blob: 699f56c2d625345fb2a9a27a917b65f567af48f1 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
549.. _globalvars:
550
551Global Variables
552----------------
553
554Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000555instead of run-time.
556
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000557Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000558
559Global variables in other translation units can also be declared, in which
560case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000561
Bob Wilson85b24f22014-06-12 20:40:33 +0000562Either global variable definitions or declarations may have an explicit section
563to be placed in and may have an optional explicit alignment specified.
564
Michael Gottesman006039c2013-01-31 05:48:48 +0000565A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000566the contents of the variable will **never** be modified (enabling better
567optimization, allowing the global data to be placed in the read-only
568section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000569initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000570variable.
571
572LLVM explicitly allows *declarations* of global variables to be marked
573constant, even if the final definition of the global is not. This
574capability can be used to enable slightly better optimization of the
575program, but requires the language definition to guarantee that
576optimizations based on the 'constantness' are valid for the translation
577units that do not include the definition.
578
579As SSA values, global variables define pointer values that are in scope
580(i.e. they dominate) all basic blocks in the program. Global variables
581always define a pointer to their "content" type because they describe a
582region of memory, and all memory objects in LLVM are accessed through
583pointers.
584
585Global variables can be marked with ``unnamed_addr`` which indicates
586that the address is not significant, only the content. Constants marked
587like this can be merged with other constants if they have the same
588initializer. Note that a constant with significant address *can* be
589merged with a ``unnamed_addr`` constant, the result being a constant
590whose address is significant.
591
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000592If the ``local_unnamed_addr`` attribute is given, the address is known to
593not be significant within the module.
594
Sean Silvab084af42012-12-07 10:36:55 +0000595A global variable may be declared to reside in a target-specific
596numbered address space. For targets that support them, address spaces
597may affect how optimizations are performed and/or what target
598instructions are used to access the variable. The default address space
599is zero. The address space qualifier must precede any other attributes.
600
601LLVM allows an explicit section to be specified for globals. If the
602target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000603Additionally, the global can placed in a comdat if the target has the necessary
604support.
Sean Silvab084af42012-12-07 10:36:55 +0000605
Michael Gottesmane743a302013-02-04 03:22:00 +0000606By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000607variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000608initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000609true even for variables potentially accessible from outside the
610module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000611``@llvm.used`` or dllexported variables. This assumption may be suppressed
612by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000613
Sean Silvab084af42012-12-07 10:36:55 +0000614An explicit alignment may be specified for a global, which must be a
615power of 2. If not present, or if the alignment is set to zero, the
616alignment of the global is set by the target to whatever it feels
617convenient. If an explicit alignment is specified, the global is forced
618to have exactly that alignment. Targets and optimizers are not allowed
619to over-align the global if the global has an assigned section. In this
620case, the extra alignment could be observable: for example, code could
621assume that the globals are densely packed in their section and try to
622iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000623iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000625Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
626an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000627
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000628Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000629:ref:`Thread Local Storage Model <tls_model>`.
630
Nico Rieck7157bb72014-01-14 15:22:47 +0000631Syntax::
632
Rafael Espindola32483a72016-05-10 18:22:45 +0000633 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000634 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
635 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000636 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000637 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000638 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000639
Sean Silvab084af42012-12-07 10:36:55 +0000640For example, the following defines a global in a numbered address space
641with an initializer, section, and alignment:
642
643.. code-block:: llvm
644
645 @G = addrspace(5) constant float 1.0, section "foo", align 4
646
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000647The following example just declares a global variable
648
649.. code-block:: llvm
650
651 @G = external global i32
652
Sean Silvab084af42012-12-07 10:36:55 +0000653The following example defines a thread-local global with the
654``initialexec`` TLS model:
655
656.. code-block:: llvm
657
658 @G = thread_local(initialexec) global i32 0, align 4
659
660.. _functionstructure:
661
662Functions
663---------
664
665LLVM function definitions consist of the "``define``" keyword, an
666optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000667style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
668an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000669an optional ``unnamed_addr`` attribute, a return type, an optional
670:ref:`parameter attribute <paramattrs>` for the return type, a function
671name, a (possibly empty) argument list (each with optional :ref:`parameter
672attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000673an optional section, an optional alignment,
674an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000675an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000676an optional :ref:`prologue <prologuedata>`,
677an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000678an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000679an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000680
681LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000682optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
683<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
684optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
685or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
686attribute <paramattrs>` for the return type, a function name, a possibly
687empty list of arguments, an optional alignment, an optional :ref:`garbage
688collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
689:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000690
Bill Wendling6822ecb2013-10-27 05:09:12 +0000691A function definition contains a list of basic blocks, forming the CFG (Control
692Flow Graph) for the function. Each basic block may optionally start with a label
693(giving the basic block a symbol table entry), contains a list of instructions,
694and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
695function return). If an explicit label is not provided, a block is assigned an
696implicit numbered label, using the next value from the same counter as used for
697unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
698entry block does not have an explicit label, it will be assigned label "%0",
699then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000700
701The first basic block in a function is special in two ways: it is
702immediately executed on entrance to the function, and it is not allowed
703to have predecessor basic blocks (i.e. there can not be any branches to
704the entry block of a function). Because the block can have no
705predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
706
707LLVM allows an explicit section to be specified for functions. If the
708target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000709Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000710
711An explicit alignment may be specified for a function. If not present,
712or if the alignment is set to zero, the alignment of the function is set
713by the target to whatever it feels convenient. If an explicit alignment
714is specified, the function is forced to have at least that much
715alignment. All alignments must be a power of 2.
716
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000717If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000718be significant and two identical functions can be merged.
719
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000720If the ``local_unnamed_addr`` attribute is given, the address is known to
721not be significant within the module.
722
Sean Silvab084af42012-12-07 10:36:55 +0000723Syntax::
724
Nico Rieck7157bb72014-01-14 15:22:47 +0000725 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000726 [cconv] [ret attrs]
727 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000728 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
729 [comdat [($name)]] [align N] [gc] [prefix Constant]
730 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000731
Sean Silva706fba52015-08-06 22:56:24 +0000732The argument list is a comma separated sequence of arguments where each
733argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000734
735Syntax::
736
737 <type> [parameter Attrs] [name]
738
739
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000740.. _langref_aliases:
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Aliases
743-------
744
Rafael Espindola64c1e182014-06-03 02:41:57 +0000745Aliases, unlike function or variables, don't create any new data. They
746are just a new symbol and metadata for an existing position.
747
748Aliases have a name and an aliasee that is either a global value or a
749constant expression.
750
Nico Rieck7157bb72014-01-14 15:22:47 +0000751Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000752:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
753<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000754
755Syntax::
756
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000757 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000758
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000759The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000760``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000761might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000762
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000763Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000764the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
765to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000766
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000767If the ``local_unnamed_addr`` attribute is given, the address is known to
768not be significant within the module.
769
Rafael Espindola64c1e182014-06-03 02:41:57 +0000770Since aliases are only a second name, some restrictions apply, of which
771some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000772
Rafael Espindola64c1e182014-06-03 02:41:57 +0000773* The expression defining the aliasee must be computable at assembly
774 time. Since it is just a name, no relocations can be used.
775
776* No alias in the expression can be weak as the possibility of the
777 intermediate alias being overridden cannot be represented in an
778 object file.
779
780* No global value in the expression can be a declaration, since that
781 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000782
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000783.. _langref_ifunc:
784
785IFuncs
786-------
787
788IFuncs, like as aliases, don't create any new data or func. They are just a new
789symbol that dynamic linker resolves at runtime by calling a resolver function.
790
791IFuncs have a name and a resolver that is a function called by dynamic linker
792that returns address of another function associated with the name.
793
794IFunc may have an optional :ref:`linkage type <linkage>` and an optional
795:ref:`visibility style <visibility>`.
796
797Syntax::
798
799 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
800
801
David Majnemerdad0a642014-06-27 18:19:56 +0000802.. _langref_comdats:
803
804Comdats
805-------
806
807Comdat IR provides access to COFF and ELF object file COMDAT functionality.
808
Sean Silvaa1190322015-08-06 22:56:48 +0000809Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000810specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000811that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000812aliasee computes to, if any.
813
814Comdats have a selection kind to provide input on how the linker should
815choose between keys in two different object files.
816
817Syntax::
818
819 $<Name> = comdat SelectionKind
820
821The selection kind must be one of the following:
822
823``any``
824 The linker may choose any COMDAT key, the choice is arbitrary.
825``exactmatch``
826 The linker may choose any COMDAT key but the sections must contain the
827 same data.
828``largest``
829 The linker will choose the section containing the largest COMDAT key.
830``noduplicates``
831 The linker requires that only section with this COMDAT key exist.
832``samesize``
833 The linker may choose any COMDAT key but the sections must contain the
834 same amount of data.
835
836Note that the Mach-O platform doesn't support COMDATs and ELF only supports
837``any`` as a selection kind.
838
839Here is an example of a COMDAT group where a function will only be selected if
840the COMDAT key's section is the largest:
841
842.. code-block:: llvm
843
844 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000845 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000846
Rafael Espindola83a362c2015-01-06 22:55:16 +0000847 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000848 ret void
849 }
850
Rafael Espindola83a362c2015-01-06 22:55:16 +0000851As a syntactic sugar the ``$name`` can be omitted if the name is the same as
852the global name:
853
854.. code-block:: llvm
855
856 $foo = comdat any
857 @foo = global i32 2, comdat
858
859
David Majnemerdad0a642014-06-27 18:19:56 +0000860In a COFF object file, this will create a COMDAT section with selection kind
861``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
862and another COMDAT section with selection kind
863``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000864section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000865
866There are some restrictions on the properties of the global object.
867It, or an alias to it, must have the same name as the COMDAT group when
868targeting COFF.
869The contents and size of this object may be used during link-time to determine
870which COMDAT groups get selected depending on the selection kind.
871Because the name of the object must match the name of the COMDAT group, the
872linkage of the global object must not be local; local symbols can get renamed
873if a collision occurs in the symbol table.
874
875The combined use of COMDATS and section attributes may yield surprising results.
876For example:
877
878.. code-block:: llvm
879
880 $foo = comdat any
881 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000882 @g1 = global i32 42, section "sec", comdat($foo)
883 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000886with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000887COMDAT groups and COMDATs, at the object file level, are represented by
888sections.
889
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000890Note that certain IR constructs like global variables and functions may
891create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000892COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000893in individual sections (e.g. when `-data-sections` or `-function-sections`
894is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000895
Sean Silvab084af42012-12-07 10:36:55 +0000896.. _namedmetadatastructure:
897
898Named Metadata
899--------------
900
901Named metadata is a collection of metadata. :ref:`Metadata
902nodes <metadata>` (but not metadata strings) are the only valid
903operands for a named metadata.
904
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000905#. Named metadata are represented as a string of characters with the
906 metadata prefix. The rules for metadata names are the same as for
907 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
908 are still valid, which allows any character to be part of a name.
909
Sean Silvab084af42012-12-07 10:36:55 +0000910Syntax::
911
912 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000913 !0 = !{!"zero"}
914 !1 = !{!"one"}
915 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000916 ; A named metadata.
917 !name = !{!0, !1, !2}
918
919.. _paramattrs:
920
921Parameter Attributes
922--------------------
923
924The return type and each parameter of a function type may have a set of
925*parameter attributes* associated with them. Parameter attributes are
926used to communicate additional information about the result or
927parameters of a function. Parameter attributes are considered to be part
928of the function, not of the function type, so functions with different
929parameter attributes can have the same function type.
930
931Parameter attributes are simple keywords that follow the type specified.
932If multiple parameter attributes are needed, they are space separated.
933For example:
934
935.. code-block:: llvm
936
937 declare i32 @printf(i8* noalias nocapture, ...)
938 declare i32 @atoi(i8 zeroext)
939 declare signext i8 @returns_signed_char()
940
941Note that any attributes for the function result (``nounwind``,
942``readonly``) come immediately after the argument list.
943
944Currently, only the following parameter attributes are defined:
945
946``zeroext``
947 This indicates to the code generator that the parameter or return
948 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000949 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000950``signext``
951 This indicates to the code generator that the parameter or return
952 value should be sign-extended to the extent required by the target's
953 ABI (which is usually 32-bits) by the caller (for a parameter) or
954 the callee (for a return value).
955``inreg``
956 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000957 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000958 a function call or return (usually, by putting it in a register as
959 opposed to memory, though some targets use it to distinguish between
960 two different kinds of registers). Use of this attribute is
961 target-specific.
962``byval``
963 This indicates that the pointer parameter should really be passed by
964 value to the function. The attribute implies that a hidden copy of
965 the pointee is made between the caller and the callee, so the callee
966 is unable to modify the value in the caller. This attribute is only
967 valid on LLVM pointer arguments. It is generally used to pass
968 structs and arrays by value, but is also valid on pointers to
969 scalars. The copy is considered to belong to the caller not the
970 callee (for example, ``readonly`` functions should not write to
971 ``byval`` parameters). This is not a valid attribute for return
972 values.
973
974 The byval attribute also supports specifying an alignment with the
975 align attribute. It indicates the alignment of the stack slot to
976 form and the known alignment of the pointer specified to the call
977 site. If the alignment is not specified, then the code generator
978 makes a target-specific assumption.
979
Reid Klecknera534a382013-12-19 02:14:12 +0000980.. _attr_inalloca:
981
982``inalloca``
983
Reid Kleckner60d3a832014-01-16 22:59:24 +0000984 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000985 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000986 be a pointer to stack memory produced by an ``alloca`` instruction.
987 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000988 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000989 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000990
Reid Kleckner436c42e2014-01-17 23:58:17 +0000991 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000992 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000993 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000994 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000995 ``inalloca`` attribute also disables LLVM's implicit lowering of
996 large aggregate return values, which means that frontend authors
997 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000998
Reid Kleckner60d3a832014-01-16 22:59:24 +0000999 When the call site is reached, the argument allocation must have
1000 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001001 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001002 space after an argument allocation and before its call site, but it
1003 must be cleared off with :ref:`llvm.stackrestore
1004 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001005
1006 See :doc:`InAlloca` for more information on how to use this
1007 attribute.
1008
Sean Silvab084af42012-12-07 10:36:55 +00001009``sret``
1010 This indicates that the pointer parameter specifies the address of a
1011 structure that is the return value of the function in the source
1012 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +00001013 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +00001014 not to trap and to be properly aligned. This may only be applied to
1015 the first parameter. This is not a valid attribute for return
1016 values.
Sean Silva1703e702014-04-08 21:06:22 +00001017
Hal Finkelccc70902014-07-22 16:58:55 +00001018``align <n>``
1019 This indicates that the pointer value may be assumed by the optimizer to
1020 have the specified alignment.
1021
1022 Note that this attribute has additional semantics when combined with the
1023 ``byval`` attribute.
1024
Sean Silva1703e702014-04-08 21:06:22 +00001025.. _noalias:
1026
Sean Silvab084af42012-12-07 10:36:55 +00001027``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001028 This indicates that objects accessed via pointer values
1029 :ref:`based <pointeraliasing>` on the argument or return value are not also
1030 accessed, during the execution of the function, via pointer values not
1031 *based* on the argument or return value. The attribute on a return value
1032 also has additional semantics described below. The caller shares the
1033 responsibility with the callee for ensuring that these requirements are met.
1034 For further details, please see the discussion of the NoAlias response in
1035 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001036
1037 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001038 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001039
1040 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001041 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1042 attribute on return values are stronger than the semantics of the attribute
1043 when used on function arguments. On function return values, the ``noalias``
1044 attribute indicates that the function acts like a system memory allocation
1045 function, returning a pointer to allocated storage disjoint from the
1046 storage for any other object accessible to the caller.
1047
Sean Silvab084af42012-12-07 10:36:55 +00001048``nocapture``
1049 This indicates that the callee does not make any copies of the
1050 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001051 attribute for return values. Addresses used in volatile operations
1052 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001053
1054.. _nest:
1055
1056``nest``
1057 This indicates that the pointer parameter can be excised using the
1058 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001059 attribute for return values and can only be applied to one parameter.
1060
1061``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001062 This indicates that the function always returns the argument as its return
1063 value. This is an optimization hint to the code generator when generating
1064 the caller, allowing tail call optimization and omission of register saves
1065 and restores in some cases; it is not checked or enforced when generating
1066 the callee. The parameter and the function return type must be valid
1067 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1068 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001069
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001070``nonnull``
1071 This indicates that the parameter or return pointer is not null. This
1072 attribute may only be applied to pointer typed parameters. This is not
1073 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001074 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001075 is non-null.
1076
Hal Finkelb0407ba2014-07-18 15:51:28 +00001077``dereferenceable(<n>)``
1078 This indicates that the parameter or return pointer is dereferenceable. This
1079 attribute may only be applied to pointer typed parameters. A pointer that
1080 is dereferenceable can be loaded from speculatively without a risk of
1081 trapping. The number of bytes known to be dereferenceable must be provided
1082 in parentheses. It is legal for the number of bytes to be less than the
1083 size of the pointee type. The ``nonnull`` attribute does not imply
1084 dereferenceability (consider a pointer to one element past the end of an
1085 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1086 ``addrspace(0)`` (which is the default address space).
1087
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001088``dereferenceable_or_null(<n>)``
1089 This indicates that the parameter or return value isn't both
1090 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001091 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001092 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1093 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1094 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1095 and in other address spaces ``dereferenceable_or_null(<n>)``
1096 implies that a pointer is at least one of ``dereferenceable(<n>)``
1097 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001098 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001099 pointer typed parameters.
1100
Manman Renf46262e2016-03-29 17:37:21 +00001101``swiftself``
1102 This indicates that the parameter is the self/context parameter. This is not
1103 a valid attribute for return values and can only be applied to one
1104 parameter.
1105
Manman Ren9bfd0d02016-04-01 21:41:15 +00001106``swifterror``
1107 This attribute is motivated to model and optimize Swift error handling. It
1108 can be applied to a parameter with pointer to pointer type or a
1109 pointer-sized alloca. At the call site, the actual argument that corresponds
1110 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca. A
1111 ``swifterror`` value (either the parameter or the alloca) can only be loaded
1112 and stored from, or used as a ``swifterror`` argument. This is not a valid
1113 attribute for return values and can only be applied to one parameter.
1114
1115 These constraints allow the calling convention to optimize access to
1116 ``swifterror`` variables by associating them with a specific register at
1117 call boundaries rather than placing them in memory. Since this does change
1118 the calling convention, a function which uses the ``swifterror`` attribute
1119 on a parameter is not ABI-compatible with one which does not.
1120
1121 These constraints also allow LLVM to assume that a ``swifterror`` argument
1122 does not alias any other memory visible within a function and that a
1123 ``swifterror`` alloca passed as an argument does not escape.
1124
Sean Silvab084af42012-12-07 10:36:55 +00001125.. _gc:
1126
Philip Reamesf80bbff2015-02-25 23:45:20 +00001127Garbage Collector Strategy Names
1128--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001129
Philip Reamesf80bbff2015-02-25 23:45:20 +00001130Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001131string:
1132
1133.. code-block:: llvm
1134
1135 define void @f() gc "name" { ... }
1136
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001137The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001138<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001139strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001140named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001141garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001142which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001143
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001144.. _prefixdata:
1145
1146Prefix Data
1147-----------
1148
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001149Prefix data is data associated with a function which the code
1150generator will emit immediately before the function's entrypoint.
1151The purpose of this feature is to allow frontends to associate
1152language-specific runtime metadata with specific functions and make it
1153available through the function pointer while still allowing the
1154function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001155
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001156To access the data for a given function, a program may bitcast the
1157function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001158index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001159the prefix data. For instance, take the example of a function annotated
1160with a single ``i32``,
1161
1162.. code-block:: llvm
1163
1164 define void @f() prefix i32 123 { ... }
1165
1166The prefix data can be referenced as,
1167
1168.. code-block:: llvm
1169
David Blaikie16a97eb2015-03-04 22:02:58 +00001170 %0 = bitcast void* () @f to i32*
1171 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001172 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001173
1174Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001175of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176beginning of the prefix data is aligned. This means that if the size
1177of the prefix data is not a multiple of the alignment size, the
1178function's entrypoint will not be aligned. If alignment of the
1179function's entrypoint is desired, padding must be added to the prefix
1180data.
1181
Sean Silvaa1190322015-08-06 22:56:48 +00001182A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001183to the ``available_externally`` linkage in that the data may be used by the
1184optimizers but will not be emitted in the object file.
1185
1186.. _prologuedata:
1187
1188Prologue Data
1189-------------
1190
1191The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1192be inserted prior to the function body. This can be used for enabling
1193function hot-patching and instrumentation.
1194
1195To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001196have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001197bytes which decode to a sequence of machine instructions, valid for the
1198module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001199the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001200the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001201definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001202makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001203
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001204A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001205which encodes the ``nop`` instruction:
1206
1207.. code-block:: llvm
1208
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001209 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001210
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001211Generally prologue data can be formed by encoding a relative branch instruction
1212which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001213x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1214
1215.. code-block:: llvm
1216
1217 %0 = type <{ i8, i8, i8* }>
1218
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001219 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220
Sean Silvaa1190322015-08-06 22:56:48 +00001221A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001222to the ``available_externally`` linkage in that the data may be used by the
1223optimizers but will not be emitted in the object file.
1224
David Majnemer7fddecc2015-06-17 20:52:32 +00001225.. _personalityfn:
1226
1227Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001228--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001229
1230The ``personality`` attribute permits functions to specify what function
1231to use for exception handling.
1232
Bill Wendling63b88192013-02-06 06:52:58 +00001233.. _attrgrp:
1234
1235Attribute Groups
1236----------------
1237
1238Attribute groups are groups of attributes that are referenced by objects within
1239the IR. They are important for keeping ``.ll`` files readable, because a lot of
1240functions will use the same set of attributes. In the degenerative case of a
1241``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1242group will capture the important command line flags used to build that file.
1243
1244An attribute group is a module-level object. To use an attribute group, an
1245object references the attribute group's ID (e.g. ``#37``). An object may refer
1246to more than one attribute group. In that situation, the attributes from the
1247different groups are merged.
1248
1249Here is an example of attribute groups for a function that should always be
1250inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1251
1252.. code-block:: llvm
1253
1254 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001255 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001256
1257 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001258 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001259
1260 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1261 define void @f() #0 #1 { ... }
1262
Sean Silvab084af42012-12-07 10:36:55 +00001263.. _fnattrs:
1264
1265Function Attributes
1266-------------------
1267
1268Function attributes are set to communicate additional information about
1269a function. Function attributes are considered to be part of the
1270function, not of the function type, so functions with different function
1271attributes can have the same function type.
1272
1273Function attributes are simple keywords that follow the type specified.
1274If multiple attributes are needed, they are space separated. For
1275example:
1276
1277.. code-block:: llvm
1278
1279 define void @f() noinline { ... }
1280 define void @f() alwaysinline { ... }
1281 define void @f() alwaysinline optsize { ... }
1282 define void @f() optsize { ... }
1283
Sean Silvab084af42012-12-07 10:36:55 +00001284``alignstack(<n>)``
1285 This attribute indicates that, when emitting the prologue and
1286 epilogue, the backend should forcibly align the stack pointer.
1287 Specify the desired alignment, which must be a power of two, in
1288 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001289``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1290 This attribute indicates that the annotated function will always return at
1291 least a given number of bytes (or null). Its arguments are zero-indexed
1292 parameter numbers; if one argument is provided, then it's assumed that at
1293 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1294 returned pointer. If two are provided, then it's assumed that
1295 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1296 available. The referenced parameters must be integer types. No assumptions
1297 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001298``alwaysinline``
1299 This attribute indicates that the inliner should attempt to inline
1300 this function into callers whenever possible, ignoring any active
1301 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001302``builtin``
1303 This indicates that the callee function at a call site should be
1304 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001305 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001306 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001307 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001308``cold``
1309 This attribute indicates that this function is rarely called. When
1310 computing edge weights, basic blocks post-dominated by a cold
1311 function call are also considered to be cold; and, thus, given low
1312 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001313``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001314 In some parallel execution models, there exist operations that cannot be
1315 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001316 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001317
Justin Lebar58535b12016-02-17 17:46:41 +00001318 The ``convergent`` attribute may appear on functions or call/invoke
1319 instructions. When it appears on a function, it indicates that calls to
1320 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001321 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001322 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001323 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001324
Justin Lebar58535b12016-02-17 17:46:41 +00001325 When it appears on a call/invoke, the ``convergent`` attribute indicates
1326 that we should treat the call as though we're calling a convergent
1327 function. This is particularly useful on indirect calls; without this we
1328 may treat such calls as though the target is non-convergent.
1329
1330 The optimizer may remove the ``convergent`` attribute on functions when it
1331 can prove that the function does not execute any convergent operations.
1332 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1333 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001334``inaccessiblememonly``
1335 This attribute indicates that the function may only access memory that
1336 is not accessible by the module being compiled. This is a weaker form
1337 of ``readnone``.
1338``inaccessiblemem_or_argmemonly``
1339 This attribute indicates that the function may only access memory that is
1340 either not accessible by the module being compiled, or is pointed to
1341 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001342``inlinehint``
1343 This attribute indicates that the source code contained a hint that
1344 inlining this function is desirable (such as the "inline" keyword in
1345 C/C++). It is just a hint; it imposes no requirements on the
1346 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001347``jumptable``
1348 This attribute indicates that the function should be added to a
1349 jump-instruction table at code-generation time, and that all address-taken
1350 references to this function should be replaced with a reference to the
1351 appropriate jump-instruction-table function pointer. Note that this creates
1352 a new pointer for the original function, which means that code that depends
1353 on function-pointer identity can break. So, any function annotated with
1354 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001355``minsize``
1356 This attribute suggests that optimization passes and code generator
1357 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001358 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001359 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001360``naked``
1361 This attribute disables prologue / epilogue emission for the
1362 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001363``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001364 This indicates that the callee function at a call site is not recognized as
1365 a built-in function. LLVM will retain the original call and not replace it
1366 with equivalent code based on the semantics of the built-in function, unless
1367 the call site uses the ``builtin`` attribute. This is valid at call sites
1368 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001369``noduplicate``
1370 This attribute indicates that calls to the function cannot be
1371 duplicated. A call to a ``noduplicate`` function may be moved
1372 within its parent function, but may not be duplicated within
1373 its parent function.
1374
1375 A function containing a ``noduplicate`` call may still
1376 be an inlining candidate, provided that the call is not
1377 duplicated by inlining. That implies that the function has
1378 internal linkage and only has one call site, so the original
1379 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001380``noimplicitfloat``
1381 This attributes disables implicit floating point instructions.
1382``noinline``
1383 This attribute indicates that the inliner should never inline this
1384 function in any situation. This attribute may not be used together
1385 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001386``nonlazybind``
1387 This attribute suppresses lazy symbol binding for the function. This
1388 may make calls to the function faster, at the cost of extra program
1389 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001390``noredzone``
1391 This attribute indicates that the code generator should not use a
1392 red zone, even if the target-specific ABI normally permits it.
1393``noreturn``
1394 This function attribute indicates that the function never returns
1395 normally. This produces undefined behavior at runtime if the
1396 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001397``norecurse``
1398 This function attribute indicates that the function does not call itself
1399 either directly or indirectly down any possible call path. This produces
1400 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001401``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001402 This function attribute indicates that the function never raises an
1403 exception. If the function does raise an exception, its runtime
1404 behavior is undefined. However, functions marked nounwind may still
1405 trap or generate asynchronous exceptions. Exception handling schemes
1406 that are recognized by LLVM to handle asynchronous exceptions, such
1407 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001408``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001409 This function attribute indicates that most optimization passes will skip
1410 this function, with the exception of interprocedural optimization passes.
1411 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001412 This attribute cannot be used together with the ``alwaysinline``
1413 attribute; this attribute is also incompatible
1414 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001415
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001416 This attribute requires the ``noinline`` attribute to be specified on
1417 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001418 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001419 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001420``optsize``
1421 This attribute suggests that optimization passes and code generator
1422 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001423 and otherwise do optimizations specifically to reduce code size as
1424 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001425``"patchable-function"``
1426 This attribute tells the code generator that the code
1427 generated for this function needs to follow certain conventions that
1428 make it possible for a runtime function to patch over it later.
1429 The exact effect of this attribute depends on its string value,
Sylvestre Ledru7d540502016-07-02 19:28:40 +00001430 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001431
1432 * ``"prologue-short-redirect"`` - This style of patchable
1433 function is intended to support patching a function prologue to
1434 redirect control away from the function in a thread safe
1435 manner. It guarantees that the first instruction of the
1436 function will be large enough to accommodate a short jump
1437 instruction, and will be sufficiently aligned to allow being
1438 fully changed via an atomic compare-and-swap instruction.
1439 While the first requirement can be satisfied by inserting large
1440 enough NOP, LLVM can and will try to re-purpose an existing
1441 instruction (i.e. one that would have to be emitted anyway) as
1442 the patchable instruction larger than a short jump.
1443
1444 ``"prologue-short-redirect"`` is currently only supported on
1445 x86-64.
1446
1447 This attribute by itself does not imply restrictions on
1448 inter-procedural optimizations. All of the semantic effects the
1449 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001450``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001451 On a function, this attribute indicates that the function computes its
1452 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001453 without dereferencing any pointer arguments or otherwise accessing
1454 any mutable state (e.g. memory, control registers, etc) visible to
1455 caller functions. It does not write through any pointer arguments
1456 (including ``byval`` arguments) and never changes any state visible
1457 to callers. This means that it cannot unwind exceptions by calling
1458 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001459
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001460 On an argument, this attribute indicates that the function does not
1461 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001462 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001463``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001464 On a function, this attribute indicates that the function does not write
1465 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001466 modify any state (e.g. memory, control registers, etc) visible to
1467 caller functions. It may dereference pointer arguments and read
1468 state that may be set in the caller. A readonly function always
1469 returns the same value (or unwinds an exception identically) when
1470 called with the same set of arguments and global state. It cannot
1471 unwind an exception by calling the ``C++`` exception throwing
1472 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001473
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001474 On an argument, this attribute indicates that the function does not write
1475 through this pointer argument, even though it may write to the memory that
1476 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001477``writeonly``
1478 On a function, this attribute indicates that the function may write to but
1479 does not read from memory.
1480
1481 On an argument, this attribute indicates that the function may write to but
1482 does not read through this pointer argument (even though it may read from
1483 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001484``argmemonly``
1485 This attribute indicates that the only memory accesses inside function are
1486 loads and stores from objects pointed to by its pointer-typed arguments,
1487 with arbitrary offsets. Or in other words, all memory operations in the
1488 function can refer to memory only using pointers based on its function
1489 arguments.
1490 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1491 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001492``returns_twice``
1493 This attribute indicates that this function can return twice. The C
1494 ``setjmp`` is an example of such a function. The compiler disables
1495 some optimizations (like tail calls) in the caller of these
1496 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001497``safestack``
1498 This attribute indicates that
1499 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1500 protection is enabled for this function.
1501
1502 If a function that has a ``safestack`` attribute is inlined into a
1503 function that doesn't have a ``safestack`` attribute or which has an
1504 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1505 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001506``sanitize_address``
1507 This attribute indicates that AddressSanitizer checks
1508 (dynamic address safety analysis) are enabled for this function.
1509``sanitize_memory``
1510 This attribute indicates that MemorySanitizer checks (dynamic detection
1511 of accesses to uninitialized memory) are enabled for this function.
1512``sanitize_thread``
1513 This attribute indicates that ThreadSanitizer checks
1514 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001515``ssp``
1516 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001517 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001518 placed on the stack before the local variables that's checked upon
1519 return from the function to see if it has been overwritten. A
1520 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001521 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001522
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001523 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1524 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1525 - Calls to alloca() with variable sizes or constant sizes greater than
1526 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001527
Josh Magee24c7f062014-02-01 01:36:16 +00001528 Variables that are identified as requiring a protector will be arranged
1529 on the stack such that they are adjacent to the stack protector guard.
1530
Sean Silvab084af42012-12-07 10:36:55 +00001531 If a function that has an ``ssp`` attribute is inlined into a
1532 function that doesn't have an ``ssp`` attribute, then the resulting
1533 function will have an ``ssp`` attribute.
1534``sspreq``
1535 This attribute indicates that the function should *always* emit a
1536 stack smashing protector. This overrides the ``ssp`` function
1537 attribute.
1538
Josh Magee24c7f062014-02-01 01:36:16 +00001539 Variables that are identified as requiring a protector will be arranged
1540 on the stack such that they are adjacent to the stack protector guard.
1541 The specific layout rules are:
1542
1543 #. Large arrays and structures containing large arrays
1544 (``>= ssp-buffer-size``) are closest to the stack protector.
1545 #. Small arrays and structures containing small arrays
1546 (``< ssp-buffer-size``) are 2nd closest to the protector.
1547 #. Variables that have had their address taken are 3rd closest to the
1548 protector.
1549
Sean Silvab084af42012-12-07 10:36:55 +00001550 If a function that has an ``sspreq`` attribute is inlined into a
1551 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001552 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1553 an ``sspreq`` attribute.
1554``sspstrong``
1555 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001556 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001557 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001558 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001559
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001560 - Arrays of any size and type
1561 - Aggregates containing an array of any size and type.
1562 - Calls to alloca().
1563 - Local variables that have had their address taken.
1564
Josh Magee24c7f062014-02-01 01:36:16 +00001565 Variables that are identified as requiring a protector will be arranged
1566 on the stack such that they are adjacent to the stack protector guard.
1567 The specific layout rules are:
1568
1569 #. Large arrays and structures containing large arrays
1570 (``>= ssp-buffer-size``) are closest to the stack protector.
1571 #. Small arrays and structures containing small arrays
1572 (``< ssp-buffer-size``) are 2nd closest to the protector.
1573 #. Variables that have had their address taken are 3rd closest to the
1574 protector.
1575
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001576 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001577
1578 If a function that has an ``sspstrong`` attribute is inlined into a
1579 function that doesn't have an ``sspstrong`` attribute, then the
1580 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001581``"thunk"``
1582 This attribute indicates that the function will delegate to some other
1583 function with a tail call. The prototype of a thunk should not be used for
1584 optimization purposes. The caller is expected to cast the thunk prototype to
1585 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001586``uwtable``
1587 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001588 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001589 show that no exceptions passes by it. This is normally the case for
1590 the ELF x86-64 abi, but it can be disabled for some compilation
1591 units.
Sean Silvab084af42012-12-07 10:36:55 +00001592
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001593
1594.. _opbundles:
1595
1596Operand Bundles
1597---------------
1598
1599Note: operand bundles are a work in progress, and they should be
1600considered experimental at this time.
1601
1602Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001603with certain LLVM instructions (currently only ``call`` s and
1604``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001605incorrect and will change program semantics.
1606
1607Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001608
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001609 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001610 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1611 bundle operand ::= SSA value
1612 tag ::= string constant
1613
1614Operand bundles are **not** part of a function's signature, and a
1615given function may be called from multiple places with different kinds
1616of operand bundles. This reflects the fact that the operand bundles
1617are conceptually a part of the ``call`` (or ``invoke``), not the
1618callee being dispatched to.
1619
1620Operand bundles are a generic mechanism intended to support
1621runtime-introspection-like functionality for managed languages. While
1622the exact semantics of an operand bundle depend on the bundle tag,
1623there are certain limitations to how much the presence of an operand
1624bundle can influence the semantics of a program. These restrictions
1625are described as the semantics of an "unknown" operand bundle. As
1626long as the behavior of an operand bundle is describable within these
1627restrictions, LLVM does not need to have special knowledge of the
1628operand bundle to not miscompile programs containing it.
1629
David Majnemer34cacb42015-10-22 01:46:38 +00001630- The bundle operands for an unknown operand bundle escape in unknown
1631 ways before control is transferred to the callee or invokee.
1632- Calls and invokes with operand bundles have unknown read / write
1633 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001634 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001635 callsite specific attributes.
1636- An operand bundle at a call site cannot change the implementation
1637 of the called function. Inter-procedural optimizations work as
1638 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001639
Sanjoy Dascdafd842015-11-11 21:38:02 +00001640More specific types of operand bundles are described below.
1641
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001642.. _deopt_opbundles:
1643
Sanjoy Dascdafd842015-11-11 21:38:02 +00001644Deoptimization Operand Bundles
1645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1646
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001647Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001648operand bundle tag. These operand bundles represent an alternate
1649"safe" continuation for the call site they're attached to, and can be
1650used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001651specified call site. There can be at most one ``"deopt"`` operand
1652bundle attached to a call site. Exact details of deoptimization is
1653out of scope for the language reference, but it usually involves
1654rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001655
1656From the compiler's perspective, deoptimization operand bundles make
1657the call sites they're attached to at least ``readonly``. They read
1658through all of their pointer typed operands (even if they're not
1659otherwise escaped) and the entire visible heap. Deoptimization
1660operand bundles do not capture their operands except during
1661deoptimization, in which case control will not be returned to the
1662compiled frame.
1663
Sanjoy Das2d161452015-11-18 06:23:38 +00001664The inliner knows how to inline through calls that have deoptimization
1665operand bundles. Just like inlining through a normal call site
1666involves composing the normal and exceptional continuations, inlining
1667through a call site with a deoptimization operand bundle needs to
1668appropriately compose the "safe" deoptimization continuation. The
1669inliner does this by prepending the parent's deoptimization
1670continuation to every deoptimization continuation in the inlined body.
1671E.g. inlining ``@f`` into ``@g`` in the following example
1672
1673.. code-block:: llvm
1674
1675 define void @f() {
1676 call void @x() ;; no deopt state
1677 call void @y() [ "deopt"(i32 10) ]
1678 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1679 ret void
1680 }
1681
1682 define void @g() {
1683 call void @f() [ "deopt"(i32 20) ]
1684 ret void
1685 }
1686
1687will result in
1688
1689.. code-block:: llvm
1690
1691 define void @g() {
1692 call void @x() ;; still no deopt state
1693 call void @y() [ "deopt"(i32 20, i32 10) ]
1694 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1695 ret void
1696 }
1697
1698It is the frontend's responsibility to structure or encode the
1699deoptimization state in a way that syntactically prepending the
1700caller's deoptimization state to the callee's deoptimization state is
1701semantically equivalent to composing the caller's deoptimization
1702continuation after the callee's deoptimization continuation.
1703
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001704.. _ob_funclet:
1705
David Majnemer3bb88c02015-12-15 21:27:27 +00001706Funclet Operand Bundles
1707^^^^^^^^^^^^^^^^^^^^^^^
1708
1709Funclet operand bundles are characterized by the ``"funclet"``
1710operand bundle tag. These operand bundles indicate that a call site
1711is within a particular funclet. There can be at most one
1712``"funclet"`` operand bundle attached to a call site and it must have
1713exactly one bundle operand.
1714
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001715If any funclet EH pads have been "entered" but not "exited" (per the
1716`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1717it is undefined behavior to execute a ``call`` or ``invoke`` which:
1718
1719* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1720 intrinsic, or
1721* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1722 not-yet-exited funclet EH pad.
1723
1724Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1725executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1726
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001727GC Transition Operand Bundles
1728^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1729
1730GC transition operand bundles are characterized by the
1731``"gc-transition"`` operand bundle tag. These operand bundles mark a
1732call as a transition between a function with one GC strategy to a
1733function with a different GC strategy. If coordinating the transition
1734between GC strategies requires additional code generation at the call
1735site, these bundles may contain any values that are needed by the
1736generated code. For more details, see :ref:`GC Transitions
1737<gc_transition_args>`.
1738
Sean Silvab084af42012-12-07 10:36:55 +00001739.. _moduleasm:
1740
1741Module-Level Inline Assembly
1742----------------------------
1743
1744Modules may contain "module-level inline asm" blocks, which corresponds
1745to the GCC "file scope inline asm" blocks. These blocks are internally
1746concatenated by LLVM and treated as a single unit, but may be separated
1747in the ``.ll`` file if desired. The syntax is very simple:
1748
1749.. code-block:: llvm
1750
1751 module asm "inline asm code goes here"
1752 module asm "more can go here"
1753
1754The strings can contain any character by escaping non-printable
1755characters. The escape sequence used is simply "\\xx" where "xx" is the
1756two digit hex code for the number.
1757
James Y Knightbc832ed2015-07-08 18:08:36 +00001758Note that the assembly string *must* be parseable by LLVM's integrated assembler
1759(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001760
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001761.. _langref_datalayout:
1762
Sean Silvab084af42012-12-07 10:36:55 +00001763Data Layout
1764-----------
1765
1766A module may specify a target specific data layout string that specifies
1767how data is to be laid out in memory. The syntax for the data layout is
1768simply:
1769
1770.. code-block:: llvm
1771
1772 target datalayout = "layout specification"
1773
1774The *layout specification* consists of a list of specifications
1775separated by the minus sign character ('-'). Each specification starts
1776with a letter and may include other information after the letter to
1777define some aspect of the data layout. The specifications accepted are
1778as follows:
1779
1780``E``
1781 Specifies that the target lays out data in big-endian form. That is,
1782 the bits with the most significance have the lowest address
1783 location.
1784``e``
1785 Specifies that the target lays out data in little-endian form. That
1786 is, the bits with the least significance have the lowest address
1787 location.
1788``S<size>``
1789 Specifies the natural alignment of the stack in bits. Alignment
1790 promotion of stack variables is limited to the natural stack
1791 alignment to avoid dynamic stack realignment. The stack alignment
1792 must be a multiple of 8-bits. If omitted, the natural stack
1793 alignment defaults to "unspecified", which does not prevent any
1794 alignment promotions.
1795``p[n]:<size>:<abi>:<pref>``
1796 This specifies the *size* of a pointer and its ``<abi>`` and
1797 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001798 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001799 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001800 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001801``i<size>:<abi>:<pref>``
1802 This specifies the alignment for an integer type of a given bit
1803 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1804``v<size>:<abi>:<pref>``
1805 This specifies the alignment for a vector type of a given bit
1806 ``<size>``.
