blob: 83573be24d607d7cb4039664a40b7228927838bc [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
Rafael Espindolae64619c2016-05-16 21:14:24 +0000253
254 Unfortunately this doesn't correspond to any feature in .o files, so it
255 can only be used for variables like ``llvm.global_ctors`` which llvm
256 interprets specially.
257
Sean Silvab084af42012-12-07 10:36:55 +0000258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000270``external``
271 If none of the above identifiers are used, the global is externally
272 visible, meaning that it participates in linkage and can be used to
273 resolve external symbol references.
274
Sean Silvab084af42012-12-07 10:36:55 +0000275It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000276other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000277
Sean Silvab084af42012-12-07 10:36:55 +0000278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291 This calling convention (the default if no other calling convention
292 is specified) matches the target C calling conventions. This calling
293 convention supports varargs function calls and tolerates some
294 mismatch in the declared prototype and implemented declaration of
295 the function (as does normal C).
296"``fastcc``" - The fast calling convention
297 This calling convention attempts to make calls as fast as possible
298 (e.g. by passing things in registers). This calling convention
299 allows the target to use whatever tricks it wants to produce fast
300 code for the target, without having to conform to an externally
301 specified ABI (Application Binary Interface). `Tail calls can only
302 be optimized when this, the GHC or the HiPE convention is
303 used. <CodeGenerator.html#id80>`_ This calling convention does not
304 support varargs and requires the prototype of all callees to exactly
305 match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307 This calling convention attempts to make code in the caller as
308 efficient as possible under the assumption that the call is not
309 commonly executed. As such, these calls often preserve all registers
310 so that the call does not break any live ranges in the caller side.
311 This calling convention does not support varargs and requires the
312 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000313 function definition. Furthermore the inliner doesn't consider such function
314 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000315"``cc 10``" - GHC convention
316 This calling convention has been implemented specifically for use by
317 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318 It passes everything in registers, going to extremes to achieve this
319 by disabling callee save registers. This calling convention should
320 not be used lightly but only for specific situations such as an
321 alternative to the *register pinning* performance technique often
322 used when implementing functional programming languages. At the
323 moment only X86 supports this convention and it has the following
324 limitations:
325
326 - On *X86-32* only supports up to 4 bit type parameters. No
327 floating point types are supported.
328 - On *X86-64* only supports up to 10 bit type parameters and 6
329 floating point parameters.
330
331 This calling convention supports `tail call
332 optimization <CodeGenerator.html#id80>`_ but requires both the
333 caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335 This calling convention has been implemented specifically for use by
336 the `High-Performance Erlang
337 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338 native code compiler of the `Ericsson's Open Source Erlang/OTP
339 system <http://www.erlang.org/download.shtml>`_. It uses more
340 registers for argument passing than the ordinary C calling
341 convention and defines no callee-saved registers. The calling
342 convention properly supports `tail call
343 optimization <CodeGenerator.html#id80>`_ but requires that both the
344 caller and the callee use it. It uses a *register pinning*
345 mechanism, similar to GHC's convention, for keeping frequently
346 accessed runtime components pinned to specific hardware registers.
347 At the moment only X86 supports this convention (both 32 and 64
348 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000349"``webkit_jscc``" - WebKit's JavaScript calling convention
350 This calling convention has been implemented for `WebKit FTL JIT
351 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352 stack right to left (as cdecl does), and returns a value in the
353 platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355 This is a special convention that supports patching an arbitrary code
356 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000358 allocated. This can currently only be used with calls to
359 llvm.experimental.patchpoint because only this intrinsic records
360 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000361"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000362 This calling convention attempts to make the code in the caller as
363 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364 calling convention on how arguments and return values are passed, but it
365 uses a different set of caller/callee-saved registers. This alleviates the
366 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000367 call in the caller. If the arguments are passed in callee-saved registers,
368 then they will be preserved by the callee across the call. This doesn't
369 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000377 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000400 recovering a large register set before and after the call in the caller. If
401 the arguments are passed in callee-saved registers, then they will be
402 preserved by the callee across the call. This doesn't apply for values
403 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000404
405 - On X86-64 the callee preserves all general purpose registers, except for
406 R11. R11 can be used as a scratch register. Furthermore it also preserves
407 all floating-point registers (XMMs/YMMs).
408
409 The idea behind this convention is to support calls to runtime functions
410 that don't need to call out to any other functions.
411
412 This calling convention, like the `PreserveMost` calling convention, will be
413 used by a future version of the ObjectiveC runtime and should be considered
414 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000416 Clang generates an access function to access C++-style TLS. The access
417 function generally has an entry block, an exit block and an initialization
418 block that is run at the first time. The entry and exit blocks can access
419 a few TLS IR variables, each access will be lowered to a platform-specific
420 sequence.
421
Manman Ren19c7bbe2015-12-04 17:40:13 +0000422 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000423 preserving as many registers as possible (all the registers that are
424 perserved on the fast path, composed of the entry and exit blocks).
425
426 This calling convention behaves identical to the `C` calling convention on
427 how arguments and return values are passed, but it uses a different set of
428 caller/callee-saved registers.
429
430 Given that each platform has its own lowering sequence, hence its own set
431 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000432
433 - On X86-64 the callee preserves all general purpose registers, except for
434 RDI and RAX.
Manman Renf8bdd882016-04-05 22:41:47 +0000435"``swiftcc``" - This calling convention is used for Swift language.
436 - On X86-64 RCX and R8 are available for additional integer returns, and
437 XMM2 and XMM3 are available for additional FP/vector returns.
Manman Ren802cd6f2016-04-05 22:44:44 +0000438 - On iOS platforms, we use AAPCS-VFP calling convention.
Sean Silvab084af42012-12-07 10:36:55 +0000439"``cc <n>``" - Numbered convention
440 Any calling convention may be specified by number, allowing
441 target-specific calling conventions to be used. Target specific
442 calling conventions start at 64.
443
444More calling conventions can be added/defined on an as-needed basis, to
445support Pascal conventions or any other well-known target-independent
446convention.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _visibilitystyles:
449
Sean Silvab084af42012-12-07 10:36:55 +0000450Visibility Styles
451-----------------
452
453All Global Variables and Functions have one of the following visibility
454styles:
455
456"``default``" - Default style
457 On targets that use the ELF object file format, default visibility
458 means that the declaration is visible to other modules and, in
459 shared libraries, means that the declared entity may be overridden.
460 On Darwin, default visibility means that the declaration is visible
461 to other modules. Default visibility corresponds to "external
462 linkage" in the language.
463"``hidden``" - Hidden style
464 Two declarations of an object with hidden visibility refer to the
465 same object if they are in the same shared object. Usually, hidden
466 visibility indicates that the symbol will not be placed into the
467 dynamic symbol table, so no other module (executable or shared
468 library) can reference it directly.
469"``protected``" - Protected style
470 On ELF, protected visibility indicates that the symbol will be
471 placed in the dynamic symbol table, but that references within the
472 defining module will bind to the local symbol. That is, the symbol
473 cannot be overridden by another module.
474
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000475A symbol with ``internal`` or ``private`` linkage must have ``default``
476visibility.
477
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000478.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000479
Nico Rieck7157bb72014-01-14 15:22:47 +0000480DLL Storage Classes
481-------------------
482
483All Global Variables, Functions and Aliases can have one of the following
484DLL storage class:
485
486``dllimport``
487 "``dllimport``" causes the compiler to reference a function or variable via
488 a global pointer to a pointer that is set up by the DLL exporting the
489 symbol. On Microsoft Windows targets, the pointer name is formed by
490 combining ``__imp_`` and the function or variable name.
491``dllexport``
492 "``dllexport``" causes the compiler to provide a global pointer to a pointer
493 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
494 Microsoft Windows targets, the pointer name is formed by combining
495 ``__imp_`` and the function or variable name. Since this storage class
496 exists for defining a dll interface, the compiler, assembler and linker know
497 it is externally referenced and must refrain from deleting the symbol.
498
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000499.. _tls_model:
500
501Thread Local Storage Models
502---------------------------
503
504A variable may be defined as ``thread_local``, which means that it will
505not be shared by threads (each thread will have a separated copy of the
506variable). Not all targets support thread-local variables. Optionally, a
507TLS model may be specified:
508
509``localdynamic``
510 For variables that are only used within the current shared library.
511``initialexec``
512 For variables in modules that will not be loaded dynamically.
513``localexec``
514 For variables defined in the executable and only used within it.
515
516If no explicit model is given, the "general dynamic" model is used.
517
518The models correspond to the ELF TLS models; see `ELF Handling For
519Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
520more information on under which circumstances the different models may
521be used. The target may choose a different TLS model if the specified
522model is not supported, or if a better choice of model can be made.
523
Sean Silva706fba52015-08-06 22:56:24 +0000524A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000525the alias is accessed. It will not have any effect in the aliasee.
526
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000527For platforms without linker support of ELF TLS model, the -femulated-tls
528flag can be used to generate GCC compatible emulated TLS code.
529
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000530.. _namedtypes:
531
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000532Structure Types
533---------------
Sean Silvab084af42012-12-07 10:36:55 +0000534
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000535LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000536types <t_struct>`. Literal types are uniqued structurally, but identified types
537are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000538to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000539
Sean Silva706fba52015-08-06 22:56:24 +0000540An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000541
542.. code-block:: llvm
543
544 %mytype = type { %mytype*, i32 }
545
Sean Silvaa1190322015-08-06 22:56:48 +0000546Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000547literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000548
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000549.. _nointptrtype:
550
551Non-Integral Pointer Type
552-------------------------
553
554Note: non-integral pointer types are a work in progress, and they should be
555considered experimental at this time.
556
557LLVM IR optionally allows the frontend to denote pointers in certain address
Sanjoy Das63752e62016-08-10 21:48:24 +0000558spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
559Non-integral pointer types represent pointers that have an *unspecified* bitwise
560representation; that is, the integral representation may be target dependent or
561unstable (not backed by a fixed integer).
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +0000562
563``inttoptr`` instructions converting integers to non-integral pointer types are
564ill-typed, and so are ``ptrtoint`` instructions converting values of
565non-integral pointer types to integers. Vector versions of said instructions
566are ill-typed as well.
567
Sean Silvab084af42012-12-07 10:36:55 +0000568.. _globalvars:
569
570Global Variables
571----------------
572
573Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000574instead of run-time.
575
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000576Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000577
578Global variables in other translation units can also be declared, in which
579case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000580
Bob Wilson85b24f22014-06-12 20:40:33 +0000581Either global variable definitions or declarations may have an explicit section
582to be placed in and may have an optional explicit alignment specified.
583
Michael Gottesman006039c2013-01-31 05:48:48 +0000584A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000585the contents of the variable will **never** be modified (enabling better
586optimization, allowing the global data to be placed in the read-only
587section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000588initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000589variable.
590
591LLVM explicitly allows *declarations* of global variables to be marked
592constant, even if the final definition of the global is not. This
593capability can be used to enable slightly better optimization of the
594program, but requires the language definition to guarantee that
595optimizations based on the 'constantness' are valid for the translation
596units that do not include the definition.
597
598As SSA values, global variables define pointer values that are in scope
599(i.e. they dominate) all basic blocks in the program. Global variables
600always define a pointer to their "content" type because they describe a
601region of memory, and all memory objects in LLVM are accessed through
602pointers.
603
604Global variables can be marked with ``unnamed_addr`` which indicates
605that the address is not significant, only the content. Constants marked
606like this can be merged with other constants if they have the same
607initializer. Note that a constant with significant address *can* be
608merged with a ``unnamed_addr`` constant, the result being a constant
609whose address is significant.
610
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000611If the ``local_unnamed_addr`` attribute is given, the address is known to
612not be significant within the module.
613
Sean Silvab084af42012-12-07 10:36:55 +0000614A global variable may be declared to reside in a target-specific
615numbered address space. For targets that support them, address spaces
616may affect how optimizations are performed and/or what target
617instructions are used to access the variable. The default address space
618is zero. The address space qualifier must precede any other attributes.
619
620LLVM allows an explicit section to be specified for globals. If the
621target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000622Additionally, the global can placed in a comdat if the target has the necessary
623support.
Sean Silvab084af42012-12-07 10:36:55 +0000624
Michael Gottesmane743a302013-02-04 03:22:00 +0000625By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000626variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000627initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000628true even for variables potentially accessible from outside the
629module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000630``@llvm.used`` or dllexported variables. This assumption may be suppressed
631by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000632
Sean Silvab084af42012-12-07 10:36:55 +0000633An explicit alignment may be specified for a global, which must be a
634power of 2. If not present, or if the alignment is set to zero, the
635alignment of the global is set by the target to whatever it feels
636convenient. If an explicit alignment is specified, the global is forced
637to have exactly that alignment. Targets and optimizers are not allowed
638to over-align the global if the global has an assigned section. In this
639case, the extra alignment could be observable: for example, code could
640assume that the globals are densely packed in their section and try to
641iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000642iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000643
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000644Globals can also have a :ref:`DLL storage class <dllstorageclass>` and
645an optional list of attached :ref:`metadata <metadata>`,
Nico Rieck7157bb72014-01-14 15:22:47 +0000646
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000647Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000648:ref:`Thread Local Storage Model <tls_model>`.
