 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001603 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1604 bundle operand ::= SSA value
1605 tag ::= string constant
1606
1607Operand bundles are **not** part of a function's signature, and a
1608given function may be called from multiple places with different kinds
1609of operand bundles. This reflects the fact that the operand bundles
1610are conceptually a part of the ``call`` (or ``invoke``), not the
1611callee being dispatched to.
1612
1613Operand bundles are a generic mechanism intended to support
1614runtime-introspection-like functionality for managed languages. While
1615the exact semantics of an operand bundle depend on the bundle tag,
1616there are certain limitations to how much the presence of an operand
1617bundle can influence the semantics of a program. These restrictions
1618are described as the semantics of an "unknown" operand bundle. As
1619long as the behavior of an operand bundle is describable within these
1620restrictions, LLVM does not need to have special knowledge of the
1621operand bundle to not miscompile programs containing it.
1622
David Majnemer34cacb42015-10-22 01:46:38 +00001623- The bundle operands for an unknown operand bundle escape in unknown
1624 ways before control is transferred to the callee or invokee.
1625- Calls and invokes with operand bundles have unknown read / write
1626 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001627 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001628 callsite specific attributes.
1629- An operand bundle at a call site cannot change the implementation
1630 of the called function. Inter-procedural optimizations work as
1631 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001632
Sanjoy Dascdafd842015-11-11 21:38:02 +00001633More specific types of operand bundles are described below.
1634
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001635.. _deopt_opbundles:
1636
Sanjoy Dascdafd842015-11-11 21:38:02 +00001637Deoptimization Operand Bundles
1638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1639
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001640Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001641operand bundle tag. These operand bundles represent an alternate
1642"safe" continuation for the call site they're attached to, and can be
1643used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001644specified call site. There can be at most one ``"deopt"`` operand
1645bundle attached to a call site. Exact details of deoptimization is
1646out of scope for the language reference, but it usually involves
1647rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001648
1649From the compiler's perspective, deoptimization operand bundles make
1650the call sites they're attached to at least ``readonly``. They read
1651through all of their pointer typed operands (even if they're not
1652otherwise escaped) and the entire visible heap. Deoptimization
1653operand bundles do not capture their operands except during
1654deoptimization, in which case control will not be returned to the
1655compiled frame.
1656
Sanjoy Das2d161452015-11-18 06:23:38 +00001657The inliner knows how to inline through calls that have deoptimization
1658operand bundles. Just like inlining through a normal call site
1659involves composing the normal and exceptional continuations, inlining
1660through a call site with a deoptimization operand bundle needs to
1661appropriately compose the "safe" deoptimization continuation. The
1662inliner does this by prepending the parent's deoptimization
1663continuation to every deoptimization continuation in the inlined body.
1664E.g. inlining ``@f`` into ``@g`` in the following example
1665
1666.. code-block:: llvm
1667
1668 define void @f() {
1669 call void @x() ;; no deopt state
1670 call void @y() [ "deopt"(i32 10) ]
1671 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1672 ret void
1673 }
1674
1675 define void @g() {
1676 call void @f() [ "deopt"(i32 20) ]
1677 ret void
1678 }
1679
1680will result in
1681
1682.. code-block:: llvm
1683
1684 define void @g() {
1685 call void @x() ;; still no deopt state
1686 call void @y() [ "deopt"(i32 20, i32 10) ]
1687 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1688 ret void
1689 }
1690
1691It is the frontend's responsibility to structure or encode the
1692deoptimization state in a way that syntactically prepending the
1693caller's deoptimization state to the callee's deoptimization state is
1694semantically equivalent to composing the caller's deoptimization
1695continuation after the callee's deoptimization continuation.
1696
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001697.. _ob_funclet:
1698
David Majnemer3bb88c02015-12-15 21:27:27 +00001699Funclet Operand Bundles
1700^^^^^^^^^^^^^^^^^^^^^^^
1701
1702Funclet operand bundles are characterized by the ``"funclet"``
1703operand bundle tag. These operand bundles indicate that a call site
1704is within a particular funclet. There can be at most one
1705``"funclet"`` operand bundle attached to a call site and it must have
1706exactly one bundle operand.
1707
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001708If any funclet EH pads have been "entered" but not "exited" (per the
1709`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1710it is undefined behavior to execute a ``call`` or ``invoke`` which:
1711
1712* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1713 intrinsic, or
1714* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1715 not-yet-exited funclet EH pad.
1716
1717Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1718executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1719
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001720GC Transition Operand Bundles
1721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1722
1723GC transition operand bundles are characterized by the
1724``"gc-transition"`` operand bundle tag. These operand bundles mark a
1725call as a transition between a function with one GC strategy to a
1726function with a different GC strategy. If coordinating the transition
1727between GC strategies requires additional code generation at the call
1728site, these bundles may contain any values that are needed by the
1729generated code. For more details, see :ref:`GC Transitions
1730<gc_transition_args>`.
1731
Sean Silvab084af42012-12-07 10:36:55 +00001732.. _moduleasm:
1733
1734Module-Level Inline Assembly
1735----------------------------
1736
1737Modules may contain "module-level inline asm" blocks, which corresponds
1738to the GCC "file scope inline asm" blocks. These blocks are internally
1739concatenated by LLVM and treated as a single unit, but may be separated
1740in the ``.ll`` file if desired. The syntax is very simple:
1741
1742.. code-block:: llvm
1743
1744 module asm "inline asm code goes here"
1745 module asm "more can go here"
1746
1747The strings can contain any character by escaping non-printable
1748characters. The escape sequence used is simply "\\xx" where "xx" is the
1749two digit hex code for the number.
1750
James Y Knightbc832ed2015-07-08 18:08:36 +00001751Note that the assembly string *must* be parseable by LLVM's integrated assembler
1752(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001753
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001754.. _langref_datalayout:
1755
Sean Silvab084af42012-12-07 10:36:55 +00001756Data Layout
1757-----------
1758
1759A module may specify a target specific data layout string that specifies
1760how data is to be laid out in memory. The syntax for the data layout is
1761simply:
1762
1763.. code-block:: llvm
1764
1765 target datalayout = "layout specification"
1766
1767The *layout specification* consists of a list of specifications
1768separated by the minus sign character ('-'). Each specification starts
1769with a letter and may include other information after the letter to
1770define some aspect of the data layout. The specifications accepted are
1771as follows:
1772
1773``E``
1774 Specifies that the target lays out data in big-endian form. That is,
1775 the bits with the most significance have the lowest address
1776 location.
1777``e``
1778 Specifies that the target lays out data in little-endian form. That
1779 is, the bits with the least significance have the lowest address
1780 location.
1781``S<size>``
1782 Specifies the natural alignment of the stack in bits. Alignment
1783 promotion of stack variables is limited to the natural stack
1784 alignment to avoid dynamic stack realignment. The stack alignment
1785 must be a multiple of 8-bits. If omitted, the natural stack
1786 alignment defaults to "unspecified", which does not prevent any
1787 alignment promotions.
1788``p[n]:<size>:<abi>:<pref>``
1789 This specifies the *size* of a pointer and its ``<abi>`` and
1790 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001791 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001792 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001793 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001794``i<size>:<abi>:<pref>``
1795 This specifies the alignment for an integer type of a given bit
1796 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1797``v<size>:<abi>:<pref>``
1798 This specifies the alignment for a vector type of a given bit
1799 ``<size>``.
1800``f<size>:<abi>:<pref>``
1801 This specifies the alignment for a floating point type of a given bit
1802 ``<size>``. Only values of ``<size>`` that are supported by the target
1803 will work. 32 (float) and 64 (double) are supported on all targets; 80
1804 or 128 (different flavors of long double) are also supported on some
1805 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001806``a:<abi>:<pref>``
1807 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001808``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001809 If present, specifies that llvm names are mangled in the output. The
1810 options are
1811
1812 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1813 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1814 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1815 symbols get a ``_`` prefix.
1816 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1817 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001818 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1819 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001820``n<size1>:<size2>:<size3>...``
1821 This specifies a set of native integer widths for the target CPU in
1822 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1823 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1824 this set are considered to support most general arithmetic operations
1825 efficiently.
1826
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001827On every specification that takes a ``<abi>:<pref>``, specifying the
1828``<pref>`` alignment is optional. If omitted, the preceding ``:``
1829should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1830
Sean Silvab084af42012-12-07 10:36:55 +00001831When constructing the data layout for a given target, LLVM starts with a
1832default set of specifications which are then (possibly) overridden by
1833the specifications in the ``datalayout`` keyword. The default
1834specifications are given in this list:
1835
1836- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001837- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1838- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1839 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001840- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001841- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1842- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1843- ``i16:16:16`` - i16 is 16-bit aligned
1844- ``i32:32:32`` - i32 is 32-bit aligned
1845- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1846 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001847- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001848- ``f32:32:32`` - float is 32-bit aligned
1849- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001850- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001851- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1852- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001853- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001854
1855When LLVM is determining the alignment for a given type, it uses the
1856following rules:
1857
1858#. If the type sought is an exact match for one of the specifications,
1859 that specification is used.
1860#. If no match is found, and the type sought is an integer type, then
1861 the smallest integer type that is larger than the bitwidth of the
1862 sought type is used. If none of the specifications are larger than
1863 the bitwidth then the largest integer type is used. For example,
1864 given the default specifications above, the i7 type will use the
1865 alignment of i8 (next largest) while both i65 and i256 will use the
1866 alignment of i64 (largest specified).
1867#. If no match is found, and the type sought is a vector type, then the
1868 largest vector type that is smaller than the sought vector type will
1869 be used as a fall back. This happens because <128 x double> can be
1870 implemented in terms of 64 <2 x double>, for example.
1871
1872The function of the data layout string may not be what you expect.
1873Notably, this is not a specification from the frontend of what alignment
1874the code generator should use.
1875
1876Instead, if specified, the target data layout is required to match what
1877the ultimate *code generator* expects. This string is used by the
1878mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001879what the ultimate code generator uses. There is no way to generate IR
1880that does not embed this target-specific detail into the IR. If you
1881don't specify the string, the default specifications will be used to
1882generate a Data Layout and the optimization phases will operate
1883accordingly and introduce target specificity into the IR with respect to
1884these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001885
Bill Wendling5cc90842013-10-18 23:41:25 +00001886.. _langref_triple:
1887
1888Target Triple
1889-------------
1890
1891A module may specify a target triple string that describes the target
1892host. The syntax for the target triple is simply:
1893
1894.. code-block:: llvm
1895
1896 target triple = "x86_64-apple-macosx10.7.0"
1897
1898The *target triple* string consists of a series of identifiers delimited
1899by the minus sign character ('-'). The canonical forms are:
1900
1901::
1902
1903 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1904 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1905
1906This information is passed along to the backend so that it generates
1907code for the proper architecture. It's possible to override this on the
1908command line with the ``-mtriple`` command line option.
1909
Sean Silvab084af42012-12-07 10:36:55 +00001910.. _pointeraliasing:
1911
1912Pointer Aliasing Rules
1913----------------------
1914
1915Any memory access must be done through a pointer value associated with
1916an address range of the memory access, otherwise the behavior is
1917undefined. Pointer values are associated with address ranges according
1918to the following rules:
1919
1920- A pointer value is associated with the addresses associated with any
1921 value it is *based* on.
1922- An address of a global variable is associated with the address range
1923 of the variable's storage.
1924- The result value of an allocation instruction is associated with the
1925 address range of the allocated storage.
1926- A null pointer in the default address-space is associated with no
1927 address.
1928- An integer constant other than zero or a pointer value returned from
1929 a function not defined within LLVM may be associated with address
1930 ranges allocated through mechanisms other than those provided by
1931 LLVM. Such ranges shall not overlap with any ranges of addresses
1932 allocated by mechanisms provided by LLVM.
1933
1934A pointer value is *based* on another pointer value according to the
1935following rules:
1936
1937- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001938 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001939- The result value of a ``bitcast`` is *based* on the operand of the
1940 ``bitcast``.
1941- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1942 values that contribute (directly or indirectly) to the computation of
1943 the pointer's value.
1944- The "*based* on" relationship is transitive.
1945
1946Note that this definition of *"based"* is intentionally similar to the
1947definition of *"based"* in C99, though it is slightly weaker.
1948
1949LLVM IR does not associate types with memory. The result type of a
1950``load`` merely indicates the size and alignment of the memory from
1951which to load, as well as the interpretation of the value. The first
1952operand type of a ``store`` similarly only indicates the size and
1953alignment of the store.
1954
1955Consequently, type-based alias analysis, aka TBAA, aka
1956``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1957:ref:`Metadata <metadata>` may be used to encode additional information
1958which specialized optimization passes may use to implement type-based
1959alias analysis.
1960
1961.. _volatile:
1962
1963Volatile Memory Accesses
1964------------------------
1965
1966Certain memory accesses, such as :ref:`load <i_load>`'s,
1967:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1968marked ``volatile``. The optimizers must not change the number of
1969volatile operations or change their order of execution relative to other
1970volatile operations. The optimizers *may* change the order of volatile
1971operations relative to non-volatile operations. This is not Java's
1972"volatile" and has no cross-thread synchronization behavior.
1973
Andrew Trick89fc5a62013-01-30 21:19:35 +00001974IR-level volatile loads and stores cannot safely be optimized into
1975llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1976flagged volatile. Likewise, the backend should never split or merge
1977target-legal volatile load/store instructions.
1978
Andrew Trick7e6f9282013-01-31 00:49:39 +00001979.. admonition:: Rationale
1980
1981 Platforms may rely on volatile loads and stores of natively supported
1982 data width to be executed as single instruction. For example, in C
1983 this holds for an l-value of volatile primitive type with native
1984 hardware support, but not necessarily for aggregate types. The
1985 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001986 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001987 do not violate the frontend's contract with the language.
1988
Sean Silvab084af42012-12-07 10:36:55 +00001989.. _memmodel:
1990
1991Memory Model for Concurrent Operations
1992--------------------------------------
1993
1994The LLVM IR does not define any way to start parallel threads of
1995execution or to register signal handlers. Nonetheless, there are
1996platform-specific ways to create them, and we define LLVM IR's behavior
1997in their presence. This model is inspired by the C++0x memory model.
1998
1999For a more informal introduction to this model, see the :doc:`Atomics`.
2000
2001We define a *happens-before* partial order as the least partial order
2002that
2003
2004- Is a superset of single-thread program order, and
2005- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2006 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2007 techniques, like pthread locks, thread creation, thread joining,
2008 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2009 Constraints <ordering>`).
2010
2011Note that program order does not introduce *happens-before* edges
2012between a thread and signals executing inside that thread.
2013
2014Every (defined) read operation (load instructions, memcpy, atomic
2015loads/read-modify-writes, etc.) R reads a series of bytes written by
2016(defined) write operations (store instructions, atomic
2017stores/read-modify-writes, memcpy, etc.). For the purposes of this
2018section, initialized globals are considered to have a write of the
2019initializer which is atomic and happens before any other read or write
2020of the memory in question. For each byte of a read R, R\ :sub:`byte`
2021may see any write to the same byte, except:
2022
2023- If write\ :sub:`1` happens before write\ :sub:`2`, and
2024 write\ :sub:`2` happens before R\ :sub:`byte`, then
2025 R\ :sub:`byte` does not see write\ :sub:`1`.
2026- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2027 R\ :sub:`byte` does not see write\ :sub:`3`.
2028
2029Given that definition, R\ :sub:`byte` is defined as follows:
2030
2031- If R is volatile, the result is target-dependent. (Volatile is
2032 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002033 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002034 like normal memory. It does not generally provide cross-thread
2035 synchronization.)
2036- Otherwise, if there is no write to the same byte that happens before
2037 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2038- Otherwise, if R\ :sub:`byte` may see exactly one write,
2039 R\ :sub:`byte` returns the value written by that write.
2040- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2041 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2042 Memory Ordering Constraints <ordering>` section for additional
2043 constraints on how the choice is made.
2044- Otherwise R\ :sub:`byte` returns ``undef``.
2045
2046R returns the value composed of the series of bytes it read. This
2047implies that some bytes within the value may be ``undef`` **without**
2048the entire value being ``undef``. Note that this only defines the
2049semantics of the operation; it doesn't mean that targets will emit more
2050than one instruction to read the series of bytes.
2051
2052Note that in cases where none of the atomic intrinsics are used, this
2053model places only one restriction on IR transformations on top of what
2054is required for single-threaded execution: introducing a store to a byte
2055which might not otherwise be stored is not allowed in general.
2056(Specifically, in the case where another thread might write to and read
2057from an address, introducing a store can change a load that may see
2058exactly one write into a load that may see multiple writes.)
2059
2060.. _ordering:
2061
2062Atomic Memory Ordering Constraints
2063----------------------------------
2064
2065Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2066:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2067:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002068ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002069the same address they *synchronize with*. These semantics are borrowed
2070from Java and C++0x, but are somewhat more colloquial. If these
2071descriptions aren't precise enough, check those specs (see spec
2072references in the :doc:`atomics guide <Atomics>`).
2073:ref:`fence <i_fence>` instructions treat these orderings somewhat
2074differently since they don't take an address. See that instruction's
2075documentation for details.
2076
2077For a simpler introduction to the ordering constraints, see the
2078:doc:`Atomics`.
2079
2080``unordered``
2081 The set of values that can be read is governed by the happens-before
2082 partial order. A value cannot be read unless some operation wrote
2083 it. This is intended to provide a guarantee strong enough to model
2084 Java's non-volatile shared variables. This ordering cannot be
2085 specified for read-modify-write operations; it is not strong enough
2086 to make them atomic in any interesting way.
2087``monotonic``
2088 In addition to the guarantees of ``unordered``, there is a single
2089 total order for modifications by ``monotonic`` operations on each
2090 address. All modification orders must be compatible with the
2091 happens-before order. There is no guarantee that the modification
2092 orders can be combined to a global total order for the whole program
2093 (and this often will not be possible). The read in an atomic
2094 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2095 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2096 order immediately before the value it writes. If one atomic read
2097 happens before another atomic read of the same address, the later
2098 read must see the same value or a later value in the address's
2099 modification order. This disallows reordering of ``monotonic`` (or
2100 stronger) operations on the same address. If an address is written
2101 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2102 read that address repeatedly, the other threads must eventually see
2103 the write. This corresponds to the C++0x/C1x
2104 ``memory_order_relaxed``.
2105``acquire``
2106 In addition to the guarantees of ``monotonic``, a
2107 *synchronizes-with* edge may be formed with a ``release`` operation.
2108 This is intended to model C++'s ``memory_order_acquire``.
2109``release``
2110 In addition to the guarantees of ``monotonic``, if this operation
2111 writes a value which is subsequently read by an ``acquire``
2112 operation, it *synchronizes-with* that operation. (This isn't a
2113 complete description; see the C++0x definition of a release
2114 sequence.) This corresponds to the C++0x/C1x
2115 ``memory_order_release``.
2116``acq_rel`` (acquire+release)
2117 Acts as both an ``acquire`` and ``release`` operation on its
2118 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2119``seq_cst`` (sequentially consistent)
2120 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002121 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002122 writes), there is a global total order on all
2123 sequentially-consistent operations on all addresses, which is
2124 consistent with the *happens-before* partial order and with the
2125 modification orders of all the affected addresses. Each
2126 sequentially-consistent read sees the last preceding write to the
2127 same address in this global order. This corresponds to the C++0x/C1x
2128 ``memory_order_seq_cst`` and Java volatile.
2129
2130.. _singlethread:
2131
2132If an atomic operation is marked ``singlethread``, it only *synchronizes
2133with* or participates in modification and seq\_cst total orderings with
2134other operations running in the same thread (for example, in signal
2135handlers).
2136
2137.. _fastmath:
2138
2139Fast-Math Flags
2140---------------
2141
2142LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2143:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002144:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2145be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002146
2147``nnan``
2148 No NaNs - Allow optimizations to assume the arguments and result are not
2149 NaN. Such optimizations are required to retain defined behavior over
2150 NaNs, but the value of the result is undefined.
2151
2152``ninf``
2153 No Infs - Allow optimizations to assume the arguments and result are not
2154 +/-Inf. Such optimizations are required to retain defined behavior over
2155 +/-Inf, but the value of the result is undefined.
2156
2157``nsz``
2158 No Signed Zeros - Allow optimizations to treat the sign of a zero
2159 argument or result as insignificant.
2160
2161``arcp``
2162 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2163 argument rather than perform division.
2164
2165``fast``
2166 Fast - Allow algebraically equivalent transformations that may
2167 dramatically change results in floating point (e.g. reassociate). This
2168 flag implies all the others.
2169
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002170.. _uselistorder:
2171
2172Use-list Order Directives
2173-------------------------
2174
2175Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002176order to be recreated. ``<order-indexes>`` is a comma-separated list of
2177indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002178value's use-list is immediately sorted by these indexes.
2179
Sean Silvaa1190322015-08-06 22:56:48 +00002180Use-list directives may appear at function scope or global scope. They are not
2181instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002182function scope, they must appear after the terminator of the final basic block.
2183
2184If basic blocks have their address taken via ``blockaddress()`` expressions,
2185``uselistorder_bb`` can be used to reorder their use-lists from outside their
2186function's scope.
2187
2188:Syntax:
2189
2190::
2191
2192 uselistorder <ty> <value>, { <order-indexes> }
2193 uselistorder_bb @function, %block { <order-indexes> }
2194
2195:Examples:
2196
2197::
2198
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002199 define void @foo(i32 %arg1, i32 %arg2) {
2200 entry:
2201 ; ... instructions ...
2202 bb:
2203 ; ... instructions ...
2204
2205 ; At function scope.
2206 uselistorder i32 %arg1, { 1, 0, 2 }
2207 uselistorder label %bb, { 1, 0 }
2208 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002209
2210 ; At global scope.
2211 uselistorder i32* @global, { 1, 2, 0 }
2212 uselistorder i32 7, { 1, 0 }
2213 uselistorder i32 (i32) @bar, { 1, 0 }
2214 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2215
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002216.. _source_filename:
2217
2218Source Filename
2219---------------
2220
2221The *source filename* string is set to the original module identifier,
2222which will be the name of the compiled source file when compiling from
2223source through the clang front end, for example. It is then preserved through
2224the IR and bitcode.
2225
2226This is currently necessary to generate a consistent unique global
2227identifier for local functions used in profile data, which prepends the
2228source file name to the local function name.
2229
2230The syntax for the source file name is simply:
2231
2232.. code-block:: llvm
2233
2234 source_filename = "/path/to/source.c"
2235
Sean Silvab084af42012-12-07 10:36:55 +00002236.. _typesystem:
2237
2238Type System
2239===========
2240
2241The LLVM type system is one of the most important features of the
2242intermediate representation. Being typed enables a number of
2243optimizations to be performed on the intermediate representation
2244directly, without having to do extra analyses on the side before the
2245transformation. A strong type system makes it easier to read the
2246generated code and enables novel analyses and transformations that are
2247not feasible to perform on normal three address code representations.
2248
Rafael Espindola08013342013-12-07 19:34:20 +00002249.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002250
Rafael Espindola08013342013-12-07 19:34:20 +00002251Void Type
2252---------
Sean Silvab084af42012-12-07 10:36:55 +00002253
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002254:Overview:
2255
Rafael Espindola08013342013-12-07 19:34:20 +00002256
2257The void type does not represent any value and has no size.
2258
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002259:Syntax:
2260
Rafael Espindola08013342013-12-07 19:34:20 +00002261
2262::
2263
2264 void
Sean Silvab084af42012-12-07 10:36:55 +00002265
2266
Rafael Espindola08013342013-12-07 19:34:20 +00002267.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002268
Rafael Espindola08013342013-12-07 19:34:20 +00002269Function Type
2270-------------
Sean Silvab084af42012-12-07 10:36:55 +00002271
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002272:Overview:
2273
Sean Silvab084af42012-12-07 10:36:55 +00002274
Rafael Espindola08013342013-12-07 19:34:20 +00002275The function type can be thought of as a function signature. It consists of a
2276return type and a list of formal parameter types. The return type of a function
2277type is a void type or first class type --- except for :ref:`label <t_label>`
2278and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002279
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002280:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002281
Rafael Espindola08013342013-12-07 19:34:20 +00002282::
Sean Silvab084af42012-12-07 10:36:55 +00002283
Rafael Espindola08013342013-12-07 19:34:20 +00002284 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002285
Rafael Espindola08013342013-12-07 19:34:20 +00002286...where '``<parameter list>``' is a comma-separated list of type
2287specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002288indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002289argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002290handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002291except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002292
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002293:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002294
Rafael Espindola08013342013-12-07 19:34:20 +00002295+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2296| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2297+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2298| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2299+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2300| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2301+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2302| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2303+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2304
2305.. _t_firstclass:
2306
2307First Class Types
2308-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002309
2310The :ref:`first class <t_firstclass>` types are perhaps the most important.
2311Values of these types are the only ones which can be produced by
2312instructions.
2313
Rafael Espindola08013342013-12-07 19:34:20 +00002314.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002315
Rafael Espindola08013342013-12-07 19:34:20 +00002316Single Value Types
2317^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002318
Rafael Espindola08013342013-12-07 19:34:20 +00002319These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002320
2321.. _t_integer:
2322
2323Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002324""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002325
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002326:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002327
2328The integer type is a very simple type that simply specifies an
2329arbitrary bit width for the integer type desired. Any bit width from 1
2330bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2331
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002332:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002333
2334::
2335
2336 iN
2337
2338The number of bits the integer will occupy is specified by the ``N``
2339value.
2340
2341Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002342*********
Sean Silvab084af42012-12-07 10:36:55 +00002343
2344+----------------+------------------------------------------------+
2345| ``i1`` | a single-bit integer. |
2346+----------------+------------------------------------------------+
2347| ``i32`` | a 32-bit integer. |
2348+----------------+------------------------------------------------+
2349| ``i1942652`` | a really big integer of over 1 million bits. |
2350+----------------+------------------------------------------------+
2351
2352.. _t_floating:
2353
2354Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002355""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002356
2357.. list-table::
2358 :header-rows: 1
2359
2360 * - Type
2361 - Description
2362
2363 * - ``half``
2364 - 16-bit floating point value
2365
2366 * - ``float``
2367 - 32-bit floating point value
2368
2369 * - ``double``
2370 - 64-bit floating point value
2371
2372 * - ``fp128``
2373 - 128-bit floating point value (112-bit mantissa)
2374
2375 * - ``x86_fp80``
2376 - 80-bit floating point value (X87)
2377
2378 * - ``ppc_fp128``
2379 - 128-bit floating point value (two 64-bits)
2380
Reid Kleckner9a16d082014-03-05 02:41:37 +00002381X86_mmx Type
2382""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002383
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002384:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002385
Reid Kleckner9a16d082014-03-05 02:41:37 +00002386The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002387machine. The operations allowed on it are quite limited: parameters and
2388return values, load and store, and bitcast. User-specified MMX
2389instructions are represented as intrinsic or asm calls with arguments
2390and/or results of this type. There are no arrays, vectors or constants
2391of this type.
2392
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002393:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002394
2395::
2396
Reid Kleckner9a16d082014-03-05 02:41:37 +00002397 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002398
Sean Silvab084af42012-12-07 10:36:55 +00002399
Rafael Espindola08013342013-12-07 19:34:20 +00002400.. _t_pointer:
2401
2402Pointer Type
2403""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002404
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002405:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002406
Rafael Espindola08013342013-12-07 19:34:20 +00002407The pointer type is used to specify memory locations. Pointers are
2408commonly used to reference objects in memory.
2409
2410Pointer types may have an optional address space attribute defining the
2411numbered address space where the pointed-to object resides. The default
2412address space is number zero. The semantics of non-zero address spaces
2413are target-specific.
2414
2415Note that LLVM does not permit pointers to void (``void*``) nor does it
2416permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002417
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002418:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002419
2420::
2421
Rafael Espindola08013342013-12-07 19:34:20 +00002422 <type> *
2423
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002424:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002425
2426+-------------------------+--------------------------------------------------------------------------------------------------------------+
2427| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2428+-------------------------+--------------------------------------------------------------------------------------------------------------+
2429| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2430+-------------------------+--------------------------------------------------------------------------------------------------------------+
2431| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2432+-------------------------+--------------------------------------------------------------------------------------------------------------+
2433
2434.. _t_vector:
2435
2436Vector Type
2437"""""""""""
2438
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002439:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002440
2441A vector type is a simple derived type that represents a vector of
2442elements. Vector types are used when multiple primitive data are
2443operated in parallel using a single instruction (SIMD). A vector type
2444requires a size (number of elements) and an underlying primitive data
2445type. Vector types are considered :ref:`first class <t_firstclass>`.
2446
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002447:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002448
2449::
2450
2451 < <# elements> x <elementtype> >
2452
2453The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002454elementtype may be any integer, floating point or pointer type. Vectors
2455of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002456
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002457:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002458
2459+-------------------+--------------------------------------------------+
2460| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2461+-------------------+--------------------------------------------------+
2462| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2463+-------------------+--------------------------------------------------+
2464| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2465+-------------------+--------------------------------------------------+
2466| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2467+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002468
2469.. _t_label:
2470
2471Label Type
2472^^^^^^^^^^
2473
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002474:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002475
2476The label type represents code labels.
2477
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002478:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002479
2480::
2481
2482 label
2483
David Majnemerb611e3f2015-08-14 05:09:07 +00002484.. _t_token:
2485
2486Token Type
2487^^^^^^^^^^
2488
2489:Overview:
2490
2491The token type is used when a value is associated with an instruction
2492but all uses of the value must not attempt to introspect or obscure it.
2493As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2494:ref:`select <i_select>` of type token.
2495
2496:Syntax:
2497
2498::
2499
2500 token
2501
2502
2503
Sean Silvab084af42012-12-07 10:36:55 +00002504.. _t_metadata:
2505
2506Metadata Type
2507^^^^^^^^^^^^^
2508
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002509:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002510
2511The metadata type represents embedded metadata. No derived types may be
2512created from metadata except for :ref:`function <t_function>` arguments.
2513
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002514:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002515
2516::
2517
2518 metadata
2519
Sean Silvab084af42012-12-07 10:36:55 +00002520.. _t_aggregate:
2521
2522Aggregate Types
2523^^^^^^^^^^^^^^^
2524
2525Aggregate Types are a subset of derived types that can contain multiple
2526member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2527aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2528aggregate types.
2529
2530.. _t_array:
2531
2532Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002533""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002534
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002535:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002536
2537The array type is a very simple derived type that arranges elements
2538sequentially in memory. The array type requires a size (number of
2539elements) and an underlying data type.
2540
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002541:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002542
2543::
2544
2545 [<# elements> x <elementtype>]
2546
2547The number of elements is a constant integer value; ``elementtype`` may
2548be any type with a size.
2549
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002550:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002551
2552+------------------+--------------------------------------+
2553| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2554+------------------+--------------------------------------+
2555| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2556+------------------+--------------------------------------+
2557| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2558+------------------+--------------------------------------+
2559
2560Here are some examples of multidimensional arrays:
2561
2562+-----------------------------+----------------------------------------------------------+
2563| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2564+-----------------------------+----------------------------------------------------------+
2565| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2566+-----------------------------+----------------------------------------------------------+
2567| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2568+-----------------------------+----------------------------------------------------------+
2569
2570There is no restriction on indexing beyond the end of the array implied
2571by a static type (though there are restrictions on indexing beyond the
2572bounds of an allocated object in some cases). This means that
2573single-dimension 'variable sized array' addressing can be implemented in
2574LLVM with a zero length array type. An implementation of 'pascal style
2575arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2576example.
2577
Sean Silvab084af42012-12-07 10:36:55 +00002578.. _t_struct:
2579
2580Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002581""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002582
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002583:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002584
2585The structure type is used to represent a collection of data members
2586together in memory. The elements of a structure may be any type that has
2587a size.
2588
2589Structures in memory are accessed using '``load``' and '``store``' by
2590getting a pointer to a field with the '``getelementptr``' instruction.
2591Structures in registers are accessed using the '``extractvalue``' and
2592'``insertvalue``' instructions.
2593
2594Structures may optionally be "packed" structures, which indicate that
2595the alignment of the struct is one byte, and that there is no padding
2596between the elements. In non-packed structs, padding between field types
2597is inserted as defined by the DataLayout string in the module, which is
2598required to match what the underlying code generator expects.
2599
2600Structures can either be "literal" or "identified". A literal structure
2601is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2602identified types are always defined at the top level with a name.
2603Literal types are uniqued by their contents and can never be recursive
2604or opaque since there is no way to write one. Identified types can be
2605recursive, can be opaqued, and are never uniqued.
2606
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002607:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002608
2609::
2610
2611 %T1 = type { <type list> } ; Identified normal struct type
2612 %T2 = type <{ <type list> }> ; Identified packed struct type
2613
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002614:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002615
2616+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2617| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2618+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002619| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002620+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2621| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2622+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2623
2624.. _t_opaque:
2625
2626Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002627""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002628
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002629:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002630
2631Opaque structure types are used to represent named structure types that
2632do not have a body specified. This corresponds (for example) to the C
2633notion of a forward declared structure.
2634
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002635:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002636
2637::
2638
2639 %X = type opaque
2640 %52 = type opaque
2641
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002642:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002643
2644+--------------+-------------------+
2645| ``opaque`` | An opaque type. |
2646+--------------+-------------------+
2647
Sean Silva1703e702014-04-08 21:06:22 +00002648.. _constants:
2649
Sean Silvab084af42012-12-07 10:36:55 +00002650Constants
2651=========
2652
2653LLVM has several different basic types of constants. This section
2654describes them all and their syntax.
2655
2656Simple Constants
2657----------------
2658
2659**Boolean constants**
2660 The two strings '``true``' and '``false``' are both valid constants
2661 of the ``i1`` type.
2662**Integer constants**
2663 Standard integers (such as '4') are constants of the
2664 :ref:`integer <t_integer>` type. Negative numbers may be used with
2665 integer types.
2666**Floating point constants**
2667 Floating point constants use standard decimal notation (e.g.
2668 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2669 hexadecimal notation (see below). The assembler requires the exact
2670 decimal value of a floating-point constant. For example, the
2671 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2672 decimal in binary. Floating point constants must have a :ref:`floating
2673 point <t_floating>` type.
2674**Null pointer constants**
2675 The identifier '``null``' is recognized as a null pointer constant
2676 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002677**Token constants**
2678 The identifier '``none``' is recognized as an empty token constant
2679 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002680
2681The one non-intuitive notation for constants is the hexadecimal form of
2682floating point constants. For example, the form
2683'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2684than) '``double 4.5e+15``'. The only time hexadecimal floating point
2685constants are required (and the only time that they are generated by the
2686disassembler) is when a floating point constant must be emitted but it
2687cannot be represented as a decimal floating point number in a reasonable
2688number of digits. For example, NaN's, infinities, and other special
2689values are represented in their IEEE hexadecimal format so that assembly
2690and disassembly do not cause any bits to change in the constants.
2691
2692When using the hexadecimal form, constants of types half, float, and
2693double are represented using the 16-digit form shown above (which
2694matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002695must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002696precision, respectively. Hexadecimal format is always used for long
2697double, and there are three forms of long double. The 80-bit format used
2698by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2699128-bit format used by PowerPC (two adjacent doubles) is represented by
2700``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002701represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2702will only work if they match the long double format on your target.
2703The IEEE 16-bit format (half precision) is represented by ``0xH``
2704followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2705(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002706
Reid Kleckner9a16d082014-03-05 02:41:37 +00002707There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002708
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002709.. _complexconstants:
2710
Sean Silvab084af42012-12-07 10:36:55 +00002711Complex Constants
2712-----------------
2713
2714Complex constants are a (potentially recursive) combination of simple
2715constants and smaller complex constants.
2716
2717**Structure constants**
2718 Structure constants are represented with notation similar to
2719 structure type definitions (a comma separated list of elements,
2720 surrounded by braces (``{}``)). For example:
2721 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2722 "``@G = external global i32``". Structure constants must have
2723 :ref:`structure type <t_struct>`, and the number and types of elements
2724 must match those specified by the type.
2725**Array constants**
2726 Array constants are represented with notation similar to array type
2727 definitions (a comma separated list of elements, surrounded by
2728 square brackets (``[]``)). For example:
2729 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2730 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002731 match those specified by the type. As a special case, character array
2732 constants may also be represented as a double-quoted string using the ``c``
2733 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002734**Vector constants**
2735 Vector constants are represented with notation similar to vector
2736 type definitions (a comma separated list of elements, surrounded by
2737 less-than/greater-than's (``<>``)). For example:
2738 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2739 must have :ref:`vector type <t_vector>`, and the number and types of
2740 elements must match those specified by the type.
2741**Zero initialization**
2742 The string '``zeroinitializer``' can be used to zero initialize a
2743 value to zero of *any* type, including scalar and
2744 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2745 having to print large zero initializers (e.g. for large arrays) and
2746 is always exactly equivalent to using explicit zero initializers.
2747**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002748 A metadata node is a constant tuple without types. For example:
2749 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002750 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2751 Unlike other typed constants that are meant to be interpreted as part of
2752 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002753 information such as debug info.
2754
2755Global Variable and Function Addresses
2756--------------------------------------
2757
2758The addresses of :ref:`global variables <globalvars>` and
2759:ref:`functions <functionstructure>` are always implicitly valid
2760(link-time) constants. These constants are explicitly referenced when
2761the :ref:`identifier for the global <identifiers>` is used and always have
2762:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2763file:
2764
2765.. code-block:: llvm
2766
2767 @X = global i32 17
2768 @Y = global i32 42
2769 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2770
2771.. _undefvalues:
2772
2773Undefined Values
2774----------------
2775
2776The string '``undef``' can be used anywhere a constant is expected, and
2777indicates that the user of the value may receive an unspecified
2778bit-pattern. Undefined values may be of any type (other than '``label``'
2779or '``void``') and be used anywhere a constant is permitted.