1807``f<size>:<abi>:<pref>``
1808 This specifies the alignment for a floating point type of a given bit
1809 ``<size>``. Only values of ``<size>`` that are supported by the target
1810 will work. 32 (float) and 64 (double) are supported on all targets; 80
1811 or 128 (different flavors of long double) are also supported on some
1812 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001813``a:<abi>:<pref>``
1814 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001815``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001816 If present, specifies that llvm names are mangled in the output. The
1817 options are
1818
1819 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1820 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1821 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1822 symbols get a ``_`` prefix.
1823 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1824 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001825 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1826 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001827``n<size1>:<size2>:<size3>...``
1828 This specifies a set of native integer widths for the target CPU in
1829 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1830 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1831 this set are considered to support most general arithmetic operations
1832 efficiently.
1833
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001834On every specification that takes a ``<abi>:<pref>``, specifying the
1835``<pref>`` alignment is optional. If omitted, the preceding ``:``
1836should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1837
Sean Silvab084af42012-12-07 10:36:55 +00001838When constructing the data layout for a given target, LLVM starts with a
1839default set of specifications which are then (possibly) overridden by
1840the specifications in the ``datalayout`` keyword. The default
1841specifications are given in this list:
1842
1843- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001844- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1845- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1846 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001847- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001848- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1849- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1850- ``i16:16:16`` - i16 is 16-bit aligned
1851- ``i32:32:32`` - i32 is 32-bit aligned
1852- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1853 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001854- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001855- ``f32:32:32`` - float is 32-bit aligned
1856- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001857- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001858- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1859- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001860- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001861
1862When LLVM is determining the alignment for a given type, it uses the
1863following rules:
1864
1865#. If the type sought is an exact match for one of the specifications,
1866 that specification is used.
1867#. If no match is found, and the type sought is an integer type, then
1868 the smallest integer type that is larger than the bitwidth of the
1869 sought type is used. If none of the specifications are larger than
1870 the bitwidth then the largest integer type is used. For example,
1871 given the default specifications above, the i7 type will use the
1872 alignment of i8 (next largest) while both i65 and i256 will use the
1873 alignment of i64 (largest specified).
1874#. If no match is found, and the type sought is a vector type, then the
1875 largest vector type that is smaller than the sought vector type will
1876 be used as a fall back. This happens because <128 x double> can be
1877 implemented in terms of 64 <2 x double>, for example.
1878
1879The function of the data layout string may not be what you expect.
1880Notably, this is not a specification from the frontend of what alignment
1881the code generator should use.
1882
1883Instead, if specified, the target data layout is required to match what
1884the ultimate *code generator* expects. This string is used by the
1885mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001886what the ultimate code generator uses. There is no way to generate IR
1887that does not embed this target-specific detail into the IR. If you
1888don't specify the string, the default specifications will be used to
1889generate a Data Layout and the optimization phases will operate
1890accordingly and introduce target specificity into the IR with respect to
1891these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001892
Bill Wendling5cc90842013-10-18 23:41:25 +00001893.. _langref_triple:
1894
1895Target Triple
1896-------------
1897
1898A module may specify a target triple string that describes the target
1899host. The syntax for the target triple is simply:
1900
1901.. code-block:: llvm
1902
1903 target triple = "x86_64-apple-macosx10.7.0"
1904
1905The *target triple* string consists of a series of identifiers delimited
1906by the minus sign character ('-'). The canonical forms are:
1907
1908::
1909
1910 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1911 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1912
1913This information is passed along to the backend so that it generates
1914code for the proper architecture. It's possible to override this on the
1915command line with the ``-mtriple`` command line option.
1916
Sean Silvab084af42012-12-07 10:36:55 +00001917.. _pointeraliasing:
1918
1919Pointer Aliasing Rules
1920----------------------
1921
1922Any memory access must be done through a pointer value associated with
1923an address range of the memory access, otherwise the behavior is
1924undefined. Pointer values are associated with address ranges according
1925to the following rules:
1926
1927- A pointer value is associated with the addresses associated with any
1928 value it is *based* on.
1929- An address of a global variable is associated with the address range
1930 of the variable's storage.
1931- The result value of an allocation instruction is associated with the
1932 address range of the allocated storage.
1933- A null pointer in the default address-space is associated with no
1934 address.
1935- An integer constant other than zero or a pointer value returned from
1936 a function not defined within LLVM may be associated with address
1937 ranges allocated through mechanisms other than those provided by
1938 LLVM. Such ranges shall not overlap with any ranges of addresses
1939 allocated by mechanisms provided by LLVM.
1940
1941A pointer value is *based* on another pointer value according to the
1942following rules:
1943
1944- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001945 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001946- The result value of a ``bitcast`` is *based* on the operand of the
1947 ``bitcast``.
1948- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1949 values that contribute (directly or indirectly) to the computation of
1950 the pointer's value.
1951- The "*based* on" relationship is transitive.
1952
1953Note that this definition of *"based"* is intentionally similar to the
1954definition of *"based"* in C99, though it is slightly weaker.
1955
1956LLVM IR does not associate types with memory. The result type of a
1957``load`` merely indicates the size and alignment of the memory from
1958which to load, as well as the interpretation of the value. The first
1959operand type of a ``store`` similarly only indicates the size and
1960alignment of the store.
1961
1962Consequently, type-based alias analysis, aka TBAA, aka
1963``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1964:ref:`Metadata <metadata>` may be used to encode additional information
1965which specialized optimization passes may use to implement type-based
1966alias analysis.
1967
1968.. _volatile:
1969
1970Volatile Memory Accesses
1971------------------------
1972
1973Certain memory accesses, such as :ref:`load <i_load>`'s,
1974:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1975marked ``volatile``. The optimizers must not change the number of
1976volatile operations or change their order of execution relative to other
1977volatile operations. The optimizers *may* change the order of volatile
1978operations relative to non-volatile operations. This is not Java's
1979"volatile" and has no cross-thread synchronization behavior.
1980
Andrew Trick89fc5a62013-01-30 21:19:35 +00001981IR-level volatile loads and stores cannot safely be optimized into
1982llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1983flagged volatile. Likewise, the backend should never split or merge
1984target-legal volatile load/store instructions.
1985
Andrew Trick7e6f9282013-01-31 00:49:39 +00001986.. admonition:: Rationale
1987
1988 Platforms may rely on volatile loads and stores of natively supported
1989 data width to be executed as single instruction. For example, in C
1990 this holds for an l-value of volatile primitive type with native
1991 hardware support, but not necessarily for aggregate types. The
1992 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001993 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001994 do not violate the frontend's contract with the language.
1995
Sean Silvab084af42012-12-07 10:36:55 +00001996.. _memmodel:
1997
1998Memory Model for Concurrent Operations
1999--------------------------------------
2000
2001The LLVM IR does not define any way to start parallel threads of
2002execution or to register signal handlers. Nonetheless, there are
2003platform-specific ways to create them, and we define LLVM IR's behavior
2004in their presence. This model is inspired by the C++0x memory model.
2005
2006For a more informal introduction to this model, see the :doc:`Atomics`.
2007
2008We define a *happens-before* partial order as the least partial order
2009that
2010
2011- Is a superset of single-thread program order, and
2012- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2013 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2014 techniques, like pthread locks, thread creation, thread joining,
2015 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2016 Constraints <ordering>`).
2017
2018Note that program order does not introduce *happens-before* edges
2019between a thread and signals executing inside that thread.
2020
2021Every (defined) read operation (load instructions, memcpy, atomic
2022loads/read-modify-writes, etc.) R reads a series of bytes written by
2023(defined) write operations (store instructions, atomic
2024stores/read-modify-writes, memcpy, etc.). For the purposes of this
2025section, initialized globals are considered to have a write of the
2026initializer which is atomic and happens before any other read or write
2027of the memory in question. For each byte of a read R, R\ :sub:`byte`
2028may see any write to the same byte, except:
2029
2030- If write\ :sub:`1` happens before write\ :sub:`2`, and
2031 write\ :sub:`2` happens before R\ :sub:`byte`, then
2032 R\ :sub:`byte` does not see write\ :sub:`1`.
2033- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2034 R\ :sub:`byte` does not see write\ :sub:`3`.
2035
2036Given that definition, R\ :sub:`byte` is defined as follows:
2037
2038- If R is volatile, the result is target-dependent. (Volatile is
2039 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002040 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002041 like normal memory. It does not generally provide cross-thread
2042 synchronization.)
2043- Otherwise, if there is no write to the same byte that happens before
2044 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2045- Otherwise, if R\ :sub:`byte` may see exactly one write,
2046 R\ :sub:`byte` returns the value written by that write.
2047- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2048 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2049 Memory Ordering Constraints <ordering>` section for additional
2050 constraints on how the choice is made.
2051- Otherwise R\ :sub:`byte` returns ``undef``.
2052
2053R returns the value composed of the series of bytes it read. This
2054implies that some bytes within the value may be ``undef`` **without**
2055the entire value being ``undef``. Note that this only defines the
2056semantics of the operation; it doesn't mean that targets will emit more
2057than one instruction to read the series of bytes.
2058
2059Note that in cases where none of the atomic intrinsics are used, this
2060model places only one restriction on IR transformations on top of what
2061is required for single-threaded execution: introducing a store to a byte
2062which might not otherwise be stored is not allowed in general.
2063(Specifically, in the case where another thread might write to and read
2064from an address, introducing a store can change a load that may see
2065exactly one write into a load that may see multiple writes.)
2066
2067.. _ordering:
2068
2069Atomic Memory Ordering Constraints
2070----------------------------------
2071
2072Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2073:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2074:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002075ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002076the same address they *synchronize with*. These semantics are borrowed
2077from Java and C++0x, but are somewhat more colloquial. If these
2078descriptions aren't precise enough, check those specs (see spec
2079references in the :doc:`atomics guide <Atomics>`).
2080:ref:`fence <i_fence>` instructions treat these orderings somewhat
2081differently since they don't take an address. See that instruction's
2082documentation for details.
2083
2084For a simpler introduction to the ordering constraints, see the
2085:doc:`Atomics`.
2086
2087``unordered``
2088 The set of values that can be read is governed by the happens-before
2089 partial order. A value cannot be read unless some operation wrote
2090 it. This is intended to provide a guarantee strong enough to model
2091 Java's non-volatile shared variables. This ordering cannot be
2092 specified for read-modify-write operations; it is not strong enough
2093 to make them atomic in any interesting way.
2094``monotonic``
2095 In addition to the guarantees of ``unordered``, there is a single
2096 total order for modifications by ``monotonic`` operations on each
2097 address. All modification orders must be compatible with the
2098 happens-before order. There is no guarantee that the modification
2099 orders can be combined to a global total order for the whole program
2100 (and this often will not be possible). The read in an atomic
2101 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2102 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2103 order immediately before the value it writes. If one atomic read
2104 happens before another atomic read of the same address, the later
2105 read must see the same value or a later value in the address's
2106 modification order. This disallows reordering of ``monotonic`` (or
2107 stronger) operations on the same address. If an address is written
2108 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2109 read that address repeatedly, the other threads must eventually see
2110 the write. This corresponds to the C++0x/C1x
2111 ``memory_order_relaxed``.
2112``acquire``
2113 In addition to the guarantees of ``monotonic``, a
2114 *synchronizes-with* edge may be formed with a ``release`` operation.
2115 This is intended to model C++'s ``memory_order_acquire``.
2116``release``
2117 In addition to the guarantees of ``monotonic``, if this operation
2118 writes a value which is subsequently read by an ``acquire``
2119 operation, it *synchronizes-with* that operation. (This isn't a
2120 complete description; see the C++0x definition of a release
2121 sequence.) This corresponds to the C++0x/C1x
2122 ``memory_order_release``.
2123``acq_rel`` (acquire+release)
2124 Acts as both an ``acquire`` and ``release`` operation on its
2125 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2126``seq_cst`` (sequentially consistent)
2127 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002128 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002129 writes), there is a global total order on all
2130 sequentially-consistent operations on all addresses, which is
2131 consistent with the *happens-before* partial order and with the
2132 modification orders of all the affected addresses. Each
2133 sequentially-consistent read sees the last preceding write to the
2134 same address in this global order. This corresponds to the C++0x/C1x
2135 ``memory_order_seq_cst`` and Java volatile.
2136
2137.. _singlethread:
2138
2139If an atomic operation is marked ``singlethread``, it only *synchronizes
2140with* or participates in modification and seq\_cst total orderings with
2141other operations running in the same thread (for example, in signal
2142handlers).
2143
2144.. _fastmath:
2145
2146Fast-Math Flags
2147---------------
2148
2149LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2150:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002151:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2152be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002153
2154``nnan``
2155 No NaNs - Allow optimizations to assume the arguments and result are not
2156 NaN. Such optimizations are required to retain defined behavior over
2157 NaNs, but the value of the result is undefined.
2158
2159``ninf``
2160 No Infs - Allow optimizations to assume the arguments and result are not
2161 +/-Inf. Such optimizations are required to retain defined behavior over
2162 +/-Inf, but the value of the result is undefined.
2163
2164``nsz``
2165 No Signed Zeros - Allow optimizations to treat the sign of a zero
2166 argument or result as insignificant.
2167
2168``arcp``
2169 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2170 argument rather than perform division.
2171
2172``fast``
2173 Fast - Allow algebraically equivalent transformations that may
2174 dramatically change results in floating point (e.g. reassociate). This
2175 flag implies all the others.
2176
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002177.. _uselistorder:
2178
2179Use-list Order Directives
2180-------------------------
2181
2182Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002183order to be recreated. ``<order-indexes>`` is a comma-separated list of
2184indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002185value's use-list is immediately sorted by these indexes.
2186
Sean Silvaa1190322015-08-06 22:56:48 +00002187Use-list directives may appear at function scope or global scope. They are not
2188instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002189function scope, they must appear after the terminator of the final basic block.
2190
2191If basic blocks have their address taken via ``blockaddress()`` expressions,
2192``uselistorder_bb`` can be used to reorder their use-lists from outside their
2193function's scope.
2194
2195:Syntax:
2196
2197::
2198
2199 uselistorder <ty> <value>, { <order-indexes> }
2200 uselistorder_bb @function, %block { <order-indexes> }
2201
2202:Examples:
2203
2204::
2205
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002206 define void @foo(i32 %arg1, i32 %arg2) {
2207 entry:
2208 ; ... instructions ...
2209 bb:
2210 ; ... instructions ...
2211
2212 ; At function scope.
2213 uselistorder i32 %arg1, { 1, 0, 2 }
2214 uselistorder label %bb, { 1, 0 }
2215 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002216
2217 ; At global scope.
2218 uselistorder i32* @global, { 1, 2, 0 }
2219 uselistorder i32 7, { 1, 0 }
2220 uselistorder i32 (i32) @bar, { 1, 0 }
2221 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2222
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002223.. _source_filename:
2224
2225Source Filename
2226---------------
2227
2228The *source filename* string is set to the original module identifier,
2229which will be the name of the compiled source file when compiling from
2230source through the clang front end, for example. It is then preserved through
2231the IR and bitcode.
2232
2233This is currently necessary to generate a consistent unique global
2234identifier for local functions used in profile data, which prepends the
2235source file name to the local function name.
2236
2237The syntax for the source file name is simply:
2238
2239.. code-block:: llvm
2240
2241 source_filename = "/path/to/source.c"
2242
Sean Silvab084af42012-12-07 10:36:55 +00002243.. _typesystem:
2244
2245Type System
2246===========
2247
2248The LLVM type system is one of the most important features of the
2249intermediate representation. Being typed enables a number of
2250optimizations to be performed on the intermediate representation
2251directly, without having to do extra analyses on the side before the
2252transformation. A strong type system makes it easier to read the
2253generated code and enables novel analyses and transformations that are
2254not feasible to perform on normal three address code representations.
2255
Rafael Espindola08013342013-12-07 19:34:20 +00002256.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002257
Rafael Espindola08013342013-12-07 19:34:20 +00002258Void Type
2259---------
Sean Silvab084af42012-12-07 10:36:55 +00002260
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002261:Overview:
2262
Rafael Espindola08013342013-12-07 19:34:20 +00002263
2264The void type does not represent any value and has no size.
2265
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002266:Syntax:
2267
Rafael Espindola08013342013-12-07 19:34:20 +00002268
2269::
2270
2271 void
Sean Silvab084af42012-12-07 10:36:55 +00002272
2273
Rafael Espindola08013342013-12-07 19:34:20 +00002274.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002275
Rafael Espindola08013342013-12-07 19:34:20 +00002276Function Type
2277-------------
Sean Silvab084af42012-12-07 10:36:55 +00002278
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002279:Overview:
2280
Sean Silvab084af42012-12-07 10:36:55 +00002281
Rafael Espindola08013342013-12-07 19:34:20 +00002282The function type can be thought of as a function signature. It consists of a
2283return type and a list of formal parameter types. The return type of a function
2284type is a void type or first class type --- except for :ref:`label <t_label>`
2285and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002286
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002287:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002288
Rafael Espindola08013342013-12-07 19:34:20 +00002289::
Sean Silvab084af42012-12-07 10:36:55 +00002290
Rafael Espindola08013342013-12-07 19:34:20 +00002291 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002292
Rafael Espindola08013342013-12-07 19:34:20 +00002293...where '``<parameter list>``' is a comma-separated list of type
2294specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002295indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002296argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002297handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002298except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002299
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002300:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002301
Rafael Espindola08013342013-12-07 19:34:20 +00002302+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2303| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2304+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2305| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2306+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2307| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2308+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2309| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2310+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2311
2312.. _t_firstclass:
2313
2314First Class Types
2315-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002316
2317The :ref:`first class <t_firstclass>` types are perhaps the most important.
2318Values of these types are the only ones which can be produced by
2319instructions.
2320
Rafael Espindola08013342013-12-07 19:34:20 +00002321.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002322
Rafael Espindola08013342013-12-07 19:34:20 +00002323Single Value Types
2324^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002325
Rafael Espindola08013342013-12-07 19:34:20 +00002326These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002327
2328.. _t_integer:
2329
2330Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002331""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002332
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002333:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002334
2335The integer type is a very simple type that simply specifies an
2336arbitrary bit width for the integer type desired. Any bit width from 1
2337bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2338
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002339:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002340
2341::
2342
2343 iN
2344
2345The number of bits the integer will occupy is specified by the ``N``
2346value.
2347
2348Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002349*********
Sean Silvab084af42012-12-07 10:36:55 +00002350
2351+----------------+------------------------------------------------+
2352| ``i1`` | a single-bit integer. |
2353+----------------+------------------------------------------------+
2354| ``i32`` | a 32-bit integer. |
2355+----------------+------------------------------------------------+
2356| ``i1942652`` | a really big integer of over 1 million bits. |
2357+----------------+------------------------------------------------+
2358
2359.. _t_floating:
2360
2361Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002362""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002363
2364.. list-table::
2365 :header-rows: 1
2366
2367 * - Type
2368 - Description
2369
2370 * - ``half``
2371 - 16-bit floating point value
2372
2373 * - ``float``
2374 - 32-bit floating point value
2375
2376 * - ``double``
2377 - 64-bit floating point value
2378
2379 * - ``fp128``
2380 - 128-bit floating point value (112-bit mantissa)
2381
2382 * - ``x86_fp80``
2383 - 80-bit floating point value (X87)
2384
2385 * - ``ppc_fp128``
2386 - 128-bit floating point value (two 64-bits)
2387
Reid Kleckner9a16d082014-03-05 02:41:37 +00002388X86_mmx Type
2389""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002390
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002391:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002392
Reid Kleckner9a16d082014-03-05 02:41:37 +00002393The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002394machine. The operations allowed on it are quite limited: parameters and
2395return values, load and store, and bitcast. User-specified MMX
2396instructions are represented as intrinsic or asm calls with arguments
2397and/or results of this type. There are no arrays, vectors or constants
2398of this type.
2399
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002400:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002401
2402::
2403
Reid Kleckner9a16d082014-03-05 02:41:37 +00002404 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002405
Sean Silvab084af42012-12-07 10:36:55 +00002406
Rafael Espindola08013342013-12-07 19:34:20 +00002407.. _t_pointer:
2408
2409Pointer Type
2410""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002411
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002412:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002413
Rafael Espindola08013342013-12-07 19:34:20 +00002414The pointer type is used to specify memory locations. Pointers are
2415commonly used to reference objects in memory.
2416
2417Pointer types may have an optional address space attribute defining the
2418numbered address space where the pointed-to object resides. The default
2419address space is number zero. The semantics of non-zero address spaces
2420are target-specific.
2421
2422Note that LLVM does not permit pointers to void (``void*``) nor does it
2423permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002424
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002425:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002426
2427::
2428
Rafael Espindola08013342013-12-07 19:34:20 +00002429 <type> *
2430
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002431:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002432
2433+-------------------------+--------------------------------------------------------------------------------------------------------------+
2434| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2435+-------------------------+--------------------------------------------------------------------------------------------------------------+
2436| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2437+-------------------------+--------------------------------------------------------------------------------------------------------------+
2438| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2439+-------------------------+--------------------------------------------------------------------------------------------------------------+
2440
2441.. _t_vector:
2442
2443Vector Type
2444"""""""""""
2445
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002446:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002447
2448A vector type is a simple derived type that represents a vector of
2449elements. Vector types are used when multiple primitive data are
2450operated in parallel using a single instruction (SIMD). A vector type
2451requires a size (number of elements) and an underlying primitive data
2452type. Vector types are considered :ref:`first class <t_firstclass>`.
2453
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002454:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002455
2456::
2457
2458 < <# elements> x <elementtype> >
2459
2460The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002461elementtype may be any integer, floating point or pointer type. Vectors
2462of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002463
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002464:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002465
2466+-------------------+--------------------------------------------------+
2467| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2468+-------------------+--------------------------------------------------+
2469| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2470+-------------------+--------------------------------------------------+
2471| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2472+-------------------+--------------------------------------------------+
2473| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2474+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002475
2476.. _t_label:
2477
2478Label Type
2479^^^^^^^^^^
2480
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002481:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002482
2483The label type represents code labels.
2484
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002485:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002486
2487::
2488
2489 label
2490
David Majnemerb611e3f2015-08-14 05:09:07 +00002491.. _t_token:
2492
2493Token Type
2494^^^^^^^^^^
2495
2496:Overview:
2497
2498The token type is used when a value is associated with an instruction
2499but all uses of the value must not attempt to introspect or obscure it.
2500As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2501:ref:`select <i_select>` of type token.
2502
2503:Syntax:
2504
2505::
2506
2507 token
2508
2509
2510
Sean Silvab084af42012-12-07 10:36:55 +00002511.. _t_metadata:
2512
2513Metadata Type
2514^^^^^^^^^^^^^
2515
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002516:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002517
2518The metadata type represents embedded metadata. No derived types may be
2519created from metadata except for :ref:`function <t_function>` arguments.
2520
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002521:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002522
2523::
2524
2525 metadata
2526
Sean Silvab084af42012-12-07 10:36:55 +00002527.. _t_aggregate:
2528
2529Aggregate Types
2530^^^^^^^^^^^^^^^
2531
2532Aggregate Types are a subset of derived types that can contain multiple
2533member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2534aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2535aggregate types.
2536
2537.. _t_array:
2538
2539Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002540""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002541
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002542:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002543
2544The array type is a very simple derived type that arranges elements
2545sequentially in memory. The array type requires a size (number of
2546elements) and an underlying data type.
2547
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002548:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002549
2550::
2551
2552 [<# elements> x <elementtype>]
2553
2554The number of elements is a constant integer value; ``elementtype`` may
2555be any type with a size.
2556
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002557:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002558
2559+------------------+--------------------------------------+
2560| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2561+------------------+--------------------------------------+
2562| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2563+------------------+--------------------------------------+
2564| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2565+------------------+--------------------------------------+
2566
2567Here are some examples of multidimensional arrays:
2568
2569+-----------------------------+----------------------------------------------------------+
2570| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2571+-----------------------------+----------------------------------------------------------+
2572| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2573+-----------------------------+----------------------------------------------------------+
2574| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2575+-----------------------------+----------------------------------------------------------+
2576
2577There is no restriction on indexing beyond the end of the array implied
2578by a static type (though there are restrictions on indexing beyond the
2579bounds of an allocated object in some cases). This means that
2580single-dimension 'variable sized array' addressing can be implemented in
2581LLVM with a zero length array type. An implementation of 'pascal style
2582arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2583example.
2584
Sean Silvab084af42012-12-07 10:36:55 +00002585.. _t_struct:
2586
2587Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002588""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002589
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002590:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002591
2592The structure type is used to represent a collection of data members
2593together in memory. The elements of a structure may be any type that has
2594a size.
2595
2596Structures in memory are accessed using '``load``' and '``store``' by
2597getting a pointer to a field with the '``getelementptr``' instruction.
2598Structures in registers are accessed using the '``extractvalue``' and
2599'``insertvalue``' instructions.
2600
2601Structures may optionally be "packed" structures, which indicate that
2602the alignment of the struct is one byte, and that there is no padding
2603between the elements. In non-packed structs, padding between field types
2604is inserted as defined by the DataLayout string in the module, which is
2605required to match what the underlying code generator expects.
2606
2607Structures can either be "literal" or "identified". A literal structure
2608is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2609identified types are always defined at the top level with a name.
2610Literal types are uniqued by their contents and can never be recursive
2611or opaque since there is no way to write one. Identified types can be
2612recursive, can be opaqued, and are never uniqued.
2613
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002614:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002615
2616::
2617
2618 %T1 = type { <type list> } ; Identified normal struct type
2619 %T2 = type <{ <type list> }> ; Identified packed struct type
2620
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002621:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002622
2623+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2624| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2625+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002626| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002627+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2628| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2629+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2630
2631.. _t_opaque:
2632
2633Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002634""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002635
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002636:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002637
2638Opaque structure types are used to represent named structure types that
2639do not have a body specified. This corresponds (for example) to the C
2640notion of a forward declared structure.
2641
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002642:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002643
2644::
2645
2646 %X = type opaque
2647 %52 = type opaque
2648
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002649:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002650
2651+--------------+-------------------+
2652| ``opaque`` | An opaque type. |
2653+--------------+-------------------+
2654
Sean Silva1703e702014-04-08 21:06:22 +00002655.. _constants:
2656
Sean Silvab084af42012-12-07 10:36:55 +00002657Constants
2658=========
2659
2660LLVM has several different basic types of constants. This section
2661describes them all and their syntax.
2662
2663Simple Constants
2664----------------
2665
2666**Boolean constants**
2667 The two strings '``true``' and '``false``' are both valid constants
2668 of the ``i1`` type.
2669**Integer constants**
2670 Standard integers (such as '4') are constants of the
2671 :ref:`integer <t_integer>` type. Negative numbers may be used with
2672 integer types.
2673**Floating point constants**
2674 Floating point constants use standard decimal notation (e.g.
2675 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2676 hexadecimal notation (see below). The assembler requires the exact
2677 decimal value of a floating-point constant. For example, the
2678 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2679 decimal in binary. Floating point constants must have a :ref:`floating
2680 point <t_floating>` type.
2681**Null pointer constants**
2682 The identifier '``null``' is recognized as a null pointer constant
2683 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002684**Token constants**
2685 The identifier '``none``' is recognized as an empty token constant
2686 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002687
2688The one non-intuitive notation for constants is the hexadecimal form of
2689floating point constants. For example, the form
2690'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2691than) '``double 4.5e+15``'. The only time hexadecimal floating point
2692constants are required (and the only time that they are generated by the
2693disassembler) is when a floating point constant must be emitted but it
2694cannot be represented as a decimal floating point number in a reasonable
2695number of digits. For example, NaN's, infinities, and other special
2696values are represented in their IEEE hexadecimal format so that assembly
2697and disassembly do not cause any bits to change in the constants.
2698
2699When using the hexadecimal form, constants of types half, float, and
2700double are represented using the 16-digit form shown above (which
2701matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002702must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002703precision, respectively. Hexadecimal format is always used for long
2704double, and there are three forms of long double. The 80-bit format used
2705by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2706128-bit format used by PowerPC (two adjacent doubles) is represented by
2707``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002708represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2709will only work if they match the long double format on your target.
2710The IEEE 16-bit format (half precision) is represented by ``0xH``
2711followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2712(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002713
Reid Kleckner9a16d082014-03-05 02:41:37 +00002714There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002715
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002716.. _complexconstants:
2717
Sean Silvab084af42012-12-07 10:36:55 +00002718Complex Constants
2719-----------------
2720
2721Complex constants are a (potentially recursive) combination of simple
2722constants and smaller complex constants.
2723
2724**Structure constants**
2725 Structure constants are represented with notation similar to
2726 structure type definitions (a comma separated list of elements,
2727 surrounded by braces (``{}``)). For example:
2728 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2729 "``@G = external global i32``". Structure constants must have
2730 :ref:`structure type <t_struct>`, and the number and types of elements
2731 must match those specified by the type.
2732**Array constants**
2733 Array constants are represented with notation similar to array type
2734 definitions (a comma separated list of elements, surrounded by
2735 square brackets (``[]``)). For example:
2736 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2737 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002738 match those specified by the type. As a special case, character array
2739 constants may also be represented as a double-quoted string using the ``c``
2740 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002741**Vector constants**
2742 Vector constants are represented with notation similar to vector
2743 type definitions (a comma separated list of elements, surrounded by
2744 less-than/greater-than's (``<>``)). For example:
2745 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2746 must have :ref:`vector type <t_vector>`, and the number and types of
2747 elements must match those specified by the type.
2748**Zero initialization**
2749 The string '``zeroinitializer``' can be used to zero initialize a
2750 value to zero of *any* type, including scalar and
2751 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2752 having to print large zero initializers (e.g. for large arrays) and
2753 is always exactly equivalent to using explicit zero initializers.
2754**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002755 A metadata node is a constant tuple without types. For example:
2756 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002757 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2758 Unlike other typed constants that are meant to be interpreted as part of
2759 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002760 information such as debug info.
2761
2762Global Variable and Function Addresses
2763--------------------------------------
2764
2765The addresses of :ref:`global variables <globalvars>` and
2766:ref:`functions <functionstructure>` are always implicitly valid
2767(link-time) constants. These constants are explicitly referenced when
2768the :ref:`identifier for the global <identifiers>` is used and always have
2769:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2770file:
2771
2772.. code-block:: llvm
2773
2774 @X = global i32 17
2775 @Y = global i32 42
2776 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2777
2778.. _undefvalues:
2779
2780Undefined Values
2781----------------
2782
2783The string '``undef``' can be used anywhere a constant is expected, and
2784indicates that the user of the value may receive an unspecified
2785bit-pattern. Undefined values may be of any type (other than '``label``'
2786or '``void``') and be used anywhere a constant is permitted.
2787
2788Undefined values are useful because they indicate to the compiler that
2789the program is well defined no matter what value is used. This gives the
2790compiler more freedom to optimize. Here are some examples of
2791(potentially surprising) transformations that are valid (in pseudo IR):
2792
2793.. code-block:: llvm
2794
2795 %A = add %X, undef
2796 %B = sub %X, undef
2797 %C = xor %X, undef
2798 Safe:
2799 %A = undef
2800 %B = undef
2801 %C = undef
2802
2803This is safe because all of the output bits are affected by the undef
2804bits. Any output bit can have a zero or one depending on the input bits.
2805
2806.. code-block:: llvm
2807
2808 %A = or %X, undef
2809 %B = and %X, undef
2810 Safe:
2811 %A = -1
2812 %B = 0
2813 Unsafe:
2814 %A = undef
2815 %B = undef
2816
2817These logical operations have bits that are not always affected by the
2818input. For example, if ``%X`` has a zero bit, then the output of the
2819'``and``' operation will always be a zero for that bit, no matter what
2820the corresponding bit from the '``undef``' is. As such, it is unsafe to
2821optimize or assume that the result of the '``and``' is '``undef``'.
2822However, it is safe to assume that all bits of the '``undef``' could be
28230, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2824all the bits of the '``undef``' operand to the '``or``' could be set,
2825allowing the '``or``' to be folded to -1.
2826
2827.. code-block:: llvm
2828
2829 %A = select undef, %X, %Y
2830 %B = select undef, 42, %Y
2831 %C = select %X, %Y, undef
2832 Safe:
2833 %A = %X (or %Y)
2834 %B = 42 (or %Y)
2835 %C = %Y
2836 Unsafe:
2837 %A = undef
2838 %B = undef
2839 %C = undef
2840
2841This set of examples shows that undefined '``select``' (and conditional
2842branch) conditions can go *either way*, but they have to come from one
2843of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2844both known to have a clear low bit, then ``%A`` would have to have a
2845cleared low bit. However, in the ``%C`` example, the optimizer is
2846allowed to assume that the '``undef``' operand could be the same as
2847``%Y``, allowing the whole '``select``' to be eliminated.
2848
2849.. code-block:: llvm
2850
2851 %A = xor undef, undef
2852
2853 %B = undef
2854 %C = xor %B, %B
2855
2856 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002857 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002858 %F = icmp gte %D, 4
2859
2860 Safe:
2861 %A = undef
2862 %B = undef
2863 %C = undef
2864 %D = undef
2865 %E = undef
2866 %F = undef
2867
2868This example points out that two '``undef``' operands are not
2869necessarily the same. This can be surprising to people (and also matches
2870C semantics) where they assume that "``X^X``" is always zero, even if
2871``X`` is undefined. This isn't true for a number of reasons, but the
2872short answer is that an '``undef``' "variable" can arbitrarily change
2873its value over its "live range". This is true because the variable
2874doesn't actually *have a live range*. Instead, the value is logically
2875read from arbitrary registers that happen to be around when needed, so
2876the value is not necessarily consistent over time. In fact, ``%A`` and
2877``%C`` need to have the same semantics or the core LLVM "replace all
2878uses with" concept would not hold.
2879
2880.. code-block:: llvm
2881
2882 %A = fdiv undef, %X
2883 %B = fdiv %X, undef
2884 Safe:
2885 %A = undef
2886 b: unreachable
2887
2888These examples show the crucial difference between an *undefined value*
2889and *undefined behavior*. An undefined value (like '``undef``') is
2890allowed to have an arbitrary bit-pattern. This means that the ``%A``
2891operation can be constant folded to '``undef``', because the '``undef``'
2892could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2893However, in the second example, we can make a more aggressive
2894assumption: because the ``undef`` is allowed to be an arbitrary value,
2895we are allowed to assume that it could be zero. Since a divide by zero
2896has *undefined behavior*, we are allowed to assume that the operation
2897does not execute at all. This allows us to delete the divide and all
2898code after it. Because the undefined operation "can't happen", the
2899optimizer can assume that it occurs in dead code.
2900
2901.. code-block:: llvm
2902
2903 a: store undef -> %X
2904 b: store %X -> undef
2905 Safe:
2906 a: <deleted>
2907 b: unreachable
2908
2909These examples reiterate the ``fdiv`` example: a store *of* an undefined
2910value can be assumed to not have any effect; we can assume that the
2911value is overwritten with bits that happen to match what was already
2912there. However, a store *to* an undefined location could clobber
2913arbitrary memory, therefore, it has undefined behavior.
2914
2915.. _poisonvalues:
2916
2917Poison Values
2918-------------
2919
2920Poison values are similar to :ref:`undef values <undefvalues>`, however
2921they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002922that cannot evoke side effects has nevertheless detected a condition
2923that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002924
2925There is currently no way of representing a poison value in the IR; they
2926only exist when produced by operations such as :ref:`add <i_add>` with
2927the ``nsw`` flag.
2928
2929Poison value behavior is defined in terms of value *dependence*:
2930
2931- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2932- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2933 their dynamic predecessor basic block.
2934- Function arguments depend on the corresponding actual argument values
2935 in the dynamic callers of their functions.
2936- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2937 instructions that dynamically transfer control back to them.
2938- :ref:`Invoke <i_invoke>` instructions depend on the
2939 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2940 call instructions that dynamically transfer control back to them.
2941- Non-volatile loads and stores depend on the most recent stores to all
2942 of the referenced memory addresses, following the order in the IR
2943 (including loads and stores implied by intrinsics such as
2944 :ref:`@llvm.memcpy <int_memcpy>`.)
2945- An instruction with externally visible side effects depends on the
2946 most recent preceding instruction with externally visible side
2947 effects, following the order in the IR. (This includes :ref:`volatile
2948 operations <volatile>`.)
2949- An instruction *control-depends* on a :ref:`terminator
2950 instruction <terminators>` if the terminator instruction has
2951 multiple successors and the instruction is always executed when
2952 control transfers to one of the successors, and may not be executed
2953 when control is transferred to another.
2954- Additionally, an instruction also *control-depends* on a terminator
2955 instruction if the set of instructions it otherwise depends on would
2956 be different if the terminator had transferred control to a different
2957 successor.
2958- Dependence is transitive.
2959
Richard Smith32dbdf62014-07-31 04:25:36 +00002960Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2961with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002962on a poison value has undefined behavior.
2963
2964Here are some examples:
2965
2966.. code-block:: llvm
2967
2968 entry:
2969 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2970 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002971 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002972 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2973
2974 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002975 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002976
2977 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2978
2979 %narrowaddr = bitcast i32* @g to i16*
2980 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002981 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2982 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002983
2984 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2985 br i1 %cmp, label %true, label %end ; Branch to either destination.
2986
2987 true:
2988 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2989 ; it has undefined behavior.
2990 br label %end
2991
2992 end:
2993 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2994 ; Both edges into this PHI are
2995 ; control-dependent on %cmp, so this
2996 ; always results in a poison value.
2997
2998 store volatile i32 0, i32* @g ; This would depend on the store in %true
2999 ; if %cmp is true, or the store in %entry
3000 ; otherwise, so this is undefined behavior.
3001
3002 br i1 %cmp, label %second_true, label %second_end
3003 ; The same branch again, but this time the
3004 ; true block doesn't have side effects.
3005
3006 second_true:
3007 ; No side effects!
3008 ret void
3009
3010 second_end:
3011 store volatile i32 0, i32* @g ; This time, the instruction always depends
3012 ; on the store in %end. Also, it is
3013 ; control-equivalent to %end, so this is
3014 ; well-defined (ignoring earlier undefined
3015 ; behavior in this example).
3016
3017.. _blockaddress:
3018
3019Addresses of Basic Blocks
3020-------------------------
3021
3022``blockaddress(@function, %block)``
3023
3024The '``blockaddress``' constant computes the address of the specified
3025basic block in the specified function, and always has an ``i8*`` type.
3026Taking the address of the entry block is illegal.
3027
3028This value only has defined behavior when used as an operand to the
3029':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3030against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003031undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003032no label is equal to the null pointer. This may be passed around as an
3033opaque pointer sized value as long as the bits are not inspected. This
3034allows ``ptrtoint`` and arithmetic to be performed on these values so
3035long as the original value is reconstituted before the ``indirectbr``
3036instruction.
3037
3038Finally, some targets may provide defined semantics when using the value
3039as the operand to an inline assembly, but that is target specific.
3040
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003041.. _constantexprs:
3042
Sean Silvab084af42012-12-07 10:36:55 +00003043Constant Expressions
3044--------------------
3045
3046Constant expressions are used to allow expressions involving other
3047constants to be used as constants. Constant expressions may be of any
3048:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3049that does not have side effects (e.g. load and call are not supported).
3050The following is the syntax for constant expressions:
3051
3052``trunc (CST to TYPE)``
3053 Truncate a constant to another type. The bit size of CST must be
3054 larger than the bit size of TYPE. Both types must be integers.
3055``zext (CST to TYPE)``
3056 Zero extend a constant to another type. The bit size of CST must be
3057 smaller than the bit size of TYPE. Both types must be integers.
3058``sext (CST to TYPE)``
3059 Sign extend a constant to another type. The bit size of CST must be
3060 smaller than the bit size of TYPE. Both types must be integers.
3061``fptrunc (CST to TYPE)``
3062 Truncate a floating point constant to another floating point type.
3063 The size of CST must be larger than the size of TYPE. Both types
3064 must be floating point.
3065``fpext (CST to TYPE)``
3066 Floating point extend a constant to another type. The size of CST
3067 must be smaller or equal to the size of TYPE. Both types must be
3068 floating point.
3069``fptoui (CST to TYPE)``
3070 Convert a floating point constant to the corresponding unsigned
3071 integer constant. TYPE must be a scalar or vector integer type. CST
3072 must be of scalar or vector floating point type. Both CST and TYPE
3073 must be scalars, or vectors of the same number of elements. If the
3074 value won't fit in the integer type, the results are undefined.
3075``fptosi (CST to TYPE)``
3076 Convert a floating point constant to the corresponding signed
3077 integer constant. TYPE must be a scalar or vector integer type. CST
3078 must be of scalar or vector floating point type. Both CST and TYPE
3079 must be scalars, or vectors of the same number of elements. If the
3080 value won't fit in the integer type, the results are undefined.
3081``uitofp (CST to TYPE)``
3082 Convert an unsigned integer constant to the corresponding floating
3083 point constant. TYPE must be a scalar or vector floating point type.
3084 CST must be of scalar or vector integer type. Both CST and TYPE must
3085 be scalars, or vectors of the same number of elements. If the value
3086 won't fit in the floating point type, the results are undefined.
3087``sitofp (CST to TYPE)``
3088 Convert a signed integer constant to the corresponding floating
3089 point constant. TYPE must be a scalar or vector floating point type.
3090 CST must be of scalar or vector integer type. Both CST and TYPE must
3091 be scalars, or vectors of the same number of elements. If the value
3092 won't fit in the floating point type, the results are undefined.
3093``ptrtoint (CST to TYPE)``
3094 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003095 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003096 pointer type. The ``CST`` value is zero extended, truncated, or
3097 unchanged to make it fit in ``TYPE``.
3098``inttoptr (CST to TYPE)``
3099 Convert an integer constant to a pointer constant. TYPE must be a
3100 pointer type. CST must be of integer type. The CST value is zero
3101 extended, truncated, or unchanged to make it fit in a pointer size.