649
Nico Rieck7157bb72014-01-14 15:22:47 +0000650Syntax::
651
Rafael Espindola32483a72016-05-10 18:22:45 +0000652 @<GlobalVarName> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000653 [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
654 [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000655 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000656 [, section "name"] [, comdat [($name)]]
Peter Collingbournecceae7f2016-05-31 23:01:54 +0000657 [, align <Alignment>] (, !name !N)*
Nico Rieck7157bb72014-01-14 15:22:47 +0000658
Sean Silvab084af42012-12-07 10:36:55 +0000659For example, the following defines a global in a numbered address space
660with an initializer, section, and alignment:
661
662.. code-block:: llvm
663
664 @G = addrspace(5) constant float 1.0, section "foo", align 4
665
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000666The following example just declares a global variable
667
668.. code-block:: llvm
669
670 @G = external global i32
671
Sean Silvab084af42012-12-07 10:36:55 +0000672The following example defines a thread-local global with the
673``initialexec`` TLS model:
674
675.. code-block:: llvm
676
677 @G = thread_local(initialexec) global i32 0, align 4
678
679.. _functionstructure:
680
681Functions
682---------
683
684LLVM function definitions consist of the "``define``" keyword, an
685optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000686style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
687an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000688an optional ``unnamed_addr`` attribute, a return type, an optional
689:ref:`parameter attribute <paramattrs>` for the return type, a function
690name, a (possibly empty) argument list (each with optional :ref:`parameter
691attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000692an optional section, an optional alignment,
693an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000694an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000695an optional :ref:`prologue <prologuedata>`,
696an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000697an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000698an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000699
700LLVM function declarations consist of the "``declare``" keyword, an
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000701optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
702<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
703optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
704or ``local_unnamed_addr`` attribute, a return type, an optional :ref:`parameter
705attribute <paramattrs>` for the return type, a function name, a possibly
706empty list of arguments, an optional alignment, an optional :ref:`garbage
707collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
708:ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
Bill Wendling6822ecb2013-10-27 05:09:12 +0000710A function definition contains a list of basic blocks, forming the CFG (Control
711Flow Graph) for the function. Each basic block may optionally start with a label
712(giving the basic block a symbol table entry), contains a list of instructions,
713and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
714function return). If an explicit label is not provided, a block is assigned an
715implicit numbered label, using the next value from the same counter as used for
716unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
717entry block does not have an explicit label, it will be assigned label "%0",
718then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000719
720The first basic block in a function is special in two ways: it is
721immediately executed on entrance to the function, and it is not allowed
722to have predecessor basic blocks (i.e. there can not be any branches to
723the entry block of a function). Because the block can have no
724predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
725
726LLVM allows an explicit section to be specified for functions. If the
727target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000728Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000729
730An explicit alignment may be specified for a function. If not present,
731or if the alignment is set to zero, the alignment of the function is set
732by the target to whatever it feels convenient. If an explicit alignment
733is specified, the function is forced to have at least that much
734alignment. All alignments must be a power of 2.
735
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000736If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000737be significant and two identical functions can be merged.
738
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000739If the ``local_unnamed_addr`` attribute is given, the address is known to
740not be significant within the module.
741
Sean Silvab084af42012-12-07 10:36:55 +0000742Syntax::
743
Nico Rieck7157bb72014-01-14 15:22:47 +0000744 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000745 [cconv] [ret attrs]
746 <ResultType> @<FunctionName> ([argument list])
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000747 [(unnamed_addr|local_unnamed_addr)] [fn Attrs] [section "name"]
748 [comdat [($name)]] [align N] [gc] [prefix Constant]
749 [prologue Constant] [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000750
Sean Silva706fba52015-08-06 22:56:24 +0000751The argument list is a comma separated sequence of arguments where each
752argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000753
754Syntax::
755
756 <type> [parameter Attrs] [name]
757
758
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000759.. _langref_aliases:
760
Sean Silvab084af42012-12-07 10:36:55 +0000761Aliases
762-------
763
Rafael Espindola64c1e182014-06-03 02:41:57 +0000764Aliases, unlike function or variables, don't create any new data. They
765are just a new symbol and metadata for an existing position.
766
767Aliases have a name and an aliasee that is either a global value or a
768constant expression.
769
Nico Rieck7157bb72014-01-14 15:22:47 +0000770Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000771:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
772<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000773
774Syntax::
775
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000776 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000777
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000778The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000779``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000780might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000781
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000782Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000783the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
784to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000785
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000786If the ``local_unnamed_addr`` attribute is given, the address is known to
787not be significant within the module.
788
Rafael Espindola64c1e182014-06-03 02:41:57 +0000789Since aliases are only a second name, some restrictions apply, of which
790some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000791
Rafael Espindola64c1e182014-06-03 02:41:57 +0000792* The expression defining the aliasee must be computable at assembly
793 time. Since it is just a name, no relocations can be used.
794
795* No alias in the expression can be weak as the possibility of the
796 intermediate alias being overridden cannot be represented in an
797 object file.
798
799* No global value in the expression can be a declaration, since that
800 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000801
Dmitry Polukhina1feff72016-04-07 12:32:19 +0000802.. _langref_ifunc:
803
804IFuncs
805-------
806
807IFuncs, like as aliases, don't create any new data or func. They are just a new
808symbol that dynamic linker resolves at runtime by calling a resolver function.
809
810IFuncs have a name and a resolver that is a function called by dynamic linker
811that returns address of another function associated with the name.
812
813IFunc may have an optional :ref:`linkage type <linkage>` and an optional
814:ref:`visibility style <visibility>`.
815
816Syntax::
817
818 @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821.. _langref_comdats:
822
823Comdats
824-------
825
826Comdat IR provides access to COFF and ELF object file COMDAT functionality.
827
Sean Silvaa1190322015-08-06 22:56:48 +0000828Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000829specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000830that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000831aliasee computes to, if any.
832
833Comdats have a selection kind to provide input on how the linker should
834choose between keys in two different object files.
835
836Syntax::
837
838 $<Name> = comdat SelectionKind
839
840The selection kind must be one of the following:
841
842``any``
843 The linker may choose any COMDAT key, the choice is arbitrary.
844``exactmatch``
845 The linker may choose any COMDAT key but the sections must contain the
846 same data.
847``largest``
848 The linker will choose the section containing the largest COMDAT key.
849``noduplicates``
850 The linker requires that only section with this COMDAT key exist.
851``samesize``
852 The linker may choose any COMDAT key but the sections must contain the
853 same amount of data.
854
855Note that the Mach-O platform doesn't support COMDATs and ELF only supports
856``any`` as a selection kind.
857
858Here is an example of a COMDAT group where a function will only be selected if
859the COMDAT key's section is the largest:
860
Renato Golin124f2592016-07-20 12:16:38 +0000861.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000862
863 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000864 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000865
Rafael Espindola83a362c2015-01-06 22:55:16 +0000866 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000867 ret void
868 }
869
Rafael Espindola83a362c2015-01-06 22:55:16 +0000870As a syntactic sugar the ``$name`` can be omitted if the name is the same as
871the global name:
872
Renato Golin124f2592016-07-20 12:16:38 +0000873.. code-block:: text
Rafael Espindola83a362c2015-01-06 22:55:16 +0000874
875 $foo = comdat any
876 @foo = global i32 2, comdat
877
878
David Majnemerdad0a642014-06-27 18:19:56 +0000879In a COFF object file, this will create a COMDAT section with selection kind
880``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
881and another COMDAT section with selection kind
882``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000883section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000884
885There are some restrictions on the properties of the global object.
886It, or an alias to it, must have the same name as the COMDAT group when
887targeting COFF.
888The contents and size of this object may be used during link-time to determine
889which COMDAT groups get selected depending on the selection kind.
890Because the name of the object must match the name of the COMDAT group, the
891linkage of the global object must not be local; local symbols can get renamed
892if a collision occurs in the symbol table.
893
894The combined use of COMDATS and section attributes may yield surprising results.
895For example:
896
Renato Golin124f2592016-07-20 12:16:38 +0000897.. code-block:: text
David Majnemerdad0a642014-06-27 18:19:56 +0000898
899 $foo = comdat any
900 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000901 @g1 = global i32 42, section "sec", comdat($foo)
902 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000903
904From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000905with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000906COMDAT groups and COMDATs, at the object file level, are represented by
907sections.
908
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000909Note that certain IR constructs like global variables and functions may
910create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000911COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000912in individual sections (e.g. when `-data-sections` or `-function-sections`
913is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000914
Sean Silvab084af42012-12-07 10:36:55 +0000915.. _namedmetadatastructure:
916
917Named Metadata
918--------------
919
920Named metadata is a collection of metadata. :ref:`Metadata
921nodes <metadata>` (but not metadata strings) are the only valid
922operands for a named metadata.
923
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000924#. Named metadata are represented as a string of characters with the
925 metadata prefix. The rules for metadata names are the same as for
926 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
927 are still valid, which allows any character to be part of a name.
928
Sean Silvab084af42012-12-07 10:36:55 +0000929Syntax::
930
931 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000932 !0 = !{!"zero"}
933 !1 = !{!"one"}
934 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000935 ; A named metadata.
936 !name = !{!0, !1, !2}
937
938.. _paramattrs:
939
940Parameter Attributes
941--------------------
942
943The return type and each parameter of a function type may have a set of
944*parameter attributes* associated with them. Parameter attributes are
945used to communicate additional information about the result or
946parameters of a function. Parameter attributes are considered to be part
947of the function, not of the function type, so functions with different
948parameter attributes can have the same function type.
949
950Parameter attributes are simple keywords that follow the type specified.
951If multiple parameter attributes are needed, they are space separated.
952For example:
953
954.. code-block:: llvm
955
956 declare i32 @printf(i8* noalias nocapture, ...)
957 declare i32 @atoi(i8 zeroext)
958 declare signext i8 @returns_signed_char()
959
960Note that any attributes for the function result (``nounwind``,
961``readonly``) come immediately after the argument list.
962
963Currently, only the following parameter attributes are defined:
964
965``zeroext``
966 This indicates to the code generator that the parameter or return
967 value should be zero-extended to the extent required by the target's
Hans Wennborg850ec6c2016-02-08 19:34:30 +0000968 ABI by the caller (for a parameter) or the callee (for a return value).
Sean Silvab084af42012-12-07 10:36:55 +0000969``signext``
970 This indicates to the code generator that the parameter or return
971 value should be sign-extended to the extent required by the target's
972 ABI (which is usually 32-bits) by the caller (for a parameter) or
973 the callee (for a return value).
974``inreg``
975 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000976 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000977 a function call or return (usually, by putting it in a register as
978 opposed to memory, though some targets use it to distinguish between
979 two different kinds of registers). Use of this attribute is
980 target-specific.
981``byval``
982 This indicates that the pointer parameter should really be passed by
983 value to the function. The attribute implies that a hidden copy of
984 the pointee is made between the caller and the callee, so the callee
985 is unable to modify the value in the caller. This attribute is only
986 valid on LLVM pointer arguments. It is generally used to pass
987 structs and arrays by value, but is also valid on pointers to
988 scalars. The copy is considered to belong to the caller not the
989 callee (for example, ``readonly`` functions should not write to
990 ``byval`` parameters). This is not a valid attribute for return
991 values.
992
993 The byval attribute also supports specifying an alignment with the
994 align attribute. It indicates the alignment of the stack slot to
995 form and the known alignment of the pointer specified to the call
996 site. If the alignment is not specified, then the code generator
997 makes a target-specific assumption.
998
Reid Klecknera534a382013-12-19 02:14:12 +0000999.. _attr_inalloca:
1000
1001``inalloca``
1002
Reid Kleckner60d3a832014-01-16 22:59:24 +00001003 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +00001004 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +00001005 be a pointer to stack memory produced by an ``alloca`` instruction.
1006 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +00001007 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +00001008 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +00001009
Reid Kleckner436c42e2014-01-17 23:58:17 +00001010 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +00001011 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +00001012 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +00001013 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +00001014 ``inalloca`` attribute also disables LLVM's implicit lowering of
1015 large aggregate return values, which means that frontend authors
1016 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +00001017
Reid Kleckner60d3a832014-01-16 22:59:24 +00001018 When the call site is reached, the argument allocation must have
1019 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +00001020 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +00001021 space after an argument allocation and before its call site, but it
1022 must be cleared off with :ref:`llvm.stackrestore
1023 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +00001024
1025 See :doc:`InAlloca` for more information on how to use this
1026 attribute.
1027
Sean Silvab084af42012-12-07 10:36:55 +00001028``sret``
1029 This indicates that the pointer parameter specifies the address of a
1030 structure that is the return value of the function in the source
1031 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +00001032 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +00001033 not to trap and to be properly aligned. This may only be applied to
1034 the first parameter. This is not a valid attribute for return
1035 values.
Sean Silva1703e702014-04-08 21:06:22 +00001036
Hal Finkelccc70902014-07-22 16:58:55 +00001037``align <n>``
1038 This indicates that the pointer value may be assumed by the optimizer to
1039 have the specified alignment.
1040
1041 Note that this attribute has additional semantics when combined with the
1042 ``byval`` attribute.
1043
Sean Silva1703e702014-04-08 21:06:22 +00001044.. _noalias:
1045
Sean Silvab084af42012-12-07 10:36:55 +00001046``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +00001047 This indicates that objects accessed via pointer values
1048 :ref:`based <pointeraliasing>` on the argument or return value are not also
1049 accessed, during the execution of the function, via pointer values not
1050 *based* on the argument or return value. The attribute on a return value
1051 also has additional semantics described below. The caller shares the
1052 responsibility with the callee for ensuring that these requirements are met.
1053 For further details, please see the discussion of the NoAlias response in
1054 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +00001055
1056 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001057 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001058
1059 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001060 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1061 attribute on return values are stronger than the semantics of the attribute
1062 when used on function arguments. On function return values, the ``noalias``
1063 attribute indicates that the function acts like a system memory allocation
1064 function, returning a pointer to allocated storage disjoint from the
1065 storage for any other object accessible to the caller.
1066
Sean Silvab084af42012-12-07 10:36:55 +00001067``nocapture``
1068 This indicates that the callee does not make any copies of the
1069 pointer that outlive the callee itself. This is not a valid
David Majnemer7f324202016-05-26 17:36:22 +00001070 attribute for return values. Addresses used in volatile operations
1071 are considered to be captured.