2780
2781Undefined values are useful because they indicate to the compiler that
2782the program is well defined no matter what value is used. This gives the
2783compiler more freedom to optimize. Here are some examples of
2784(potentially surprising) transformations that are valid (in pseudo IR):
2785
2786.. code-block:: llvm
2787
2788 %A = add %X, undef
2789 %B = sub %X, undef
2790 %C = xor %X, undef
2791 Safe:
2792 %A = undef
2793 %B = undef
2794 %C = undef
2795
2796This is safe because all of the output bits are affected by the undef
2797bits. Any output bit can have a zero or one depending on the input bits.
2798
2799.. code-block:: llvm
2800
2801 %A = or %X, undef
2802 %B = and %X, undef
2803 Safe:
2804 %A = -1
2805 %B = 0
2806 Unsafe:
2807 %A = undef
2808 %B = undef
2809
2810These logical operations have bits that are not always affected by the
2811input. For example, if ``%X`` has a zero bit, then the output of the
2812'``and``' operation will always be a zero for that bit, no matter what
2813the corresponding bit from the '``undef``' is. As such, it is unsafe to
2814optimize or assume that the result of the '``and``' is '``undef``'.
2815However, it is safe to assume that all bits of the '``undef``' could be
28160, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2817all the bits of the '``undef``' operand to the '``or``' could be set,
2818allowing the '``or``' to be folded to -1.
2819
2820.. code-block:: llvm
2821
2822 %A = select undef, %X, %Y
2823 %B = select undef, 42, %Y
2824 %C = select %X, %Y, undef
2825 Safe:
2826 %A = %X (or %Y)
2827 %B = 42 (or %Y)
2828 %C = %Y
2829 Unsafe:
2830 %A = undef
2831 %B = undef
2832 %C = undef
2833
2834This set of examples shows that undefined '``select``' (and conditional
2835branch) conditions can go *either way*, but they have to come from one
2836of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2837both known to have a clear low bit, then ``%A`` would have to have a
2838cleared low bit. However, in the ``%C`` example, the optimizer is
2839allowed to assume that the '``undef``' operand could be the same as
2840``%Y``, allowing the whole '``select``' to be eliminated.
2841
2842.. code-block:: llvm
2843
2844 %A = xor undef, undef
2845
2846 %B = undef
2847 %C = xor %B, %B
2848
2849 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002850 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002851 %F = icmp gte %D, 4
2852
2853 Safe:
2854 %A = undef
2855 %B = undef
2856 %C = undef
2857 %D = undef
2858 %E = undef
2859 %F = undef
2860
2861This example points out that two '``undef``' operands are not
2862necessarily the same. This can be surprising to people (and also matches
2863C semantics) where they assume that "``X^X``" is always zero, even if
2864``X`` is undefined. This isn't true for a number of reasons, but the
2865short answer is that an '``undef``' "variable" can arbitrarily change
2866its value over its "live range". This is true because the variable
2867doesn't actually *have a live range*. Instead, the value is logically
2868read from arbitrary registers that happen to be around when needed, so
2869the value is not necessarily consistent over time. In fact, ``%A`` and
2870``%C`` need to have the same semantics or the core LLVM "replace all
2871uses with" concept would not hold.
2872
2873.. code-block:: llvm
2874
2875 %A = fdiv undef, %X
2876 %B = fdiv %X, undef
2877 Safe:
2878 %A = undef
2879 b: unreachable
2880
2881These examples show the crucial difference between an *undefined value*
2882and *undefined behavior*. An undefined value (like '``undef``') is
2883allowed to have an arbitrary bit-pattern. This means that the ``%A``
2884operation can be constant folded to '``undef``', because the '``undef``'
2885could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2886However, in the second example, we can make a more aggressive
2887assumption: because the ``undef`` is allowed to be an arbitrary value,
2888we are allowed to assume that it could be zero. Since a divide by zero
2889has *undefined behavior*, we are allowed to assume that the operation
2890does not execute at all. This allows us to delete the divide and all
2891code after it. Because the undefined operation "can't happen", the
2892optimizer can assume that it occurs in dead code.
2893
2894.. code-block:: llvm
2895
2896 a: store undef -> %X
2897 b: store %X -> undef
2898 Safe:
2899 a: <deleted>
2900 b: unreachable
2901
2902These examples reiterate the ``fdiv`` example: a store *of* an undefined
2903value can be assumed to not have any effect; we can assume that the
2904value is overwritten with bits that happen to match what was already
2905there. However, a store *to* an undefined location could clobber
2906arbitrary memory, therefore, it has undefined behavior.
2907
2908.. _poisonvalues:
2909
2910Poison Values
2911-------------
2912
2913Poison values are similar to :ref:`undef values <undefvalues>`, however
2914they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002915that cannot evoke side effects has nevertheless detected a condition
2916that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002917
2918There is currently no way of representing a poison value in the IR; they
2919only exist when produced by operations such as :ref:`add <i_add>` with
2920the ``nsw`` flag.
2921
2922Poison value behavior is defined in terms of value *dependence*:
2923
2924- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2925- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2926 their dynamic predecessor basic block.
2927- Function arguments depend on the corresponding actual argument values
2928 in the dynamic callers of their functions.
2929- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2930 instructions that dynamically transfer control back to them.
2931- :ref:`Invoke <i_invoke>` instructions depend on the
2932 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2933 call instructions that dynamically transfer control back to them.
2934- Non-volatile loads and stores depend on the most recent stores to all
2935 of the referenced memory addresses, following the order in the IR
2936 (including loads and stores implied by intrinsics such as
2937 :ref:`@llvm.memcpy <int_memcpy>`.)
2938- An instruction with externally visible side effects depends on the
2939 most recent preceding instruction with externally visible side
2940 effects, following the order in the IR. (This includes :ref:`volatile
2941 operations <volatile>`.)
2942- An instruction *control-depends* on a :ref:`terminator
2943 instruction <terminators>` if the terminator instruction has
2944 multiple successors and the instruction is always executed when
2945 control transfers to one of the successors, and may not be executed
2946 when control is transferred to another.
2947- Additionally, an instruction also *control-depends* on a terminator
2948 instruction if the set of instructions it otherwise depends on would
2949 be different if the terminator had transferred control to a different
2950 successor.
2951- Dependence is transitive.
2952
Richard Smith32dbdf62014-07-31 04:25:36 +00002953Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2954with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002955on a poison value has undefined behavior.
2956
2957Here are some examples:
2958
2959.. code-block:: llvm
2960
2961 entry:
2962 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2963 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002964 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002965 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2966
2967 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002968 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002969
2970 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2971
2972 %narrowaddr = bitcast i32* @g to i16*
2973 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002974 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2975 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002976
2977 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2978 br i1 %cmp, label %true, label %end ; Branch to either destination.
2979
2980 true:
2981 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2982 ; it has undefined behavior.
2983 br label %end
2984
2985 end:
2986 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2987 ; Both edges into this PHI are
2988 ; control-dependent on %cmp, so this
2989 ; always results in a poison value.
2990
2991 store volatile i32 0, i32* @g ; This would depend on the store in %true
2992 ; if %cmp is true, or the store in %entry
2993 ; otherwise, so this is undefined behavior.
2994
2995 br i1 %cmp, label %second_true, label %second_end
2996 ; The same branch again, but this time the
2997 ; true block doesn't have side effects.
2998
2999 second_true:
3000 ; No side effects!
3001 ret void
3002
3003 second_end:
3004 store volatile i32 0, i32* @g ; This time, the instruction always depends
3005 ; on the store in %end. Also, it is
3006 ; control-equivalent to %end, so this is
3007 ; well-defined (ignoring earlier undefined
3008 ; behavior in this example).
3009
3010.. _blockaddress:
3011
3012Addresses of Basic Blocks
3013-------------------------
3014
3015``blockaddress(@function, %block)``
3016
3017The '``blockaddress``' constant computes the address of the specified
3018basic block in the specified function, and always has an ``i8*`` type.
3019Taking the address of the entry block is illegal.
3020
3021This value only has defined behavior when used as an operand to the
3022':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3023against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003024undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003025no label is equal to the null pointer. This may be passed around as an
3026opaque pointer sized value as long as the bits are not inspected. This
3027allows ``ptrtoint`` and arithmetic to be performed on these values so
3028long as the original value is reconstituted before the ``indirectbr``
3029instruction.
3030
3031Finally, some targets may provide defined semantics when using the value
3032as the operand to an inline assembly, but that is target specific.
3033
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003034.. _constantexprs:
3035
Sean Silvab084af42012-12-07 10:36:55 +00003036Constant Expressions
3037--------------------
3038
3039Constant expressions are used to allow expressions involving other
3040constants to be used as constants. Constant expressions may be of any
3041:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3042that does not have side effects (e.g. load and call are not supported).
3043The following is the syntax for constant expressions:
3044
3045``trunc (CST to TYPE)``
3046 Truncate a constant to another type. The bit size of CST must be
3047 larger than the bit size of TYPE. Both types must be integers.
3048``zext (CST to TYPE)``
3049 Zero extend a constant to another type. The bit size of CST must be
3050 smaller than the bit size of TYPE. Both types must be integers.
3051``sext (CST to TYPE)``
3052 Sign extend a constant to another type. The bit size of CST must be
3053 smaller than the bit size of TYPE. Both types must be integers.
3054``fptrunc (CST to TYPE)``
3055 Truncate a floating point constant to another floating point type.
3056 The size of CST must be larger than the size of TYPE. Both types
3057 must be floating point.
3058``fpext (CST to TYPE)``
3059 Floating point extend a constant to another type. The size of CST
3060 must be smaller or equal to the size of TYPE. Both types must be
3061 floating point.
3062``fptoui (CST to TYPE)``
3063 Convert a floating point constant to the corresponding unsigned
3064 integer constant. TYPE must be a scalar or vector integer type. CST
3065 must be of scalar or vector floating point type. Both CST and TYPE
3066 must be scalars, or vectors of the same number of elements. If the
3067 value won't fit in the integer type, the results are undefined.
3068``fptosi (CST to TYPE)``
3069 Convert a floating point constant to the corresponding signed
3070 integer constant. TYPE must be a scalar or vector integer type. CST
3071 must be of scalar or vector floating point type. Both CST and TYPE
3072 must be scalars, or vectors of the same number of elements. If the
3073 value won't fit in the integer type, the results are undefined.
3074``uitofp (CST to TYPE)``
3075 Convert an unsigned integer constant to the corresponding floating
3076 point constant. TYPE must be a scalar or vector floating point type.
3077 CST must be of scalar or vector integer type. Both CST and TYPE must
3078 be scalars, or vectors of the same number of elements. If the value
3079 won't fit in the floating point type, the results are undefined.
3080``sitofp (CST to TYPE)``
3081 Convert a signed integer constant to the corresponding floating
3082 point constant. TYPE must be a scalar or vector floating point type.
3083 CST must be of scalar or vector integer type. Both CST and TYPE must
3084 be scalars, or vectors of the same number of elements. If the value
3085 won't fit in the floating point type, the results are undefined.
3086``ptrtoint (CST to TYPE)``
3087 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003088 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003089 pointer type. The ``CST`` value is zero extended, truncated, or
3090 unchanged to make it fit in ``TYPE``.
3091``inttoptr (CST to TYPE)``
3092 Convert an integer constant to a pointer constant. TYPE must be a
3093 pointer type. CST must be of integer type. The CST value is zero
3094 extended, truncated, or unchanged to make it fit in a pointer size.
3095 This one is *really* dangerous!
3096``bitcast (CST to TYPE)``
3097 Convert a constant, CST, to another TYPE. The constraints of the
3098 operands are the same as those for the :ref:`bitcast
3099 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003100``addrspacecast (CST to TYPE)``
3101 Convert a constant pointer or constant vector of pointer, CST, to another
3102 TYPE in a different address space. The constraints of the operands are the
3103 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003104``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003105 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3106 constants. As with the :ref:`getelementptr <i_getelementptr>`
3107 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003108 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003109``select (COND, VAL1, VAL2)``
3110 Perform the :ref:`select operation <i_select>` on constants.
3111``icmp COND (VAL1, VAL2)``
3112 Performs the :ref:`icmp operation <i_icmp>` on constants.
3113``fcmp COND (VAL1, VAL2)``
3114 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3115``extractelement (VAL, IDX)``
3116 Perform the :ref:`extractelement operation <i_extractelement>` on
3117 constants.
3118``insertelement (VAL, ELT, IDX)``
3119 Perform the :ref:`insertelement operation <i_insertelement>` on
3120 constants.
3121``shufflevector (VEC1, VEC2, IDXMASK)``
3122 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3123 constants.
3124``extractvalue (VAL, IDX0, IDX1, ...)``
3125 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3126 constants. The index list is interpreted in a similar manner as
3127 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3128 least one index value must be specified.
3129``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3130 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3131 The index list is interpreted in a similar manner as indices in a
3132 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3133 value must be specified.
3134``OPCODE (LHS, RHS)``
3135 Perform the specified operation of the LHS and RHS constants. OPCODE
3136 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3137 binary <bitwiseops>` operations. The constraints on operands are
3138 the same as those for the corresponding instruction (e.g. no bitwise
3139 operations on floating point values are allowed).
3140
3141Other Values
3142============
3143
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003144.. _inlineasmexprs:
3145
Sean Silvab084af42012-12-07 10:36:55 +00003146Inline Assembler Expressions
3147----------------------------
3148
3149LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003150Inline Assembly <moduleasm>`) through the use of a special value. This value
3151represents the inline assembler as a template string (containing the
3152instructions to emit), a list of operand constraints (stored as a string), a
3153flag that indicates whether or not the inline asm expression has side effects,
3154and a flag indicating whether the function containing the asm needs to align its
3155stack conservatively.
3156
3157The template string supports argument substitution of the operands using "``$``"
3158followed by a number, to indicate substitution of the given register/memory
3159location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3160be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3161operand (See :ref:`inline-asm-modifiers`).
3162
3163A literal "``$``" may be included by using "``$$``" in the template. To include
3164other special characters into the output, the usual "``\XX``" escapes may be
3165used, just as in other strings. Note that after template substitution, the
3166resulting assembly string is parsed by LLVM's integrated assembler unless it is
3167disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3168syntax known to LLVM.
3169
3170LLVM's support for inline asm is modeled closely on the requirements of Clang's
3171GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3172modifier codes listed here are similar or identical to those in GCC's inline asm
3173support. However, to be clear, the syntax of the template and constraint strings
3174described here is *not* the same as the syntax accepted by GCC and Clang, and,
3175while most constraint letters are passed through as-is by Clang, some get
3176translated to other codes when converting from the C source to the LLVM
3177assembly.
3178
3179An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003180
3181.. code-block:: llvm
3182
3183 i32 (i32) asm "bswap $0", "=r,r"
3184
3185Inline assembler expressions may **only** be used as the callee operand
3186of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3187Thus, typically we have:
3188
3189.. code-block:: llvm
3190
3191 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3192
3193Inline asms with side effects not visible in the constraint list must be
3194marked as having side effects. This is done through the use of the
3195'``sideeffect``' keyword, like so:
3196
3197.. code-block:: llvm
3198
3199 call void asm sideeffect "eieio", ""()
3200
3201In some cases inline asms will contain code that will not work unless
3202the stack is aligned in some way, such as calls or SSE instructions on
3203x86, yet will not contain code that does that alignment within the asm.
3204The compiler should make conservative assumptions about what the asm
3205might contain and should generate its usual stack alignment code in the
3206prologue if the '``alignstack``' keyword is present:
3207
3208.. code-block:: llvm
3209
3210 call void asm alignstack "eieio", ""()
3211
3212Inline asms also support using non-standard assembly dialects. The
3213assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3214the inline asm is using the Intel dialect. Currently, ATT and Intel are
3215the only supported dialects. An example is:
3216
3217.. code-block:: llvm
3218
3219 call void asm inteldialect "eieio", ""()
3220
3221If multiple keywords appear the '``sideeffect``' keyword must come
3222first, the '``alignstack``' keyword second and the '``inteldialect``'
3223keyword last.
3224
James Y Knightbc832ed2015-07-08 18:08:36 +00003225Inline Asm Constraint String
3226^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3227
3228The constraint list is a comma-separated string, each element containing one or
3229more constraint codes.
3230
3231For each element in the constraint list an appropriate register or memory
3232operand will be chosen, and it will be made available to assembly template
3233string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3234second, etc.
3235
3236There are three different types of constraints, which are distinguished by a
3237prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3238constraints must always be given in that order: outputs first, then inputs, then
3239clobbers. They cannot be intermingled.
3240
3241There are also three different categories of constraint codes:
3242
3243- Register constraint. This is either a register class, or a fixed physical
3244 register. This kind of constraint will allocate a register, and if necessary,
3245 bitcast the argument or result to the appropriate type.
3246- Memory constraint. This kind of constraint is for use with an instruction
3247 taking a memory operand. Different constraints allow for different addressing
3248 modes used by the target.
3249- Immediate value constraint. This kind of constraint is for an integer or other
3250 immediate value which can be rendered directly into an instruction. The
3251 various target-specific constraints allow the selection of a value in the
3252 proper range for the instruction you wish to use it with.
3253
3254Output constraints
3255""""""""""""""""""
3256
3257Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3258indicates that the assembly will write to this operand, and the operand will
3259then be made available as a return value of the ``asm`` expression. Output
3260constraints do not consume an argument from the call instruction. (Except, see
3261below about indirect outputs).
3262
3263Normally, it is expected that no output locations are written to by the assembly
3264expression until *all* of the inputs have been read. As such, LLVM may assign
3265the same register to an output and an input. If this is not safe (e.g. if the
3266assembly contains two instructions, where the first writes to one output, and
3267the second reads an input and writes to a second output), then the "``&``"
3268modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003269"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003270will not use the same register for any inputs (other than an input tied to this
3271output).
3272
3273Input constraints
3274"""""""""""""""""
3275
3276Input constraints do not have a prefix -- just the constraint codes. Each input
3277constraint will consume one argument from the call instruction. It is not
3278permitted for the asm to write to any input register or memory location (unless
3279that input is tied to an output). Note also that multiple inputs may all be
3280assigned to the same register, if LLVM can determine that they necessarily all
3281contain the same value.
3282
3283Instead of providing a Constraint Code, input constraints may also "tie"
3284themselves to an output constraint, by providing an integer as the constraint
3285string. Tied inputs still consume an argument from the call instruction, and
3286take up a position in the asm template numbering as is usual -- they will simply
3287be constrained to always use the same register as the output they've been tied
3288to. For example, a constraint string of "``=r,0``" says to assign a register for
3289output, and use that register as an input as well (it being the 0'th
3290constraint).
3291
3292It is permitted to tie an input to an "early-clobber" output. In that case, no
3293*other* input may share the same register as the input tied to the early-clobber
3294(even when the other input has the same value).
3295
3296You may only tie an input to an output which has a register constraint, not a
3297memory constraint. Only a single input may be tied to an output.
3298
3299There is also an "interesting" feature which deserves a bit of explanation: if a
3300register class constraint allocates a register which is too small for the value
3301type operand provided as input, the input value will be split into multiple
3302registers, and all of them passed to the inline asm.
3303
3304However, this feature is often not as useful as you might think.
3305
3306Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3307architectures that have instructions which operate on multiple consecutive
3308instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3309SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3310hardware then loads into both the named register, and the next register. This
3311feature of inline asm would not be useful to support that.)
3312
3313A few of the targets provide a template string modifier allowing explicit access
3314to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3315``D``). On such an architecture, you can actually access the second allocated
3316register (yet, still, not any subsequent ones). But, in that case, you're still
3317probably better off simply splitting the value into two separate operands, for
3318clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3319despite existing only for use with this feature, is not really a good idea to
3320use)
3321
3322Indirect inputs and outputs
3323"""""""""""""""""""""""""""
3324
3325Indirect output or input constraints can be specified by the "``*``" modifier
3326(which goes after the "``=``" in case of an output). This indicates that the asm
3327will write to or read from the contents of an *address* provided as an input
3328argument. (Note that in this way, indirect outputs act more like an *input* than
3329an output: just like an input, they consume an argument of the call expression,
3330rather than producing a return value. An indirect output constraint is an
3331"output" only in that the asm is expected to write to the contents of the input
3332memory location, instead of just read from it).
3333
3334This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3335address of a variable as a value.
3336
3337It is also possible to use an indirect *register* constraint, but only on output
3338(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3339value normally, and then, separately emit a store to the address provided as
3340input, after the provided inline asm. (It's not clear what value this
3341functionality provides, compared to writing the store explicitly after the asm
3342statement, and it can only produce worse code, since it bypasses many
3343optimization passes. I would recommend not using it.)
3344
3345
3346Clobber constraints
3347"""""""""""""""""""
3348
3349A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3350consume an input operand, nor generate an output. Clobbers cannot use any of the
3351general constraint code letters -- they may use only explicit register
3352constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3353"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3354memory locations -- not only the memory pointed to by a declared indirect
3355output.
3356
3357
3358Constraint Codes
3359""""""""""""""""
3360After a potential prefix comes constraint code, or codes.
3361
3362A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3363followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3364(e.g. "``{eax}``").
3365
3366The one and two letter constraint codes are typically chosen to be the same as
3367GCC's constraint codes.
3368
3369A single constraint may include one or more than constraint code in it, leaving
3370it up to LLVM to choose which one to use. This is included mainly for
3371compatibility with the translation of GCC inline asm coming from clang.
3372
3373There are two ways to specify alternatives, and either or both may be used in an
3374inline asm constraint list:
3375
33761) Append the codes to each other, making a constraint code set. E.g. "``im``"
3377 or "``{eax}m``". This means "choose any of the options in the set". The
3378 choice of constraint is made independently for each constraint in the
3379 constraint list.
3380
33812) Use "``|``" between constraint code sets, creating alternatives. Every
3382 constraint in the constraint list must have the same number of alternative
3383 sets. With this syntax, the same alternative in *all* of the items in the
3384 constraint list will be chosen together.
3385
3386Putting those together, you might have a two operand constraint string like
3387``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3388operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3389may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3390
3391However, the use of either of the alternatives features is *NOT* recommended, as
3392LLVM is not able to make an intelligent choice about which one to use. (At the
3393point it currently needs to choose, not enough information is available to do so
3394in a smart way.) Thus, it simply tries to make a choice that's most likely to
3395compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3396always choose to use memory, not registers). And, if given multiple registers,
3397or multiple register classes, it will simply choose the first one. (In fact, it
3398doesn't currently even ensure explicitly specified physical registers are
3399unique, so specifying multiple physical registers as alternatives, like
3400``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3401intended.)
3402
3403Supported Constraint Code List
3404""""""""""""""""""""""""""""""
3405
3406The constraint codes are, in general, expected to behave the same way they do in
3407GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3408inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3409and GCC likely indicates a bug in LLVM.
3410
3411Some constraint codes are typically supported by all targets:
3412
3413- ``r``: A register in the target's general purpose register class.
3414- ``m``: A memory address operand. It is target-specific what addressing modes
3415 are supported, typical examples are register, or register + register offset,
3416 or register + immediate offset (of some target-specific size).
3417- ``i``: An integer constant (of target-specific width). Allows either a simple
3418 immediate, or a relocatable value.
3419- ``n``: An integer constant -- *not* including relocatable values.
3420- ``s``: An integer constant, but allowing *only* relocatable values.
3421- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3422 useful to pass a label for an asm branch or call.
3423
3424 .. FIXME: but that surely isn't actually okay to jump out of an asm
3425 block without telling llvm about the control transfer???)
3426
3427- ``{register-name}``: Requires exactly the named physical register.
3428
3429Other constraints are target-specific:
3430
3431AArch64:
3432
3433- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3434- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3435 i.e. 0 to 4095 with optional shift by 12.
3436- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3437 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3438- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3439 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3440- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3441 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3442- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3443 32-bit register. This is a superset of ``K``: in addition to the bitmask
3444 immediate, also allows immediate integers which can be loaded with a single
3445 ``MOVZ`` or ``MOVL`` instruction.
3446- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3447 64-bit register. This is a superset of ``L``.
3448- ``Q``: Memory address operand must be in a single register (no
3449 offsets). (However, LLVM currently does this for the ``m`` constraint as
3450 well.)
3451- ``r``: A 32 or 64-bit integer register (W* or X*).
3452- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3453- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3454
3455AMDGPU:
3456
3457- ``r``: A 32 or 64-bit integer register.
3458- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3459- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3460
3461
3462All ARM modes:
3463
3464- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3465 operand. Treated the same as operand ``m``, at the moment.
3466
3467ARM and ARM's Thumb2 mode:
3468
3469- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3470- ``I``: An immediate integer valid for a data-processing instruction.
3471- ``J``: An immediate integer between -4095 and 4095.
3472- ``K``: An immediate integer whose bitwise inverse is valid for a
3473 data-processing instruction. (Can be used with template modifier "``B``" to
3474 print the inverted value).
3475- ``L``: An immediate integer whose negation is valid for a data-processing
3476 instruction. (Can be used with template modifier "``n``" to print the negated
3477 value).
3478- ``M``: A power of two or a integer between 0 and 32.
3479- ``N``: Invalid immediate constraint.
3480- ``O``: Invalid immediate constraint.
3481- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3482- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3483 as ``r``.
3484- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3485 invalid.
3486- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3487 ``d0-d31``, or ``q0-q15``.
3488- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3489 ``d0-d7``, or ``q0-q3``.
3490- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3491 ``s0-s31``.
3492
3493ARM's Thumb1 mode:
3494
3495- ``I``: An immediate integer between 0 and 255.
3496- ``J``: An immediate integer between -255 and -1.
3497- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3498 some amount.
3499- ``L``: An immediate integer between -7 and 7.
3500- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3501- ``N``: An immediate integer between 0 and 31.
3502- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3503- ``r``: A low 32-bit GPR register (``r0-r7``).
3504- ``l``: A low 32-bit GPR register (``r0-r7``).
3505- ``h``: A high GPR register (``r0-r7``).
3506- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3507 ``d0-d31``, or ``q0-q15``.
3508- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3509 ``d0-d7``, or ``q0-q3``.
3510- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3511 ``s0-s31``.
3512
3513
3514Hexagon:
3515
3516- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3517 at the moment.
3518- ``r``: A 32 or 64-bit register.
3519
3520MSP430:
3521
3522- ``r``: An 8 or 16-bit register.
3523
3524MIPS:
3525
3526- ``I``: An immediate signed 16-bit integer.
3527- ``J``: An immediate integer zero.
3528- ``K``: An immediate unsigned 16-bit integer.
3529- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3530- ``N``: An immediate integer between -65535 and -1.
3531- ``O``: An immediate signed 15-bit integer.
3532- ``P``: An immediate integer between 1 and 65535.
3533- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3534 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3535- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3536 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3537 ``m``.
3538- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3539 ``sc`` instruction on the given subtarget (details vary).
3540- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3541- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003542 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3543 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003544- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3545 ``25``).
3546- ``l``: The ``lo`` register, 32 or 64-bit.
3547- ``x``: Invalid.
3548
3549NVPTX:
3550
3551- ``b``: A 1-bit integer register.
3552- ``c`` or ``h``: A 16-bit integer register.
3553- ``r``: A 32-bit integer register.
3554- ``l`` or ``N``: A 64-bit integer register.
3555- ``f``: A 32-bit float register.
3556- ``d``: A 64-bit float register.
3557
3558
3559PowerPC:
3560
3561- ``I``: An immediate signed 16-bit integer.
3562- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3563- ``K``: An immediate unsigned 16-bit integer.
3564- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3565- ``M``: An immediate integer greater than 31.
3566- ``N``: An immediate integer that is an exact power of 2.
3567- ``O``: The immediate integer constant 0.
3568- ``P``: An immediate integer constant whose negation is a signed 16-bit
3569 constant.
3570- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3571 treated the same as ``m``.
3572- ``r``: A 32 or 64-bit integer register.
3573- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3574 ``R1-R31``).
3575- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3576 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3577- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3578 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3579 altivec vector register (``V0-V31``).
3580
3581 .. FIXME: is this a bug that v accepts QPX registers? I think this
3582 is supposed to only use the altivec vector registers?
3583
3584- ``y``: Condition register (``CR0-CR7``).
3585- ``wc``: An individual CR bit in a CR register.
3586- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3587 register set (overlapping both the floating-point and vector register files).
3588- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3589 set.
3590
3591Sparc:
3592
3593- ``I``: An immediate 13-bit signed integer.
3594- ``r``: A 32-bit integer register.
3595
3596SystemZ:
3597
3598- ``I``: An immediate unsigned 8-bit integer.
3599- ``J``: An immediate unsigned 12-bit integer.
3600- ``K``: An immediate signed 16-bit integer.
3601- ``L``: An immediate signed 20-bit integer.
3602- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003603- ``Q``: A memory address operand with a base address and a 12-bit immediate
3604 unsigned displacement.
3605- ``R``: A memory address operand with a base address, a 12-bit immediate
3606 unsigned displacement, and an index register.
3607- ``S``: A memory address operand with a base address and a 20-bit immediate
3608 signed displacement.
3609- ``T``: A memory address operand with a base address, a 20-bit immediate
3610 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003611- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3612- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3613 address context evaluates as zero).
3614- ``h``: A 32-bit value in the high part of a 64bit data register
3615 (LLVM-specific)
3616- ``f``: A 32, 64, or 128-bit floating point register.
3617
3618X86:
3619
3620- ``I``: An immediate integer between 0 and 31.
3621- ``J``: An immediate integer between 0 and 64.
3622- ``K``: An immediate signed 8-bit integer.
3623- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3624 0xffffffff.
3625- ``M``: An immediate integer between 0 and 3.
3626- ``N``: An immediate unsigned 8-bit integer.
3627- ``O``: An immediate integer between 0 and 127.
3628- ``e``: An immediate 32-bit signed integer.
3629- ``Z``: An immediate 32-bit unsigned integer.
3630- ``o``, ``v``: Treated the same as ``m``, at the moment.
3631- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3632 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3633 registers, and on X86-64, it is all of the integer registers.
3634- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3635 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3636- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3637- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3638 existed since i386, and can be accessed without the REX prefix.
3639- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3640- ``y``: A 64-bit MMX register, if MMX is enabled.
3641- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3642 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3643 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3644 512-bit vector operand in an AVX512 register, Otherwise, an error.
3645- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3646- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3647 32-bit mode, a 64-bit integer operand will get split into two registers). It
3648 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3649 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3650 you're better off splitting it yourself, before passing it to the asm
3651 statement.
3652
3653XCore:
3654
3655- ``r``: A 32-bit integer register.
3656
3657
3658.. _inline-asm-modifiers:
3659
3660Asm template argument modifiers
3661^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3662
3663In the asm template string, modifiers can be used on the operand reference, like
3664"``${0:n}``".
3665
3666The modifiers are, in general, expected to behave the same way they do in
3667GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3668inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3669and GCC likely indicates a bug in LLVM.
3670
3671Target-independent:
3672
Sean Silvaa1190322015-08-06 22:56:48 +00003673- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003674 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3675- ``n``: Negate and print immediate integer constant unadorned, without the
3676 target-specific immediate punctuation (e.g. no ``$`` prefix).
3677- ``l``: Print as an unadorned label, without the target-specific label
3678 punctuation (e.g. no ``$`` prefix).
3679
3680AArch64:
3681
3682- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3683 instead of ``x30``, print ``w30``.
3684- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3685- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3686 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3687 ``v*``.
3688
3689AMDGPU:
3690
3691- ``r``: No effect.
3692
3693ARM:
3694
3695- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3696 register).
3697- ``P``: No effect.
3698- ``q``: No effect.
3699- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3700 as ``d4[1]`` instead of ``s9``)
3701- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3702 prefix.
3703- ``L``: Print the low 16-bits of an immediate integer constant.
3704- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3705 register operands subsequent to the specified one (!), so use carefully.
3706- ``Q``: Print the low-order register of a register-pair, or the low-order
3707 register of a two-register operand.
3708- ``R``: Print the high-order register of a register-pair, or the high-order
3709 register of a two-register operand.
3710- ``H``: Print the second register of a register-pair. (On a big-endian system,
3711 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3712 to ``R``.)
3713
3714 .. FIXME: H doesn't currently support printing the second register
3715 of a two-register operand.
3716
3717- ``e``: Print the low doubleword register of a NEON quad register.
3718- ``f``: Print the high doubleword register of a NEON quad register.
3719- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3720 adornment.
3721
3722Hexagon:
3723
3724- ``L``: Print the second register of a two-register operand. Requires that it
3725 has been allocated consecutively to the first.
3726
3727 .. FIXME: why is it restricted to consecutive ones? And there's
3728 nothing that ensures that happens, is there?
3729
3730- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3731 nothing. Used to print 'addi' vs 'add' instructions.
3732
3733MSP430:
3734
3735No additional modifiers.
3736
3737MIPS:
3738
3739- ``X``: Print an immediate integer as hexadecimal
3740- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3741- ``d``: Print an immediate integer as decimal.
3742- ``m``: Subtract one and print an immediate integer as decimal.
3743- ``z``: Print $0 if an immediate zero, otherwise print normally.
3744- ``L``: Print the low-order register of a two-register operand, or prints the
3745 address of the low-order word of a double-word memory operand.
3746
3747 .. FIXME: L seems to be missing memory operand support.
3748
3749- ``M``: Print the high-order register of a two-register operand, or prints the
3750 address of the high-order word of a double-word memory operand.
3751
3752 .. FIXME: M seems to be missing memory operand support.
3753
3754- ``D``: Print the second register of a two-register operand, or prints the
3755 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3756 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3757 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003758- ``w``: No effect. Provided for compatibility with GCC which requires this
3759 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3760 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003761
3762NVPTX:
3763
3764- ``r``: No effect.
3765
3766PowerPC:
3767
3768- ``L``: Print the second register of a two-register operand. Requires that it
3769 has been allocated consecutively to the first.
3770
3771 .. FIXME: why is it restricted to consecutive ones? And there's
3772 nothing that ensures that happens, is there?
3773
3774- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3775 nothing. Used to print 'addi' vs 'add' instructions.
3776- ``y``: For a memory operand, prints formatter for a two-register X-form
3777 instruction. (Currently always prints ``r0,OPERAND``).
3778- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3779 otherwise. (NOTE: LLVM does not support update form, so this will currently
3780 always print nothing)
3781- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3782 not support indexed form, so this will currently always print nothing)
3783
3784Sparc:
3785
3786- ``r``: No effect.
3787
3788SystemZ:
3789
3790SystemZ implements only ``n``, and does *not* support any of the other
3791target-independent modifiers.
3792
3793X86:
3794
3795- ``c``: Print an unadorned integer or symbol name. (The latter is
3796 target-specific behavior for this typically target-independent modifier).
3797- ``A``: Print a register name with a '``*``' before it.
3798- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3799 operand.
3800- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3801 memory operand.
3802- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3803 operand.
3804- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3805 operand.
3806- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3807 available, otherwise the 32-bit register name; do nothing on a memory operand.
3808- ``n``: Negate and print an unadorned integer, or, for operands other than an
3809 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3810 the operand. (The behavior for relocatable symbol expressions is a
3811 target-specific behavior for this typically target-independent modifier)
3812- ``H``: Print a memory reference with additional offset +8.
3813- ``P``: Print a memory reference or operand for use as the argument of a call
3814 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3815
3816XCore:
3817
3818No additional modifiers.
3819
3820
Sean Silvab084af42012-12-07 10:36:55 +00003821Inline Asm Metadata
3822^^^^^^^^^^^^^^^^^^^
3823
3824The call instructions that wrap inline asm nodes may have a
3825"``!srcloc``" MDNode attached to it that contains a list of constant
3826integers. If present, the code generator will use the integer as the
3827location cookie value when report errors through the ``LLVMContext``
3828error reporting mechanisms. This allows a front-end to correlate backend
3829errors that occur with inline asm back to the source code that produced
3830it. For example:
3831
3832.. code-block:: llvm
3833
3834 call void asm sideeffect "something bad", ""(), !srcloc !42
3835 ...
3836 !42 = !{ i32 1234567 }
3837
3838It is up to the front-end to make sense of the magic numbers it places
3839in the IR. If the MDNode contains multiple constants, the code generator
3840will use the one that corresponds to the line of the asm that the error
3841occurs on.
3842
3843.. _metadata:
3844
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003845Metadata
3846========
Sean Silvab084af42012-12-07 10:36:55 +00003847
3848LLVM IR allows metadata to be attached to instructions in the program
3849that can convey extra information about the code to the optimizers and
3850code generator. One example application of metadata is source-level
3851debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003852
Sean Silvaa1190322015-08-06 22:56:48 +00003853Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003854``call`` instruction, it uses the ``metadata`` type.
3855
3856All metadata are identified in syntax by a exclamation point ('``!``').
3857
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003858.. _metadata-string:
3859
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003860Metadata Nodes and Metadata Strings
3861-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003862
3863A metadata string is a string surrounded by double quotes. It can
3864contain any character by escaping non-printable characters with
3865"``\xx``" where "``xx``" is the two digit hex code. For example:
3866"``!"test\00"``".
3867
3868Metadata nodes are represented with notation similar to structure
3869constants (a comma separated list of elements, surrounded by braces and
3870preceded by an exclamation point). Metadata nodes can have any values as
3871their operand. For example:
3872
3873.. code-block:: llvm
3874
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003875 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003876
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003877Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3878
3879.. code-block:: llvm
3880
3881 !0 = distinct !{!"test\00", i32 10}
3882
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003883``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003884content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003885when metadata operands change.