3102 This one is *really* dangerous!
3103``bitcast (CST to TYPE)``
3104 Convert a constant, CST, to another TYPE. The constraints of the
3105 operands are the same as those for the :ref:`bitcast
3106 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003107``addrspacecast (CST to TYPE)``
3108 Convert a constant pointer or constant vector of pointer, CST, to another
3109 TYPE in a different address space. The constraints of the operands are the
3110 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003111``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003112 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3113 constants. As with the :ref:`getelementptr <i_getelementptr>`
3114 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003115 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003116``select (COND, VAL1, VAL2)``
3117 Perform the :ref:`select operation <i_select>` on constants.
3118``icmp COND (VAL1, VAL2)``
3119 Performs the :ref:`icmp operation <i_icmp>` on constants.
3120``fcmp COND (VAL1, VAL2)``
3121 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3122``extractelement (VAL, IDX)``
3123 Perform the :ref:`extractelement operation <i_extractelement>` on
3124 constants.
3125``insertelement (VAL, ELT, IDX)``
3126 Perform the :ref:`insertelement operation <i_insertelement>` on
3127 constants.
3128``shufflevector (VEC1, VEC2, IDXMASK)``
3129 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3130 constants.
3131``extractvalue (VAL, IDX0, IDX1, ...)``
3132 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3133 constants. The index list is interpreted in a similar manner as
3134 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3135 least one index value must be specified.
3136``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3137 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3138 The index list is interpreted in a similar manner as indices in a
3139 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3140 value must be specified.
3141``OPCODE (LHS, RHS)``
3142 Perform the specified operation of the LHS and RHS constants. OPCODE
3143 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3144 binary <bitwiseops>` operations. The constraints on operands are
3145 the same as those for the corresponding instruction (e.g. no bitwise
3146 operations on floating point values are allowed).
3147
3148Other Values
3149============
3150
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003151.. _inlineasmexprs:
3152
Sean Silvab084af42012-12-07 10:36:55 +00003153Inline Assembler Expressions
3154----------------------------
3155
3156LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003157Inline Assembly <moduleasm>`) through the use of a special value. This value
3158represents the inline assembler as a template string (containing the
3159instructions to emit), a list of operand constraints (stored as a string), a
3160flag that indicates whether or not the inline asm expression has side effects,
3161and a flag indicating whether the function containing the asm needs to align its
3162stack conservatively.
3163
3164The template string supports argument substitution of the operands using "``$``"
3165followed by a number, to indicate substitution of the given register/memory
3166location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3167be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3168operand (See :ref:`inline-asm-modifiers`).
3169
3170A literal "``$``" may be included by using "``$$``" in the template. To include
3171other special characters into the output, the usual "``\XX``" escapes may be
3172used, just as in other strings. Note that after template substitution, the
3173resulting assembly string is parsed by LLVM's integrated assembler unless it is
3174disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3175syntax known to LLVM.
3176
3177LLVM's support for inline asm is modeled closely on the requirements of Clang's
3178GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3179modifier codes listed here are similar or identical to those in GCC's inline asm
3180support. However, to be clear, the syntax of the template and constraint strings
3181described here is *not* the same as the syntax accepted by GCC and Clang, and,
3182while most constraint letters are passed through as-is by Clang, some get
3183translated to other codes when converting from the C source to the LLVM
3184assembly.
3185
3186An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003187
3188.. code-block:: llvm
3189
3190 i32 (i32) asm "bswap $0", "=r,r"
3191
3192Inline assembler expressions may **only** be used as the callee operand
3193of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3194Thus, typically we have:
3195
3196.. code-block:: llvm
3197
3198 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3199
3200Inline asms with side effects not visible in the constraint list must be
3201marked as having side effects. This is done through the use of the
3202'``sideeffect``' keyword, like so:
3203
3204.. code-block:: llvm
3205
3206 call void asm sideeffect "eieio", ""()
3207
3208In some cases inline asms will contain code that will not work unless
3209the stack is aligned in some way, such as calls or SSE instructions on
3210x86, yet will not contain code that does that alignment within the asm.
3211The compiler should make conservative assumptions about what the asm
3212might contain and should generate its usual stack alignment code in the
3213prologue if the '``alignstack``' keyword is present:
3214
3215.. code-block:: llvm
3216
3217 call void asm alignstack "eieio", ""()
3218
3219Inline asms also support using non-standard assembly dialects. The
3220assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3221the inline asm is using the Intel dialect. Currently, ATT and Intel are
3222the only supported dialects. An example is:
3223
3224.. code-block:: llvm
3225
3226 call void asm inteldialect "eieio", ""()
3227
3228If multiple keywords appear the '``sideeffect``' keyword must come
3229first, the '``alignstack``' keyword second and the '``inteldialect``'
3230keyword last.
3231
James Y Knightbc832ed2015-07-08 18:08:36 +00003232Inline Asm Constraint String
3233^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3234
3235The constraint list is a comma-separated string, each element containing one or
3236more constraint codes.
3237
3238For each element in the constraint list an appropriate register or memory
3239operand will be chosen, and it will be made available to assembly template
3240string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3241second, etc.
3242
3243There are three different types of constraints, which are distinguished by a
3244prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3245constraints must always be given in that order: outputs first, then inputs, then
3246clobbers. They cannot be intermingled.
3247
3248There are also three different categories of constraint codes:
3249
3250- Register constraint. This is either a register class, or a fixed physical
3251 register. This kind of constraint will allocate a register, and if necessary,
3252 bitcast the argument or result to the appropriate type.
3253- Memory constraint. This kind of constraint is for use with an instruction
3254 taking a memory operand. Different constraints allow for different addressing
3255 modes used by the target.
3256- Immediate value constraint. This kind of constraint is for an integer or other
3257 immediate value which can be rendered directly into an instruction. The
3258 various target-specific constraints allow the selection of a value in the
3259 proper range for the instruction you wish to use it with.
3260
3261Output constraints
3262""""""""""""""""""
3263
3264Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3265indicates that the assembly will write to this operand, and the operand will
3266then be made available as a return value of the ``asm`` expression. Output
3267constraints do not consume an argument from the call instruction. (Except, see
3268below about indirect outputs).
3269
3270Normally, it is expected that no output locations are written to by the assembly
3271expression until *all* of the inputs have been read. As such, LLVM may assign
3272the same register to an output and an input. If this is not safe (e.g. if the
3273assembly contains two instructions, where the first writes to one output, and
3274the second reads an input and writes to a second output), then the "``&``"
3275modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003276"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003277will not use the same register for any inputs (other than an input tied to this
3278output).
3279
3280Input constraints
3281"""""""""""""""""
3282
3283Input constraints do not have a prefix -- just the constraint codes. Each input
3284constraint will consume one argument from the call instruction. It is not
3285permitted for the asm to write to any input register or memory location (unless
3286that input is tied to an output). Note also that multiple inputs may all be
3287assigned to the same register, if LLVM can determine that they necessarily all
3288contain the same value.
3289
3290Instead of providing a Constraint Code, input constraints may also "tie"
3291themselves to an output constraint, by providing an integer as the constraint
3292string. Tied inputs still consume an argument from the call instruction, and
3293take up a position in the asm template numbering as is usual -- they will simply
3294be constrained to always use the same register as the output they've been tied
3295to. For example, a constraint string of "``=r,0``" says to assign a register for
3296output, and use that register as an input as well (it being the 0'th
3297constraint).
3298
3299It is permitted to tie an input to an "early-clobber" output. In that case, no
3300*other* input may share the same register as the input tied to the early-clobber
3301(even when the other input has the same value).
3302
3303You may only tie an input to an output which has a register constraint, not a
3304memory constraint. Only a single input may be tied to an output.
3305
3306There is also an "interesting" feature which deserves a bit of explanation: if a
3307register class constraint allocates a register which is too small for the value
3308type operand provided as input, the input value will be split into multiple
3309registers, and all of them passed to the inline asm.
3310
3311However, this feature is often not as useful as you might think.
3312
3313Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3314architectures that have instructions which operate on multiple consecutive
3315instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3316SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3317hardware then loads into both the named register, and the next register. This
3318feature of inline asm would not be useful to support that.)
3319
3320A few of the targets provide a template string modifier allowing explicit access
3321to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3322``D``). On such an architecture, you can actually access the second allocated
3323register (yet, still, not any subsequent ones). But, in that case, you're still
3324probably better off simply splitting the value into two separate operands, for
3325clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3326despite existing only for use with this feature, is not really a good idea to
3327use)
3328
3329Indirect inputs and outputs
3330"""""""""""""""""""""""""""
3331
3332Indirect output or input constraints can be specified by the "``*``" modifier
3333(which goes after the "``=``" in case of an output). This indicates that the asm
3334will write to or read from the contents of an *address* provided as an input
3335argument. (Note that in this way, indirect outputs act more like an *input* than
3336an output: just like an input, they consume an argument of the call expression,
3337rather than producing a return value. An indirect output constraint is an
3338"output" only in that the asm is expected to write to the contents of the input
3339memory location, instead of just read from it).
3340
3341This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3342address of a variable as a value.
3343
3344It is also possible to use an indirect *register* constraint, but only on output
3345(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3346value normally, and then, separately emit a store to the address provided as
3347input, after the provided inline asm. (It's not clear what value this
3348functionality provides, compared to writing the store explicitly after the asm
3349statement, and it can only produce worse code, since it bypasses many
3350optimization passes. I would recommend not using it.)
3351
3352
3353Clobber constraints
3354"""""""""""""""""""
3355
3356A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3357consume an input operand, nor generate an output. Clobbers cannot use any of the
3358general constraint code letters -- they may use only explicit register
3359constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3360"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3361memory locations -- not only the memory pointed to by a declared indirect
3362output.
3363
3364
3365Constraint Codes
3366""""""""""""""""
3367After a potential prefix comes constraint code, or codes.
3368
3369A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3370followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3371(e.g. "``{eax}``").
3372
3373The one and two letter constraint codes are typically chosen to be the same as
3374GCC's constraint codes.
3375
3376A single constraint may include one or more than constraint code in it, leaving
3377it up to LLVM to choose which one to use. This is included mainly for
3378compatibility with the translation of GCC inline asm coming from clang.
3379
3380There are two ways to specify alternatives, and either or both may be used in an
3381inline asm constraint list:
3382
33831) Append the codes to each other, making a constraint code set. E.g. "``im``"
3384 or "``{eax}m``". This means "choose any of the options in the set". The
3385 choice of constraint is made independently for each constraint in the
3386 constraint list.
3387
33882) Use "``|``" between constraint code sets, creating alternatives. Every
3389 constraint in the constraint list must have the same number of alternative
3390 sets. With this syntax, the same alternative in *all* of the items in the
3391 constraint list will be chosen together.
3392
3393Putting those together, you might have a two operand constraint string like
3394``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3395operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3396may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3397
3398However, the use of either of the alternatives features is *NOT* recommended, as
3399LLVM is not able to make an intelligent choice about which one to use. (At the
3400point it currently needs to choose, not enough information is available to do so
3401in a smart way.) Thus, it simply tries to make a choice that's most likely to
3402compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3403always choose to use memory, not registers). And, if given multiple registers,
3404or multiple register classes, it will simply choose the first one. (In fact, it
3405doesn't currently even ensure explicitly specified physical registers are
3406unique, so specifying multiple physical registers as alternatives, like
3407``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3408intended.)
3409
3410Supported Constraint Code List
3411""""""""""""""""""""""""""""""
3412
3413The constraint codes are, in general, expected to behave the same way they do in
3414GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3415inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3416and GCC likely indicates a bug in LLVM.
3417
3418Some constraint codes are typically supported by all targets:
3419
3420- ``r``: A register in the target's general purpose register class.
3421- ``m``: A memory address operand. It is target-specific what addressing modes
3422 are supported, typical examples are register, or register + register offset,
3423 or register + immediate offset (of some target-specific size).
3424- ``i``: An integer constant (of target-specific width). Allows either a simple
3425 immediate, or a relocatable value.
3426- ``n``: An integer constant -- *not* including relocatable values.
3427- ``s``: An integer constant, but allowing *only* relocatable values.
3428- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3429 useful to pass a label for an asm branch or call.
3430
3431 .. FIXME: but that surely isn't actually okay to jump out of an asm
3432 block without telling llvm about the control transfer???)
3433
3434- ``{register-name}``: Requires exactly the named physical register.
3435
3436Other constraints are target-specific:
3437
3438AArch64:
3439
3440- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3441- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3442 i.e. 0 to 4095 with optional shift by 12.
3443- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3444 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3445- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3446 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3447- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3448 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3449- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3450 32-bit register. This is a superset of ``K``: in addition to the bitmask
3451 immediate, also allows immediate integers which can be loaded with a single
3452 ``MOVZ`` or ``MOVL`` instruction.
3453- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3454 64-bit register. This is a superset of ``L``.
3455- ``Q``: Memory address operand must be in a single register (no
3456 offsets). (However, LLVM currently does this for the ``m`` constraint as
3457 well.)
3458- ``r``: A 32 or 64-bit integer register (W* or X*).
3459- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3460- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3461
3462AMDGPU:
3463
3464- ``r``: A 32 or 64-bit integer register.
3465- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3466- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3467
3468
3469All ARM modes:
3470
3471- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3472 operand. Treated the same as operand ``m``, at the moment.
3473
3474ARM and ARM's Thumb2 mode:
3475
3476- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3477- ``I``: An immediate integer valid for a data-processing instruction.
3478- ``J``: An immediate integer between -4095 and 4095.
3479- ``K``: An immediate integer whose bitwise inverse is valid for a
3480 data-processing instruction. (Can be used with template modifier "``B``" to
3481 print the inverted value).
3482- ``L``: An immediate integer whose negation is valid for a data-processing
3483 instruction. (Can be used with template modifier "``n``" to print the negated
3484 value).
3485- ``M``: A power of two or a integer between 0 and 32.
3486- ``N``: Invalid immediate constraint.
3487- ``O``: Invalid immediate constraint.
3488- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3489- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3490 as ``r``.
3491- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3492 invalid.
3493- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3494 ``d0-d31``, or ``q0-q15``.
3495- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3496 ``d0-d7``, or ``q0-q3``.
3497- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3498 ``s0-s31``.
3499
3500ARM's Thumb1 mode:
3501
3502- ``I``: An immediate integer between 0 and 255.
3503- ``J``: An immediate integer between -255 and -1.
3504- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3505 some amount.
3506- ``L``: An immediate integer between -7 and 7.
3507- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3508- ``N``: An immediate integer between 0 and 31.
3509- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3510- ``r``: A low 32-bit GPR register (``r0-r7``).
3511- ``l``: A low 32-bit GPR register (``r0-r7``).
3512- ``h``: A high GPR register (``r0-r7``).
3513- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3514 ``d0-d31``, or ``q0-q15``.
3515- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3516 ``d0-d7``, or ``q0-q3``.
3517- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3518 ``s0-s31``.
3519
3520
3521Hexagon:
3522
3523- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3524 at the moment.
3525- ``r``: A 32 or 64-bit register.
3526
3527MSP430:
3528
3529- ``r``: An 8 or 16-bit register.
3530
3531MIPS:
3532
3533- ``I``: An immediate signed 16-bit integer.
3534- ``J``: An immediate integer zero.
3535- ``K``: An immediate unsigned 16-bit integer.
3536- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3537- ``N``: An immediate integer between -65535 and -1.
3538- ``O``: An immediate signed 15-bit integer.
3539- ``P``: An immediate integer between 1 and 65535.
3540- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3541 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3542- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3543 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3544 ``m``.
3545- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3546 ``sc`` instruction on the given subtarget (details vary).
3547- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3548- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003549 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3550 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003551- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3552 ``25``).
3553- ``l``: The ``lo`` register, 32 or 64-bit.
3554- ``x``: Invalid.
3555
3556NVPTX:
3557
3558- ``b``: A 1-bit integer register.
3559- ``c`` or ``h``: A 16-bit integer register.
3560- ``r``: A 32-bit integer register.
3561- ``l`` or ``N``: A 64-bit integer register.
3562- ``f``: A 32-bit float register.
3563- ``d``: A 64-bit float register.
3564
3565
3566PowerPC:
3567
3568- ``I``: An immediate signed 16-bit integer.
3569- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3570- ``K``: An immediate unsigned 16-bit integer.
3571- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3572- ``M``: An immediate integer greater than 31.
3573- ``N``: An immediate integer that is an exact power of 2.
3574- ``O``: The immediate integer constant 0.
3575- ``P``: An immediate integer constant whose negation is a signed 16-bit
3576 constant.
3577- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3578 treated the same as ``m``.
3579- ``r``: A 32 or 64-bit integer register.
3580- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3581 ``R1-R31``).
3582- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3583 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3584- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3585 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3586 altivec vector register (``V0-V31``).
3587
3588 .. FIXME: is this a bug that v accepts QPX registers? I think this
3589 is supposed to only use the altivec vector registers?
3590
3591- ``y``: Condition register (``CR0-CR7``).
3592- ``wc``: An individual CR bit in a CR register.
3593- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3594 register set (overlapping both the floating-point and vector register files).
3595- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3596 set.
3597
3598Sparc:
3599
3600- ``I``: An immediate 13-bit signed integer.
3601- ``r``: A 32-bit integer register.
3602
3603SystemZ:
3604
3605- ``I``: An immediate unsigned 8-bit integer.
3606- ``J``: An immediate unsigned 12-bit integer.
3607- ``K``: An immediate signed 16-bit integer.
3608- ``L``: An immediate signed 20-bit integer.
3609- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003610- ``Q``: A memory address operand with a base address and a 12-bit immediate
3611 unsigned displacement.
3612- ``R``: A memory address operand with a base address, a 12-bit immediate
3613 unsigned displacement, and an index register.
3614- ``S``: A memory address operand with a base address and a 20-bit immediate
3615 signed displacement.
3616- ``T``: A memory address operand with a base address, a 20-bit immediate
3617 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003618- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3619- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3620 address context evaluates as zero).
3621- ``h``: A 32-bit value in the high part of a 64bit data register
3622 (LLVM-specific)
3623- ``f``: A 32, 64, or 128-bit floating point register.
3624
3625X86:
3626
3627- ``I``: An immediate integer between 0 and 31.
3628- ``J``: An immediate integer between 0 and 64.
3629- ``K``: An immediate signed 8-bit integer.
3630- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3631 0xffffffff.
3632- ``M``: An immediate integer between 0 and 3.
3633- ``N``: An immediate unsigned 8-bit integer.
3634- ``O``: An immediate integer between 0 and 127.
3635- ``e``: An immediate 32-bit signed integer.
3636- ``Z``: An immediate 32-bit unsigned integer.
3637- ``o``, ``v``: Treated the same as ``m``, at the moment.
3638- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3639 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3640 registers, and on X86-64, it is all of the integer registers.
3641- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3642 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3643- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3644- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3645 existed since i386, and can be accessed without the REX prefix.
3646- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3647- ``y``: A 64-bit MMX register, if MMX is enabled.
3648- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3649 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3650 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3651 512-bit vector operand in an AVX512 register, Otherwise, an error.
3652- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3653- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3654 32-bit mode, a 64-bit integer operand will get split into two registers). It
3655 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3656 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3657 you're better off splitting it yourself, before passing it to the asm
3658 statement.
3659
3660XCore:
3661
3662- ``r``: A 32-bit integer register.
3663
3664
3665.. _inline-asm-modifiers:
3666
3667Asm template argument modifiers
3668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3669
3670In the asm template string, modifiers can be used on the operand reference, like
3671"``${0:n}``".
3672
3673The modifiers are, in general, expected to behave the same way they do in
3674GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3675inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3676and GCC likely indicates a bug in LLVM.
3677
3678Target-independent:
3679
Sean Silvaa1190322015-08-06 22:56:48 +00003680- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003681 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3682- ``n``: Negate and print immediate integer constant unadorned, without the
3683 target-specific immediate punctuation (e.g. no ``$`` prefix).
3684- ``l``: Print as an unadorned label, without the target-specific label
3685 punctuation (e.g. no ``$`` prefix).
3686
3687AArch64:
3688
3689- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3690 instead of ``x30``, print ``w30``.
3691- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3692- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3693 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3694 ``v*``.
3695
3696AMDGPU:
3697
3698- ``r``: No effect.
3699
3700ARM:
3701
3702- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3703 register).
3704- ``P``: No effect.
3705- ``q``: No effect.
3706- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3707 as ``d4[1]`` instead of ``s9``)
3708- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3709 prefix.
3710- ``L``: Print the low 16-bits of an immediate integer constant.
3711- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3712 register operands subsequent to the specified one (!), so use carefully.
3713- ``Q``: Print the low-order register of a register-pair, or the low-order
3714 register of a two-register operand.
3715- ``R``: Print the high-order register of a register-pair, or the high-order
3716 register of a two-register operand.
3717- ``H``: Print the second register of a register-pair. (On a big-endian system,
3718 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3719 to ``R``.)
3720
3721 .. FIXME: H doesn't currently support printing the second register
3722 of a two-register operand.
3723
3724- ``e``: Print the low doubleword register of a NEON quad register.
3725- ``f``: Print the high doubleword register of a NEON quad register.
3726- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3727 adornment.
3728
3729Hexagon:
3730
3731- ``L``: Print the second register of a two-register operand. Requires that it
3732 has been allocated consecutively to the first.
3733
3734 .. FIXME: why is it restricted to consecutive ones? And there's
3735 nothing that ensures that happens, is there?
3736
3737- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3738 nothing. Used to print 'addi' vs 'add' instructions.
3739
3740MSP430:
3741
3742No additional modifiers.
3743
3744MIPS:
3745
3746- ``X``: Print an immediate integer as hexadecimal
3747- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3748- ``d``: Print an immediate integer as decimal.
3749- ``m``: Subtract one and print an immediate integer as decimal.
3750- ``z``: Print $0 if an immediate zero, otherwise print normally.
3751- ``L``: Print the low-order register of a two-register operand, or prints the
3752 address of the low-order word of a double-word memory operand.
3753
3754 .. FIXME: L seems to be missing memory operand support.
3755
3756- ``M``: Print the high-order register of a two-register operand, or prints the
3757 address of the high-order word of a double-word memory operand.
3758
3759 .. FIXME: M seems to be missing memory operand support.
3760
3761- ``D``: Print the second register of a two-register operand, or prints the
3762 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3763 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3764 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003765- ``w``: No effect. Provided for compatibility with GCC which requires this
3766 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3767 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003768
3769NVPTX:
3770
3771- ``r``: No effect.
3772
3773PowerPC:
3774
3775- ``L``: Print the second register of a two-register operand. Requires that it
3776 has been allocated consecutively to the first.
3777
3778 .. FIXME: why is it restricted to consecutive ones? And there's
3779 nothing that ensures that happens, is there?
3780
3781- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3782 nothing. Used to print 'addi' vs 'add' instructions.
3783- ``y``: For a memory operand, prints formatter for a two-register X-form
3784 instruction. (Currently always prints ``r0,OPERAND``).
3785- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3786 otherwise. (NOTE: LLVM does not support update form, so this will currently
3787 always print nothing)
3788- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3789 not support indexed form, so this will currently always print nothing)
3790
3791Sparc:
3792
3793- ``r``: No effect.
3794
3795SystemZ:
3796
3797SystemZ implements only ``n``, and does *not* support any of the other
3798target-independent modifiers.
3799
3800X86:
3801
3802- ``c``: Print an unadorned integer or symbol name. (The latter is
3803 target-specific behavior for this typically target-independent modifier).
3804- ``A``: Print a register name with a '``*``' before it.
3805- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3806 operand.
3807- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3808 memory operand.
3809- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3810 operand.
3811- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3812 operand.
3813- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3814 available, otherwise the 32-bit register name; do nothing on a memory operand.
3815- ``n``: Negate and print an unadorned integer, or, for operands other than an
3816 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3817 the operand. (The behavior for relocatable symbol expressions is a
3818 target-specific behavior for this typically target-independent modifier)
3819- ``H``: Print a memory reference with additional offset +8.
3820- ``P``: Print a memory reference or operand for use as the argument of a call
3821 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3822
3823XCore:
3824
3825No additional modifiers.
3826
3827
Sean Silvab084af42012-12-07 10:36:55 +00003828Inline Asm Metadata
3829^^^^^^^^^^^^^^^^^^^
3830
3831The call instructions that wrap inline asm nodes may have a
3832"``!srcloc``" MDNode attached to it that contains a list of constant
3833integers. If present, the code generator will use the integer as the
3834location cookie value when report errors through the ``LLVMContext``
3835error reporting mechanisms. This allows a front-end to correlate backend
3836errors that occur with inline asm back to the source code that produced
3837it. For example:
3838
3839.. code-block:: llvm
3840
3841 call void asm sideeffect "something bad", ""(), !srcloc !42
3842 ...
3843 !42 = !{ i32 1234567 }
3844
3845It is up to the front-end to make sense of the magic numbers it places
3846in the IR. If the MDNode contains multiple constants, the code generator
3847will use the one that corresponds to the line of the asm that the error
3848occurs on.
3849
3850.. _metadata:
3851
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003852Metadata
3853========
Sean Silvab084af42012-12-07 10:36:55 +00003854
3855LLVM IR allows metadata to be attached to instructions in the program
3856that can convey extra information about the code to the optimizers and
3857code generator. One example application of metadata is source-level
3858debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003859
Sean Silvaa1190322015-08-06 22:56:48 +00003860Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003861``call`` instruction, it uses the ``metadata`` type.
3862
3863All metadata are identified in syntax by a exclamation point ('``!``').
3864
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003865.. _metadata-string:
3866
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003867Metadata Nodes and Metadata Strings
3868-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003869
3870A metadata string is a string surrounded by double quotes. It can
3871contain any character by escaping non-printable characters with
3872"``\xx``" where "``xx``" is the two digit hex code. For example:
3873"``!"test\00"``".
3874
3875Metadata nodes are represented with notation similar to structure
3876constants (a comma separated list of elements, surrounded by braces and
3877preceded by an exclamation point). Metadata nodes can have any values as
3878their operand. For example:
3879
3880.. code-block:: llvm
3881
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003882 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003883
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003884Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3885
3886.. code-block:: llvm
3887
3888 !0 = distinct !{!"test\00", i32 10}
3889
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003890``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003891content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003892when metadata operands change.
3893
Sean Silvab084af42012-12-07 10:36:55 +00003894A :ref:`named metadata <namedmetadatastructure>` is a collection of
3895metadata nodes, which can be looked up in the module symbol table. For
3896example:
3897
3898.. code-block:: llvm
3899
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003900 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003901
3902Metadata can be used as function arguments. Here ``llvm.dbg.value``
3903function is using two metadata arguments:
3904
3905.. code-block:: llvm
3906
3907 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3908
Peter Collingbourne50108682015-11-06 02:41:02 +00003909Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3910to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003911
3912.. code-block:: llvm
3913
3914 %indvar.next = add i64 %indvar, 1, !dbg !21
3915
Peter Collingbourne50108682015-11-06 02:41:02 +00003916Metadata can also be attached to a function definition. Here metadata ``!22``
3917is attached to the ``foo`` function using the ``!dbg`` identifier:
3918
3919.. code-block:: llvm
3920
3921 define void @foo() !dbg !22 {
3922 ret void
3923 }
3924
Sean Silvab084af42012-12-07 10:36:55 +00003925More information about specific metadata nodes recognized by the
3926optimizers and code generator is found below.
3927
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003928.. _specialized-metadata:
3929
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003930Specialized Metadata Nodes
3931^^^^^^^^^^^^^^^^^^^^^^^^^^
3932
3933Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003934to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003935order.
3936
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003937These aren't inherently debug info centric, but currently all the specialized
3938metadata nodes are related to debug info.
3939
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003940.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003941
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003942DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003943"""""""""""""
3944
Sean Silvaa1190322015-08-06 22:56:48 +00003945``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003946``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3947fields are tuples containing the debug info to be emitted along with the compile
3948unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003949references to them from instructions).
3950
3951.. code-block:: llvm
3952
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003953 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003954 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003955 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003956 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003957 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003958
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003959Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003960specific compilation unit. File descriptors are defined using this scope.
3961These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003962keep track of subprograms, global variables, type information, and imported
3963entities (declarations and namespaces).
3964
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003965.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003966
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003967DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003968""""""
3969
Sean Silvaa1190322015-08-06 22:56:48 +00003970``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003971
3972.. code-block:: llvm
3973
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003974 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003975
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003976Files are sometimes used in ``scope:`` fields, and are the only valid target
3977for ``file:`` fields.
3978
Michael Kuperstein605308a2015-05-14 10:58:59 +00003979.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003980
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003981DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003982"""""""""""
3983
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003984``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003985``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003986
3987.. code-block:: llvm
3988
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003989 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003990 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003991 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003992
Sean Silvaa1190322015-08-06 22:56:48 +00003993The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003994following:
3995
3996.. code-block:: llvm
3997
3998 DW_ATE_address = 1
3999 DW_ATE_boolean = 2
4000 DW_ATE_float = 4
4001 DW_ATE_signed = 5
4002 DW_ATE_signed_char = 6
4003 DW_ATE_unsigned = 7
4004 DW_ATE_unsigned_char = 8
4005
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004006.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004007
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004008DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004009""""""""""""""""
4010
Sean Silvaa1190322015-08-06 22:56:48 +00004011``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004012refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004013types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004014represents a function with no return value (such as ``void foo() {}`` in C++).
4015
4016.. code-block:: llvm
4017
4018 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4019 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004020 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004021
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004022.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004023
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004024DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004025"""""""""""""
4026
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004027``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004028qualified types.
4029
4030.. code-block:: llvm
4031
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004032 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004033 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004034 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004035 align: 32)
4036
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004037The following ``tag:`` values are valid:
4038
4039.. code-block:: llvm
4040
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004041 DW_TAG_member = 13
4042 DW_TAG_pointer_type = 15
4043 DW_TAG_reference_type = 16
4044 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004045 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004046 DW_TAG_ptr_to_member_type = 31
4047 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004048 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004049 DW_TAG_volatile_type = 53
4050 DW_TAG_restrict_type = 55
4051
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004052.. _DIDerivedTypeMember:
4053
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004054``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004055<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004056``offset:`` is the member's bit offset. If the composite type has an ODR
4057``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4058uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004059
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004060``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4061field of :ref:`composite types <DICompositeType>` to describe parents and
4062friends.
4063
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004064``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4065
4066``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
4067``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
4068``baseType:``.
4069
4070Note that the ``void *`` type is expressed as a type derived from NULL.
4071
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004072.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004073
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004074DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004075"""""""""""""""
4076
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004077``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004078structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004079
4080If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004081identifier used for type merging between modules. When specified,
4082:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4083derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4084``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004085
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004086For a given ``identifier:``, there should only be a single composite type that
4087does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4088together will unique such definitions at parse time via the ``identifier:``
4089field, even if the nodes are ``distinct``.
4090
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004091.. code-block:: llvm
4092
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004093 !0 = !DIEnumerator(name: "SixKind", value: 7)
4094 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4095 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4096 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004097 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4098 elements: !{!0, !1, !2})
4099
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004100The following ``tag:`` values are valid:
4101
4102.. code-block:: llvm
4103
4104 DW_TAG_array_type = 1
4105 DW_TAG_class_type = 2
4106 DW_TAG_enumeration_type = 4
4107 DW_TAG_structure_type = 19
4108 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004109
4110For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004111descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004112level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004113array type is a native packed vector.
4114
4115For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004116descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004117value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004118``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004119
4120For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4121``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004122<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4123``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4124``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004125
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004126.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004127
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004128DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004129""""""""""
4130
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004131``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004132:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004133
4134.. code-block:: llvm
4135
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004136 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4137 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4138 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004139
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004140.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004141
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004142DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004143""""""""""""
4144
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004145``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4146variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004147
4148.. code-block:: llvm
4149
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004150 !0 = !DIEnumerator(name: "SixKind", value: 7)
4151 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4152 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004153
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004154DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004155"""""""""""""""""""""""
4156
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004157``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004158language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004159:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004160
4161.. code-block:: llvm
4162
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004163 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004164
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004165DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004166""""""""""""""""""""""""
4167
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004168``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004169language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004170but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004171``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004172:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004173
4174.. code-block:: llvm
4175
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004176 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004177
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004178DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004179"""""""""""
4180
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004181``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004182
4183.. code-block:: llvm
4184
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004185 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004186
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004187DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004188""""""""""""""""
4189
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004190``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004191
4192.. code-block:: llvm
4193
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004194 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004195 file: !2, line: 7, type: !3, isLocal: true,
4196 isDefinition: false, variable: i32* @foo,
4197 declaration: !4)
4198
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004199All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004200:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004201
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004202.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004203
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004204DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004205""""""""""""
4206
Peter Collingbourne50108682015-11-06 02:41:02 +00004207``DISubprogram`` nodes represent functions from the source language. A
4208``DISubprogram`` may be attached to a function definition using ``!dbg``
4209metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4210that must be retained, even if their IR counterparts are optimized out of
4211the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004212
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004213.. _DISubprogramDeclaration:
4214
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004215When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004216tree as opposed to a definition of a function. If the scope is a composite
4217type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4218then the subprogram declaration is uniqued based only on its ``linkageName:``
4219and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004220
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004221.. code-block:: llvm
4222
Peter Collingbourne50108682015-11-06 02:41:02 +00004223 define void @_Z3foov() !dbg !0 {
4224 ...
4225 }
4226
4227 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4228 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004229 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004230 containingType: !4,
4231 virtuality: DW_VIRTUALITY_pure_virtual,
4232 virtualIndex: 10, flags: DIFlagPrototyped,
4233 isOptimized: true, templateParams: !5,
4234 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004235
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004236.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004237
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004238DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004239""""""""""""""
4240
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004241``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004242<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004243two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004244fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004245
4246.. code-block:: llvm
4247
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004248 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004249
4250Usually lexical blocks are ``distinct`` to prevent node merging based on
4251operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004252
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004253.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004254
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004255DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004256""""""""""""""""""
4257
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004258``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004259:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004260indicate textual inclusion, or the ``discriminator:`` field can be used to
4261discriminate between control flow within a single block in the source language.
4262
4263.. code-block:: llvm
4264
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004265 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4266 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4267 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004268
Michael Kuperstein605308a2015-05-14 10:58:59 +00004269.. _DILocation:
4270
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004271DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004272""""""""""
4273
Sean Silvaa1190322015-08-06 22:56:48 +00004274``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004275mandatory, and points at an :ref:`DILexicalBlockFile`, an
4276:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004277
4278.. code-block:: llvm
4279
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004280 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004281
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004282.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004283
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004284DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004285"""""""""""""""
4286
Sean Silvaa1190322015-08-06 22:56:48 +00004287``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004288the ``arg:`` field is set to non-zero, then this variable is a subprogram
4289parameter, and it will be included in the ``variables:`` field of its
4290:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004291
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004292.. code-block:: llvm
4293
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004294 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4295 type: !3, flags: DIFlagArtificial)
4296 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4297 type: !3)
4298 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004299
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004300DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004301""""""""""""
4302
Sean Silvaa1190322015-08-06 22:56:48 +00004303``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004304:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4305describe how the referenced LLVM variable relates to the source language
4306variable.
4307
4308The current supported vocabulary is limited:
4309
4310- ``DW_OP_deref`` dereferences the working expression.
4311- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4312- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4313 here, respectively) of the variable piece from the working expression.
4314
4315.. code-block:: llvm
4316
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004317 !0 = !DIExpression(DW_OP_deref)
4318 !1 = !DIExpression(DW_OP_plus, 3)
4319 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4320 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004321
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004322DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004323""""""""""""""
4324
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004325``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004326
4327.. code-block:: llvm
4328
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004329 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004330 getter: "getFoo", attributes: 7, type: !2)
4331
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004332DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004333""""""""""""""""
4334
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004335``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004336compile unit.
4337
4338.. code-block:: llvm
4339
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004340 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004341 entity: !1, line: 7)
4342
Amjad Abouda9bcf162015-12-10 12:56:35 +00004343DIMacro
4344"""""""
4345
4346``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4347The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004348defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004349used to expand the macro identifier.
4350
4351.. code-block:: llvm
4352
4353 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4354 value: "((x) + 1)")
4355 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4356
4357DIMacroFile
4358"""""""""""
4359
4360``DIMacroFile`` nodes represent inclusion of source files.
4361The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4362appear in the included source file.
4363
4364.. code-block:: llvm
4365
4366 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4367 nodes: !3)
4368
Sean Silvab084af42012-12-07 10:36:55 +00004369'``tbaa``' Metadata
4370^^^^^^^^^^^^^^^^^^^
4371
4372In LLVM IR, memory does not have types, so LLVM's own type system is not
4373suitable for doing TBAA. Instead, metadata is added to the IR to
4374describe a type system of a higher level language. This can be used to
4375implement typical C/C++ TBAA, but it can also be used to implement
4376custom alias analysis behavior for other languages.
4377
4378The current metadata format is very simple. TBAA metadata nodes have up
4379to three fields, e.g.:
4380
4381.. code-block:: llvm
4382
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004383 !0 = !{ !"an example type tree" }
4384 !1 = !{ !"int", !0 }
4385 !2 = !{ !"float", !0 }
4386 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004387
4388The first field is an identity field. It can be any value, usually a
4389metadata string, which uniquely identifies the type. The most important
4390name in the tree is the name of the root node. Two trees with different
4391root node names are entirely disjoint, even if they have leaves with
4392common names.
4393
4394The second field identifies the type's parent node in the tree, or is
4395null or omitted for a root node. A type is considered to alias all of
4396its descendants and all of its ancestors in the tree. Also, a type is
4397considered to alias all types in other trees, so that bitcode produced
4398from multiple front-ends is handled conservatively.
4399
4400If the third field is present, it's an integer which if equal to 1
4401indicates that the type is "constant" (meaning
4402``pointsToConstantMemory`` should return true; see `other useful
4403AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4404
4405'``tbaa.struct``' Metadata
4406^^^^^^^^^^^^^^^^^^^^^^^^^^
4407
4408The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4409aggregate assignment operations in C and similar languages, however it
4410is defined to copy a contiguous region of memory, which is more than
4411strictly necessary for aggregate types which contain holes due to
4412padding. Also, it doesn't contain any TBAA information about the fields
4413of the aggregate.
4414
4415``!tbaa.struct`` metadata can describe which memory subregions in a
4416memcpy are padding and what the TBAA tags of the struct are.
4417
4418The current metadata format is very simple. ``!tbaa.struct`` metadata
4419nodes are a list of operands which are in conceptual groups of three.
4420For each group of three, the first operand gives the byte offset of a
4421field in bytes, the second gives its size in bytes, and the third gives
4422its tbaa tag. e.g.:
4423
4424.. code-block:: llvm
4425
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004426 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004427
4428This describes a struct with two fields. The first is at offset 0 bytes
4429with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4430and has size 4 bytes and has tbaa tag !2.
4431
4432Note that the fields need not be contiguous. In this example, there is a
44334 byte gap between the two fields. This gap represents padding which
4434does not carry useful data and need not be preserved.
4435
Hal Finkel94146652014-07-24 14:25:39 +00004436'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004437^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004438
4439``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4440noalias memory-access sets. This means that some collection of memory access
4441instructions (loads, stores, memory-accessing calls, etc.) that carry
4442``noalias`` metadata can specifically be specified not to alias with some other
4443collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004444Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004445a domain.
4446
4447When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004448of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004449subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004450instruction's ``noalias`` list, then the two memory accesses are assumed not to
4451alias.
Hal Finkel94146652014-07-24 14:25:39 +00004452
Adam Nemet569a5b32016-04-27 00:52:48 +00004453Because scopes in one domain don't affect scopes in other domains, separate
4454domains can be used to compose multiple independent noalias sets. This is
4455used for example during inlining. As the noalias function parameters are
4456turned into noalias scope metadata, a new domain is used every time the
4457function is inlined.
4458
Hal Finkel029cde62014-07-25 15:50:02 +00004459The metadata identifying each domain is itself a list containing one or two
4460entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004461string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004462self-reference can be used to create globally unique domain names. A
4463descriptive string may optionally be provided as a second list entry.
4464
4465The metadata identifying each scope is also itself a list containing two or
4466three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004467is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004468self-reference can be used to create globally unique scope names. A metadata
4469reference to the scope's domain is the second entry. A descriptive string may
4470optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004471
4472For example,
4473
4474.. code-block:: llvm
4475
Hal Finkel029cde62014-07-25 15:50:02 +00004476 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004477 !0 = !{!0}
4478 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004479
Hal Finkel029cde62014-07-25 15:50:02 +00004480 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004481 !2 = !{!2, !0}
4482 !3 = !{!3, !0}
4483 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004484
Hal Finkel029cde62014-07-25 15:50:02 +00004485 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004486 !5 = !{!4} ; A list containing only scope !4
4487 !6 = !{!4, !3, !2}
4488 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004489
4490 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004491 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004492 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004493
Hal Finkel029cde62014-07-25 15:50:02 +00004494 ; These two instructions also don't alias (for domain !1, the set of scopes
4495 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004496 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004497 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004498
Adam Nemet0a8416f2015-05-11 08:30:28 +00004499 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004500 ; the !noalias list is not a superset of, or equal to, the scopes in the
4501 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004502 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004503 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004504
Sean Silvab084af42012-12-07 10:36:55 +00004505'``fpmath``' Metadata
4506^^^^^^^^^^^^^^^^^^^^^
4507
4508``fpmath`` metadata may be attached to any instruction of floating point
4509type. It can be used to express the maximum acceptable error in the
4510result of that instruction, in ULPs, thus potentially allowing the
4511compiler to use a more efficient but less accurate method of computing
4512it. ULP is defined as follows:
4513
4514 If ``x`` is a real number that lies between two finite consecutive
4515 floating-point numbers ``a`` and ``b``, without being equal to one
4516 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4517 distance between the two non-equal finite floating-point numbers
4518 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4519
Matt Arsenault82f41512016-06-27 19:43:15 +00004520The metadata node shall consist of a single positive float type number
4521representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004522
4523.. code-block:: llvm
4524
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004525 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004526
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004527.. _range-metadata:
4528
Sean Silvab084af42012-12-07 10:36:55 +00004529'``range``' Metadata
4530^^^^^^^^^^^^^^^^^^^^
4531
Jingyue Wu37fcb592014-06-19 16:50:16 +00004532``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4533integer types. It expresses the possible ranges the loaded value or the value
4534returned by the called function at this call site is in. The ranges are
4535represented with a flattened list of integers. The loaded value or the value
4536returned is known to be in the union of the ranges defined by each consecutive
4537pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004538
4539- The type must match the type loaded by the instruction.