Sean Silvab084af42012-12-07 10:36:55 +00001072
1073.. _nest:
1074
1075``nest``
1076 This indicates that the pointer parameter can be excised using the
1077 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001078 attribute for return values and can only be applied to one parameter.
1079
1080``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001081 This indicates that the function always returns the argument as its return
Hal Finkel3b66caa2016-07-10 21:52:39 +00001082 value. This is a hint to the optimizer and code generator used when
1083 generating the caller, allowing value propagation, tail call optimization,
1084 and omission of register saves and restores in some cases; it is not
1085 checked or enforced when generating the callee. The parameter and the
1086 function return type must be valid operands for the
1087 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1088 return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001089
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001090``nonnull``
1091 This indicates that the parameter or return pointer is not null. This
1092 attribute may only be applied to pointer typed parameters. This is not
1093 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001094 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001095 is non-null.
1096
Hal Finkelb0407ba2014-07-18 15:51:28 +00001097``dereferenceable(<n>)``
1098 This indicates that the parameter or return pointer is dereferenceable. This
1099 attribute may only be applied to pointer typed parameters. A pointer that
1100 is dereferenceable can be loaded from speculatively without a risk of
1101 trapping. The number of bytes known to be dereferenceable must be provided
1102 in parentheses. It is legal for the number of bytes to be less than the
1103 size of the pointee type. The ``nonnull`` attribute does not imply
1104 dereferenceability (consider a pointer to one element past the end of an
1105 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1106 ``addrspace(0)`` (which is the default address space).
1107
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001108``dereferenceable_or_null(<n>)``
1109 This indicates that the parameter or return value isn't both
1110 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001111 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001112 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1113 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1114 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1115 and in other address spaces ``dereferenceable_or_null(<n>)``
1116 implies that a pointer is at least one of ``dereferenceable(<n>)``
1117 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001118 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001119 pointer typed parameters.
1120
Manman Renf46262e2016-03-29 17:37:21 +00001121``swiftself``
1122 This indicates that the parameter is the self/context parameter. This is not
1123 a valid attribute for return values and can only be applied to one
1124 parameter.
1125
Manman Ren9bfd0d02016-04-01 21:41:15 +00001126``swifterror``
1127 This attribute is motivated to model and optimize Swift error handling. It
1128 can be applied to a parameter with pointer to pointer type or a
1129 pointer-sized alloca. At the call site, the actual argument that corresponds
1130 to a ``swifterror`` parameter has to come from a ``swifterror`` alloca. A
1131 ``swifterror`` value (either the parameter or the alloca) can only be loaded
1132 and stored from, or used as a ``swifterror`` argument. This is not a valid
1133 attribute for return values and can only be applied to one parameter.
1134
1135 These constraints allow the calling convention to optimize access to
1136 ``swifterror`` variables by associating them with a specific register at
1137 call boundaries rather than placing them in memory. Since this does change
1138 the calling convention, a function which uses the ``swifterror`` attribute
1139 on a parameter is not ABI-compatible with one which does not.
1140
1141 These constraints also allow LLVM to assume that a ``swifterror`` argument
1142 does not alias any other memory visible within a function and that a
1143 ``swifterror`` alloca passed as an argument does not escape.
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _gc:
1146
Philip Reamesf80bbff2015-02-25 23:45:20 +00001147Garbage Collector Strategy Names
1148--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001149
Philip Reamesf80bbff2015-02-25 23:45:20 +00001150Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001151string:
1152
1153.. code-block:: llvm
1154
1155 define void @f() gc "name" { ... }
1156
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001157The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001158<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001159strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001160named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001161garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001162which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001163
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001164.. _prefixdata:
1165
1166Prefix Data
1167-----------
1168
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001169Prefix data is data associated with a function which the code
1170generator will emit immediately before the function's entrypoint.
1171The purpose of this feature is to allow frontends to associate
1172language-specific runtime metadata with specific functions and make it
1173available through the function pointer while still allowing the
1174function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001175
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001176To access the data for a given function, a program may bitcast the
1177function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001178index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001179the prefix data. For instance, take the example of a function annotated
1180with a single ``i32``,
1181
1182.. code-block:: llvm
1183
1184 define void @f() prefix i32 123 { ... }
1185
1186The prefix data can be referenced as,
1187
1188.. code-block:: llvm
1189
David Blaikie16a97eb2015-03-04 22:02:58 +00001190 %0 = bitcast void* () @f to i32*
1191 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001192 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001193
1194Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001195of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001196beginning of the prefix data is aligned. This means that if the size
1197of the prefix data is not a multiple of the alignment size, the
1198function's entrypoint will not be aligned. If alignment of the
1199function's entrypoint is desired, padding must be added to the prefix
1200data.
1201
Sean Silvaa1190322015-08-06 22:56:48 +00001202A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001203to the ``available_externally`` linkage in that the data may be used by the
1204optimizers but will not be emitted in the object file.
1205
1206.. _prologuedata:
1207
1208Prologue Data
1209-------------
1210
1211The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1212be inserted prior to the function body. This can be used for enabling
1213function hot-patching and instrumentation.
1214
1215To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001216have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001217bytes which decode to a sequence of machine instructions, valid for the
1218module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001219the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001220the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001221definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001222makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001223
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001224A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001225which encodes the ``nop`` instruction:
1226
Renato Golin124f2592016-07-20 12:16:38 +00001227.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001228
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001229 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001230
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001231Generally prologue data can be formed by encoding a relative branch instruction
1232which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001233x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1234
Renato Golin124f2592016-07-20 12:16:38 +00001235.. code-block:: text
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001236
1237 %0 = type <{ i8, i8, i8* }>
1238
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001239 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001240
Sean Silvaa1190322015-08-06 22:56:48 +00001241A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001242to the ``available_externally`` linkage in that the data may be used by the
1243optimizers but will not be emitted in the object file.
1244
David Majnemer7fddecc2015-06-17 20:52:32 +00001245.. _personalityfn:
1246
1247Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001248--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001249
1250The ``personality`` attribute permits functions to specify what function
1251to use for exception handling.
1252
Bill Wendling63b88192013-02-06 06:52:58 +00001253.. _attrgrp:
1254
1255Attribute Groups
1256----------------
1257
1258Attribute groups are groups of attributes that are referenced by objects within
1259the IR. They are important for keeping ``.ll`` files readable, because a lot of
1260functions will use the same set of attributes. In the degenerative case of a
1261``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1262group will capture the important command line flags used to build that file.
1263
1264An attribute group is a module-level object. To use an attribute group, an
1265object references the attribute group's ID (e.g. ``#37``). An object may refer
1266to more than one attribute group. In that situation, the attributes from the
1267different groups are merged.
1268
1269Here is an example of attribute groups for a function that should always be
1270inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1271
1272.. code-block:: llvm
1273
1274 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001276
1277 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001278 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001279
1280 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1281 define void @f() #0 #1 { ... }
1282
Sean Silvab084af42012-12-07 10:36:55 +00001283.. _fnattrs:
1284
1285Function Attributes
1286-------------------
1287
1288Function attributes are set to communicate additional information about
1289a function. Function attributes are considered to be part of the
1290function, not of the function type, so functions with different function
1291attributes can have the same function type.
1292
1293Function attributes are simple keywords that follow the type specified.
1294If multiple attributes are needed, they are space separated. For
1295example:
1296
1297.. code-block:: llvm
1298
1299 define void @f() noinline { ... }
1300 define void @f() alwaysinline { ... }
1301 define void @f() alwaysinline optsize { ... }
1302 define void @f() optsize { ... }
1303
Sean Silvab084af42012-12-07 10:36:55 +00001304``alignstack(<n>)``
1305 This attribute indicates that, when emitting the prologue and
1306 epilogue, the backend should forcibly align the stack pointer.
1307 Specify the desired alignment, which must be a power of two, in
1308 parentheses.
George Burgess IV278199f2016-04-12 01:05:35 +00001309``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1310 This attribute indicates that the annotated function will always return at
1311 least a given number of bytes (or null). Its arguments are zero-indexed
1312 parameter numbers; if one argument is provided, then it's assumed that at
1313 least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1314 returned pointer. If two are provided, then it's assumed that
1315 ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1316 available. The referenced parameters must be integer types. No assumptions
1317 are made about the contents of the returned block of memory.
Sean Silvab084af42012-12-07 10:36:55 +00001318``alwaysinline``
1319 This attribute indicates that the inliner should attempt to inline
1320 this function into callers whenever possible, ignoring any active
1321 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001322``builtin``
1323 This indicates that the callee function at a call site should be
1324 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001325 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001326 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001327 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001328``cold``
1329 This attribute indicates that this function is rarely called. When
1330 computing edge weights, basic blocks post-dominated by a cold
1331 function call are also considered to be cold; and, thus, given low
1332 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001333``convergent``
Justin Lebard5fb6952016-02-09 23:03:17 +00001334 In some parallel execution models, there exist operations that cannot be
1335 made control-dependent on any additional values. We call such operations
Justin Lebar58535b12016-02-17 17:46:41 +00001336 ``convergent``, and mark them with this attribute.
Justin Lebard5fb6952016-02-09 23:03:17 +00001337
Justin Lebar58535b12016-02-17 17:46:41 +00001338 The ``convergent`` attribute may appear on functions or call/invoke
1339 instructions. When it appears on a function, it indicates that calls to
1340 this function should not be made control-dependent on additional values.
Justin Bognera4635372016-07-06 20:02:45 +00001341 For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
Justin Lebard5fb6952016-02-09 23:03:17 +00001342 calls to this intrinsic cannot be made control-dependent on additional
Justin Lebar58535b12016-02-17 17:46:41 +00001343 values.
Justin Lebard5fb6952016-02-09 23:03:17 +00001344
Justin Lebar58535b12016-02-17 17:46:41 +00001345 When it appears on a call/invoke, the ``convergent`` attribute indicates
1346 that we should treat the call as though we're calling a convergent
1347 function. This is particularly useful on indirect calls; without this we
1348 may treat such calls as though the target is non-convergent.
1349
1350 The optimizer may remove the ``convergent`` attribute on functions when it
1351 can prove that the function does not execute any convergent operations.
1352 Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1353 can prove that the call/invoke cannot call a convergent function.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001354``inaccessiblememonly``
1355 This attribute indicates that the function may only access memory that
1356 is not accessible by the module being compiled. This is a weaker form
1357 of ``readnone``.
1358``inaccessiblemem_or_argmemonly``
1359 This attribute indicates that the function may only access memory that is
1360 either not accessible by the module being compiled, or is pointed to
1361 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001362``inlinehint``
1363 This attribute indicates that the source code contained a hint that
1364 inlining this function is desirable (such as the "inline" keyword in
1365 C/C++). It is just a hint; it imposes no requirements on the
1366 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001367``jumptable``
1368 This attribute indicates that the function should be added to a
1369 jump-instruction table at code-generation time, and that all address-taken
1370 references to this function should be replaced with a reference to the
1371 appropriate jump-instruction-table function pointer. Note that this creates
1372 a new pointer for the original function, which means that code that depends
1373 on function-pointer identity can break. So, any function annotated with
1374 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001375``minsize``
1376 This attribute suggests that optimization passes and code generator
1377 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001378 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001379 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001380``naked``
1381 This attribute disables prologue / epilogue emission for the
1382 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001383``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001384 This indicates that the callee function at a call site is not recognized as
1385 a built-in function. LLVM will retain the original call and not replace it
1386 with equivalent code based on the semantics of the built-in function, unless
1387 the call site uses the ``builtin`` attribute. This is valid at call sites
1388 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001389``noduplicate``
1390 This attribute indicates that calls to the function cannot be
1391 duplicated. A call to a ``noduplicate`` function may be moved
1392 within its parent function, but may not be duplicated within
1393 its parent function.
1394
1395 A function containing a ``noduplicate`` call may still
1396 be an inlining candidate, provided that the call is not
1397 duplicated by inlining. That implies that the function has
1398 internal linkage and only has one call site, so the original
1399 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001400``noimplicitfloat``
1401 This attributes disables implicit floating point instructions.
1402``noinline``
1403 This attribute indicates that the inliner should never inline this
1404 function in any situation. This attribute may not be used together
1405 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001406``nonlazybind``
1407 This attribute suppresses lazy symbol binding for the function. This
1408 may make calls to the function faster, at the cost of extra program
1409 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001410``noredzone``
1411 This attribute indicates that the code generator should not use a
1412 red zone, even if the target-specific ABI normally permits it.
1413``noreturn``
1414 This function attribute indicates that the function never returns
1415 normally. This produces undefined behavior at runtime if the
1416 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001417``norecurse``
1418 This function attribute indicates that the function does not call itself
1419 either directly or indirectly down any possible call path. This produces
1420 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001421``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001422 This function attribute indicates that the function never raises an
1423 exception. If the function does raise an exception, its runtime
1424 behavior is undefined. However, functions marked nounwind may still
1425 trap or generate asynchronous exceptions. Exception handling schemes
1426 that are recognized by LLVM to handle asynchronous exceptions, such
1427 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001428``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001429 This function attribute indicates that most optimization passes will skip
1430 this function, with the exception of interprocedural optimization passes.
1431 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001432 This attribute cannot be used together with the ``alwaysinline``
1433 attribute; this attribute is also incompatible
1434 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001435
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001436 This attribute requires the ``noinline`` attribute to be specified on
1437 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001438 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001439 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001440``optsize``
1441 This attribute suggests that optimization passes and code generator
1442 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001443 and otherwise do optimizations specifically to reduce code size as
1444 long as they do not significantly impact runtime performance.
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001445``"patchable-function"``
1446 This attribute tells the code generator that the code
1447 generated for this function needs to follow certain conventions that
1448 make it possible for a runtime function to patch over it later.