3886
Sean Silvab084af42012-12-07 10:36:55 +00003887A :ref:`named metadata <namedmetadatastructure>` is a collection of
3888metadata nodes, which can be looked up in the module symbol table. For
3889example:
3890
3891.. code-block:: llvm
3892
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003893 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003894
3895Metadata can be used as function arguments. Here ``llvm.dbg.value``
3896function is using two metadata arguments:
3897
3898.. code-block:: llvm
3899
3900 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3901
Peter Collingbourne50108682015-11-06 02:41:02 +00003902Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3903to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003904
3905.. code-block:: llvm
3906
3907 %indvar.next = add i64 %indvar, 1, !dbg !21
3908
Peter Collingbourne50108682015-11-06 02:41:02 +00003909Metadata can also be attached to a function definition. Here metadata ``!22``
3910is attached to the ``foo`` function using the ``!dbg`` identifier:
3911
3912.. code-block:: llvm
3913
3914 define void @foo() !dbg !22 {
3915 ret void
3916 }
3917
Sean Silvab084af42012-12-07 10:36:55 +00003918More information about specific metadata nodes recognized by the
3919optimizers and code generator is found below.
3920
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003921.. _specialized-metadata:
3922
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003923Specialized Metadata Nodes
3924^^^^^^^^^^^^^^^^^^^^^^^^^^
3925
3926Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003927to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003928order.
3929
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003930These aren't inherently debug info centric, but currently all the specialized
3931metadata nodes are related to debug info.
3932
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003933.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003934
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003935DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003936"""""""""""""
3937
Sean Silvaa1190322015-08-06 22:56:48 +00003938``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003939``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3940fields are tuples containing the debug info to be emitted along with the compile
3941unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003942references to them from instructions).
3943
3944.. code-block:: llvm
3945
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003946 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003947 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003948 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003949 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003950 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003951
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003952Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003953specific compilation unit. File descriptors are defined using this scope.
3954These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003955keep track of subprograms, global variables, type information, and imported
3956entities (declarations and namespaces).
3957
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003958.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003959
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003960DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003961""""""
3962
Sean Silvaa1190322015-08-06 22:56:48 +00003963``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003964
3965.. code-block:: llvm
3966
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003967 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003968
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003969Files are sometimes used in ``scope:`` fields, and are the only valid target
3970for ``file:`` fields.
3971
Michael Kuperstein605308a2015-05-14 10:58:59 +00003972.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003973
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003974DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003975"""""""""""
3976
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003977``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003978``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003979
3980.. code-block:: llvm
3981
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003982 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003983 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003984 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003985
Sean Silvaa1190322015-08-06 22:56:48 +00003986The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003987following:
3988
3989.. code-block:: llvm
3990
3991 DW_ATE_address = 1
3992 DW_ATE_boolean = 2
3993 DW_ATE_float = 4
3994 DW_ATE_signed = 5
3995 DW_ATE_signed_char = 6
3996 DW_ATE_unsigned = 7
3997 DW_ATE_unsigned_char = 8
3998
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003999.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004000
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004001DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004002""""""""""""""""
4003
Sean Silvaa1190322015-08-06 22:56:48 +00004004``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004005refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004006types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004007represents a function with no return value (such as ``void foo() {}`` in C++).
4008
4009.. code-block:: llvm
4010
4011 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4012 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004013 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004014
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004015.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004016
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004017DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004018"""""""""""""
4019
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004020``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004021qualified types.
4022
4023.. code-block:: llvm
4024
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004025 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004026 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004027 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004028 align: 32)
4029
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004030The following ``tag:`` values are valid:
4031
4032.. code-block:: llvm
4033
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004034 DW_TAG_member = 13
4035 DW_TAG_pointer_type = 15
4036 DW_TAG_reference_type = 16
4037 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004038 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004039 DW_TAG_ptr_to_member_type = 31
4040 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004041 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004042 DW_TAG_volatile_type = 53
4043 DW_TAG_restrict_type = 55
4044
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004045.. _DIDerivedTypeMember:
4046
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004047``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004048<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004049``offset:`` is the member's bit offset. If the composite type has an ODR
4050``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4051uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004052
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004053``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4054field of :ref:`composite types <DICompositeType>` to describe parents and
4055friends.
4056
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004057``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4058
4059``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
4060``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
4061``baseType:``.
4062
4063Note that the ``void *`` type is expressed as a type derived from NULL.
4064
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004065.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004066
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004067DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004068"""""""""""""""
4069
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004070``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004071structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004072
4073If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004074identifier used for type merging between modules. When specified,
4075:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4076derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4077``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004078
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004079For a given ``identifier:``, there should only be a single composite type that
4080does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4081together will unique such definitions at parse time via the ``identifier:``
4082field, even if the nodes are ``distinct``.
4083
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004084.. code-block:: llvm
4085
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004086 !0 = !DIEnumerator(name: "SixKind", value: 7)
4087 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4088 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4089 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004090 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4091 elements: !{!0, !1, !2})
4092
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004093The following ``tag:`` values are valid:
4094
4095.. code-block:: llvm
4096
4097 DW_TAG_array_type = 1
4098 DW_TAG_class_type = 2
4099 DW_TAG_enumeration_type = 4
4100 DW_TAG_structure_type = 19
4101 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004102
4103For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004104descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004105level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004106array type is a native packed vector.
4107
4108For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004109descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004110value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004111``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004112
4113For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4114``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004115<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4116``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4117``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004118
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004119.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004120
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004121DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004122""""""""""
4123
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004124``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004125:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004126
4127.. code-block:: llvm
4128
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004129 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4130 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4131 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004132
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004133.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004134
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004135DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004136""""""""""""
4137
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004138``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4139variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004140
4141.. code-block:: llvm
4142
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004143 !0 = !DIEnumerator(name: "SixKind", value: 7)
4144 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4145 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004146
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004147DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004148"""""""""""""""""""""""
4149
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004150``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004151language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004152:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004153
4154.. code-block:: llvm
4155
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004156 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004157
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004158DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004159""""""""""""""""""""""""
4160
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004161``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004162language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004163but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004164``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004165:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004166
4167.. code-block:: llvm
4168
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004169 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004170
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004171DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004172"""""""""""
4173
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004174``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004175
4176.. code-block:: llvm
4177
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004178 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004179
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004180DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004181""""""""""""""""
4182
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004183``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004184
4185.. code-block:: llvm
4186
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004187 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004188 file: !2, line: 7, type: !3, isLocal: true,
4189 isDefinition: false, variable: i32* @foo,
4190 declaration: !4)
4191
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004192All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004193:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004194
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004195.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004196
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004197DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004198""""""""""""
4199
Peter Collingbourne50108682015-11-06 02:41:02 +00004200``DISubprogram`` nodes represent functions from the source language. A
4201``DISubprogram`` may be attached to a function definition using ``!dbg``
4202metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4203that must be retained, even if their IR counterparts are optimized out of
4204the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004205
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004206.. _DISubprogramDeclaration:
4207
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004208When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004209tree as opposed to a definition of a function. If the scope is a composite
4210type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4211then the subprogram declaration is uniqued based only on its ``linkageName:``
4212and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004213
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004214.. code-block:: llvm
4215
Peter Collingbourne50108682015-11-06 02:41:02 +00004216 define void @_Z3foov() !dbg !0 {
4217 ...
4218 }
4219
4220 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4221 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004222 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004223 containingType: !4,
4224 virtuality: DW_VIRTUALITY_pure_virtual,
4225 virtualIndex: 10, flags: DIFlagPrototyped,
4226 isOptimized: true, templateParams: !5,
4227 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004228
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004229.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004230
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004231DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004232""""""""""""""
4233
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004234``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004235<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004236two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004237fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004238
4239.. code-block:: llvm
4240
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004241 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004242
4243Usually lexical blocks are ``distinct`` to prevent node merging based on
4244operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004245
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004246.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004247
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004248DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004249""""""""""""""""""
4250
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004251``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004252:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004253indicate textual inclusion, or the ``discriminator:`` field can be used to
4254discriminate between control flow within a single block in the source language.
4255
4256.. code-block:: llvm
4257
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004258 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4259 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4260 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004261
Michael Kuperstein605308a2015-05-14 10:58:59 +00004262.. _DILocation:
4263
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004264DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004265""""""""""
4266
Sean Silvaa1190322015-08-06 22:56:48 +00004267``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004268mandatory, and points at an :ref:`DILexicalBlockFile`, an
4269:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004270
4271.. code-block:: llvm
4272
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004273 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004274
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004275.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004276
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004277DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004278"""""""""""""""
4279
Sean Silvaa1190322015-08-06 22:56:48 +00004280``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004281the ``arg:`` field is set to non-zero, then this variable is a subprogram
4282parameter, and it will be included in the ``variables:`` field of its
4283:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004284
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004285.. code-block:: llvm
4286
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004287 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4288 type: !3, flags: DIFlagArtificial)
4289 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4290 type: !3)
4291 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004292
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004293DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004294""""""""""""
4295
Sean Silvaa1190322015-08-06 22:56:48 +00004296``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004297:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4298describe how the referenced LLVM variable relates to the source language
4299variable.
4300
4301The current supported vocabulary is limited:
4302
4303- ``DW_OP_deref`` dereferences the working expression.
4304- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4305- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4306 here, respectively) of the variable piece from the working expression.
4307
4308.. code-block:: llvm
4309
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004310 !0 = !DIExpression(DW_OP_deref)
4311 !1 = !DIExpression(DW_OP_plus, 3)
4312 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4313 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004314
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004315DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004316""""""""""""""
4317
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004318``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004319
4320.. code-block:: llvm
4321
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004322 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004323 getter: "getFoo", attributes: 7, type: !2)
4324
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004325DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004326""""""""""""""""
4327
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004328``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004329compile unit.
4330
4331.. code-block:: llvm
4332
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004333 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004334 entity: !1, line: 7)
4335
Amjad Abouda9bcf162015-12-10 12:56:35 +00004336DIMacro
4337"""""""
4338
4339``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4340The ``name:`` field is the macro identifier, followed by macro parameters when
4341definining a function-like macro, and the ``value`` field is the token-string
4342used to expand the macro identifier.
4343
4344.. code-block:: llvm
4345
4346 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4347 value: "((x) + 1)")
4348 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4349
4350DIMacroFile
4351"""""""""""
4352
4353``DIMacroFile`` nodes represent inclusion of source files.
4354The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4355appear in the included source file.
4356
4357.. code-block:: llvm
4358
4359 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4360 nodes: !3)
4361
Sean Silvab084af42012-12-07 10:36:55 +00004362'``tbaa``' Metadata
4363^^^^^^^^^^^^^^^^^^^
4364
4365In LLVM IR, memory does not have types, so LLVM's own type system is not
4366suitable for doing TBAA. Instead, metadata is added to the IR to
4367describe a type system of a higher level language. This can be used to
4368implement typical C/C++ TBAA, but it can also be used to implement
4369custom alias analysis behavior for other languages.
4370
4371The current metadata format is very simple. TBAA metadata nodes have up
4372to three fields, e.g.:
4373
4374.. code-block:: llvm
4375
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004376 !0 = !{ !"an example type tree" }
4377 !1 = !{ !"int", !0 }
4378 !2 = !{ !"float", !0 }
4379 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004380
4381The first field is an identity field. It can be any value, usually a
4382metadata string, which uniquely identifies the type. The most important
4383name in the tree is the name of the root node. Two trees with different
4384root node names are entirely disjoint, even if they have leaves with
4385common names.
4386
4387The second field identifies the type's parent node in the tree, or is
4388null or omitted for a root node. A type is considered to alias all of
4389its descendants and all of its ancestors in the tree. Also, a type is
4390considered to alias all types in other trees, so that bitcode produced
4391from multiple front-ends is handled conservatively.
4392
4393If the third field is present, it's an integer which if equal to 1
4394indicates that the type is "constant" (meaning
4395``pointsToConstantMemory`` should return true; see `other useful
4396AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4397
4398'``tbaa.struct``' Metadata
4399^^^^^^^^^^^^^^^^^^^^^^^^^^
4400
4401The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4402aggregate assignment operations in C and similar languages, however it
4403is defined to copy a contiguous region of memory, which is more than
4404strictly necessary for aggregate types which contain holes due to
4405padding. Also, it doesn't contain any TBAA information about the fields
4406of the aggregate.
4407
4408``!tbaa.struct`` metadata can describe which memory subregions in a
4409memcpy are padding and what the TBAA tags of the struct are.
4410
4411The current metadata format is very simple. ``!tbaa.struct`` metadata
4412nodes are a list of operands which are in conceptual groups of three.
4413For each group of three, the first operand gives the byte offset of a
4414field in bytes, the second gives its size in bytes, and the third gives
4415its tbaa tag. e.g.:
4416
4417.. code-block:: llvm
4418
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004419 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004420
4421This describes a struct with two fields. The first is at offset 0 bytes
4422with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4423and has size 4 bytes and has tbaa tag !2.
4424
4425Note that the fields need not be contiguous. In this example, there is a
44264 byte gap between the two fields. This gap represents padding which
4427does not carry useful data and need not be preserved.
4428
Hal Finkel94146652014-07-24 14:25:39 +00004429'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004431
4432``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4433noalias memory-access sets. This means that some collection of memory access
4434instructions (loads, stores, memory-accessing calls, etc.) that carry
4435``noalias`` metadata can specifically be specified not to alias with some other
4436collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004437Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004438a domain.
4439
4440When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004441of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004442subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004443instruction's ``noalias`` list, then the two memory accesses are assumed not to
4444alias.
Hal Finkel94146652014-07-24 14:25:39 +00004445
Adam Nemet569a5b32016-04-27 00:52:48 +00004446Because scopes in one domain don't affect scopes in other domains, separate
4447domains can be used to compose multiple independent noalias sets. This is
4448used for example during inlining. As the noalias function parameters are
4449turned into noalias scope metadata, a new domain is used every time the
4450function is inlined.
4451
Hal Finkel029cde62014-07-25 15:50:02 +00004452The metadata identifying each domain is itself a list containing one or two
4453entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004454string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004455self-reference can be used to create globally unique domain names. A
4456descriptive string may optionally be provided as a second list entry.
4457
4458The metadata identifying each scope is also itself a list containing two or
4459three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004460is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004461self-reference can be used to create globally unique scope names. A metadata
4462reference to the scope's domain is the second entry. A descriptive string may
4463optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004464
4465For example,
4466
4467.. code-block:: llvm
4468
Hal Finkel029cde62014-07-25 15:50:02 +00004469 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004470 !0 = !{!0}
4471 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004472
Hal Finkel029cde62014-07-25 15:50:02 +00004473 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004474 !2 = !{!2, !0}
4475 !3 = !{!3, !0}
4476 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004477
Hal Finkel029cde62014-07-25 15:50:02 +00004478 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004479 !5 = !{!4} ; A list containing only scope !4
4480 !6 = !{!4, !3, !2}
4481 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004482
4483 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004484 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004485 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004486
Hal Finkel029cde62014-07-25 15:50:02 +00004487 ; These two instructions also don't alias (for domain !1, the set of scopes
4488 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004489 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004490 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004491
Adam Nemet0a8416f2015-05-11 08:30:28 +00004492 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004493 ; the !noalias list is not a superset of, or equal to, the scopes in the
4494 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004495 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004496 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004497
Sean Silvab084af42012-12-07 10:36:55 +00004498'``fpmath``' Metadata
4499^^^^^^^^^^^^^^^^^^^^^
4500
4501``fpmath`` metadata may be attached to any instruction of floating point
4502type. It can be used to express the maximum acceptable error in the
4503result of that instruction, in ULPs, thus potentially allowing the
4504compiler to use a more efficient but less accurate method of computing
4505it. ULP is defined as follows:
4506
4507 If ``x`` is a real number that lies between two finite consecutive
4508 floating-point numbers ``a`` and ``b``, without being equal to one
4509 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4510 distance between the two non-equal finite floating-point numbers
4511 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4512
4513The metadata node shall consist of a single positive floating point
4514number representing the maximum relative error, for example:
4515
4516.. code-block:: llvm
4517
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004518 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004519
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004520.. _range-metadata:
4521
Sean Silvab084af42012-12-07 10:36:55 +00004522'``range``' Metadata
4523^^^^^^^^^^^^^^^^^^^^
4524
Jingyue Wu37fcb592014-06-19 16:50:16 +00004525``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4526integer types. It expresses the possible ranges the loaded value or the value
4527returned by the called function at this call site is in. The ranges are
4528represented with a flattened list of integers. The loaded value or the value
4529returned is known to be in the union of the ranges defined by each consecutive
4530pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004531
4532- The type must match the type loaded by the instruction.
4533- The pair ``a,b`` represents the range ``[a,b)``.
4534- Both ``a`` and ``b`` are constants.
4535- The range is allowed to wrap.
4536- The range should not represent the full or empty set. That is,
4537 ``a!=b``.
4538
4539In addition, the pairs must be in signed order of the lower bound and
4540they must be non-contiguous.
4541
4542Examples:
4543
4544.. code-block:: llvm
4545
David Blaikiec7aabbb2015-03-04 22:06:14 +00004546 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4547 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004548 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4549 %d = invoke i8 @bar() to label %cont
4550 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004551 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004552 !0 = !{ i8 0, i8 2 }
4553 !1 = !{ i8 255, i8 2 }
4554 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4555 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004556
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004557'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004558^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004559
4560``unpredictable`` metadata may be attached to any branch or switch
4561instruction. It can be used to express the unpredictability of control
4562flow. Similar to the llvm.expect intrinsic, it may be used to alter
4563optimizations related to compare and branch instructions. The metadata
4564is treated as a boolean value; if it exists, it signals that the branch
4565or switch that it is attached to is completely unpredictable.
4566
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004567'``llvm.loop``'
4568^^^^^^^^^^^^^^^
4569
4570It is sometimes useful to attach information to loop constructs. Currently,
4571loop metadata is implemented as metadata attached to the branch instruction
4572in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004573guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004574specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004575
4576The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004577itself to avoid merging it with any other identifier metadata, e.g.,
4578during module linkage or function inlining. That is, each loop should refer
4579to their own identification metadata even if they reside in separate functions.
4580The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004581constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004582
4583.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004584
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004585 !0 = !{!0}
4586 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004587
Mark Heffernan893752a2014-07-18 19:24:51 +00004588The loop identifier metadata can be used to specify additional
4589per-loop metadata. Any operands after the first operand can be treated
4590as user-defined metadata. For example the ``llvm.loop.unroll.count``
4591suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004592
Paul Redmond5fdf8362013-05-28 20:00:34 +00004593.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004594
Paul Redmond5fdf8362013-05-28 20:00:34 +00004595 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4596 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004597 !0 = !{!0, !1}
4598 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004599
Mark Heffernan9d20e422014-07-21 23:11:03 +00004600'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004602
Mark Heffernan9d20e422014-07-21 23:11:03 +00004603Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4604used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004605vectorization width and interleave count. These metadata should be used in
4606conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004607``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4608optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004609it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004610which contains information about loop-carried memory dependencies can be helpful
4611in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004612
Mark Heffernan9d20e422014-07-21 23:11:03 +00004613'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4615
Mark Heffernan9d20e422014-07-21 23:11:03 +00004616This metadata suggests an interleave count to the loop interleaver.
4617The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004618second operand is an integer specifying the interleave count. For
4619example:
4620
4621.. code-block:: llvm
4622
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004623 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004624
Mark Heffernan9d20e422014-07-21 23:11:03 +00004625Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004626multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004627then the interleave count will be determined automatically.
4628
4629'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004631
4632This metadata selectively enables or disables vectorization for the loop. The
4633first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004634is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000046350 disables vectorization:
4636
4637.. code-block:: llvm
4638
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004639 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4640 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004641
4642'``llvm.loop.vectorize.width``' Metadata
4643^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4644
4645This metadata sets the target width of the vectorizer. The first
4646operand is the string ``llvm.loop.vectorize.width`` and the second
4647operand is an integer specifying the width. For example:
4648
4649.. code-block:: llvm
4650
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004651 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004652
4653Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004654vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000046550 or if the loop does not have this metadata the width will be
4656determined automatically.
4657
4658'``llvm.loop.unroll``'
4659^^^^^^^^^^^^^^^^^^^^^^
4660
4661Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4662optimization hints such as the unroll factor. ``llvm.loop.unroll``
4663metadata should be used in conjunction with ``llvm.loop`` loop
4664identification metadata. The ``llvm.loop.unroll`` metadata are only
4665optimization hints and the unrolling will only be performed if the
4666optimizer believes it is safe to do so.
4667
Mark Heffernan893752a2014-07-18 19:24:51 +00004668'``llvm.loop.unroll.count``' Metadata
4669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4670
4671This metadata suggests an unroll factor to the loop unroller. The
4672first operand is the string ``llvm.loop.unroll.count`` and the second
4673operand is a positive integer specifying the unroll factor. For
4674example:
4675
4676.. code-block:: llvm
4677
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004678 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004679
4680If the trip count of the loop is less than the unroll count the loop
4681will be partially unrolled.
4682
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004683'``llvm.loop.unroll.disable``' Metadata
4684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4685
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004686This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004687which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004688
4689.. code-block:: llvm
4690
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004691 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004692
Kevin Qin715b01e2015-03-09 06:14:18 +00004693'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004695
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004696This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004697operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004698
4699.. code-block:: llvm
4700
4701 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4702
Mark Heffernan89391542015-08-10 17:28:08 +00004703'``llvm.loop.unroll.enable``' Metadata
4704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4705
4706This metadata suggests that the loop should be fully unrolled if the trip count
4707is known at compile time and partially unrolled if the trip count is not known
4708at compile time. The metadata has a single operand which is the string
4709``llvm.loop.unroll.enable``. For example:
4710
4711.. code-block:: llvm
4712
4713 !0 = !{!"llvm.loop.unroll.enable"}
4714
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004715'``llvm.loop.unroll.full``' Metadata
4716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4717
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004718This metadata suggests that the loop should be unrolled fully. The
4719metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004720For example:
4721
4722.. code-block:: llvm
4723
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004724 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004725
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004726'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004727^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004728
4729This metadata indicates that the loop should not be versioned for the purpose
4730of enabling loop-invariant code motion (LICM). The metadata has a single operand
4731which is the string ``llvm.loop.licm_versioning.disable``. For example:
4732
4733.. code-block:: llvm
4734
4735 !0 = !{!"llvm.loop.licm_versioning.disable"}
4736
Adam Nemetd2fa4142016-04-27 05:28:18 +00004737'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004739
4740Loop distribution allows splitting a loop into multiple loops. Currently,
4741this is only performed if the entire loop cannot be vectorized due to unsafe
4742memory dependencies. The transformation will atempt to isolate the unsafe
4743dependencies into their own loop.
4744
4745This metadata can be used to selectively enable or disable distribution of the
4746loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4747second operand is a bit. If the bit operand value is 1 distribution is
4748enabled. A value of 0 disables distribution:
4749
4750.. code-block:: llvm
4751
4752 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4753 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4754
4755This metadata should be used in conjunction with ``llvm.loop`` loop
4756identification metadata.
4757
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004758'``llvm.mem``'
4759^^^^^^^^^^^^^^^
4760
4761Metadata types used to annotate memory accesses with information helpful
4762for optimizations are prefixed with ``llvm.mem``.
4763
4764'``llvm.mem.parallel_loop_access``' Metadata
4765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4766
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004767The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4768or metadata containing a list of loop identifiers for nested loops.
4769The metadata is attached to memory accessing instructions and denotes that
4770no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004771with the same loop identifier. The metadata on memory reads also implies that
4772if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004773
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004774Precisely, given two instructions ``m1`` and ``m2`` that both have the
4775``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4776set of loops associated with that metadata, respectively, then there is no loop
4777carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004778``L2``.
4779
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004780As a special case, if all memory accessing instructions in a loop have
4781``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4782loop has no loop carried memory dependences and is considered to be a parallel
4783loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004784
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004785Note that if not all memory access instructions have such metadata referring to
4786the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004787memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004788safe mechanism, this causes loops that were originally parallel to be considered
4789sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004790insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004791
4792Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004793both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004794metadata types that refer to the same loop identifier metadata.
4795
4796.. code-block:: llvm
4797
4798 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004799 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004800 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004801 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004802 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004803 ...
4804 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004805
4806 for.end:
4807 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004808 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004809
4810It is also possible to have nested parallel loops. In that case the
4811memory accesses refer to a list of loop identifier metadata nodes instead of
4812the loop identifier metadata node directly:
4813
4814.. code-block:: llvm
4815
4816 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004817 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004818 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004819 ...
4820 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004821
4822 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004823 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004824 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004825 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004826 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004827 ...
4828 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004829
4830 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004831 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004832 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004833 ...
4834 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004835
4836 outer.for.end: ; preds = %for.body
4837 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004838 !0 = !{!1, !2} ; a list of loop identifiers
4839 !1 = !{!1} ; an identifier for the inner loop
4840 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004841
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004842'``invariant.group``' Metadata
4843^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4844
4845The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4846The existence of the ``invariant.group`` metadata on the instruction tells
4847the optimizer that every ``load`` and ``store`` to the same pointer operand
4848within the same invariant group can be assumed to load or store the same
4849value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4850when two pointers are considered the same).
4851
4852Examples:
4853
4854.. code-block:: llvm
4855
4856 @unknownPtr = external global i8
4857 ...
4858 %ptr = alloca i8
4859 store i8 42, i8* %ptr, !invariant.group !0
4860 call void @foo(i8* %ptr)
4861
4862 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4863 call void @foo(i8* %ptr)
4864 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4865
4866 %newPtr = call i8* @getPointer(i8* %ptr)
4867 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4868
4869 %unknownValue = load i8, i8* @unknownPtr
4870 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4871
4872 call void @foo(i8* %ptr)
4873 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4874 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4875
4876 ...
4877 declare void @foo(i8*)
4878 declare i8* @getPointer(i8*)
4879 declare i8* @llvm.invariant.group.barrier(i8*)
4880
4881 !0 = !{!"magic ptr"}
4882 !1 = !{!"other ptr"}
4883
4884
4885
Sean Silvab084af42012-12-07 10:36:55 +00004886Module Flags Metadata
4887=====================
4888
4889Information about the module as a whole is difficult to convey to LLVM's
4890subsystems. The LLVM IR isn't sufficient to transmit this information.
4891The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004892this. These flags are in the form of key / value pairs --- much like a
4893dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004894look it up.
4895
4896The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4897Each triplet has the following form:
4898
4899- The first element is a *behavior* flag, which specifies the behavior
4900 when two (or more) modules are merged together, and it encounters two
4901 (or more) metadata with the same ID. The supported behaviors are
4902 described below.
4903- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004904 metadata. Each module may only have one flag entry for each unique ID (not
4905 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004906- The third element is the value of the flag.
4907
4908When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004909``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4910each unique metadata ID string, there will be exactly one entry in the merged
4911modules ``llvm.module.flags`` metadata table, and the value for that entry will
4912be determined by the merge behavior flag, as described below. The only exception
4913is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004914
4915The following behaviors are supported:
4916
4917.. list-table::
4918 :header-rows: 1
4919 :widths: 10 90
4920
4921 * - Value
4922 - Behavior
4923
4924 * - 1
4925 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004926 Emits an error if two values disagree, otherwise the resulting value
4927 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004928
4929 * - 2
4930 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004931 Emits a warning if two values disagree. The result value will be the
4932 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004933
4934 * - 3
4935 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004936 Adds a requirement that another module flag be present and have a
4937 specified value after linking is performed. The value must be a
4938 metadata pair, where the first element of the pair is the ID of the
4939 module flag to be restricted, and the second element of the pair is
4940 the value the module flag should be restricted to. This behavior can
4941 be used to restrict the allowable results (via triggering of an
4942 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004943
4944 * - 4
4945 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004946 Uses the specified value, regardless of the behavior or value of the
4947 other module. If both modules specify **Override**, but the values
4948 differ, an error will be emitted.
4949
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004950 * - 5
4951 - **Append**
4952 Appends the two values, which are required to be metadata nodes.
4953
4954 * - 6
4955 - **AppendUnique**
4956 Appends the two values, which are required to be metadata
4957 nodes. However, duplicate entries in the second list are dropped
4958 during the append operation.
4959
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004960It is an error for a particular unique flag ID to have multiple behaviors,
4961except in the case of **Require** (which adds restrictions on another metadata
4962value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004963
4964An example of module flags:
4965
4966.. code-block:: llvm
4967
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004968 !0 = !{ i32 1, !"foo", i32 1 }
4969 !1 = !{ i32 4, !"bar", i32 37 }
4970 !2 = !{ i32 2, !"qux", i32 42 }
4971 !3 = !{ i32 3, !"qux",
4972 !{
4973 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004974 }
4975 }
4976 !llvm.module.flags = !{ !0, !1, !2, !3 }
4977
4978- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4979 if two or more ``!"foo"`` flags are seen is to emit an error if their
4980 values are not equal.
4981
4982- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4983 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004984 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004985
4986- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4987 behavior if two or more ``!"qux"`` flags are seen is to emit a
4988 warning if their values are not equal.
4989
4990- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4991
4992 ::
4993
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004994 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004995
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004996 The behavior is to emit an error if the ``llvm.module.flags`` does not
4997 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4998 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004999
5000Objective-C Garbage Collection Module Flags Metadata
5001----------------------------------------------------
5002
5003On the Mach-O platform, Objective-C stores metadata about garbage
5004collection in a special section called "image info". The metadata
5005consists of a version number and a bitmask specifying what types of
5006garbage collection are supported (if any) by the file. If two or more
5007modules are linked together their garbage collection metadata needs to
5008be merged rather than appended together.
5009
5010The Objective-C garbage collection module flags metadata consists of the
5011following key-value pairs:
5012
5013.. list-table::
5014 :header-rows: 1
5015 :widths: 30 70
5016
5017 * - Key
5018 - Value
5019
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005020 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005021 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005022
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005023 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005024 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005025 always 0.
5026
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005027 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005028 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005029 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5030 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5031 Objective-C ABI version 2.
5032
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005033 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005034 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005035 not. Valid values are 0, for no garbage collection, and 2, for garbage
5036 collection supported.
5037
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005038 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005039 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005040 If present, its value must be 6. This flag requires that the
5041 ``Objective-C Garbage Collection`` flag have the value 2.
5042
5043Some important flag interactions:
5044
5045- If a module with ``Objective-C Garbage Collection`` set to 0 is
5046 merged with a module with ``Objective-C Garbage Collection`` set to
5047 2, then the resulting module has the
5048 ``Objective-C Garbage Collection`` flag set to 0.
5049- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5050 merged with a module with ``Objective-C GC Only`` set to 6.
5051
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005052Automatic Linker Flags Module Flags Metadata
5053--------------------------------------------
5054
5055Some targets support embedding flags to the linker inside individual object
5056files. Typically this is used in conjunction with language extensions which
5057allow source files to explicitly declare the libraries they depend on, and have
5058these automatically be transmitted to the linker via object files.
5059
5060These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005061using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005062to be ``AppendUnique``, and the value for the key is expected to be a metadata
5063node which should be a list of other metadata nodes, each of which should be a
5064list of metadata strings defining linker options.
5065
5066For example, the following metadata section specifies two separate sets of
5067linker options, presumably to link against ``libz`` and the ``Cocoa``
5068framework::
5069
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005070 !0 = !{ i32 6, !"Linker Options",
5071 !{
5072 !{ !"-lz" },
5073 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005074 !llvm.module.flags = !{ !0 }
5075
5076The metadata encoding as lists of lists of options, as opposed to a collapsed
5077list of options, is chosen so that the IR encoding can use multiple option
5078strings to specify e.g., a single library, while still having that specifier be
5079preserved as an atomic element that can be recognized by a target specific
5080assembly writer or object file emitter.
5081
5082Each individual option is required to be either a valid option for the target's
5083linker, or an option that is reserved by the target specific assembly writer or
5084object file emitter. No other aspect of these options is defined by the IR.
5085
Oliver Stannard5dc29342014-06-20 10:08:11 +00005086C type width Module Flags Metadata
5087----------------------------------
5088
5089The ARM backend emits a section into each generated object file describing the
5090options that it was compiled with (in a compiler-independent way) to prevent
5091linking incompatible objects, and to allow automatic library selection. Some
5092of these options are not visible at the IR level, namely wchar_t width and enum
5093width.
5094
5095To pass this information to the backend, these options are encoded in module
5096flags metadata, using the following key-value pairs:
5097
5098.. list-table::
5099 :header-rows: 1
5100 :widths: 30 70
5101
5102 * - Key
5103 - Value
5104
5105 * - short_wchar
5106 - * 0 --- sizeof(wchar_t) == 4
5107 * 1 --- sizeof(wchar_t) == 2
5108
5109 * - short_enum
5110 - * 0 --- Enums are at least as large as an ``int``.
5111 * 1 --- Enums are stored in the smallest integer type which can
5112 represent all of its values.
5113
5114For example, the following metadata section specifies that the module was
5115compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5116enum is the smallest type which can represent all of its values::
5117
5118 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005119 !0 = !{i32 1, !"short_wchar", i32 1}
5120 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005121
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005122.. _intrinsicglobalvariables:
5123
Sean Silvab084af42012-12-07 10:36:55 +00005124Intrinsic Global Variables
5125==========================
5126
5127LLVM has a number of "magic" global variables that contain data that
5128affect code generation or other IR semantics. These are documented here.
5129All globals of this sort should have a section specified as
5130"``llvm.metadata``". This section and all globals that start with
5131"``llvm.``" are reserved for use by LLVM.
5132
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005133.. _gv_llvmused:
5134
Sean Silvab084af42012-12-07 10:36:55 +00005135The '``llvm.used``' Global Variable
5136-----------------------------------
5137
Rafael Espindola74f2e462013-04-22 14:58:02 +00005138The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005139:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005140pointers to named global variables, functions and aliases which may optionally
5141have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005142use of it is:
5143
5144.. code-block:: llvm
5145
5146 @X = global i8 4
5147 @Y = global i32 123
5148
5149 @llvm.used = appending global [2 x i8*] [
5150 i8* @X,
5151 i8* bitcast (i32* @Y to i8*)
5152 ], section "llvm.metadata"
5153
Rafael Espindola74f2e462013-04-22 14:58:02 +00005154If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5155and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005156symbol that it cannot see (which is why they have to be named). For example, if
5157a variable has internal linkage and no references other than that from the
5158``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5159references from inline asms and other things the compiler cannot "see", and
5160corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005161
5162On some targets, the code generator must emit a directive to the
5163assembler or object file to prevent the assembler and linker from
5164molesting the symbol.
5165
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005166.. _gv_llvmcompilerused:
5167
Sean Silvab084af42012-12-07 10:36:55 +00005168The '``llvm.compiler.used``' Global Variable
5169--------------------------------------------
5170
5171The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5172directive, except that it only prevents the compiler from touching the
5173symbol. On targets that support it, this allows an intelligent linker to
5174optimize references to the symbol without being impeded as it would be
5175by ``@llvm.used``.
5176
5177This is a rare construct that should only be used in rare circumstances,
5178and should not be exposed to source languages.
5179
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005180.. _gv_llvmglobalctors:
5181
Sean Silvab084af42012-12-07 10:36:55 +00005182The '``llvm.global_ctors``' Global Variable
5183-------------------------------------------
5184
5185.. code-block:: llvm
5186
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005187 %0 = type { i32, void ()*, i8* }
5188 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005189
5190The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005191functions, priorities, and an optional associated global or function.
5192The functions referenced by this array will be called in ascending order
5193of priority (i.e. lowest first) when the module is loaded. The order of
5194functions with the same priority is not defined.
5195
5196If the third field is present, non-null, and points to a global variable
5197or function, the initializer function will only run if the associated
5198data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005199
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005200.. _llvmglobaldtors:
5201
Sean Silvab084af42012-12-07 10:36:55 +00005202The '``llvm.global_dtors``' Global Variable
5203-------------------------------------------
5204
5205.. code-block:: llvm
5206
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005207 %0 = type { i32, void ()*, i8* }
5208 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005209
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005210The ``@llvm.global_dtors`` array contains a list of destructor
5211functions, priorities, and an optional associated global or function.
5212The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005213order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005214order of functions with the same priority is not defined.
5215
5216If the third field is present, non-null, and points to a global variable
5217or function, the destructor function will only run if the associated
5218data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005219
5220Instruction Reference
5221=====================
5222
5223The LLVM instruction set consists of several different classifications
5224of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5225instructions <binaryops>`, :ref:`bitwise binary
5226instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5227:ref:`other instructions <otherops>`.
5228
5229.. _terminators:
5230
5231Terminator Instructions
5232-----------------------
5233
5234As mentioned :ref:`previously <functionstructure>`, every basic block in a
5235program ends with a "Terminator" instruction, which indicates which
5236block should be executed after the current block is finished. These
5237terminator instructions typically yield a '``void``' value: they produce
5238control flow, not values (the one exception being the
5239':ref:`invoke <i_invoke>`' instruction).
5240
5241The terminator instructions are: ':ref:`ret <i_ret>`',
5242':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5243':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005244':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005245':ref:`catchret <i_catchret>`',
5246':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005247and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005248
5249.. _i_ret:
5250
5251'``ret``' Instruction
5252^^^^^^^^^^^^^^^^^^^^^
5253
5254Syntax:
5255"""""""
5256
5257::
5258
5259 ret <type> <value> ; Return a value from a non-void function
5260 ret void ; Return from void function
5261
5262Overview:
5263"""""""""
5264
5265The '``ret``' instruction is used to return control flow (and optionally
5266a value) from a function back to the caller.
5267
5268There are two forms of the '``ret``' instruction: one that returns a
5269value and then causes control flow, and one that just causes control
5270flow to occur.
5271
5272Arguments:
5273""""""""""
5274
5275The '``ret``' instruction optionally accepts a single argument, the
5276return value. The type of the return value must be a ':ref:`first
5277class <t_firstclass>`' type.