4540- The pair ``a,b`` represents the range ``[a,b)``.
4541- Both ``a`` and ``b`` are constants.
4542- The range is allowed to wrap.
4543- The range should not represent the full or empty set. That is,
4544 ``a!=b``.
4545
4546In addition, the pairs must be in signed order of the lower bound and
4547they must be non-contiguous.
4548
4549Examples:
4550
4551.. code-block:: llvm
4552
David Blaikiec7aabbb2015-03-04 22:06:14 +00004553 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4554 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004555 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4556 %d = invoke i8 @bar() to label %cont
4557 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004558 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004559 !0 = !{ i8 0, i8 2 }
4560 !1 = !{ i8 255, i8 2 }
4561 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4562 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004563
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004564'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004565^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004566
4567``unpredictable`` metadata may be attached to any branch or switch
4568instruction. It can be used to express the unpredictability of control
4569flow. Similar to the llvm.expect intrinsic, it may be used to alter
4570optimizations related to compare and branch instructions. The metadata
4571is treated as a boolean value; if it exists, it signals that the branch
4572or switch that it is attached to is completely unpredictable.
4573
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004574'``llvm.loop``'
4575^^^^^^^^^^^^^^^
4576
4577It is sometimes useful to attach information to loop constructs. Currently,
4578loop metadata is implemented as metadata attached to the branch instruction
4579in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004580guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004581specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004582
4583The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004584itself to avoid merging it with any other identifier metadata, e.g.,
4585during module linkage or function inlining. That is, each loop should refer
4586to their own identification metadata even if they reside in separate functions.
4587The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004588constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004589
4590.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004591
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004592 !0 = !{!0}
4593 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004594
Mark Heffernan893752a2014-07-18 19:24:51 +00004595The loop identifier metadata can be used to specify additional
4596per-loop metadata. Any operands after the first operand can be treated
4597as user-defined metadata. For example the ``llvm.loop.unroll.count``
4598suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004599
Paul Redmond5fdf8362013-05-28 20:00:34 +00004600.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004601
Paul Redmond5fdf8362013-05-28 20:00:34 +00004602 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4603 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004604 !0 = !{!0, !1}
4605 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004606
Mark Heffernan9d20e422014-07-21 23:11:03 +00004607'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004609
Mark Heffernan9d20e422014-07-21 23:11:03 +00004610Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4611used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004612vectorization width and interleave count. These metadata should be used in
4613conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004614``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4615optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004616it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004617which contains information about loop-carried memory dependencies can be helpful
4618in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004619
Mark Heffernan9d20e422014-07-21 23:11:03 +00004620'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4622
Mark Heffernan9d20e422014-07-21 23:11:03 +00004623This metadata suggests an interleave count to the loop interleaver.
4624The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004625second operand is an integer specifying the interleave count. For
4626example:
4627
4628.. code-block:: llvm
4629
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004630 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004631
Mark Heffernan9d20e422014-07-21 23:11:03 +00004632Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004633multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004634then the interleave count will be determined automatically.
4635
4636'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004637^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004638
4639This metadata selectively enables or disables vectorization for the loop. The
4640first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004641is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000046420 disables vectorization:
4643
4644.. code-block:: llvm
4645
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004646 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4647 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004648
4649'``llvm.loop.vectorize.width``' Metadata
4650^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4651
4652This metadata sets the target width of the vectorizer. The first
4653operand is the string ``llvm.loop.vectorize.width`` and the second
4654operand is an integer specifying the width. For example:
4655
4656.. code-block:: llvm
4657
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004658 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004659
4660Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004661vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000046620 or if the loop does not have this metadata the width will be
4663determined automatically.
4664
4665'``llvm.loop.unroll``'
4666^^^^^^^^^^^^^^^^^^^^^^
4667
4668Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4669optimization hints such as the unroll factor. ``llvm.loop.unroll``
4670metadata should be used in conjunction with ``llvm.loop`` loop
4671identification metadata. The ``llvm.loop.unroll`` metadata are only
4672optimization hints and the unrolling will only be performed if the
4673optimizer believes it is safe to do so.
4674
Mark Heffernan893752a2014-07-18 19:24:51 +00004675'``llvm.loop.unroll.count``' Metadata
4676^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4677
4678This metadata suggests an unroll factor to the loop unroller. The
4679first operand is the string ``llvm.loop.unroll.count`` and the second
4680operand is a positive integer specifying the unroll factor. For
4681example:
4682
4683.. code-block:: llvm
4684
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004685 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004686
4687If the trip count of the loop is less than the unroll count the loop
4688will be partially unrolled.
4689
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004690'``llvm.loop.unroll.disable``' Metadata
4691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4692
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004693This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004694which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004695
4696.. code-block:: llvm
4697
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004698 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004699
Kevin Qin715b01e2015-03-09 06:14:18 +00004700'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004702
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004703This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004704operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004705
4706.. code-block:: llvm
4707
4708 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4709
Mark Heffernan89391542015-08-10 17:28:08 +00004710'``llvm.loop.unroll.enable``' Metadata
4711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4712
4713This metadata suggests that the loop should be fully unrolled if the trip count
4714is known at compile time and partially unrolled if the trip count is not known
4715at compile time. The metadata has a single operand which is the string
4716``llvm.loop.unroll.enable``. For example:
4717
4718.. code-block:: llvm
4719
4720 !0 = !{!"llvm.loop.unroll.enable"}
4721
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004722'``llvm.loop.unroll.full``' Metadata
4723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4724
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004725This metadata suggests that the loop should be unrolled fully. The
4726metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004727For example:
4728
4729.. code-block:: llvm
4730
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004731 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004732
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004733'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004734^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004735
4736This metadata indicates that the loop should not be versioned for the purpose
4737of enabling loop-invariant code motion (LICM). The metadata has a single operand
4738which is the string ``llvm.loop.licm_versioning.disable``. For example:
4739
4740.. code-block:: llvm
4741
4742 !0 = !{!"llvm.loop.licm_versioning.disable"}
4743
Adam Nemetd2fa4142016-04-27 05:28:18 +00004744'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004746
4747Loop distribution allows splitting a loop into multiple loops. Currently,
4748this is only performed if the entire loop cannot be vectorized due to unsafe
4749memory dependencies. The transformation will atempt to isolate the unsafe
4750dependencies into their own loop.
4751
4752This metadata can be used to selectively enable or disable distribution of the
4753loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4754second operand is a bit. If the bit operand value is 1 distribution is
4755enabled. A value of 0 disables distribution:
4756
4757.. code-block:: llvm
4758
4759 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4760 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4761
4762This metadata should be used in conjunction with ``llvm.loop`` loop
4763identification metadata.
4764
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004765'``llvm.mem``'
4766^^^^^^^^^^^^^^^
4767
4768Metadata types used to annotate memory accesses with information helpful
4769for optimizations are prefixed with ``llvm.mem``.
4770
4771'``llvm.mem.parallel_loop_access``' Metadata
4772^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4773
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004774The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4775or metadata containing a list of loop identifiers for nested loops.
4776The metadata is attached to memory accessing instructions and denotes that
4777no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004778with the same loop identifier. The metadata on memory reads also implies that
4779if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004780
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004781Precisely, given two instructions ``m1`` and ``m2`` that both have the
4782``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4783set of loops associated with that metadata, respectively, then there is no loop
4784carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004785``L2``.
4786
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004787As a special case, if all memory accessing instructions in a loop have
4788``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4789loop has no loop carried memory dependences and is considered to be a parallel
4790loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004791
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004792Note that if not all memory access instructions have such metadata referring to
4793the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004794memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004795safe mechanism, this causes loops that were originally parallel to be considered
4796sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004797insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004798
4799Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004800both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004801metadata types that refer to the same loop identifier metadata.
4802
4803.. code-block:: llvm
4804
4805 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004806 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004807 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004808 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004809 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004810 ...
4811 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004812
4813 for.end:
4814 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004815 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004816
4817It is also possible to have nested parallel loops. In that case the
4818memory accesses refer to a list of loop identifier metadata nodes instead of
4819the loop identifier metadata node directly:
4820
4821.. code-block:: llvm
4822
4823 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004824 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004825 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004826 ...
4827 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004828
4829 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004830 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004831 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004832 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004833 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004834 ...
4835 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004836
4837 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004838 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004839 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004840 ...
4841 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004842
4843 outer.for.end: ; preds = %for.body
4844 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004845 !0 = !{!1, !2} ; a list of loop identifiers
4846 !1 = !{!1} ; an identifier for the inner loop
4847 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004848
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004849'``invariant.group``' Metadata
4850^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4851
4852The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4853The existence of the ``invariant.group`` metadata on the instruction tells
4854the optimizer that every ``load`` and ``store`` to the same pointer operand
4855within the same invariant group can be assumed to load or store the same
4856value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4857when two pointers are considered the same).
4858
4859Examples:
4860
4861.. code-block:: llvm
4862
4863 @unknownPtr = external global i8
4864 ...
4865 %ptr = alloca i8
4866 store i8 42, i8* %ptr, !invariant.group !0
4867 call void @foo(i8* %ptr)
4868
4869 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4870 call void @foo(i8* %ptr)
4871 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4872
4873 %newPtr = call i8* @getPointer(i8* %ptr)
4874 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4875
4876 %unknownValue = load i8, i8* @unknownPtr
4877 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4878
4879 call void @foo(i8* %ptr)
4880 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4881 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4882
4883 ...
4884 declare void @foo(i8*)
4885 declare i8* @getPointer(i8*)
4886 declare i8* @llvm.invariant.group.barrier(i8*)
4887
4888 !0 = !{!"magic ptr"}
4889 !1 = !{!"other ptr"}
4890
4891
4892
Sean Silvab084af42012-12-07 10:36:55 +00004893Module Flags Metadata
4894=====================
4895
4896Information about the module as a whole is difficult to convey to LLVM's
4897subsystems. The LLVM IR isn't sufficient to transmit this information.
4898The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004899this. These flags are in the form of key / value pairs --- much like a
4900dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004901look it up.
4902
4903The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4904Each triplet has the following form:
4905
4906- The first element is a *behavior* flag, which specifies the behavior
4907 when two (or more) modules are merged together, and it encounters two
4908 (or more) metadata with the same ID. The supported behaviors are
4909 described below.
4910- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004911 metadata. Each module may only have one flag entry for each unique ID (not
4912 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004913- The third element is the value of the flag.
4914
4915When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004916``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4917each unique metadata ID string, there will be exactly one entry in the merged
4918modules ``llvm.module.flags`` metadata table, and the value for that entry will
4919be determined by the merge behavior flag, as described below. The only exception
4920is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004921
4922The following behaviors are supported:
4923
4924.. list-table::
4925 :header-rows: 1
4926 :widths: 10 90
4927
4928 * - Value
4929 - Behavior
4930
4931 * - 1
4932 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004933 Emits an error if two values disagree, otherwise the resulting value
4934 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004935
4936 * - 2
4937 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004938 Emits a warning if two values disagree. The result value will be the
4939 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004940
4941 * - 3
4942 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004943 Adds a requirement that another module flag be present and have a
4944 specified value after linking is performed. The value must be a
4945 metadata pair, where the first element of the pair is the ID of the
4946 module flag to be restricted, and the second element of the pair is
4947 the value the module flag should be restricted to. This behavior can
4948 be used to restrict the allowable results (via triggering of an
4949 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004950
4951 * - 4
4952 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004953 Uses the specified value, regardless of the behavior or value of the
4954 other module. If both modules specify **Override**, but the values
4955 differ, an error will be emitted.
4956
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004957 * - 5
4958 - **Append**
4959 Appends the two values, which are required to be metadata nodes.
4960
4961 * - 6
4962 - **AppendUnique**
4963 Appends the two values, which are required to be metadata
4964 nodes. However, duplicate entries in the second list are dropped
4965 during the append operation.
4966
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004967It is an error for a particular unique flag ID to have multiple behaviors,
4968except in the case of **Require** (which adds restrictions on another metadata
4969value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004970
4971An example of module flags:
4972
4973.. code-block:: llvm
4974
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004975 !0 = !{ i32 1, !"foo", i32 1 }
4976 !1 = !{ i32 4, !"bar", i32 37 }
4977 !2 = !{ i32 2, !"qux", i32 42 }
4978 !3 = !{ i32 3, !"qux",
4979 !{
4980 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004981 }
4982 }
4983 !llvm.module.flags = !{ !0, !1, !2, !3 }
4984
4985- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4986 if two or more ``!"foo"`` flags are seen is to emit an error if their
4987 values are not equal.
4988
4989- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4990 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004991 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004992
4993- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4994 behavior if two or more ``!"qux"`` flags are seen is to emit a
4995 warning if their values are not equal.
4996
4997- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4998
4999 ::
5000
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005001 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005002
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005003 The behavior is to emit an error if the ``llvm.module.flags`` does not
5004 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5005 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005006
5007Objective-C Garbage Collection Module Flags Metadata
5008----------------------------------------------------
5009
5010On the Mach-O platform, Objective-C stores metadata about garbage
5011collection in a special section called "image info". The metadata
5012consists of a version number and a bitmask specifying what types of
5013garbage collection are supported (if any) by the file. If two or more
5014modules are linked together their garbage collection metadata needs to
5015be merged rather than appended together.
5016
5017The Objective-C garbage collection module flags metadata consists of the
5018following key-value pairs:
5019
5020.. list-table::
5021 :header-rows: 1
5022 :widths: 30 70
5023
5024 * - Key
5025 - Value
5026
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005027 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005028 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005029
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005030 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005031 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005032 always 0.
5033
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005034 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005035 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005036 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5037 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5038 Objective-C ABI version 2.
5039
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005040 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005041 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005042 not. Valid values are 0, for no garbage collection, and 2, for garbage
5043 collection supported.
5044
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005045 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005046 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005047 If present, its value must be 6. This flag requires that the
5048 ``Objective-C Garbage Collection`` flag have the value 2.
5049
5050Some important flag interactions:
5051
5052- If a module with ``Objective-C Garbage Collection`` set to 0 is
5053 merged with a module with ``Objective-C Garbage Collection`` set to
5054 2, then the resulting module has the
5055 ``Objective-C Garbage Collection`` flag set to 0.
5056- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5057 merged with a module with ``Objective-C GC Only`` set to 6.
5058
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005059Automatic Linker Flags Module Flags Metadata
5060--------------------------------------------
5061
5062Some targets support embedding flags to the linker inside individual object
5063files. Typically this is used in conjunction with language extensions which
5064allow source files to explicitly declare the libraries they depend on, and have
5065these automatically be transmitted to the linker via object files.
5066
5067These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005068using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005069to be ``AppendUnique``, and the value for the key is expected to be a metadata
5070node which should be a list of other metadata nodes, each of which should be a
5071list of metadata strings defining linker options.
5072
5073For example, the following metadata section specifies two separate sets of
5074linker options, presumably to link against ``libz`` and the ``Cocoa``
5075framework::
5076
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005077 !0 = !{ i32 6, !"Linker Options",
5078 !{
5079 !{ !"-lz" },
5080 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005081 !llvm.module.flags = !{ !0 }
5082
5083The metadata encoding as lists of lists of options, as opposed to a collapsed
5084list of options, is chosen so that the IR encoding can use multiple option
5085strings to specify e.g., a single library, while still having that specifier be
5086preserved as an atomic element that can be recognized by a target specific
5087assembly writer or object file emitter.
5088
5089Each individual option is required to be either a valid option for the target's
5090linker, or an option that is reserved by the target specific assembly writer or
5091object file emitter. No other aspect of these options is defined by the IR.
5092
Oliver Stannard5dc29342014-06-20 10:08:11 +00005093C type width Module Flags Metadata
5094----------------------------------
5095
5096The ARM backend emits a section into each generated object file describing the
5097options that it was compiled with (in a compiler-independent way) to prevent
5098linking incompatible objects, and to allow automatic library selection. Some
5099of these options are not visible at the IR level, namely wchar_t width and enum
5100width.
5101
5102To pass this information to the backend, these options are encoded in module
5103flags metadata, using the following key-value pairs:
5104
5105.. list-table::
5106 :header-rows: 1
5107 :widths: 30 70
5108
5109 * - Key
5110 - Value
5111
5112 * - short_wchar
5113 - * 0 --- sizeof(wchar_t) == 4
5114 * 1 --- sizeof(wchar_t) == 2
5115
5116 * - short_enum
5117 - * 0 --- Enums are at least as large as an ``int``.
5118 * 1 --- Enums are stored in the smallest integer type which can
5119 represent all of its values.
5120
5121For example, the following metadata section specifies that the module was
5122compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5123enum is the smallest type which can represent all of its values::
5124
5125 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005126 !0 = !{i32 1, !"short_wchar", i32 1}
5127 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005128
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005129.. _intrinsicglobalvariables:
5130
Sean Silvab084af42012-12-07 10:36:55 +00005131Intrinsic Global Variables
5132==========================
5133
5134LLVM has a number of "magic" global variables that contain data that
5135affect code generation or other IR semantics. These are documented here.
5136All globals of this sort should have a section specified as
5137"``llvm.metadata``". This section and all globals that start with
5138"``llvm.``" are reserved for use by LLVM.
5139
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005140.. _gv_llvmused:
5141
Sean Silvab084af42012-12-07 10:36:55 +00005142The '``llvm.used``' Global Variable
5143-----------------------------------
5144
Rafael Espindola74f2e462013-04-22 14:58:02 +00005145The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005146:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005147pointers to named global variables, functions and aliases which may optionally
5148have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005149use of it is:
5150
5151.. code-block:: llvm
5152
5153 @X = global i8 4
5154 @Y = global i32 123
5155
5156 @llvm.used = appending global [2 x i8*] [
5157 i8* @X,
5158 i8* bitcast (i32* @Y to i8*)
5159 ], section "llvm.metadata"
5160
Rafael Espindola74f2e462013-04-22 14:58:02 +00005161If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5162and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005163symbol that it cannot see (which is why they have to be named). For example, if
5164a variable has internal linkage and no references other than that from the
5165``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5166references from inline asms and other things the compiler cannot "see", and
5167corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005168
5169On some targets, the code generator must emit a directive to the
5170assembler or object file to prevent the assembler and linker from
5171molesting the symbol.
5172
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005173.. _gv_llvmcompilerused:
5174
Sean Silvab084af42012-12-07 10:36:55 +00005175The '``llvm.compiler.used``' Global Variable
5176--------------------------------------------
5177
5178The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5179directive, except that it only prevents the compiler from touching the
5180symbol. On targets that support it, this allows an intelligent linker to
5181optimize references to the symbol without being impeded as it would be
5182by ``@llvm.used``.
5183
5184This is a rare construct that should only be used in rare circumstances,
5185and should not be exposed to source languages.
5186
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005187.. _gv_llvmglobalctors:
5188
Sean Silvab084af42012-12-07 10:36:55 +00005189The '``llvm.global_ctors``' Global Variable
5190-------------------------------------------
5191
5192.. code-block:: llvm
5193
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005194 %0 = type { i32, void ()*, i8* }
5195 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005196
5197The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005198functions, priorities, and an optional associated global or function.
5199The functions referenced by this array will be called in ascending order
5200of priority (i.e. lowest first) when the module is loaded. The order of
5201functions with the same priority is not defined.
5202
5203If the third field is present, non-null, and points to a global variable
5204or function, the initializer function will only run if the associated
5205data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005206
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005207.. _llvmglobaldtors:
5208
Sean Silvab084af42012-12-07 10:36:55 +00005209The '``llvm.global_dtors``' Global Variable
5210-------------------------------------------
5211
5212.. code-block:: llvm
5213
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005214 %0 = type { i32, void ()*, i8* }
5215 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005216
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005217The ``@llvm.global_dtors`` array contains a list of destructor
5218functions, priorities, and an optional associated global or function.
5219The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005220order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005221order of functions with the same priority is not defined.
5222
5223If the third field is present, non-null, and points to a global variable
5224or function, the destructor function will only run if the associated
5225data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005226
5227Instruction Reference
5228=====================
5229
5230The LLVM instruction set consists of several different classifications
5231of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5232instructions <binaryops>`, :ref:`bitwise binary
5233instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5234:ref:`other instructions <otherops>`.
5235
5236.. _terminators:
5237
5238Terminator Instructions
5239-----------------------
5240
5241As mentioned :ref:`previously <functionstructure>`, every basic block in a
5242program ends with a "Terminator" instruction, which indicates which
5243block should be executed after the current block is finished. These
5244terminator instructions typically yield a '``void``' value: they produce
5245control flow, not values (the one exception being the
5246':ref:`invoke <i_invoke>`' instruction).
5247
5248The terminator instructions are: ':ref:`ret <i_ret>`',
5249':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5250':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005251':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005252':ref:`catchret <i_catchret>`',
5253':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005254and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005255
5256.. _i_ret:
5257
5258'``ret``' Instruction
5259^^^^^^^^^^^^^^^^^^^^^
5260
5261Syntax:
5262"""""""
5263
5264::
5265
5266 ret <type> <value> ; Return a value from a non-void function
5267 ret void ; Return from void function
5268
5269Overview:
5270"""""""""
5271
5272The '``ret``' instruction is used to return control flow (and optionally
5273a value) from a function back to the caller.
5274
5275There are two forms of the '``ret``' instruction: one that returns a
5276value and then causes control flow, and one that just causes control
5277flow to occur.
5278
5279Arguments:
5280""""""""""
5281
5282The '``ret``' instruction optionally accepts a single argument, the
5283return value. The type of the return value must be a ':ref:`first
5284class <t_firstclass>`' type.
5285
5286A function is not :ref:`well formed <wellformed>` if it it has a non-void
5287return type and contains a '``ret``' instruction with no return value or
5288a return value with a type that does not match its type, or if it has a
5289void return type and contains a '``ret``' instruction with a return
5290value.
5291
5292Semantics:
5293""""""""""
5294
5295When the '``ret``' instruction is executed, control flow returns back to
5296the calling function's context. If the caller is a
5297":ref:`call <i_call>`" instruction, execution continues at the
5298instruction after the call. If the caller was an
5299":ref:`invoke <i_invoke>`" instruction, execution continues at the
5300beginning of the "normal" destination block. If the instruction returns
5301a value, that value shall set the call or invoke instruction's return
5302value.
5303
5304Example:
5305""""""""
5306
5307.. code-block:: llvm
5308
5309 ret i32 5 ; Return an integer value of 5
5310 ret void ; Return from a void function
5311 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5312
5313.. _i_br:
5314
5315'``br``' Instruction
5316^^^^^^^^^^^^^^^^^^^^
5317
5318Syntax:
5319"""""""
5320
5321::
5322
5323 br i1 <cond>, label <iftrue>, label <iffalse>
5324 br label <dest> ; Unconditional branch
5325
5326Overview:
5327"""""""""
5328
5329The '``br``' instruction is used to cause control flow to transfer to a
5330different basic block in the current function. There are two forms of
5331this instruction, corresponding to a conditional branch and an
5332unconditional branch.
5333
5334Arguments:
5335""""""""""
5336
5337The conditional branch form of the '``br``' instruction takes a single
5338'``i1``' value and two '``label``' values. The unconditional form of the
5339'``br``' instruction takes a single '``label``' value as a target.
5340
5341Semantics:
5342""""""""""
5343
5344Upon execution of a conditional '``br``' instruction, the '``i1``'
5345argument is evaluated. If the value is ``true``, control flows to the
5346'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5347to the '``iffalse``' ``label`` argument.
5348
5349Example:
5350""""""""
5351
5352.. code-block:: llvm
5353
5354 Test:
5355 %cond = icmp eq i32 %a, %b
5356 br i1 %cond, label %IfEqual, label %IfUnequal
5357 IfEqual:
5358 ret i32 1
5359 IfUnequal:
5360 ret i32 0
5361
5362.. _i_switch:
5363
5364'``switch``' Instruction
5365^^^^^^^^^^^^^^^^^^^^^^^^
5366
5367Syntax:
5368"""""""
5369
5370::
5371
5372 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5373
5374Overview:
5375"""""""""
5376
5377The '``switch``' instruction is used to transfer control flow to one of
5378several different places. It is a generalization of the '``br``'
5379instruction, allowing a branch to occur to one of many possible
5380destinations.
5381
5382Arguments:
5383""""""""""
5384
5385The '``switch``' instruction uses three parameters: an integer
5386comparison value '``value``', a default '``label``' destination, and an
5387array of pairs of comparison value constants and '``label``'s. The table
5388is not allowed to contain duplicate constant entries.
5389
5390Semantics:
5391""""""""""
5392
5393The ``switch`` instruction specifies a table of values and destinations.
5394When the '``switch``' instruction is executed, this table is searched
5395for the given value. If the value is found, control flow is transferred
5396to the corresponding destination; otherwise, control flow is transferred
5397to the default destination.
5398
5399Implementation:
5400"""""""""""""""
5401
5402Depending on properties of the target machine and the particular
5403``switch`` instruction, this instruction may be code generated in
5404different ways. For example, it could be generated as a series of
5405chained conditional branches or with a lookup table.
5406
5407Example:
5408""""""""
5409
5410.. code-block:: llvm
5411
5412 ; Emulate a conditional br instruction
5413 %Val = zext i1 %value to i32
5414 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5415
5416 ; Emulate an unconditional br instruction
5417 switch i32 0, label %dest [ ]
5418
5419 ; Implement a jump table:
5420 switch i32 %val, label %otherwise [ i32 0, label %onzero
5421 i32 1, label %onone
5422 i32 2, label %ontwo ]
5423
5424.. _i_indirectbr:
5425
5426'``indirectbr``' Instruction
5427^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5428
5429Syntax:
5430"""""""
5431
5432::
5433
5434 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5435
5436Overview:
5437"""""""""
5438
5439The '``indirectbr``' instruction implements an indirect branch to a
5440label within the current function, whose address is specified by
5441"``address``". Address must be derived from a
5442:ref:`blockaddress <blockaddress>` constant.
5443
5444Arguments:
5445""""""""""
5446
5447The '``address``' argument is the address of the label to jump to. The
5448rest of the arguments indicate the full set of possible destinations
5449that the address may point to. Blocks are allowed to occur multiple
5450times in the destination list, though this isn't particularly useful.
5451
5452This destination list is required so that dataflow analysis has an
5453accurate understanding of the CFG.
5454
5455Semantics:
5456""""""""""
5457
5458Control transfers to the block specified in the address argument. All
5459possible destination blocks must be listed in the label list, otherwise
5460this instruction has undefined behavior. This implies that jumps to
5461labels defined in other functions have undefined behavior as well.
5462
5463Implementation:
5464"""""""""""""""
5465
5466This is typically implemented with a jump through a register.
5467
5468Example:
5469""""""""
5470
5471.. code-block:: llvm
5472
5473 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5474
5475.. _i_invoke:
5476
5477'``invoke``' Instruction
5478^^^^^^^^^^^^^^^^^^^^^^^^
5479
5480Syntax:
5481"""""""
5482
5483::
5484
5485 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005486 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005487
5488Overview:
5489"""""""""
5490
5491The '``invoke``' instruction causes control to transfer to a specified
5492function, with the possibility of control flow transfer to either the
5493'``normal``' label or the '``exception``' label. If the callee function
5494returns with the "``ret``" instruction, control flow will return to the
5495"normal" label. If the callee (or any indirect callees) returns via the
5496":ref:`resume <i_resume>`" instruction or other exception handling
5497mechanism, control is interrupted and continued at the dynamically
5498nearest "exception" label.
5499
5500The '``exception``' label is a `landing
5501pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5502'``exception``' label is required to have the
5503":ref:`landingpad <i_landingpad>`" instruction, which contains the
5504information about the behavior of the program after unwinding happens,
5505as its first non-PHI instruction. The restrictions on the
5506"``landingpad``" instruction's tightly couples it to the "``invoke``"
5507instruction, so that the important information contained within the
5508"``landingpad``" instruction can't be lost through normal code motion.
5509
5510Arguments:
5511""""""""""
5512
5513This instruction requires several arguments:
5514
5515#. The optional "cconv" marker indicates which :ref:`calling
5516 convention <callingconv>` the call should use. If none is
5517 specified, the call defaults to using C calling conventions.
5518#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5519 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5520 are valid here.
5521#. '``ptr to function ty``': shall be the signature of the pointer to
5522 function value being invoked. In most cases, this is a direct
5523 function invocation, but indirect ``invoke``'s are just as possible,
5524 branching off an arbitrary pointer to function value.
5525#. '``function ptr val``': An LLVM value containing a pointer to a
5526 function to be invoked.
5527#. '``function args``': argument list whose types match the function
5528 signature argument types and parameter attributes. All arguments must
5529 be of :ref:`first class <t_firstclass>` type. If the function signature
5530 indicates the function accepts a variable number of arguments, the
5531 extra arguments can be specified.
5532#. '``normal label``': the label reached when the called function
5533 executes a '``ret``' instruction.
5534#. '``exception label``': the label reached when a callee returns via
5535 the :ref:`resume <i_resume>` instruction or other exception handling
5536 mechanism.
5537#. The optional :ref:`function attributes <fnattrs>` list. Only
5538 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5539 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005540#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005541
5542Semantics:
5543""""""""""
5544
5545This instruction is designed to operate as a standard '``call``'
5546instruction in most regards. The primary difference is that it
5547establishes an association with a label, which is used by the runtime
5548library to unwind the stack.
5549
5550This instruction is used in languages with destructors to ensure that
5551proper cleanup is performed in the case of either a ``longjmp`` or a
5552thrown exception. Additionally, this is important for implementation of
5553'``catch``' clauses in high-level languages that support them.
5554
5555For the purposes of the SSA form, the definition of the value returned
5556by the '``invoke``' instruction is deemed to occur on the edge from the
5557current block to the "normal" label. If the callee unwinds then no
5558return value is available.
5559
5560Example:
5561""""""""
5562
5563.. code-block:: llvm
5564
5565 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005566 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005567 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005568 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005569
5570.. _i_resume:
5571
5572'``resume``' Instruction
5573^^^^^^^^^^^^^^^^^^^^^^^^
5574
5575Syntax:
5576"""""""
5577
5578::
5579
5580 resume <type> <value>
5581
5582Overview:
5583"""""""""
5584
5585The '``resume``' instruction is a terminator instruction that has no
5586successors.
5587
5588Arguments:
5589""""""""""
5590
5591The '``resume``' instruction requires one argument, which must have the
5592same type as the result of any '``landingpad``' instruction in the same
5593function.
5594
5595Semantics:
5596""""""""""
5597
5598The '``resume``' instruction resumes propagation of an existing
5599(in-flight) exception whose unwinding was interrupted with a
5600:ref:`landingpad <i_landingpad>` instruction.
5601
5602Example:
5603""""""""
5604
5605.. code-block:: llvm
5606
5607 resume { i8*, i32 } %exn
5608
David Majnemer8a1c45d2015-12-12 05:38:55 +00005609.. _i_catchswitch:
5610
5611'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005612^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005613
5614Syntax:
5615"""""""
5616
5617::
5618
5619 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5620 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5621
5622Overview:
5623"""""""""
5624
5625The '``catchswitch``' instruction is used by `LLVM's exception handling system
5626<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5627that may be executed by the :ref:`EH personality routine <personalityfn>`.
5628
5629Arguments:
5630""""""""""
5631
5632The ``parent`` argument is the token of the funclet that contains the
5633``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5634this operand may be the token ``none``.
5635
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005636The ``default`` argument is the label of another basic block beginning with
5637either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5638must be a legal target with respect to the ``parent`` links, as described in
5639the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005640
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005641The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005642:ref:`catchpad <i_catchpad>` instruction.
5643
5644Semantics:
5645""""""""""
5646
5647Executing this instruction transfers control to one of the successors in
5648``handlers``, if appropriate, or continues to unwind via the unwind label if
5649present.
5650
5651The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5652it must be both the first non-phi instruction and last instruction in the basic
5653block. Therefore, it must be the only non-phi instruction in the block.
5654
5655Example:
5656""""""""
5657
5658.. code-block:: llvm
5659
5660 dispatch1:
5661 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5662 dispatch2:
5663 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5664
David Majnemer654e1302015-07-31 17:58:14 +00005665.. _i_catchret:
5666
5667'``catchret``' Instruction
5668^^^^^^^^^^^^^^^^^^^^^^^^^^
5669
5670Syntax:
5671"""""""
5672
5673::
5674
David Majnemer8a1c45d2015-12-12 05:38:55 +00005675 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005676
5677Overview:
5678"""""""""
5679
5680The '``catchret``' instruction is a terminator instruction that has a
5681single successor.
5682
5683
5684Arguments:
5685""""""""""
5686
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005687The first argument to a '``catchret``' indicates which ``catchpad`` it
5688exits. It must be a :ref:`catchpad <i_catchpad>`.
5689The second argument to a '``catchret``' specifies where control will
5690transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005691
5692Semantics:
5693""""""""""
5694
David Majnemer8a1c45d2015-12-12 05:38:55 +00005695The '``catchret``' instruction ends an existing (in-flight) exception whose
5696unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5697:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5698code to, for example, destroy the active exception. Control then transfers to
5699``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005700
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005701The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5702If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5703funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5704the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005705
5706Example:
5707""""""""
5708
5709.. code-block:: llvm
5710
David Majnemer8a1c45d2015-12-12 05:38:55 +00005711 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005712
David Majnemer654e1302015-07-31 17:58:14 +00005713.. _i_cleanupret:
5714
5715'``cleanupret``' Instruction
5716^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5717
5718Syntax:
5719"""""""
5720
5721::
5722
David Majnemer8a1c45d2015-12-12 05:38:55 +00005723 cleanupret from <value> unwind label <continue>
5724 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005725
5726Overview:
5727"""""""""
5728
5729The '``cleanupret``' instruction is a terminator instruction that has
5730an optional successor.
5731
5732
5733Arguments:
5734""""""""""
5735
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005736The '``cleanupret``' instruction requires one argument, which indicates
5737which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005738If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5739funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5740the ``cleanupret``'s behavior is undefined.
5741
5742The '``cleanupret``' instruction also has an optional successor, ``continue``,
5743which must be the label of another basic block beginning with either a
5744``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5745be a legal target with respect to the ``parent`` links, as described in the
5746`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005747
5748Semantics:
5749""""""""""
5750
5751The '``cleanupret``' instruction indicates to the
5752:ref:`personality function <personalityfn>` that one
5753:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5754It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005755
David Majnemer654e1302015-07-31 17:58:14 +00005756Example:
5757""""""""
5758
5759.. code-block:: llvm
5760
David Majnemer8a1c45d2015-12-12 05:38:55 +00005761 cleanupret from %cleanup unwind to caller
5762 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005763
Sean Silvab084af42012-12-07 10:36:55 +00005764.. _i_unreachable:
5765
5766'``unreachable``' Instruction
5767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5768
5769Syntax:
5770"""""""
5771
5772::
5773
5774 unreachable
5775
5776Overview:
5777"""""""""
5778
5779The '``unreachable``' instruction has no defined semantics. This
5780instruction is used to inform the optimizer that a particular portion of
5781the code is not reachable. This can be used to indicate that the code
5782after a no-return function cannot be reached, and other facts.
5783
5784Semantics:
5785""""""""""
5786
5787The '``unreachable``' instruction has no defined semantics.
5788
5789.. _binaryops:
5790
5791Binary Operations
5792-----------------
5793
5794Binary operators are used to do most of the computation in a program.
5795They require two operands of the same type, execute an operation on
5796them, and produce a single value. The operands might represent multiple
5797data, as is the case with the :ref:`vector <t_vector>` data type. The
5798result value has the same type as its operands.
5799
5800There are several different binary operators:
5801
5802.. _i_add:
5803
5804'``add``' Instruction
5805^^^^^^^^^^^^^^^^^^^^^
5806
5807Syntax:
5808"""""""
5809
5810::
5811
Tim Northover675a0962014-06-13 14:24:23 +00005812 <result> = add <ty> <op1>, <op2> ; yields ty:result
5813 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5814 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5815 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005816
5817Overview:
5818"""""""""
5819
5820The '``add``' instruction returns the sum of its two operands.
5821
5822Arguments:
5823""""""""""
5824
5825The two arguments to the '``add``' instruction must be
5826:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5827arguments must have identical types.
5828
5829Semantics:
5830""""""""""
5831
5832The value produced is the integer sum of the two operands.
5833
5834If the sum has unsigned overflow, the result returned is the
5835mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5836the result.
5837
5838Because LLVM integers use a two's complement representation, this
5839instruction is appropriate for both signed and unsigned integers.
5840
5841``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5842respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5843result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5844unsigned and/or signed overflow, respectively, occurs.
5845
5846Example:
5847""""""""
5848
5849.. code-block:: llvm
5850
Tim Northover675a0962014-06-13 14:24:23 +00005851 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005852
5853.. _i_fadd:
5854
5855'``fadd``' Instruction
5856^^^^^^^^^^^^^^^^^^^^^^
5857
5858Syntax:
5859"""""""
5860
5861::
5862
Tim Northover675a0962014-06-13 14:24:23 +00005863 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005864
5865Overview:
5866"""""""""
5867
5868The '``fadd``' instruction returns the sum of its two operands.
5869
5870Arguments:
5871""""""""""
5872
5873The two arguments to the '``fadd``' instruction must be :ref:`floating
5874point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5875Both arguments must have identical types.
5876
5877Semantics:
5878""""""""""
5879
5880The value produced is the floating point sum of the two operands. This
5881instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5882which are optimization hints to enable otherwise unsafe floating point
5883optimizations:
5884
5885Example:
5886""""""""
5887
5888.. code-block:: llvm
5889
Tim Northover675a0962014-06-13 14:24:23 +00005890 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005891
5892'``sub``' Instruction
5893^^^^^^^^^^^^^^^^^^^^^
5894
5895Syntax:
5896"""""""
5897
5898::
5899
Tim Northover675a0962014-06-13 14:24:23 +00005900 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5901 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5902 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5903 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005904
5905Overview:
5906"""""""""
5907
5908The '``sub``' instruction returns the difference of its two operands.
5909
5910Note that the '``sub``' instruction is used to represent the '``neg``'
5911instruction present in most other intermediate representations.
5912
5913Arguments:
5914""""""""""
5915
5916The two arguments to the '``sub``' instruction must be
5917:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5918arguments must have identical types.
5919
5920Semantics:
5921""""""""""
5922
5923The value produced is the integer difference of the two operands.
5924
5925If the difference has unsigned overflow, the result returned is the
5926mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5927the result.
5928
5929Because LLVM integers use a two's complement representation, this
5930instruction is appropriate for both signed and unsigned integers.
5931
5932``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5933respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5934result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5935unsigned and/or signed overflow, respectively, occurs.
5936
5937Example:
5938""""""""
5939
5940.. code-block:: llvm
5941
Tim Northover675a0962014-06-13 14:24:23 +00005942 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5943 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005944
5945.. _i_fsub:
5946
5947'``fsub``' Instruction
5948^^^^^^^^^^^^^^^^^^^^^^
5949
5950Syntax:
5951"""""""
5952
5953::
5954
Tim Northover675a0962014-06-13 14:24:23 +00005955 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005956
5957Overview:
5958"""""""""
5959
5960The '``fsub``' instruction returns the difference of its two operands.
5961
5962Note that the '``fsub``' instruction is used to represent the '``fneg``'
5963instruction present in most other intermediate representations.
5964
5965Arguments:
5966""""""""""
5967
5968The two arguments to the '``fsub``' instruction must be :ref:`floating
5969point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5970Both arguments must have identical types.
5971
5972Semantics:
5973""""""""""
5974
5975The value produced is the floating point difference of the two operands.
5976This instruction can also take any number of :ref:`fast-math
5977flags <fastmath>`, which are optimization hints to enable otherwise
5978unsafe floating point optimizations:
5979
5980Example:
5981""""""""
5982
5983.. code-block:: llvm
5984
Tim Northover675a0962014-06-13 14:24:23 +00005985 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5986 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005987
5988'``mul``' Instruction
5989^^^^^^^^^^^^^^^^^^^^^
5990
5991Syntax:
5992"""""""
5993
5994::
5995
Tim Northover675a0962014-06-13 14:24:23 +00005996 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5997 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5998 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5999 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006000
6001Overview:
6002"""""""""
6003
6004The '``mul``' instruction returns the product of its two operands.
6005
6006Arguments:
6007""""""""""
6008
6009The two arguments to the '``mul``' instruction must be
6010:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6011arguments must have identical types.
6012
6013Semantics:
6014""""""""""
6015
6016The value produced is the integer product of the two operands.
6017
6018If the result of the multiplication has unsigned overflow, the result
6019returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6020bit width of the result.
6021
6022Because LLVM integers use a two's complement representation, and the
6023result is the same width as the operands, this instruction returns the
6024correct result for both signed and unsigned integers. If a full product
6025(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6026sign-extended or zero-extended as appropriate to the width of the full
6027product.
6028
6029``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6030respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6031result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6032unsigned and/or signed overflow, respectively, occurs.
6033
6034Example:
6035""""""""
6036
6037.. code-block:: llvm
6038
Tim Northover675a0962014-06-13 14:24:23 +00006039 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006040
6041.. _i_fmul:
6042
6043'``fmul``' Instruction
6044^^^^^^^^^^^^^^^^^^^^^^
6045
6046Syntax:
6047"""""""
6048
6049::
6050
Tim Northover675a0962014-06-13 14:24:23 +00006051 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006052
6053Overview:
6054"""""""""
6055
6056The '``fmul``' instruction returns the product of its two operands.
6057
6058Arguments:
6059""""""""""
6060
6061The two arguments to the '``fmul``' instruction must be :ref:`floating
6062point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6063Both arguments must have identical types.