1449 The exact effect of this attribute depends on its string value,
Charles Davise9c32c72016-08-08 21:20:15 +00001450 for which there currently is one legal possibility:
Sanjoy Dasc0441c22016-04-19 05:24:47 +00001451
1452 * ``"prologue-short-redirect"`` - This style of patchable
1453 function is intended to support patching a function prologue to
1454 redirect control away from the function in a thread safe
1455 manner. It guarantees that the first instruction of the
1456 function will be large enough to accommodate a short jump
1457 instruction, and will be sufficiently aligned to allow being
1458 fully changed via an atomic compare-and-swap instruction.
1459 While the first requirement can be satisfied by inserting large
1460 enough NOP, LLVM can and will try to re-purpose an existing
1461 instruction (i.e. one that would have to be emitted anyway) as
1462 the patchable instruction larger than a short jump.
1463
1464 ``"prologue-short-redirect"`` is currently only supported on
1465 x86-64.
1466
1467 This attribute by itself does not imply restrictions on
1468 inter-procedural optimizations. All of the semantic effects the
1469 patching may have to be separately conveyed via the linkage type.
Sean Silvab084af42012-12-07 10:36:55 +00001470``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001471 On a function, this attribute indicates that the function computes its
1472 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001473 without dereferencing any pointer arguments or otherwise accessing
1474 any mutable state (e.g. memory, control registers, etc) visible to
1475 caller functions. It does not write through any pointer arguments
1476 (including ``byval`` arguments) and never changes any state visible
1477 to callers. This means that it cannot unwind exceptions by calling
1478 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001479
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001480 On an argument, this attribute indicates that the function does not
1481 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001482 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001483``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001484 On a function, this attribute indicates that the function does not write
1485 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001486 modify any state (e.g. memory, control registers, etc) visible to
1487 caller functions. It may dereference pointer arguments and read
1488 state that may be set in the caller. A readonly function always
1489 returns the same value (or unwinds an exception identically) when
1490 called with the same set of arguments and global state. It cannot
1491 unwind an exception by calling the ``C++`` exception throwing
1492 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001493
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001494 On an argument, this attribute indicates that the function does not write
1495 through this pointer argument, even though it may write to the memory that
1496 the pointer points to.
Nicolai Haehnle84c9f992016-07-04 08:01:29 +00001497``writeonly``
1498 On a function, this attribute indicates that the function may write to but
1499 does not read from memory.
1500
1501 On an argument, this attribute indicates that the function may write to but
1502 does not read through this pointer argument (even though it may read from
1503 the memory that the pointer points to).
Igor Laevsky39d662f2015-07-11 10:30:36 +00001504``argmemonly``
1505 This attribute indicates that the only memory accesses inside function are
1506 loads and stores from objects pointed to by its pointer-typed arguments,
1507 with arbitrary offsets. Or in other words, all memory operations in the
1508 function can refer to memory only using pointers based on its function
1509 arguments.
1510 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1511 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001512``returns_twice``
1513 This attribute indicates that this function can return twice. The C
1514 ``setjmp`` is an example of such a function. The compiler disables
1515 some optimizations (like tail calls) in the caller of these
1516 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001517``safestack``
1518 This attribute indicates that
1519 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1520 protection is enabled for this function.
1521
1522 If a function that has a ``safestack`` attribute is inlined into a
1523 function that doesn't have a ``safestack`` attribute or which has an
1524 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1525 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001526``sanitize_address``
1527 This attribute indicates that AddressSanitizer checks
1528 (dynamic address safety analysis) are enabled for this function.
1529``sanitize_memory``
1530 This attribute indicates that MemorySanitizer checks (dynamic detection
1531 of accesses to uninitialized memory) are enabled for this function.
1532``sanitize_thread``
1533 This attribute indicates that ThreadSanitizer checks
1534 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001535``ssp``
1536 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001537 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001538 placed on the stack before the local variables that's checked upon
1539 return from the function to see if it has been overwritten. A
1540 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001541 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001542
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001543 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1544 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1545 - Calls to alloca() with variable sizes or constant sizes greater than
1546 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001547
Josh Magee24c7f062014-02-01 01:36:16 +00001548 Variables that are identified as requiring a protector will be arranged
1549 on the stack such that they are adjacent to the stack protector guard.
1550
Sean Silvab084af42012-12-07 10:36:55 +00001551 If a function that has an ``ssp`` attribute is inlined into a
1552 function that doesn't have an ``ssp`` attribute, then the resulting
1553 function will have an ``ssp`` attribute.
1554``sspreq``
1555 This attribute indicates that the function should *always* emit a
1556 stack smashing protector. This overrides the ``ssp`` function
1557 attribute.
1558
Josh Magee24c7f062014-02-01 01:36:16 +00001559 Variables that are identified as requiring a protector will be arranged
1560 on the stack such that they are adjacent to the stack protector guard.
1561 The specific layout rules are:
1562
1563 #. Large arrays and structures containing large arrays
1564 (``>= ssp-buffer-size``) are closest to the stack protector.
1565 #. Small arrays and structures containing small arrays
1566 (``< ssp-buffer-size``) are 2nd closest to the protector.
1567 #. Variables that have had their address taken are 3rd closest to the
1568 protector.
1569
Sean Silvab084af42012-12-07 10:36:55 +00001570 If a function that has an ``sspreq`` attribute is inlined into a
1571 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001572 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1573 an ``sspreq`` attribute.
1574``sspstrong``
1575 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001576 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001577 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001578 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001579
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001580 - Arrays of any size and type
1581 - Aggregates containing an array of any size and type.
1582 - Calls to alloca().
1583 - Local variables that have had their address taken.
1584
Josh Magee24c7f062014-02-01 01:36:16 +00001585 Variables that are identified as requiring a protector will be arranged
1586 on the stack such that they are adjacent to the stack protector guard.
1587 The specific layout rules are:
1588
1589 #. Large arrays and structures containing large arrays
1590 (``>= ssp-buffer-size``) are closest to the stack protector.
1591 #. Small arrays and structures containing small arrays
1592 (``< ssp-buffer-size``) are 2nd closest to the protector.
1593 #. Variables that have had their address taken are 3rd closest to the
1594 protector.
1595
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001596 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001597
1598 If a function that has an ``sspstrong`` attribute is inlined into a
1599 function that doesn't have an ``sspstrong`` attribute, then the
1600 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001601``"thunk"``
1602 This attribute indicates that the function will delegate to some other
1603 function with a tail call. The prototype of a thunk should not be used for
1604 optimization purposes. The caller is expected to cast the thunk prototype to
1605 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001606``uwtable``
1607 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001608 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001609 show that no exceptions passes by it. This is normally the case for
1610 the ELF x86-64 abi, but it can be disabled for some compilation
1611 units.
Sean Silvab084af42012-12-07 10:36:55 +00001612
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001613
1614.. _opbundles:
1615
1616Operand Bundles
1617---------------
1618
1619Note: operand bundles are a work in progress, and they should be
1620considered experimental at this time.
1621
1622Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001623with certain LLVM instructions (currently only ``call`` s and
1624``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001625incorrect and will change program semantics.
1626
1627Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001628
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001629 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001630 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1631 bundle operand ::= SSA value
1632 tag ::= string constant
1633
1634Operand bundles are **not** part of a function's signature, and a
1635given function may be called from multiple places with different kinds
1636of operand bundles. This reflects the fact that the operand bundles
1637are conceptually a part of the ``call`` (or ``invoke``), not the
1638callee being dispatched to.
1639
1640Operand bundles are a generic mechanism intended to support
1641runtime-introspection-like functionality for managed languages. While
1642the exact semantics of an operand bundle depend on the bundle tag,
1643there are certain limitations to how much the presence of an operand
1644bundle can influence the semantics of a program. These restrictions
1645are described as the semantics of an "unknown" operand bundle. As
1646long as the behavior of an operand bundle is describable within these
1647restrictions, LLVM does not need to have special knowledge of the
1648operand bundle to not miscompile programs containing it.
1649
David Majnemer34cacb42015-10-22 01:46:38 +00001650- The bundle operands for an unknown operand bundle escape in unknown
1651 ways before control is transferred to the callee or invokee.
1652- Calls and invokes with operand bundles have unknown read / write
1653 effect on the heap on entry and exit (even if the call target is
Sylvestre Ledru84666a12016-02-14 20:16:22 +00001654 ``readnone`` or ``readonly``), unless they're overridden with
Sanjoy Das98a341b2015-10-22 03:12:22 +00001655 callsite specific attributes.
1656- An operand bundle at a call site cannot change the implementation
1657 of the called function. Inter-procedural optimizations work as
1658 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001659
Sanjoy Dascdafd842015-11-11 21:38:02 +00001660More specific types of operand bundles are described below.
1661
Sanjoy Dasb51325d2016-03-11 19:08:34 +00001662.. _deopt_opbundles:
1663
Sanjoy Dascdafd842015-11-11 21:38:02 +00001664Deoptimization Operand Bundles
1665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1666
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001667Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001668operand bundle tag. These operand bundles represent an alternate
1669"safe" continuation for the call site they're attached to, and can be
1670used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001671specified call site. There can be at most one ``"deopt"`` operand
1672bundle attached to a call site. Exact details of deoptimization is
1673out of scope for the language reference, but it usually involves
1674rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001675
1676From the compiler's perspective, deoptimization operand bundles make
1677the call sites they're attached to at least ``readonly``. They read
1678through all of their pointer typed operands (even if they're not
1679otherwise escaped) and the entire visible heap. Deoptimization
1680operand bundles do not capture their operands except during
1681deoptimization, in which case control will not be returned to the
1682compiled frame.
1683
Sanjoy Das2d161452015-11-18 06:23:38 +00001684The inliner knows how to inline through calls that have deoptimization
1685operand bundles. Just like inlining through a normal call site
1686involves composing the normal and exceptional continuations, inlining
1687through a call site with a deoptimization operand bundle needs to
1688appropriately compose the "safe" deoptimization continuation. The
1689inliner does this by prepending the parent's deoptimization
1690continuation to every deoptimization continuation in the inlined body.
1691E.g. inlining ``@f`` into ``@g`` in the following example
1692
1693.. code-block:: llvm
1694
1695 define void @f() {
1696 call void @x() ;; no deopt state
1697 call void @y() [ "deopt"(i32 10) ]
1698 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1699 ret void
1700 }
1701
1702 define void @g() {
1703 call void @f() [ "deopt"(i32 20) ]
1704 ret void
1705 }
1706
1707will result in
1708
1709.. code-block:: llvm
1710
1711 define void @g() {
1712 call void @x() ;; still no deopt state
1713 call void @y() [ "deopt"(i32 20, i32 10) ]
1714 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1715 ret void
1716 }
1717
1718It is the frontend's responsibility to structure or encode the
1719deoptimization state in a way that syntactically prepending the
1720caller's deoptimization state to the callee's deoptimization state is
1721semantically equivalent to composing the caller's deoptimization
1722continuation after the callee's deoptimization continuation.
1723
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001724.. _ob_funclet:
1725
David Majnemer3bb88c02015-12-15 21:27:27 +00001726Funclet Operand Bundles
1727^^^^^^^^^^^^^^^^^^^^^^^
1728
1729Funclet operand bundles are characterized by the ``"funclet"``
1730operand bundle tag. These operand bundles indicate that a call site
1731is within a particular funclet. There can be at most one
1732``"funclet"`` operand bundle attached to a call site and it must have
1733exactly one bundle operand.
1734
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001735If any funclet EH pads have been "entered" but not "exited" (per the
1736`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1737it is undefined behavior to execute a ``call`` or ``invoke`` which:
1738
1739* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1740 intrinsic, or
1741* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1742 not-yet-exited funclet EH pad.
1743
1744Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1745executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1746
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001747GC Transition Operand Bundles
1748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1749
1750GC transition operand bundles are characterized by the
1751``"gc-transition"`` operand bundle tag. These operand bundles mark a
1752call as a transition between a function with one GC strategy to a
1753function with a different GC strategy. If coordinating the transition
1754between GC strategies requires additional code generation at the call
1755site, these bundles may contain any values that are needed by the
1756generated code. For more details, see :ref:`GC Transitions
1757<gc_transition_args>`.
1758
Sean Silvab084af42012-12-07 10:36:55 +00001759.. _moduleasm:
1760
1761Module-Level Inline Assembly
1762----------------------------
1763
1764Modules may contain "module-level inline asm" blocks, which corresponds
1765to the GCC "file scope inline asm" blocks. These blocks are internally
1766concatenated by LLVM and treated as a single unit, but may be separated
1767in the ``.ll`` file if desired. The syntax is very simple:
1768
1769.. code-block:: llvm
1770
1771 module asm "inline asm code goes here"
1772 module asm "more can go here"
1773
1774The strings can contain any character by escaping non-printable
1775characters. The escape sequence used is simply "\\xx" where "xx" is the
1776two digit hex code for the number.
1777
James Y Knightbc832ed2015-07-08 18:08:36 +00001778Note that the assembly string *must* be parseable by LLVM's integrated assembler
1779(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001780
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001781.. _langref_datalayout:
1782
Sean Silvab084af42012-12-07 10:36:55 +00001783Data Layout
1784-----------
1785
1786A module may specify a target specific data layout string that specifies
1787how data is to be laid out in memory. The syntax for the data layout is
1788simply:
1789
1790.. code-block:: llvm
1791
1792 target datalayout = "layout specification"
1793
1794The *layout specification* consists of a list of specifications
1795separated by the minus sign character ('-'). Each specification starts
1796with a letter and may include other information after the letter to
1797define some aspect of the data layout. The specifications accepted are
1798as follows:
1799
1800``E``
1801 Specifies that the target lays out data in big-endian form. That is,
1802 the bits with the most significance have the lowest address
1803 location.