5278
5279A function is not :ref:`well formed <wellformed>` if it it has a non-void
5280return type and contains a '``ret``' instruction with no return value or
5281a return value with a type that does not match its type, or if it has a
5282void return type and contains a '``ret``' instruction with a return
5283value.
5284
5285Semantics:
5286""""""""""
5287
5288When the '``ret``' instruction is executed, control flow returns back to
5289the calling function's context. If the caller is a
5290":ref:`call <i_call>`" instruction, execution continues at the
5291instruction after the call. If the caller was an
5292":ref:`invoke <i_invoke>`" instruction, execution continues at the
5293beginning of the "normal" destination block. If the instruction returns
5294a value, that value shall set the call or invoke instruction's return
5295value.
5296
5297Example:
5298""""""""
5299
5300.. code-block:: llvm
5301
5302 ret i32 5 ; Return an integer value of 5
5303 ret void ; Return from a void function
5304 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5305
5306.. _i_br:
5307
5308'``br``' Instruction
5309^^^^^^^^^^^^^^^^^^^^
5310
5311Syntax:
5312"""""""
5313
5314::
5315
5316 br i1 <cond>, label <iftrue>, label <iffalse>
5317 br label <dest> ; Unconditional branch
5318
5319Overview:
5320"""""""""
5321
5322The '``br``' instruction is used to cause control flow to transfer to a
5323different basic block in the current function. There are two forms of
5324this instruction, corresponding to a conditional branch and an
5325unconditional branch.
5326
5327Arguments:
5328""""""""""
5329
5330The conditional branch form of the '``br``' instruction takes a single
5331'``i1``' value and two '``label``' values. The unconditional form of the
5332'``br``' instruction takes a single '``label``' value as a target.
5333
5334Semantics:
5335""""""""""
5336
5337Upon execution of a conditional '``br``' instruction, the '``i1``'
5338argument is evaluated. If the value is ``true``, control flows to the
5339'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5340to the '``iffalse``' ``label`` argument.
5341
5342Example:
5343""""""""
5344
5345.. code-block:: llvm
5346
5347 Test:
5348 %cond = icmp eq i32 %a, %b
5349 br i1 %cond, label %IfEqual, label %IfUnequal
5350 IfEqual:
5351 ret i32 1
5352 IfUnequal:
5353 ret i32 0
5354
5355.. _i_switch:
5356
5357'``switch``' Instruction
5358^^^^^^^^^^^^^^^^^^^^^^^^
5359
5360Syntax:
5361"""""""
5362
5363::
5364
5365 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5366
5367Overview:
5368"""""""""
5369
5370The '``switch``' instruction is used to transfer control flow to one of
5371several different places. It is a generalization of the '``br``'
5372instruction, allowing a branch to occur to one of many possible
5373destinations.
5374
5375Arguments:
5376""""""""""
5377
5378The '``switch``' instruction uses three parameters: an integer
5379comparison value '``value``', a default '``label``' destination, and an
5380array of pairs of comparison value constants and '``label``'s. The table
5381is not allowed to contain duplicate constant entries.
5382
5383Semantics:
5384""""""""""
5385
5386The ``switch`` instruction specifies a table of values and destinations.
5387When the '``switch``' instruction is executed, this table is searched
5388for the given value. If the value is found, control flow is transferred
5389to the corresponding destination; otherwise, control flow is transferred
5390to the default destination.
5391
5392Implementation:
5393"""""""""""""""
5394
5395Depending on properties of the target machine and the particular
5396``switch`` instruction, this instruction may be code generated in
5397different ways. For example, it could be generated as a series of
5398chained conditional branches or with a lookup table.
5399
5400Example:
5401""""""""
5402
5403.. code-block:: llvm
5404
5405 ; Emulate a conditional br instruction
5406 %Val = zext i1 %value to i32
5407 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5408
5409 ; Emulate an unconditional br instruction
5410 switch i32 0, label %dest [ ]
5411
5412 ; Implement a jump table:
5413 switch i32 %val, label %otherwise [ i32 0, label %onzero
5414 i32 1, label %onone
5415 i32 2, label %ontwo ]
5416
5417.. _i_indirectbr:
5418
5419'``indirectbr``' Instruction
5420^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5421
5422Syntax:
5423"""""""
5424
5425::
5426
5427 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5428
5429Overview:
5430"""""""""
5431
5432The '``indirectbr``' instruction implements an indirect branch to a
5433label within the current function, whose address is specified by
5434"``address``". Address must be derived from a
5435:ref:`blockaddress <blockaddress>` constant.
5436
5437Arguments:
5438""""""""""
5439
5440The '``address``' argument is the address of the label to jump to. The
5441rest of the arguments indicate the full set of possible destinations
5442that the address may point to. Blocks are allowed to occur multiple
5443times in the destination list, though this isn't particularly useful.
5444
5445This destination list is required so that dataflow analysis has an
5446accurate understanding of the CFG.
5447
5448Semantics:
5449""""""""""
5450
5451Control transfers to the block specified in the address argument. All
5452possible destination blocks must be listed in the label list, otherwise
5453this instruction has undefined behavior. This implies that jumps to
5454labels defined in other functions have undefined behavior as well.
5455
5456Implementation:
5457"""""""""""""""
5458
5459This is typically implemented with a jump through a register.
5460
5461Example:
5462""""""""
5463
5464.. code-block:: llvm
5465
5466 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5467
5468.. _i_invoke:
5469
5470'``invoke``' Instruction
5471^^^^^^^^^^^^^^^^^^^^^^^^
5472
5473Syntax:
5474"""""""
5475
5476::
5477
5478 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005479 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005480
5481Overview:
5482"""""""""
5483
5484The '``invoke``' instruction causes control to transfer to a specified
5485function, with the possibility of control flow transfer to either the
5486'``normal``' label or the '``exception``' label. If the callee function
5487returns with the "``ret``" instruction, control flow will return to the
5488"normal" label. If the callee (or any indirect callees) returns via the
5489":ref:`resume <i_resume>`" instruction or other exception handling
5490mechanism, control is interrupted and continued at the dynamically
5491nearest "exception" label.
5492
5493The '``exception``' label is a `landing
5494pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5495'``exception``' label is required to have the
5496":ref:`landingpad <i_landingpad>`" instruction, which contains the
5497information about the behavior of the program after unwinding happens,
5498as its first non-PHI instruction. The restrictions on the
5499"``landingpad``" instruction's tightly couples it to the "``invoke``"
5500instruction, so that the important information contained within the
5501"``landingpad``" instruction can't be lost through normal code motion.
5502
5503Arguments:
5504""""""""""
5505
5506This instruction requires several arguments:
5507
5508#. The optional "cconv" marker indicates which :ref:`calling
5509 convention <callingconv>` the call should use. If none is
5510 specified, the call defaults to using C calling conventions.
5511#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5512 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5513 are valid here.
5514#. '``ptr to function ty``': shall be the signature of the pointer to
5515 function value being invoked. In most cases, this is a direct
5516 function invocation, but indirect ``invoke``'s are just as possible,
5517 branching off an arbitrary pointer to function value.
5518#. '``function ptr val``': An LLVM value containing a pointer to a
5519 function to be invoked.
5520#. '``function args``': argument list whose types match the function
5521 signature argument types and parameter attributes. All arguments must
5522 be of :ref:`first class <t_firstclass>` type. If the function signature
5523 indicates the function accepts a variable number of arguments, the
5524 extra arguments can be specified.
5525#. '``normal label``': the label reached when the called function
5526 executes a '``ret``' instruction.
5527#. '``exception label``': the label reached when a callee returns via
5528 the :ref:`resume <i_resume>` instruction or other exception handling
5529 mechanism.
5530#. The optional :ref:`function attributes <fnattrs>` list. Only
5531 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5532 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005533#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005534
5535Semantics:
5536""""""""""
5537
5538This instruction is designed to operate as a standard '``call``'
5539instruction in most regards. The primary difference is that it
5540establishes an association with a label, which is used by the runtime
5541library to unwind the stack.
5542
5543This instruction is used in languages with destructors to ensure that
5544proper cleanup is performed in the case of either a ``longjmp`` or a
5545thrown exception. Additionally, this is important for implementation of
5546'``catch``' clauses in high-level languages that support them.
5547
5548For the purposes of the SSA form, the definition of the value returned
5549by the '``invoke``' instruction is deemed to occur on the edge from the
5550current block to the "normal" label. If the callee unwinds then no
5551return value is available.
5552
5553Example:
5554""""""""
5555
5556.. code-block:: llvm
5557
5558 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005559 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005560 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005561 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005562
5563.. _i_resume:
5564
5565'``resume``' Instruction
5566^^^^^^^^^^^^^^^^^^^^^^^^
5567
5568Syntax:
5569"""""""
5570
5571::
5572
5573 resume <type> <value>
5574
5575Overview:
5576"""""""""
5577
5578The '``resume``' instruction is a terminator instruction that has no
5579successors.
5580
5581Arguments:
5582""""""""""
5583
5584The '``resume``' instruction requires one argument, which must have the
5585same type as the result of any '``landingpad``' instruction in the same
5586function.
5587
5588Semantics:
5589""""""""""
5590
5591The '``resume``' instruction resumes propagation of an existing
5592(in-flight) exception whose unwinding was interrupted with a
5593:ref:`landingpad <i_landingpad>` instruction.
5594
5595Example:
5596""""""""
5597
5598.. code-block:: llvm
5599
5600 resume { i8*, i32 } %exn
5601
David Majnemer8a1c45d2015-12-12 05:38:55 +00005602.. _i_catchswitch:
5603
5604'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005605^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005606
5607Syntax:
5608"""""""
5609
5610::
5611
5612 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5613 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5614
5615Overview:
5616"""""""""
5617
5618The '``catchswitch``' instruction is used by `LLVM's exception handling system
5619<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5620that may be executed by the :ref:`EH personality routine <personalityfn>`.
5621
5622Arguments:
5623""""""""""
5624
5625The ``parent`` argument is the token of the funclet that contains the
5626``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5627this operand may be the token ``none``.
5628
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005629The ``default`` argument is the label of another basic block beginning with
5630either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5631must be a legal target with respect to the ``parent`` links, as described in
5632the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005633
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005634The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005635:ref:`catchpad <i_catchpad>` instruction.
5636
5637Semantics:
5638""""""""""
5639
5640Executing this instruction transfers control to one of the successors in
5641``handlers``, if appropriate, or continues to unwind via the unwind label if
5642present.
5643
5644The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5645it must be both the first non-phi instruction and last instruction in the basic
5646block. Therefore, it must be the only non-phi instruction in the block.
5647
5648Example:
5649""""""""
5650
5651.. code-block:: llvm
5652
5653 dispatch1:
5654 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5655 dispatch2:
5656 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5657
David Majnemer654e1302015-07-31 17:58:14 +00005658.. _i_catchret:
5659
5660'``catchret``' Instruction
5661^^^^^^^^^^^^^^^^^^^^^^^^^^
5662
5663Syntax:
5664"""""""
5665
5666::
5667
David Majnemer8a1c45d2015-12-12 05:38:55 +00005668 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005669
5670Overview:
5671"""""""""
5672
5673The '``catchret``' instruction is a terminator instruction that has a
5674single successor.
5675
5676
5677Arguments:
5678""""""""""
5679
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005680The first argument to a '``catchret``' indicates which ``catchpad`` it
5681exits. It must be a :ref:`catchpad <i_catchpad>`.
5682The second argument to a '``catchret``' specifies where control will
5683transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005684
5685Semantics:
5686""""""""""
5687
David Majnemer8a1c45d2015-12-12 05:38:55 +00005688The '``catchret``' instruction ends an existing (in-flight) exception whose
5689unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5690:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5691code to, for example, destroy the active exception. Control then transfers to
5692``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005693
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005694The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5695If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5696funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5697the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005698
5699Example:
5700""""""""
5701
5702.. code-block:: llvm
5703
David Majnemer8a1c45d2015-12-12 05:38:55 +00005704 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005705
David Majnemer654e1302015-07-31 17:58:14 +00005706.. _i_cleanupret:
5707
5708'``cleanupret``' Instruction
5709^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5710
5711Syntax:
5712"""""""
5713
5714::
5715
David Majnemer8a1c45d2015-12-12 05:38:55 +00005716 cleanupret from <value> unwind label <continue>
5717 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005718
5719Overview:
5720"""""""""
5721
5722The '``cleanupret``' instruction is a terminator instruction that has
5723an optional successor.
5724
5725
5726Arguments:
5727""""""""""
5728
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005729The '``cleanupret``' instruction requires one argument, which indicates
5730which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005731If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5732funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5733the ``cleanupret``'s behavior is undefined.
5734
5735The '``cleanupret``' instruction also has an optional successor, ``continue``,
5736which must be the label of another basic block beginning with either a
5737``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5738be a legal target with respect to the ``parent`` links, as described in the
5739`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005740
5741Semantics:
5742""""""""""
5743
5744The '``cleanupret``' instruction indicates to the
5745:ref:`personality function <personalityfn>` that one
5746:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5747It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005748
David Majnemer654e1302015-07-31 17:58:14 +00005749Example:
5750""""""""
5751
5752.. code-block:: llvm
5753
David Majnemer8a1c45d2015-12-12 05:38:55 +00005754 cleanupret from %cleanup unwind to caller
5755 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005756
Sean Silvab084af42012-12-07 10:36:55 +00005757.. _i_unreachable:
5758
5759'``unreachable``' Instruction
5760^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5761
5762Syntax:
5763"""""""
5764
5765::
5766
5767 unreachable
5768
5769Overview:
5770"""""""""
5771
5772The '``unreachable``' instruction has no defined semantics. This
5773instruction is used to inform the optimizer that a particular portion of
5774the code is not reachable. This can be used to indicate that the code
5775after a no-return function cannot be reached, and other facts.
5776
5777Semantics:
5778""""""""""
5779
5780The '``unreachable``' instruction has no defined semantics.
5781
5782.. _binaryops:
5783
5784Binary Operations
5785-----------------
5786
5787Binary operators are used to do most of the computation in a program.
5788They require two operands of the same type, execute an operation on
5789them, and produce a single value. The operands might represent multiple
5790data, as is the case with the :ref:`vector <t_vector>` data type. The
5791result value has the same type as its operands.
5792
5793There are several different binary operators:
5794
5795.. _i_add:
5796
5797'``add``' Instruction
5798^^^^^^^^^^^^^^^^^^^^^
5799
5800Syntax:
5801"""""""
5802
5803::
5804
Tim Northover675a0962014-06-13 14:24:23 +00005805 <result> = add <ty> <op1>, <op2> ; yields ty:result
5806 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5807 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5808 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005809
5810Overview:
5811"""""""""
5812
5813The '``add``' instruction returns the sum of its two operands.
5814
5815Arguments:
5816""""""""""
5817
5818The two arguments to the '``add``' instruction must be
5819:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5820arguments must have identical types.
5821
5822Semantics:
5823""""""""""
5824
5825The value produced is the integer sum of the two operands.
5826
5827If the sum has unsigned overflow, the result returned is the
5828mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5829the result.
5830
5831Because LLVM integers use a two's complement representation, this
5832instruction is appropriate for both signed and unsigned integers.
5833
5834``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5835respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5836result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5837unsigned and/or signed overflow, respectively, occurs.
5838
5839Example:
5840""""""""
5841
5842.. code-block:: llvm
5843
Tim Northover675a0962014-06-13 14:24:23 +00005844 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005845
5846.. _i_fadd:
5847
5848'``fadd``' Instruction
5849^^^^^^^^^^^^^^^^^^^^^^
5850
5851Syntax:
5852"""""""
5853
5854::
5855
Tim Northover675a0962014-06-13 14:24:23 +00005856 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005857
5858Overview:
5859"""""""""
5860
5861The '``fadd``' instruction returns the sum of its two operands.
5862
5863Arguments:
5864""""""""""
5865
5866The two arguments to the '``fadd``' instruction must be :ref:`floating
5867point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5868Both arguments must have identical types.
5869
5870Semantics:
5871""""""""""
5872
5873The value produced is the floating point sum of the two operands. This
5874instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5875which are optimization hints to enable otherwise unsafe floating point
5876optimizations:
5877
5878Example:
5879""""""""
5880
5881.. code-block:: llvm
5882
Tim Northover675a0962014-06-13 14:24:23 +00005883 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005884
5885'``sub``' Instruction
5886^^^^^^^^^^^^^^^^^^^^^
5887
5888Syntax:
5889"""""""
5890
5891::
5892
Tim Northover675a0962014-06-13 14:24:23 +00005893 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5894 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5895 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5896 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005897
5898Overview:
5899"""""""""
5900
5901The '``sub``' instruction returns the difference of its two operands.
5902
5903Note that the '``sub``' instruction is used to represent the '``neg``'
5904instruction present in most other intermediate representations.
5905
5906Arguments:
5907""""""""""
5908
5909The two arguments to the '``sub``' instruction must be
5910:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5911arguments must have identical types.
5912
5913Semantics:
5914""""""""""
5915
5916The value produced is the integer difference of the two operands.
5917
5918If the difference has unsigned overflow, the result returned is the
5919mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5920the result.
5921
5922Because LLVM integers use a two's complement representation, this
5923instruction is appropriate for both signed and unsigned integers.
5924
5925``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5926respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5927result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5928unsigned and/or signed overflow, respectively, occurs.
5929
5930Example:
5931""""""""
5932
5933.. code-block:: llvm
5934
Tim Northover675a0962014-06-13 14:24:23 +00005935 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5936 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005937
5938.. _i_fsub:
5939
5940'``fsub``' Instruction
5941^^^^^^^^^^^^^^^^^^^^^^
5942
5943Syntax:
5944"""""""
5945
5946::
5947
Tim Northover675a0962014-06-13 14:24:23 +00005948 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005949
5950Overview:
5951"""""""""
5952
5953The '``fsub``' instruction returns the difference of its two operands.
5954
5955Note that the '``fsub``' instruction is used to represent the '``fneg``'
5956instruction present in most other intermediate representations.
5957
5958Arguments:
5959""""""""""
5960
5961The two arguments to the '``fsub``' instruction must be :ref:`floating
5962point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5963Both arguments must have identical types.
5964
5965Semantics:
5966""""""""""
5967
5968The value produced is the floating point difference of the two operands.
5969This instruction can also take any number of :ref:`fast-math
5970flags <fastmath>`, which are optimization hints to enable otherwise
5971unsafe floating point optimizations:
5972
5973Example:
5974""""""""
5975
5976.. code-block:: llvm
5977
Tim Northover675a0962014-06-13 14:24:23 +00005978 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5979 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005980
5981'``mul``' Instruction
5982^^^^^^^^^^^^^^^^^^^^^
5983
5984Syntax:
5985"""""""
5986
5987::
5988
Tim Northover675a0962014-06-13 14:24:23 +00005989 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5990 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5991 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5992 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005993
5994Overview:
5995"""""""""
5996
5997The '``mul``' instruction returns the product of its two operands.
5998
5999Arguments:
6000""""""""""
6001
6002The two arguments to the '``mul``' instruction must be
6003:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6004arguments must have identical types.
6005
6006Semantics:
6007""""""""""
6008
6009The value produced is the integer product of the two operands.
6010
6011If the result of the multiplication has unsigned overflow, the result
6012returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6013bit width of the result.
6014
6015Because LLVM integers use a two's complement representation, and the
6016result is the same width as the operands, this instruction returns the
6017correct result for both signed and unsigned integers. If a full product
6018(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6019sign-extended or zero-extended as appropriate to the width of the full
6020product.
6021
6022``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6023respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6024result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6025unsigned and/or signed overflow, respectively, occurs.
6026
6027Example:
6028""""""""
6029
6030.. code-block:: llvm
6031
Tim Northover675a0962014-06-13 14:24:23 +00006032 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006033
6034.. _i_fmul:
6035
6036'``fmul``' Instruction
6037^^^^^^^^^^^^^^^^^^^^^^
6038
6039Syntax:
6040"""""""
6041
6042::
6043
Tim Northover675a0962014-06-13 14:24:23 +00006044 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006045
6046Overview:
6047"""""""""
6048
6049The '``fmul``' instruction returns the product of its two operands.
6050
6051Arguments:
6052""""""""""
6053
6054The two arguments to the '``fmul``' instruction must be :ref:`floating
6055point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6056Both arguments must have identical types.
6057
6058Semantics:
6059""""""""""
6060
6061The value produced is the floating point product of the two operands.
6062This instruction can also take any number of :ref:`fast-math
6063flags <fastmath>`, which are optimization hints to enable otherwise
6064unsafe floating point optimizations:
6065
6066Example:
6067""""""""
6068
6069.. code-block:: llvm
6070
Tim Northover675a0962014-06-13 14:24:23 +00006071 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006072
6073'``udiv``' Instruction
6074^^^^^^^^^^^^^^^^^^^^^^
6075
6076Syntax:
6077"""""""
6078
6079::
6080
Tim Northover675a0962014-06-13 14:24:23 +00006081 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6082 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006083
6084Overview:
6085"""""""""
6086
6087The '``udiv``' instruction returns the quotient of its two operands.
6088
6089Arguments:
6090""""""""""
6091
6092The two arguments to the '``udiv``' instruction must be
6093:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6094arguments must have identical types.
6095
6096Semantics:
6097""""""""""
6098
6099The value produced is the unsigned integer quotient of the two operands.
6100
6101Note that unsigned integer division and signed integer division are
6102distinct operations; for signed integer division, use '``sdiv``'.
6103
6104Division by zero leads to undefined behavior.
6105
6106If the ``exact`` keyword is present, the result value of the ``udiv`` is
6107a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6108such, "((a udiv exact b) mul b) == a").
6109
6110Example:
6111""""""""
6112
6113.. code-block:: llvm
6114
Tim Northover675a0962014-06-13 14:24:23 +00006115 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006116
6117'``sdiv``' Instruction
6118^^^^^^^^^^^^^^^^^^^^^^
6119
6120Syntax:
6121"""""""
6122
6123::
6124
Tim Northover675a0962014-06-13 14:24:23 +00006125 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6126 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006127
6128Overview:
6129"""""""""
6130
6131The '``sdiv``' instruction returns the quotient of its two operands.
6132
6133Arguments:
6134""""""""""
6135
6136The two arguments to the '``sdiv``' instruction must be
6137:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6138arguments must have identical types.
6139
6140Semantics:
6141""""""""""
6142
6143The value produced is the signed integer quotient of the two operands
6144rounded towards zero.
6145
6146Note that signed integer division and unsigned integer division are
6147distinct operations; for unsigned integer division, use '``udiv``'.
6148
6149Division by zero leads to undefined behavior. Overflow also leads to
6150undefined behavior; this is a rare case, but can occur, for example, by
6151doing a 32-bit division of -2147483648 by -1.
6152
6153If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6154a :ref:`poison value <poisonvalues>` if the result would be rounded.
6155
6156Example:
6157""""""""
6158
6159.. code-block:: llvm
6160
Tim Northover675a0962014-06-13 14:24:23 +00006161 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006162
6163.. _i_fdiv:
6164
6165'``fdiv``' Instruction
6166^^^^^^^^^^^^^^^^^^^^^^
6167
6168Syntax:
6169"""""""
6170
6171::
6172
Tim Northover675a0962014-06-13 14:24:23 +00006173 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006174
6175Overview:
6176"""""""""
6177
6178The '``fdiv``' instruction returns the quotient of its two operands.
6179
6180Arguments:
6181""""""""""
6182
6183The two arguments to the '``fdiv``' instruction must be :ref:`floating
6184point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6185Both arguments must have identical types.
6186
6187Semantics:
6188""""""""""
6189
6190The value produced is the floating point quotient of the two operands.
6191This instruction can also take any number of :ref:`fast-math
6192flags <fastmath>`, which are optimization hints to enable otherwise
6193unsafe floating point optimizations:
6194
6195Example:
6196""""""""
6197
6198.. code-block:: llvm
6199
Tim Northover675a0962014-06-13 14:24:23 +00006200 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006201
6202'``urem``' Instruction
6203^^^^^^^^^^^^^^^^^^^^^^
6204
6205Syntax:
6206"""""""
6207
6208::
6209
Tim Northover675a0962014-06-13 14:24:23 +00006210 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006211
6212Overview:
6213"""""""""
6214
6215The '``urem``' instruction returns the remainder from the unsigned
6216division of its two arguments.
6217
6218Arguments:
6219""""""""""
6220
6221The two arguments to the '``urem``' instruction must be
6222:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6223arguments must have identical types.
6224
6225Semantics:
6226""""""""""
6227
6228This instruction returns the unsigned integer *remainder* of a division.
6229This instruction always performs an unsigned division to get the
6230remainder.
6231
6232Note that unsigned integer remainder and signed integer remainder are
6233distinct operations; for signed integer remainder, use '``srem``'.
6234
6235Taking the remainder of a division by zero leads to undefined behavior.
6236
6237Example:
6238""""""""
6239
6240.. code-block:: llvm
6241
Tim Northover675a0962014-06-13 14:24:23 +00006242 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006243
6244'``srem``' Instruction
6245^^^^^^^^^^^^^^^^^^^^^^
6246
6247Syntax:
6248"""""""
6249
6250::
6251
Tim Northover675a0962014-06-13 14:24:23 +00006252 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006253
6254Overview:
6255"""""""""
6256
6257The '``srem``' instruction returns the remainder from the signed
6258division of its two operands. This instruction can also take
6259:ref:`vector <t_vector>` versions of the values in which case the elements
6260must be integers.
6261
6262Arguments:
6263""""""""""
6264
6265The two arguments to the '``srem``' instruction must be
6266:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6267arguments must have identical types.
6268
6269Semantics:
6270""""""""""
6271
6272This instruction returns the *remainder* of a division (where the result
6273is either zero or has the same sign as the dividend, ``op1``), not the
6274*modulo* operator (where the result is either zero or has the same sign
6275as the divisor, ``op2``) of a value. For more information about the
6276difference, see `The Math
6277Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6278table of how this is implemented in various languages, please see
6279`Wikipedia: modulo
6280operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6281
6282Note that signed integer remainder and unsigned integer remainder are
6283distinct operations; for unsigned integer remainder, use '``urem``'.
6284
6285Taking the remainder of a division by zero leads to undefined behavior.
6286Overflow also leads to undefined behavior; this is a rare case, but can
6287occur, for example, by taking the remainder of a 32-bit division of
6288-2147483648 by -1. (The remainder doesn't actually overflow, but this
6289rule lets srem be implemented using instructions that return both the
6290result of the division and the remainder.)
6291
6292Example:
6293""""""""
6294
6295.. code-block:: llvm
6296
Tim Northover675a0962014-06-13 14:24:23 +00006297 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006298
6299.. _i_frem:
6300
6301'``frem``' Instruction
6302^^^^^^^^^^^^^^^^^^^^^^
6303
6304Syntax:
6305"""""""
6306
6307::
6308
Tim Northover675a0962014-06-13 14:24:23 +00006309 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006310
6311Overview:
6312"""""""""
6313
6314The '``frem``' instruction returns the remainder from the division of
6315its two operands.
6316
6317Arguments:
6318""""""""""
6319
6320The two arguments to the '``frem``' instruction must be :ref:`floating
6321point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6322Both arguments must have identical types.
6323
6324Semantics:
6325""""""""""
6326
6327This instruction returns the *remainder* of a division. The remainder
6328has the same sign as the dividend. This instruction can also take any
6329number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6330to enable otherwise unsafe floating point optimizations:
6331
6332Example:
6333""""""""
6334
6335.. code-block:: llvm
6336
Tim Northover675a0962014-06-13 14:24:23 +00006337 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006338
6339.. _bitwiseops:
6340
6341Bitwise Binary Operations
6342-------------------------
6343
6344Bitwise binary operators are used to do various forms of bit-twiddling
6345in a program. They are generally very efficient instructions and can
6346commonly be strength reduced from other instructions. They require two
6347operands of the same type, execute an operation on them, and produce a
6348single value. The resulting value is the same type as its operands.
6349
6350'``shl``' Instruction
6351^^^^^^^^^^^^^^^^^^^^^
6352
6353Syntax:
6354"""""""
6355
6356::
6357
Tim Northover675a0962014-06-13 14:24:23 +00006358 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6359 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6360 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6361 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006362
6363Overview:
6364"""""""""
6365
6366The '``shl``' instruction returns the first operand shifted to the left
6367a specified number of bits.
6368
6369Arguments:
6370""""""""""
6371
6372Both arguments to the '``shl``' instruction must be the same
6373:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6374'``op2``' is treated as an unsigned value.
6375
6376Semantics:
6377""""""""""
6378
6379The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6380where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006381dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006382``op1``, the result is undefined. If the arguments are vectors, each
6383vector element of ``op1`` is shifted by the corresponding shift amount
6384in ``op2``.
6385
6386If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6387value <poisonvalues>` if it shifts out any non-zero bits. If the
6388``nsw`` keyword is present, then the shift produces a :ref:`poison
6389value <poisonvalues>` if it shifts out any bits that disagree with the
6390resultant sign bit. As such, NUW/NSW have the same semantics as they
6391would if the shift were expressed as a mul instruction with the same
6392nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6393
6394Example:
6395""""""""
6396
6397.. code-block:: llvm
6398
Tim Northover675a0962014-06-13 14:24:23 +00006399 <result> = shl i32 4, %var ; yields i32: 4 << %var
6400 <result> = shl i32 4, 2 ; yields i32: 16
6401 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006402 <result> = shl i32 1, 32 ; undefined
6403 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6404
6405'``lshr``' Instruction
6406^^^^^^^^^^^^^^^^^^^^^^
6407
6408Syntax:
6409"""""""
6410
6411::
6412
Tim Northover675a0962014-06-13 14:24:23 +00006413 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6414 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006415
6416Overview:
6417"""""""""
6418
6419The '``lshr``' instruction (logical shift right) returns the first
6420operand shifted to the right a specified number of bits with zero fill.
6421
6422Arguments:
6423""""""""""
6424
6425Both arguments to the '``lshr``' instruction must be the same
6426:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6427'``op2``' is treated as an unsigned value.
6428
6429Semantics:
6430""""""""""
6431
6432This instruction always performs a logical shift right operation. The
6433most significant bits of the result will be filled with zero bits after
6434the shift. If ``op2`` is (statically or dynamically) equal to or larger
6435than the number of bits in ``op1``, the result is undefined. If the
6436arguments are vectors, each vector element of ``op1`` is shifted by the
6437corresponding shift amount in ``op2``.
6438
6439If the ``exact`` keyword is present, the result value of the ``lshr`` is
6440a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6441non-zero.
6442
6443Example:
6444""""""""
6445
6446.. code-block:: llvm
6447
Tim Northover675a0962014-06-13 14:24:23 +00006448 <result> = lshr i32 4, 1 ; yields i32:result = 2
6449 <result> = lshr i32 4, 2 ; yields i32:result = 1
6450 <result> = lshr i8 4, 3 ; yields i8:result = 0
6451 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006452 <result> = lshr i32 1, 32 ; undefined
6453 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6454
6455'``ashr``' Instruction
6456^^^^^^^^^^^^^^^^^^^^^^
6457
6458Syntax:
6459"""""""
6460
6461::
6462
Tim Northover675a0962014-06-13 14:24:23 +00006463 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6464 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006465
6466Overview:
6467"""""""""
6468
6469The '``ashr``' instruction (arithmetic shift right) returns the first
6470operand shifted to the right a specified number of bits with sign
6471extension.
6472
6473Arguments:
6474""""""""""
6475
6476Both arguments to the '``ashr``' instruction must be the same
6477:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6478'``op2``' is treated as an unsigned value.
6479
6480Semantics:
6481""""""""""
6482
6483This instruction always performs an arithmetic shift right operation,
6484The most significant bits of the result will be filled with the sign bit
6485of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6486than the number of bits in ``op1``, the result is undefined. If the
6487arguments are vectors, each vector element of ``op1`` is shifted by the
6488corresponding shift amount in ``op2``.
6489
6490If the ``exact`` keyword is present, the result value of the ``ashr`` is
6491a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6492non-zero.
6493
6494Example:
6495""""""""
6496
6497.. code-block:: llvm
6498
Tim Northover675a0962014-06-13 14:24:23 +00006499 <result> = ashr i32 4, 1 ; yields i32:result = 2
6500 <result> = ashr i32 4, 2 ; yields i32:result = 1
6501 <result> = ashr i8 4, 3 ; yields i8:result = 0
6502 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006503 <result> = ashr i32 1, 32 ; undefined
6504 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6505
6506'``and``' Instruction
6507^^^^^^^^^^^^^^^^^^^^^
6508
6509Syntax:
6510"""""""
6511
6512::
6513
Tim Northover675a0962014-06-13 14:24:23 +00006514 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006515
6516Overview:
6517"""""""""
6518
6519The '``and``' instruction returns the bitwise logical and of its two
6520operands.
6521
6522Arguments:
6523""""""""""
6524
6525The two arguments to the '``and``' instruction must be
6526:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6527arguments must have identical types.
6528
6529Semantics:
6530""""""""""
6531
6532The truth table used for the '``and``' instruction is:
6533
6534+-----+-----+-----+
6535| In0 | In1 | Out |
6536+-----+-----+-----+
6537| 0 | 0 | 0 |
6538+-----+-----+-----+
6539| 0 | 1 | 0 |
6540+-----+-----+-----+
6541| 1 | 0 | 0 |
6542+-----+-----+-----+
6543| 1 | 1 | 1 |
6544+-----+-----+-----+
6545
6546Example:
6547""""""""
6548
6549.. code-block:: llvm
6550
Tim Northover675a0962014-06-13 14:24:23 +00006551 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6552 <result> = and i32 15, 40 ; yields i32:result = 8
6553 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006554
6555'``or``' Instruction
6556^^^^^^^^^^^^^^^^^^^^
6557
6558Syntax:
6559"""""""
6560
6561::
6562
Tim Northover675a0962014-06-13 14:24:23 +00006563 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006564
6565Overview:
6566"""""""""
6567
6568The '``or``' instruction returns the bitwise logical inclusive or of its
6569two operands.
6570
6571Arguments:
6572""""""""""
6573
6574The two arguments to the '``or``' instruction must be
6575:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6576arguments must have identical types.
6577
6578Semantics:
6579""""""""""
6580
6581The truth table used for the '``or``' instruction is:
6582
6583+-----+-----+-----+
6584| In0 | In1 | Out |
6585+-----+-----+-----+
6586| 0 | 0 | 0 |
6587+-----+-----+-----+
6588| 0 | 1 | 1 |
6589+-----+-----+-----+
6590| 1 | 0 | 1 |
6591+-----+-----+-----+
6592| 1 | 1 | 1 |
6593+-----+-----+-----+
6594
6595Example:
6596""""""""
6597
6598::
6599
Tim Northover675a0962014-06-13 14:24:23 +00006600 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6601 <result> = or i32 15, 40 ; yields i32:result = 47
6602 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006603
6604'``xor``' Instruction
6605^^^^^^^^^^^^^^^^^^^^^
6606
6607Syntax:
6608"""""""
6609
6610::
6611
Tim Northover675a0962014-06-13 14:24:23 +00006612 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006613
6614Overview:
6615"""""""""
6616
6617The '``xor``' instruction returns the bitwise logical exclusive or of
6618its two operands. The ``xor`` is used to implement the "one's
6619complement" operation, which is the "~" operator in C.
6620
6621Arguments:
6622""""""""""
6623
6624The two arguments to the '``xor``' instruction must be
6625:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6626arguments must have identical types.
6627
6628Semantics:
6629""""""""""
6630
6631The truth table used for the '``xor``' instruction is:
6632
6633+-----+-----+-----+
6634| In0 | In1 | Out |
6635+-----+-----+-----+
6636| 0 | 0 | 0 |
6637+-----+-----+-----+
6638| 0 | 1 | 1 |
6639+-----+-----+-----+
6640| 1 | 0 | 1 |
6641+-----+-----+-----+
6642| 1 | 1 | 0 |
6643+-----+-----+-----+
6644
6645Example:
6646""""""""
6647
6648.. code-block:: llvm
6649
Tim Northover675a0962014-06-13 14:24:23 +00006650 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6651 <result> = xor i32 15, 40 ; yields i32:result = 39
6652 <result> = xor i32 4, 8 ; yields i32:result = 12
6653 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006654
6655Vector Operations
6656-----------------
6657
6658LLVM supports several instructions to represent vector operations in a
6659target-independent manner. These instructions cover the element-access
6660and vector-specific operations needed to process vectors effectively.
6661While LLVM does directly support these vector operations, many
6662sophisticated algorithms will want to use target-specific intrinsics to
6663take full advantage of a specific target.
6664
6665.. _i_extractelement:
6666
6667'``extractelement``' Instruction
6668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6669
6670Syntax:
6671"""""""
6672
6673::
6674
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006675 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006676
6677Overview:
6678"""""""""
6679
6680The '``extractelement``' instruction extracts a single scalar element
6681from a vector at a specified index.
6682
6683Arguments:
6684""""""""""
6685
6686The first operand of an '``extractelement``' instruction is a value of
6687:ref:`vector <t_vector>` type. The second operand is an index indicating
6688the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006689variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006690
6691Semantics:
6692""""""""""
6693
6694The result is a scalar of the same type as the element type of ``val``.
6695Its value is the value at position ``idx`` of ``val``. If ``idx``
6696exceeds the length of ``val``, the results are undefined.
6697
6698Example:
6699""""""""
6700
6701.. code-block:: llvm
6702
6703 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6704
6705.. _i_insertelement:
6706
6707'``insertelement``' Instruction
6708^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6709
6710Syntax:
6711"""""""
6712
6713::
6714
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006715 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006716
6717Overview:
6718"""""""""
6719
6720The '``insertelement``' instruction inserts a scalar element into a
6721vector at a specified index.