6064
6065Semantics:
6066""""""""""
6067
6068The value produced is the floating point product of the two operands.
6069This instruction can also take any number of :ref:`fast-math
6070flags <fastmath>`, which are optimization hints to enable otherwise
6071unsafe floating point optimizations:
6072
6073Example:
6074""""""""
6075
6076.. code-block:: llvm
6077
Tim Northover675a0962014-06-13 14:24:23 +00006078 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006079
6080'``udiv``' Instruction
6081^^^^^^^^^^^^^^^^^^^^^^
6082
6083Syntax:
6084"""""""
6085
6086::
6087
Tim Northover675a0962014-06-13 14:24:23 +00006088 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6089 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006090
6091Overview:
6092"""""""""
6093
6094The '``udiv``' instruction returns the quotient of its two operands.
6095
6096Arguments:
6097""""""""""
6098
6099The two arguments to the '``udiv``' instruction must be
6100:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6101arguments must have identical types.
6102
6103Semantics:
6104""""""""""
6105
6106The value produced is the unsigned integer quotient of the two operands.
6107
6108Note that unsigned integer division and signed integer division are
6109distinct operations; for signed integer division, use '``sdiv``'.
6110
6111Division by zero leads to undefined behavior.
6112
6113If the ``exact`` keyword is present, the result value of the ``udiv`` is
6114a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6115such, "((a udiv exact b) mul b) == a").
6116
6117Example:
6118""""""""
6119
6120.. code-block:: llvm
6121
Tim Northover675a0962014-06-13 14:24:23 +00006122 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006123
6124'``sdiv``' Instruction
6125^^^^^^^^^^^^^^^^^^^^^^
6126
6127Syntax:
6128"""""""
6129
6130::
6131
Tim Northover675a0962014-06-13 14:24:23 +00006132 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6133 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006134
6135Overview:
6136"""""""""
6137
6138The '``sdiv``' instruction returns the quotient of its two operands.
6139
6140Arguments:
6141""""""""""
6142
6143The two arguments to the '``sdiv``' instruction must be
6144:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6145arguments must have identical types.
6146
6147Semantics:
6148""""""""""
6149
6150The value produced is the signed integer quotient of the two operands
6151rounded towards zero.
6152
6153Note that signed integer division and unsigned integer division are
6154distinct operations; for unsigned integer division, use '``udiv``'.
6155
6156Division by zero leads to undefined behavior. Overflow also leads to
6157undefined behavior; this is a rare case, but can occur, for example, by
6158doing a 32-bit division of -2147483648 by -1.
6159
6160If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6161a :ref:`poison value <poisonvalues>` if the result would be rounded.
6162
6163Example:
6164""""""""
6165
6166.. code-block:: llvm
6167
Tim Northover675a0962014-06-13 14:24:23 +00006168 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006169
6170.. _i_fdiv:
6171
6172'``fdiv``' Instruction
6173^^^^^^^^^^^^^^^^^^^^^^
6174
6175Syntax:
6176"""""""
6177
6178::
6179
Tim Northover675a0962014-06-13 14:24:23 +00006180 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006181
6182Overview:
6183"""""""""
6184
6185The '``fdiv``' instruction returns the quotient of its two operands.
6186
6187Arguments:
6188""""""""""
6189
6190The two arguments to the '``fdiv``' instruction must be :ref:`floating
6191point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6192Both arguments must have identical types.
6193
6194Semantics:
6195""""""""""
6196
6197The value produced is the floating point quotient of the two operands.
6198This instruction can also take any number of :ref:`fast-math
6199flags <fastmath>`, which are optimization hints to enable otherwise
6200unsafe floating point optimizations:
6201
6202Example:
6203""""""""
6204
6205.. code-block:: llvm
6206
Tim Northover675a0962014-06-13 14:24:23 +00006207 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006208
6209'``urem``' Instruction
6210^^^^^^^^^^^^^^^^^^^^^^
6211
6212Syntax:
6213"""""""
6214
6215::
6216
Tim Northover675a0962014-06-13 14:24:23 +00006217 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006218
6219Overview:
6220"""""""""
6221
6222The '``urem``' instruction returns the remainder from the unsigned
6223division of its two arguments.
6224
6225Arguments:
6226""""""""""
6227
6228The two arguments to the '``urem``' instruction must be
6229:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6230arguments must have identical types.
6231
6232Semantics:
6233""""""""""
6234
6235This instruction returns the unsigned integer *remainder* of a division.
6236This instruction always performs an unsigned division to get the
6237remainder.
6238
6239Note that unsigned integer remainder and signed integer remainder are
6240distinct operations; for signed integer remainder, use '``srem``'.
6241
6242Taking the remainder of a division by zero leads to undefined behavior.
6243
6244Example:
6245""""""""
6246
6247.. code-block:: llvm
6248
Tim Northover675a0962014-06-13 14:24:23 +00006249 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006250
6251'``srem``' Instruction
6252^^^^^^^^^^^^^^^^^^^^^^
6253
6254Syntax:
6255"""""""
6256
6257::
6258
Tim Northover675a0962014-06-13 14:24:23 +00006259 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006260
6261Overview:
6262"""""""""
6263
6264The '``srem``' instruction returns the remainder from the signed
6265division of its two operands. This instruction can also take
6266:ref:`vector <t_vector>` versions of the values in which case the elements
6267must be integers.
6268
6269Arguments:
6270""""""""""
6271
6272The two arguments to the '``srem``' instruction must be
6273:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6274arguments must have identical types.
6275
6276Semantics:
6277""""""""""
6278
6279This instruction returns the *remainder* of a division (where the result
6280is either zero or has the same sign as the dividend, ``op1``), not the
6281*modulo* operator (where the result is either zero or has the same sign
6282as the divisor, ``op2``) of a value. For more information about the
6283difference, see `The Math
6284Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6285table of how this is implemented in various languages, please see
6286`Wikipedia: modulo
6287operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6288
6289Note that signed integer remainder and unsigned integer remainder are
6290distinct operations; for unsigned integer remainder, use '``urem``'.
6291
6292Taking the remainder of a division by zero leads to undefined behavior.
6293Overflow also leads to undefined behavior; this is a rare case, but can
6294occur, for example, by taking the remainder of a 32-bit division of
6295-2147483648 by -1. (The remainder doesn't actually overflow, but this
6296rule lets srem be implemented using instructions that return both the
6297result of the division and the remainder.)
6298
6299Example:
6300""""""""
6301
6302.. code-block:: llvm
6303
Tim Northover675a0962014-06-13 14:24:23 +00006304 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006305
6306.. _i_frem:
6307
6308'``frem``' Instruction
6309^^^^^^^^^^^^^^^^^^^^^^
6310
6311Syntax:
6312"""""""
6313
6314::
6315
Tim Northover675a0962014-06-13 14:24:23 +00006316 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006317
6318Overview:
6319"""""""""
6320
6321The '``frem``' instruction returns the remainder from the division of
6322its two operands.
6323
6324Arguments:
6325""""""""""
6326
6327The two arguments to the '``frem``' instruction must be :ref:`floating
6328point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6329Both arguments must have identical types.
6330
6331Semantics:
6332""""""""""
6333
6334This instruction returns the *remainder* of a division. The remainder
6335has the same sign as the dividend. This instruction can also take any
6336number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6337to enable otherwise unsafe floating point optimizations:
6338
6339Example:
6340""""""""
6341
6342.. code-block:: llvm
6343
Tim Northover675a0962014-06-13 14:24:23 +00006344 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006345
6346.. _bitwiseops:
6347
6348Bitwise Binary Operations
6349-------------------------
6350
6351Bitwise binary operators are used to do various forms of bit-twiddling
6352in a program. They are generally very efficient instructions and can
6353commonly be strength reduced from other instructions. They require two
6354operands of the same type, execute an operation on them, and produce a
6355single value. The resulting value is the same type as its operands.
6356
6357'``shl``' Instruction
6358^^^^^^^^^^^^^^^^^^^^^
6359
6360Syntax:
6361"""""""
6362
6363::
6364
Tim Northover675a0962014-06-13 14:24:23 +00006365 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6366 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6367 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6368 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006369
6370Overview:
6371"""""""""
6372
6373The '``shl``' instruction returns the first operand shifted to the left
6374a specified number of bits.
6375
6376Arguments:
6377""""""""""
6378
6379Both arguments to the '``shl``' instruction must be the same
6380:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6381'``op2``' is treated as an unsigned value.
6382
6383Semantics:
6384""""""""""
6385
6386The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6387where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006388dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006389``op1``, the result is undefined. If the arguments are vectors, each
6390vector element of ``op1`` is shifted by the corresponding shift amount
6391in ``op2``.
6392
6393If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6394value <poisonvalues>` if it shifts out any non-zero bits. If the
6395``nsw`` keyword is present, then the shift produces a :ref:`poison
6396value <poisonvalues>` if it shifts out any bits that disagree with the
6397resultant sign bit. As such, NUW/NSW have the same semantics as they
6398would if the shift were expressed as a mul instruction with the same
6399nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6400
6401Example:
6402""""""""
6403
6404.. code-block:: llvm
6405
Tim Northover675a0962014-06-13 14:24:23 +00006406 <result> = shl i32 4, %var ; yields i32: 4 << %var
6407 <result> = shl i32 4, 2 ; yields i32: 16
6408 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006409 <result> = shl i32 1, 32 ; undefined
6410 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6411
6412'``lshr``' Instruction
6413^^^^^^^^^^^^^^^^^^^^^^
6414
6415Syntax:
6416"""""""
6417
6418::
6419
Tim Northover675a0962014-06-13 14:24:23 +00006420 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6421 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006422
6423Overview:
6424"""""""""
6425
6426The '``lshr``' instruction (logical shift right) returns the first
6427operand shifted to the right a specified number of bits with zero fill.
6428
6429Arguments:
6430""""""""""
6431
6432Both arguments to the '``lshr``' instruction must be the same
6433:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6434'``op2``' is treated as an unsigned value.
6435
6436Semantics:
6437""""""""""
6438
6439This instruction always performs a logical shift right operation. The
6440most significant bits of the result will be filled with zero bits after
6441the shift. If ``op2`` is (statically or dynamically) equal to or larger
6442than the number of bits in ``op1``, the result is undefined. If the
6443arguments are vectors, each vector element of ``op1`` is shifted by the
6444corresponding shift amount in ``op2``.
6445
6446If the ``exact`` keyword is present, the result value of the ``lshr`` is
6447a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6448non-zero.
6449
6450Example:
6451""""""""
6452
6453.. code-block:: llvm
6454
Tim Northover675a0962014-06-13 14:24:23 +00006455 <result> = lshr i32 4, 1 ; yields i32:result = 2
6456 <result> = lshr i32 4, 2 ; yields i32:result = 1
6457 <result> = lshr i8 4, 3 ; yields i8:result = 0
6458 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006459 <result> = lshr i32 1, 32 ; undefined
6460 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6461
6462'``ashr``' Instruction
6463^^^^^^^^^^^^^^^^^^^^^^
6464
6465Syntax:
6466"""""""
6467
6468::
6469
Tim Northover675a0962014-06-13 14:24:23 +00006470 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6471 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006472
6473Overview:
6474"""""""""
6475
6476The '``ashr``' instruction (arithmetic shift right) returns the first
6477operand shifted to the right a specified number of bits with sign
6478extension.
6479
6480Arguments:
6481""""""""""
6482
6483Both arguments to the '``ashr``' instruction must be the same
6484:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6485'``op2``' is treated as an unsigned value.
6486
6487Semantics:
6488""""""""""
6489
6490This instruction always performs an arithmetic shift right operation,
6491The most significant bits of the result will be filled with the sign bit
6492of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6493than the number of bits in ``op1``, the result is undefined. If the
6494arguments are vectors, each vector element of ``op1`` is shifted by the
6495corresponding shift amount in ``op2``.
6496
6497If the ``exact`` keyword is present, the result value of the ``ashr`` is
6498a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6499non-zero.
6500
6501Example:
6502""""""""
6503
6504.. code-block:: llvm
6505
Tim Northover675a0962014-06-13 14:24:23 +00006506 <result> = ashr i32 4, 1 ; yields i32:result = 2
6507 <result> = ashr i32 4, 2 ; yields i32:result = 1
6508 <result> = ashr i8 4, 3 ; yields i8:result = 0
6509 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006510 <result> = ashr i32 1, 32 ; undefined
6511 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6512
6513'``and``' Instruction
6514^^^^^^^^^^^^^^^^^^^^^
6515
6516Syntax:
6517"""""""
6518
6519::
6520
Tim Northover675a0962014-06-13 14:24:23 +00006521 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006522
6523Overview:
6524"""""""""
6525
6526The '``and``' instruction returns the bitwise logical and of its two
6527operands.
6528
6529Arguments:
6530""""""""""
6531
6532The two arguments to the '``and``' instruction must be
6533:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6534arguments must have identical types.
6535
6536Semantics:
6537""""""""""
6538
6539The truth table used for the '``and``' instruction is:
6540
6541+-----+-----+-----+
6542| In0 | In1 | Out |
6543+-----+-----+-----+
6544| 0 | 0 | 0 |
6545+-----+-----+-----+
6546| 0 | 1 | 0 |
6547+-----+-----+-----+
6548| 1 | 0 | 0 |
6549+-----+-----+-----+
6550| 1 | 1 | 1 |
6551+-----+-----+-----+
6552
6553Example:
6554""""""""
6555
6556.. code-block:: llvm
6557
Tim Northover675a0962014-06-13 14:24:23 +00006558 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6559 <result> = and i32 15, 40 ; yields i32:result = 8
6560 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006561
6562'``or``' Instruction
6563^^^^^^^^^^^^^^^^^^^^
6564
6565Syntax:
6566"""""""
6567
6568::
6569
Tim Northover675a0962014-06-13 14:24:23 +00006570 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006571
6572Overview:
6573"""""""""
6574
6575The '``or``' instruction returns the bitwise logical inclusive or of its
6576two operands.
6577
6578Arguments:
6579""""""""""
6580
6581The two arguments to the '``or``' instruction must be
6582:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6583arguments must have identical types.
6584
6585Semantics:
6586""""""""""
6587
6588The truth table used for the '``or``' instruction is:
6589
6590+-----+-----+-----+
6591| In0 | In1 | Out |
6592+-----+-----+-----+
6593| 0 | 0 | 0 |
6594+-----+-----+-----+
6595| 0 | 1 | 1 |
6596+-----+-----+-----+
6597| 1 | 0 | 1 |
6598+-----+-----+-----+
6599| 1 | 1 | 1 |
6600+-----+-----+-----+
6601
6602Example:
6603""""""""
6604
6605::
6606
Tim Northover675a0962014-06-13 14:24:23 +00006607 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6608 <result> = or i32 15, 40 ; yields i32:result = 47
6609 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006610
6611'``xor``' Instruction
6612^^^^^^^^^^^^^^^^^^^^^
6613
6614Syntax:
6615"""""""
6616
6617::
6618
Tim Northover675a0962014-06-13 14:24:23 +00006619 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006620
6621Overview:
6622"""""""""
6623
6624The '``xor``' instruction returns the bitwise logical exclusive or of
6625its two operands. The ``xor`` is used to implement the "one's
6626complement" operation, which is the "~" operator in C.
6627
6628Arguments:
6629""""""""""
6630
6631The two arguments to the '``xor``' instruction must be
6632:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6633arguments must have identical types.
6634
6635Semantics:
6636""""""""""
6637
6638The truth table used for the '``xor``' instruction is:
6639
6640+-----+-----+-----+
6641| In0 | In1 | Out |
6642+-----+-----+-----+
6643| 0 | 0 | 0 |
6644+-----+-----+-----+
6645| 0 | 1 | 1 |
6646+-----+-----+-----+
6647| 1 | 0 | 1 |
6648+-----+-----+-----+
6649| 1 | 1 | 0 |
6650+-----+-----+-----+
6651
6652Example:
6653""""""""
6654
6655.. code-block:: llvm
6656
Tim Northover675a0962014-06-13 14:24:23 +00006657 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6658 <result> = xor i32 15, 40 ; yields i32:result = 39
6659 <result> = xor i32 4, 8 ; yields i32:result = 12
6660 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006661
6662Vector Operations
6663-----------------
6664
6665LLVM supports several instructions to represent vector operations in a
6666target-independent manner. These instructions cover the element-access
6667and vector-specific operations needed to process vectors effectively.
6668While LLVM does directly support these vector operations, many
6669sophisticated algorithms will want to use target-specific intrinsics to
6670take full advantage of a specific target.
6671
6672.. _i_extractelement:
6673
6674'``extractelement``' Instruction
6675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6676
6677Syntax:
6678"""""""
6679
6680::
6681
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006682 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006683
6684Overview:
6685"""""""""
6686
6687The '``extractelement``' instruction extracts a single scalar element
6688from a vector at a specified index.
6689
6690Arguments:
6691""""""""""
6692
6693The first operand of an '``extractelement``' instruction is a value of
6694:ref:`vector <t_vector>` type. The second operand is an index indicating
6695the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006696variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006697
6698Semantics:
6699""""""""""
6700
6701The result is a scalar of the same type as the element type of ``val``.
6702Its value is the value at position ``idx`` of ``val``. If ``idx``
6703exceeds the length of ``val``, the results are undefined.
6704
6705Example:
6706""""""""
6707
6708.. code-block:: llvm
6709
6710 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6711
6712.. _i_insertelement:
6713
6714'``insertelement``' Instruction
6715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6716
6717Syntax:
6718"""""""
6719
6720::
6721
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006722 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006723
6724Overview:
6725"""""""""
6726
6727The '``insertelement``' instruction inserts a scalar element into a
6728vector at a specified index.
6729
6730Arguments:
6731""""""""""
6732
6733The first operand of an '``insertelement``' instruction is a value of
6734:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6735type must equal the element type of the first operand. The third operand
6736is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006737index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006738
6739Semantics:
6740""""""""""
6741
6742The result is a vector of the same type as ``val``. Its element values
6743are those of ``val`` except at position ``idx``, where it gets the value
6744``elt``. If ``idx`` exceeds the length of ``val``, the results are
6745undefined.
6746
6747Example:
6748""""""""
6749
6750.. code-block:: llvm
6751
6752 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6753
6754.. _i_shufflevector:
6755
6756'``shufflevector``' Instruction
6757^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6758
6759Syntax:
6760"""""""
6761
6762::
6763
6764 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6765
6766Overview:
6767"""""""""
6768
6769The '``shufflevector``' instruction constructs a permutation of elements
6770from two input vectors, returning a vector with the same element type as
6771the input and length that is the same as the shuffle mask.
6772
6773Arguments:
6774""""""""""
6775
6776The first two operands of a '``shufflevector``' instruction are vectors
6777with the same type. The third argument is a shuffle mask whose element
6778type is always 'i32'. The result of the instruction is a vector whose
6779length is the same as the shuffle mask and whose element type is the
6780same as the element type of the first two operands.
6781
6782The shuffle mask operand is required to be a constant vector with either
6783constant integer or undef values.
6784
6785Semantics:
6786""""""""""
6787
6788The elements of the two input vectors are numbered from left to right
6789across both of the vectors. The shuffle mask operand specifies, for each
6790element of the result vector, which element of the two input vectors the
6791result element gets. The element selector may be undef (meaning "don't
6792care") and the second operand may be undef if performing a shuffle from
6793only one vector.
6794
6795Example:
6796""""""""
6797
6798.. code-block:: llvm
6799
6800 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6801 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6802 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6803 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6804 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6805 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6806 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6807 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6808
6809Aggregate Operations
6810--------------------
6811
6812LLVM supports several instructions for working with
6813:ref:`aggregate <t_aggregate>` values.
6814
6815.. _i_extractvalue:
6816
6817'``extractvalue``' Instruction
6818^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6819
6820Syntax:
6821"""""""
6822
6823::
6824
6825 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6826
6827Overview:
6828"""""""""
6829
6830The '``extractvalue``' instruction extracts the value of a member field
6831from an :ref:`aggregate <t_aggregate>` value.
6832
6833Arguments:
6834""""""""""
6835
6836The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006837:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006838constant indices to specify which value to extract in a similar manner
6839as indices in a '``getelementptr``' instruction.
6840
6841The major differences to ``getelementptr`` indexing are:
6842
6843- Since the value being indexed is not a pointer, the first index is
6844 omitted and assumed to be zero.
6845- At least one index must be specified.
6846- Not only struct indices but also array indices must be in bounds.
6847
6848Semantics:
6849""""""""""
6850
6851The result is the value at the position in the aggregate specified by
6852the index operands.
6853
6854Example:
6855""""""""
6856
6857.. code-block:: llvm
6858
6859 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6860
6861.. _i_insertvalue:
6862
6863'``insertvalue``' Instruction
6864^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6865
6866Syntax:
6867"""""""
6868
6869::
6870
6871 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6872
6873Overview:
6874"""""""""
6875
6876The '``insertvalue``' instruction inserts a value into a member field in
6877an :ref:`aggregate <t_aggregate>` value.
6878
6879Arguments:
6880""""""""""
6881
6882The first operand of an '``insertvalue``' instruction is a value of
6883:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6884a first-class value to insert. The following operands are constant
6885indices indicating the position at which to insert the value in a
6886similar manner as indices in a '``extractvalue``' instruction. The value
6887to insert must have the same type as the value identified by the
6888indices.
6889
6890Semantics:
6891""""""""""
6892
6893The result is an aggregate of the same type as ``val``. Its value is
6894that of ``val`` except that the value at the position specified by the
6895indices is that of ``elt``.
6896
6897Example:
6898""""""""
6899
6900.. code-block:: llvm
6901
6902 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6903 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006904 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006905
6906.. _memoryops:
6907
6908Memory Access and Addressing Operations
6909---------------------------------------
6910
6911A key design point of an SSA-based representation is how it represents
6912memory. In LLVM, no memory locations are in SSA form, which makes things
6913very simple. This section describes how to read, write, and allocate
6914memory in LLVM.
6915
6916.. _i_alloca:
6917
6918'``alloca``' Instruction
6919^^^^^^^^^^^^^^^^^^^^^^^^
6920
6921Syntax:
6922"""""""
6923
6924::
6925
Tim Northover675a0962014-06-13 14:24:23 +00006926 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006927
6928Overview:
6929"""""""""
6930
6931The '``alloca``' instruction allocates memory on the stack frame of the
6932currently executing function, to be automatically released when this
6933function returns to its caller. The object is always allocated in the
6934generic address space (address space zero).
6935
6936Arguments:
6937""""""""""
6938
6939The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6940bytes of memory on the runtime stack, returning a pointer of the
6941appropriate type to the program. If "NumElements" is specified, it is
6942the number of elements allocated, otherwise "NumElements" is defaulted
6943to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006944allocation is guaranteed to be aligned to at least that boundary. The
6945alignment may not be greater than ``1 << 29``. If not specified, or if
6946zero, the target can choose to align the allocation on any convenient
6947boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006948
6949'``type``' may be any sized type.
6950
6951Semantics:
6952""""""""""
6953
6954Memory is allocated; a pointer is returned. The operation is undefined
6955if there is insufficient stack space for the allocation. '``alloca``'d
6956memory is automatically released when the function returns. The
6957'``alloca``' instruction is commonly used to represent automatic
6958variables that must have an address available. When the function returns
6959(either with the ``ret`` or ``resume`` instructions), the memory is
6960reclaimed. Allocating zero bytes is legal, but the result is undefined.
6961The order in which memory is allocated (ie., which way the stack grows)
6962is not specified.
6963
6964Example:
6965""""""""
6966
6967.. code-block:: llvm
6968
Tim Northover675a0962014-06-13 14:24:23 +00006969 %ptr = alloca i32 ; yields i32*:ptr
6970 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6971 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6972 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006973
6974.. _i_load:
6975
6976'``load``' Instruction
6977^^^^^^^^^^^^^^^^^^^^^^
6978
6979Syntax:
6980"""""""
6981
6982::
6983
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006984 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00006985 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006986 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006987 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006988 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006989
6990Overview:
6991"""""""""
6992
6993The '``load``' instruction is used to read from memory.
6994
6995Arguments:
6996""""""""""
6997
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00006998The argument to the ``load`` instruction specifies the memory address from which
6999to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7000known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7001the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7002modify the number or order of execution of this ``load`` with other
7003:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007004
JF Bastiend1fb5852015-12-17 22:09:19 +00007005If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7006<ordering>` and optional ``singlethread`` argument. The ``release`` and
7007``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7008produce :ref:`defined <memmodel>` results when they may see multiple atomic
7009stores. The type of the pointee must be an integer, pointer, or floating-point
7010type whose bit width is a power of two greater than or equal to eight and less
7011than or equal to a target-specific size limit. ``align`` must be explicitly
7012specified on atomic loads, and the load has undefined behavior if the alignment
7013is not set to a value which is at least the size in bytes of the
7014pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007015
7016The optional constant ``align`` argument specifies the alignment of the
7017operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007018or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007019alignment for the target. It is the responsibility of the code emitter
7020to ensure that the alignment information is correct. Overestimating the
7021alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007022may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007023maximum possible alignment is ``1 << 29``. An alignment value higher
7024than the size of the loaded type implies memory up to the alignment
7025value bytes can be safely loaded without trapping in the default
7026address space. Access of the high bytes can interfere with debugging
7027tools, so should not be accessed if the function has the
7028``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007029
7030The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007031metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007032``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007033metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007034that this load is not expected to be reused in the cache. The code
7035generator may select special instructions to save cache bandwidth, such
7036as the ``MOVNT`` instruction on x86.
7037
7038The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007039metadata name ``<index>`` corresponding to a metadata node with no
7040entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00007041instruction tells the optimizer and code generator that the address
7042operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007043Being invariant does not imply that a location is dereferenceable,
7044but it does imply that once the location is known dereferenceable
7045its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00007046
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007047The optional ``!invariant.group`` metadata must reference a single metadata name
7048 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7049
Philip Reamescdb72f32014-10-20 22:40:55 +00007050The optional ``!nonnull`` metadata must reference a single
7051metadata name ``<index>`` corresponding to a metadata node with no
7052entries. The existence of the ``!nonnull`` metadata on the
7053instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007054never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007055on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007056to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007057
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007058The optional ``!dereferenceable`` metadata must reference a single metadata
7059name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007060entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007061tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007062The number of bytes known to be dereferenceable is specified by the integer
7063value in the metadata node. This is analogous to the ''dereferenceable''
7064attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007065to loads of a pointer type.
7066
7067The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007068metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7069``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007070instruction tells the optimizer that the value loaded is known to be either
7071dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007072The number of bytes known to be dereferenceable is specified by the integer
7073value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7074attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007075to loads of a pointer type.
7076
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007077The optional ``!align`` metadata must reference a single metadata name
7078``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7079The existence of the ``!align`` metadata on the instruction tells the
7080optimizer that the value loaded is known to be aligned to a boundary specified
7081by the integer value in the metadata node. The alignment must be a power of 2.
7082This is analogous to the ''align'' attribute on parameters and return values.
7083This metadata can only be applied to loads of a pointer type.
7084
Sean Silvab084af42012-12-07 10:36:55 +00007085Semantics:
7086""""""""""
7087
7088The location of memory pointed to is loaded. If the value being loaded
7089is of scalar type then the number of bytes read does not exceed the
7090minimum number of bytes needed to hold all bits of the type. For
7091example, loading an ``i24`` reads at most three bytes. When loading a
7092value of a type like ``i20`` with a size that is not an integral number
7093of bytes, the result is undefined if the value was not originally
7094written using a store of the same type.
7095
7096Examples:
7097"""""""""
7098
7099.. code-block:: llvm
7100
Tim Northover675a0962014-06-13 14:24:23 +00007101 %ptr = alloca i32 ; yields i32*:ptr
7102 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007103 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007104
7105.. _i_store:
7106
7107'``store``' Instruction
7108^^^^^^^^^^^^^^^^^^^^^^^
7109
7110Syntax:
7111"""""""
7112
7113::
7114
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007115 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7116 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007117
7118Overview:
7119"""""""""
7120
7121The '``store``' instruction is used to write to memory.
7122
7123Arguments:
7124""""""""""
7125
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007126There are two arguments to the ``store`` instruction: a value to store and an
7127address at which to store it. The type of the ``<pointer>`` operand must be a
7128pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7129operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7130allowed to modify the number or order of execution of this ``store`` with other
7131:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7132<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7133structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007134
JF Bastiend1fb5852015-12-17 22:09:19 +00007135If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7136<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7137``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7138produce :ref:`defined <memmodel>` results when they may see multiple atomic
7139stores. The type of the pointee must be an integer, pointer, or floating-point
7140type whose bit width is a power of two greater than or equal to eight and less
7141than or equal to a target-specific size limit. ``align`` must be explicitly
7142specified on atomic stores, and the store has undefined behavior if the
7143alignment is not set to a value which is at least the size in bytes of the
7144pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007145
Eli Benderskyca380842013-04-17 17:17:20 +00007146The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007147operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007148or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007149alignment for the target. It is the responsibility of the code emitter
7150to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007151alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007152alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007153safe. The maximum possible alignment is ``1 << 29``. An alignment
7154value higher than the size of the stored type implies memory up to the
7155alignment value bytes can be stored to without trapping in the default
7156address space. Storing to the higher bytes however may result in data
7157races if another thread can access the same address. Introducing a
7158data race is not allowed. Storing to the extra bytes is not allowed
7159even in situations where a data race is known to not exist if the
7160function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007161
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007162The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007163name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007164value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007165tells the optimizer and code generator that this load is not expected to
7166be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007167instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007168x86.
7169
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007170The optional ``!invariant.group`` metadata must reference a
7171single metadata name ``<index>``. See ``invariant.group`` metadata.
7172
Sean Silvab084af42012-12-07 10:36:55 +00007173Semantics:
7174""""""""""
7175
Eli Benderskyca380842013-04-17 17:17:20 +00007176The contents of memory are updated to contain ``<value>`` at the
7177location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007178of scalar type then the number of bytes written does not exceed the
7179minimum number of bytes needed to hold all bits of the type. For
7180example, storing an ``i24`` writes at most three bytes. When writing a
7181value of a type like ``i20`` with a size that is not an integral number
7182of bytes, it is unspecified what happens to the extra bits that do not
7183belong to the type, but they will typically be overwritten.
7184
7185Example:
7186""""""""
7187
7188.. code-block:: llvm
7189
Tim Northover675a0962014-06-13 14:24:23 +00007190 %ptr = alloca i32 ; yields i32*:ptr
7191 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007192 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007193
7194.. _i_fence:
7195
7196'``fence``' Instruction
7197^^^^^^^^^^^^^^^^^^^^^^^
7198
7199Syntax:
7200"""""""
7201
7202::
7203
Tim Northover675a0962014-06-13 14:24:23 +00007204 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007205
7206Overview:
7207"""""""""
7208
7209The '``fence``' instruction is used to introduce happens-before edges
7210between operations.
7211
7212Arguments:
7213""""""""""
7214
7215'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7216defines what *synchronizes-with* edges they add. They can only be given
7217``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7218
7219Semantics:
7220""""""""""
7221
7222A fence A which has (at least) ``release`` ordering semantics
7223*synchronizes with* a fence B with (at least) ``acquire`` ordering
7224semantics if and only if there exist atomic operations X and Y, both
7225operating on some atomic object M, such that A is sequenced before X, X
7226modifies M (either directly or through some side effect of a sequence
7227headed by X), Y is sequenced before B, and Y observes M. This provides a
7228*happens-before* dependency between A and B. Rather than an explicit
7229``fence``, one (but not both) of the atomic operations X or Y might
7230provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7231still *synchronize-with* the explicit ``fence`` and establish the
7232*happens-before* edge.
7233
7234A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7235``acquire`` and ``release`` semantics specified above, participates in
7236the global program order of other ``seq_cst`` operations and/or fences.
7237
7238The optional ":ref:`singlethread <singlethread>`" argument specifies
7239that the fence only synchronizes with other fences in the same thread.
7240(This is useful for interacting with signal handlers.)
7241
7242Example:
7243""""""""
7244
7245.. code-block:: llvm
7246
Tim Northover675a0962014-06-13 14:24:23 +00007247 fence acquire ; yields void
7248 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007249
7250.. _i_cmpxchg:
7251
7252'``cmpxchg``' Instruction
7253^^^^^^^^^^^^^^^^^^^^^^^^^
7254
7255Syntax:
7256"""""""
7257
7258::
7259
Tim Northover675a0962014-06-13 14:24:23 +00007260 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007261
7262Overview:
7263"""""""""
7264
7265The '``cmpxchg``' instruction is used to atomically modify memory. It
7266loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007267equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007268
7269Arguments:
7270""""""""""
7271
7272There are three arguments to the '``cmpxchg``' instruction: an address
7273to operate on, a value to compare to the value currently be at that
7274address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007275are equal. The type of '<cmp>' must be an integer or pointer type whose
7276bit width is a power of two greater than or equal to eight and less
7277than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7278have the same type, and the type of '<pointer>' must be a pointer to
7279that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7280optimizer is not allowed to modify the number or order of execution of
7281this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007282
Tim Northovere94a5182014-03-11 10:48:52 +00007283The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007284``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7285must be at least ``monotonic``, the ordering constraint on failure must be no
7286stronger than that on success, and the failure ordering cannot be either
7287``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007288
7289The optional "``singlethread``" argument declares that the ``cmpxchg``
7290is only atomic with respect to code (usually signal handlers) running in
7291the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7292respect to all other code in the system.
7293
7294The pointer passed into cmpxchg must have alignment greater than or
7295equal to the size in memory of the operand.
7296
7297Semantics:
7298""""""""""
7299
Tim Northover420a2162014-06-13 14:24:07 +00007300The contents of memory at the location specified by the '``<pointer>``' operand
7301is read and compared to '``<cmp>``'; if the read value is the equal, the
7302'``<new>``' is written. The original value at the location is returned, together
7303with a flag indicating success (true) or failure (false).
7304
7305If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7306permitted: the operation may not write ``<new>`` even if the comparison
7307matched.
7308
7309If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7310if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007311
Tim Northovere94a5182014-03-11 10:48:52 +00007312A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7313identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7314load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007315
7316Example:
7317""""""""
7318
7319.. code-block:: llvm
7320
7321 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007322 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007323 br label %loop
7324
7325 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007326 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007327 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007328 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007329 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7330 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007331 br i1 %success, label %done, label %loop
7332
7333 done:
7334 ...
7335
7336.. _i_atomicrmw:
7337
7338'``atomicrmw``' Instruction
7339^^^^^^^^^^^^^^^^^^^^^^^^^^^
7340
7341Syntax:
7342"""""""
7343
7344::
7345
Tim Northover675a0962014-06-13 14:24:23 +00007346 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007347
7348Overview:
7349"""""""""
7350
7351The '``atomicrmw``' instruction is used to atomically modify memory.
7352
7353Arguments:
7354""""""""""
7355
7356There are three arguments to the '``atomicrmw``' instruction: an
7357operation to apply, an address whose value to modify, an argument to the
7358operation. The operation must be one of the following keywords:
7359
7360- xchg
7361- add
7362- sub
7363- and
7364- nand
7365- or
7366- xor
7367- max
7368- min
7369- umax
7370- umin
7371
7372The type of '<value>' must be an integer type whose bit width is a power
7373of two greater than or equal to eight and less than or equal to a
7374target-specific size limit. The type of the '``<pointer>``' operand must
7375be a pointer to that type. If the ``atomicrmw`` is marked as
7376``volatile``, then the optimizer is not allowed to modify the number or
7377order of execution of this ``atomicrmw`` with other :ref:`volatile
7378operations <volatile>`.
7379
7380Semantics:
7381""""""""""
7382
7383The contents of memory at the location specified by the '``<pointer>``'
7384operand are atomically read, modified, and written back. The original
7385value at the location is returned. The modification is specified by the
7386operation argument:
7387
7388- xchg: ``*ptr = val``
7389- add: ``*ptr = *ptr + val``
7390- sub: ``*ptr = *ptr - val``
7391- and: ``*ptr = *ptr & val``
7392- nand: ``*ptr = ~(*ptr & val)``
7393- or: ``*ptr = *ptr | val``
7394- xor: ``*ptr = *ptr ^ val``
7395- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7396- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7397- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7398 comparison)
7399- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7400 comparison)
7401
7402Example:
7403""""""""
7404
7405.. code-block:: llvm
7406
Tim Northover675a0962014-06-13 14:24:23 +00007407 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007408
7409.. _i_getelementptr:
7410
7411'``getelementptr``' Instruction
7412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7413
7414Syntax:
7415"""""""
7416
7417::
7418
David Blaikie16a97eb2015-03-04 22:02:58 +00007419 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7420 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7421 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007422
7423Overview:
7424"""""""""
7425
7426The '``getelementptr``' instruction is used to get the address of a
7427subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007428address calculation only and does not access memory. The instruction can also
7429be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007430
7431Arguments:
7432""""""""""
7433
David Blaikie16a97eb2015-03-04 22:02:58 +00007434The first argument is always a type used as the basis for the calculations.
7435The second argument is always a pointer or a vector of pointers, and is the
7436base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007437that indicate which of the elements of the aggregate object are indexed.
7438The interpretation of each index is dependent on the type being indexed
7439into. The first index always indexes the pointer value given as the
7440first argument, the second index indexes a value of the type pointed to
7441(not necessarily the value directly pointed to, since the first index
7442can be non-zero), etc. The first type indexed into must be a pointer
7443value, subsequent types can be arrays, vectors, and structs. Note that
7444subsequent types being indexed into can never be pointers, since that
7445would require loading the pointer before continuing calculation.
7446
7447The type of each index argument depends on the type it is indexing into.
7448When indexing into a (optionally packed) structure, only ``i32`` integer
7449**constants** are allowed (when using a vector of indices they must all
7450be the **same** ``i32`` integer constant). When indexing into an array,
7451pointer or vector, integers of any width are allowed, and they are not
7452required to be constant. These integers are treated as signed values
7453where relevant.
7454
7455For example, let's consider a C code fragment and how it gets compiled
7456to LLVM:
7457
7458.. code-block:: c
7459
7460 struct RT {
7461 char A;
7462 int B[10][20];
7463 char C;
7464 };
7465 struct ST {
7466 int X;
7467 double Y;
7468 struct RT Z;
7469 };
7470
7471 int *foo(struct ST *s) {
7472 return &s[1].Z.B[5][13];
7473 }
7474
7475The LLVM code generated by Clang is:
7476
7477.. code-block:: llvm
7478
7479 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7480 %struct.ST = type { i32, double, %struct.RT }
7481
7482 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7483 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007484 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007485 ret i32* %arrayidx
7486 }
7487
7488Semantics:
7489""""""""""
7490
7491In the example above, the first index is indexing into the
7492'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7493= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7494indexes into the third element of the structure, yielding a
7495'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7496structure. The third index indexes into the second element of the
7497structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7498dimensions of the array are subscripted into, yielding an '``i32``'
7499type. The '``getelementptr``' instruction returns a pointer to this
7500element, thus computing a value of '``i32*``' type.
7501
7502Note that it is perfectly legal to index partially through a structure,
7503returning a pointer to an inner element. Because of this, the LLVM code
7504for the given testcase is equivalent to:
7505
7506.. code-block:: llvm
7507
7508 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007509 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7510 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7511 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7512 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7513 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007514 ret i32* %t5
7515 }
7516
7517If the ``inbounds`` keyword is present, the result value of the
7518``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7519pointer is not an *in bounds* address of an allocated object, or if any
7520of the addresses that would be formed by successive addition of the
7521offsets implied by the indices to the base address with infinitely
7522precise signed arithmetic are not an *in bounds* address of that
7523allocated object. The *in bounds* addresses for an allocated object are
7524all the addresses that point into the object, plus the address one byte
7525past the end. In cases where the base is a vector of pointers the
7526``inbounds`` keyword applies to each of the computations element-wise.
7527
7528If the ``inbounds`` keyword is not present, the offsets are added to the
7529base address with silently-wrapping two's complement arithmetic. If the
7530offsets have a different width from the pointer, they are sign-extended
7531or truncated to the width of the pointer. The result value of the
7532``getelementptr`` may be outside the object pointed to by the base
7533pointer. The result value may not necessarily be used to access memory
7534though, even if it happens to point into allocated storage. See the
7535:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7536information.
7537
7538The getelementptr instruction is often confusing. For some more insight
7539into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7540
7541Example:
7542""""""""
7543
7544.. code-block:: llvm
7545
7546 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007547 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007548 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007549 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007550 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007551 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007552 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007553 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007554
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007555Vector of pointers:
7556"""""""""""""""""""
7557
7558The ``getelementptr`` returns a vector of pointers, instead of a single address,
7559when one or more of its arguments is a vector. In such cases, all vector
7560arguments should have the same number of elements, and every scalar argument
7561will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007562
7563.. code-block:: llvm
7564
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007565 ; All arguments are vectors:
7566 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7567 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007568
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007569 ; Add the same scalar offset to each pointer of a vector:
7570 ; A[i] = ptrs[i] + offset*sizeof(i8)
7571 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007572
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007573 ; Add distinct offsets to the same pointer:
7574 ; A[i] = ptr + offsets[i]*sizeof(i8)
7575 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007576
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007577 ; In all cases described above the type of the result is <4 x i8*>
7578
7579The two following instructions are equivalent:
7580
7581.. code-block:: llvm
7582
7583 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7584 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7585 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7586 <4 x i32> %ind4,
7587 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007588
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007589 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7590 i32 2, i32 1, <4 x i32> %ind4, i64 13
7591
7592Let's look at the C code, where the vector version of ``getelementptr``
7593makes sense:
7594
7595.. code-block:: c
7596
7597 // Let's assume that we vectorize the following loop:
7598 double *A, B; int *C;
7599 for (int i = 0; i < size; ++i) {
7600 A[i] = B[C[i]];
7601 }
7602
7603.. code-block:: llvm
7604
7605 ; get pointers for 8 elements from array B
7606 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7607 ; load 8 elements from array B into A
7608 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7609 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007610
7611Conversion Operations
7612---------------------
7613
7614The instructions in this category are the conversion instructions
7615(casting) which all take a single operand and a type. They perform
7616various bit conversions on the operand.