1804``e``
1805 Specifies that the target lays out data in little-endian form. That
1806 is, the bits with the least significance have the lowest address
1807 location.
1808``S<size>``
1809 Specifies the natural alignment of the stack in bits. Alignment
1810 promotion of stack variables is limited to the natural stack
1811 alignment to avoid dynamic stack realignment. The stack alignment
1812 must be a multiple of 8-bits. If omitted, the natural stack
1813 alignment defaults to "unspecified", which does not prevent any
1814 alignment promotions.
1815``p[n]:<size>:<abi>:<pref>``
1816 This specifies the *size* of a pointer and its ``<abi>`` and
1817 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001818 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001819 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001820 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001821``i<size>:<abi>:<pref>``
1822 This specifies the alignment for an integer type of a given bit
1823 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1824``v<size>:<abi>:<pref>``
1825 This specifies the alignment for a vector type of a given bit
1826 ``<size>``.
1827``f<size>:<abi>:<pref>``
1828 This specifies the alignment for a floating point type of a given bit
1829 ``<size>``. Only values of ``<size>`` that are supported by the target
1830 will work. 32 (float) and 64 (double) are supported on all targets; 80
1831 or 128 (different flavors of long double) are also supported on some
1832 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001833``a:<abi>:<pref>``
1834 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001835``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001836 If present, specifies that llvm names are mangled in the output. The
1837 options are
1838
1839 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1840 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1841 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1842 symbols get a ``_`` prefix.
1843 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1844 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001845 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1846 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001847``n<size1>:<size2>:<size3>...``
1848 This specifies a set of native integer widths for the target CPU in
1849 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1850 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1851 this set are considered to support most general arithmetic operations
1852 efficiently.
Sanjoy Dasc6af5ea2016-07-28 23:43:38 +00001853``ni:<address space0>:<address space1>:<address space2>...``
1854 This specifies pointer types with the specified address spaces
1855 as :ref:`Non-Integral Pointer Type <nointptrtype>` s. The ``0``
1856 address space cannot be specified as non-integral.
Sean Silvab084af42012-12-07 10:36:55 +00001857
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001858On every specification that takes a ``<abi>:<pref>``, specifying the
1859``<pref>`` alignment is optional. If omitted, the preceding ``:``
1860should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1861
Sean Silvab084af42012-12-07 10:36:55 +00001862When constructing the data layout for a given target, LLVM starts with a
1863default set of specifications which are then (possibly) overridden by
1864the specifications in the ``datalayout`` keyword. The default
1865specifications are given in this list:
1866
1867- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001868- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1869- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1870 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001871- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001872- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1873- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1874- ``i16:16:16`` - i16 is 16-bit aligned
1875- ``i32:32:32`` - i32 is 32-bit aligned
1876- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1877 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001878- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001879- ``f32:32:32`` - float is 32-bit aligned
1880- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001881- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001882- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1883- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001884- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001885
1886When LLVM is determining the alignment for a given type, it uses the
1887following rules:
1888
1889#. If the type sought is an exact match for one of the specifications,
1890 that specification is used.
1891#. If no match is found, and the type sought is an integer type, then
1892 the smallest integer type that is larger than the bitwidth of the
1893 sought type is used. If none of the specifications are larger than
1894 the bitwidth then the largest integer type is used. For example,
1895 given the default specifications above, the i7 type will use the
1896 alignment of i8 (next largest) while both i65 and i256 will use the
1897 alignment of i64 (largest specified).
1898#. If no match is found, and the type sought is a vector type, then the
1899 largest vector type that is smaller than the sought vector type will
1900 be used as a fall back. This happens because <128 x double> can be
1901 implemented in terms of 64 <2 x double>, for example.
1902
1903The function of the data layout string may not be what you expect.
1904Notably, this is not a specification from the frontend of what alignment
1905the code generator should use.
1906
1907Instead, if specified, the target data layout is required to match what
1908the ultimate *code generator* expects. This string is used by the
1909mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001910what the ultimate code generator uses. There is no way to generate IR
1911that does not embed this target-specific detail into the IR. If you
1912don't specify the string, the default specifications will be used to
1913generate a Data Layout and the optimization phases will operate
1914accordingly and introduce target specificity into the IR with respect to
1915these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001916
Bill Wendling5cc90842013-10-18 23:41:25 +00001917.. _langref_triple:
1918
1919Target Triple
1920-------------
1921
1922A module may specify a target triple string that describes the target
1923host. The syntax for the target triple is simply:
1924
1925.. code-block:: llvm
1926
1927 target triple = "x86_64-apple-macosx10.7.0"
1928
1929The *target triple* string consists of a series of identifiers delimited
1930by the minus sign character ('-'). The canonical forms are:
1931
1932::
1933
1934 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1935 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1936
1937This information is passed along to the backend so that it generates
1938code for the proper architecture. It's possible to override this on the
1939command line with the ``-mtriple`` command line option.
1940
Sean Silvab084af42012-12-07 10:36:55 +00001941.. _pointeraliasing:
1942
1943Pointer Aliasing Rules
1944----------------------
1945
1946Any memory access must be done through a pointer value associated with
1947an address range of the memory access, otherwise the behavior is
1948undefined. Pointer values are associated with address ranges according
1949to the following rules:
1950
1951- A pointer value is associated with the addresses associated with any
1952 value it is *based* on.
1953- An address of a global variable is associated with the address range
1954 of the variable's storage.
1955- The result value of an allocation instruction is associated with the
1956 address range of the allocated storage.
1957- A null pointer in the default address-space is associated with no
1958 address.
1959- An integer constant other than zero or a pointer value returned from
1960 a function not defined within LLVM may be associated with address
1961 ranges allocated through mechanisms other than those provided by
1962 LLVM. Such ranges shall not overlap with any ranges of addresses
1963 allocated by mechanisms provided by LLVM.
1964
1965A pointer value is *based* on another pointer value according to the
1966following rules:
1967
1968- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001969 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001970- The result value of a ``bitcast`` is *based* on the operand of the
1971 ``bitcast``.
1972- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1973 values that contribute (directly or indirectly) to the computation of
1974 the pointer's value.
1975- The "*based* on" relationship is transitive.
1976
1977Note that this definition of *"based"* is intentionally similar to the
1978definition of *"based"* in C99, though it is slightly weaker.
1979
1980LLVM IR does not associate types with memory. The result type of a
1981``load`` merely indicates the size and alignment of the memory from
1982which to load, as well as the interpretation of the value. The first
1983operand type of a ``store`` similarly only indicates the size and
1984alignment of the store.
1985
1986Consequently, type-based alias analysis, aka TBAA, aka
1987``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1988:ref:`Metadata <metadata>` may be used to encode additional information
1989which specialized optimization passes may use to implement type-based
1990alias analysis.
1991
1992.. _volatile:
1993
1994Volatile Memory Accesses
1995------------------------
1996
1997Certain memory accesses, such as :ref:`load <i_load>`'s,
1998:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1999marked ``volatile``. The optimizers must not change the number of
2000volatile operations or change their order of execution relative to other
2001volatile operations. The optimizers *may* change the order of volatile
2002operations relative to non-volatile operations. This is not Java's
2003"volatile" and has no cross-thread synchronization behavior.
2004
Andrew Trick89fc5a62013-01-30 21:19:35 +00002005IR-level volatile loads and stores cannot safely be optimized into
2006llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
2007flagged volatile. Likewise, the backend should never split or merge
2008target-legal volatile load/store instructions.
2009
Andrew Trick7e6f9282013-01-31 00:49:39 +00002010.. admonition:: Rationale
2011
2012 Platforms may rely on volatile loads and stores of natively supported
2013 data width to be executed as single instruction. For example, in C
2014 this holds for an l-value of volatile primitive type with native
2015 hardware support, but not necessarily for aggregate types. The
2016 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00002017 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00002018 do not violate the frontend's contract with the language.
2019
Sean Silvab084af42012-12-07 10:36:55 +00002020.. _memmodel:
2021
2022Memory Model for Concurrent Operations
2023--------------------------------------
2024
2025The LLVM IR does not define any way to start parallel threads of
2026execution or to register signal handlers. Nonetheless, there are
2027platform-specific ways to create them, and we define LLVM IR's behavior
2028in their presence. This model is inspired by the C++0x memory model.
2029
2030For a more informal introduction to this model, see the :doc:`Atomics`.
2031
2032We define a *happens-before* partial order as the least partial order
2033that
2034
2035- Is a superset of single-thread program order, and
2036- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2037 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2038 techniques, like pthread locks, thread creation, thread joining,
2039 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2040 Constraints <ordering>`).
2041
2042Note that program order does not introduce *happens-before* edges
2043between a thread and signals executing inside that thread.
2044
2045Every (defined) read operation (load instructions, memcpy, atomic
2046loads/read-modify-writes, etc.) R reads a series of bytes written by
2047(defined) write operations (store instructions, atomic
2048stores/read-modify-writes, memcpy, etc.). For the purposes of this
2049section, initialized globals are considered to have a write of the
2050initializer which is atomic and happens before any other read or write
2051of the memory in question. For each byte of a read R, R\ :sub:`byte`
2052may see any write to the same byte, except:
2053
2054- If write\ :sub:`1` happens before write\ :sub:`2`, and
2055 write\ :sub:`2` happens before R\ :sub:`byte`, then
2056 R\ :sub:`byte` does not see write\ :sub:`1`.
2057- If R\ :sub:`byte` happens before write\ :sub:`3`, then
2058 R\ :sub:`byte` does not see write\ :sub:`3`.
2059
2060Given that definition, R\ :sub:`byte` is defined as follows:
2061
2062- If R is volatile, the result is target-dependent. (Volatile is
2063 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00002064 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00002065 like normal memory. It does not generally provide cross-thread
2066 synchronization.)
2067- Otherwise, if there is no write to the same byte that happens before
2068 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2069- Otherwise, if R\ :sub:`byte` may see exactly one write,
2070 R\ :sub:`byte` returns the value written by that write.
2071- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2072 see are atomic, it chooses one of the values written. See the :ref:`Atomic
2073 Memory Ordering Constraints <ordering>` section for additional
2074 constraints on how the choice is made.
2075- Otherwise R\ :sub:`byte` returns ``undef``.
2076
2077R returns the value composed of the series of bytes it read. This
2078implies that some bytes within the value may be ``undef`` **without**
2079the entire value being ``undef``. Note that this only defines the
2080semantics of the operation; it doesn't mean that targets will emit more
2081than one instruction to read the series of bytes.
2082
2083Note that in cases where none of the atomic intrinsics are used, this
2084model places only one restriction on IR transformations on top of what
2085is required for single-threaded execution: introducing a store to a byte
2086which might not otherwise be stored is not allowed in general.
2087(Specifically, in the case where another thread might write to and read
2088from an address, introducing a store can change a load that may see
2089exactly one write into a load that may see multiple writes.)
2090
2091.. _ordering:
2092
2093Atomic Memory Ordering Constraints
2094----------------------------------
2095
2096Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2097:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2098:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00002099ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00002100the same address they *synchronize with*. These semantics are borrowed
2101from Java and C++0x, but are somewhat more colloquial. If these
2102descriptions aren't precise enough, check those specs (see spec
2103references in the :doc:`atomics guide <Atomics>`).
2104:ref:`fence <i_fence>` instructions treat these orderings somewhat
2105differently since they don't take an address. See that instruction's
2106documentation for details.
2107
2108For a simpler introduction to the ordering constraints, see the
2109:doc:`Atomics`.
2110
2111``unordered``
2112 The set of values that can be read is governed by the happens-before
2113 partial order. A value cannot be read unless some operation wrote
2114 it. This is intended to provide a guarantee strong enough to model
2115 Java's non-volatile shared variables. This ordering cannot be
2116 specified for read-modify-write operations; it is not strong enough
2117 to make them atomic in any interesting way.
2118``monotonic``
2119 In addition to the guarantees of ``unordered``, there is a single
2120 total order for modifications by ``monotonic`` operations on each
2121 address. All modification orders must be compatible with the
2122 happens-before order. There is no guarantee that the modification
2123 orders can be combined to a global total order for the whole program
2124 (and this often will not be possible). The read in an atomic
2125 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2126 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2127 order immediately before the value it writes. If one atomic read
2128 happens before another atomic read of the same address, the later
2129 read must see the same value or a later value in the address's
2130 modification order. This disallows reordering of ``monotonic`` (or
2131 stronger) operations on the same address. If an address is written
2132 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2133 read that address repeatedly, the other threads must eventually see
2134 the write. This corresponds to the C++0x/C1x
2135 ``memory_order_relaxed``.
2136``acquire``
2137 In addition to the guarantees of ``monotonic``, a
2138 *synchronizes-with* edge may be formed with a ``release`` operation.
2139 This is intended to model C++'s ``memory_order_acquire``.
2140``release``
2141 In addition to the guarantees of ``monotonic``, if this operation
2142 writes a value which is subsequently read by an ``acquire``
2143 operation, it *synchronizes-with* that operation. (This isn't a
2144 complete description; see the C++0x definition of a release
2145 sequence.) This corresponds to the C++0x/C1x
2146 ``memory_order_release``.
2147``acq_rel`` (acquire+release)
2148 Acts as both an ``acquire`` and ``release`` operation on its
2149 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2150``seq_cst`` (sequentially consistent)
2151 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002152 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002153 writes), there is a global total order on all
2154 sequentially-consistent operations on all addresses, which is
2155 consistent with the *happens-before* partial order and with the
2156 modification orders of all the affected addresses. Each
2157 sequentially-consistent read sees the last preceding write to the
2158 same address in this global order. This corresponds to the C++0x/C1x
2159 ``memory_order_seq_cst`` and Java volatile.