6722
6723Arguments:
6724""""""""""
6725
6726The first operand of an '``insertelement``' instruction is a value of
6727:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6728type must equal the element type of the first operand. The third operand
6729is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006730index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006731
6732Semantics:
6733""""""""""
6734
6735The result is a vector of the same type as ``val``. Its element values
6736are those of ``val`` except at position ``idx``, where it gets the value
6737``elt``. If ``idx`` exceeds the length of ``val``, the results are
6738undefined.
6739
6740Example:
6741""""""""
6742
6743.. code-block:: llvm
6744
6745 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6746
6747.. _i_shufflevector:
6748
6749'``shufflevector``' Instruction
6750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6751
6752Syntax:
6753"""""""
6754
6755::
6756
6757 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6758
6759Overview:
6760"""""""""
6761
6762The '``shufflevector``' instruction constructs a permutation of elements
6763from two input vectors, returning a vector with the same element type as
6764the input and length that is the same as the shuffle mask.
6765
6766Arguments:
6767""""""""""
6768
6769The first two operands of a '``shufflevector``' instruction are vectors
6770with the same type. The third argument is a shuffle mask whose element
6771type is always 'i32'. The result of the instruction is a vector whose
6772length is the same as the shuffle mask and whose element type is the
6773same as the element type of the first two operands.
6774
6775The shuffle mask operand is required to be a constant vector with either
6776constant integer or undef values.
6777
6778Semantics:
6779""""""""""
6780
6781The elements of the two input vectors are numbered from left to right
6782across both of the vectors. The shuffle mask operand specifies, for each
6783element of the result vector, which element of the two input vectors the
6784result element gets. The element selector may be undef (meaning "don't
6785care") and the second operand may be undef if performing a shuffle from
6786only one vector.
6787
6788Example:
6789""""""""
6790
6791.. code-block:: llvm
6792
6793 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6794 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6795 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6796 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6797 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6798 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6799 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6800 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6801
6802Aggregate Operations
6803--------------------
6804
6805LLVM supports several instructions for working with
6806:ref:`aggregate <t_aggregate>` values.
6807
6808.. _i_extractvalue:
6809
6810'``extractvalue``' Instruction
6811^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6812
6813Syntax:
6814"""""""
6815
6816::
6817
6818 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6819
6820Overview:
6821"""""""""
6822
6823The '``extractvalue``' instruction extracts the value of a member field
6824from an :ref:`aggregate <t_aggregate>` value.
6825
6826Arguments:
6827""""""""""
6828
6829The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006830:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006831constant indices to specify which value to extract in a similar manner
6832as indices in a '``getelementptr``' instruction.
6833
6834The major differences to ``getelementptr`` indexing are:
6835
6836- Since the value being indexed is not a pointer, the first index is
6837 omitted and assumed to be zero.
6838- At least one index must be specified.
6839- Not only struct indices but also array indices must be in bounds.
6840
6841Semantics:
6842""""""""""
6843
6844The result is the value at the position in the aggregate specified by
6845the index operands.
6846
6847Example:
6848""""""""
6849
6850.. code-block:: llvm
6851
6852 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6853
6854.. _i_insertvalue:
6855
6856'``insertvalue``' Instruction
6857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6858
6859Syntax:
6860"""""""
6861
6862::
6863
6864 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6865
6866Overview:
6867"""""""""
6868
6869The '``insertvalue``' instruction inserts a value into a member field in
6870an :ref:`aggregate <t_aggregate>` value.
6871
6872Arguments:
6873""""""""""
6874
6875The first operand of an '``insertvalue``' instruction is a value of
6876:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6877a first-class value to insert. The following operands are constant
6878indices indicating the position at which to insert the value in a
6879similar manner as indices in a '``extractvalue``' instruction. The value
6880to insert must have the same type as the value identified by the
6881indices.
6882
6883Semantics:
6884""""""""""
6885
6886The result is an aggregate of the same type as ``val``. Its value is
6887that of ``val`` except that the value at the position specified by the
6888indices is that of ``elt``.
6889
6890Example:
6891""""""""
6892
6893.. code-block:: llvm
6894
6895 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6896 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006897 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006898
6899.. _memoryops:
6900
6901Memory Access and Addressing Operations
6902---------------------------------------
6903
6904A key design point of an SSA-based representation is how it represents
6905memory. In LLVM, no memory locations are in SSA form, which makes things
6906very simple. This section describes how to read, write, and allocate
6907memory in LLVM.
6908
6909.. _i_alloca:
6910
6911'``alloca``' Instruction
6912^^^^^^^^^^^^^^^^^^^^^^^^
6913
6914Syntax:
6915"""""""
6916
6917::
6918
Tim Northover675a0962014-06-13 14:24:23 +00006919 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006920
6921Overview:
6922"""""""""
6923
6924The '``alloca``' instruction allocates memory on the stack frame of the
6925currently executing function, to be automatically released when this
6926function returns to its caller. The object is always allocated in the
6927generic address space (address space zero).
6928
6929Arguments:
6930""""""""""
6931
6932The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6933bytes of memory on the runtime stack, returning a pointer of the
6934appropriate type to the program. If "NumElements" is specified, it is
6935the number of elements allocated, otherwise "NumElements" is defaulted
6936to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006937allocation is guaranteed to be aligned to at least that boundary. The
6938alignment may not be greater than ``1 << 29``. If not specified, or if
6939zero, the target can choose to align the allocation on any convenient
6940boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006941
6942'``type``' may be any sized type.
6943
6944Semantics:
6945""""""""""
6946
6947Memory is allocated; a pointer is returned. The operation is undefined
6948if there is insufficient stack space for the allocation. '``alloca``'d
6949memory is automatically released when the function returns. The
6950'``alloca``' instruction is commonly used to represent automatic
6951variables that must have an address available. When the function returns
6952(either with the ``ret`` or ``resume`` instructions), the memory is
6953reclaimed. Allocating zero bytes is legal, but the result is undefined.
6954The order in which memory is allocated (ie., which way the stack grows)
6955is not specified.
6956
6957Example:
6958""""""""
6959
6960.. code-block:: llvm
6961
Tim Northover675a0962014-06-13 14:24:23 +00006962 %ptr = alloca i32 ; yields i32*:ptr
6963 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6964 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6965 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006966
6967.. _i_load:
6968
6969'``load``' Instruction
6970^^^^^^^^^^^^^^^^^^^^^^
6971
6972Syntax:
6973"""""""
6974
6975::
6976
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006977 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00006978 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006979 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006980 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006981 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006982
6983Overview:
6984"""""""""
6985
6986The '``load``' instruction is used to read from memory.
6987
6988Arguments:
6989""""""""""
6990
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00006991The argument to the ``load`` instruction specifies the memory address from which
6992to load. The type specified must be a :ref:`first class <t_firstclass>` type of
6993known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
6994the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
6995modify the number or order of execution of this ``load`` with other
6996:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00006997
JF Bastiend1fb5852015-12-17 22:09:19 +00006998If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6999<ordering>` and optional ``singlethread`` argument. The ``release`` and
7000``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7001produce :ref:`defined <memmodel>` results when they may see multiple atomic
7002stores. The type of the pointee must be an integer, pointer, or floating-point
7003type whose bit width is a power of two greater than or equal to eight and less
7004than or equal to a target-specific size limit. ``align`` must be explicitly
7005specified on atomic loads, and the load has undefined behavior if the alignment
7006is not set to a value which is at least the size in bytes of the
7007pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007008
7009The optional constant ``align`` argument specifies the alignment of the
7010operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007011or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007012alignment for the target. It is the responsibility of the code emitter
7013to ensure that the alignment information is correct. Overestimating the
7014alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007015may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007016maximum possible alignment is ``1 << 29``. An alignment value higher
7017than the size of the loaded type implies memory up to the alignment
7018value bytes can be safely loaded without trapping in the default
7019address space. Access of the high bytes can interfere with debugging
7020tools, so should not be accessed if the function has the
7021``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007022
7023The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007024metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007025``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007026metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007027that this load is not expected to be reused in the cache. The code
7028generator may select special instructions to save cache bandwidth, such
7029as the ``MOVNT`` instruction on x86.
7030
7031The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007032metadata name ``<index>`` corresponding to a metadata node with no
7033entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00007034instruction tells the optimizer and code generator that the address
7035operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007036Being invariant does not imply that a location is dereferenceable,
7037but it does imply that once the location is known dereferenceable
7038its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00007039
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007040The optional ``!invariant.group`` metadata must reference a single metadata name
7041 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7042
Philip Reamescdb72f32014-10-20 22:40:55 +00007043The optional ``!nonnull`` metadata must reference a single
7044metadata name ``<index>`` corresponding to a metadata node with no
7045entries. The existence of the ``!nonnull`` metadata on the
7046instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007047never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007048on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007049to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007050
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007051The optional ``!dereferenceable`` metadata must reference a single metadata
7052name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007053entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007054tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007055The number of bytes known to be dereferenceable is specified by the integer
7056value in the metadata node. This is analogous to the ''dereferenceable''
7057attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007058to loads of a pointer type.
7059
7060The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007061metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7062``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007063instruction tells the optimizer that the value loaded is known to be either
7064dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007065The number of bytes known to be dereferenceable is specified by the integer
7066value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7067attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007068to loads of a pointer type.
7069
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007070The optional ``!align`` metadata must reference a single metadata name
7071``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7072The existence of the ``!align`` metadata on the instruction tells the
7073optimizer that the value loaded is known to be aligned to a boundary specified
7074by the integer value in the metadata node. The alignment must be a power of 2.
7075This is analogous to the ''align'' attribute on parameters and return values.
7076This metadata can only be applied to loads of a pointer type.
7077
Sean Silvab084af42012-12-07 10:36:55 +00007078Semantics:
7079""""""""""
7080
7081The location of memory pointed to is loaded. If the value being loaded
7082is of scalar type then the number of bytes read does not exceed the
7083minimum number of bytes needed to hold all bits of the type. For
7084example, loading an ``i24`` reads at most three bytes. When loading a
7085value of a type like ``i20`` with a size that is not an integral number
7086of bytes, the result is undefined if the value was not originally
7087written using a store of the same type.
7088
7089Examples:
7090"""""""""
7091
7092.. code-block:: llvm
7093
Tim Northover675a0962014-06-13 14:24:23 +00007094 %ptr = alloca i32 ; yields i32*:ptr
7095 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007096 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007097
7098.. _i_store:
7099
7100'``store``' Instruction
7101^^^^^^^^^^^^^^^^^^^^^^^
7102
7103Syntax:
7104"""""""
7105
7106::
7107
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007108 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7109 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007110
7111Overview:
7112"""""""""
7113
7114The '``store``' instruction is used to write to memory.
7115
7116Arguments:
7117""""""""""
7118
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007119There are two arguments to the ``store`` instruction: a value to store and an
7120address at which to store it. The type of the ``<pointer>`` operand must be a
7121pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7122operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7123allowed to modify the number or order of execution of this ``store`` with other
7124:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7125<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7126structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007127
JF Bastiend1fb5852015-12-17 22:09:19 +00007128If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7129<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7130``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7131produce :ref:`defined <memmodel>` results when they may see multiple atomic
7132stores. The type of the pointee must be an integer, pointer, or floating-point
7133type whose bit width is a power of two greater than or equal to eight and less
7134than or equal to a target-specific size limit. ``align`` must be explicitly
7135specified on atomic stores, and the store has undefined behavior if the
7136alignment is not set to a value which is at least the size in bytes of the
7137pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007138
Eli Benderskyca380842013-04-17 17:17:20 +00007139The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007140operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007141or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007142alignment for the target. It is the responsibility of the code emitter
7143to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007144alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007145alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007146safe. The maximum possible alignment is ``1 << 29``. An alignment
7147value higher than the size of the stored type implies memory up to the
7148alignment value bytes can be stored to without trapping in the default
7149address space. Storing to the higher bytes however may result in data
7150races if another thread can access the same address. Introducing a
7151data race is not allowed. Storing to the extra bytes is not allowed
7152even in situations where a data race is known to not exist if the
7153function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007154
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007155The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007156name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007157value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007158tells the optimizer and code generator that this load is not expected to
7159be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007160instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007161x86.
7162
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007163The optional ``!invariant.group`` metadata must reference a
7164single metadata name ``<index>``. See ``invariant.group`` metadata.
7165
Sean Silvab084af42012-12-07 10:36:55 +00007166Semantics:
7167""""""""""
7168
Eli Benderskyca380842013-04-17 17:17:20 +00007169The contents of memory are updated to contain ``<value>`` at the
7170location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007171of scalar type then the number of bytes written does not exceed the
7172minimum number of bytes needed to hold all bits of the type. For
7173example, storing an ``i24`` writes at most three bytes. When writing a
7174value of a type like ``i20`` with a size that is not an integral number
7175of bytes, it is unspecified what happens to the extra bits that do not
7176belong to the type, but they will typically be overwritten.
7177
7178Example:
7179""""""""
7180
7181.. code-block:: llvm
7182
Tim Northover675a0962014-06-13 14:24:23 +00007183 %ptr = alloca i32 ; yields i32*:ptr
7184 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007185 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007186
7187.. _i_fence:
7188
7189'``fence``' Instruction
7190^^^^^^^^^^^^^^^^^^^^^^^
7191
7192Syntax:
7193"""""""
7194
7195::
7196
Tim Northover675a0962014-06-13 14:24:23 +00007197 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007198
7199Overview:
7200"""""""""
7201
7202The '``fence``' instruction is used to introduce happens-before edges
7203between operations.
7204
7205Arguments:
7206""""""""""
7207
7208'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7209defines what *synchronizes-with* edges they add. They can only be given
7210``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7211
7212Semantics:
7213""""""""""
7214
7215A fence A which has (at least) ``release`` ordering semantics
7216*synchronizes with* a fence B with (at least) ``acquire`` ordering
7217semantics if and only if there exist atomic operations X and Y, both
7218operating on some atomic object M, such that A is sequenced before X, X
7219modifies M (either directly or through some side effect of a sequence
7220headed by X), Y is sequenced before B, and Y observes M. This provides a
7221*happens-before* dependency between A and B. Rather than an explicit
7222``fence``, one (but not both) of the atomic operations X or Y might
7223provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7224still *synchronize-with* the explicit ``fence`` and establish the
7225*happens-before* edge.
7226
7227A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7228``acquire`` and ``release`` semantics specified above, participates in
7229the global program order of other ``seq_cst`` operations and/or fences.
7230
7231The optional ":ref:`singlethread <singlethread>`" argument specifies
7232that the fence only synchronizes with other fences in the same thread.
7233(This is useful for interacting with signal handlers.)
7234
7235Example:
7236""""""""
7237
7238.. code-block:: llvm
7239
Tim Northover675a0962014-06-13 14:24:23 +00007240 fence acquire ; yields void
7241 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007242
7243.. _i_cmpxchg:
7244
7245'``cmpxchg``' Instruction
7246^^^^^^^^^^^^^^^^^^^^^^^^^
7247
7248Syntax:
7249"""""""
7250
7251::
7252
Tim Northover675a0962014-06-13 14:24:23 +00007253 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007254
7255Overview:
7256"""""""""
7257
7258The '``cmpxchg``' instruction is used to atomically modify memory. It
7259loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007260equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007261
7262Arguments:
7263""""""""""
7264
7265There are three arguments to the '``cmpxchg``' instruction: an address
7266to operate on, a value to compare to the value currently be at that
7267address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007268are equal. The type of '<cmp>' must be an integer or pointer type whose
7269bit width is a power of two greater than or equal to eight and less
7270than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7271have the same type, and the type of '<pointer>' must be a pointer to
7272that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7273optimizer is not allowed to modify the number or order of execution of
7274this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007275
Tim Northovere94a5182014-03-11 10:48:52 +00007276The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007277``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7278must be at least ``monotonic``, the ordering constraint on failure must be no
7279stronger than that on success, and the failure ordering cannot be either
7280``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007281
7282The optional "``singlethread``" argument declares that the ``cmpxchg``
7283is only atomic with respect to code (usually signal handlers) running in
7284the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7285respect to all other code in the system.
7286
7287The pointer passed into cmpxchg must have alignment greater than or
7288equal to the size in memory of the operand.
7289
7290Semantics:
7291""""""""""
7292
Tim Northover420a2162014-06-13 14:24:07 +00007293The contents of memory at the location specified by the '``<pointer>``' operand
7294is read and compared to '``<cmp>``'; if the read value is the equal, the
7295'``<new>``' is written. The original value at the location is returned, together
7296with a flag indicating success (true) or failure (false).
7297
7298If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7299permitted: the operation may not write ``<new>`` even if the comparison
7300matched.
7301
7302If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7303if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007304
Tim Northovere94a5182014-03-11 10:48:52 +00007305A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7306identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7307load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007308
7309Example:
7310""""""""
7311
7312.. code-block:: llvm
7313
7314 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007315 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007316 br label %loop
7317
7318 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007319 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007320 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007321 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007322 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7323 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007324 br i1 %success, label %done, label %loop
7325
7326 done:
7327 ...
7328
7329.. _i_atomicrmw:
7330
7331'``atomicrmw``' Instruction
7332^^^^^^^^^^^^^^^^^^^^^^^^^^^
7333
7334Syntax:
7335"""""""
7336
7337::
7338
Tim Northover675a0962014-06-13 14:24:23 +00007339 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007340
7341Overview:
7342"""""""""
7343
7344The '``atomicrmw``' instruction is used to atomically modify memory.
7345
7346Arguments:
7347""""""""""
7348
7349There are three arguments to the '``atomicrmw``' instruction: an
7350operation to apply, an address whose value to modify, an argument to the
7351operation. The operation must be one of the following keywords:
7352
7353- xchg
7354- add
7355- sub
7356- and
7357- nand
7358- or
7359- xor
7360- max
7361- min
7362- umax
7363- umin
7364
7365The type of '<value>' must be an integer type whose bit width is a power
7366of two greater than or equal to eight and less than or equal to a
7367target-specific size limit. The type of the '``<pointer>``' operand must
7368be a pointer to that type. If the ``atomicrmw`` is marked as
7369``volatile``, then the optimizer is not allowed to modify the number or
7370order of execution of this ``atomicrmw`` with other :ref:`volatile
7371operations <volatile>`.
7372
7373Semantics:
7374""""""""""
7375
7376The contents of memory at the location specified by the '``<pointer>``'
7377operand are atomically read, modified, and written back. The original
7378value at the location is returned. The modification is specified by the
7379operation argument:
7380
7381- xchg: ``*ptr = val``
7382- add: ``*ptr = *ptr + val``
7383- sub: ``*ptr = *ptr - val``
7384- and: ``*ptr = *ptr & val``
7385- nand: ``*ptr = ~(*ptr & val)``
7386- or: ``*ptr = *ptr | val``
7387- xor: ``*ptr = *ptr ^ val``
7388- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7389- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7390- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7391 comparison)
7392- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7393 comparison)
7394
7395Example:
7396""""""""
7397
7398.. code-block:: llvm
7399
Tim Northover675a0962014-06-13 14:24:23 +00007400 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007401
7402.. _i_getelementptr:
7403
7404'``getelementptr``' Instruction
7405^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7406
7407Syntax:
7408"""""""
7409
7410::
7411
David Blaikie16a97eb2015-03-04 22:02:58 +00007412 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7413 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7414 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007415
7416Overview:
7417"""""""""
7418
7419The '``getelementptr``' instruction is used to get the address of a
7420subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007421address calculation only and does not access memory. The instruction can also
7422be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007423
7424Arguments:
7425""""""""""
7426
David Blaikie16a97eb2015-03-04 22:02:58 +00007427The first argument is always a type used as the basis for the calculations.
7428The second argument is always a pointer or a vector of pointers, and is the
7429base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007430that indicate which of the elements of the aggregate object are indexed.
7431The interpretation of each index is dependent on the type being indexed
7432into. The first index always indexes the pointer value given as the
7433first argument, the second index indexes a value of the type pointed to
7434(not necessarily the value directly pointed to, since the first index
7435can be non-zero), etc. The first type indexed into must be a pointer
7436value, subsequent types can be arrays, vectors, and structs. Note that
7437subsequent types being indexed into can never be pointers, since that
7438would require loading the pointer before continuing calculation.
7439
7440The type of each index argument depends on the type it is indexing into.
7441When indexing into a (optionally packed) structure, only ``i32`` integer
7442**constants** are allowed (when using a vector of indices they must all
7443be the **same** ``i32`` integer constant). When indexing into an array,
7444pointer or vector, integers of any width are allowed, and they are not
7445required to be constant. These integers are treated as signed values
7446where relevant.
7447
7448For example, let's consider a C code fragment and how it gets compiled
7449to LLVM:
7450
7451.. code-block:: c
7452
7453 struct RT {
7454 char A;
7455 int B[10][20];
7456 char C;
7457 };
7458 struct ST {
7459 int X;
7460 double Y;
7461 struct RT Z;
7462 };
7463
7464 int *foo(struct ST *s) {
7465 return &s[1].Z.B[5][13];
7466 }
7467
7468The LLVM code generated by Clang is:
7469
7470.. code-block:: llvm
7471
7472 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7473 %struct.ST = type { i32, double, %struct.RT }
7474
7475 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7476 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007477 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007478 ret i32* %arrayidx
7479 }
7480
7481Semantics:
7482""""""""""
7483
7484In the example above, the first index is indexing into the
7485'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7486= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7487indexes into the third element of the structure, yielding a
7488'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7489structure. The third index indexes into the second element of the
7490structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7491dimensions of the array are subscripted into, yielding an '``i32``'
7492type. The '``getelementptr``' instruction returns a pointer to this
7493element, thus computing a value of '``i32*``' type.
7494
7495Note that it is perfectly legal to index partially through a structure,
7496returning a pointer to an inner element. Because of this, the LLVM code
7497for the given testcase is equivalent to:
7498
7499.. code-block:: llvm
7500
7501 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007502 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7503 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7504 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7505 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7506 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007507 ret i32* %t5
7508 }
7509
7510If the ``inbounds`` keyword is present, the result value of the
7511``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7512pointer is not an *in bounds* address of an allocated object, or if any
7513of the addresses that would be formed by successive addition of the
7514offsets implied by the indices to the base address with infinitely
7515precise signed arithmetic are not an *in bounds* address of that
7516allocated object. The *in bounds* addresses for an allocated object are
7517all the addresses that point into the object, plus the address one byte
7518past the end. In cases where the base is a vector of pointers the
7519``inbounds`` keyword applies to each of the computations element-wise.
7520
7521If the ``inbounds`` keyword is not present, the offsets are added to the
7522base address with silently-wrapping two's complement arithmetic. If the
7523offsets have a different width from the pointer, they are sign-extended
7524or truncated to the width of the pointer. The result value of the
7525``getelementptr`` may be outside the object pointed to by the base
7526pointer. The result value may not necessarily be used to access memory
7527though, even if it happens to point into allocated storage. See the
7528:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7529information.
7530
7531The getelementptr instruction is often confusing. For some more insight
7532into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7533
7534Example:
7535""""""""
7536
7537.. code-block:: llvm
7538
7539 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007540 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007541 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007542 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007543 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007544 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007545 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007546 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007547
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007548Vector of pointers:
7549"""""""""""""""""""
7550
7551The ``getelementptr`` returns a vector of pointers, instead of a single address,
7552when one or more of its arguments is a vector. In such cases, all vector
7553arguments should have the same number of elements, and every scalar argument
7554will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007555
7556.. code-block:: llvm
7557
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007558 ; All arguments are vectors:
7559 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7560 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007561
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007562 ; Add the same scalar offset to each pointer of a vector:
7563 ; A[i] = ptrs[i] + offset*sizeof(i8)
7564 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007565
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007566 ; Add distinct offsets to the same pointer:
7567 ; A[i] = ptr + offsets[i]*sizeof(i8)
7568 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007569
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007570 ; In all cases described above the type of the result is <4 x i8*>
7571
7572The two following instructions are equivalent:
7573
7574.. code-block:: llvm
7575
7576 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7577 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7578 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7579 <4 x i32> %ind4,
7580 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007581
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007582 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7583 i32 2, i32 1, <4 x i32> %ind4, i64 13
7584
7585Let's look at the C code, where the vector version of ``getelementptr``
7586makes sense:
7587
7588.. code-block:: c
7589
7590 // Let's assume that we vectorize the following loop:
7591 double *A, B; int *C;
7592 for (int i = 0; i < size; ++i) {
7593 A[i] = B[C[i]];
7594 }
7595
7596.. code-block:: llvm
7597
7598 ; get pointers for 8 elements from array B
7599 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7600 ; load 8 elements from array B into A
7601 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7602 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007603
7604Conversion Operations
7605---------------------
7606
7607The instructions in this category are the conversion instructions
7608(casting) which all take a single operand and a type. They perform
7609various bit conversions on the operand.
7610
7611'``trunc .. to``' Instruction
7612^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7613
7614Syntax:
7615"""""""
7616
7617::
7618
7619 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7620
7621Overview:
7622"""""""""
7623
7624The '``trunc``' instruction truncates its operand to the type ``ty2``.
7625
7626Arguments:
7627""""""""""
7628
7629The '``trunc``' instruction takes a value to trunc, and a type to trunc
7630it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7631of the same number of integers. The bit size of the ``value`` must be
7632larger than the bit size of the destination type, ``ty2``. Equal sized
7633types are not allowed.
7634
7635Semantics:
7636""""""""""
7637
7638The '``trunc``' instruction truncates the high order bits in ``value``
7639and converts the remaining bits to ``ty2``. Since the source size must
7640be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7641It will always truncate bits.
7642
7643Example:
7644""""""""
7645
7646.. code-block:: llvm
7647
7648 %X = trunc i32 257 to i8 ; yields i8:1
7649 %Y = trunc i32 123 to i1 ; yields i1:true
7650 %Z = trunc i32 122 to i1 ; yields i1:false
7651 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7652
7653'``zext .. to``' Instruction
7654^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7655
7656Syntax:
7657"""""""
7658
7659::
7660
7661 <result> = zext <ty> <value> to <ty2> ; yields ty2
7662
7663Overview:
7664"""""""""
7665
7666The '``zext``' instruction zero extends its operand to type ``ty2``.
7667
7668Arguments:
7669""""""""""
7670
7671The '``zext``' instruction takes a value to cast, and a type to cast it
7672to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7673the same number of integers. The bit size of the ``value`` must be
7674smaller than the bit size of the destination type, ``ty2``.
7675
7676Semantics:
7677""""""""""
7678
7679The ``zext`` fills the high order bits of the ``value`` with zero bits
7680until it reaches the size of the destination type, ``ty2``.
7681
7682When zero extending from i1, the result will always be either 0 or 1.
7683
7684Example:
7685""""""""
7686
7687.. code-block:: llvm
7688
7689 %X = zext i32 257 to i64 ; yields i64:257
7690 %Y = zext i1 true to i32 ; yields i32:1
7691 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7692
7693'``sext .. to``' Instruction
7694^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7695
7696Syntax:
7697"""""""
7698
7699::
7700
7701 <result> = sext <ty> <value> to <ty2> ; yields ty2
7702
7703Overview:
7704"""""""""
7705
7706The '``sext``' sign extends ``value`` to the type ``ty2``.
7707
7708Arguments:
7709""""""""""
7710
7711The '``sext``' instruction takes a value to cast, and a type to cast it
7712to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7713the same number of integers. The bit size of the ``value`` must be
7714smaller than the bit size of the destination type, ``ty2``.
7715
7716Semantics:
7717""""""""""
7718
7719The '``sext``' instruction performs a sign extension by copying the sign
7720bit (highest order bit) of the ``value`` until it reaches the bit size
7721of the type ``ty2``.
7722
7723When sign extending from i1, the extension always results in -1 or 0.
7724
7725Example:
7726""""""""
7727
7728.. code-block:: llvm
7729
7730 %X = sext i8 -1 to i16 ; yields i16 :65535
7731 %Y = sext i1 true to i32 ; yields i32:-1
7732 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7733
7734'``fptrunc .. to``' Instruction
7735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7736
7737Syntax:
7738"""""""
7739
7740::
7741
7742 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7743
7744Overview:
7745"""""""""
7746
7747The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7748
7749Arguments:
7750""""""""""
7751
7752The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7753value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7754The size of ``value`` must be larger than the size of ``ty2``. This
7755implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7756
7757Semantics:
7758""""""""""
7759
Dan Liew50456fb2015-09-03 18:43:56 +00007760The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007761:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007762point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7763destination type, ``ty2``, then the results are undefined. If the cast produces
7764an inexact result, how rounding is performed (e.g. truncation, also known as
7765round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007766
7767Example:
7768""""""""
7769
7770.. code-block:: llvm
7771
7772 %X = fptrunc double 123.0 to float ; yields float:123.0
7773 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7774
7775'``fpext .. to``' Instruction
7776^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7777
7778Syntax:
7779"""""""
7780
7781::
7782
7783 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7784
7785Overview:
7786"""""""""
7787
7788The '``fpext``' extends a floating point ``value`` to a larger floating
7789point value.
7790
7791Arguments:
7792""""""""""
7793
7794The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7795``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7796to. The source type must be smaller than the destination type.
7797
7798Semantics:
7799""""""""""
7800
7801The '``fpext``' instruction extends the ``value`` from a smaller
7802:ref:`floating point <t_floating>` type to a larger :ref:`floating
7803point <t_floating>` type. The ``fpext`` cannot be used to make a
7804*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7805*no-op cast* for a floating point cast.
7806
7807Example:
7808""""""""
7809
7810.. code-block:: llvm
7811
7812 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7813 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7814
7815'``fptoui .. to``' Instruction
7816^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7817
7818Syntax:
7819"""""""
7820
7821::
7822
7823 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7824
7825Overview:
7826"""""""""
7827
7828The '``fptoui``' converts a floating point ``value`` to its unsigned
7829integer equivalent of type ``ty2``.
7830
7831Arguments:
7832""""""""""
7833
7834The '``fptoui``' instruction takes a value to cast, which must be a
7835scalar or vector :ref:`floating point <t_floating>` value, and a type to
7836cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7837``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7838type with the same number of elements as ``ty``
7839
7840Semantics:
7841""""""""""
7842
7843The '``fptoui``' instruction converts its :ref:`floating
7844point <t_floating>` operand into the nearest (rounding towards zero)
7845unsigned integer value. If the value cannot fit in ``ty2``, the results
7846are undefined.
7847
7848Example:
7849""""""""
7850
7851.. code-block:: llvm
7852
7853 %X = fptoui double 123.0 to i32 ; yields i32:123
7854 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7855 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7856
7857'``fptosi .. to``' Instruction
7858^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7859
7860Syntax:
7861"""""""
7862
7863::
7864
7865 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7866
7867Overview:
7868"""""""""
7869
7870The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7871``value`` to type ``ty2``.
7872
7873Arguments:
7874""""""""""
7875
7876The '``fptosi``' instruction takes a value to cast, which must be a
7877scalar or vector :ref:`floating point <t_floating>` value, and a type to
7878cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7879``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7880type with the same number of elements as ``ty``
7881
7882Semantics:
7883""""""""""
7884
7885The '``fptosi``' instruction converts its :ref:`floating
7886point <t_floating>` operand into the nearest (rounding towards zero)
7887signed integer value. If the value cannot fit in ``ty2``, the results
7888are undefined.
7889
7890Example:
7891""""""""
7892
7893.. code-block:: llvm
7894
7895 %X = fptosi double -123.0 to i32 ; yields i32:-123
7896 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7897 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7898
7899'``uitofp .. to``' Instruction
7900^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7901
7902Syntax:
7903"""""""
7904
7905::
7906
7907 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7908
7909Overview:
7910"""""""""
7911
7912The '``uitofp``' instruction regards ``value`` as an unsigned integer
7913and converts that value to the ``ty2`` type.
7914
7915Arguments:
7916""""""""""
7917
7918The '``uitofp``' instruction takes a value to cast, which must be a
7919scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7920``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7921``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7922type with the same number of elements as ``ty``
7923
7924Semantics:
7925""""""""""
7926
7927The '``uitofp``' instruction interprets its operand as an unsigned
7928integer quantity and converts it to the corresponding floating point
7929value. If the value cannot fit in the floating point value, the results
7930are undefined.
7931
7932Example:
7933""""""""
7934
7935.. code-block:: llvm
7936
7937 %X = uitofp i32 257 to float ; yields float:257.0
7938 %Y = uitofp i8 -1 to double ; yields double:255.0
7939
7940'``sitofp .. to``' Instruction
7941^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7942
7943Syntax:
7944"""""""
7945
7946::
7947
7948 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7949
7950Overview:
7951"""""""""
7952
7953The '``sitofp``' instruction regards ``value`` as a signed integer and
7954converts that value to the ``ty2`` type.
7955
7956Arguments:
7957""""""""""
7958
7959The '``sitofp``' instruction takes a value to cast, which must be a
7960scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7961``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7962``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7963type with the same number of elements as ``ty``
7964
7965Semantics:
7966""""""""""
7967
7968The '``sitofp``' instruction interprets its operand as a signed integer
7969quantity and converts it to the corresponding floating point value. If
7970the value cannot fit in the floating point value, the results are
7971undefined.
7972
7973Example:
7974""""""""
7975
7976.. code-block:: llvm
7977
7978 %X = sitofp i32 257 to float ; yields float:257.0
7979 %Y = sitofp i8 -1 to double ; yields double:-1.0
7980
7981.. _i_ptrtoint:
7982
7983'``ptrtoint .. to``' Instruction
7984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7985
7986Syntax:
7987"""""""
7988
7989::
7990
7991 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7992
7993Overview:
7994"""""""""
7995
7996The '``ptrtoint``' instruction converts the pointer or a vector of
7997pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7998
7999Arguments:
8000""""""""""
8001
8002The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008003a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008004type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8005a vector of integers type.
8006
8007Semantics:
8008""""""""""
8009
8010The '``ptrtoint``' instruction converts ``value`` to integer type
8011``ty2`` by interpreting the pointer value as an integer and either
8012truncating or zero extending that value to the size of the integer type.
8013If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8014``value`` is larger than ``ty2`` then a truncation is done. If they are
8015the same size, then nothing is done (*no-op cast*) other than a type
8016change.
8017
8018Example:
8019""""""""
8020
8021.. code-block:: llvm
8022
8023 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8024 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8025 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8026
8027.. _i_inttoptr:
8028
8029'``inttoptr .. to``' Instruction
8030^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8031
8032Syntax:
8033"""""""
8034
8035::
8036
8037 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8038
8039Overview:
8040"""""""""
8041
8042The '``inttoptr``' instruction converts an integer ``value`` to a
8043pointer type, ``ty2``.
8044
8045Arguments:
8046""""""""""
8047
8048The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8049cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8050type.
8051
8052Semantics:
8053""""""""""
8054
8055The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8056applying either a zero extension or a truncation depending on the size
8057of the integer ``value``. If ``value`` is larger than the size of a
8058pointer then a truncation is done. If ``value`` is smaller than the size
8059of a pointer then a zero extension is done. If they are the same size,
8060nothing is done (*no-op cast*).
8061
8062Example:
8063""""""""
8064
8065.. code-block:: llvm
8066
8067 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8068 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8069 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8070 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8071
8072.. _i_bitcast:
8073
8074'``bitcast .. to``' Instruction
8075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8076
8077Syntax:
8078"""""""
8079
8080::
8081
8082 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8083
8084Overview:
8085"""""""""
8086
8087The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8088changing any bits.
8089
8090Arguments:
8091""""""""""
8092
8093The '``bitcast``' instruction takes a value to cast, which must be a
8094non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008095also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8096bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008097identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008098also be a pointer of the same size. This instruction supports bitwise
8099conversion of vectors to integers and to vectors of other types (as
8100long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008101
8102Semantics:
8103""""""""""
8104
Matt Arsenault24b49c42013-07-31 17:49:08 +00008105The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8106is always a *no-op cast* because no bits change with this
8107conversion. The conversion is done as if the ``value`` had been stored
8108to memory and read back as type ``ty2``. Pointer (or vector of
8109pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008110pointers) types with the same address space through this instruction.
8111To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8112or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008113
8114Example:
8115""""""""
8116
8117.. code-block:: llvm
8118
8119 %X = bitcast i8 255 to i8 ; yields i8 :-1
8120 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8121 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8122 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8123
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008124.. _i_addrspacecast:
8125
8126'``addrspacecast .. to``' Instruction
8127^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8128
8129Syntax:
8130"""""""
8131
8132::
8133
8134 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8135
8136Overview:
8137"""""""""
8138
8139The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8140address space ``n`` to type ``pty2`` in address space ``m``.
8141
8142Arguments:
8143""""""""""
8144
8145The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8146to cast and a pointer type to cast it to, which must have a different
8147address space.
8148
8149Semantics:
8150""""""""""
8151
8152The '``addrspacecast``' instruction converts the pointer value
8153``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008154value modification, depending on the target and the address space
8155pair. Pointer conversions within the same address space must be
8156performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008157conversion is legal then both result and operand refer to the same memory
8158location.
8159
8160Example:
8161""""""""
8162
8163.. code-block:: llvm
8164
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008165 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8166 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8167 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008168
Sean Silvab084af42012-12-07 10:36:55 +00008169.. _otherops:
8170
8171Other Operations
8172----------------
8173
8174The instructions in this category are the "miscellaneous" instructions,
8175which defy better classification.
8176
8177.. _i_icmp:
8178
8179'``icmp``' Instruction
8180^^^^^^^^^^^^^^^^^^^^^^
8181
8182Syntax:
8183"""""""
8184
8185::
8186
Tim Northover675a0962014-06-13 14:24:23 +00008187 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008188
8189Overview:
8190"""""""""
8191
8192The '``icmp``' instruction returns a boolean value or a vector of
8193boolean values based on comparison of its two integer, integer vector,
8194pointer, or pointer vector operands.