7617
7618'``trunc .. to``' Instruction
7619^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7620
7621Syntax:
7622"""""""
7623
7624::
7625
7626 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7627
7628Overview:
7629"""""""""
7630
7631The '``trunc``' instruction truncates its operand to the type ``ty2``.
7632
7633Arguments:
7634""""""""""
7635
7636The '``trunc``' instruction takes a value to trunc, and a type to trunc
7637it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7638of the same number of integers. The bit size of the ``value`` must be
7639larger than the bit size of the destination type, ``ty2``. Equal sized
7640types are not allowed.
7641
7642Semantics:
7643""""""""""
7644
7645The '``trunc``' instruction truncates the high order bits in ``value``
7646and converts the remaining bits to ``ty2``. Since the source size must
7647be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7648It will always truncate bits.
7649
7650Example:
7651""""""""
7652
7653.. code-block:: llvm
7654
7655 %X = trunc i32 257 to i8 ; yields i8:1
7656 %Y = trunc i32 123 to i1 ; yields i1:true
7657 %Z = trunc i32 122 to i1 ; yields i1:false
7658 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7659
7660'``zext .. to``' Instruction
7661^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7662
7663Syntax:
7664"""""""
7665
7666::
7667
7668 <result> = zext <ty> <value> to <ty2> ; yields ty2
7669
7670Overview:
7671"""""""""
7672
7673The '``zext``' instruction zero extends its operand to type ``ty2``.
7674
7675Arguments:
7676""""""""""
7677
7678The '``zext``' instruction takes a value to cast, and a type to cast it
7679to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7680the same number of integers. The bit size of the ``value`` must be
7681smaller than the bit size of the destination type, ``ty2``.
7682
7683Semantics:
7684""""""""""
7685
7686The ``zext`` fills the high order bits of the ``value`` with zero bits
7687until it reaches the size of the destination type, ``ty2``.
7688
7689When zero extending from i1, the result will always be either 0 or 1.
7690
7691Example:
7692""""""""
7693
7694.. code-block:: llvm
7695
7696 %X = zext i32 257 to i64 ; yields i64:257
7697 %Y = zext i1 true to i32 ; yields i32:1
7698 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7699
7700'``sext .. to``' Instruction
7701^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7702
7703Syntax:
7704"""""""
7705
7706::
7707
7708 <result> = sext <ty> <value> to <ty2> ; yields ty2
7709
7710Overview:
7711"""""""""
7712
7713The '``sext``' sign extends ``value`` to the type ``ty2``.
7714
7715Arguments:
7716""""""""""
7717
7718The '``sext``' instruction takes a value to cast, and a type to cast it
7719to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7720the same number of integers. The bit size of the ``value`` must be
7721smaller than the bit size of the destination type, ``ty2``.
7722
7723Semantics:
7724""""""""""
7725
7726The '``sext``' instruction performs a sign extension by copying the sign
7727bit (highest order bit) of the ``value`` until it reaches the bit size
7728of the type ``ty2``.
7729
7730When sign extending from i1, the extension always results in -1 or 0.
7731
7732Example:
7733""""""""
7734
7735.. code-block:: llvm
7736
7737 %X = sext i8 -1 to i16 ; yields i16 :65535
7738 %Y = sext i1 true to i32 ; yields i32:-1
7739 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7740
7741'``fptrunc .. to``' Instruction
7742^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7743
7744Syntax:
7745"""""""
7746
7747::
7748
7749 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7750
7751Overview:
7752"""""""""
7753
7754The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7755
7756Arguments:
7757""""""""""
7758
7759The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7760value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7761The size of ``value`` must be larger than the size of ``ty2``. This
7762implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7763
7764Semantics:
7765""""""""""
7766
Dan Liew50456fb2015-09-03 18:43:56 +00007767The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007768:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007769point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7770destination type, ``ty2``, then the results are undefined. If the cast produces
7771an inexact result, how rounding is performed (e.g. truncation, also known as
7772round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007773
7774Example:
7775""""""""
7776
7777.. code-block:: llvm
7778
7779 %X = fptrunc double 123.0 to float ; yields float:123.0
7780 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7781
7782'``fpext .. to``' Instruction
7783^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7784
7785Syntax:
7786"""""""
7787
7788::
7789
7790 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7791
7792Overview:
7793"""""""""
7794
7795The '``fpext``' extends a floating point ``value`` to a larger floating
7796point value.
7797
7798Arguments:
7799""""""""""
7800
7801The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7802``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7803to. The source type must be smaller than the destination type.
7804
7805Semantics:
7806""""""""""
7807
7808The '``fpext``' instruction extends the ``value`` from a smaller
7809:ref:`floating point <t_floating>` type to a larger :ref:`floating
7810point <t_floating>` type. The ``fpext`` cannot be used to make a
7811*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7812*no-op cast* for a floating point cast.
7813
7814Example:
7815""""""""
7816
7817.. code-block:: llvm
7818
7819 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7820 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7821
7822'``fptoui .. to``' Instruction
7823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7824
7825Syntax:
7826"""""""
7827
7828::
7829
7830 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7831
7832Overview:
7833"""""""""
7834
7835The '``fptoui``' converts a floating point ``value`` to its unsigned
7836integer equivalent of type ``ty2``.
7837
7838Arguments:
7839""""""""""
7840
7841The '``fptoui``' instruction takes a value to cast, which must be a
7842scalar or vector :ref:`floating point <t_floating>` value, and a type to
7843cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7844``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7845type with the same number of elements as ``ty``
7846
7847Semantics:
7848""""""""""
7849
7850The '``fptoui``' instruction converts its :ref:`floating
7851point <t_floating>` operand into the nearest (rounding towards zero)
7852unsigned integer value. If the value cannot fit in ``ty2``, the results
7853are undefined.
7854
7855Example:
7856""""""""
7857
7858.. code-block:: llvm
7859
7860 %X = fptoui double 123.0 to i32 ; yields i32:123
7861 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7862 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7863
7864'``fptosi .. to``' Instruction
7865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7866
7867Syntax:
7868"""""""
7869
7870::
7871
7872 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7873
7874Overview:
7875"""""""""
7876
7877The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7878``value`` to type ``ty2``.
7879
7880Arguments:
7881""""""""""
7882
7883The '``fptosi``' instruction takes a value to cast, which must be a
7884scalar or vector :ref:`floating point <t_floating>` value, and a type to
7885cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7886``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7887type with the same number of elements as ``ty``
7888
7889Semantics:
7890""""""""""
7891
7892The '``fptosi``' instruction converts its :ref:`floating
7893point <t_floating>` operand into the nearest (rounding towards zero)
7894signed integer value. If the value cannot fit in ``ty2``, the results
7895are undefined.
7896
7897Example:
7898""""""""
7899
7900.. code-block:: llvm
7901
7902 %X = fptosi double -123.0 to i32 ; yields i32:-123
7903 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7904 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7905
7906'``uitofp .. to``' Instruction
7907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7908
7909Syntax:
7910"""""""
7911
7912::
7913
7914 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7915
7916Overview:
7917"""""""""
7918
7919The '``uitofp``' instruction regards ``value`` as an unsigned integer
7920and converts that value to the ``ty2`` type.
7921
7922Arguments:
7923""""""""""
7924
7925The '``uitofp``' instruction takes a value to cast, which must be a
7926scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7927``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7928``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7929type with the same number of elements as ``ty``
7930
7931Semantics:
7932""""""""""
7933
7934The '``uitofp``' instruction interprets its operand as an unsigned
7935integer quantity and converts it to the corresponding floating point
7936value. If the value cannot fit in the floating point value, the results
7937are undefined.
7938
7939Example:
7940""""""""
7941
7942.. code-block:: llvm
7943
7944 %X = uitofp i32 257 to float ; yields float:257.0
7945 %Y = uitofp i8 -1 to double ; yields double:255.0
7946
7947'``sitofp .. to``' Instruction
7948^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7949
7950Syntax:
7951"""""""
7952
7953::
7954
7955 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7956
7957Overview:
7958"""""""""
7959
7960The '``sitofp``' instruction regards ``value`` as a signed integer and
7961converts that value to the ``ty2`` type.
7962
7963Arguments:
7964""""""""""
7965
7966The '``sitofp``' instruction takes a value to cast, which must be a
7967scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7968``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7969``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7970type with the same number of elements as ``ty``
7971
7972Semantics:
7973""""""""""
7974
7975The '``sitofp``' instruction interprets its operand as a signed integer
7976quantity and converts it to the corresponding floating point value. If
7977the value cannot fit in the floating point value, the results are
7978undefined.
7979
7980Example:
7981""""""""
7982
7983.. code-block:: llvm
7984
7985 %X = sitofp i32 257 to float ; yields float:257.0
7986 %Y = sitofp i8 -1 to double ; yields double:-1.0
7987
7988.. _i_ptrtoint:
7989
7990'``ptrtoint .. to``' Instruction
7991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7992
7993Syntax:
7994"""""""
7995
7996::
7997
7998 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7999
8000Overview:
8001"""""""""
8002
8003The '``ptrtoint``' instruction converts the pointer or a vector of
8004pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8005
8006Arguments:
8007""""""""""
8008
8009The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008010a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008011type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8012a vector of integers type.
8013
8014Semantics:
8015""""""""""
8016
8017The '``ptrtoint``' instruction converts ``value`` to integer type
8018``ty2`` by interpreting the pointer value as an integer and either
8019truncating or zero extending that value to the size of the integer type.
8020If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8021``value`` is larger than ``ty2`` then a truncation is done. If they are
8022the same size, then nothing is done (*no-op cast*) other than a type
8023change.
8024
8025Example:
8026""""""""
8027
8028.. code-block:: llvm
8029
8030 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8031 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8032 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8033
8034.. _i_inttoptr:
8035
8036'``inttoptr .. to``' Instruction
8037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8038
8039Syntax:
8040"""""""
8041
8042::
8043
8044 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8045
8046Overview:
8047"""""""""
8048
8049The '``inttoptr``' instruction converts an integer ``value`` to a
8050pointer type, ``ty2``.
8051
8052Arguments:
8053""""""""""
8054
8055The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8056cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8057type.
8058
8059Semantics:
8060""""""""""
8061
8062The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8063applying either a zero extension or a truncation depending on the size
8064of the integer ``value``. If ``value`` is larger than the size of a
8065pointer then a truncation is done. If ``value`` is smaller than the size
8066of a pointer then a zero extension is done. If they are the same size,
8067nothing is done (*no-op cast*).
8068
8069Example:
8070""""""""
8071
8072.. code-block:: llvm
8073
8074 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8075 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8076 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8077 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8078
8079.. _i_bitcast:
8080
8081'``bitcast .. to``' Instruction
8082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8083
8084Syntax:
8085"""""""
8086
8087::
8088
8089 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8090
8091Overview:
8092"""""""""
8093
8094The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8095changing any bits.
8096
8097Arguments:
8098""""""""""
8099
8100The '``bitcast``' instruction takes a value to cast, which must be a
8101non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008102also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8103bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008104identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008105also be a pointer of the same size. This instruction supports bitwise
8106conversion of vectors to integers and to vectors of other types (as
8107long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008108
8109Semantics:
8110""""""""""
8111
Matt Arsenault24b49c42013-07-31 17:49:08 +00008112The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8113is always a *no-op cast* because no bits change with this
8114conversion. The conversion is done as if the ``value`` had been stored
8115to memory and read back as type ``ty2``. Pointer (or vector of
8116pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008117pointers) types with the same address space through this instruction.
8118To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8119or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008120
8121Example:
8122""""""""
8123
8124.. code-block:: llvm
8125
8126 %X = bitcast i8 255 to i8 ; yields i8 :-1
8127 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8128 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8129 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8130
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008131.. _i_addrspacecast:
8132
8133'``addrspacecast .. to``' Instruction
8134^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8135
8136Syntax:
8137"""""""
8138
8139::
8140
8141 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8142
8143Overview:
8144"""""""""
8145
8146The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8147address space ``n`` to type ``pty2`` in address space ``m``.
8148
8149Arguments:
8150""""""""""
8151
8152The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8153to cast and a pointer type to cast it to, which must have a different
8154address space.
8155
8156Semantics:
8157""""""""""
8158
8159The '``addrspacecast``' instruction converts the pointer value
8160``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008161value modification, depending on the target and the address space
8162pair. Pointer conversions within the same address space must be
8163performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008164conversion is legal then both result and operand refer to the same memory
8165location.
8166
8167Example:
8168""""""""
8169
8170.. code-block:: llvm
8171
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008172 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8173 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8174 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008175
Sean Silvab084af42012-12-07 10:36:55 +00008176.. _otherops:
8177
8178Other Operations
8179----------------
8180
8181The instructions in this category are the "miscellaneous" instructions,
8182which defy better classification.
8183
8184.. _i_icmp:
8185
8186'``icmp``' Instruction
8187^^^^^^^^^^^^^^^^^^^^^^
8188
8189Syntax:
8190"""""""
8191
8192::
8193
Tim Northover675a0962014-06-13 14:24:23 +00008194 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008195
8196Overview:
8197"""""""""
8198
8199The '``icmp``' instruction returns a boolean value or a vector of
8200boolean values based on comparison of its two integer, integer vector,
8201pointer, or pointer vector operands.
8202
8203Arguments:
8204""""""""""
8205
8206The '``icmp``' instruction takes three operands. The first operand is
8207the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008208not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008209
8210#. ``eq``: equal
8211#. ``ne``: not equal
8212#. ``ugt``: unsigned greater than
8213#. ``uge``: unsigned greater or equal
8214#. ``ult``: unsigned less than
8215#. ``ule``: unsigned less or equal
8216#. ``sgt``: signed greater than
8217#. ``sge``: signed greater or equal
8218#. ``slt``: signed less than
8219#. ``sle``: signed less or equal
8220
8221The remaining two arguments must be :ref:`integer <t_integer>` or
8222:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8223must also be identical types.
8224
8225Semantics:
8226""""""""""
8227
8228The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8229code given as ``cond``. The comparison performed always yields either an
8230:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8231
8232#. ``eq``: yields ``true`` if the operands are equal, ``false``
8233 otherwise. No sign interpretation is necessary or performed.
8234#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8235 otherwise. No sign interpretation is necessary or performed.
8236#. ``ugt``: interprets the operands as unsigned values and yields
8237 ``true`` if ``op1`` is greater than ``op2``.
8238#. ``uge``: interprets the operands as unsigned values and yields
8239 ``true`` if ``op1`` is greater than or equal to ``op2``.
8240#. ``ult``: interprets the operands as unsigned values and yields
8241 ``true`` if ``op1`` is less than ``op2``.
8242#. ``ule``: interprets the operands as unsigned values and yields
8243 ``true`` if ``op1`` is less than or equal to ``op2``.
8244#. ``sgt``: interprets the operands as signed values and yields ``true``
8245 if ``op1`` is greater than ``op2``.
8246#. ``sge``: interprets the operands as signed values and yields ``true``
8247 if ``op1`` is greater than or equal to ``op2``.
8248#. ``slt``: interprets the operands as signed values and yields ``true``
8249 if ``op1`` is less than ``op2``.
8250#. ``sle``: interprets the operands as signed values and yields ``true``
8251 if ``op1`` is less than or equal to ``op2``.
8252
8253If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8254are compared as if they were integers.
8255
8256If the operands are integer vectors, then they are compared element by
8257element. The result is an ``i1`` vector with the same number of elements
8258as the values being compared. Otherwise, the result is an ``i1``.
8259
8260Example:
8261""""""""
8262
8263.. code-block:: llvm
8264
8265 <result> = icmp eq i32 4, 5 ; yields: result=false
8266 <result> = icmp ne float* %X, %X ; yields: result=false
8267 <result> = icmp ult i16 4, 5 ; yields: result=true
8268 <result> = icmp sgt i16 4, 5 ; yields: result=false
8269 <result> = icmp ule i16 -4, 5 ; yields: result=false
8270 <result> = icmp sge i16 4, 5 ; yields: result=false
8271
Sean Silvab084af42012-12-07 10:36:55 +00008272.. _i_fcmp:
8273
8274'``fcmp``' Instruction
8275^^^^^^^^^^^^^^^^^^^^^^
8276
8277Syntax:
8278"""""""
8279
8280::
8281
James Molloy88eb5352015-07-10 12:52:00 +00008282 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008283
8284Overview:
8285"""""""""
8286
8287The '``fcmp``' instruction returns a boolean value or vector of boolean
8288values based on comparison of its operands.
8289
8290If the operands are floating point scalars, then the result type is a
8291boolean (:ref:`i1 <t_integer>`).
8292
8293If the operands are floating point vectors, then the result type is a
8294vector of boolean with the same number of elements as the operands being
8295compared.
8296
8297Arguments:
8298""""""""""
8299
8300The '``fcmp``' instruction takes three operands. The first operand is
8301the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008302not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008303
8304#. ``false``: no comparison, always returns false
8305#. ``oeq``: ordered and equal
8306#. ``ogt``: ordered and greater than
8307#. ``oge``: ordered and greater than or equal
8308#. ``olt``: ordered and less than
8309#. ``ole``: ordered and less than or equal
8310#. ``one``: ordered and not equal
8311#. ``ord``: ordered (no nans)
8312#. ``ueq``: unordered or equal
8313#. ``ugt``: unordered or greater than
8314#. ``uge``: unordered or greater than or equal
8315#. ``ult``: unordered or less than
8316#. ``ule``: unordered or less than or equal
8317#. ``une``: unordered or not equal
8318#. ``uno``: unordered (either nans)
8319#. ``true``: no comparison, always returns true
8320
8321*Ordered* means that neither operand is a QNAN while *unordered* means
8322that either operand may be a QNAN.
8323
8324Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8325point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8326type. They must have identical types.
8327
8328Semantics:
8329""""""""""
8330
8331The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8332condition code given as ``cond``. If the operands are vectors, then the
8333vectors are compared element by element. Each comparison performed
8334always yields an :ref:`i1 <t_integer>` result, as follows:
8335
8336#. ``false``: always yields ``false``, regardless of operands.
8337#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8338 is equal to ``op2``.
8339#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8340 is greater than ``op2``.
8341#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8342 is greater than or equal to ``op2``.
8343#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8344 is less than ``op2``.
8345#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8346 is less than or equal to ``op2``.
8347#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8348 is not equal to ``op2``.
8349#. ``ord``: yields ``true`` if both operands are not a QNAN.
8350#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8351 equal to ``op2``.
8352#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8353 greater than ``op2``.
8354#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8355 greater than or equal to ``op2``.
8356#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8357 less than ``op2``.
8358#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8359 less than or equal to ``op2``.
8360#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8361 not equal to ``op2``.
8362#. ``uno``: yields ``true`` if either operand is a QNAN.
8363#. ``true``: always yields ``true``, regardless of operands.
8364
James Molloy88eb5352015-07-10 12:52:00 +00008365The ``fcmp`` instruction can also optionally take any number of
8366:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8367otherwise unsafe floating point optimizations.
8368
8369Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8370only flags that have any effect on its semantics are those that allow
8371assumptions to be made about the values of input arguments; namely
8372``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8373
Sean Silvab084af42012-12-07 10:36:55 +00008374Example:
8375""""""""
8376
8377.. code-block:: llvm
8378
8379 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8380 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8381 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8382 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8383
Sean Silvab084af42012-12-07 10:36:55 +00008384.. _i_phi:
8385
8386'``phi``' Instruction
8387^^^^^^^^^^^^^^^^^^^^^
8388
8389Syntax:
8390"""""""
8391
8392::
8393
8394 <result> = phi <ty> [ <val0>, <label0>], ...
8395
8396Overview:
8397"""""""""
8398
8399The '``phi``' instruction is used to implement the φ node in the SSA
8400graph representing the function.
8401
8402Arguments:
8403""""""""""
8404
8405The type of the incoming values is specified with the first type field.
8406After this, the '``phi``' instruction takes a list of pairs as
8407arguments, with one pair for each predecessor basic block of the current
8408block. Only values of :ref:`first class <t_firstclass>` type may be used as
8409the value arguments to the PHI node. Only labels may be used as the
8410label arguments.
8411
8412There must be no non-phi instructions between the start of a basic block
8413and the PHI instructions: i.e. PHI instructions must be first in a basic
8414block.
8415
8416For the purposes of the SSA form, the use of each incoming value is
8417deemed to occur on the edge from the corresponding predecessor block to
8418the current block (but after any definition of an '``invoke``'
8419instruction's return value on the same edge).
8420
8421Semantics:
8422""""""""""
8423
8424At runtime, the '``phi``' instruction logically takes on the value
8425specified by the pair corresponding to the predecessor basic block that
8426executed just prior to the current block.
8427
8428Example:
8429""""""""
8430
8431.. code-block:: llvm
8432
8433 Loop: ; Infinite loop that counts from 0 on up...
8434 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8435 %nextindvar = add i32 %indvar, 1
8436 br label %Loop
8437
8438.. _i_select:
8439
8440'``select``' Instruction
8441^^^^^^^^^^^^^^^^^^^^^^^^
8442
8443Syntax:
8444"""""""
8445
8446::
8447
8448 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8449
8450 selty is either i1 or {<N x i1>}
8451
8452Overview:
8453"""""""""
8454
8455The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008456condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008457
8458Arguments:
8459""""""""""
8460
8461The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8462values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008463class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008464
8465Semantics:
8466""""""""""
8467
8468If the condition is an i1 and it evaluates to 1, the instruction returns
8469the first value argument; otherwise, it returns the second value
8470argument.
8471
8472If the condition is a vector of i1, then the value arguments must be
8473vectors of the same size, and the selection is done element by element.
8474
David Majnemer40a0b592015-03-03 22:45:47 +00008475If the condition is an i1 and the value arguments are vectors of the
8476same size, then an entire vector is selected.
8477
Sean Silvab084af42012-12-07 10:36:55 +00008478Example:
8479""""""""
8480
8481.. code-block:: llvm
8482
8483 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8484
8485.. _i_call:
8486
8487'``call``' Instruction
8488^^^^^^^^^^^^^^^^^^^^^^
8489
8490Syntax:
8491"""""""
8492
8493::
8494
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008495 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008496 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008497
8498Overview:
8499"""""""""
8500
8501The '``call``' instruction represents a simple function call.
8502
8503Arguments:
8504""""""""""
8505
8506This instruction requires several arguments:
8507
Reid Kleckner5772b772014-04-24 20:14:34 +00008508#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008509 should perform tail call optimization. The ``tail`` marker is a hint that
8510 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008511 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008512 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008513
8514 #. The call will not cause unbounded stack growth if it is part of a
8515 recursive cycle in the call graph.
8516 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8517 forwarded in place.
8518
8519 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008520 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008521 rules:
8522
8523 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8524 or a pointer bitcast followed by a ret instruction.
8525 - The ret instruction must return the (possibly bitcasted) value
8526 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008527 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008528 parameters or return types may differ in pointee type, but not
8529 in address space.
8530 - The calling conventions of the caller and callee must match.
8531 - All ABI-impacting function attributes, such as sret, byval, inreg,
8532 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008533 - The callee must be varargs iff the caller is varargs. Bitcasting a
8534 non-varargs function to the appropriate varargs type is legal so
8535 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008536
8537 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8538 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008539
8540 - Caller and callee both have the calling convention ``fastcc``.
8541 - The call is in tail position (ret immediately follows call and ret
8542 uses value of call or is void).
8543 - Option ``-tailcallopt`` is enabled, or
8544 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008545 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008546 met. <CodeGenerator.html#tailcallopt>`_
8547
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008548#. The optional ``notail`` marker indicates that the optimizers should not add
8549 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8550 call optimization from being performed on the call.
8551
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008552#. The optional ``fast-math flags`` marker indicates that the call has one or more
8553 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8554 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8555 for calls that return a floating-point scalar or vector type.
8556
Sean Silvab084af42012-12-07 10:36:55 +00008557#. The optional "cconv" marker indicates which :ref:`calling
8558 convention <callingconv>` the call should use. If none is
8559 specified, the call defaults to using C calling conventions. The
8560 calling convention of the call must match the calling convention of
8561 the target function, or else the behavior is undefined.
8562#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8563 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8564 are valid here.
8565#. '``ty``': the type of the call instruction itself which is also the
8566 type of the return value. Functions that return no value are marked
8567 ``void``.
8568#. '``fnty``': shall be the signature of the pointer to function value
8569 being invoked. The argument types must match the types implied by
8570 this signature. This type can be omitted if the function is not
8571 varargs and if the function type does not return a pointer to a
8572 function.
8573#. '``fnptrval``': An LLVM value containing a pointer to a function to
8574 be invoked. In most cases, this is a direct function invocation, but
8575 indirect ``call``'s are just as possible, calling an arbitrary pointer
8576 to function value.
8577#. '``function args``': argument list whose types match the function
8578 signature argument types and parameter attributes. All arguments must
8579 be of :ref:`first class <t_firstclass>` type. If the function signature
8580 indicates the function accepts a variable number of arguments, the
8581 extra arguments can be specified.
8582#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008583 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8584 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008585#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008586
8587Semantics:
8588""""""""""
8589
8590The '``call``' instruction is used to cause control flow to transfer to
8591a specified function, with its incoming arguments bound to the specified
8592values. Upon a '``ret``' instruction in the called function, control
8593flow continues with the instruction after the function call, and the
8594return value of the function is bound to the result argument.
8595
8596Example:
8597""""""""
8598
8599.. code-block:: llvm
8600
8601 %retval = call i32 @test(i32 %argc)
8602 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8603 %X = tail call i32 @foo() ; yields i32
8604 %Y = tail call fastcc i32 @foo() ; yields i32
8605 call void %foo(i8 97 signext)
8606
8607 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008608 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008609 %gr = extractvalue %struct.A %r, 0 ; yields i32
8610 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8611 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8612 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8613
8614llvm treats calls to some functions with names and arguments that match
8615the standard C99 library as being the C99 library functions, and may
8616perform optimizations or generate code for them under that assumption.
8617This is something we'd like to change in the future to provide better
8618support for freestanding environments and non-C-based languages.
8619
8620.. _i_va_arg:
8621
8622'``va_arg``' Instruction
8623^^^^^^^^^^^^^^^^^^^^^^^^
8624
8625Syntax:
8626"""""""
8627
8628::
8629
8630 <resultval> = va_arg <va_list*> <arglist>, <argty>
8631
8632Overview:
8633"""""""""
8634
8635The '``va_arg``' instruction is used to access arguments passed through
8636the "variable argument" area of a function call. It is used to implement
8637the ``va_arg`` macro in C.
8638
8639Arguments:
8640""""""""""
8641
8642This instruction takes a ``va_list*`` value and the type of the
8643argument. It returns a value of the specified argument type and
8644increments the ``va_list`` to point to the next argument. The actual
8645type of ``va_list`` is target specific.
8646
8647Semantics:
8648""""""""""
8649
8650The '``va_arg``' instruction loads an argument of the specified type
8651from the specified ``va_list`` and causes the ``va_list`` to point to
8652the next argument. For more information, see the variable argument
8653handling :ref:`Intrinsic Functions <int_varargs>`.
8654
8655It is legal for this instruction to be called in a function which does
8656not take a variable number of arguments, for example, the ``vfprintf``
8657function.
8658
8659``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8660function <intrinsics>` because it takes a type as an argument.
8661
8662Example:
8663""""""""
8664
8665See the :ref:`variable argument processing <int_varargs>` section.
8666
8667Note that the code generator does not yet fully support va\_arg on many
8668targets. Also, it does not currently support va\_arg with aggregate
8669types on any target.
8670
8671.. _i_landingpad:
8672
8673'``landingpad``' Instruction
8674^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8675
8676Syntax:
8677"""""""
8678
8679::
8680
David Majnemer7fddecc2015-06-17 20:52:32 +00008681 <resultval> = landingpad <resultty> <clause>+
8682 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008683
8684 <clause> := catch <type> <value>
8685 <clause> := filter <array constant type> <array constant>
8686
8687Overview:
8688"""""""""
8689
8690The '``landingpad``' instruction is used by `LLVM's exception handling
8691system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008692is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008693code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008694defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008695re-entry to the function. The ``resultval`` has the type ``resultty``.
8696
8697Arguments:
8698""""""""""
8699
David Majnemer7fddecc2015-06-17 20:52:32 +00008700The optional
Sean Silvab084af42012-12-07 10:36:55 +00008701``cleanup`` flag indicates that the landing pad block is a cleanup.
8702
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008703A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008704contains the global variable representing the "type" that may be caught
8705or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8706clause takes an array constant as its argument. Use
8707"``[0 x i8**] undef``" for a filter which cannot throw. The
8708'``landingpad``' instruction must contain *at least* one ``clause`` or
8709the ``cleanup`` flag.
8710
8711Semantics:
8712""""""""""
8713
8714The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008715:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008716therefore the "result type" of the ``landingpad`` instruction. As with
8717calling conventions, how the personality function results are
8718represented in LLVM IR is target specific.
8719
8720The clauses are applied in order from top to bottom. If two
8721``landingpad`` instructions are merged together through inlining, the
8722clauses from the calling function are appended to the list of clauses.
8723When the call stack is being unwound due to an exception being thrown,
8724the exception is compared against each ``clause`` in turn. If it doesn't
8725match any of the clauses, and the ``cleanup`` flag is not set, then
8726unwinding continues further up the call stack.
8727
8728The ``landingpad`` instruction has several restrictions:
8729
8730- A landing pad block is a basic block which is the unwind destination
8731 of an '``invoke``' instruction.
8732- A landing pad block must have a '``landingpad``' instruction as its
8733 first non-PHI instruction.
8734- There can be only one '``landingpad``' instruction within the landing
8735 pad block.
8736- A basic block that is not a landing pad block may not include a
8737 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008738
8739Example:
8740""""""""
8741
8742.. code-block:: llvm
8743
8744 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008745 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008746 catch i8** @_ZTIi
8747 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008748 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008749 cleanup
8750 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008751 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008752 catch i8** @_ZTIi
8753 filter [1 x i8**] [@_ZTId]
8754
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008755.. _i_catchpad:
8756
8757'``catchpad``' Instruction
8758^^^^^^^^^^^^^^^^^^^^^^^^^^
8759
8760Syntax:
8761"""""""
8762
8763::
8764
8765 <resultval> = catchpad within <catchswitch> [<args>*]
8766
8767Overview:
8768"""""""""
8769
8770The '``catchpad``' instruction is used by `LLVM's exception handling
8771system <ExceptionHandling.html#overview>`_ to specify that a basic block
8772begins a catch handler --- one where a personality routine attempts to transfer
8773control to catch an exception.
8774
8775Arguments:
8776""""""""""
8777
8778The ``catchswitch`` operand must always be a token produced by a
8779:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8780ensures that each ``catchpad`` has exactly one predecessor block, and it always
8781terminates in a ``catchswitch``.
8782
8783The ``args`` correspond to whatever information the personality routine
8784requires to know if this is an appropriate handler for the exception. Control
8785will transfer to the ``catchpad`` if this is the first appropriate handler for
8786the exception.
8787
8788The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8789``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8790pads.
8791
8792Semantics:
8793""""""""""
8794
8795When the call stack is being unwound due to an exception being thrown, the
8796exception is compared against the ``args``. If it doesn't match, control will
8797not reach the ``catchpad`` instruction. The representation of ``args`` is
8798entirely target and personality function-specific.
8799
8800Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8801instruction must be the first non-phi of its parent basic block.
8802
8803The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8804instructions is described in the
8805`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8806
8807When a ``catchpad`` has been "entered" but not yet "exited" (as
8808described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8809it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8810that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8811
8812Example:
8813""""""""
8814
8815.. code-block:: llvm
8816
8817 dispatch:
8818 %cs = catchswitch within none [label %handler0] unwind to caller
8819 ;; A catch block which can catch an integer.
8820 handler0:
8821 %tok = catchpad within %cs [i8** @_ZTIi]
8822
David Majnemer654e1302015-07-31 17:58:14 +00008823.. _i_cleanuppad:
8824
8825'``cleanuppad``' Instruction
8826^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8827
8828Syntax:
8829"""""""
8830
8831::
8832
David Majnemer8a1c45d2015-12-12 05:38:55 +00008833 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008834
8835Overview:
8836"""""""""
8837
8838The '``cleanuppad``' instruction is used by `LLVM's exception handling
8839system <ExceptionHandling.html#overview>`_ to specify that a basic block
8840is a cleanup block --- one where a personality routine attempts to
8841transfer control to run cleanup actions.
8842The ``args`` correspond to whatever additional
8843information the :ref:`personality function <personalityfn>` requires to
8844execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008845The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008846match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8847The ``parent`` argument is the token of the funclet that contains the
8848``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8849this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008850
8851Arguments:
8852""""""""""
8853
8854The instruction takes a list of arbitrary values which are interpreted
8855by the :ref:`personality function <personalityfn>`.
8856
8857Semantics:
8858""""""""""
8859
David Majnemer654e1302015-07-31 17:58:14 +00008860When the call stack is being unwound due to an exception being thrown,
8861the :ref:`personality function <personalityfn>` transfers control to the
8862``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008863As with calling conventions, how the personality function results are
8864represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008865
8866The ``cleanuppad`` instruction has several restrictions:
8867
8868- A cleanup block is a basic block which is the unwind destination of
8869 an exceptional instruction.
8870- A cleanup block must have a '``cleanuppad``' instruction as its
8871 first non-PHI instruction.
8872- There can be only one '``cleanuppad``' instruction within the
8873 cleanup block.
8874- A basic block that is not a cleanup block may not include a
8875 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008876
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008877When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8878described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8879it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8880that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008881
David Majnemer654e1302015-07-31 17:58:14 +00008882Example:
8883""""""""
8884
8885.. code-block:: llvm
8886
David Majnemer8a1c45d2015-12-12 05:38:55 +00008887 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008888
Sean Silvab084af42012-12-07 10:36:55 +00008889.. _intrinsics:
8890
8891Intrinsic Functions
8892===================
8893
8894LLVM supports the notion of an "intrinsic function". These functions
8895have well known names and semantics and are required to follow certain
8896restrictions. Overall, these intrinsics represent an extension mechanism
8897for the LLVM language that does not require changing all of the
8898transformations in LLVM when adding to the language (or the bitcode
8899reader/writer, the parser, etc...).
8900
8901Intrinsic function names must all start with an "``llvm.``" prefix. This
8902prefix is reserved in LLVM for intrinsic names; thus, function names may
8903not begin with this prefix. Intrinsic functions must always be external
8904functions: you cannot define the body of intrinsic functions. Intrinsic
8905functions may only be used in call or invoke instructions: it is illegal
8906to take the address of an intrinsic function. Additionally, because
8907intrinsic functions are part of the LLVM language, it is required if any
8908are added that they be documented here.
8909
8910Some intrinsic functions can be overloaded, i.e., the intrinsic
8911represents a family of functions that perform the same operation but on
8912different data types. Because LLVM can represent over 8 million
8913different integer types, overloading is used commonly to allow an
8914intrinsic function to operate on any integer type. One or more of the
8915argument types or the result type can be overloaded to accept any
8916integer type. Argument types may also be defined as exactly matching a
8917previous argument's type or the result type. This allows an intrinsic
8918function which accepts multiple arguments, but needs all of them to be
8919of the same type, to only be overloaded with respect to a single
8920argument or the result.
8921
8922Overloaded intrinsics will have the names of its overloaded argument
8923types encoded into its function name, each preceded by a period. Only
8924those types which are overloaded result in a name suffix. Arguments
8925whose type is matched against another type do not. For example, the
8926``llvm.ctpop`` function can take an integer of any width and returns an
8927integer of exactly the same integer width. This leads to a family of
8928functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8929``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8930overloaded, and only one type suffix is required. Because the argument's
8931type is matched against the return type, it does not require its own
8932name suffix.
8933
8934To learn how to add an intrinsic function, please see the `Extending
8935LLVM Guide <ExtendingLLVM.html>`_.
8936
8937.. _int_varargs:
8938
8939Variable Argument Handling Intrinsics
8940-------------------------------------
8941
8942Variable argument support is defined in LLVM with the
8943:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8944functions. These functions are related to the similarly named macros
8945defined in the ``<stdarg.h>`` header file.
8946
8947All of these functions operate on arguments that use a target-specific
8948value type "``va_list``". The LLVM assembly language reference manual
8949does not define what this type is, so all transformations should be
8950prepared to handle these functions regardless of the type used.
8951
8952This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8953variable argument handling intrinsic functions are used.
8954
8955.. code-block:: llvm
8956
Tim Northoverab60bb92014-11-02 01:21:51 +00008957 ; This struct is different for every platform. For most platforms,
8958 ; it is merely an i8*.
8959 %struct.va_list = type { i8* }
8960
8961 ; For Unix x86_64 platforms, va_list is the following struct:
8962 ; %struct.va_list = type { i32, i32, i8*, i8* }
8963
Sean Silvab084af42012-12-07 10:36:55 +00008964 define i32 @test(i32 %X, ...) {
8965 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008966 %ap = alloca %struct.va_list
8967 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008968 call void @llvm.va_start(i8* %ap2)
8969
8970 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008971 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008972
8973 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8974 %aq = alloca i8*
8975 %aq2 = bitcast i8** %aq to i8*
8976 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8977 call void @llvm.va_end(i8* %aq2)
8978
8979 ; Stop processing of arguments.
8980 call void @llvm.va_end(i8* %ap2)
8981 ret i32 %tmp
8982 }
8983
8984 declare void @llvm.va_start(i8*)
8985 declare void @llvm.va_copy(i8*, i8*)
8986 declare void @llvm.va_end(i8*)
8987
8988.. _int_va_start:
8989
8990'``llvm.va_start``' Intrinsic
8991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8992
8993Syntax:
8994"""""""
8995
8996::
8997
Nick Lewycky04f6de02013-09-11 22:04:52 +00008998 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008999
9000Overview:
9001"""""""""
9002
9003The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9004subsequent use by ``va_arg``.
9005
9006Arguments:
9007""""""""""
9008
9009The argument is a pointer to a ``va_list`` element to initialize.
9010
9011Semantics:
9012""""""""""
9013
9014The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9015available in C. In a target-dependent way, it initializes the
9016``va_list`` element to which the argument points, so that the next call
9017to ``va_arg`` will produce the first variable argument passed to the
9018function. Unlike the C ``va_start`` macro, this intrinsic does not need
9019to know the last argument of the function as the compiler can figure
9020that out.
9021
9022'``llvm.va_end``' Intrinsic
9023^^^^^^^^^^^^^^^^^^^^^^^^^^^
9024
9025Syntax:
9026"""""""
9027
9028::
9029
9030 declare void @llvm.va_end(i8* <arglist>)
9031
9032Overview:
9033"""""""""
9034
9035The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9036initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9037
9038Arguments:
9039""""""""""
9040
9041The argument is a pointer to a ``va_list`` to destroy.
9042
9043Semantics:
9044""""""""""
9045
9046The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9047available in C. In a target-dependent way, it destroys the ``va_list``
9048element to which the argument points. Calls to
9049:ref:`llvm.va_start <int_va_start>` and
9050:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9051``llvm.va_end``.
9052
9053.. _int_va_copy:
9054
9055'``llvm.va_copy``' Intrinsic
9056^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9057
9058Syntax:
9059"""""""
9060
9061::
9062
9063 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9064
9065Overview:
9066"""""""""
9067
9068The '``llvm.va_copy``' intrinsic copies the current argument position
9069from the source argument list to the destination argument list.
9070
9071Arguments:
9072""""""""""
9073
9074The first argument is a pointer to a ``va_list`` element to initialize.
9075The second argument is a pointer to a ``va_list`` element to copy from.
9076
9077Semantics:
9078""""""""""
9079
9080The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9081available in C. In a target-dependent way, it copies the source
9082``va_list`` element into the destination ``va_list`` element. This
9083intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9084arbitrarily complex and require, for example, memory allocation.
9085
9086Accurate Garbage Collection Intrinsics
9087--------------------------------------
9088
Philip Reamesc5b0f562015-02-25 23:52:06 +00009089LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009090(GC) requires the frontend to generate code containing appropriate intrinsic
9091calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009092intrinsics in a manner which is appropriate for the target collector.
9093
Sean Silvab084af42012-12-07 10:36:55 +00009094These intrinsics allow identification of :ref:`GC roots on the
9095stack <int_gcroot>`, as well as garbage collector implementations that
9096require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009097Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009098these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009099details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009100
Philip Reamesf80bbff2015-02-25 23:45:20 +00009101Experimental Statepoint Intrinsics
9102^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9103
9104LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009105collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009106to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009107:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009108differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009109<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009110described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009111
9112.. _int_gcroot:
9113
9114'``llvm.gcroot``' Intrinsic
9115^^^^^^^^^^^^^^^^^^^^^^^^^^^
9116
9117Syntax:
9118"""""""
9119
9120::
9121
9122 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9123
9124Overview:
9125"""""""""
9126
9127The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9128the code generator, and allows some metadata to be associated with it.
9129
9130Arguments:
9131""""""""""
9132
9133The first argument specifies the address of a stack object that contains
9134the root pointer. The second pointer (which must be either a constant or
9135a global value address) contains the meta-data to be associated with the
9136root.
9137
9138Semantics:
9139""""""""""
9140
9141At runtime, a call to this intrinsic stores a null pointer into the
9142"ptrloc" location. At compile-time, the code generator generates
9143information to allow the runtime to find the pointer at GC safe points.
9144The '``llvm.gcroot``' intrinsic may only be used in a function which
9145:ref:`specifies a GC algorithm <gc>`.
9146
9147.. _int_gcread:
9148
9149'``llvm.gcread``' Intrinsic
9150^^^^^^^^^^^^^^^^^^^^^^^^^^^
9151
9152Syntax:
9153"""""""
9154
9155::
9156
9157 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9158
9159Overview:
9160"""""""""
9161
9162The '``llvm.gcread``' intrinsic identifies reads of references from heap
9163locations, allowing garbage collector implementations that require read
9164barriers.