2160
2161.. _singlethread:
2162
2163If an atomic operation is marked ``singlethread``, it only *synchronizes
2164with* or participates in modification and seq\_cst total orderings with
2165other operations running in the same thread (for example, in signal
2166handlers).
2167
2168.. _fastmath:
2169
2170Fast-Math Flags
2171---------------
2172
2173LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2174:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002175:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2176be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002177
2178``nnan``
2179 No NaNs - Allow optimizations to assume the arguments and result are not
2180 NaN. Such optimizations are required to retain defined behavior over
2181 NaNs, but the value of the result is undefined.
2182
2183``ninf``
2184 No Infs - Allow optimizations to assume the arguments and result are not
2185 +/-Inf. Such optimizations are required to retain defined behavior over
2186 +/-Inf, but the value of the result is undefined.
2187
2188``nsz``
2189 No Signed Zeros - Allow optimizations to treat the sign of a zero
2190 argument or result as insignificant.
2191
2192``arcp``
2193 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2194 argument rather than perform division.
2195
2196``fast``
2197 Fast - Allow algebraically equivalent transformations that may
2198 dramatically change results in floating point (e.g. reassociate). This
2199 flag implies all the others.
2200
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002201.. _uselistorder:
2202
2203Use-list Order Directives
2204-------------------------
2205
2206Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002207order to be recreated. ``<order-indexes>`` is a comma-separated list of
2208indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002209value's use-list is immediately sorted by these indexes.
2210
Sean Silvaa1190322015-08-06 22:56:48 +00002211Use-list directives may appear at function scope or global scope. They are not
2212instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002213function scope, they must appear after the terminator of the final basic block.
2214
2215If basic blocks have their address taken via ``blockaddress()`` expressions,
2216``uselistorder_bb`` can be used to reorder their use-lists from outside their
2217function's scope.
2218
2219:Syntax:
2220
2221::
2222
2223 uselistorder <ty> <value>, { <order-indexes> }
2224 uselistorder_bb @function, %block { <order-indexes> }
2225
2226:Examples:
2227
2228::
2229
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002230 define void @foo(i32 %arg1, i32 %arg2) {
2231 entry:
2232 ; ... instructions ...
2233 bb:
2234 ; ... instructions ...
2235
2236 ; At function scope.
2237 uselistorder i32 %arg1, { 1, 0, 2 }
2238 uselistorder label %bb, { 1, 0 }
2239 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002240
2241 ; At global scope.
2242 uselistorder i32* @global, { 1, 2, 0 }
2243 uselistorder i32 7, { 1, 0 }
2244 uselistorder i32 (i32) @bar, { 1, 0 }
2245 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2246
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002247.. _source_filename:
2248
2249Source Filename
2250---------------
2251
2252The *source filename* string is set to the original module identifier,
2253which will be the name of the compiled source file when compiling from
2254source through the clang front end, for example. It is then preserved through
2255the IR and bitcode.
2256
2257This is currently necessary to generate a consistent unique global
2258identifier for local functions used in profile data, which prepends the
2259source file name to the local function name.
2260
2261The syntax for the source file name is simply:
2262
Renato Golin124f2592016-07-20 12:16:38 +00002263.. code-block:: text
Teresa Johnsonde9b8b42016-04-22 13:09:17 +00002264
2265 source_filename = "/path/to/source.c"
2266
Sean Silvab084af42012-12-07 10:36:55 +00002267.. _typesystem:
2268
2269Type System
2270===========
2271
2272The LLVM type system is one of the most important features of the
2273intermediate representation. Being typed enables a number of
2274optimizations to be performed on the intermediate representation
2275directly, without having to do extra analyses on the side before the
2276transformation. A strong type system makes it easier to read the
2277generated code and enables novel analyses and transformations that are
2278not feasible to perform on normal three address code representations.
2279
Rafael Espindola08013342013-12-07 19:34:20 +00002280.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002281
Rafael Espindola08013342013-12-07 19:34:20 +00002282Void Type
2283---------
Sean Silvab084af42012-12-07 10:36:55 +00002284
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002285:Overview:
2286
Rafael Espindola08013342013-12-07 19:34:20 +00002287
2288The void type does not represent any value and has no size.
2289
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002290:Syntax:
2291
Rafael Espindola08013342013-12-07 19:34:20 +00002292
2293::
2294
2295 void
Sean Silvab084af42012-12-07 10:36:55 +00002296
2297
Rafael Espindola08013342013-12-07 19:34:20 +00002298.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002299
Rafael Espindola08013342013-12-07 19:34:20 +00002300Function Type
2301-------------
Sean Silvab084af42012-12-07 10:36:55 +00002302
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002303:Overview:
2304
Sean Silvab084af42012-12-07 10:36:55 +00002305
Rafael Espindola08013342013-12-07 19:34:20 +00002306The function type can be thought of as a function signature. It consists of a
2307return type and a list of formal parameter types. The return type of a function
2308type is a void type or first class type --- except for :ref:`label <t_label>`
2309and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002310
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002311:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002312
Rafael Espindola08013342013-12-07 19:34:20 +00002313::
Sean Silvab084af42012-12-07 10:36:55 +00002314
Rafael Espindola08013342013-12-07 19:34:20 +00002315 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002316
Rafael Espindola08013342013-12-07 19:34:20 +00002317...where '``<parameter list>``' is a comma-separated list of type
2318specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002319indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002320argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002321handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002322except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002323
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002324:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002325
Rafael Espindola08013342013-12-07 19:34:20 +00002326+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2327| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2328+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2329| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2330+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2331| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2332+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2333| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2334+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2335
2336.. _t_firstclass:
2337
2338First Class Types
2339-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002340
2341The :ref:`first class <t_firstclass>` types are perhaps the most important.
2342Values of these types are the only ones which can be produced by
2343instructions.
2344
Rafael Espindola08013342013-12-07 19:34:20 +00002345.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002346
Rafael Espindola08013342013-12-07 19:34:20 +00002347Single Value Types
2348^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002349
Rafael Espindola08013342013-12-07 19:34:20 +00002350These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002351
2352.. _t_integer:
2353
2354Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002355""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002356
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002357:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002358
2359The integer type is a very simple type that simply specifies an
2360arbitrary bit width for the integer type desired. Any bit width from 1
2361bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2362
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002363:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002364
2365::
2366
2367 iN
2368
2369The number of bits the integer will occupy is specified by the ``N``
2370value.
2371
2372Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002373*********
Sean Silvab084af42012-12-07 10:36:55 +00002374
2375+----------------+------------------------------------------------+
2376| ``i1`` | a single-bit integer. |
2377+----------------+------------------------------------------------+
2378| ``i32`` | a 32-bit integer. |
2379+----------------+------------------------------------------------+
2380| ``i1942652`` | a really big integer of over 1 million bits. |
2381+----------------+------------------------------------------------+
2382
2383.. _t_floating:
2384
2385Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002386""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002387
2388.. list-table::
2389 :header-rows: 1
2390
2391 * - Type
2392 - Description
2393
2394 * - ``half``
2395 - 16-bit floating point value
2396
2397 * - ``float``
2398 - 32-bit floating point value
2399
2400 * - ``double``
2401 - 64-bit floating point value
2402
2403 * - ``fp128``
2404 - 128-bit floating point value (112-bit mantissa)
2405
2406 * - ``x86_fp80``
2407 - 80-bit floating point value (X87)
2408
2409 * - ``ppc_fp128``
2410 - 128-bit floating point value (two 64-bits)
2411
Reid Kleckner9a16d082014-03-05 02:41:37 +00002412X86_mmx Type
2413""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002414
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002415:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002416
Reid Kleckner9a16d082014-03-05 02:41:37 +00002417The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002418machine. The operations allowed on it are quite limited: parameters and
2419return values, load and store, and bitcast. User-specified MMX
2420instructions are represented as intrinsic or asm calls with arguments
2421and/or results of this type. There are no arrays, vectors or constants
2422of this type.
2423
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002424:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002425
2426::
2427
Reid Kleckner9a16d082014-03-05 02:41:37 +00002428 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002429
Sean Silvab084af42012-12-07 10:36:55 +00002430
Rafael Espindola08013342013-12-07 19:34:20 +00002431.. _t_pointer:
2432
2433Pointer Type
2434""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002435
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002436:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002437
Rafael Espindola08013342013-12-07 19:34:20 +00002438The pointer type is used to specify memory locations. Pointers are
2439commonly used to reference objects in memory.
2440
2441Pointer types may have an optional address space attribute defining the
2442numbered address space where the pointed-to object resides. The default
2443address space is number zero. The semantics of non-zero address spaces
2444are target-specific.
2445
2446Note that LLVM does not permit pointers to void (``void*``) nor does it
2447permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002448
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002449:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002450
2451::
2452
Rafael Espindola08013342013-12-07 19:34:20 +00002453 <type> *
2454
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002455:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002456
2457+-------------------------+--------------------------------------------------------------------------------------------------------------+
2458| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2459+-------------------------+--------------------------------------------------------------------------------------------------------------+
2460| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2461+-------------------------+--------------------------------------------------------------------------------------------------------------+
2462| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2463+-------------------------+--------------------------------------------------------------------------------------------------------------+
2464
2465.. _t_vector:
2466
2467Vector Type
2468"""""""""""
2469
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002470:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002471
2472A vector type is a simple derived type that represents a vector of
2473elements. Vector types are used when multiple primitive data are
2474operated in parallel using a single instruction (SIMD). A vector type
2475requires a size (number of elements) and an underlying primitive data
2476type. Vector types are considered :ref:`first class <t_firstclass>`.
2477
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002478:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002479
2480::
2481
2482 < <# elements> x <elementtype> >
2483
2484The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002485elementtype may be any integer, floating point or pointer type. Vectors
2486of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002487
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002488:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002489
2490+-------------------+--------------------------------------------------+
2491| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2492+-------------------+--------------------------------------------------+
2493| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2494+-------------------+--------------------------------------------------+
2495| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2496+-------------------+--------------------------------------------------+
2497| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2498+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002499
2500.. _t_label:
2501
2502Label Type
2503^^^^^^^^^^
2504
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002505:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002506
2507The label type represents code labels.
2508
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002509:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002510
2511::
2512
2513 label
2514
David Majnemerb611e3f2015-08-14 05:09:07 +00002515.. _t_token:
2516
2517Token Type
2518^^^^^^^^^^
2519
2520:Overview:
2521
2522The token type is used when a value is associated with an instruction
2523but all uses of the value must not attempt to introspect or obscure it.
2524As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2525:ref:`select <i_select>` of type token.
2526
2527:Syntax:
2528
2529::
2530
2531 token
2532
2533
2534
Sean Silvab084af42012-12-07 10:36:55 +00002535.. _t_metadata:
2536
2537Metadata Type
2538^^^^^^^^^^^^^
2539
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002540:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002541
2542The metadata type represents embedded metadata. No derived types may be
2543created from metadata except for :ref:`function <t_function>` arguments.
2544
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002545:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002546
2547::
2548
2549 metadata
2550
Sean Silvab084af42012-12-07 10:36:55 +00002551.. _t_aggregate:
2552
2553Aggregate Types
2554^^^^^^^^^^^^^^^
2555
2556Aggregate Types are a subset of derived types that can contain multiple
2557member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2558aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2559aggregate types.
2560
2561.. _t_array:
2562
2563Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002564""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002565
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002566:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002567
2568The array type is a very simple derived type that arranges elements
2569sequentially in memory. The array type requires a size (number of
2570elements) and an underlying data type.
2571
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002572:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002573
2574::
2575
2576 [<# elements> x <elementtype>]
2577
2578The number of elements is a constant integer value; ``elementtype`` may
2579be any type with a size.
2580
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002581:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002582
2583+------------------+--------------------------------------+
2584| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2585+------------------+--------------------------------------+
2586| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2587+------------------+--------------------------------------+
2588| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2589+------------------+--------------------------------------+
2590
2591Here are some examples of multidimensional arrays:
2592
2593+-----------------------------+----------------------------------------------------------+
2594| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2595+-----------------------------+----------------------------------------------------------+
2596| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2597+-----------------------------+----------------------------------------------------------+
2598| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2599+-----------------------------+----------------------------------------------------------+
2600
2601There is no restriction on indexing beyond the end of the array implied
2602by a static type (though there are restrictions on indexing beyond the
2603bounds of an allocated object in some cases). This means that
2604single-dimension 'variable sized array' addressing can be implemented in
2605LLVM with a zero length array type. An implementation of 'pascal style
2606arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2607example.
2608
Sean Silvab084af42012-12-07 10:36:55 +00002609.. _t_struct:
2610
2611Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002612""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002613
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002614:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002615
2616The structure type is used to represent a collection of data members
2617together in memory. The elements of a structure may be any type that has
2618a size.
2619
2620Structures in memory are accessed using '``load``' and '``store``' by
2621getting a pointer to a field with the '``getelementptr``' instruction.
2622Structures in registers are accessed using the '``extractvalue``' and
2623'``insertvalue``' instructions.
2624
2625Structures may optionally be "packed" structures, which indicate that
2626the alignment of the struct is one byte, and that there is no padding
2627between the elements. In non-packed structs, padding between field types
2628is inserted as defined by the DataLayout string in the module, which is
2629required to match what the underlying code generator expects.
2630
2631Structures can either be "literal" or "identified". A literal structure
2632is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2633identified types are always defined at the top level with a name.
2634Literal types are uniqued by their contents and can never be recursive
2635or opaque since there is no way to write one. Identified types can be
2636recursive, can be opaqued, and are never uniqued.