8195
8196Arguments:
8197""""""""""
8198
8199The '``icmp``' instruction takes three operands. The first operand is
8200the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008201not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008202
8203#. ``eq``: equal
8204#. ``ne``: not equal
8205#. ``ugt``: unsigned greater than
8206#. ``uge``: unsigned greater or equal
8207#. ``ult``: unsigned less than
8208#. ``ule``: unsigned less or equal
8209#. ``sgt``: signed greater than
8210#. ``sge``: signed greater or equal
8211#. ``slt``: signed less than
8212#. ``sle``: signed less or equal
8213
8214The remaining two arguments must be :ref:`integer <t_integer>` or
8215:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8216must also be identical types.
8217
8218Semantics:
8219""""""""""
8220
8221The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8222code given as ``cond``. The comparison performed always yields either an
8223:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8224
8225#. ``eq``: yields ``true`` if the operands are equal, ``false``
8226 otherwise. No sign interpretation is necessary or performed.
8227#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8228 otherwise. No sign interpretation is necessary or performed.
8229#. ``ugt``: interprets the operands as unsigned values and yields
8230 ``true`` if ``op1`` is greater than ``op2``.
8231#. ``uge``: interprets the operands as unsigned values and yields
8232 ``true`` if ``op1`` is greater than or equal to ``op2``.
8233#. ``ult``: interprets the operands as unsigned values and yields
8234 ``true`` if ``op1`` is less than ``op2``.
8235#. ``ule``: interprets the operands as unsigned values and yields
8236 ``true`` if ``op1`` is less than or equal to ``op2``.
8237#. ``sgt``: interprets the operands as signed values and yields ``true``
8238 if ``op1`` is greater than ``op2``.
8239#. ``sge``: interprets the operands as signed values and yields ``true``
8240 if ``op1`` is greater than or equal to ``op2``.
8241#. ``slt``: interprets the operands as signed values and yields ``true``
8242 if ``op1`` is less than ``op2``.
8243#. ``sle``: interprets the operands as signed values and yields ``true``
8244 if ``op1`` is less than or equal to ``op2``.
8245
8246If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8247are compared as if they were integers.
8248
8249If the operands are integer vectors, then they are compared element by
8250element. The result is an ``i1`` vector with the same number of elements
8251as the values being compared. Otherwise, the result is an ``i1``.
8252
8253Example:
8254""""""""
8255
8256.. code-block:: llvm
8257
8258 <result> = icmp eq i32 4, 5 ; yields: result=false
8259 <result> = icmp ne float* %X, %X ; yields: result=false
8260 <result> = icmp ult i16 4, 5 ; yields: result=true
8261 <result> = icmp sgt i16 4, 5 ; yields: result=false
8262 <result> = icmp ule i16 -4, 5 ; yields: result=false
8263 <result> = icmp sge i16 4, 5 ; yields: result=false
8264
Sean Silvab084af42012-12-07 10:36:55 +00008265.. _i_fcmp:
8266
8267'``fcmp``' Instruction
8268^^^^^^^^^^^^^^^^^^^^^^
8269
8270Syntax:
8271"""""""
8272
8273::
8274
James Molloy88eb5352015-07-10 12:52:00 +00008275 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008276
8277Overview:
8278"""""""""
8279
8280The '``fcmp``' instruction returns a boolean value or vector of boolean
8281values based on comparison of its operands.
8282
8283If the operands are floating point scalars, then the result type is a
8284boolean (:ref:`i1 <t_integer>`).
8285
8286If the operands are floating point vectors, then the result type is a
8287vector of boolean with the same number of elements as the operands being
8288compared.
8289
8290Arguments:
8291""""""""""
8292
8293The '``fcmp``' instruction takes three operands. The first operand is
8294the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008295not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008296
8297#. ``false``: no comparison, always returns false
8298#. ``oeq``: ordered and equal
8299#. ``ogt``: ordered and greater than
8300#. ``oge``: ordered and greater than or equal
8301#. ``olt``: ordered and less than
8302#. ``ole``: ordered and less than or equal
8303#. ``one``: ordered and not equal
8304#. ``ord``: ordered (no nans)
8305#. ``ueq``: unordered or equal
8306#. ``ugt``: unordered or greater than
8307#. ``uge``: unordered or greater than or equal
8308#. ``ult``: unordered or less than
8309#. ``ule``: unordered or less than or equal
8310#. ``une``: unordered or not equal
8311#. ``uno``: unordered (either nans)
8312#. ``true``: no comparison, always returns true
8313
8314*Ordered* means that neither operand is a QNAN while *unordered* means
8315that either operand may be a QNAN.
8316
8317Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8318point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8319type. They must have identical types.
8320
8321Semantics:
8322""""""""""
8323
8324The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8325condition code given as ``cond``. If the operands are vectors, then the
8326vectors are compared element by element. Each comparison performed
8327always yields an :ref:`i1 <t_integer>` result, as follows:
8328
8329#. ``false``: always yields ``false``, regardless of operands.
8330#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8331 is equal to ``op2``.
8332#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8333 is greater than ``op2``.
8334#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8335 is greater than or equal to ``op2``.
8336#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8337 is less than ``op2``.
8338#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8339 is less than or equal to ``op2``.
8340#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8341 is not equal to ``op2``.
8342#. ``ord``: yields ``true`` if both operands are not a QNAN.
8343#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8344 equal to ``op2``.
8345#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8346 greater than ``op2``.
8347#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8348 greater than or equal to ``op2``.
8349#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8350 less than ``op2``.
8351#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8352 less than or equal to ``op2``.
8353#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8354 not equal to ``op2``.
8355#. ``uno``: yields ``true`` if either operand is a QNAN.
8356#. ``true``: always yields ``true``, regardless of operands.
8357
James Molloy88eb5352015-07-10 12:52:00 +00008358The ``fcmp`` instruction can also optionally take any number of
8359:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8360otherwise unsafe floating point optimizations.
8361
8362Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8363only flags that have any effect on its semantics are those that allow
8364assumptions to be made about the values of input arguments; namely
8365``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8366
Sean Silvab084af42012-12-07 10:36:55 +00008367Example:
8368""""""""
8369
8370.. code-block:: llvm
8371
8372 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8373 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8374 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8375 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8376
Sean Silvab084af42012-12-07 10:36:55 +00008377.. _i_phi:
8378
8379'``phi``' Instruction
8380^^^^^^^^^^^^^^^^^^^^^
8381
8382Syntax:
8383"""""""
8384
8385::
8386
8387 <result> = phi <ty> [ <val0>, <label0>], ...
8388
8389Overview:
8390"""""""""
8391
8392The '``phi``' instruction is used to implement the φ node in the SSA
8393graph representing the function.
8394
8395Arguments:
8396""""""""""
8397
8398The type of the incoming values is specified with the first type field.
8399After this, the '``phi``' instruction takes a list of pairs as
8400arguments, with one pair for each predecessor basic block of the current
8401block. Only values of :ref:`first class <t_firstclass>` type may be used as
8402the value arguments to the PHI node. Only labels may be used as the
8403label arguments.
8404
8405There must be no non-phi instructions between the start of a basic block
8406and the PHI instructions: i.e. PHI instructions must be first in a basic
8407block.
8408
8409For the purposes of the SSA form, the use of each incoming value is
8410deemed to occur on the edge from the corresponding predecessor block to
8411the current block (but after any definition of an '``invoke``'
8412instruction's return value on the same edge).
8413
8414Semantics:
8415""""""""""
8416
8417At runtime, the '``phi``' instruction logically takes on the value
8418specified by the pair corresponding to the predecessor basic block that
8419executed just prior to the current block.
8420
8421Example:
8422""""""""
8423
8424.. code-block:: llvm
8425
8426 Loop: ; Infinite loop that counts from 0 on up...
8427 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8428 %nextindvar = add i32 %indvar, 1
8429 br label %Loop
8430
8431.. _i_select:
8432
8433'``select``' Instruction
8434^^^^^^^^^^^^^^^^^^^^^^^^
8435
8436Syntax:
8437"""""""
8438
8439::
8440
8441 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8442
8443 selty is either i1 or {<N x i1>}
8444
8445Overview:
8446"""""""""
8447
8448The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008449condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008450
8451Arguments:
8452""""""""""
8453
8454The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8455values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008456class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008457
8458Semantics:
8459""""""""""
8460
8461If the condition is an i1 and it evaluates to 1, the instruction returns
8462the first value argument; otherwise, it returns the second value
8463argument.
8464
8465If the condition is a vector of i1, then the value arguments must be
8466vectors of the same size, and the selection is done element by element.
8467
David Majnemer40a0b592015-03-03 22:45:47 +00008468If the condition is an i1 and the value arguments are vectors of the
8469same size, then an entire vector is selected.
8470
Sean Silvab084af42012-12-07 10:36:55 +00008471Example:
8472""""""""
8473
8474.. code-block:: llvm
8475
8476 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8477
8478.. _i_call:
8479
8480'``call``' Instruction
8481^^^^^^^^^^^^^^^^^^^^^^
8482
8483Syntax:
8484"""""""
8485
8486::
8487
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008488 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008489 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008490
8491Overview:
8492"""""""""
8493
8494The '``call``' instruction represents a simple function call.
8495
8496Arguments:
8497""""""""""
8498
8499This instruction requires several arguments:
8500
Reid Kleckner5772b772014-04-24 20:14:34 +00008501#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008502 should perform tail call optimization. The ``tail`` marker is a hint that
8503 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008504 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008505 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008506
8507 #. The call will not cause unbounded stack growth if it is part of a
8508 recursive cycle in the call graph.
8509 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8510 forwarded in place.
8511
8512 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008513 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008514 rules:
8515
8516 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8517 or a pointer bitcast followed by a ret instruction.
8518 - The ret instruction must return the (possibly bitcasted) value
8519 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008520 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008521 parameters or return types may differ in pointee type, but not
8522 in address space.
8523 - The calling conventions of the caller and callee must match.
8524 - All ABI-impacting function attributes, such as sret, byval, inreg,
8525 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008526 - The callee must be varargs iff the caller is varargs. Bitcasting a
8527 non-varargs function to the appropriate varargs type is legal so
8528 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008529
8530 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8531 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008532
8533 - Caller and callee both have the calling convention ``fastcc``.
8534 - The call is in tail position (ret immediately follows call and ret
8535 uses value of call or is void).
8536 - Option ``-tailcallopt`` is enabled, or
8537 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008538 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008539 met. <CodeGenerator.html#tailcallopt>`_
8540
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008541#. The optional ``notail`` marker indicates that the optimizers should not add
8542 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8543 call optimization from being performed on the call.
8544
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008545#. The optional ``fast-math flags`` marker indicates that the call has one or more
8546 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8547 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8548 for calls that return a floating-point scalar or vector type.
8549
Sean Silvab084af42012-12-07 10:36:55 +00008550#. The optional "cconv" marker indicates which :ref:`calling
8551 convention <callingconv>` the call should use. If none is
8552 specified, the call defaults to using C calling conventions. The
8553 calling convention of the call must match the calling convention of
8554 the target function, or else the behavior is undefined.
8555#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8556 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8557 are valid here.
8558#. '``ty``': the type of the call instruction itself which is also the
8559 type of the return value. Functions that return no value are marked
8560 ``void``.
8561#. '``fnty``': shall be the signature of the pointer to function value
8562 being invoked. The argument types must match the types implied by
8563 this signature. This type can be omitted if the function is not
8564 varargs and if the function type does not return a pointer to a
8565 function.
8566#. '``fnptrval``': An LLVM value containing a pointer to a function to
8567 be invoked. In most cases, this is a direct function invocation, but
8568 indirect ``call``'s are just as possible, calling an arbitrary pointer
8569 to function value.
8570#. '``function args``': argument list whose types match the function
8571 signature argument types and parameter attributes. All arguments must
8572 be of :ref:`first class <t_firstclass>` type. If the function signature
8573 indicates the function accepts a variable number of arguments, the
8574 extra arguments can be specified.
8575#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008576 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8577 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008578#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008579
8580Semantics:
8581""""""""""
8582
8583The '``call``' instruction is used to cause control flow to transfer to
8584a specified function, with its incoming arguments bound to the specified
8585values. Upon a '``ret``' instruction in the called function, control
8586flow continues with the instruction after the function call, and the
8587return value of the function is bound to the result argument.
8588
8589Example:
8590""""""""
8591
8592.. code-block:: llvm
8593
8594 %retval = call i32 @test(i32 %argc)
8595 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8596 %X = tail call i32 @foo() ; yields i32
8597 %Y = tail call fastcc i32 @foo() ; yields i32
8598 call void %foo(i8 97 signext)
8599
8600 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008601 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008602 %gr = extractvalue %struct.A %r, 0 ; yields i32
8603 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8604 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8605 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8606
8607llvm treats calls to some functions with names and arguments that match
8608the standard C99 library as being the C99 library functions, and may
8609perform optimizations or generate code for them under that assumption.
8610This is something we'd like to change in the future to provide better
8611support for freestanding environments and non-C-based languages.
8612
8613.. _i_va_arg:
8614
8615'``va_arg``' Instruction
8616^^^^^^^^^^^^^^^^^^^^^^^^
8617
8618Syntax:
8619"""""""
8620
8621::
8622
8623 <resultval> = va_arg <va_list*> <arglist>, <argty>
8624
8625Overview:
8626"""""""""
8627
8628The '``va_arg``' instruction is used to access arguments passed through
8629the "variable argument" area of a function call. It is used to implement
8630the ``va_arg`` macro in C.
8631
8632Arguments:
8633""""""""""
8634
8635This instruction takes a ``va_list*`` value and the type of the
8636argument. It returns a value of the specified argument type and
8637increments the ``va_list`` to point to the next argument. The actual
8638type of ``va_list`` is target specific.
8639
8640Semantics:
8641""""""""""
8642
8643The '``va_arg``' instruction loads an argument of the specified type
8644from the specified ``va_list`` and causes the ``va_list`` to point to
8645the next argument. For more information, see the variable argument
8646handling :ref:`Intrinsic Functions <int_varargs>`.
8647
8648It is legal for this instruction to be called in a function which does
8649not take a variable number of arguments, for example, the ``vfprintf``
8650function.
8651
8652``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8653function <intrinsics>` because it takes a type as an argument.
8654
8655Example:
8656""""""""
8657
8658See the :ref:`variable argument processing <int_varargs>` section.
8659
8660Note that the code generator does not yet fully support va\_arg on many
8661targets. Also, it does not currently support va\_arg with aggregate
8662types on any target.
8663
8664.. _i_landingpad:
8665
8666'``landingpad``' Instruction
8667^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8668
8669Syntax:
8670"""""""
8671
8672::
8673
David Majnemer7fddecc2015-06-17 20:52:32 +00008674 <resultval> = landingpad <resultty> <clause>+
8675 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008676
8677 <clause> := catch <type> <value>
8678 <clause> := filter <array constant type> <array constant>
8679
8680Overview:
8681"""""""""
8682
8683The '``landingpad``' instruction is used by `LLVM's exception handling
8684system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008685is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008686code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008687defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008688re-entry to the function. The ``resultval`` has the type ``resultty``.
8689
8690Arguments:
8691""""""""""
8692
David Majnemer7fddecc2015-06-17 20:52:32 +00008693The optional
Sean Silvab084af42012-12-07 10:36:55 +00008694``cleanup`` flag indicates that the landing pad block is a cleanup.
8695
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008696A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008697contains the global variable representing the "type" that may be caught
8698or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8699clause takes an array constant as its argument. Use
8700"``[0 x i8**] undef``" for a filter which cannot throw. The
8701'``landingpad``' instruction must contain *at least* one ``clause`` or
8702the ``cleanup`` flag.
8703
8704Semantics:
8705""""""""""
8706
8707The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008708:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008709therefore the "result type" of the ``landingpad`` instruction. As with
8710calling conventions, how the personality function results are
8711represented in LLVM IR is target specific.
8712
8713The clauses are applied in order from top to bottom. If two
8714``landingpad`` instructions are merged together through inlining, the
8715clauses from the calling function are appended to the list of clauses.
8716When the call stack is being unwound due to an exception being thrown,
8717the exception is compared against each ``clause`` in turn. If it doesn't
8718match any of the clauses, and the ``cleanup`` flag is not set, then
8719unwinding continues further up the call stack.
8720
8721The ``landingpad`` instruction has several restrictions:
8722
8723- A landing pad block is a basic block which is the unwind destination
8724 of an '``invoke``' instruction.
8725- A landing pad block must have a '``landingpad``' instruction as its
8726 first non-PHI instruction.
8727- There can be only one '``landingpad``' instruction within the landing
8728 pad block.
8729- A basic block that is not a landing pad block may not include a
8730 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008731
8732Example:
8733""""""""
8734
8735.. code-block:: llvm
8736
8737 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008738 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008739 catch i8** @_ZTIi
8740 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008741 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008742 cleanup
8743 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008744 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008745 catch i8** @_ZTIi
8746 filter [1 x i8**] [@_ZTId]
8747
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008748.. _i_catchpad:
8749
8750'``catchpad``' Instruction
8751^^^^^^^^^^^^^^^^^^^^^^^^^^
8752
8753Syntax:
8754"""""""
8755
8756::
8757
8758 <resultval> = catchpad within <catchswitch> [<args>*]
8759
8760Overview:
8761"""""""""
8762
8763The '``catchpad``' instruction is used by `LLVM's exception handling
8764system <ExceptionHandling.html#overview>`_ to specify that a basic block
8765begins a catch handler --- one where a personality routine attempts to transfer
8766control to catch an exception.
8767
8768Arguments:
8769""""""""""
8770
8771The ``catchswitch`` operand must always be a token produced by a
8772:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8773ensures that each ``catchpad`` has exactly one predecessor block, and it always
8774terminates in a ``catchswitch``.
8775
8776The ``args`` correspond to whatever information the personality routine
8777requires to know if this is an appropriate handler for the exception. Control
8778will transfer to the ``catchpad`` if this is the first appropriate handler for
8779the exception.
8780
8781The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8782``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8783pads.
8784
8785Semantics:
8786""""""""""
8787
8788When the call stack is being unwound due to an exception being thrown, the
8789exception is compared against the ``args``. If it doesn't match, control will
8790not reach the ``catchpad`` instruction. The representation of ``args`` is
8791entirely target and personality function-specific.
8792
8793Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8794instruction must be the first non-phi of its parent basic block.
8795
8796The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8797instructions is described in the
8798`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8799
8800When a ``catchpad`` has been "entered" but not yet "exited" (as
8801described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8802it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8803that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8804
8805Example:
8806""""""""
8807
8808.. code-block:: llvm
8809
8810 dispatch:
8811 %cs = catchswitch within none [label %handler0] unwind to caller
8812 ;; A catch block which can catch an integer.
8813 handler0:
8814 %tok = catchpad within %cs [i8** @_ZTIi]
8815
David Majnemer654e1302015-07-31 17:58:14 +00008816.. _i_cleanuppad:
8817
8818'``cleanuppad``' Instruction
8819^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8820
8821Syntax:
8822"""""""
8823
8824::
8825
David Majnemer8a1c45d2015-12-12 05:38:55 +00008826 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008827
8828Overview:
8829"""""""""
8830
8831The '``cleanuppad``' instruction is used by `LLVM's exception handling
8832system <ExceptionHandling.html#overview>`_ to specify that a basic block
8833is a cleanup block --- one where a personality routine attempts to
8834transfer control to run cleanup actions.
8835The ``args`` correspond to whatever additional
8836information the :ref:`personality function <personalityfn>` requires to
8837execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008838The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008839match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8840The ``parent`` argument is the token of the funclet that contains the
8841``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8842this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008843
8844Arguments:
8845""""""""""
8846
8847The instruction takes a list of arbitrary values which are interpreted
8848by the :ref:`personality function <personalityfn>`.
8849
8850Semantics:
8851""""""""""
8852
David Majnemer654e1302015-07-31 17:58:14 +00008853When the call stack is being unwound due to an exception being thrown,
8854the :ref:`personality function <personalityfn>` transfers control to the
8855``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008856As with calling conventions, how the personality function results are
8857represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008858
8859The ``cleanuppad`` instruction has several restrictions:
8860
8861- A cleanup block is a basic block which is the unwind destination of
8862 an exceptional instruction.
8863- A cleanup block must have a '``cleanuppad``' instruction as its
8864 first non-PHI instruction.
8865- There can be only one '``cleanuppad``' instruction within the
8866 cleanup block.
8867- A basic block that is not a cleanup block may not include a
8868 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008869
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008870When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8871described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8872it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8873that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008874
David Majnemer654e1302015-07-31 17:58:14 +00008875Example:
8876""""""""
8877
8878.. code-block:: llvm
8879
David Majnemer8a1c45d2015-12-12 05:38:55 +00008880 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008881
Sean Silvab084af42012-12-07 10:36:55 +00008882.. _intrinsics:
8883
8884Intrinsic Functions
8885===================
8886
8887LLVM supports the notion of an "intrinsic function". These functions
8888have well known names and semantics and are required to follow certain
8889restrictions. Overall, these intrinsics represent an extension mechanism
8890for the LLVM language that does not require changing all of the
8891transformations in LLVM when adding to the language (or the bitcode
8892reader/writer, the parser, etc...).
8893
8894Intrinsic function names must all start with an "``llvm.``" prefix. This
8895prefix is reserved in LLVM for intrinsic names; thus, function names may
8896not begin with this prefix. Intrinsic functions must always be external
8897functions: you cannot define the body of intrinsic functions. Intrinsic
8898functions may only be used in call or invoke instructions: it is illegal
8899to take the address of an intrinsic function. Additionally, because
8900intrinsic functions are part of the LLVM language, it is required if any
8901are added that they be documented here.
8902
8903Some intrinsic functions can be overloaded, i.e., the intrinsic
8904represents a family of functions that perform the same operation but on
8905different data types. Because LLVM can represent over 8 million
8906different integer types, overloading is used commonly to allow an
8907intrinsic function to operate on any integer type. One or more of the
8908argument types or the result type can be overloaded to accept any
8909integer type. Argument types may also be defined as exactly matching a
8910previous argument's type or the result type. This allows an intrinsic
8911function which accepts multiple arguments, but needs all of them to be
8912of the same type, to only be overloaded with respect to a single
8913argument or the result.
8914
8915Overloaded intrinsics will have the names of its overloaded argument
8916types encoded into its function name, each preceded by a period. Only
8917those types which are overloaded result in a name suffix. Arguments
8918whose type is matched against another type do not. For example, the
8919``llvm.ctpop`` function can take an integer of any width and returns an
8920integer of exactly the same integer width. This leads to a family of
8921functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8922``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8923overloaded, and only one type suffix is required. Because the argument's
8924type is matched against the return type, it does not require its own
8925name suffix.
8926
8927To learn how to add an intrinsic function, please see the `Extending
8928LLVM Guide <ExtendingLLVM.html>`_.
8929
8930.. _int_varargs:
8931
8932Variable Argument Handling Intrinsics
8933-------------------------------------
8934
8935Variable argument support is defined in LLVM with the
8936:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8937functions. These functions are related to the similarly named macros
8938defined in the ``<stdarg.h>`` header file.
8939
8940All of these functions operate on arguments that use a target-specific
8941value type "``va_list``". The LLVM assembly language reference manual
8942does not define what this type is, so all transformations should be
8943prepared to handle these functions regardless of the type used.
8944
8945This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8946variable argument handling intrinsic functions are used.
8947
8948.. code-block:: llvm
8949
Tim Northoverab60bb92014-11-02 01:21:51 +00008950 ; This struct is different for every platform. For most platforms,
8951 ; it is merely an i8*.
8952 %struct.va_list = type { i8* }
8953
8954 ; For Unix x86_64 platforms, va_list is the following struct:
8955 ; %struct.va_list = type { i32, i32, i8*, i8* }
8956
Sean Silvab084af42012-12-07 10:36:55 +00008957 define i32 @test(i32 %X, ...) {
8958 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008959 %ap = alloca %struct.va_list
8960 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008961 call void @llvm.va_start(i8* %ap2)
8962
8963 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008964 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008965
8966 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8967 %aq = alloca i8*
8968 %aq2 = bitcast i8** %aq to i8*
8969 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8970 call void @llvm.va_end(i8* %aq2)
8971
8972 ; Stop processing of arguments.
8973 call void @llvm.va_end(i8* %ap2)
8974 ret i32 %tmp
8975 }
8976
8977 declare void @llvm.va_start(i8*)
8978 declare void @llvm.va_copy(i8*, i8*)
8979 declare void @llvm.va_end(i8*)
8980
8981.. _int_va_start:
8982
8983'``llvm.va_start``' Intrinsic
8984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8985
8986Syntax:
8987"""""""
8988
8989::
8990
Nick Lewycky04f6de02013-09-11 22:04:52 +00008991 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008992
8993Overview:
8994"""""""""
8995
8996The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8997subsequent use by ``va_arg``.
8998
8999Arguments:
9000""""""""""
9001
9002The argument is a pointer to a ``va_list`` element to initialize.
9003
9004Semantics:
9005""""""""""
9006
9007The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9008available in C. In a target-dependent way, it initializes the
9009``va_list`` element to which the argument points, so that the next call
9010to ``va_arg`` will produce the first variable argument passed to the
9011function. Unlike the C ``va_start`` macro, this intrinsic does not need
9012to know the last argument of the function as the compiler can figure
9013that out.
9014
9015'``llvm.va_end``' Intrinsic
9016^^^^^^^^^^^^^^^^^^^^^^^^^^^
9017
9018Syntax:
9019"""""""
9020
9021::
9022
9023 declare void @llvm.va_end(i8* <arglist>)
9024
9025Overview:
9026"""""""""
9027
9028The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9029initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9030
9031Arguments:
9032""""""""""
9033
9034The argument is a pointer to a ``va_list`` to destroy.
9035
9036Semantics:
9037""""""""""
9038
9039The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9040available in C. In a target-dependent way, it destroys the ``va_list``
9041element to which the argument points. Calls to
9042:ref:`llvm.va_start <int_va_start>` and
9043:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9044``llvm.va_end``.
9045
9046.. _int_va_copy:
9047
9048'``llvm.va_copy``' Intrinsic
9049^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9050
9051Syntax:
9052"""""""
9053
9054::
9055
9056 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9057
9058Overview:
9059"""""""""
9060
9061The '``llvm.va_copy``' intrinsic copies the current argument position
9062from the source argument list to the destination argument list.
9063
9064Arguments:
9065""""""""""
9066
9067The first argument is a pointer to a ``va_list`` element to initialize.
9068The second argument is a pointer to a ``va_list`` element to copy from.
9069
9070Semantics:
9071""""""""""
9072
9073The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9074available in C. In a target-dependent way, it copies the source
9075``va_list`` element into the destination ``va_list`` element. This
9076intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9077arbitrarily complex and require, for example, memory allocation.
9078
9079Accurate Garbage Collection Intrinsics
9080--------------------------------------
9081
Philip Reamesc5b0f562015-02-25 23:52:06 +00009082LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009083(GC) requires the frontend to generate code containing appropriate intrinsic
9084calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009085intrinsics in a manner which is appropriate for the target collector.
9086
Sean Silvab084af42012-12-07 10:36:55 +00009087These intrinsics allow identification of :ref:`GC roots on the
9088stack <int_gcroot>`, as well as garbage collector implementations that
9089require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009090Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009091these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009092details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009093
Philip Reamesf80bbff2015-02-25 23:45:20 +00009094Experimental Statepoint Intrinsics
9095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9096
9097LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009098collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009099to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009100:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009101differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009102<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009103described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009104
9105.. _int_gcroot:
9106
9107'``llvm.gcroot``' Intrinsic
9108^^^^^^^^^^^^^^^^^^^^^^^^^^^
9109
9110Syntax:
9111"""""""
9112
9113::
9114
9115 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9116
9117Overview:
9118"""""""""
9119
9120The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9121the code generator, and allows some metadata to be associated with it.
9122
9123Arguments:
9124""""""""""
9125
9126The first argument specifies the address of a stack object that contains
9127the root pointer. The second pointer (which must be either a constant or
9128a global value address) contains the meta-data to be associated with the
9129root.
9130
9131Semantics:
9132""""""""""
9133
9134At runtime, a call to this intrinsic stores a null pointer into the
9135"ptrloc" location. At compile-time, the code generator generates
9136information to allow the runtime to find the pointer at GC safe points.
9137The '``llvm.gcroot``' intrinsic may only be used in a function which
9138:ref:`specifies a GC algorithm <gc>`.
9139
9140.. _int_gcread:
9141
9142'``llvm.gcread``' Intrinsic
9143^^^^^^^^^^^^^^^^^^^^^^^^^^^
9144
9145Syntax:
9146"""""""
9147
9148::
9149
9150 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9151
9152Overview:
9153"""""""""
9154
9155The '``llvm.gcread``' intrinsic identifies reads of references from heap
9156locations, allowing garbage collector implementations that require read
9157barriers.
9158
9159Arguments:
9160""""""""""
9161
9162The second argument is the address to read from, which should be an
9163address allocated from the garbage collector. The first object is a
9164pointer to the start of the referenced object, if needed by the language
9165runtime (otherwise null).
9166
9167Semantics:
9168""""""""""
9169
9170The '``llvm.gcread``' intrinsic has the same semantics as a load
9171instruction, but may be replaced with substantially more complex code by
9172the garbage collector runtime, as needed. The '``llvm.gcread``'
9173intrinsic may only be used in a function which :ref:`specifies a GC
9174algorithm <gc>`.
9175
9176.. _int_gcwrite:
9177
9178'``llvm.gcwrite``' Intrinsic
9179^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9180
9181Syntax:
9182"""""""
9183
9184::
9185
9186 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9187
9188Overview:
9189"""""""""
9190
9191The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9192locations, allowing garbage collector implementations that require write
9193barriers (such as generational or reference counting collectors).
9194
9195Arguments:
9196""""""""""
9197
9198The first argument is the reference to store, the second is the start of
9199the object to store it to, and the third is the address of the field of
9200Obj to store to. If the runtime does not require a pointer to the
9201object, Obj may be null.
9202
9203Semantics:
9204""""""""""
9205
9206The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9207instruction, but may be replaced with substantially more complex code by
9208the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9209intrinsic may only be used in a function which :ref:`specifies a GC
9210algorithm <gc>`.
9211
9212Code Generator Intrinsics
9213-------------------------
9214
9215These intrinsics are provided by LLVM to expose special features that
9216may only be implemented with code generator support.
9217
9218'``llvm.returnaddress``' Intrinsic
9219^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9220
9221Syntax:
9222"""""""
9223
9224::
9225
9226 declare i8 *@llvm.returnaddress(i32 <level>)
9227
9228Overview:
9229"""""""""
9230
9231The '``llvm.returnaddress``' intrinsic attempts to compute a
9232target-specific value indicating the return address of the current
9233function or one of its callers.
9234
9235Arguments:
9236""""""""""
9237
9238The argument to this intrinsic indicates which function to return the
9239address for. Zero indicates the calling function, one indicates its
9240caller, etc. The argument is **required** to be a constant integer
9241value.
9242
9243Semantics:
9244""""""""""
9245
9246The '``llvm.returnaddress``' intrinsic either returns a pointer
9247indicating the return address of the specified call frame, or zero if it
9248cannot be identified. The value returned by this intrinsic is likely to
9249be incorrect or 0 for arguments other than zero, so it should only be
9250used for debugging purposes.
9251
9252Note that calling this intrinsic does not prevent function inlining or
9253other aggressive transformations, so the value returned may not be that
9254of the obvious source-language caller.
9255
9256'``llvm.frameaddress``' Intrinsic
9257^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9258
9259Syntax:
9260"""""""
9261
9262::
9263
9264 declare i8* @llvm.frameaddress(i32 <level>)
9265
9266Overview:
9267"""""""""
9268
9269The '``llvm.frameaddress``' intrinsic attempts to return the
9270target-specific frame pointer value for the specified stack frame.
9271
9272Arguments:
9273""""""""""
9274
9275The argument to this intrinsic indicates which function to return the
9276frame pointer for. Zero indicates the calling function, one indicates
9277its caller, etc. The argument is **required** to be a constant integer
9278value.
9279
9280Semantics:
9281""""""""""
9282
9283The '``llvm.frameaddress``' intrinsic either returns a pointer
9284indicating the frame address of the specified call frame, or zero if it
9285cannot be identified. The value returned by this intrinsic is likely to
9286be incorrect or 0 for arguments other than zero, so it should only be
9287used for debugging purposes.
9288
9289Note that calling this intrinsic does not prevent function inlining or
9290other aggressive transformations, so the value returned may not be that
9291of the obvious source-language caller.
9292
Reid Kleckner60381792015-07-07 22:25:32 +00009293'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9295
9296Syntax:
9297"""""""
9298
9299::
9300
Reid Kleckner60381792015-07-07 22:25:32 +00009301 declare void @llvm.localescape(...)
9302 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009303
9304Overview:
9305"""""""""
9306
Reid Kleckner60381792015-07-07 22:25:32 +00009307The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9308allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009309live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009310computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009311
9312Arguments:
9313""""""""""
9314
Reid Kleckner60381792015-07-07 22:25:32 +00009315All arguments to '``llvm.localescape``' must be pointers to static allocas or
9316casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009317once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009318
Reid Kleckner60381792015-07-07 22:25:32 +00009319The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009320bitcasted pointer to a function defined in the current module. The code
9321generator cannot determine the frame allocation offset of functions defined in
9322other modules.
9323
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009324The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9325call frame that is currently live. The return value of '``llvm.localaddress``'
9326is one way to produce such a value, but various runtimes also expose a suitable
9327pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009328
Reid Kleckner60381792015-07-07 22:25:32 +00009329The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9330'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009331
Reid Klecknere9b89312015-01-13 00:48:10 +00009332Semantics:
9333""""""""""
9334
Reid Kleckner60381792015-07-07 22:25:32 +00009335These intrinsics allow a group of functions to share access to a set of local
9336stack allocations of a one parent function. The parent function may call the
9337'``llvm.localescape``' intrinsic once from the function entry block, and the
9338child functions can use '``llvm.localrecover``' to access the escaped allocas.
9339The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9340the escaped allocas are allocated, which would break attempts to use
9341'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009342
Renato Golinc7aea402014-05-06 16:51:25 +00009343.. _int_read_register:
9344.. _int_write_register:
9345
9346'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9347^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9348
9349Syntax:
9350"""""""
9351
9352::
9353
9354 declare i32 @llvm.read_register.i32(metadata)
9355 declare i64 @llvm.read_register.i64(metadata)
9356 declare void @llvm.write_register.i32(metadata, i32 @value)
9357 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009358 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009359
9360Overview:
9361"""""""""
9362
9363The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9364provides access to the named register. The register must be valid on
9365the architecture being compiled to. The type needs to be compatible
9366with the register being read.
9367
9368Semantics:
9369""""""""""
9370
9371The '``llvm.read_register``' intrinsic returns the current value of the
9372register, where possible. The '``llvm.write_register``' intrinsic sets
9373the current value of the register, where possible.
9374
9375This is useful to implement named register global variables that need
9376to always be mapped to a specific register, as is common practice on
9377bare-metal programs including OS kernels.
9378
9379The compiler doesn't check for register availability or use of the used
9380register in surrounding code, including inline assembly. Because of that,
9381allocatable registers are not supported.
9382
9383Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009384architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009385work is needed to support other registers and even more so, allocatable
9386registers.
9387
Sean Silvab084af42012-12-07 10:36:55 +00009388.. _int_stacksave:
9389
9390'``llvm.stacksave``' Intrinsic
9391^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9392
9393Syntax:
9394"""""""
9395
9396::
9397
9398 declare i8* @llvm.stacksave()
9399
9400Overview:
9401"""""""""
9402
9403The '``llvm.stacksave``' intrinsic is used to remember the current state
9404of the function stack, for use with
9405:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9406implementing language features like scoped automatic variable sized
9407arrays in C99.
9408
9409Semantics:
9410""""""""""
9411
9412This intrinsic returns a opaque pointer value that can be passed to
9413:ref:`llvm.stackrestore <int_stackrestore>`. When an
9414``llvm.stackrestore`` intrinsic is executed with a value saved from
9415``llvm.stacksave``, it effectively restores the state of the stack to
9416the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9417practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9418were allocated after the ``llvm.stacksave`` was executed.
9419
9420.. _int_stackrestore:
9421
9422'``llvm.stackrestore``' Intrinsic
9423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9424
9425Syntax:
9426"""""""
9427
9428::
9429
9430 declare void @llvm.stackrestore(i8* %ptr)
9431
9432Overview:
9433"""""""""
9434
9435The '``llvm.stackrestore``' intrinsic is used to restore the state of
9436the function stack to the state it was in when the corresponding
9437:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9438useful for implementing language features like scoped automatic variable
9439sized arrays in C99.
9440
9441Semantics:
9442""""""""""
9443
9444See the description for :ref:`llvm.stacksave <int_stacksave>`.
9445
Yury Gribovd7dbb662015-12-01 11:40:55 +00009446.. _int_get_dynamic_area_offset:
9447
9448'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009450
9451Syntax:
9452"""""""
9453
9454::
9455
9456 declare i32 @llvm.get.dynamic.area.offset.i32()
9457 declare i64 @llvm.get.dynamic.area.offset.i64()
9458
9459 Overview:
9460 """""""""
9461
9462 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9463 get the offset from native stack pointer to the address of the most
9464 recent dynamic alloca on the caller's stack. These intrinsics are
9465 intendend for use in combination with
9466 :ref:`llvm.stacksave <int_stacksave>` to get a
9467 pointer to the most recent dynamic alloca. This is useful, for example,
9468 for AddressSanitizer's stack unpoisoning routines.
9469
9470Semantics:
9471""""""""""
9472
9473 These intrinsics return a non-negative integer value that can be used to
9474 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9475 on the caller's stack. In particular, for targets where stack grows downwards,
9476 adding this offset to the native stack pointer would get the address of the most
9477 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9478 complicated, because substracting this value from stack pointer would get the address
9479 one past the end of the most recent dynamic alloca.