9165
9166Arguments:
9167""""""""""
9168
9169The second argument is the address to read from, which should be an
9170address allocated from the garbage collector. The first object is a
9171pointer to the start of the referenced object, if needed by the language
9172runtime (otherwise null).
9173
9174Semantics:
9175""""""""""
9176
9177The '``llvm.gcread``' intrinsic has the same semantics as a load
9178instruction, but may be replaced with substantially more complex code by
9179the garbage collector runtime, as needed. The '``llvm.gcread``'
9180intrinsic may only be used in a function which :ref:`specifies a GC
9181algorithm <gc>`.
9182
9183.. _int_gcwrite:
9184
9185'``llvm.gcwrite``' Intrinsic
9186^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9187
9188Syntax:
9189"""""""
9190
9191::
9192
9193 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9194
9195Overview:
9196"""""""""
9197
9198The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9199locations, allowing garbage collector implementations that require write
9200barriers (such as generational or reference counting collectors).
9201
9202Arguments:
9203""""""""""
9204
9205The first argument is the reference to store, the second is the start of
9206the object to store it to, and the third is the address of the field of
9207Obj to store to. If the runtime does not require a pointer to the
9208object, Obj may be null.
9209
9210Semantics:
9211""""""""""
9212
9213The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9214instruction, but may be replaced with substantially more complex code by
9215the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9216intrinsic may only be used in a function which :ref:`specifies a GC
9217algorithm <gc>`.
9218
9219Code Generator Intrinsics
9220-------------------------
9221
9222These intrinsics are provided by LLVM to expose special features that
9223may only be implemented with code generator support.
9224
9225'``llvm.returnaddress``' Intrinsic
9226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9227
9228Syntax:
9229"""""""
9230
9231::
9232
9233 declare i8 *@llvm.returnaddress(i32 <level>)
9234
9235Overview:
9236"""""""""
9237
9238The '``llvm.returnaddress``' intrinsic attempts to compute a
9239target-specific value indicating the return address of the current
9240function or one of its callers.
9241
9242Arguments:
9243""""""""""
9244
9245The argument to this intrinsic indicates which function to return the
9246address for. Zero indicates the calling function, one indicates its
9247caller, etc. The argument is **required** to be a constant integer
9248value.
9249
9250Semantics:
9251""""""""""
9252
9253The '``llvm.returnaddress``' intrinsic either returns a pointer
9254indicating the return address of the specified call frame, or zero if it
9255cannot be identified. The value returned by this intrinsic is likely to
9256be incorrect or 0 for arguments other than zero, so it should only be
9257used for debugging purposes.
9258
9259Note that calling this intrinsic does not prevent function inlining or
9260other aggressive transformations, so the value returned may not be that
9261of the obvious source-language caller.
9262
9263'``llvm.frameaddress``' Intrinsic
9264^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9265
9266Syntax:
9267"""""""
9268
9269::
9270
9271 declare i8* @llvm.frameaddress(i32 <level>)
9272
9273Overview:
9274"""""""""
9275
9276The '``llvm.frameaddress``' intrinsic attempts to return the
9277target-specific frame pointer value for the specified stack frame.
9278
9279Arguments:
9280""""""""""
9281
9282The argument to this intrinsic indicates which function to return the
9283frame pointer for. Zero indicates the calling function, one indicates
9284its caller, etc. The argument is **required** to be a constant integer
9285value.
9286
9287Semantics:
9288""""""""""
9289
9290The '``llvm.frameaddress``' intrinsic either returns a pointer
9291indicating the frame address of the specified call frame, or zero if it
9292cannot be identified. The value returned by this intrinsic is likely to
9293be incorrect or 0 for arguments other than zero, so it should only be
9294used for debugging purposes.
9295
9296Note that calling this intrinsic does not prevent function inlining or
9297other aggressive transformations, so the value returned may not be that
9298of the obvious source-language caller.
9299
Reid Kleckner60381792015-07-07 22:25:32 +00009300'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009301^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9302
9303Syntax:
9304"""""""
9305
9306::
9307
Reid Kleckner60381792015-07-07 22:25:32 +00009308 declare void @llvm.localescape(...)
9309 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009310
9311Overview:
9312"""""""""
9313
Reid Kleckner60381792015-07-07 22:25:32 +00009314The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9315allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009316live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009317computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009318
9319Arguments:
9320""""""""""
9321
Reid Kleckner60381792015-07-07 22:25:32 +00009322All arguments to '``llvm.localescape``' must be pointers to static allocas or
9323casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009324once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009325
Reid Kleckner60381792015-07-07 22:25:32 +00009326The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009327bitcasted pointer to a function defined in the current module. The code
9328generator cannot determine the frame allocation offset of functions defined in
9329other modules.
9330
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009331The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9332call frame that is currently live. The return value of '``llvm.localaddress``'
9333is one way to produce such a value, but various runtimes also expose a suitable
9334pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009335
Reid Kleckner60381792015-07-07 22:25:32 +00009336The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9337'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009338
Reid Klecknere9b89312015-01-13 00:48:10 +00009339Semantics:
9340""""""""""
9341
Reid Kleckner60381792015-07-07 22:25:32 +00009342These intrinsics allow a group of functions to share access to a set of local
9343stack allocations of a one parent function. The parent function may call the
9344'``llvm.localescape``' intrinsic once from the function entry block, and the
9345child functions can use '``llvm.localrecover``' to access the escaped allocas.
9346The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9347the escaped allocas are allocated, which would break attempts to use
9348'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009349
Renato Golinc7aea402014-05-06 16:51:25 +00009350.. _int_read_register:
9351.. _int_write_register:
9352
9353'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9354^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9355
9356Syntax:
9357"""""""
9358
9359::
9360
9361 declare i32 @llvm.read_register.i32(metadata)
9362 declare i64 @llvm.read_register.i64(metadata)
9363 declare void @llvm.write_register.i32(metadata, i32 @value)
9364 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009365 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009366
9367Overview:
9368"""""""""
9369
9370The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9371provides access to the named register. The register must be valid on
9372the architecture being compiled to. The type needs to be compatible
9373with the register being read.
9374
9375Semantics:
9376""""""""""
9377
9378The '``llvm.read_register``' intrinsic returns the current value of the
9379register, where possible. The '``llvm.write_register``' intrinsic sets
9380the current value of the register, where possible.
9381
9382This is useful to implement named register global variables that need
9383to always be mapped to a specific register, as is common practice on
9384bare-metal programs including OS kernels.
9385
9386The compiler doesn't check for register availability or use of the used
9387register in surrounding code, including inline assembly. Because of that,
9388allocatable registers are not supported.
9389
9390Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009391architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009392work is needed to support other registers and even more so, allocatable
9393registers.
9394
Sean Silvab084af42012-12-07 10:36:55 +00009395.. _int_stacksave:
9396
9397'``llvm.stacksave``' Intrinsic
9398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9399
9400Syntax:
9401"""""""
9402
9403::
9404
9405 declare i8* @llvm.stacksave()
9406
9407Overview:
9408"""""""""
9409
9410The '``llvm.stacksave``' intrinsic is used to remember the current state
9411of the function stack, for use with
9412:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9413implementing language features like scoped automatic variable sized
9414arrays in C99.
9415
9416Semantics:
9417""""""""""
9418
9419This intrinsic returns a opaque pointer value that can be passed to
9420:ref:`llvm.stackrestore <int_stackrestore>`. When an
9421``llvm.stackrestore`` intrinsic is executed with a value saved from
9422``llvm.stacksave``, it effectively restores the state of the stack to
9423the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9424practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9425were allocated after the ``llvm.stacksave`` was executed.
9426
9427.. _int_stackrestore:
9428
9429'``llvm.stackrestore``' Intrinsic
9430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9431
9432Syntax:
9433"""""""
9434
9435::
9436
9437 declare void @llvm.stackrestore(i8* %ptr)
9438
9439Overview:
9440"""""""""
9441
9442The '``llvm.stackrestore``' intrinsic is used to restore the state of
9443the function stack to the state it was in when the corresponding
9444:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9445useful for implementing language features like scoped automatic variable
9446sized arrays in C99.
9447
9448Semantics:
9449""""""""""
9450
9451See the description for :ref:`llvm.stacksave <int_stacksave>`.
9452
Yury Gribovd7dbb662015-12-01 11:40:55 +00009453.. _int_get_dynamic_area_offset:
9454
9455'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009456^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009457
9458Syntax:
9459"""""""
9460
9461::
9462
9463 declare i32 @llvm.get.dynamic.area.offset.i32()
9464 declare i64 @llvm.get.dynamic.area.offset.i64()
9465
9466 Overview:
9467 """""""""
9468
9469 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9470 get the offset from native stack pointer to the address of the most
9471 recent dynamic alloca on the caller's stack. These intrinsics are
9472 intendend for use in combination with
9473 :ref:`llvm.stacksave <int_stacksave>` to get a
9474 pointer to the most recent dynamic alloca. This is useful, for example,
9475 for AddressSanitizer's stack unpoisoning routines.
9476
9477Semantics:
9478""""""""""
9479
9480 These intrinsics return a non-negative integer value that can be used to
9481 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9482 on the caller's stack. In particular, for targets where stack grows downwards,
9483 adding this offset to the native stack pointer would get the address of the most
9484 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9485 complicated, because substracting this value from stack pointer would get the address
9486 one past the end of the most recent dynamic alloca.
9487
9488 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9489 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9490 compile-time-known constant value.
9491
9492 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9493 must match the target's generic address space's (address space 0) pointer type.
9494
Sean Silvab084af42012-12-07 10:36:55 +00009495'``llvm.prefetch``' Intrinsic
9496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9497
9498Syntax:
9499"""""""
9500
9501::
9502
9503 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9504
9505Overview:
9506"""""""""
9507
9508The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9509insert a prefetch instruction if supported; otherwise, it is a noop.
9510Prefetches have no effect on the behavior of the program but can change
9511its performance characteristics.
9512
9513Arguments:
9514""""""""""
9515
9516``address`` is the address to be prefetched, ``rw`` is the specifier
9517determining if the fetch should be for a read (0) or write (1), and
9518``locality`` is a temporal locality specifier ranging from (0) - no
9519locality, to (3) - extremely local keep in cache. The ``cache type``
9520specifies whether the prefetch is performed on the data (1) or
9521instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9522arguments must be constant integers.
9523
9524Semantics:
9525""""""""""
9526
9527This intrinsic does not modify the behavior of the program. In
9528particular, prefetches cannot trap and do not produce a value. On
9529targets that support this intrinsic, the prefetch can provide hints to
9530the processor cache for better performance.
9531
9532'``llvm.pcmarker``' Intrinsic
9533^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9534
9535Syntax:
9536"""""""
9537
9538::
9539
9540 declare void @llvm.pcmarker(i32 <id>)
9541
9542Overview:
9543"""""""""
9544
9545The '``llvm.pcmarker``' intrinsic is a method to export a Program
9546Counter (PC) in a region of code to simulators and other tools. The
9547method is target specific, but it is expected that the marker will use
9548exported symbols to transmit the PC of the marker. The marker makes no
9549guarantees that it will remain with any specific instruction after
9550optimizations. It is possible that the presence of a marker will inhibit
9551optimizations. The intended use is to be inserted after optimizations to
9552allow correlations of simulation runs.
9553
9554Arguments:
9555""""""""""
9556
9557``id`` is a numerical id identifying the marker.
9558
9559Semantics:
9560""""""""""
9561
9562This intrinsic does not modify the behavior of the program. Backends
9563that do not support this intrinsic may ignore it.
9564
9565'``llvm.readcyclecounter``' Intrinsic
9566^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9567
9568Syntax:
9569"""""""
9570
9571::
9572
9573 declare i64 @llvm.readcyclecounter()
9574
9575Overview:
9576"""""""""
9577
9578The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9579counter register (or similar low latency, high accuracy clocks) on those
9580targets that support it. On X86, it should map to RDTSC. On Alpha, it
9581should map to RPCC. As the backing counters overflow quickly (on the
9582order of 9 seconds on alpha), this should only be used for small
9583timings.
9584
9585Semantics:
9586""""""""""
9587
9588When directly supported, reading the cycle counter should not modify any
9589memory. Implementations are allowed to either return a application
9590specific value or a system wide value. On backends without support, this
9591is lowered to a constant 0.
9592
Tim Northoverbc933082013-05-23 19:11:20 +00009593Note that runtime support may be conditional on the privilege-level code is
9594running at and the host platform.
9595
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009596'``llvm.clear_cache``' Intrinsic
9597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9598
9599Syntax:
9600"""""""
9601
9602::
9603
9604 declare void @llvm.clear_cache(i8*, i8*)
9605
9606Overview:
9607"""""""""
9608
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009609The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9610in the specified range to the execution unit of the processor. On
9611targets with non-unified instruction and data cache, the implementation
9612flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009613
9614Semantics:
9615""""""""""
9616
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009617On platforms with coherent instruction and data caches (e.g. x86), this
9618intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009619cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009620instructions or a system call, if cache flushing requires special
9621privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009622
Sean Silvad02bf3e2014-04-07 22:29:53 +00009623The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009624time library.
Renato Golin93010e62014-03-26 14:01:32 +00009625
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009626This instrinsic does *not* empty the instruction pipeline. Modifications
9627of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009628
Justin Bogner61ba2e32014-12-08 18:02:35 +00009629'``llvm.instrprof_increment``' Intrinsic
9630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9631
9632Syntax:
9633"""""""
9634
9635::
9636
9637 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9638 i32 <num-counters>, i32 <index>)
9639
9640Overview:
9641"""""""""
9642
9643The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9644frontend for use with instrumentation based profiling. These will be
9645lowered by the ``-instrprof`` pass to generate execution counts of a
9646program at runtime.
9647
9648Arguments:
9649""""""""""
9650
9651The first argument is a pointer to a global variable containing the
9652name of the entity being instrumented. This should generally be the
9653(mangled) function name for a set of counters.
9654
9655The second argument is a hash value that can be used by the consumer
9656of the profile data to detect changes to the instrumented source, and
9657the third is the number of counters associated with ``name``. It is an
9658error if ``hash`` or ``num-counters`` differ between two instances of
9659``instrprof_increment`` that refer to the same name.
9660
9661The last argument refers to which of the counters for ``name`` should
9662be incremented. It should be a value between 0 and ``num-counters``.
9663
9664Semantics:
9665""""""""""
9666
9667This intrinsic represents an increment of a profiling counter. It will
9668cause the ``-instrprof`` pass to generate the appropriate data
9669structures and the code to increment the appropriate value, in a
9670format that can be written out by a compiler runtime and consumed via
9671the ``llvm-profdata`` tool.
9672
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009673'``llvm.instrprof_value_profile``' Intrinsic
9674^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9675
9676Syntax:
9677"""""""
9678
9679::
9680
9681 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9682 i64 <value>, i32 <value_kind>,
9683 i32 <index>)
9684
9685Overview:
9686"""""""""
9687
9688The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9689frontend for use with instrumentation based profiling. This will be
9690lowered by the ``-instrprof`` pass to find out the target values,
9691instrumented expressions take in a program at runtime.
9692
9693Arguments:
9694""""""""""
9695
9696The first argument is a pointer to a global variable containing the
9697name of the entity being instrumented. ``name`` should generally be the
9698(mangled) function name for a set of counters.
9699
9700The second argument is a hash value that can be used by the consumer
9701of the profile data to detect changes to the instrumented source. It
9702is an error if ``hash`` differs between two instances of
9703``llvm.instrprof_*`` that refer to the same name.
9704
9705The third argument is the value of the expression being profiled. The profiled
9706expression's value should be representable as an unsigned 64-bit value. The
9707fourth argument represents the kind of value profiling that is being done. The
9708supported value profiling kinds are enumerated through the
9709``InstrProfValueKind`` type declared in the
9710``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9711index of the instrumented expression within ``name``. It should be >= 0.
9712
9713Semantics:
9714""""""""""
9715
9716This intrinsic represents the point where a call to a runtime routine
9717should be inserted for value profiling of target expressions. ``-instrprof``
9718pass will generate the appropriate data structures and replace the
9719``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9720runtime library with proper arguments.
9721
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009722'``llvm.thread.pointer``' Intrinsic
9723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9724
9725Syntax:
9726"""""""
9727
9728::
9729
9730 declare i8* @llvm.thread.pointer()
9731
9732Overview:
9733"""""""""
9734
9735The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9736pointer.
9737
9738Semantics:
9739""""""""""
9740
9741The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9742for the current thread. The exact semantics of this value are target
9743specific: it may point to the start of TLS area, to the end, or somewhere
9744in the middle. Depending on the target, this intrinsic may read a register,
9745call a helper function, read from an alternate memory space, or perform
9746other operations necessary to locate the TLS area. Not all targets support
9747this intrinsic.
9748
Sean Silvab084af42012-12-07 10:36:55 +00009749Standard C Library Intrinsics
9750-----------------------------
9751
9752LLVM provides intrinsics for a few important standard C library
9753functions. These intrinsics allow source-language front-ends to pass
9754information about the alignment of the pointer arguments to the code
9755generator, providing opportunity for more efficient code generation.
9756
9757.. _int_memcpy:
9758
9759'``llvm.memcpy``' Intrinsic
9760^^^^^^^^^^^^^^^^^^^^^^^^^^^
9761
9762Syntax:
9763"""""""
9764
9765This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9766integer bit width and for different address spaces. Not all targets
9767support all bit widths however.
9768
9769::
9770
9771 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9772 i32 <len>, i32 <align>, i1 <isvolatile>)
9773 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9774 i64 <len>, i32 <align>, i1 <isvolatile>)
9775
9776Overview:
9777"""""""""
9778
9779The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9780source location to the destination location.
9781
9782Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9783intrinsics do not return a value, takes extra alignment/isvolatile
9784arguments and the pointers can be in specified address spaces.
9785
9786Arguments:
9787""""""""""
9788
9789The first argument is a pointer to the destination, the second is a
9790pointer to the source. The third argument is an integer argument
9791specifying the number of bytes to copy, the fourth argument is the
9792alignment of the source and destination locations, and the fifth is a
9793boolean indicating a volatile access.
9794
9795If the call to this intrinsic has an alignment value that is not 0 or 1,
9796then the caller guarantees that both the source and destination pointers
9797are aligned to that boundary.
9798
9799If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9800a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9801very cleanly specified and it is unwise to depend on it.
9802
9803Semantics:
9804""""""""""
9805
9806The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9807source location to the destination location, which are not allowed to
9808overlap. It copies "len" bytes of memory over. If the argument is known
9809to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009810argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009811
9812'``llvm.memmove``' Intrinsic
9813^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9814
9815Syntax:
9816"""""""
9817
9818This is an overloaded intrinsic. You can use llvm.memmove on any integer
9819bit width and for different address space. Not all targets support all
9820bit widths however.
9821
9822::
9823
9824 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9825 i32 <len>, i32 <align>, i1 <isvolatile>)
9826 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9827 i64 <len>, i32 <align>, i1 <isvolatile>)
9828
9829Overview:
9830"""""""""
9831
9832The '``llvm.memmove.*``' intrinsics move a block of memory from the
9833source location to the destination location. It is similar to the
9834'``llvm.memcpy``' intrinsic but allows the two memory locations to
9835overlap.
9836
9837Note that, unlike the standard libc function, the ``llvm.memmove.*``
9838intrinsics do not return a value, takes extra alignment/isvolatile
9839arguments and the pointers can be in specified address spaces.
9840
9841Arguments:
9842""""""""""
9843
9844The first argument is a pointer to the destination, the second is a
9845pointer to the source. The third argument is an integer argument
9846specifying the number of bytes to copy, the fourth argument is the
9847alignment of the source and destination locations, and the fifth is a
9848boolean indicating a volatile access.
9849
9850If the call to this intrinsic has an alignment value that is not 0 or 1,
9851then the caller guarantees that the source and destination pointers are
9852aligned to that boundary.
9853
9854If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9855is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9856not very cleanly specified and it is unwise to depend on it.
9857
9858Semantics:
9859""""""""""
9860
9861The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9862source location to the destination location, which may overlap. It
9863copies "len" bytes of memory over. If the argument is known to be
9864aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009865otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009866
9867'``llvm.memset.*``' Intrinsics
9868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9869
9870Syntax:
9871"""""""
9872
9873This is an overloaded intrinsic. You can use llvm.memset on any integer
9874bit width and for different address spaces. However, not all targets
9875support all bit widths.
9876
9877::
9878
9879 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9880 i32 <len>, i32 <align>, i1 <isvolatile>)
9881 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9882 i64 <len>, i32 <align>, i1 <isvolatile>)
9883
9884Overview:
9885"""""""""
9886
9887The '``llvm.memset.*``' intrinsics fill a block of memory with a
9888particular byte value.
9889
9890Note that, unlike the standard libc function, the ``llvm.memset``
9891intrinsic does not return a value and takes extra alignment/volatile
9892arguments. Also, the destination can be in an arbitrary address space.
9893
9894Arguments:
9895""""""""""
9896
9897The first argument is a pointer to the destination to fill, the second
9898is the byte value with which to fill it, the third argument is an
9899integer argument specifying the number of bytes to fill, and the fourth
9900argument is the known alignment of the destination location.
9901
9902If the call to this intrinsic has an alignment value that is not 0 or 1,
9903then the caller guarantees that the destination pointer is aligned to
9904that boundary.
9905
9906If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9907a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9908very cleanly specified and it is unwise to depend on it.
9909
9910Semantics:
9911""""""""""
9912
9913The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9914at the destination location. If the argument is known to be aligned to
9915some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009916it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009917
9918'``llvm.sqrt.*``' Intrinsic
9919^^^^^^^^^^^^^^^^^^^^^^^^^^^
9920
9921Syntax:
9922"""""""
9923
9924This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9925floating point or vector of floating point type. Not all targets support
9926all types however.
9927
9928::
9929
9930 declare float @llvm.sqrt.f32(float %Val)
9931 declare double @llvm.sqrt.f64(double %Val)
9932 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9933 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9934 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9935
9936Overview:
9937"""""""""
9938
9939The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9940returning the same value as the libm '``sqrt``' functions would. Unlike
9941``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9942negative numbers other than -0.0 (which allows for better optimization,
9943because there is no need to worry about errno being set).
9944``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9945
9946Arguments:
9947""""""""""
9948
9949The argument and return value are floating point numbers of the same
9950type.
9951
9952Semantics:
9953""""""""""
9954
9955This function returns the sqrt of the specified operand if it is a
9956nonnegative floating point number.
9957
9958'``llvm.powi.*``' Intrinsic
9959^^^^^^^^^^^^^^^^^^^^^^^^^^^
9960
9961Syntax:
9962"""""""
9963
9964This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9965floating point or vector of floating point type. Not all targets support
9966all types however.
9967
9968::
9969
9970 declare float @llvm.powi.f32(float %Val, i32 %power)
9971 declare double @llvm.powi.f64(double %Val, i32 %power)
9972 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9973 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9974 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9975
9976Overview:
9977"""""""""
9978
9979The '``llvm.powi.*``' intrinsics return the first operand raised to the
9980specified (positive or negative) power. The order of evaluation of
9981multiplications is not defined. When a vector of floating point type is
9982used, the second argument remains a scalar integer value.
9983
9984Arguments:
9985""""""""""
9986
9987The second argument is an integer power, and the first is a value to
9988raise to that power.
9989
9990Semantics:
9991""""""""""
9992
9993This function returns the first value raised to the second power with an
9994unspecified sequence of rounding operations.
9995
9996'``llvm.sin.*``' Intrinsic
9997^^^^^^^^^^^^^^^^^^^^^^^^^^
9998
9999Syntax:
10000"""""""
10001
10002This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10003floating point or vector of floating point type. Not all targets support
10004all types however.
10005
10006::
10007
10008 declare float @llvm.sin.f32(float %Val)
10009 declare double @llvm.sin.f64(double %Val)
10010 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10011 declare fp128 @llvm.sin.f128(fp128 %Val)
10012 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10013
10014Overview:
10015"""""""""
10016
10017The '``llvm.sin.*``' intrinsics return the sine of the operand.
10018
10019Arguments:
10020""""""""""
10021
10022The argument and return value are floating point numbers of the same
10023type.
10024
10025Semantics:
10026""""""""""
10027
10028This function returns the sine of the specified operand, returning the
10029same values as the libm ``sin`` functions would, and handles error
10030conditions in the same way.
10031
10032'``llvm.cos.*``' Intrinsic
10033^^^^^^^^^^^^^^^^^^^^^^^^^^
10034
10035Syntax:
10036"""""""
10037
10038This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10039floating point or vector of floating point type. Not all targets support
10040all types however.
10041
10042::
10043
10044 declare float @llvm.cos.f32(float %Val)
10045 declare double @llvm.cos.f64(double %Val)
10046 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10047 declare fp128 @llvm.cos.f128(fp128 %Val)
10048 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10049
10050Overview:
10051"""""""""
10052
10053The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10054
10055Arguments:
10056""""""""""
10057
10058The argument and return value are floating point numbers of the same
10059type.
10060
10061Semantics:
10062""""""""""
10063
10064This function returns the cosine of the specified operand, returning the
10065same values as the libm ``cos`` functions would, and handles error
10066conditions in the same way.
10067
10068'``llvm.pow.*``' Intrinsic
10069^^^^^^^^^^^^^^^^^^^^^^^^^^
10070
10071Syntax:
10072"""""""
10073
10074This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10075floating point or vector of floating point type. Not all targets support
10076all types however.
10077
10078::
10079
10080 declare float @llvm.pow.f32(float %Val, float %Power)
10081 declare double @llvm.pow.f64(double %Val, double %Power)
10082 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10083 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10084 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10085
10086Overview:
10087"""""""""
10088
10089The '``llvm.pow.*``' intrinsics return the first operand raised to the
10090specified (positive or negative) power.
10091
10092Arguments:
10093""""""""""
10094
10095The second argument is a floating point power, and the first is a value
10096to raise to that power.
10097
10098Semantics:
10099""""""""""
10100
10101This function returns the first value raised to the second power,
10102returning the same values as the libm ``pow`` functions would, and
10103handles error conditions in the same way.
10104
10105'``llvm.exp.*``' Intrinsic
10106^^^^^^^^^^^^^^^^^^^^^^^^^^
10107
10108Syntax:
10109"""""""
10110
10111This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10112floating point or vector of floating point type. Not all targets support
10113all types however.
10114
10115::
10116
10117 declare float @llvm.exp.f32(float %Val)
10118 declare double @llvm.exp.f64(double %Val)
10119 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10120 declare fp128 @llvm.exp.f128(fp128 %Val)
10121 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10122
10123Overview:
10124"""""""""
10125
10126The '``llvm.exp.*``' intrinsics perform the exp function.
10127
10128Arguments:
10129""""""""""
10130
10131The argument and return value are floating point numbers of the same
10132type.
10133
10134Semantics:
10135""""""""""
10136
10137This function returns the same values as the libm ``exp`` functions
10138would, and handles error conditions in the same way.
10139
10140'``llvm.exp2.*``' Intrinsic
10141^^^^^^^^^^^^^^^^^^^^^^^^^^^
10142
10143Syntax:
10144"""""""
10145
10146This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10147floating point or vector of floating point type. Not all targets support
10148all types however.
10149
10150::
10151
10152 declare float @llvm.exp2.f32(float %Val)
10153 declare double @llvm.exp2.f64(double %Val)
10154 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10155 declare fp128 @llvm.exp2.f128(fp128 %Val)
10156 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10157
10158Overview:
10159"""""""""
10160
10161The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10162
10163Arguments:
10164""""""""""
10165
10166The argument and return value are floating point numbers of the same
10167type.
10168
10169Semantics:
10170""""""""""
10171
10172This function returns the same values as the libm ``exp2`` functions
10173would, and handles error conditions in the same way.
10174
10175'``llvm.log.*``' Intrinsic
10176^^^^^^^^^^^^^^^^^^^^^^^^^^
10177
10178Syntax:
10179"""""""
10180
10181This is an overloaded intrinsic. You can use ``llvm.log`` on any
10182floating point or vector of floating point type. Not all targets support
10183all types however.
10184
10185::
10186
10187 declare float @llvm.log.f32(float %Val)
10188 declare double @llvm.log.f64(double %Val)
10189 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10190 declare fp128 @llvm.log.f128(fp128 %Val)
10191 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10192
10193Overview:
10194"""""""""
10195
10196The '``llvm.log.*``' intrinsics perform the log function.
10197
10198Arguments:
10199""""""""""
10200
10201The argument and return value are floating point numbers of the same
10202type.
10203
10204Semantics:
10205""""""""""
10206
10207This function returns the same values as the libm ``log`` functions
10208would, and handles error conditions in the same way.
10209
10210'``llvm.log10.*``' Intrinsic
10211^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10212
10213Syntax:
10214"""""""
10215
10216This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10217floating point or vector of floating point type. Not all targets support
10218all types however.
10219
10220::
10221
10222 declare float @llvm.log10.f32(float %Val)
10223 declare double @llvm.log10.f64(double %Val)
10224 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10225 declare fp128 @llvm.log10.f128(fp128 %Val)
10226 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10227
10228Overview:
10229"""""""""
10230
10231The '``llvm.log10.*``' intrinsics perform the log10 function.
10232
10233Arguments:
10234""""""""""
10235
10236The argument and return value are floating point numbers of the same
10237type.
10238
10239Semantics:
10240""""""""""
10241
10242This function returns the same values as the libm ``log10`` functions
10243would, and handles error conditions in the same way.
10244
10245'``llvm.log2.*``' Intrinsic
10246^^^^^^^^^^^^^^^^^^^^^^^^^^^
10247
10248Syntax:
10249"""""""
10250
10251This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10252floating point or vector of floating point type. Not all targets support
10253all types however.
10254
10255::
10256
10257 declare float @llvm.log2.f32(float %Val)
10258 declare double @llvm.log2.f64(double %Val)
10259 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10260 declare fp128 @llvm.log2.f128(fp128 %Val)
10261 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10262
10263Overview:
10264"""""""""
10265
10266The '``llvm.log2.*``' intrinsics perform the log2 function.
10267
10268Arguments:
10269""""""""""
10270
10271The argument and return value are floating point numbers of the same
10272type.
10273
10274Semantics:
10275""""""""""
10276
10277This function returns the same values as the libm ``log2`` functions
10278would, and handles error conditions in the same way.
10279
10280'``llvm.fma.*``' Intrinsic
10281^^^^^^^^^^^^^^^^^^^^^^^^^^
10282
10283Syntax:
10284"""""""
10285
10286This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10287floating point or vector of floating point type. Not all targets support
10288all types however.
10289
10290::
10291
10292 declare float @llvm.fma.f32(float %a, float %b, float %c)
10293 declare double @llvm.fma.f64(double %a, double %b, double %c)
10294 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10295 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10296 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10297
10298Overview:
10299"""""""""
10300
10301The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10302operation.
10303
10304Arguments:
10305""""""""""
10306
10307The argument and return value are floating point numbers of the same
10308type.
10309
10310Semantics:
10311""""""""""
10312
10313This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010314would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010315
10316'``llvm.fabs.*``' Intrinsic
10317^^^^^^^^^^^^^^^^^^^^^^^^^^^
10318
10319Syntax:
10320"""""""
10321
10322This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10323floating point or vector of floating point type. Not all targets support
10324all types however.
10325
10326::
10327
10328 declare float @llvm.fabs.f32(float %Val)
10329 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010330 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010331 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010332 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010333
10334Overview:
10335"""""""""
10336
10337The '``llvm.fabs.*``' intrinsics return the absolute value of the
10338operand.
10339
10340Arguments:
10341""""""""""
10342
10343The argument and return value are floating point numbers of the same
10344type.
10345
10346Semantics:
10347""""""""""
10348
10349This function returns the same values as the libm ``fabs`` functions
10350would, and handles error conditions in the same way.
10351
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010352'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010353^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010354
10355Syntax:
10356"""""""
10357
10358This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10359floating point or vector of floating point type. Not all targets support
10360all types however.
10361
10362::
10363
Matt Arsenault64313c92014-10-22 18:25:02 +000010364 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10365 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10366 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10367 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10368 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010369
10370Overview:
10371"""""""""
10372
10373The '``llvm.minnum.*``' intrinsics return the minimum of the two
10374arguments.
10375
10376
10377Arguments:
10378""""""""""
10379
10380The arguments and return value are floating point numbers of the same
10381type.
10382
10383Semantics:
10384""""""""""
10385
10386Follows the IEEE-754 semantics for minNum, which also match for libm's
10387fmin.
10388
10389If either operand is a NaN, returns the other non-NaN operand. Returns
10390NaN only if both operands are NaN. If the operands compare equal,
10391returns a value that compares equal to both operands. This means that
10392fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10393
10394'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010395^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010396
10397Syntax:
10398"""""""
10399
10400This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10401floating point or vector of floating point type. Not all targets support
10402all types however.
10403
10404::
10405
Matt Arsenault64313c92014-10-22 18:25:02 +000010406 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10407 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10408 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10409 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10410 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010411
10412Overview:
10413"""""""""
10414
10415The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10416arguments.
10417
10418
10419Arguments:
10420""""""""""
10421
10422The arguments and return value are floating point numbers of the same
10423type.
10424
10425Semantics:
10426""""""""""
10427Follows the IEEE-754 semantics for maxNum, which also match for libm's
10428fmax.
10429
10430If either operand is a NaN, returns the other non-NaN operand. Returns
10431NaN only if both operands are NaN. If the operands compare equal,
10432returns a value that compares equal to both operands. This means that
10433fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10434
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010435'``llvm.copysign.*``' Intrinsic
10436^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10437
10438Syntax:
10439"""""""
10440
10441This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10442floating point or vector of floating point type. Not all targets support
10443all types however.
10444
10445::
10446
10447 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10448 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10449 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10450 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10451 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10452
10453Overview:
10454"""""""""
10455
10456The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10457first operand and the sign of the second operand.
10458
10459Arguments:
10460""""""""""
10461
10462The arguments and return value are floating point numbers of the same
10463type.
10464
10465Semantics:
10466""""""""""
10467
10468This function returns the same values as the libm ``copysign``
10469functions would, and handles error conditions in the same way.
10470
Sean Silvab084af42012-12-07 10:36:55 +000010471'``llvm.floor.*``' Intrinsic
10472^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10473
10474Syntax:
10475"""""""
10476
10477This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10478floating point or vector of floating point type. Not all targets support
10479all types however.
10480
10481::
10482
10483 declare float @llvm.floor.f32(float %Val)
10484 declare double @llvm.floor.f64(double %Val)
10485 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10486 declare fp128 @llvm.floor.f128(fp128 %Val)
10487 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10488
10489Overview:
10490"""""""""
10491
10492The '``llvm.floor.*``' intrinsics return the floor of the operand.
10493
10494Arguments:
10495""""""""""
10496
10497The argument and return value are floating point numbers of the same
10498type.
10499
10500Semantics:
10501""""""""""
10502
10503This function returns the same values as the libm ``floor`` functions
10504would, and handles error conditions in the same way.
10505
10506'``llvm.ceil.*``' Intrinsic
10507^^^^^^^^^^^^^^^^^^^^^^^^^^^
10508
10509Syntax:
10510"""""""
10511
10512This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10513floating point or vector of floating point type. Not all targets support
10514all types however.
10515
10516::
10517
10518 declare float @llvm.ceil.f32(float %Val)
10519 declare double @llvm.ceil.f64(double %Val)
10520 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10521 declare fp128 @llvm.ceil.f128(fp128 %Val)
10522 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10523
10524Overview:
10525"""""""""
10526
10527The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10528
10529Arguments:
10530""""""""""
10531
10532The argument and return value are floating point numbers of the same
10533type.
10534
10535Semantics:
10536""""""""""
10537
10538This function returns the same values as the libm ``ceil`` functions
10539would, and handles error conditions in the same way.
10540
10541'``llvm.trunc.*``' Intrinsic
10542^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10543
10544Syntax:
10545"""""""
10546
10547This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10548floating point or vector of floating point type. Not all targets support
10549all types however.
10550
10551::
10552
10553 declare float @llvm.trunc.f32(float %Val)
10554 declare double @llvm.trunc.f64(double %Val)
10555 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10556 declare fp128 @llvm.trunc.f128(fp128 %Val)
10557 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10558
10559Overview:
10560"""""""""
10561
10562The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10563nearest integer not larger in magnitude than the operand.
10564
10565Arguments:
10566""""""""""
10567
10568The argument and return value are floating point numbers of the same
10569type.
10570
10571Semantics:
10572""""""""""
10573
10574This function returns the same values as the libm ``trunc`` functions
10575would, and handles error conditions in the same way.
10576
10577'``llvm.rint.*``' Intrinsic
10578^^^^^^^^^^^^^^^^^^^^^^^^^^^
10579
10580Syntax:
10581"""""""
10582
10583This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10584floating point or vector of floating point type. Not all targets support
10585all types however.
10586
10587::
10588
10589 declare float @llvm.rint.f32(float %Val)
10590 declare double @llvm.rint.f64(double %Val)
10591 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10592 declare fp128 @llvm.rint.f128(fp128 %Val)
10593 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10594
10595Overview:
10596"""""""""
10597
10598The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10599nearest integer. It may raise an inexact floating-point exception if the
10600operand isn't an integer.
10601
10602Arguments:
10603""""""""""
10604
10605The argument and return value are floating point numbers of the same
10606type.
10607
10608Semantics:
10609""""""""""
10610
10611This function returns the same values as the libm ``rint`` functions
10612would, and handles error conditions in the same way.
10613
10614'``llvm.nearbyint.*``' Intrinsic
10615^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10616
10617Syntax:
10618"""""""
10619
10620This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10621floating point or vector of floating point type. Not all targets support
10622all types however.
10623
10624::
10625
10626 declare float @llvm.nearbyint.f32(float %Val)
10627 declare double @llvm.nearbyint.f64(double %Val)
10628 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10629 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10630 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10631
10632Overview:
10633"""""""""
10634
10635The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10636nearest integer.
10637
10638Arguments:
10639""""""""""
10640
10641The argument and return value are floating point numbers of the same
10642type.
10643
10644Semantics:
10645""""""""""
10646
10647This function returns the same values as the libm ``nearbyint``
10648functions would, and handles error conditions in the same way.
10649
Hal Finkel171817e2013-08-07 22:49:12 +000010650'``llvm.round.*``' Intrinsic
10651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10652
10653Syntax:
10654"""""""
10655
10656This is an overloaded intrinsic. You can use ``llvm.round`` on any
10657floating point or vector of floating point type. Not all targets support
10658all types however.
10659
10660::
10661
10662 declare float @llvm.round.f32(float %Val)
10663 declare double @llvm.round.f64(double %Val)
10664 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10665 declare fp128 @llvm.round.f128(fp128 %Val)
10666 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10667
10668Overview:
10669"""""""""
10670
10671The '``llvm.round.*``' intrinsics returns the operand rounded to the
10672nearest integer.
10673
10674Arguments:
10675""""""""""
10676
10677The argument and return value are floating point numbers of the same
10678type.
10679
10680Semantics:
10681""""""""""
10682
10683This function returns the same values as the libm ``round``
10684functions would, and handles error conditions in the same way.
10685
Sean Silvab084af42012-12-07 10:36:55 +000010686Bit Manipulation Intrinsics
10687---------------------------
10688
10689LLVM provides intrinsics for a few important bit manipulation
10690operations. These allow efficient code generation for some algorithms.
10691
James Molloy90111f72015-11-12 12:29:09 +000010692'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010694
10695Syntax:
10696"""""""
10697
10698This is an overloaded intrinsic function. You can use bitreverse on any
10699integer type.
10700
10701::
10702
10703 declare i16 @llvm.bitreverse.i16(i16 <id>)
10704 declare i32 @llvm.bitreverse.i32(i32 <id>)
10705 declare i64 @llvm.bitreverse.i64(i64 <id>)
10706
10707Overview:
10708"""""""""
10709
10710The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010711bitpattern of an integer value; for example ``0b10110110`` becomes
10712``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010713
10714Semantics:
10715""""""""""
10716
10717The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10718``M`` in the input moved to bit ``N-M`` in the output.
10719
Sean Silvab084af42012-12-07 10:36:55 +000010720'``llvm.bswap.*``' Intrinsics
10721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10722
10723Syntax:
10724"""""""
10725
10726This is an overloaded intrinsic function. You can use bswap on any
10727integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10728
10729::
10730
10731 declare i16 @llvm.bswap.i16(i16 <id>)
10732 declare i32 @llvm.bswap.i32(i32 <id>)
10733 declare i64 @llvm.bswap.i64(i64 <id>)
10734
10735Overview:
10736"""""""""
10737
10738The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10739values with an even number of bytes (positive multiple of 16 bits).
10740These are useful for performing operations on data that is not in the
10741target's native byte order.
10742
10743Semantics:
10744""""""""""
10745
10746The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10747and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10748intrinsic returns an i32 value that has the four bytes of the input i32
10749swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10750returned i32 will have its bytes in 3, 2, 1, 0 order. The
10751``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10752concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10753respectively).
10754
10755'``llvm.ctpop.*``' Intrinsic
10756^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10757
10758Syntax:
10759"""""""
10760
10761This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10762bit width, or on any vector with integer elements. Not all targets
10763support all bit widths or vector types, however.
10764
10765::
10766
10767 declare i8 @llvm.ctpop.i8(i8 <src>)
10768 declare i16 @llvm.ctpop.i16(i16 <src>)
10769 declare i32 @llvm.ctpop.i32(i32 <src>)
10770 declare i64 @llvm.ctpop.i64(i64 <src>)
10771 declare i256 @llvm.ctpop.i256(i256 <src>)
10772 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10773
10774Overview:
10775"""""""""
10776
10777The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10778in a value.
10779
10780Arguments:
10781""""""""""
10782
10783The only argument is the value to be counted. The argument may be of any
10784integer type, or a vector with integer elements. The return type must
10785match the argument type.
10786
10787Semantics:
10788""""""""""
10789
10790The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10791each element of a vector.