2637
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002638:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002639
2640::
2641
2642 %T1 = type { <type list> } ; Identified normal struct type
2643 %T2 = type <{ <type list> }> ; Identified packed struct type
2644
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002645:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002646
2647+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2648| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2649+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002650| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002651+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2652| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2653+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2654
2655.. _t_opaque:
2656
2657Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002658""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002659
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002660:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002661
2662Opaque structure types are used to represent named structure types that
2663do not have a body specified. This corresponds (for example) to the C
2664notion of a forward declared structure.
2665
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002666:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002667
2668::
2669
2670 %X = type opaque
2671 %52 = type opaque
2672
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002673:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002674
2675+--------------+-------------------+
2676| ``opaque`` | An opaque type. |
2677+--------------+-------------------+
2678
Sean Silva1703e702014-04-08 21:06:22 +00002679.. _constants:
2680
Sean Silvab084af42012-12-07 10:36:55 +00002681Constants
2682=========
2683
2684LLVM has several different basic types of constants. This section
2685describes them all and their syntax.
2686
2687Simple Constants
2688----------------
2689
2690**Boolean constants**
2691 The two strings '``true``' and '``false``' are both valid constants
2692 of the ``i1`` type.
2693**Integer constants**
2694 Standard integers (such as '4') are constants of the
2695 :ref:`integer <t_integer>` type. Negative numbers may be used with
2696 integer types.
2697**Floating point constants**
2698 Floating point constants use standard decimal notation (e.g.
2699 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2700 hexadecimal notation (see below). The assembler requires the exact
2701 decimal value of a floating-point constant. For example, the
2702 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2703 decimal in binary. Floating point constants must have a :ref:`floating
2704 point <t_floating>` type.
2705**Null pointer constants**
2706 The identifier '``null``' is recognized as a null pointer constant
2707 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002708**Token constants**
2709 The identifier '``none``' is recognized as an empty token constant
2710 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002711
2712The one non-intuitive notation for constants is the hexadecimal form of
2713floating point constants. For example, the form
2714'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2715than) '``double 4.5e+15``'. The only time hexadecimal floating point
2716constants are required (and the only time that they are generated by the
2717disassembler) is when a floating point constant must be emitted but it
2718cannot be represented as a decimal floating point number in a reasonable
2719number of digits. For example, NaN's, infinities, and other special
2720values are represented in their IEEE hexadecimal format so that assembly
2721and disassembly do not cause any bits to change in the constants.
2722
2723When using the hexadecimal form, constants of types half, float, and
2724double are represented using the 16-digit form shown above (which
2725matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002726must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002727precision, respectively. Hexadecimal format is always used for long
2728double, and there are three forms of long double. The 80-bit format used
2729by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2730128-bit format used by PowerPC (two adjacent doubles) is represented by
2731``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002732represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2733will only work if they match the long double format on your target.
2734The IEEE 16-bit format (half precision) is represented by ``0xH``
2735followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2736(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002737
Reid Kleckner9a16d082014-03-05 02:41:37 +00002738There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002739
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002740.. _complexconstants:
2741
Sean Silvab084af42012-12-07 10:36:55 +00002742Complex Constants
2743-----------------
2744
2745Complex constants are a (potentially recursive) combination of simple
2746constants and smaller complex constants.
2747
2748**Structure constants**
2749 Structure constants are represented with notation similar to
2750 structure type definitions (a comma separated list of elements,
2751 surrounded by braces (``{}``)). For example:
2752 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2753 "``@G = external global i32``". Structure constants must have
2754 :ref:`structure type <t_struct>`, and the number and types of elements
2755 must match those specified by the type.
2756**Array constants**
2757 Array constants are represented with notation similar to array type
2758 definitions (a comma separated list of elements, surrounded by
2759 square brackets (``[]``)). For example:
2760 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2761 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002762 match those specified by the type. As a special case, character array
2763 constants may also be represented as a double-quoted string using the ``c``
2764 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002765**Vector constants**
2766 Vector constants are represented with notation similar to vector
2767 type definitions (a comma separated list of elements, surrounded by
2768 less-than/greater-than's (``<>``)). For example:
2769 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2770 must have :ref:`vector type <t_vector>`, and the number and types of
2771 elements must match those specified by the type.
2772**Zero initialization**
2773 The string '``zeroinitializer``' can be used to zero initialize a
2774 value to zero of *any* type, including scalar and
2775 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2776 having to print large zero initializers (e.g. for large arrays) and
2777 is always exactly equivalent to using explicit zero initializers.
2778**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002779 A metadata node is a constant tuple without types. For example:
2780 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002781 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2782 Unlike other typed constants that are meant to be interpreted as part of
2783 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002784 information such as debug info.
2785
2786Global Variable and Function Addresses
2787--------------------------------------
2788
2789The addresses of :ref:`global variables <globalvars>` and
2790:ref:`functions <functionstructure>` are always implicitly valid
2791(link-time) constants. These constants are explicitly referenced when
2792the :ref:`identifier for the global <identifiers>` is used and always have
2793:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2794file:
2795
2796.. code-block:: llvm
2797
2798 @X = global i32 17
2799 @Y = global i32 42
2800 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2801
2802.. _undefvalues:
2803
2804Undefined Values
2805----------------
2806
2807The string '``undef``' can be used anywhere a constant is expected, and
2808indicates that the user of the value may receive an unspecified
2809bit-pattern. Undefined values may be of any type (other than '``label``'
2810or '``void``') and be used anywhere a constant is permitted.
2811
2812Undefined values are useful because they indicate to the compiler that
2813the program is well defined no matter what value is used. This gives the
2814compiler more freedom to optimize. Here are some examples of
2815(potentially surprising) transformations that are valid (in pseudo IR):
2816
2817.. code-block:: llvm
2818
2819 %A = add %X, undef
2820 %B = sub %X, undef
2821 %C = xor %X, undef
2822 Safe:
2823 %A = undef
2824 %B = undef
2825 %C = undef
2826
2827This is safe because all of the output bits are affected by the undef
2828bits. Any output bit can have a zero or one depending on the input bits.
2829
2830.. code-block:: llvm
2831
2832 %A = or %X, undef
2833 %B = and %X, undef
2834 Safe:
2835 %A = -1
2836 %B = 0
2837 Unsafe:
2838 %A = undef
2839 %B = undef
2840
2841These logical operations have bits that are not always affected by the
2842input. For example, if ``%X`` has a zero bit, then the output of the
2843'``and``' operation will always be a zero for that bit, no matter what
2844the corresponding bit from the '``undef``' is. As such, it is unsafe to
2845optimize or assume that the result of the '``and``' is '``undef``'.
2846However, it is safe to assume that all bits of the '``undef``' could be
28470, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2848all the bits of the '``undef``' operand to the '``or``' could be set,
2849allowing the '``or``' to be folded to -1.
2850
2851.. code-block:: llvm
2852
2853 %A = select undef, %X, %Y
2854 %B = select undef, 42, %Y
2855 %C = select %X, %Y, undef
2856 Safe:
2857 %A = %X (or %Y)
2858 %B = 42 (or %Y)
2859 %C = %Y
2860 Unsafe:
2861 %A = undef
2862 %B = undef
2863 %C = undef
2864
2865This set of examples shows that undefined '``select``' (and conditional
2866branch) conditions can go *either way*, but they have to come from one
2867of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2868both known to have a clear low bit, then ``%A`` would have to have a
2869cleared low bit. However, in the ``%C`` example, the optimizer is
2870allowed to assume that the '``undef``' operand could be the same as
2871``%Y``, allowing the whole '``select``' to be eliminated.
2872
Renato Golin124f2592016-07-20 12:16:38 +00002873.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002874
2875 %A = xor undef, undef
2876
2877 %B = undef
2878 %C = xor %B, %B
2879
2880 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002881 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002882 %F = icmp gte %D, 4
2883
2884 Safe:
2885 %A = undef
2886 %B = undef
2887 %C = undef
2888 %D = undef
2889 %E = undef
2890 %F = undef
2891
2892This example points out that two '``undef``' operands are not
2893necessarily the same. This can be surprising to people (and also matches
2894C semantics) where they assume that "``X^X``" is always zero, even if
2895``X`` is undefined. This isn't true for a number of reasons, but the
2896short answer is that an '``undef``' "variable" can arbitrarily change
2897its value over its "live range". This is true because the variable
2898doesn't actually *have a live range*. Instead, the value is logically
2899read from arbitrary registers that happen to be around when needed, so
2900the value is not necessarily consistent over time. In fact, ``%A`` and
2901``%C`` need to have the same semantics or the core LLVM "replace all
2902uses with" concept would not hold.
2903
2904.. code-block:: llvm
2905
2906 %A = fdiv undef, %X
2907 %B = fdiv %X, undef
2908 Safe:
2909 %A = undef
2910 b: unreachable
2911
2912These examples show the crucial difference between an *undefined value*
2913and *undefined behavior*. An undefined value (like '``undef``') is
2914allowed to have an arbitrary bit-pattern. This means that the ``%A``
2915operation can be constant folded to '``undef``', because the '``undef``'
2916could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2917However, in the second example, we can make a more aggressive
2918assumption: because the ``undef`` is allowed to be an arbitrary value,
2919we are allowed to assume that it could be zero. Since a divide by zero
2920has *undefined behavior*, we are allowed to assume that the operation
2921does not execute at all. This allows us to delete the divide and all
2922code after it. Because the undefined operation "can't happen", the
2923optimizer can assume that it occurs in dead code.
2924
Renato Golin124f2592016-07-20 12:16:38 +00002925.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00002926
2927 a: store undef -> %X
2928 b: store %X -> undef
2929 Safe:
2930 a: <deleted>
2931 b: unreachable
2932
2933These examples reiterate the ``fdiv`` example: a store *of* an undefined
2934value can be assumed to not have any effect; we can assume that the
2935value is overwritten with bits that happen to match what was already
2936there. However, a store *to* an undefined location could clobber
2937arbitrary memory, therefore, it has undefined behavior.
2938
2939.. _poisonvalues:
2940
2941Poison Values
2942-------------
2943
2944Poison values are similar to :ref:`undef values <undefvalues>`, however
2945they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002946that cannot evoke side effects has nevertheless detected a condition
2947that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002948
2949There is currently no way of representing a poison value in the IR; they
2950only exist when produced by operations such as :ref:`add <i_add>` with
2951the ``nsw`` flag.
2952
2953Poison value behavior is defined in terms of value *dependence*:
2954
2955- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2956- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2957 their dynamic predecessor basic block.
2958- Function arguments depend on the corresponding actual argument values
2959 in the dynamic callers of their functions.
2960- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2961 instructions that dynamically transfer control back to them.
2962- :ref:`Invoke <i_invoke>` instructions depend on the
2963 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2964 call instructions that dynamically transfer control back to them.
2965- Non-volatile loads and stores depend on the most recent stores to all
2966 of the referenced memory addresses, following the order in the IR
2967 (including loads and stores implied by intrinsics such as
2968 :ref:`@llvm.memcpy <int_memcpy>`.)
2969- An instruction with externally visible side effects depends on the
2970 most recent preceding instruction with externally visible side
2971 effects, following the order in the IR. (This includes :ref:`volatile
2972 operations <volatile>`.)
2973- An instruction *control-depends* on a :ref:`terminator
2974 instruction <terminators>` if the terminator instruction has
2975 multiple successors and the instruction is always executed when
2976 control transfers to one of the successors, and may not be executed
2977 when control is transferred to another.
2978- Additionally, an instruction also *control-depends* on a terminator
2979 instruction if the set of instructions it otherwise depends on would
2980 be different if the terminator had transferred control to a different
2981 successor.
2982- Dependence is transitive.
2983
Richard Smith32dbdf62014-07-31 04:25:36 +00002984Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2985with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002986on a poison value has undefined behavior.
2987
2988Here are some examples:
2989
2990.. code-block:: llvm
2991
2992 entry:
2993 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2994 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002995 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002996 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2997
2998 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002999 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00003000
3001 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
3002
3003 %narrowaddr = bitcast i32* @g to i16*
3004 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00003005 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3006 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00003007
3008 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
3009 br i1 %cmp, label %true, label %end ; Branch to either destination.
3010
3011 true:
3012 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
3013 ; it has undefined behavior.
3014 br label %end
3015
3016 end:
3017 %p = phi i32 [ 0, %entry ], [ 1, %true ]
3018 ; Both edges into this PHI are
3019 ; control-dependent on %cmp, so this
3020 ; always results in a poison value.
3021
3022 store volatile i32 0, i32* @g ; This would depend on the store in %true
3023 ; if %cmp is true, or the store in %entry
3024 ; otherwise, so this is undefined behavior.
3025
3026 br i1 %cmp, label %second_true, label %second_end
3027 ; The same branch again, but this time the
3028 ; true block doesn't have side effects.
3029
3030 second_true:
3031 ; No side effects!
3032 ret void
3033
3034 second_end:
3035 store volatile i32 0, i32* @g ; This time, the instruction always depends
3036 ; on the store in %end. Also, it is
3037 ; control-equivalent to %end, so this is
3038 ; well-defined (ignoring earlier undefined
3039 ; behavior in this example).
3040
3041.. _blockaddress:
3042
3043Addresses of Basic Blocks
3044-------------------------
3045
3046``blockaddress(@function, %block)``
3047
3048The '``blockaddress``' constant computes the address of the specified
3049basic block in the specified function, and always has an ``i8*`` type.
3050Taking the address of the entry block is illegal.
3051
3052This value only has defined behavior when used as an operand to the
3053':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
3054against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003055undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00003056no label is equal to the null pointer. This may be passed around as an
3057opaque pointer sized value as long as the bits are not inspected. This
3058allows ``ptrtoint`` and arithmetic to be performed on these values so
3059long as the original value is reconstituted before the ``indirectbr``
3060instruction.
3061
3062Finally, some targets may provide defined semantics when using the value
3063as the operand to an inline assembly, but that is target specific.