9480
9481 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9482 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9483 compile-time-known constant value.
9484
9485 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9486 must match the target's generic address space's (address space 0) pointer type.
9487
Sean Silvab084af42012-12-07 10:36:55 +00009488'``llvm.prefetch``' Intrinsic
9489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9490
9491Syntax:
9492"""""""
9493
9494::
9495
9496 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9497
9498Overview:
9499"""""""""
9500
9501The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9502insert a prefetch instruction if supported; otherwise, it is a noop.
9503Prefetches have no effect on the behavior of the program but can change
9504its performance characteristics.
9505
9506Arguments:
9507""""""""""
9508
9509``address`` is the address to be prefetched, ``rw`` is the specifier
9510determining if the fetch should be for a read (0) or write (1), and
9511``locality`` is a temporal locality specifier ranging from (0) - no
9512locality, to (3) - extremely local keep in cache. The ``cache type``
9513specifies whether the prefetch is performed on the data (1) or
9514instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9515arguments must be constant integers.
9516
9517Semantics:
9518""""""""""
9519
9520This intrinsic does not modify the behavior of the program. In
9521particular, prefetches cannot trap and do not produce a value. On
9522targets that support this intrinsic, the prefetch can provide hints to
9523the processor cache for better performance.
9524
9525'``llvm.pcmarker``' Intrinsic
9526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9527
9528Syntax:
9529"""""""
9530
9531::
9532
9533 declare void @llvm.pcmarker(i32 <id>)
9534
9535Overview:
9536"""""""""
9537
9538The '``llvm.pcmarker``' intrinsic is a method to export a Program
9539Counter (PC) in a region of code to simulators and other tools. The
9540method is target specific, but it is expected that the marker will use
9541exported symbols to transmit the PC of the marker. The marker makes no
9542guarantees that it will remain with any specific instruction after
9543optimizations. It is possible that the presence of a marker will inhibit
9544optimizations. The intended use is to be inserted after optimizations to
9545allow correlations of simulation runs.
9546
9547Arguments:
9548""""""""""
9549
9550``id`` is a numerical id identifying the marker.
9551
9552Semantics:
9553""""""""""
9554
9555This intrinsic does not modify the behavior of the program. Backends
9556that do not support this intrinsic may ignore it.
9557
9558'``llvm.readcyclecounter``' Intrinsic
9559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9560
9561Syntax:
9562"""""""
9563
9564::
9565
9566 declare i64 @llvm.readcyclecounter()
9567
9568Overview:
9569"""""""""
9570
9571The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9572counter register (or similar low latency, high accuracy clocks) on those
9573targets that support it. On X86, it should map to RDTSC. On Alpha, it
9574should map to RPCC. As the backing counters overflow quickly (on the
9575order of 9 seconds on alpha), this should only be used for small
9576timings.
9577
9578Semantics:
9579""""""""""
9580
9581When directly supported, reading the cycle counter should not modify any
9582memory. Implementations are allowed to either return a application
9583specific value or a system wide value. On backends without support, this
9584is lowered to a constant 0.
9585
Tim Northoverbc933082013-05-23 19:11:20 +00009586Note that runtime support may be conditional on the privilege-level code is
9587running at and the host platform.
9588
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009589'``llvm.clear_cache``' Intrinsic
9590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9591
9592Syntax:
9593"""""""
9594
9595::
9596
9597 declare void @llvm.clear_cache(i8*, i8*)
9598
9599Overview:
9600"""""""""
9601
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009602The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9603in the specified range to the execution unit of the processor. On
9604targets with non-unified instruction and data cache, the implementation
9605flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009606
9607Semantics:
9608""""""""""
9609
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009610On platforms with coherent instruction and data caches (e.g. x86), this
9611intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009612cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009613instructions or a system call, if cache flushing requires special
9614privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009615
Sean Silvad02bf3e2014-04-07 22:29:53 +00009616The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009617time library.
Renato Golin93010e62014-03-26 14:01:32 +00009618
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009619This instrinsic does *not* empty the instruction pipeline. Modifications
9620of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009621
Justin Bogner61ba2e32014-12-08 18:02:35 +00009622'``llvm.instrprof_increment``' Intrinsic
9623^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9624
9625Syntax:
9626"""""""
9627
9628::
9629
9630 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9631 i32 <num-counters>, i32 <index>)
9632
9633Overview:
9634"""""""""
9635
9636The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9637frontend for use with instrumentation based profiling. These will be
9638lowered by the ``-instrprof`` pass to generate execution counts of a
9639program at runtime.
9640
9641Arguments:
9642""""""""""
9643
9644The first argument is a pointer to a global variable containing the
9645name of the entity being instrumented. This should generally be the
9646(mangled) function name for a set of counters.
9647
9648The second argument is a hash value that can be used by the consumer
9649of the profile data to detect changes to the instrumented source, and
9650the third is the number of counters associated with ``name``. It is an
9651error if ``hash`` or ``num-counters`` differ between two instances of
9652``instrprof_increment`` that refer to the same name.
9653
9654The last argument refers to which of the counters for ``name`` should
9655be incremented. It should be a value between 0 and ``num-counters``.
9656
9657Semantics:
9658""""""""""
9659
9660This intrinsic represents an increment of a profiling counter. It will
9661cause the ``-instrprof`` pass to generate the appropriate data
9662structures and the code to increment the appropriate value, in a
9663format that can be written out by a compiler runtime and consumed via
9664the ``llvm-profdata`` tool.
9665
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009666'``llvm.instrprof_value_profile``' Intrinsic
9667^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9668
9669Syntax:
9670"""""""
9671
9672::
9673
9674 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9675 i64 <value>, i32 <value_kind>,
9676 i32 <index>)
9677
9678Overview:
9679"""""""""
9680
9681The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9682frontend for use with instrumentation based profiling. This will be
9683lowered by the ``-instrprof`` pass to find out the target values,
9684instrumented expressions take in a program at runtime.
9685
9686Arguments:
9687""""""""""
9688
9689The first argument is a pointer to a global variable containing the
9690name of the entity being instrumented. ``name`` should generally be the
9691(mangled) function name for a set of counters.
9692
9693The second argument is a hash value that can be used by the consumer
9694of the profile data to detect changes to the instrumented source. It
9695is an error if ``hash`` differs between two instances of
9696``llvm.instrprof_*`` that refer to the same name.
9697
9698The third argument is the value of the expression being profiled. The profiled
9699expression's value should be representable as an unsigned 64-bit value. The
9700fourth argument represents the kind of value profiling that is being done. The
9701supported value profiling kinds are enumerated through the
9702``InstrProfValueKind`` type declared in the
9703``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9704index of the instrumented expression within ``name``. It should be >= 0.
9705
9706Semantics:
9707""""""""""
9708
9709This intrinsic represents the point where a call to a runtime routine
9710should be inserted for value profiling of target expressions. ``-instrprof``
9711pass will generate the appropriate data structures and replace the
9712``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9713runtime library with proper arguments.
9714
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009715'``llvm.thread.pointer``' Intrinsic
9716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9717
9718Syntax:
9719"""""""
9720
9721::
9722
9723 declare i8* @llvm.thread.pointer()
9724
9725Overview:
9726"""""""""
9727
9728The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9729pointer.
9730
9731Semantics:
9732""""""""""
9733
9734The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9735for the current thread. The exact semantics of this value are target
9736specific: it may point to the start of TLS area, to the end, or somewhere
9737in the middle. Depending on the target, this intrinsic may read a register,
9738call a helper function, read from an alternate memory space, or perform
9739other operations necessary to locate the TLS area. Not all targets support
9740this intrinsic.
9741
Sean Silvab084af42012-12-07 10:36:55 +00009742Standard C Library Intrinsics
9743-----------------------------
9744
9745LLVM provides intrinsics for a few important standard C library
9746functions. These intrinsics allow source-language front-ends to pass
9747information about the alignment of the pointer arguments to the code
9748generator, providing opportunity for more efficient code generation.
9749
9750.. _int_memcpy:
9751
9752'``llvm.memcpy``' Intrinsic
9753^^^^^^^^^^^^^^^^^^^^^^^^^^^
9754
9755Syntax:
9756"""""""
9757
9758This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9759integer bit width and for different address spaces. Not all targets
9760support all bit widths however.
9761
9762::
9763
9764 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9765 i32 <len>, i32 <align>, i1 <isvolatile>)
9766 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9767 i64 <len>, i32 <align>, i1 <isvolatile>)
9768
9769Overview:
9770"""""""""
9771
9772The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9773source location to the destination location.
9774
9775Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9776intrinsics do not return a value, takes extra alignment/isvolatile
9777arguments and the pointers can be in specified address spaces.
9778
9779Arguments:
9780""""""""""
9781
9782The first argument is a pointer to the destination, the second is a
9783pointer to the source. The third argument is an integer argument
9784specifying the number of bytes to copy, the fourth argument is the
9785alignment of the source and destination locations, and the fifth is a
9786boolean indicating a volatile access.
9787
9788If the call to this intrinsic has an alignment value that is not 0 or 1,
9789then the caller guarantees that both the source and destination pointers
9790are aligned to that boundary.
9791
9792If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9793a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9794very cleanly specified and it is unwise to depend on it.
9795
9796Semantics:
9797""""""""""
9798
9799The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9800source location to the destination location, which are not allowed to
9801overlap. It copies "len" bytes of memory over. If the argument is known
9802to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009803argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009804
9805'``llvm.memmove``' Intrinsic
9806^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9807
9808Syntax:
9809"""""""
9810
9811This is an overloaded intrinsic. You can use llvm.memmove on any integer
9812bit width and for different address space. Not all targets support all
9813bit widths however.
9814
9815::
9816
9817 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9818 i32 <len>, i32 <align>, i1 <isvolatile>)
9819 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9820 i64 <len>, i32 <align>, i1 <isvolatile>)
9821
9822Overview:
9823"""""""""
9824
9825The '``llvm.memmove.*``' intrinsics move a block of memory from the
9826source location to the destination location. It is similar to the
9827'``llvm.memcpy``' intrinsic but allows the two memory locations to
9828overlap.
9829
9830Note that, unlike the standard libc function, the ``llvm.memmove.*``
9831intrinsics do not return a value, takes extra alignment/isvolatile
9832arguments and the pointers can be in specified address spaces.
9833
9834Arguments:
9835""""""""""
9836
9837The first argument is a pointer to the destination, the second is a
9838pointer to the source. The third argument is an integer argument
9839specifying the number of bytes to copy, the fourth argument is the
9840alignment of the source and destination locations, and the fifth is a
9841boolean indicating a volatile access.
9842
9843If the call to this intrinsic has an alignment value that is not 0 or 1,
9844then the caller guarantees that the source and destination pointers are
9845aligned to that boundary.
9846
9847If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9848is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9849not very cleanly specified and it is unwise to depend on it.
9850
9851Semantics:
9852""""""""""
9853
9854The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9855source location to the destination location, which may overlap. It
9856copies "len" bytes of memory over. If the argument is known to be
9857aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009858otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009859
9860'``llvm.memset.*``' Intrinsics
9861^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9862
9863Syntax:
9864"""""""
9865
9866This is an overloaded intrinsic. You can use llvm.memset on any integer
9867bit width and for different address spaces. However, not all targets
9868support all bit widths.
9869
9870::
9871
9872 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9873 i32 <len>, i32 <align>, i1 <isvolatile>)
9874 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9875 i64 <len>, i32 <align>, i1 <isvolatile>)
9876
9877Overview:
9878"""""""""
9879
9880The '``llvm.memset.*``' intrinsics fill a block of memory with a
9881particular byte value.
9882
9883Note that, unlike the standard libc function, the ``llvm.memset``
9884intrinsic does not return a value and takes extra alignment/volatile
9885arguments. Also, the destination can be in an arbitrary address space.
9886
9887Arguments:
9888""""""""""
9889
9890The first argument is a pointer to the destination to fill, the second
9891is the byte value with which to fill it, the third argument is an
9892integer argument specifying the number of bytes to fill, and the fourth
9893argument is the known alignment of the destination location.
9894
9895If the call to this intrinsic has an alignment value that is not 0 or 1,
9896then the caller guarantees that the destination pointer is aligned to
9897that boundary.
9898
9899If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9900a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9901very cleanly specified and it is unwise to depend on it.
9902
9903Semantics:
9904""""""""""
9905
9906The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9907at the destination location. If the argument is known to be aligned to
9908some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009909it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009910
9911'``llvm.sqrt.*``' Intrinsic
9912^^^^^^^^^^^^^^^^^^^^^^^^^^^
9913
9914Syntax:
9915"""""""
9916
9917This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9918floating point or vector of floating point type. Not all targets support
9919all types however.
9920
9921::
9922
9923 declare float @llvm.sqrt.f32(float %Val)
9924 declare double @llvm.sqrt.f64(double %Val)
9925 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9926 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9927 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9928
9929Overview:
9930"""""""""
9931
9932The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9933returning the same value as the libm '``sqrt``' functions would. Unlike
9934``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9935negative numbers other than -0.0 (which allows for better optimization,
9936because there is no need to worry about errno being set).
9937``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9938
9939Arguments:
9940""""""""""
9941
9942The argument and return value are floating point numbers of the same
9943type.
9944
9945Semantics:
9946""""""""""
9947
9948This function returns the sqrt of the specified operand if it is a
9949nonnegative floating point number.
9950
9951'``llvm.powi.*``' Intrinsic
9952^^^^^^^^^^^^^^^^^^^^^^^^^^^
9953
9954Syntax:
9955"""""""
9956
9957This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9958floating point or vector of floating point type. Not all targets support
9959all types however.
9960
9961::
9962
9963 declare float @llvm.powi.f32(float %Val, i32 %power)
9964 declare double @llvm.powi.f64(double %Val, i32 %power)
9965 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9966 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9967 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9968
9969Overview:
9970"""""""""
9971
9972The '``llvm.powi.*``' intrinsics return the first operand raised to the
9973specified (positive or negative) power. The order of evaluation of
9974multiplications is not defined. When a vector of floating point type is
9975used, the second argument remains a scalar integer value.
9976
9977Arguments:
9978""""""""""
9979
9980The second argument is an integer power, and the first is a value to
9981raise to that power.
9982
9983Semantics:
9984""""""""""
9985
9986This function returns the first value raised to the second power with an
9987unspecified sequence of rounding operations.
9988
9989'``llvm.sin.*``' Intrinsic
9990^^^^^^^^^^^^^^^^^^^^^^^^^^
9991
9992Syntax:
9993"""""""
9994
9995This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9996floating point or vector of floating point type. Not all targets support
9997all types however.
9998
9999::
10000
10001 declare float @llvm.sin.f32(float %Val)
10002 declare double @llvm.sin.f64(double %Val)
10003 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10004 declare fp128 @llvm.sin.f128(fp128 %Val)
10005 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10006
10007Overview:
10008"""""""""
10009
10010The '``llvm.sin.*``' intrinsics return the sine of the operand.
10011
10012Arguments:
10013""""""""""
10014
10015The argument and return value are floating point numbers of the same
10016type.
10017
10018Semantics:
10019""""""""""
10020
10021This function returns the sine of the specified operand, returning the
10022same values as the libm ``sin`` functions would, and handles error
10023conditions in the same way.
10024
10025'``llvm.cos.*``' Intrinsic
10026^^^^^^^^^^^^^^^^^^^^^^^^^^
10027
10028Syntax:
10029"""""""
10030
10031This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10032floating point or vector of floating point type. Not all targets support
10033all types however.
10034
10035::
10036
10037 declare float @llvm.cos.f32(float %Val)
10038 declare double @llvm.cos.f64(double %Val)
10039 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10040 declare fp128 @llvm.cos.f128(fp128 %Val)
10041 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10042
10043Overview:
10044"""""""""
10045
10046The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10047
10048Arguments:
10049""""""""""
10050
10051The argument and return value are floating point numbers of the same
10052type.
10053
10054Semantics:
10055""""""""""
10056
10057This function returns the cosine of the specified operand, returning the
10058same values as the libm ``cos`` functions would, and handles error
10059conditions in the same way.
10060
10061'``llvm.pow.*``' Intrinsic
10062^^^^^^^^^^^^^^^^^^^^^^^^^^
10063
10064Syntax:
10065"""""""
10066
10067This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10068floating point or vector of floating point type. Not all targets support
10069all types however.
10070
10071::
10072
10073 declare float @llvm.pow.f32(float %Val, float %Power)
10074 declare double @llvm.pow.f64(double %Val, double %Power)
10075 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10076 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10077 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10078
10079Overview:
10080"""""""""
10081
10082The '``llvm.pow.*``' intrinsics return the first operand raised to the
10083specified (positive or negative) power.
10084
10085Arguments:
10086""""""""""
10087
10088The second argument is a floating point power, and the first is a value
10089to raise to that power.
10090
10091Semantics:
10092""""""""""
10093
10094This function returns the first value raised to the second power,
10095returning the same values as the libm ``pow`` functions would, and
10096handles error conditions in the same way.
10097
10098'``llvm.exp.*``' Intrinsic
10099^^^^^^^^^^^^^^^^^^^^^^^^^^
10100
10101Syntax:
10102"""""""
10103
10104This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10105floating point or vector of floating point type. Not all targets support
10106all types however.
10107
10108::
10109
10110 declare float @llvm.exp.f32(float %Val)
10111 declare double @llvm.exp.f64(double %Val)
10112 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10113 declare fp128 @llvm.exp.f128(fp128 %Val)
10114 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10115
10116Overview:
10117"""""""""
10118
10119The '``llvm.exp.*``' intrinsics perform the exp function.
10120
10121Arguments:
10122""""""""""
10123
10124The argument and return value are floating point numbers of the same
10125type.
10126
10127Semantics:
10128""""""""""
10129
10130This function returns the same values as the libm ``exp`` functions
10131would, and handles error conditions in the same way.
10132
10133'``llvm.exp2.*``' Intrinsic
10134^^^^^^^^^^^^^^^^^^^^^^^^^^^
10135
10136Syntax:
10137"""""""
10138
10139This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10140floating point or vector of floating point type. Not all targets support
10141all types however.
10142
10143::
10144
10145 declare float @llvm.exp2.f32(float %Val)
10146 declare double @llvm.exp2.f64(double %Val)
10147 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10148 declare fp128 @llvm.exp2.f128(fp128 %Val)
10149 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10150
10151Overview:
10152"""""""""
10153
10154The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10155
10156Arguments:
10157""""""""""
10158
10159The argument and return value are floating point numbers of the same
10160type.
10161
10162Semantics:
10163""""""""""
10164
10165This function returns the same values as the libm ``exp2`` functions
10166would, and handles error conditions in the same way.
10167
10168'``llvm.log.*``' Intrinsic
10169^^^^^^^^^^^^^^^^^^^^^^^^^^
10170
10171Syntax:
10172"""""""
10173
10174This is an overloaded intrinsic. You can use ``llvm.log`` on any
10175floating point or vector of floating point type. Not all targets support
10176all types however.
10177
10178::
10179
10180 declare float @llvm.log.f32(float %Val)
10181 declare double @llvm.log.f64(double %Val)
10182 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10183 declare fp128 @llvm.log.f128(fp128 %Val)
10184 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10185
10186Overview:
10187"""""""""
10188
10189The '``llvm.log.*``' intrinsics perform the log function.
10190
10191Arguments:
10192""""""""""
10193
10194The argument and return value are floating point numbers of the same
10195type.
10196
10197Semantics:
10198""""""""""
10199
10200This function returns the same values as the libm ``log`` functions
10201would, and handles error conditions in the same way.
10202
10203'``llvm.log10.*``' Intrinsic
10204^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10205
10206Syntax:
10207"""""""
10208
10209This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10210floating point or vector of floating point type. Not all targets support
10211all types however.
10212
10213::
10214
10215 declare float @llvm.log10.f32(float %Val)
10216 declare double @llvm.log10.f64(double %Val)
10217 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10218 declare fp128 @llvm.log10.f128(fp128 %Val)
10219 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10220
10221Overview:
10222"""""""""
10223
10224The '``llvm.log10.*``' intrinsics perform the log10 function.
10225
10226Arguments:
10227""""""""""
10228
10229The argument and return value are floating point numbers of the same
10230type.
10231
10232Semantics:
10233""""""""""
10234
10235This function returns the same values as the libm ``log10`` functions
10236would, and handles error conditions in the same way.
10237
10238'``llvm.log2.*``' Intrinsic
10239^^^^^^^^^^^^^^^^^^^^^^^^^^^
10240
10241Syntax:
10242"""""""
10243
10244This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10245floating point or vector of floating point type. Not all targets support
10246all types however.
10247
10248::
10249
10250 declare float @llvm.log2.f32(float %Val)
10251 declare double @llvm.log2.f64(double %Val)
10252 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10253 declare fp128 @llvm.log2.f128(fp128 %Val)
10254 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10255
10256Overview:
10257"""""""""
10258
10259The '``llvm.log2.*``' intrinsics perform the log2 function.
10260
10261Arguments:
10262""""""""""
10263
10264The argument and return value are floating point numbers of the same
10265type.
10266
10267Semantics:
10268""""""""""
10269
10270This function returns the same values as the libm ``log2`` functions
10271would, and handles error conditions in the same way.
10272
10273'``llvm.fma.*``' Intrinsic
10274^^^^^^^^^^^^^^^^^^^^^^^^^^
10275
10276Syntax:
10277"""""""
10278
10279This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10280floating point or vector of floating point type. Not all targets support
10281all types however.
10282
10283::
10284
10285 declare float @llvm.fma.f32(float %a, float %b, float %c)
10286 declare double @llvm.fma.f64(double %a, double %b, double %c)
10287 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10288 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10289 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10290
10291Overview:
10292"""""""""
10293
10294The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10295operation.
10296
10297Arguments:
10298""""""""""
10299
10300The argument and return value are floating point numbers of the same
10301type.
10302
10303Semantics:
10304""""""""""
10305
10306This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010307would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010308
10309'``llvm.fabs.*``' Intrinsic
10310^^^^^^^^^^^^^^^^^^^^^^^^^^^
10311
10312Syntax:
10313"""""""
10314
10315This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10316floating point or vector of floating point type. Not all targets support
10317all types however.
10318
10319::
10320
10321 declare float @llvm.fabs.f32(float %Val)
10322 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010323 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010324 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010325 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010326
10327Overview:
10328"""""""""
10329
10330The '``llvm.fabs.*``' intrinsics return the absolute value of the
10331operand.
10332
10333Arguments:
10334""""""""""
10335
10336The argument and return value are floating point numbers of the same
10337type.
10338
10339Semantics:
10340""""""""""
10341
10342This function returns the same values as the libm ``fabs`` functions
10343would, and handles error conditions in the same way.
10344
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010345'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010346^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010347
10348Syntax:
10349"""""""
10350
10351This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10352floating point or vector of floating point type. Not all targets support
10353all types however.
10354
10355::
10356
Matt Arsenault64313c92014-10-22 18:25:02 +000010357 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10358 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10359 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10360 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10361 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010362
10363Overview:
10364"""""""""
10365
10366The '``llvm.minnum.*``' intrinsics return the minimum of the two
10367arguments.
10368
10369
10370Arguments:
10371""""""""""
10372
10373The arguments and return value are floating point numbers of the same
10374type.
10375
10376Semantics:
10377""""""""""
10378
10379Follows the IEEE-754 semantics for minNum, which also match for libm's
10380fmin.
10381
10382If either operand is a NaN, returns the other non-NaN operand. Returns
10383NaN only if both operands are NaN. If the operands compare equal,
10384returns a value that compares equal to both operands. This means that
10385fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10386
10387'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010389
10390Syntax:
10391"""""""
10392
10393This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10394floating point or vector of floating point type. Not all targets support
10395all types however.
10396
10397::
10398
Matt Arsenault64313c92014-10-22 18:25:02 +000010399 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10400 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10401 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10402 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10403 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010404
10405Overview:
10406"""""""""
10407
10408The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10409arguments.
10410
10411
10412Arguments:
10413""""""""""
10414
10415The arguments and return value are floating point numbers of the same
10416type.
10417
10418Semantics:
10419""""""""""
10420Follows the IEEE-754 semantics for maxNum, which also match for libm's
10421fmax.
10422
10423If either operand is a NaN, returns the other non-NaN operand. Returns
10424NaN only if both operands are NaN. If the operands compare equal,
10425returns a value that compares equal to both operands. This means that
10426fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10427
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010428'``llvm.copysign.*``' Intrinsic
10429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10430
10431Syntax:
10432"""""""
10433
10434This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10435floating point or vector of floating point type. Not all targets support
10436all types however.
10437
10438::
10439
10440 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10441 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10442 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10443 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10444 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10445
10446Overview:
10447"""""""""
10448
10449The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10450first operand and the sign of the second operand.
10451
10452Arguments:
10453""""""""""
10454
10455The arguments and return value are floating point numbers of the same
10456type.
10457
10458Semantics:
10459""""""""""
10460
10461This function returns the same values as the libm ``copysign``
10462functions would, and handles error conditions in the same way.
10463
Sean Silvab084af42012-12-07 10:36:55 +000010464'``llvm.floor.*``' Intrinsic
10465^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10466
10467Syntax:
10468"""""""
10469
10470This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10471floating point or vector of floating point type. Not all targets support
10472all types however.
10473
10474::
10475
10476 declare float @llvm.floor.f32(float %Val)
10477 declare double @llvm.floor.f64(double %Val)
10478 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10479 declare fp128 @llvm.floor.f128(fp128 %Val)
10480 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10481
10482Overview:
10483"""""""""
10484
10485The '``llvm.floor.*``' intrinsics return the floor of the operand.
10486
10487Arguments:
10488""""""""""
10489
10490The argument and return value are floating point numbers of the same
10491type.
10492
10493Semantics:
10494""""""""""
10495
10496This function returns the same values as the libm ``floor`` functions
10497would, and handles error conditions in the same way.
10498
10499'``llvm.ceil.*``' Intrinsic
10500^^^^^^^^^^^^^^^^^^^^^^^^^^^
10501
10502Syntax:
10503"""""""
10504
10505This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10506floating point or vector of floating point type. Not all targets support
10507all types however.
10508
10509::
10510
10511 declare float @llvm.ceil.f32(float %Val)
10512 declare double @llvm.ceil.f64(double %Val)
10513 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10514 declare fp128 @llvm.ceil.f128(fp128 %Val)
10515 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10516
10517Overview:
10518"""""""""
10519
10520The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10521
10522Arguments:
10523""""""""""
10524
10525The argument and return value are floating point numbers of the same
10526type.
10527
10528Semantics:
10529""""""""""
10530
10531This function returns the same values as the libm ``ceil`` functions
10532would, and handles error conditions in the same way.
10533
10534'``llvm.trunc.*``' Intrinsic
10535^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10536
10537Syntax:
10538"""""""
10539
10540This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10541floating point or vector of floating point type. Not all targets support
10542all types however.
10543
10544::
10545
10546 declare float @llvm.trunc.f32(float %Val)
10547 declare double @llvm.trunc.f64(double %Val)
10548 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10549 declare fp128 @llvm.trunc.f128(fp128 %Val)
10550 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10551
10552Overview:
10553"""""""""
10554
10555The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10556nearest integer not larger in magnitude than the operand.
10557
10558Arguments:
10559""""""""""
10560
10561The argument and return value are floating point numbers of the same
10562type.
10563
10564Semantics:
10565""""""""""
10566
10567This function returns the same values as the libm ``trunc`` functions
10568would, and handles error conditions in the same way.
10569
10570'``llvm.rint.*``' Intrinsic
10571^^^^^^^^^^^^^^^^^^^^^^^^^^^
10572
10573Syntax:
10574"""""""
10575
10576This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10577floating point or vector of floating point type. Not all targets support
10578all types however.
10579
10580::
10581
10582 declare float @llvm.rint.f32(float %Val)
10583 declare double @llvm.rint.f64(double %Val)
10584 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10585 declare fp128 @llvm.rint.f128(fp128 %Val)
10586 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10587
10588Overview:
10589"""""""""
10590
10591The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10592nearest integer. It may raise an inexact floating-point exception if the
10593operand isn't an integer.
10594
10595Arguments:
10596""""""""""
10597
10598The argument and return value are floating point numbers of the same
10599type.
10600
10601Semantics:
10602""""""""""
10603
10604This function returns the same values as the libm ``rint`` functions
10605would, and handles error conditions in the same way.
10606
10607'``llvm.nearbyint.*``' Intrinsic
10608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10609
10610Syntax:
10611"""""""
10612
10613This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10614floating point or vector of floating point type. Not all targets support
10615all types however.
10616
10617::
10618
10619 declare float @llvm.nearbyint.f32(float %Val)
10620 declare double @llvm.nearbyint.f64(double %Val)
10621 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10622 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10623 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10624
10625Overview:
10626"""""""""
10627
10628The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10629nearest integer.
10630
10631Arguments:
10632""""""""""
10633
10634The argument and return value are floating point numbers of the same
10635type.
10636
10637Semantics:
10638""""""""""
10639
10640This function returns the same values as the libm ``nearbyint``
10641functions would, and handles error conditions in the same way.
10642
Hal Finkel171817e2013-08-07 22:49:12 +000010643'``llvm.round.*``' Intrinsic
10644^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10645
10646Syntax:
10647"""""""
10648
10649This is an overloaded intrinsic. You can use ``llvm.round`` on any
10650floating point or vector of floating point type. Not all targets support
10651all types however.
10652
10653::
10654
10655 declare float @llvm.round.f32(float %Val)
10656 declare double @llvm.round.f64(double %Val)
10657 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10658 declare fp128 @llvm.round.f128(fp128 %Val)
10659 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10660
10661Overview:
10662"""""""""
10663
10664The '``llvm.round.*``' intrinsics returns the operand rounded to the
10665nearest integer.
10666
10667Arguments:
10668""""""""""
10669
10670The argument and return value are floating point numbers of the same
10671type.
10672
10673Semantics:
10674""""""""""
10675
10676This function returns the same values as the libm ``round``
10677functions would, and handles error conditions in the same way.
10678
Sean Silvab084af42012-12-07 10:36:55 +000010679Bit Manipulation Intrinsics
10680---------------------------
10681
10682LLVM provides intrinsics for a few important bit manipulation
10683operations. These allow efficient code generation for some algorithms.
10684
James Molloy90111f72015-11-12 12:29:09 +000010685'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010686^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010687
10688Syntax:
10689"""""""
10690
10691This is an overloaded intrinsic function. You can use bitreverse on any
10692integer type.
10693
10694::
10695
10696 declare i16 @llvm.bitreverse.i16(i16 <id>)
10697 declare i32 @llvm.bitreverse.i32(i32 <id>)
10698 declare i64 @llvm.bitreverse.i64(i64 <id>)
10699
10700Overview:
10701"""""""""
10702
10703The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010704bitpattern of an integer value; for example ``0b10110110`` becomes
10705``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010706
10707Semantics:
10708""""""""""
10709
10710The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10711``M`` in the input moved to bit ``N-M`` in the output.
10712
Sean Silvab084af42012-12-07 10:36:55 +000010713'``llvm.bswap.*``' Intrinsics
10714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10715
10716Syntax:
10717"""""""
10718
10719This is an overloaded intrinsic function. You can use bswap on any
10720integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10721
10722::
10723
10724 declare i16 @llvm.bswap.i16(i16 <id>)
10725 declare i32 @llvm.bswap.i32(i32 <id>)
10726 declare i64 @llvm.bswap.i64(i64 <id>)
10727
10728Overview:
10729"""""""""
10730
10731The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10732values with an even number of bytes (positive multiple of 16 bits).
10733These are useful for performing operations on data that is not in the
10734target's native byte order.
10735
10736Semantics:
10737""""""""""
10738
10739The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10740and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10741intrinsic returns an i32 value that has the four bytes of the input i32
10742swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10743returned i32 will have its bytes in 3, 2, 1, 0 order. The
10744``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10745concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10746respectively).
10747
10748'``llvm.ctpop.*``' Intrinsic
10749^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10750
10751Syntax:
10752"""""""
10753
10754This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10755bit width, or on any vector with integer elements. Not all targets
10756support all bit widths or vector types, however.
10757
10758::
10759
10760 declare i8 @llvm.ctpop.i8(i8 <src>)
10761 declare i16 @llvm.ctpop.i16(i16 <src>)
10762 declare i32 @llvm.ctpop.i32(i32 <src>)
10763 declare i64 @llvm.ctpop.i64(i64 <src>)
10764 declare i256 @llvm.ctpop.i256(i256 <src>)
10765 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10766
10767Overview:
10768"""""""""
10769
10770The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10771in a value.
10772
10773Arguments:
10774""""""""""
10775
10776The only argument is the value to be counted. The argument may be of any
10777integer type, or a vector with integer elements. The return type must
10778match the argument type.
10779
10780Semantics:
10781""""""""""
10782
10783The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10784each element of a vector.
10785
10786'``llvm.ctlz.*``' Intrinsic
10787^^^^^^^^^^^^^^^^^^^^^^^^^^^
10788
10789Syntax:
10790"""""""
10791
10792This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10793integer bit width, or any vector whose elements are integers. Not all
10794targets support all bit widths or vector types, however.
10795
10796::
10797
10798 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10799 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10800 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10801 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10802 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010803 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010804
10805Overview:
10806"""""""""
10807
10808The '``llvm.ctlz``' family of intrinsic functions counts the number of
10809leading zeros in a variable.
10810
10811Arguments:
10812""""""""""
10813
10814The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010815any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010816type must match the first argument type.
10817
10818The second argument must be a constant and is a flag to indicate whether
10819the intrinsic should ensure that a zero as the first argument produces a
10820defined result. Historically some architectures did not provide a
10821defined result for zero values as efficiently, and many algorithms are
10822now predicated on avoiding zero-value inputs.
10823
10824Semantics:
10825""""""""""
10826
10827The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10828zeros in a variable, or within each element of the vector. If
10829``src == 0`` then the result is the size in bits of the type of ``src``
10830if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10831``llvm.ctlz(i32 2) = 30``.
10832
10833'``llvm.cttz.*``' Intrinsic
10834^^^^^^^^^^^^^^^^^^^^^^^^^^^
10835
10836Syntax:
10837"""""""
10838
10839This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10840integer bit width, or any vector of integer elements. Not all targets
10841support all bit widths or vector types, however.
10842
10843::
10844
10845 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10846 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10847 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10848 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10849 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010850 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010851
10852Overview:
10853"""""""""
10854
10855The '``llvm.cttz``' family of intrinsic functions counts the number of
10856trailing zeros.
10857
10858Arguments:
10859""""""""""
10860
10861The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010862any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010863type must match the first argument type.
10864
10865The second argument must be a constant and is a flag to indicate whether
10866the intrinsic should ensure that a zero as the first argument produces a
10867defined result. Historically some architectures did not provide a
10868defined result for zero values as efficiently, and many algorithms are
10869now predicated on avoiding zero-value inputs.
10870
10871Semantics:
10872""""""""""
10873
10874The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10875zeros in a variable, or within each element of a vector. If ``src == 0``
10876then the result is the size in bits of the type of ``src`` if
10877``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10878``llvm.cttz(2) = 1``.
10879
Philip Reames34843ae2015-03-05 05:55:55 +000010880.. _int_overflow:
10881
Sean Silvab084af42012-12-07 10:36:55 +000010882Arithmetic with Overflow Intrinsics
10883-----------------------------------
10884
John Regehr6a493f22016-05-12 20:55:09 +000010885LLVM provides intrinsics for fast arithmetic overflow checking.
10886
10887Each of these intrinsics returns a two-element struct. The first
10888element of this struct contains the result of the corresponding
10889arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
10890the result. Therefore, for example, the first element of the struct
10891returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
10892result of a 32-bit ``add`` instruction with the same operands, where
10893the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
10894
10895The second element of the result is an ``i1`` that is 1 if the
10896arithmetic operation overflowed and 0 otherwise. An operation
10897overflows if, for any values of its operands ``A`` and ``B`` and for
10898any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
10899not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
10900``sext`` for signed overflow and ``zext`` for unsigned overflow, and
10901``op`` is the underlying arithmetic operation.
10902
10903The behavior of these intrinsics is well-defined for all argument
10904values.
Sean Silvab084af42012-12-07 10:36:55 +000010905
10906'``llvm.sadd.with.overflow.*``' Intrinsics
10907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10908
10909Syntax:
10910"""""""
10911
10912This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10913on any integer bit width.
10914
10915::
10916
10917 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10918 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10919 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10920
10921Overview:
10922"""""""""
10923
10924The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10925a signed addition of the two arguments, and indicate whether an overflow
10926occurred during the signed summation.
10927
10928Arguments:
10929""""""""""
10930
10931The arguments (%a and %b) and the first element of the result structure
10932may be of integer types of any bit width, but they must have the same
10933bit width. The second element of the result structure must be of type
10934``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10935addition.
10936
10937Semantics:
10938""""""""""
10939
10940The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010941a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010942first element of which is the signed summation, and the second element
10943of which is a bit specifying if the signed summation resulted in an
10944overflow.
10945
10946Examples:
10947"""""""""
10948
10949.. code-block:: llvm
10950
10951 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10952 %sum = extractvalue {i32, i1} %res, 0
10953 %obit = extractvalue {i32, i1} %res, 1
10954 br i1 %obit, label %overflow, label %normal
10955
10956'``llvm.uadd.with.overflow.*``' Intrinsics
10957^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10958
10959Syntax:
10960"""""""
10961
10962This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10963on any integer bit width.
10964
10965::
10966
10967 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10968 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10969 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10970
10971Overview:
10972"""""""""
10973
10974The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10975an unsigned addition of the two arguments, and indicate whether a carry
10976occurred during the unsigned summation.