10792
10793'``llvm.ctlz.*``' Intrinsic
10794^^^^^^^^^^^^^^^^^^^^^^^^^^^
10795
10796Syntax:
10797"""""""
10798
10799This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10800integer bit width, or any vector whose elements are integers. Not all
10801targets support all bit widths or vector types, however.
10802
10803::
10804
10805 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10806 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10807 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10808 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10809 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010810 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010811
10812Overview:
10813"""""""""
10814
10815The '``llvm.ctlz``' family of intrinsic functions counts the number of
10816leading zeros in a variable.
10817
10818Arguments:
10819""""""""""
10820
10821The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010822any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010823type must match the first argument type.
10824
10825The second argument must be a constant and is a flag to indicate whether
10826the intrinsic should ensure that a zero as the first argument produces a
10827defined result. Historically some architectures did not provide a
10828defined result for zero values as efficiently, and many algorithms are
10829now predicated on avoiding zero-value inputs.
10830
10831Semantics:
10832""""""""""
10833
10834The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10835zeros in a variable, or within each element of the vector. If
10836``src == 0`` then the result is the size in bits of the type of ``src``
10837if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10838``llvm.ctlz(i32 2) = 30``.
10839
10840'``llvm.cttz.*``' Intrinsic
10841^^^^^^^^^^^^^^^^^^^^^^^^^^^
10842
10843Syntax:
10844"""""""
10845
10846This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10847integer bit width, or any vector of integer elements. Not all targets
10848support all bit widths or vector types, however.
10849
10850::
10851
10852 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10853 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10854 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10855 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10856 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010857 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010858
10859Overview:
10860"""""""""
10861
10862The '``llvm.cttz``' family of intrinsic functions counts the number of
10863trailing zeros.
10864
10865Arguments:
10866""""""""""
10867
10868The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010869any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010870type must match the first argument type.
10871
10872The second argument must be a constant and is a flag to indicate whether
10873the intrinsic should ensure that a zero as the first argument produces a
10874defined result. Historically some architectures did not provide a
10875defined result for zero values as efficiently, and many algorithms are
10876now predicated on avoiding zero-value inputs.
10877
10878Semantics:
10879""""""""""
10880
10881The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10882zeros in a variable, or within each element of a vector. If ``src == 0``
10883then the result is the size in bits of the type of ``src`` if
10884``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10885``llvm.cttz(2) = 1``.
10886
Philip Reames34843ae2015-03-05 05:55:55 +000010887.. _int_overflow:
10888
Sean Silvab084af42012-12-07 10:36:55 +000010889Arithmetic with Overflow Intrinsics
10890-----------------------------------
10891
John Regehr6a493f22016-05-12 20:55:09 +000010892LLVM provides intrinsics for fast arithmetic overflow checking.
10893
10894Each of these intrinsics returns a two-element struct. The first
10895element of this struct contains the result of the corresponding
10896arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
10897the result. Therefore, for example, the first element of the struct
10898returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
10899result of a 32-bit ``add`` instruction with the same operands, where
10900the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
10901
10902The second element of the result is an ``i1`` that is 1 if the
10903arithmetic operation overflowed and 0 otherwise. An operation
10904overflows if, for any values of its operands ``A`` and ``B`` and for
10905any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
10906not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
10907``sext`` for signed overflow and ``zext`` for unsigned overflow, and
10908``op`` is the underlying arithmetic operation.
10909
10910The behavior of these intrinsics is well-defined for all argument
10911values.
Sean Silvab084af42012-12-07 10:36:55 +000010912
10913'``llvm.sadd.with.overflow.*``' Intrinsics
10914^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10915
10916Syntax:
10917"""""""
10918
10919This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10920on any integer bit width.
10921
10922::
10923
10924 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10925 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10926 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10927
10928Overview:
10929"""""""""
10930
10931The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10932a signed addition of the two arguments, and indicate whether an overflow
10933occurred during the signed summation.
10934
10935Arguments:
10936""""""""""
10937
10938The arguments (%a and %b) and the first element of the result structure
10939may be of integer types of any bit width, but they must have the same
10940bit width. The second element of the result structure must be of type
10941``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10942addition.
10943
10944Semantics:
10945""""""""""
10946
10947The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010948a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010949first element of which is the signed summation, and the second element
10950of which is a bit specifying if the signed summation resulted in an
10951overflow.
10952
10953Examples:
10954"""""""""
10955
10956.. code-block:: llvm
10957
10958 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10959 %sum = extractvalue {i32, i1} %res, 0
10960 %obit = extractvalue {i32, i1} %res, 1
10961 br i1 %obit, label %overflow, label %normal
10962
10963'``llvm.uadd.with.overflow.*``' Intrinsics
10964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10965
10966Syntax:
10967"""""""
10968
10969This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10970on any integer bit width.
10971
10972::
10973
10974 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10975 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10976 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10977
10978Overview:
10979"""""""""
10980
10981The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10982an unsigned addition of the two arguments, and indicate whether a carry
10983occurred during the unsigned summation.
10984
10985Arguments:
10986""""""""""
10987
10988The arguments (%a and %b) and the first element of the result structure
10989may be of integer types of any bit width, but they must have the same
10990bit width. The second element of the result structure must be of type
10991``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10992addition.
10993
10994Semantics:
10995""""""""""
10996
10997The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010998an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010999first element of which is the sum, and the second element of which is a
11000bit specifying if the unsigned summation resulted in a carry.
11001
11002Examples:
11003"""""""""
11004
11005.. code-block:: llvm
11006
11007 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11008 %sum = extractvalue {i32, i1} %res, 0
11009 %obit = extractvalue {i32, i1} %res, 1
11010 br i1 %obit, label %carry, label %normal
11011
11012'``llvm.ssub.with.overflow.*``' Intrinsics
11013^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11014
11015Syntax:
11016"""""""
11017
11018This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11019on any integer bit width.
11020
11021::
11022
11023 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11024 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11025 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11026
11027Overview:
11028"""""""""
11029
11030The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11031a signed subtraction of the two arguments, and indicate whether an
11032overflow occurred during the signed subtraction.
11033
11034Arguments:
11035""""""""""
11036
11037The arguments (%a and %b) and the first element of the result structure
11038may be of integer types of any bit width, but they must have the same
11039bit width. The second element of the result structure must be of type
11040``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11041subtraction.
11042
11043Semantics:
11044""""""""""
11045
11046The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011047a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011048first element of which is the subtraction, and the second element of
11049which is a bit specifying if the signed subtraction resulted in an
11050overflow.
11051
11052Examples:
11053"""""""""
11054
11055.. code-block:: llvm
11056
11057 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11058 %sum = extractvalue {i32, i1} %res, 0
11059 %obit = extractvalue {i32, i1} %res, 1
11060 br i1 %obit, label %overflow, label %normal
11061
11062'``llvm.usub.with.overflow.*``' Intrinsics
11063^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11064
11065Syntax:
11066"""""""
11067
11068This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11069on any integer bit width.
11070
11071::
11072
11073 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11074 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11075 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11076
11077Overview:
11078"""""""""
11079
11080The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11081an unsigned subtraction of the two arguments, and indicate whether an
11082overflow occurred during the unsigned subtraction.
11083
11084Arguments:
11085""""""""""
11086
11087The arguments (%a and %b) and the first element of the result structure
11088may be of integer types of any bit width, but they must have the same
11089bit width. The second element of the result structure must be of type
11090``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11091subtraction.
11092
11093Semantics:
11094""""""""""
11095
11096The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011097an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011098the first element of which is the subtraction, and the second element of
11099which is a bit specifying if the unsigned subtraction resulted in an
11100overflow.
11101
11102Examples:
11103"""""""""
11104
11105.. code-block:: llvm
11106
11107 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11108 %sum = extractvalue {i32, i1} %res, 0
11109 %obit = extractvalue {i32, i1} %res, 1
11110 br i1 %obit, label %overflow, label %normal
11111
11112'``llvm.smul.with.overflow.*``' Intrinsics
11113^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11114
11115Syntax:
11116"""""""
11117
11118This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11119on any integer bit width.
11120
11121::
11122
11123 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11124 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11125 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11126
11127Overview:
11128"""""""""
11129
11130The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11131a signed multiplication of the two arguments, and indicate whether an
11132overflow occurred during the signed multiplication.
11133
11134Arguments:
11135""""""""""
11136
11137The arguments (%a and %b) and the first element of the result structure
11138may be of integer types of any bit width, but they must have the same
11139bit width. The second element of the result structure must be of type
11140``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11141multiplication.
11142
11143Semantics:
11144""""""""""
11145
11146The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011147a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011148the first element of which is the multiplication, and the second element
11149of which is a bit specifying if the signed multiplication resulted in an
11150overflow.
11151
11152Examples:
11153"""""""""
11154
11155.. code-block:: llvm
11156
11157 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11158 %sum = extractvalue {i32, i1} %res, 0
11159 %obit = extractvalue {i32, i1} %res, 1
11160 br i1 %obit, label %overflow, label %normal
11161
11162'``llvm.umul.with.overflow.*``' Intrinsics
11163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11164
11165Syntax:
11166"""""""
11167
11168This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11169on any integer bit width.
11170
11171::
11172
11173 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11174 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11175 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11176
11177Overview:
11178"""""""""
11179
11180The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11181a unsigned multiplication of the two arguments, and indicate whether an
11182overflow occurred during the unsigned multiplication.
11183
11184Arguments:
11185""""""""""
11186
11187The arguments (%a and %b) and the first element of the result structure
11188may be of integer types of any bit width, but they must have the same
11189bit width. The second element of the result structure must be of type
11190``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11191multiplication.
11192
11193Semantics:
11194""""""""""
11195
11196The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011197an unsigned multiplication of the two arguments. They return a structure ---
11198the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011199element of which is a bit specifying if the unsigned multiplication
11200resulted in an overflow.
11201
11202Examples:
11203"""""""""
11204
11205.. code-block:: llvm
11206
11207 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11208 %sum = extractvalue {i32, i1} %res, 0
11209 %obit = extractvalue {i32, i1} %res, 1
11210 br i1 %obit, label %overflow, label %normal
11211
11212Specialised Arithmetic Intrinsics
11213---------------------------------
11214
Owen Anderson1056a922015-07-11 07:01:27 +000011215'``llvm.canonicalize.*``' Intrinsic
11216^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11217
11218Syntax:
11219"""""""
11220
11221::
11222
11223 declare float @llvm.canonicalize.f32(float %a)
11224 declare double @llvm.canonicalize.f64(double %b)
11225
11226Overview:
11227"""""""""
11228
11229The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011230encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011231implementing certain numeric primitives such as frexp. The canonical encoding is
11232defined by IEEE-754-2008 to be:
11233
11234::
11235
11236 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011237 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011238 numbers, infinities, and NaNs, especially in decimal formats.
11239
11240This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011241conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011242according to section 6.2.
11243
11244Examples of non-canonical encodings:
11245
Sean Silvaa1190322015-08-06 22:56:48 +000011246- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011247 converted to a canonical representation per hardware-specific protocol.
11248- Many normal decimal floating point numbers have non-canonical alternative
11249 encodings.
11250- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011251 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011252 a zero of the same sign by this operation.
11253
11254Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11255default exception handling must signal an invalid exception, and produce a
11256quiet NaN result.
11257
11258This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011259that the compiler does not constant fold the operation. Likewise, division by
112601.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011261-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11262
Sean Silvaa1190322015-08-06 22:56:48 +000011263``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011264
11265- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11266- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11267 to ``(x == y)``
11268
11269Additionally, the sign of zero must be conserved:
11270``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11271
11272The payload bits of a NaN must be conserved, with two exceptions.
11273First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011274must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011275usual methods.
11276
11277The canonicalization operation may be optimized away if:
11278
Sean Silvaa1190322015-08-06 22:56:48 +000011279- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011280 floating-point operation that is required by the standard to be canonical.
11281- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011282 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011283
Sean Silvab084af42012-12-07 10:36:55 +000011284'``llvm.fmuladd.*``' Intrinsic
11285^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11286
11287Syntax:
11288"""""""
11289
11290::
11291
11292 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11293 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11294
11295Overview:
11296"""""""""
11297
11298The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011299expressions that can be fused if the code generator determines that (a) the
11300target instruction set has support for a fused operation, and (b) that the
11301fused operation is more efficient than the equivalent, separate pair of mul
11302and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011303
11304Arguments:
11305""""""""""
11306
11307The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11308multiplicands, a and b, and an addend c.
11309
11310Semantics:
11311""""""""""
11312
11313The expression:
11314
11315::
11316
11317 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11318
11319is equivalent to the expression a \* b + c, except that rounding will
11320not be performed between the multiplication and addition steps if the
11321code generator fuses the operations. Fusion is not guaranteed, even if
11322the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011323corresponding llvm.fma.\* intrinsic function should be used
11324instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011325
11326Examples:
11327"""""""""
11328
11329.. code-block:: llvm
11330
Tim Northover675a0962014-06-13 14:24:23 +000011331 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011332
11333Half Precision Floating Point Intrinsics
11334----------------------------------------
11335
11336For most target platforms, half precision floating point is a
11337storage-only format. This means that it is a dense encoding (in memory)
11338but does not support computation in the format.
11339
11340This means that code must first load the half-precision floating point
11341value as an i16, then convert it to float with
11342:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11343then be performed on the float value (including extending to double
11344etc). To store the value back to memory, it is first converted to float
11345if needed, then converted to i16 with
11346:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11347i16 value.
11348
11349.. _int_convert_to_fp16:
11350
11351'``llvm.convert.to.fp16``' Intrinsic
11352^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11353
11354Syntax:
11355"""""""
11356
11357::
11358
Tim Northoverfd7e4242014-07-17 10:51:23 +000011359 declare i16 @llvm.convert.to.fp16.f32(float %a)
11360 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011361
11362Overview:
11363"""""""""
11364
Tim Northoverfd7e4242014-07-17 10:51:23 +000011365The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11366conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011367
11368Arguments:
11369""""""""""
11370
11371The intrinsic function contains single argument - the value to be
11372converted.
11373
11374Semantics:
11375""""""""""
11376
Tim Northoverfd7e4242014-07-17 10:51:23 +000011377The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11378conventional floating point format to half precision floating point format. The
11379return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011380
11381Examples:
11382"""""""""
11383
11384.. code-block:: llvm
11385
Tim Northoverfd7e4242014-07-17 10:51:23 +000011386 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011387 store i16 %res, i16* @x, align 2
11388
11389.. _int_convert_from_fp16:
11390
11391'``llvm.convert.from.fp16``' Intrinsic
11392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11393
11394Syntax:
11395"""""""
11396
11397::
11398
Tim Northoverfd7e4242014-07-17 10:51:23 +000011399 declare float @llvm.convert.from.fp16.f32(i16 %a)
11400 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011401
11402Overview:
11403"""""""""
11404
11405The '``llvm.convert.from.fp16``' intrinsic function performs a
11406conversion from half precision floating point format to single precision
11407floating point format.
11408
11409Arguments:
11410""""""""""
11411
11412The intrinsic function contains single argument - the value to be
11413converted.
11414
11415Semantics:
11416""""""""""
11417
11418The '``llvm.convert.from.fp16``' intrinsic function performs a
11419conversion from half single precision floating point format to single
11420precision floating point format. The input half-float value is
11421represented by an ``i16`` value.
11422
11423Examples:
11424"""""""""
11425
11426.. code-block:: llvm
11427
David Blaikiec7aabbb2015-03-04 22:06:14 +000011428 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011429 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011430
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011431.. _dbg_intrinsics:
11432
Sean Silvab084af42012-12-07 10:36:55 +000011433Debugger Intrinsics
11434-------------------
11435
11436The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11437prefix), are described in the `LLVM Source Level
11438Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11439document.
11440
11441Exception Handling Intrinsics
11442-----------------------------
11443
11444The LLVM exception handling intrinsics (which all start with
11445``llvm.eh.`` prefix), are described in the `LLVM Exception
11446Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11447
11448.. _int_trampoline:
11449
11450Trampoline Intrinsics
11451---------------------
11452
11453These intrinsics make it possible to excise one parameter, marked with
11454the :ref:`nest <nest>` attribute, from a function. The result is a
11455callable function pointer lacking the nest parameter - the caller does
11456not need to provide a value for it. Instead, the value to use is stored
11457in advance in a "trampoline", a block of memory usually allocated on the
11458stack, which also contains code to splice the nest value into the
11459argument list. This is used to implement the GCC nested function address
11460extension.
11461
11462For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11463then the resulting function pointer has signature ``i32 (i32, i32)*``.
11464It can be created as follows:
11465
11466.. code-block:: llvm
11467
11468 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011469 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011470 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11471 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11472 %fp = bitcast i8* %p to i32 (i32, i32)*
11473
11474The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11475``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11476
11477.. _int_it:
11478
11479'``llvm.init.trampoline``' Intrinsic
11480^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11481
11482Syntax:
11483"""""""
11484
11485::
11486
11487 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11488
11489Overview:
11490"""""""""
11491
11492This fills the memory pointed to by ``tramp`` with executable code,
11493turning it into a trampoline.
11494
11495Arguments:
11496""""""""""
11497
11498The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11499pointers. The ``tramp`` argument must point to a sufficiently large and
11500sufficiently aligned block of memory; this memory is written to by the
11501intrinsic. Note that the size and the alignment are target-specific -
11502LLVM currently provides no portable way of determining them, so a
11503front-end that generates this intrinsic needs to have some
11504target-specific knowledge. The ``func`` argument must hold a function
11505bitcast to an ``i8*``.
11506
11507Semantics:
11508""""""""""
11509
11510The block of memory pointed to by ``tramp`` is filled with target
11511dependent code, turning it into a function. Then ``tramp`` needs to be
11512passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11513be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11514function's signature is the same as that of ``func`` with any arguments
11515marked with the ``nest`` attribute removed. At most one such ``nest``
11516argument is allowed, and it must be of pointer type. Calling the new
11517function is equivalent to calling ``func`` with the same argument list,
11518but with ``nval`` used for the missing ``nest`` argument. If, after
11519calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11520modified, then the effect of any later call to the returned function
11521pointer is undefined.
11522
11523.. _int_at:
11524
11525'``llvm.adjust.trampoline``' Intrinsic
11526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11527
11528Syntax:
11529"""""""
11530
11531::
11532
11533 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11534
11535Overview:
11536"""""""""
11537
11538This performs any required machine-specific adjustment to the address of
11539a trampoline (passed as ``tramp``).
11540
11541Arguments:
11542""""""""""
11543
11544``tramp`` must point to a block of memory which already has trampoline
11545code filled in by a previous call to
11546:ref:`llvm.init.trampoline <int_it>`.
11547
11548Semantics:
11549""""""""""
11550
11551On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011552different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011553intrinsic returns the executable address corresponding to ``tramp``
11554after performing the required machine specific adjustments. The pointer
11555returned can then be :ref:`bitcast and executed <int_trampoline>`.
11556
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011557.. _int_mload_mstore:
11558
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011559Masked Vector Load and Store Intrinsics
11560---------------------------------------
11561
11562LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11563
11564.. _int_mload:
11565
11566'``llvm.masked.load.*``' Intrinsics
11567^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11568
11569Syntax:
11570"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011571This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011572
11573::
11574
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011575 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11576 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011577 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011578 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011579 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011580 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011581
11582Overview:
11583"""""""""
11584
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011585Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011586
11587
11588Arguments:
11589""""""""""
11590
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011591The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011592
11593
11594Semantics:
11595""""""""""
11596
11597The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11598The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11599
11600
11601::
11602
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011603 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011604
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011605 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011606 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011607 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011608
11609.. _int_mstore:
11610
11611'``llvm.masked.store.*``' Intrinsics
11612^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11613
11614Syntax:
11615"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011616This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011617
11618::
11619
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011620 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11621 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011622 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011623 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011624 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011625 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011626
11627Overview:
11628"""""""""
11629
11630Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11631
11632Arguments:
11633""""""""""
11634
11635The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11636
11637
11638Semantics:
11639""""""""""
11640
11641The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11642The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11643
11644::
11645
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011646 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011647
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011648 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011649 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011650 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11651 store <16 x float> %res, <16 x float>* %ptr, align 4
11652
11653
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011654Masked Vector Gather and Scatter Intrinsics
11655-------------------------------------------
11656
11657LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11658
11659.. _int_mgather:
11660
11661'``llvm.masked.gather.*``' Intrinsics
11662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11663
11664Syntax:
11665"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011666This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011667
11668::
11669
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011670 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11671 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11672 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011673
11674Overview:
11675"""""""""
11676
11677Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11678
11679
11680Arguments:
11681""""""""""
11682
11683The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11684
11685
11686Semantics:
11687""""""""""
11688
11689The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11690The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11691
11692
11693::
11694
11695 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11696
11697 ;; The gather with all-true mask is equivalent to the following instruction sequence
11698 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11699 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11700 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11701 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11702
11703 %val0 = load double, double* %ptr0, align 8
11704 %val1 = load double, double* %ptr1, align 8
11705 %val2 = load double, double* %ptr2, align 8
11706 %val3 = load double, double* %ptr3, align 8
11707
11708 %vec0 = insertelement <4 x double>undef, %val0, 0
11709 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11710 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11711 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11712
11713.. _int_mscatter:
11714
11715'``llvm.masked.scatter.*``' Intrinsics
11716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11717
11718Syntax:
11719"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011720This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011721
11722::
11723
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011724 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11725 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11726 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011727
11728Overview:
11729"""""""""
11730
11731Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11732
11733Arguments:
11734""""""""""
11735
11736The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11737
11738
11739Semantics:
11740""""""""""
11741
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011742The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011743
11744::
11745
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011746 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011747 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11748
11749 ;; It is equivalent to a list of scalar stores
11750 %val0 = extractelement <8 x i32> %value, i32 0
11751 %val1 = extractelement <8 x i32> %value, i32 1
11752 ..
11753 %val7 = extractelement <8 x i32> %value, i32 7
11754 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11755 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11756 ..
11757 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11758 ;; Note: the order of the following stores is important when they overlap:
11759 store i32 %val0, i32* %ptr0, align 4
11760 store i32 %val1, i32* %ptr1, align 4
11761 ..
11762 store i32 %val7, i32* %ptr7, align 4
11763
11764
Sean Silvab084af42012-12-07 10:36:55 +000011765Memory Use Markers
11766------------------
11767
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011768This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011769memory objects and ranges where variables are immutable.
11770
Reid Klecknera534a382013-12-19 02:14:12 +000011771.. _int_lifestart:
11772
Sean Silvab084af42012-12-07 10:36:55 +000011773'``llvm.lifetime.start``' Intrinsic
11774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11775
11776Syntax:
11777"""""""
11778
11779::
11780
11781 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11782
11783Overview:
11784"""""""""
11785
11786The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11787object's lifetime.
11788
11789Arguments:
11790""""""""""
11791
11792The first argument is a constant integer representing the size of the
11793object, or -1 if it is variable sized. The second argument is a pointer
11794to the object.
11795
11796Semantics:
11797""""""""""
11798
11799This intrinsic indicates that before this point in the code, the value
11800of the memory pointed to by ``ptr`` is dead. This means that it is known
11801to never be used and has an undefined value. A load from the pointer
11802that precedes this intrinsic can be replaced with ``'undef'``.
11803
Reid Klecknera534a382013-12-19 02:14:12 +000011804.. _int_lifeend:
11805
Sean Silvab084af42012-12-07 10:36:55 +000011806'``llvm.lifetime.end``' Intrinsic
11807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11808
11809Syntax:
11810"""""""
11811
11812::
11813
11814 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11815
11816Overview:
11817"""""""""
11818
11819The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11820object's lifetime.
11821
11822Arguments:
11823""""""""""
11824
11825The first argument is a constant integer representing the size of the
11826object, or -1 if it is variable sized. The second argument is a pointer
11827to the object.
11828
11829Semantics:
11830""""""""""
11831
11832This intrinsic indicates that after this point in the code, the value of
11833the memory pointed to by ``ptr`` is dead. This means that it is known to
11834never be used and has an undefined value. Any stores into the memory
11835object following this intrinsic may be removed as dead.
11836
11837'``llvm.invariant.start``' Intrinsic
11838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11839
11840Syntax:
11841"""""""
11842
11843::
11844
11845 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11846
11847Overview:
11848"""""""""
11849
11850The '``llvm.invariant.start``' intrinsic specifies that the contents of
11851a memory object will not change.
11852
11853Arguments:
11854""""""""""
11855
11856The first argument is a constant integer representing the size of the
11857object, or -1 if it is variable sized. The second argument is a pointer
11858to the object.
11859
11860Semantics:
11861""""""""""
11862
11863This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11864the return value, the referenced memory location is constant and
11865unchanging.
11866
11867'``llvm.invariant.end``' Intrinsic
11868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11869
11870Syntax:
11871"""""""
11872
11873::
11874
11875 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11876
11877Overview:
11878"""""""""
11879
11880The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11881memory object are mutable.
11882
11883Arguments:
11884""""""""""
11885
11886The first argument is the matching ``llvm.invariant.start`` intrinsic.
11887The second argument is a constant integer representing the size of the
11888object, or -1 if it is variable sized and the third argument is a
11889pointer to the object.
11890
11891Semantics:
11892""""""""""
11893
11894This intrinsic indicates that the memory is mutable again.
11895
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011896'``llvm.invariant.group.barrier``' Intrinsic
11897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11898
11899Syntax:
11900"""""""
11901
11902::
11903
11904 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11905
11906Overview:
11907"""""""""
11908
11909The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11910established by invariant.group metadata no longer holds, to obtain a new pointer
11911value that does not carry the invariant information.
11912
11913
11914Arguments:
11915""""""""""
11916
11917The ``llvm.invariant.group.barrier`` takes only one argument, which is
11918the pointer to the memory for which the ``invariant.group`` no longer holds.
11919
11920Semantics:
11921""""""""""
11922
11923Returns another pointer that aliases its argument but which is considered different
11924for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11925
Sean Silvab084af42012-12-07 10:36:55 +000011926General Intrinsics
11927------------------
11928
11929This class of intrinsics is designed to be generic and has no specific
11930purpose.
11931
11932'``llvm.var.annotation``' Intrinsic
11933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11934
11935Syntax:
11936"""""""
11937
11938::
11939
11940 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11941
11942Overview:
11943"""""""""
11944
11945The '``llvm.var.annotation``' intrinsic.
11946
11947Arguments:
11948""""""""""
11949
11950The first argument is a pointer to a value, the second is a pointer to a
11951global string, the third is a pointer to a global string which is the
11952source file name, and the last argument is the line number.
11953
11954Semantics:
11955""""""""""
11956
11957This intrinsic allows annotation of local variables with arbitrary
11958strings. This can be useful for special purpose optimizations that want
11959to look for these annotations. These have no other defined use; they are
11960ignored by code generation and optimization.
11961
Michael Gottesman88d18832013-03-26 00:34:27 +000011962'``llvm.ptr.annotation.*``' Intrinsic
11963^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11964
11965Syntax:
11966"""""""
11967
11968This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11969pointer to an integer of any width. *NOTE* you must specify an address space for
11970the pointer. The identifier for the default address space is the integer
11971'``0``'.
11972
11973::
11974
11975 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11976 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11977 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11978 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11979 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11980
11981Overview:
11982"""""""""
11983
11984The '``llvm.ptr.annotation``' intrinsic.
11985
11986Arguments:
11987""""""""""
11988
11989The first argument is a pointer to an integer value of arbitrary bitwidth
11990(result of some expression), the second is a pointer to a global string, the
11991third is a pointer to a global string which is the source file name, and the
11992last argument is the line number. It returns the value of the first argument.
11993
11994Semantics:
11995""""""""""
11996
11997This intrinsic allows annotation of a pointer to an integer with arbitrary
11998strings. This can be useful for special purpose optimizations that want to look
11999for these annotations. These have no other defined use; they are ignored by code
12000generation and optimization.
12001
Sean Silvab084af42012-12-07 10:36:55 +000012002'``llvm.annotation.*``' Intrinsic
12003^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12004
12005Syntax:
12006"""""""
12007
12008This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12009any integer bit width.
12010
12011::
12012
12013 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12014 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12015 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12016 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12017 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12018
12019Overview:
12020"""""""""
12021
12022The '``llvm.annotation``' intrinsic.
12023
12024Arguments:
12025""""""""""
12026
12027The first argument is an integer value (result of some expression), the
12028second is a pointer to a global string, the third is a pointer to a
12029global string which is the source file name, and the last argument is
12030the line number. It returns the value of the first argument.
12031
12032Semantics:
12033""""""""""
12034
12035This intrinsic allows annotations to be put on arbitrary expressions
12036with arbitrary strings. This can be useful for special purpose
12037optimizations that want to look for these annotations. These have no
12038other defined use; they are ignored by code generation and optimization.
12039
12040'``llvm.trap``' Intrinsic
12041^^^^^^^^^^^^^^^^^^^^^^^^^
12042
12043Syntax:
12044"""""""
12045
12046::
12047
12048 declare void @llvm.trap() noreturn nounwind
12049
12050Overview:
12051"""""""""
12052
12053The '``llvm.trap``' intrinsic.
12054
12055Arguments:
12056""""""""""
12057
12058None.
12059
12060Semantics:
12061""""""""""
12062
12063This intrinsic is lowered to the target dependent trap instruction. If
12064the target does not have a trap instruction, this intrinsic will be
12065lowered to a call of the ``abort()`` function.
12066
12067'``llvm.debugtrap``' Intrinsic
12068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12069
12070Syntax:
12071"""""""
12072
12073::
12074
12075 declare void @llvm.debugtrap() nounwind
12076
12077Overview:
12078"""""""""
12079
12080The '``llvm.debugtrap``' intrinsic.
12081
12082Arguments:
12083""""""""""
12084
12085None.
12086
12087Semantics:
12088""""""""""
12089
12090This intrinsic is lowered to code which is intended to cause an
12091execution trap with the intention of requesting the attention of a
12092debugger.
12093
12094'``llvm.stackprotector``' Intrinsic
12095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12096
12097Syntax:
12098"""""""
12099
12100::
12101
12102 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12103
12104Overview:
12105"""""""""
12106
12107The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12108onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12109is placed on the stack before local variables.
12110
12111Arguments:
12112""""""""""
12113
12114The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12115The first argument is the value loaded from the stack guard
12116``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12117enough space to hold the value of the guard.
12118
12119Semantics:
12120""""""""""
12121
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012122This intrinsic causes the prologue/epilogue inserter to force the position of
12123the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12124to ensure that if a local variable on the stack is overwritten, it will destroy
12125the value of the guard. When the function exits, the guard on the stack is
12126checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12127different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12128calling the ``__stack_chk_fail()`` function.
12129
Tim Shene885d5e2016-04-19 19:40:37 +000012130'``llvm.stackguard``' Intrinsic
12131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12132
12133Syntax:
12134"""""""
12135
12136::
12137
12138 declare i8* @llvm.stackguard()
12139
12140Overview:
12141"""""""""
12142
12143The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12144
12145It should not be generated by frontends, since it is only for internal usage.
12146The reason why we create this intrinsic is that we still support IR form Stack
12147Protector in FastISel.
12148
12149Arguments:
12150""""""""""
12151
12152None.
12153
12154Semantics:
12155""""""""""
12156
12157On some platforms, the value returned by this intrinsic remains unchanged
12158between loads in the same thread. On other platforms, it returns the same
12159global variable value, if any, e.g. ``@__stack_chk_guard``.
12160
12161Currently some platforms have IR-level customized stack guard loading (e.g.
12162X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12163in the future.
12164
Sean Silvab084af42012-12-07 10:36:55 +000012165'``llvm.objectsize``' Intrinsic
12166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12167
12168Syntax:
12169"""""""
12170
12171::
12172
12173 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12174 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12175
12176Overview:
12177"""""""""
12178
12179The ``llvm.objectsize`` intrinsic is designed to provide information to
12180the optimizers to determine at compile time whether a) an operation
12181(like memcpy) will overflow a buffer that corresponds to an object, or
12182b) that a runtime check for overflow isn't necessary. An object in this
12183context means an allocation of a specific class, structure, array, or
12184other object.
12185
12186Arguments:
12187""""""""""
12188
12189The ``llvm.objectsize`` intrinsic takes two arguments. The first
12190argument is a pointer to or into the ``object``. The second argument is
12191a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12192or -1 (if false) when the object size is unknown. The second argument
12193only accepts constants.
12194
12195Semantics:
12196""""""""""
12197
12198The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12199the size of the object concerned. If the size cannot be determined at
12200compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12201on the ``min`` argument).
12202
12203'``llvm.expect``' Intrinsic
12204^^^^^^^^^^^^^^^^^^^^^^^^^^^
12205
12206Syntax:
12207"""""""
12208
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012209This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12210integer bit width.
12211
Sean Silvab084af42012-12-07 10:36:55 +000012212::
12213
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012214 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012215 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12216 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12217
12218Overview:
12219"""""""""
12220
12221The ``llvm.expect`` intrinsic provides information about expected (the
12222most probable) value of ``val``, which can be used by optimizers.
12223
12224Arguments:
12225""""""""""
12226
12227The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12228a value. The second argument is an expected value, this needs to be a
12229constant value, variables are not allowed.
12230
12231Semantics:
12232""""""""""
12233
12234This intrinsic is lowered to the ``val``.
12235
Philip Reamese0e90832015-04-26 22:23:12 +000012236.. _int_assume:
12237
Hal Finkel93046912014-07-25 21:13:35 +000012238'``llvm.assume``' Intrinsic
12239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12240
12241Syntax:
12242"""""""
12243
12244::
12245
12246 declare void @llvm.assume(i1 %cond)
12247
12248Overview:
12249"""""""""
12250
12251The ``llvm.assume`` allows the optimizer to assume that the provided
12252condition is true. This information can then be used in simplifying other parts
12253of the code.
12254
12255Arguments:
12256""""""""""
12257
12258The condition which the optimizer may assume is always true.
12259
12260Semantics:
12261""""""""""
12262
12263The intrinsic allows the optimizer to assume that the provided condition is
12264always true whenever the control flow reaches the intrinsic call. No code is
12265generated for this intrinsic, and instructions that contribute only to the
12266provided condition are not used for code generation. If the condition is
12267violated during execution, the behavior is undefined.
12268
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012269Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012270used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12271only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012272if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012273sufficient overall improvement in code quality. For this reason,
12274``llvm.assume`` should not be used to document basic mathematical invariants
12275that the optimizer can otherwise deduce or facts that are of little use to the
12276optimizer.
12277
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012278.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012279
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012280'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012281^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12282
12283Syntax:
12284"""""""
12285
12286::
12287
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012288 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012289
12290
12291Arguments:
12292""""""""""
12293
12294The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012295metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012296
12297Overview:
12298"""""""""
12299
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012300The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12301with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012302
Peter Collingbourne0312f612016-06-25 00:23:04 +000012303'``llvm.type.checked.load``' Intrinsic
12304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12305
12306Syntax:
12307"""""""
12308
12309::
12310
12311 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12312
12313
12314Arguments:
12315""""""""""
12316
12317The first argument is a pointer from which to load a function pointer. The
12318second argument is the byte offset from which to load the function pointer. The
12319third argument is a metadata object representing a :doc:`type identifier
12320<TypeMetadata>`.
12321
12322Overview:
12323"""""""""
12324
12325The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12326virtual table pointer using type metadata. This intrinsic is used to implement
12327control flow integrity in conjunction with virtual call optimization. The
12328virtual call optimization pass will optimize away ``llvm.type.checked.load``
12329intrinsics associated with devirtualized calls, thereby removing the type
12330check in cases where it is not needed to enforce the control flow integrity
12331constraint.
12332
12333If the given pointer is associated with a type metadata identifier, this
12334function returns true as the second element of its return value. (Note that
12335the function may also return true if the given pointer is not associated
12336with a type metadata identifier.) If the function's return value's second
12337element is true, the following rules apply to the first element:
12338
12339- If the given pointer is associated with the given type metadata identifier,
12340 it is the function pointer loaded from the given byte offset from the given
12341 pointer.
12342
12343- If the given pointer is not associated with the given type metadata
12344 identifier, it is one of the following (the choice of which is unspecified):
12345
12346 1. The function pointer that would have been loaded from an arbitrarily chosen
12347 (through an unspecified mechanism) pointer associated with the type
12348 metadata.
12349
12350 2. If the function has a non-void return type, a pointer to a function that
12351 returns an unspecified value without causing side effects.
12352
12353If the function's return value's second element is false, the value of the
12354first element is undefined.
12355
12356
Sean Silvab084af42012-12-07 10:36:55 +000012357'``llvm.donothing``' Intrinsic
12358^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12359
12360Syntax:
12361"""""""
12362
12363::
12364
12365 declare void @llvm.donothing() nounwind readnone
12366
12367Overview:
12368"""""""""
12369
Juergen Ributzkac9161192014-10-23 22:36:13 +000012370The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012371three intrinsics (besides ``llvm.experimental.patchpoint`` and
12372``llvm.experimental.gc.statepoint``) that can be called with an invoke
12373instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012374
12375Arguments:
12376""""""""""
12377
12378None.
12379
12380Semantics:
12381""""""""""
12382
12383This intrinsic does nothing, and it's removed by optimizers and ignored
12384by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012385
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012386'``llvm.experimental.deoptimize``' Intrinsic
12387^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12388
12389Syntax:
12390"""""""
12391
12392::
12393
12394 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12395
12396Overview:
12397"""""""""
12398
12399This intrinsic, together with :ref:`deoptimization operand bundles
12400<deopt_opbundles>`, allow frontends to express transfer of control and
12401frame-local state from the currently executing (typically more specialized,
12402hence faster) version of a function into another (typically more generic, hence
12403slower) version.
12404
12405In languages with a fully integrated managed runtime like Java and JavaScript
12406this intrinsic can be used to implement "uncommon trap" or "side exit" like
12407functionality. In unmanaged languages like C and C++, this intrinsic can be
12408used to represent the slow paths of specialized functions.
12409
12410
12411Arguments:
12412""""""""""
12413
12414The intrinsic takes an arbitrary number of arguments, whose meaning is
12415decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12416
12417Semantics:
12418""""""""""
12419
12420The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12421deoptimization continuation (denoted using a :ref:`deoptimization
12422operand bundle <deopt_opbundles>`) and returns the value returned by
12423the deoptimization continuation. Defining the semantic properties of
12424the continuation itself is out of scope of the language reference --
12425as far as LLVM is concerned, the deoptimization continuation can
12426invoke arbitrary side effects, including reading from and writing to
12427the entire heap.
12428
12429Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12430continue execution to the end of the physical frame containing them, so all
12431calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12432
12433 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12434 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12435 - The ``ret`` instruction must return the value produced by the
12436 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12437
12438Note that the above restrictions imply that the return type for a call to
12439``@llvm.experimental.deoptimize`` will match the return type of its immediate
12440caller.
12441
12442The inliner composes the ``"deopt"`` continuations of the caller into the
12443``"deopt"`` continuations present in the inlinee, and also updates calls to this
12444intrinsic to return directly from the frame of the function it inlined into.
12445
Sanjoy Dase0aa4142016-05-12 01:17:38 +000012446All declarations of ``@llvm.experimental.deoptimize`` must share the
12447same calling convention.
12448
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012449.. _deoptimize_lowering:
12450
12451Lowering:
12452"""""""""
12453
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012454Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12455symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12456ensure that this symbol is defined). The call arguments to
12457``@llvm.experimental.deoptimize`` are lowered as if they were formal
12458arguments of the specified types, and not as varargs.
12459
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012460
Sanjoy Das021de052016-03-31 00:18:46 +000012461'``llvm.experimental.guard``' Intrinsic
12462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12463
12464Syntax:
12465"""""""
12466
12467::
12468
12469 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12470
12471Overview:
12472"""""""""
12473
12474This intrinsic, together with :ref:`deoptimization operand bundles
12475<deopt_opbundles>`, allows frontends to express guards or checks on
12476optimistic assumptions made during compilation. The semantics of
12477``@llvm.experimental.guard`` is defined in terms of
12478``@llvm.experimental.deoptimize`` -- its body is defined to be
12479equivalent to:
12480
12481.. code-block:: llvm
12482
12483 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12484 %realPred = and i1 %pred, undef
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012485 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000012486
12487 leave:
12488 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12489 ret void
12490
12491 continue:
12492 ret void
12493 }
12494
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012495
12496with the optional ``[, !make.implicit !{}]`` present if and only if it
12497is present on the call site. For more details on ``!make.implicit``,
12498see :doc:`FaultMaps`.
12499
Sanjoy Das021de052016-03-31 00:18:46 +000012500In words, ``@llvm.experimental.guard`` executes the attached
12501``"deopt"`` continuation if (but **not** only if) its first argument
12502is ``false``. Since the optimizer is allowed to replace the ``undef``
12503with an arbitrary value, it can optimize guard to fail "spuriously",
12504i.e. without the original condition being false (hence the "not only
12505if"); and this allows for "check widening" type optimizations.
12506
12507``@llvm.experimental.guard`` cannot be invoked.
12508
12509
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012510'``llvm.load.relative``' Intrinsic
12511^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12512
12513Syntax:
12514"""""""
12515
12516::
12517
12518 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12519
12520Overview:
12521"""""""""
12522
12523This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12524adds ``%ptr`` to that value and returns it. The constant folder specifically
12525recognizes the form of this intrinsic and the constant initializers it may
12526load from; if a loaded constant initializer is known to have the form
12527``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12528
12529LLVM provides that the calculation of such a constant initializer will
12530not overflow at link time under the medium code model if ``x`` is an
12531``unnamed_addr`` function. However, it does not provide this guarantee for
12532a constant initializer folded into a function body. This intrinsic can be
12533used to avoid the possibility of overflows when loading from such a constant.
12534
Andrew Trick5e029ce2013-12-24 02:57:25 +000012535Stack Map Intrinsics
12536--------------------
12537
12538LLVM provides experimental intrinsics to support runtime patching
12539mechanisms commonly desired in dynamic language JITs. These intrinsics
12540are described in :doc:`StackMaps`.