10977
10978Arguments:
10979""""""""""
10980
10981The arguments (%a and %b) and the first element of the result structure
10982may be of integer types of any bit width, but they must have the same
10983bit width. The second element of the result structure must be of type
10984``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10985addition.
10986
10987Semantics:
10988""""""""""
10989
10990The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010991an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010992first element of which is the sum, and the second element of which is a
10993bit specifying if the unsigned summation resulted in a carry.
10994
10995Examples:
10996"""""""""
10997
10998.. code-block:: llvm
10999
11000 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11001 %sum = extractvalue {i32, i1} %res, 0
11002 %obit = extractvalue {i32, i1} %res, 1
11003 br i1 %obit, label %carry, label %normal
11004
11005'``llvm.ssub.with.overflow.*``' Intrinsics
11006^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11007
11008Syntax:
11009"""""""
11010
11011This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11012on any integer bit width.
11013
11014::
11015
11016 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11017 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11018 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11019
11020Overview:
11021"""""""""
11022
11023The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11024a signed subtraction of the two arguments, and indicate whether an
11025overflow occurred during the signed subtraction.
11026
11027Arguments:
11028""""""""""
11029
11030The arguments (%a and %b) and the first element of the result structure
11031may be of integer types of any bit width, but they must have the same
11032bit width. The second element of the result structure must be of type
11033``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11034subtraction.
11035
11036Semantics:
11037""""""""""
11038
11039The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011040a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011041first element of which is the subtraction, and the second element of
11042which is a bit specifying if the signed subtraction resulted in an
11043overflow.
11044
11045Examples:
11046"""""""""
11047
11048.. code-block:: llvm
11049
11050 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11051 %sum = extractvalue {i32, i1} %res, 0
11052 %obit = extractvalue {i32, i1} %res, 1
11053 br i1 %obit, label %overflow, label %normal
11054
11055'``llvm.usub.with.overflow.*``' Intrinsics
11056^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11057
11058Syntax:
11059"""""""
11060
11061This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11062on any integer bit width.
11063
11064::
11065
11066 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11067 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11068 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11069
11070Overview:
11071"""""""""
11072
11073The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11074an unsigned subtraction of the two arguments, and indicate whether an
11075overflow occurred during the unsigned subtraction.
11076
11077Arguments:
11078""""""""""
11079
11080The arguments (%a and %b) and the first element of the result structure
11081may be of integer types of any bit width, but they must have the same
11082bit width. The second element of the result structure must be of type
11083``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11084subtraction.
11085
11086Semantics:
11087""""""""""
11088
11089The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011090an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011091the first element of which is the subtraction, and the second element of
11092which is a bit specifying if the unsigned subtraction resulted in an
11093overflow.
11094
11095Examples:
11096"""""""""
11097
11098.. code-block:: llvm
11099
11100 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11101 %sum = extractvalue {i32, i1} %res, 0
11102 %obit = extractvalue {i32, i1} %res, 1
11103 br i1 %obit, label %overflow, label %normal
11104
11105'``llvm.smul.with.overflow.*``' Intrinsics
11106^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11107
11108Syntax:
11109"""""""
11110
11111This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11112on any integer bit width.
11113
11114::
11115
11116 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11117 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11118 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11119
11120Overview:
11121"""""""""
11122
11123The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11124a signed multiplication of the two arguments, and indicate whether an
11125overflow occurred during the signed multiplication.
11126
11127Arguments:
11128""""""""""
11129
11130The arguments (%a and %b) and the first element of the result structure
11131may be of integer types of any bit width, but they must have the same
11132bit width. The second element of the result structure must be of type
11133``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11134multiplication.
11135
11136Semantics:
11137""""""""""
11138
11139The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011140a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011141the first element of which is the multiplication, and the second element
11142of which is a bit specifying if the signed multiplication resulted in an
11143overflow.
11144
11145Examples:
11146"""""""""
11147
11148.. code-block:: llvm
11149
11150 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11151 %sum = extractvalue {i32, i1} %res, 0
11152 %obit = extractvalue {i32, i1} %res, 1
11153 br i1 %obit, label %overflow, label %normal
11154
11155'``llvm.umul.with.overflow.*``' Intrinsics
11156^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11157
11158Syntax:
11159"""""""
11160
11161This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11162on any integer bit width.
11163
11164::
11165
11166 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11167 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11168 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11169
11170Overview:
11171"""""""""
11172
11173The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11174a unsigned multiplication of the two arguments, and indicate whether an
11175overflow occurred during the unsigned multiplication.
11176
11177Arguments:
11178""""""""""
11179
11180The arguments (%a and %b) and the first element of the result structure
11181may be of integer types of any bit width, but they must have the same
11182bit width. The second element of the result structure must be of type
11183``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11184multiplication.
11185
11186Semantics:
11187""""""""""
11188
11189The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011190an unsigned multiplication of the two arguments. They return a structure ---
11191the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011192element of which is a bit specifying if the unsigned multiplication
11193resulted in an overflow.
11194
11195Examples:
11196"""""""""
11197
11198.. code-block:: llvm
11199
11200 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11201 %sum = extractvalue {i32, i1} %res, 0
11202 %obit = extractvalue {i32, i1} %res, 1
11203 br i1 %obit, label %overflow, label %normal
11204
11205Specialised Arithmetic Intrinsics
11206---------------------------------
11207
Owen Anderson1056a922015-07-11 07:01:27 +000011208'``llvm.canonicalize.*``' Intrinsic
11209^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11210
11211Syntax:
11212"""""""
11213
11214::
11215
11216 declare float @llvm.canonicalize.f32(float %a)
11217 declare double @llvm.canonicalize.f64(double %b)
11218
11219Overview:
11220"""""""""
11221
11222The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011223encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011224implementing certain numeric primitives such as frexp. The canonical encoding is
11225defined by IEEE-754-2008 to be:
11226
11227::
11228
11229 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011230 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011231 numbers, infinities, and NaNs, especially in decimal formats.
11232
11233This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011234conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011235according to section 6.2.
11236
11237Examples of non-canonical encodings:
11238
Sean Silvaa1190322015-08-06 22:56:48 +000011239- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011240 converted to a canonical representation per hardware-specific protocol.
11241- Many normal decimal floating point numbers have non-canonical alternative
11242 encodings.
11243- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011244 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011245 a zero of the same sign by this operation.
11246
11247Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11248default exception handling must signal an invalid exception, and produce a
11249quiet NaN result.
11250
11251This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011252that the compiler does not constant fold the operation. Likewise, division by
112531.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011254-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11255
Sean Silvaa1190322015-08-06 22:56:48 +000011256``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011257
11258- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11259- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11260 to ``(x == y)``
11261
11262Additionally, the sign of zero must be conserved:
11263``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11264
11265The payload bits of a NaN must be conserved, with two exceptions.
11266First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011267must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011268usual methods.
11269
11270The canonicalization operation may be optimized away if:
11271
Sean Silvaa1190322015-08-06 22:56:48 +000011272- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011273 floating-point operation that is required by the standard to be canonical.
11274- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011275 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011276
Sean Silvab084af42012-12-07 10:36:55 +000011277'``llvm.fmuladd.*``' Intrinsic
11278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11279
11280Syntax:
11281"""""""
11282
11283::
11284
11285 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11286 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11287
11288Overview:
11289"""""""""
11290
11291The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011292expressions that can be fused if the code generator determines that (a) the
11293target instruction set has support for a fused operation, and (b) that the
11294fused operation is more efficient than the equivalent, separate pair of mul
11295and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011296
11297Arguments:
11298""""""""""
11299
11300The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11301multiplicands, a and b, and an addend c.
11302
11303Semantics:
11304""""""""""
11305
11306The expression:
11307
11308::
11309
11310 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11311
11312is equivalent to the expression a \* b + c, except that rounding will
11313not be performed between the multiplication and addition steps if the
11314code generator fuses the operations. Fusion is not guaranteed, even if
11315the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011316corresponding llvm.fma.\* intrinsic function should be used
11317instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011318
11319Examples:
11320"""""""""
11321
11322.. code-block:: llvm
11323
Tim Northover675a0962014-06-13 14:24:23 +000011324 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011325
11326Half Precision Floating Point Intrinsics
11327----------------------------------------
11328
11329For most target platforms, half precision floating point is a
11330storage-only format. This means that it is a dense encoding (in memory)
11331but does not support computation in the format.
11332
11333This means that code must first load the half-precision floating point
11334value as an i16, then convert it to float with
11335:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11336then be performed on the float value (including extending to double
11337etc). To store the value back to memory, it is first converted to float
11338if needed, then converted to i16 with
11339:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11340i16 value.
11341
11342.. _int_convert_to_fp16:
11343
11344'``llvm.convert.to.fp16``' Intrinsic
11345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11346
11347Syntax:
11348"""""""
11349
11350::
11351
Tim Northoverfd7e4242014-07-17 10:51:23 +000011352 declare i16 @llvm.convert.to.fp16.f32(float %a)
11353 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011354
11355Overview:
11356"""""""""
11357
Tim Northoverfd7e4242014-07-17 10:51:23 +000011358The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11359conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011360
11361Arguments:
11362""""""""""
11363
11364The intrinsic function contains single argument - the value to be
11365converted.
11366
11367Semantics:
11368""""""""""
11369
Tim Northoverfd7e4242014-07-17 10:51:23 +000011370The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11371conventional floating point format to half precision floating point format. The
11372return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011373
11374Examples:
11375"""""""""
11376
11377.. code-block:: llvm
11378
Tim Northoverfd7e4242014-07-17 10:51:23 +000011379 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011380 store i16 %res, i16* @x, align 2
11381
11382.. _int_convert_from_fp16:
11383
11384'``llvm.convert.from.fp16``' Intrinsic
11385^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11386
11387Syntax:
11388"""""""
11389
11390::
11391
Tim Northoverfd7e4242014-07-17 10:51:23 +000011392 declare float @llvm.convert.from.fp16.f32(i16 %a)
11393 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011394
11395Overview:
11396"""""""""
11397
11398The '``llvm.convert.from.fp16``' intrinsic function performs a
11399conversion from half precision floating point format to single precision
11400floating point format.
11401
11402Arguments:
11403""""""""""
11404
11405The intrinsic function contains single argument - the value to be
11406converted.
11407
11408Semantics:
11409""""""""""
11410
11411The '``llvm.convert.from.fp16``' intrinsic function performs a
11412conversion from half single precision floating point format to single
11413precision floating point format. The input half-float value is
11414represented by an ``i16`` value.
11415
11416Examples:
11417"""""""""
11418
11419.. code-block:: llvm
11420
David Blaikiec7aabbb2015-03-04 22:06:14 +000011421 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011422 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011423
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011424.. _dbg_intrinsics:
11425
Sean Silvab084af42012-12-07 10:36:55 +000011426Debugger Intrinsics
11427-------------------
11428
11429The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11430prefix), are described in the `LLVM Source Level
11431Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11432document.
11433
11434Exception Handling Intrinsics
11435-----------------------------
11436
11437The LLVM exception handling intrinsics (which all start with
11438``llvm.eh.`` prefix), are described in the `LLVM Exception
11439Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11440
11441.. _int_trampoline:
11442
11443Trampoline Intrinsics
11444---------------------
11445
11446These intrinsics make it possible to excise one parameter, marked with
11447the :ref:`nest <nest>` attribute, from a function. The result is a
11448callable function pointer lacking the nest parameter - the caller does
11449not need to provide a value for it. Instead, the value to use is stored
11450in advance in a "trampoline", a block of memory usually allocated on the
11451stack, which also contains code to splice the nest value into the
11452argument list. This is used to implement the GCC nested function address
11453extension.
11454
11455For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11456then the resulting function pointer has signature ``i32 (i32, i32)*``.
11457It can be created as follows:
11458
11459.. code-block:: llvm
11460
11461 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011462 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011463 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11464 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11465 %fp = bitcast i8* %p to i32 (i32, i32)*
11466
11467The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11468``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11469
11470.. _int_it:
11471
11472'``llvm.init.trampoline``' Intrinsic
11473^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11474
11475Syntax:
11476"""""""
11477
11478::
11479
11480 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11481
11482Overview:
11483"""""""""
11484
11485This fills the memory pointed to by ``tramp`` with executable code,
11486turning it into a trampoline.
11487
11488Arguments:
11489""""""""""
11490
11491The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11492pointers. The ``tramp`` argument must point to a sufficiently large and
11493sufficiently aligned block of memory; this memory is written to by the
11494intrinsic. Note that the size and the alignment are target-specific -
11495LLVM currently provides no portable way of determining them, so a
11496front-end that generates this intrinsic needs to have some
11497target-specific knowledge. The ``func`` argument must hold a function
11498bitcast to an ``i8*``.
11499
11500Semantics:
11501""""""""""
11502
11503The block of memory pointed to by ``tramp`` is filled with target
11504dependent code, turning it into a function. Then ``tramp`` needs to be
11505passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11506be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11507function's signature is the same as that of ``func`` with any arguments
11508marked with the ``nest`` attribute removed. At most one such ``nest``
11509argument is allowed, and it must be of pointer type. Calling the new
11510function is equivalent to calling ``func`` with the same argument list,
11511but with ``nval`` used for the missing ``nest`` argument. If, after
11512calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11513modified, then the effect of any later call to the returned function
11514pointer is undefined.
11515
11516.. _int_at:
11517
11518'``llvm.adjust.trampoline``' Intrinsic
11519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11520
11521Syntax:
11522"""""""
11523
11524::
11525
11526 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11527
11528Overview:
11529"""""""""
11530
11531This performs any required machine-specific adjustment to the address of
11532a trampoline (passed as ``tramp``).
11533
11534Arguments:
11535""""""""""
11536
11537``tramp`` must point to a block of memory which already has trampoline
11538code filled in by a previous call to
11539:ref:`llvm.init.trampoline <int_it>`.
11540
11541Semantics:
11542""""""""""
11543
11544On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011545different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011546intrinsic returns the executable address corresponding to ``tramp``
11547after performing the required machine specific adjustments. The pointer
11548returned can then be :ref:`bitcast and executed <int_trampoline>`.
11549
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011550.. _int_mload_mstore:
11551
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011552Masked Vector Load and Store Intrinsics
11553---------------------------------------
11554
11555LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11556
11557.. _int_mload:
11558
11559'``llvm.masked.load.*``' Intrinsics
11560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11561
11562Syntax:
11563"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011564This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011565
11566::
11567
Adam Nemet7aab6482016-04-14 08:47:17 +000011568 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11569 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011570 ;; The data is a vector of pointers to double
Adam Nemet7aab6482016-04-14 08:47:17 +000011571 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011572 ;; The data is a vector of function pointers
Adam Nemet7aab6482016-04-14 08:47:17 +000011573 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011574
11575Overview:
11576"""""""""
11577
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011578Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011579
11580
11581Arguments:
11582""""""""""
11583
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011584The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011585
11586
11587Semantics:
11588""""""""""
11589
11590The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11591The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11592
11593
11594::
11595
Adam Nemet7aab6482016-04-14 08:47:17 +000011596 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011597
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011598 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011599 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011600 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011601
11602.. _int_mstore:
11603
11604'``llvm.masked.store.*``' Intrinsics
11605^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11606
11607Syntax:
11608"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011609This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011610
11611::
11612
Adam Nemet7aab6482016-04-14 08:47:17 +000011613 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11614 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011615 ;; The data is a vector of pointers to double
Adam Nemet7aab6482016-04-14 08:47:17 +000011616 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011617 ;; The data is a vector of function pointers
Adam Nemet7aab6482016-04-14 08:47:17 +000011618 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011619
11620Overview:
11621"""""""""
11622
11623Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11624
11625Arguments:
11626""""""""""
11627
11628The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11629
11630
11631Semantics:
11632""""""""""
11633
11634The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11635The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11636
11637::
11638
Adam Nemet7aab6482016-04-14 08:47:17 +000011639 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011640
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011641 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011642 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011643 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11644 store <16 x float> %res, <16 x float>* %ptr, align 4
11645
11646
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011647Masked Vector Gather and Scatter Intrinsics
11648-------------------------------------------
11649
11650LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11651
11652.. _int_mgather:
11653
11654'``llvm.masked.gather.*``' Intrinsics
11655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11656
11657Syntax:
11658"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011659This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011660
11661::
11662
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011663 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11664 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11665 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011666
11667Overview:
11668"""""""""
11669
11670Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11671
11672
11673Arguments:
11674""""""""""
11675
11676The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11677
11678
11679Semantics:
11680""""""""""
11681
11682The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11683The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11684
11685
11686::
11687
11688 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11689
11690 ;; The gather with all-true mask is equivalent to the following instruction sequence
11691 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11692 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11693 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11694 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11695
11696 %val0 = load double, double* %ptr0, align 8
11697 %val1 = load double, double* %ptr1, align 8
11698 %val2 = load double, double* %ptr2, align 8
11699 %val3 = load double, double* %ptr3, align 8
11700
11701 %vec0 = insertelement <4 x double>undef, %val0, 0
11702 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11703 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11704 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11705
11706.. _int_mscatter:
11707
11708'``llvm.masked.scatter.*``' Intrinsics
11709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11710
11711Syntax:
11712"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011713This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011714
11715::
11716
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011717 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11718 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11719 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011720
11721Overview:
11722"""""""""
11723
11724Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11725
11726Arguments:
11727""""""""""
11728
11729The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11730
11731
11732Semantics:
11733""""""""""
11734
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011735The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011736
11737::
11738
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011739 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011740 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11741
11742 ;; It is equivalent to a list of scalar stores
11743 %val0 = extractelement <8 x i32> %value, i32 0
11744 %val1 = extractelement <8 x i32> %value, i32 1
11745 ..
11746 %val7 = extractelement <8 x i32> %value, i32 7
11747 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11748 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11749 ..
11750 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11751 ;; Note: the order of the following stores is important when they overlap:
11752 store i32 %val0, i32* %ptr0, align 4
11753 store i32 %val1, i32* %ptr1, align 4
11754 ..
11755 store i32 %val7, i32* %ptr7, align 4
11756
11757
Sean Silvab084af42012-12-07 10:36:55 +000011758Memory Use Markers
11759------------------
11760
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011761This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011762memory objects and ranges where variables are immutable.
11763
Reid Klecknera534a382013-12-19 02:14:12 +000011764.. _int_lifestart:
11765
Sean Silvab084af42012-12-07 10:36:55 +000011766'``llvm.lifetime.start``' Intrinsic
11767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11768
11769Syntax:
11770"""""""
11771
11772::
11773
11774 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11775
11776Overview:
11777"""""""""
11778
11779The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11780object's lifetime.
11781
11782Arguments:
11783""""""""""
11784
11785The first argument is a constant integer representing the size of the
11786object, or -1 if it is variable sized. The second argument is a pointer
11787to the object.
11788
11789Semantics:
11790""""""""""
11791
11792This intrinsic indicates that before this point in the code, the value
11793of the memory pointed to by ``ptr`` is dead. This means that it is known
11794to never be used and has an undefined value. A load from the pointer
11795that precedes this intrinsic can be replaced with ``'undef'``.
11796
Reid Klecknera534a382013-12-19 02:14:12 +000011797.. _int_lifeend:
11798
Sean Silvab084af42012-12-07 10:36:55 +000011799'``llvm.lifetime.end``' Intrinsic
11800^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11801
11802Syntax:
11803"""""""
11804
11805::
11806
11807 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11808
11809Overview:
11810"""""""""
11811
11812The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11813object's lifetime.
11814
11815Arguments:
11816""""""""""
11817
11818The first argument is a constant integer representing the size of the
11819object, or -1 if it is variable sized. The second argument is a pointer
11820to the object.
11821
11822Semantics:
11823""""""""""
11824
11825This intrinsic indicates that after this point in the code, the value of
11826the memory pointed to by ``ptr`` is dead. This means that it is known to
11827never be used and has an undefined value. Any stores into the memory
11828object following this intrinsic may be removed as dead.
11829
11830'``llvm.invariant.start``' Intrinsic
11831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11832
11833Syntax:
11834"""""""
11835
11836::
11837
11838 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11839
11840Overview:
11841"""""""""
11842
11843The '``llvm.invariant.start``' intrinsic specifies that the contents of
11844a memory object will not change.
11845
11846Arguments:
11847""""""""""
11848
11849The first argument is a constant integer representing the size of the
11850object, or -1 if it is variable sized. The second argument is a pointer
11851to the object.
11852
11853Semantics:
11854""""""""""
11855
11856This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11857the return value, the referenced memory location is constant and
11858unchanging.
11859
11860'``llvm.invariant.end``' Intrinsic
11861^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11862
11863Syntax:
11864"""""""
11865
11866::
11867
11868 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11869
11870Overview:
11871"""""""""
11872
11873The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11874memory object are mutable.
11875
11876Arguments:
11877""""""""""
11878
11879The first argument is the matching ``llvm.invariant.start`` intrinsic.
11880The second argument is a constant integer representing the size of the
11881object, or -1 if it is variable sized and the third argument is a
11882pointer to the object.
11883
11884Semantics:
11885""""""""""
11886
11887This intrinsic indicates that the memory is mutable again.
11888
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011889'``llvm.invariant.group.barrier``' Intrinsic
11890^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11891
11892Syntax:
11893"""""""
11894
11895::
11896
11897 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11898
11899Overview:
11900"""""""""
11901
11902The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11903established by invariant.group metadata no longer holds, to obtain a new pointer
11904value that does not carry the invariant information.
11905
11906
11907Arguments:
11908""""""""""
11909
11910The ``llvm.invariant.group.barrier`` takes only one argument, which is
11911the pointer to the memory for which the ``invariant.group`` no longer holds.
11912
11913Semantics:
11914""""""""""
11915
11916Returns another pointer that aliases its argument but which is considered different
11917for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11918
Sean Silvab084af42012-12-07 10:36:55 +000011919General Intrinsics
11920------------------
11921
11922This class of intrinsics is designed to be generic and has no specific
11923purpose.
11924
11925'``llvm.var.annotation``' Intrinsic
11926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11927
11928Syntax:
11929"""""""
11930
11931::
11932
11933 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11934
11935Overview:
11936"""""""""
11937
11938The '``llvm.var.annotation``' intrinsic.
11939
11940Arguments:
11941""""""""""
11942
11943The first argument is a pointer to a value, the second is a pointer to a
11944global string, the third is a pointer to a global string which is the
11945source file name, and the last argument is the line number.
11946
11947Semantics:
11948""""""""""
11949
11950This intrinsic allows annotation of local variables with arbitrary
11951strings. This can be useful for special purpose optimizations that want
11952to look for these annotations. These have no other defined use; they are
11953ignored by code generation and optimization.
11954
Michael Gottesman88d18832013-03-26 00:34:27 +000011955'``llvm.ptr.annotation.*``' Intrinsic
11956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11957
11958Syntax:
11959"""""""
11960
11961This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11962pointer to an integer of any width. *NOTE* you must specify an address space for
11963the pointer. The identifier for the default address space is the integer
11964'``0``'.
11965
11966::
11967
11968 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11969 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11970 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11971 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11972 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11973
11974Overview:
11975"""""""""
11976
11977The '``llvm.ptr.annotation``' intrinsic.
11978
11979Arguments:
11980""""""""""
11981
11982The first argument is a pointer to an integer value of arbitrary bitwidth
11983(result of some expression), the second is a pointer to a global string, the
11984third is a pointer to a global string which is the source file name, and the
11985last argument is the line number. It returns the value of the first argument.
11986
11987Semantics:
11988""""""""""
11989
11990This intrinsic allows annotation of a pointer to an integer with arbitrary
11991strings. This can be useful for special purpose optimizations that want to look
11992for these annotations. These have no other defined use; they are ignored by code
11993generation and optimization.
11994
Sean Silvab084af42012-12-07 10:36:55 +000011995'``llvm.annotation.*``' Intrinsic
11996^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11997
11998Syntax:
11999"""""""
12000
12001This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12002any integer bit width.
12003
12004::
12005
12006 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12007 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12008 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12009 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12010 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12011
12012Overview:
12013"""""""""
12014
12015The '``llvm.annotation``' intrinsic.
12016
12017Arguments:
12018""""""""""
12019
12020The first argument is an integer value (result of some expression), the
12021second is a pointer to a global string, the third is a pointer to a
12022global string which is the source file name, and the last argument is
12023the line number. It returns the value of the first argument.
12024
12025Semantics:
12026""""""""""
12027
12028This intrinsic allows annotations to be put on arbitrary expressions
12029with arbitrary strings. This can be useful for special purpose
12030optimizations that want to look for these annotations. These have no
12031other defined use; they are ignored by code generation and optimization.
12032
12033'``llvm.trap``' Intrinsic
12034^^^^^^^^^^^^^^^^^^^^^^^^^
12035
12036Syntax:
12037"""""""
12038
12039::
12040
12041 declare void @llvm.trap() noreturn nounwind
12042
12043Overview:
12044"""""""""
12045
12046The '``llvm.trap``' intrinsic.
12047
12048Arguments:
12049""""""""""
12050
12051None.
12052
12053Semantics:
12054""""""""""
12055
12056This intrinsic is lowered to the target dependent trap instruction. If
12057the target does not have a trap instruction, this intrinsic will be
12058lowered to a call of the ``abort()`` function.
12059
12060'``llvm.debugtrap``' Intrinsic
12061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12062
12063Syntax:
12064"""""""
12065
12066::
12067
12068 declare void @llvm.debugtrap() nounwind
12069
12070Overview:
12071"""""""""
12072
12073The '``llvm.debugtrap``' intrinsic.
12074
12075Arguments:
12076""""""""""
12077
12078None.
12079
12080Semantics:
12081""""""""""
12082
12083This intrinsic is lowered to code which is intended to cause an
12084execution trap with the intention of requesting the attention of a
12085debugger.
12086
12087'``llvm.stackprotector``' Intrinsic
12088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12089
12090Syntax:
12091"""""""
12092
12093::
12094
12095 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12096
12097Overview:
12098"""""""""
12099
12100The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12101onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12102is placed on the stack before local variables.
12103
12104Arguments:
12105""""""""""
12106
12107The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12108The first argument is the value loaded from the stack guard
12109``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12110enough space to hold the value of the guard.
12111
12112Semantics:
12113""""""""""
12114
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012115This intrinsic causes the prologue/epilogue inserter to force the position of
12116the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12117to ensure that if a local variable on the stack is overwritten, it will destroy
12118the value of the guard. When the function exits, the guard on the stack is
12119checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12120different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12121calling the ``__stack_chk_fail()`` function.
12122
Tim Shene885d5e2016-04-19 19:40:37 +000012123'``llvm.stackguard``' Intrinsic
12124^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12125
12126Syntax:
12127"""""""
12128
12129::
12130
12131 declare i8* @llvm.stackguard()
12132
12133Overview:
12134"""""""""
12135
12136The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12137
12138It should not be generated by frontends, since it is only for internal usage.
12139The reason why we create this intrinsic is that we still support IR form Stack
12140Protector in FastISel.
12141
12142Arguments:
12143""""""""""
12144
12145None.
12146
12147Semantics:
12148""""""""""
12149
12150On some platforms, the value returned by this intrinsic remains unchanged
12151between loads in the same thread. On other platforms, it returns the same
12152global variable value, if any, e.g. ``@__stack_chk_guard``.
12153
12154Currently some platforms have IR-level customized stack guard loading (e.g.
12155X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12156in the future.
12157
Sean Silvab084af42012-12-07 10:36:55 +000012158'``llvm.objectsize``' Intrinsic
12159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12160
12161Syntax:
12162"""""""
12163
12164::
12165
12166 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12167 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12168
12169Overview:
12170"""""""""
12171
12172The ``llvm.objectsize`` intrinsic is designed to provide information to
12173the optimizers to determine at compile time whether a) an operation
12174(like memcpy) will overflow a buffer that corresponds to an object, or
12175b) that a runtime check for overflow isn't necessary. An object in this
12176context means an allocation of a specific class, structure, array, or
12177other object.
12178
12179Arguments:
12180""""""""""
12181
12182The ``llvm.objectsize`` intrinsic takes two arguments. The first
12183argument is a pointer to or into the ``object``. The second argument is
12184a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12185or -1 (if false) when the object size is unknown. The second argument
12186only accepts constants.
12187
12188Semantics:
12189""""""""""
12190
12191The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12192the size of the object concerned. If the size cannot be determined at
12193compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12194on the ``min`` argument).
12195
12196'``llvm.expect``' Intrinsic
12197^^^^^^^^^^^^^^^^^^^^^^^^^^^
12198
12199Syntax:
12200"""""""
12201
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012202This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12203integer bit width.
12204
Sean Silvab084af42012-12-07 10:36:55 +000012205::
12206
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012207 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012208 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12209 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12210
12211Overview:
12212"""""""""
12213
12214The ``llvm.expect`` intrinsic provides information about expected (the
12215most probable) value of ``val``, which can be used by optimizers.
12216
12217Arguments:
12218""""""""""
12219
12220The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12221a value. The second argument is an expected value, this needs to be a
12222constant value, variables are not allowed.
12223
12224Semantics:
12225""""""""""
12226
12227This intrinsic is lowered to the ``val``.
12228
Philip Reamese0e90832015-04-26 22:23:12 +000012229.. _int_assume:
12230
Hal Finkel93046912014-07-25 21:13:35 +000012231'``llvm.assume``' Intrinsic
12232^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12233
12234Syntax:
12235"""""""
12236
12237::
12238
12239 declare void @llvm.assume(i1 %cond)
12240
12241Overview:
12242"""""""""
12243
12244The ``llvm.assume`` allows the optimizer to assume that the provided
12245condition is true. This information can then be used in simplifying other parts
12246of the code.
12247
12248Arguments:
12249""""""""""
12250
12251The condition which the optimizer may assume is always true.
12252
12253Semantics:
12254""""""""""
12255
12256The intrinsic allows the optimizer to assume that the provided condition is
12257always true whenever the control flow reaches the intrinsic call. No code is
12258generated for this intrinsic, and instructions that contribute only to the
12259provided condition are not used for code generation. If the condition is
12260violated during execution, the behavior is undefined.
12261
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012262Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012263used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12264only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012265if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012266sufficient overall improvement in code quality. For this reason,
12267``llvm.assume`` should not be used to document basic mathematical invariants
12268that the optimizer can otherwise deduce or facts that are of little use to the
12269optimizer.
12270
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012271.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012272
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012273'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12275
12276Syntax:
12277"""""""
12278
12279::
12280
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012281 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012282
12283
12284Arguments:
12285""""""""""
12286
12287The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012288metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012289
12290Overview:
12291"""""""""
12292
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012293The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12294with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012295
Peter Collingbourne0312f612016-06-25 00:23:04 +000012296'``llvm.type.checked.load``' Intrinsic
12297^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12298
12299Syntax:
12300"""""""
12301
12302::
12303
12304 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12305
12306
12307Arguments:
12308""""""""""
12309
12310The first argument is a pointer from which to load a function pointer. The
12311second argument is the byte offset from which to load the function pointer. The
12312third argument is a metadata object representing a :doc:`type identifier
12313<TypeMetadata>`.
12314
12315Overview:
12316"""""""""
12317
12318The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12319virtual table pointer using type metadata. This intrinsic is used to implement
12320control flow integrity in conjunction with virtual call optimization. The
12321virtual call optimization pass will optimize away ``llvm.type.checked.load``
12322intrinsics associated with devirtualized calls, thereby removing the type
12323check in cases where it is not needed to enforce the control flow integrity
12324constraint.
12325
12326If the given pointer is associated with a type metadata identifier, this
12327function returns true as the second element of its return value. (Note that
12328the function may also return true if the given pointer is not associated
12329with a type metadata identifier.) If the function's return value's second
12330element is true, the following rules apply to the first element:
12331
12332- If the given pointer is associated with the given type metadata identifier,
12333 it is the function pointer loaded from the given byte offset from the given
12334 pointer.
12335
12336- If the given pointer is not associated with the given type metadata
12337 identifier, it is one of the following (the choice of which is unspecified):
12338
12339 1. The function pointer that would have been loaded from an arbitrarily chosen
12340 (through an unspecified mechanism) pointer associated with the type
12341 metadata.
12342
12343 2. If the function has a non-void return type, a pointer to a function that
12344 returns an unspecified value without causing side effects.
12345
12346If the function's return value's second element is false, the value of the
12347first element is undefined.
12348
12349
Sean Silvab084af42012-12-07 10:36:55 +000012350'``llvm.donothing``' Intrinsic
12351^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12352
12353Syntax:
12354"""""""
12355
12356::
12357
12358 declare void @llvm.donothing() nounwind readnone
12359
12360Overview:
12361"""""""""
12362
Juergen Ributzkac9161192014-10-23 22:36:13 +000012363The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012364three intrinsics (besides ``llvm.experimental.patchpoint`` and
12365``llvm.experimental.gc.statepoint``) that can be called with an invoke
12366instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012367
12368Arguments:
12369""""""""""
12370
12371None.
12372
12373Semantics:
12374""""""""""
12375
12376This intrinsic does nothing, and it's removed by optimizers and ignored
12377by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012378
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012379'``llvm.experimental.deoptimize``' Intrinsic
12380^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12381
12382Syntax:
12383"""""""
12384
12385::
12386
12387 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12388
12389Overview:
12390"""""""""
12391
12392This intrinsic, together with :ref:`deoptimization operand bundles
12393<deopt_opbundles>`, allow frontends to express transfer of control and
12394frame-local state from the currently executing (typically more specialized,
12395hence faster) version of a function into another (typically more generic, hence
12396slower) version.
12397
12398In languages with a fully integrated managed runtime like Java and JavaScript
12399this intrinsic can be used to implement "uncommon trap" or "side exit" like
12400functionality. In unmanaged languages like C and C++, this intrinsic can be
12401used to represent the slow paths of specialized functions.
12402
12403
12404Arguments:
12405""""""""""
12406
12407The intrinsic takes an arbitrary number of arguments, whose meaning is
12408decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12409
12410Semantics:
12411""""""""""
12412
12413The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12414deoptimization continuation (denoted using a :ref:`deoptimization
12415operand bundle <deopt_opbundles>`) and returns the value returned by
12416the deoptimization continuation. Defining the semantic properties of
12417the continuation itself is out of scope of the language reference --
12418as far as LLVM is concerned, the deoptimization continuation can
12419invoke arbitrary side effects, including reading from and writing to
12420the entire heap.
12421
12422Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12423continue execution to the end of the physical frame containing them, so all
12424calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12425
12426 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12427 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12428 - The ``ret`` instruction must return the value produced by the
12429 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12430
12431Note that the above restrictions imply that the return type for a call to
12432``@llvm.experimental.deoptimize`` will match the return type of its immediate
12433caller.
12434
12435The inliner composes the ``"deopt"`` continuations of the caller into the
12436``"deopt"`` continuations present in the inlinee, and also updates calls to this
12437intrinsic to return directly from the frame of the function it inlined into.
12438
Sanjoy Dase0aa4142016-05-12 01:17:38 +000012439All declarations of ``@llvm.experimental.deoptimize`` must share the
12440same calling convention.
12441
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012442.. _deoptimize_lowering:
12443
12444Lowering:
12445"""""""""
12446
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012447Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12448symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12449ensure that this symbol is defined). The call arguments to
12450``@llvm.experimental.deoptimize`` are lowered as if they were formal
12451arguments of the specified types, and not as varargs.
12452
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012453
Sanjoy Das021de052016-03-31 00:18:46 +000012454'``llvm.experimental.guard``' Intrinsic
12455^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12456
12457Syntax:
12458"""""""
12459
12460::
12461
12462 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12463
12464Overview:
12465"""""""""
12466
12467This intrinsic, together with :ref:`deoptimization operand bundles
12468<deopt_opbundles>`, allows frontends to express guards or checks on
12469optimistic assumptions made during compilation. The semantics of
12470``@llvm.experimental.guard`` is defined in terms of
12471``@llvm.experimental.deoptimize`` -- its body is defined to be
12472equivalent to:
12473
12474.. code-block:: llvm
12475
12476 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12477 %realPred = and i1 %pred, undef
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012478 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000012479
12480 leave:
12481 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12482 ret void
12483
12484 continue:
12485 ret void
12486 }
12487
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012488
12489with the optional ``[, !make.implicit !{}]`` present if and only if it
12490is present on the call site. For more details on ``!make.implicit``,
12491see :doc:`FaultMaps`.
12492
Sanjoy Das021de052016-03-31 00:18:46 +000012493In words, ``@llvm.experimental.guard`` executes the attached
12494``"deopt"`` continuation if (but **not** only if) its first argument
12495is ``false``. Since the optimizer is allowed to replace the ``undef``
12496with an arbitrary value, it can optimize guard to fail "spuriously",
12497i.e. without the original condition being false (hence the "not only
12498if"); and this allows for "check widening" type optimizations.
12499
12500``@llvm.experimental.guard`` cannot be invoked.
12501
12502
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012503'``llvm.load.relative``' Intrinsic
12504^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12505
12506Syntax:
12507"""""""
12508
12509::
12510
12511 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12512
12513Overview:
12514"""""""""
12515
12516This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12517adds ``%ptr`` to that value and returns it. The constant folder specifically
12518recognizes the form of this intrinsic and the constant initializers it may
12519load from; if a loaded constant initializer is known to have the form
12520``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12521
12522LLVM provides that the calculation of such a constant initializer will
12523not overflow at link time under the medium code model if ``x`` is an
12524``unnamed_addr`` function. However, it does not provide this guarantee for
12525a constant initializer folded into a function body. This intrinsic can be
12526used to avoid the possibility of overflows when loading from such a constant.
12527
Andrew Trick5e029ce2013-12-24 02:57:25 +000012528Stack Map Intrinsics
12529--------------------
12530
12531LLVM provides experimental intrinsics to support runtime patching
12532mechanisms commonly desired in dynamic language JITs. These intrinsics
12533are described in :doc:`StackMaps`.