3064
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003065.. _constantexprs:
3066
Sean Silvab084af42012-12-07 10:36:55 +00003067Constant Expressions
3068--------------------
3069
3070Constant expressions are used to allow expressions involving other
3071constants to be used as constants. Constant expressions may be of any
3072:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3073that does not have side effects (e.g. load and call are not supported).
3074The following is the syntax for constant expressions:
3075
3076``trunc (CST to TYPE)``
3077 Truncate a constant to another type. The bit size of CST must be
3078 larger than the bit size of TYPE. Both types must be integers.
3079``zext (CST to TYPE)``
3080 Zero extend a constant to another type. The bit size of CST must be
3081 smaller than the bit size of TYPE. Both types must be integers.
3082``sext (CST to TYPE)``
3083 Sign extend a constant to another type. The bit size of CST must be
3084 smaller than the bit size of TYPE. Both types must be integers.
3085``fptrunc (CST to TYPE)``
3086 Truncate a floating point constant to another floating point type.
3087 The size of CST must be larger than the size of TYPE. Both types
3088 must be floating point.
3089``fpext (CST to TYPE)``
3090 Floating point extend a constant to another type. The size of CST
3091 must be smaller or equal to the size of TYPE. Both types must be
3092 floating point.
3093``fptoui (CST to TYPE)``
3094 Convert a floating point constant to the corresponding unsigned
3095 integer constant. TYPE must be a scalar or vector integer type. CST
3096 must be of scalar or vector floating point type. Both CST and TYPE
3097 must be scalars, or vectors of the same number of elements. If the
3098 value won't fit in the integer type, the results are undefined.
3099``fptosi (CST to TYPE)``
3100 Convert a floating point constant to the corresponding signed
3101 integer constant. TYPE must be a scalar or vector integer type. CST
3102 must be of scalar or vector floating point type. Both CST and TYPE
3103 must be scalars, or vectors of the same number of elements. If the
3104 value won't fit in the integer type, the results are undefined.
3105``uitofp (CST to TYPE)``
3106 Convert an unsigned integer constant to the corresponding floating
3107 point constant. TYPE must be a scalar or vector floating point type.
3108 CST must be of scalar or vector integer type. Both CST and TYPE must
3109 be scalars, or vectors of the same number of elements. If the value
3110 won't fit in the floating point type, the results are undefined.
3111``sitofp (CST to TYPE)``
3112 Convert a signed integer constant to the corresponding floating
3113 point constant. TYPE must be a scalar or vector floating point type.
3114 CST must be of scalar or vector integer type. Both CST and TYPE must
3115 be scalars, or vectors of the same number of elements. If the value
3116 won't fit in the floating point type, the results are undefined.
3117``ptrtoint (CST to TYPE)``
3118 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00003119 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00003120 pointer type. The ``CST`` value is zero extended, truncated, or
3121 unchanged to make it fit in ``TYPE``.
3122``inttoptr (CST to TYPE)``
3123 Convert an integer constant to a pointer constant. TYPE must be a
3124 pointer type. CST must be of integer type. The CST value is zero
3125 extended, truncated, or unchanged to make it fit in a pointer size.
3126 This one is *really* dangerous!
3127``bitcast (CST to TYPE)``
3128 Convert a constant, CST, to another TYPE. The constraints of the
3129 operands are the same as those for the :ref:`bitcast
3130 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00003131``addrspacecast (CST to TYPE)``
3132 Convert a constant pointer or constant vector of pointer, CST, to another
3133 TYPE in a different address space. The constraints of the operands are the
3134 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00003135``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00003136 Perform the :ref:`getelementptr operation <i_getelementptr>` on
3137 constants. As with the :ref:`getelementptr <i_getelementptr>`
3138 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00003139 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00003140``select (COND, VAL1, VAL2)``
3141 Perform the :ref:`select operation <i_select>` on constants.
3142``icmp COND (VAL1, VAL2)``
3143 Performs the :ref:`icmp operation <i_icmp>` on constants.
3144``fcmp COND (VAL1, VAL2)``
3145 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
3146``extractelement (VAL, IDX)``
3147 Perform the :ref:`extractelement operation <i_extractelement>` on
3148 constants.
3149``insertelement (VAL, ELT, IDX)``
3150 Perform the :ref:`insertelement operation <i_insertelement>` on
3151 constants.
3152``shufflevector (VEC1, VEC2, IDXMASK)``
3153 Perform the :ref:`shufflevector operation <i_shufflevector>` on
3154 constants.
3155``extractvalue (VAL, IDX0, IDX1, ...)``
3156 Perform the :ref:`extractvalue operation <i_extractvalue>` on
3157 constants. The index list is interpreted in a similar manner as
3158 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3159 least one index value must be specified.
3160``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3161 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3162 The index list is interpreted in a similar manner as indices in a
3163 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3164 value must be specified.
3165``OPCODE (LHS, RHS)``
3166 Perform the specified operation of the LHS and RHS constants. OPCODE
3167 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3168 binary <bitwiseops>` operations. The constraints on operands are
3169 the same as those for the corresponding instruction (e.g. no bitwise
3170 operations on floating point values are allowed).
3171
3172Other Values
3173============
3174
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003175.. _inlineasmexprs:
3176
Sean Silvab084af42012-12-07 10:36:55 +00003177Inline Assembler Expressions
3178----------------------------
3179
3180LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003181Inline Assembly <moduleasm>`) through the use of a special value. This value
3182represents the inline assembler as a template string (containing the
3183instructions to emit), a list of operand constraints (stored as a string), a
3184flag that indicates whether or not the inline asm expression has side effects,
3185and a flag indicating whether the function containing the asm needs to align its
3186stack conservatively.
3187
3188The template string supports argument substitution of the operands using "``$``"
3189followed by a number, to indicate substitution of the given register/memory
3190location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3191be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3192operand (See :ref:`inline-asm-modifiers`).
3193
3194A literal "``$``" may be included by using "``$$``" in the template. To include
3195other special characters into the output, the usual "``\XX``" escapes may be
3196used, just as in other strings. Note that after template substitution, the
3197resulting assembly string is parsed by LLVM's integrated assembler unless it is
3198disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3199syntax known to LLVM.
3200
3201LLVM's support for inline asm is modeled closely on the requirements of Clang's
3202GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3203modifier codes listed here are similar or identical to those in GCC's inline asm
3204support. However, to be clear, the syntax of the template and constraint strings
3205described here is *not* the same as the syntax accepted by GCC and Clang, and,
3206while most constraint letters are passed through as-is by Clang, some get
3207translated to other codes when converting from the C source to the LLVM
3208assembly.
3209
3210An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003211
3212.. code-block:: llvm
3213
3214 i32 (i32) asm "bswap $0", "=r,r"
3215
3216Inline assembler expressions may **only** be used as the callee operand
3217of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3218Thus, typically we have:
3219
3220.. code-block:: llvm
3221
3222 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3223
3224Inline asms with side effects not visible in the constraint list must be
3225marked as having side effects. This is done through the use of the
3226'``sideeffect``' keyword, like so:
3227
3228.. code-block:: llvm
3229
3230 call void asm sideeffect "eieio", ""()
3231
3232In some cases inline asms will contain code that will not work unless
3233the stack is aligned in some way, such as calls or SSE instructions on
3234x86, yet will not contain code that does that alignment within the asm.
3235The compiler should make conservative assumptions about what the asm
3236might contain and should generate its usual stack alignment code in the
3237prologue if the '``alignstack``' keyword is present:
3238
3239.. code-block:: llvm
3240
3241 call void asm alignstack "eieio", ""()
3242
3243Inline asms also support using non-standard assembly dialects. The
3244assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3245the inline asm is using the Intel dialect. Currently, ATT and Intel are
3246the only supported dialects. An example is:
3247
3248.. code-block:: llvm
3249
3250 call void asm inteldialect "eieio", ""()
3251
3252If multiple keywords appear the '``sideeffect``' keyword must come
3253first, the '``alignstack``' keyword second and the '``inteldialect``'
3254keyword last.
3255
James Y Knightbc832ed2015-07-08 18:08:36 +00003256Inline Asm Constraint String
3257^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3258
3259The constraint list is a comma-separated string, each element containing one or
3260more constraint codes.
3261
3262For each element in the constraint list an appropriate register or memory
3263operand will be chosen, and it will be made available to assembly template
3264string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3265second, etc.
3266
3267There are three different types of constraints, which are distinguished by a
3268prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3269constraints must always be given in that order: outputs first, then inputs, then
3270clobbers. They cannot be intermingled.
3271
3272There are also three different categories of constraint codes:
3273
3274- Register constraint. This is either a register class, or a fixed physical
3275 register. This kind of constraint will allocate a register, and if necessary,
3276 bitcast the argument or result to the appropriate type.
3277- Memory constraint. This kind of constraint is for use with an instruction
3278 taking a memory operand. Different constraints allow for different addressing
3279 modes used by the target.
3280- Immediate value constraint. This kind of constraint is for an integer or other
3281 immediate value which can be rendered directly into an instruction. The
3282 various target-specific constraints allow the selection of a value in the
3283 proper range for the instruction you wish to use it with.
3284
3285Output constraints
3286""""""""""""""""""
3287
3288Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3289indicates that the assembly will write to this operand, and the operand will
3290then be made available as a return value of the ``asm`` expression. Output
3291constraints do not consume an argument from the call instruction. (Except, see
3292below about indirect outputs).
3293
3294Normally, it is expected that no output locations are written to by the assembly
3295expression until *all* of the inputs have been read. As such, LLVM may assign
3296the same register to an output and an input. If this is not safe (e.g. if the
3297assembly contains two instructions, where the first writes to one output, and
3298the second reads an input and writes to a second output), then the "``&``"
3299modifier must be used (e.g. "``=&r``") to specify that the output is an
Sylvestre Ledru84666a12016-02-14 20:16:22 +00003300"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
James Y Knightbc832ed2015-07-08 18:08:36 +00003301will not use the same register for any inputs (other than an input tied to this
3302output).
3303
3304Input constraints
3305"""""""""""""""""
3306
3307Input constraints do not have a prefix -- just the constraint codes. Each input
3308constraint will consume one argument from the call instruction. It is not
3309permitted for the asm to write to any input register or memory location (unless
3310that input is tied to an output). Note also that multiple inputs may all be
3311assigned to the same register, if LLVM can determine that they necessarily all
3312contain the same value.
3313
3314Instead of providing a Constraint Code, input constraints may also "tie"
3315themselves to an output constraint, by providing an integer as the constraint
3316string. Tied inputs still consume an argument from the call instruction, and
3317take up a position in the asm template numbering as is usual -- they will simply
3318be constrained to always use the same register as the output they've been tied
3319to. For example, a constraint string of "``=r,0``" says to assign a register for
3320output, and use that register as an input as well (it being the 0'th
3321constraint).
3322
3323It is permitted to tie an input to an "early-clobber" output. In that case, no
3324*other* input may share the same register as the input tied to the early-clobber
3325(even when the other input has the same value).
3326
3327You may only tie an input to an output which has a register constraint, not a
3328memory constraint. Only a single input may be tied to an output.
3329
3330There is also an "interesting" feature which deserves a bit of explanation: if a
3331register class constraint allocates a register which is too small for the value
3332type operand provided as input, the input value will be split into multiple
3333registers, and all of them passed to the inline asm.
3334
3335However, this feature is often not as useful as you might think.
3336
3337Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3338architectures that have instructions which operate on multiple consecutive
3339instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3340SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3341hardware then loads into both the named register, and the next register. This
3342feature of inline asm would not be useful to support that.)
3343
3344A few of the targets provide a template string modifier allowing explicit access
3345to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3346``D``). On such an architecture, you can actually access the second allocated
3347register (yet, still, not any subsequent ones). But, in that case, you're still
3348probably better off simply splitting the value into two separate operands, for
3349clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3350despite existing only for use with this feature, is not really a good idea to
3351use)
3352
3353Indirect inputs and outputs
3354"""""""""""""""""""""""""""
3355
3356Indirect output or input constraints can be specified by the "``*``" modifier
3357(which goes after the "``=``" in case of an output). This indicates that the asm
3358will write to or read from the contents of an *address* provided as an input
3359argument. (Note that in this way, indirect outputs act more like an *input* than
3360an output: just like an input, they consume an argument of the call expression,
3361rather than producing a return value. An indirect output constraint is an
3362"output" only in that the asm is expected to write to the contents of the input
3363memory location, instead of just read from it).
3364
3365This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3366address of a variable as a value.
3367
3368It is also possible to use an indirect *register* constraint, but only on output
3369(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3370value normally, and then, separately emit a store to the address provided as
3371input, after the provided inline asm. (It's not clear what value this
3372functionality provides, compared to writing the store explicitly after the asm
3373statement, and it can only produce worse code, since it bypasses many
3374optimization passes. I would recommend not using it.)
3375
3376
3377Clobber constraints
3378"""""""""""""""""""
3379
3380A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3381consume an input operand, nor generate an output. Clobbers cannot use any of the
3382general constraint code letters -- they may use only explicit register
3383constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3384"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3385memory locations -- not only the memory pointed to by a declared indirect
3386output.
3387
Peter Zotov00257232016-08-30 10:48:31 +00003388Note that clobbering named registers that are also present in output
3389constraints is not legal.
3390
James Y Knightbc832ed2015-07-08 18:08:36 +00003391
3392Constraint Codes
3393""""""""""""""""
3394After a potential prefix comes constraint code, or codes.
3395
3396A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3397followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3398(e.g. "``{eax}``").
3399
3400The one and two letter constraint codes are typically chosen to be the same as
3401GCC's constraint codes.
3402
3403A single constraint may include one or more than constraint code in it, leaving
3404it up to LLVM to choose which one to use. This is included mainly for
3405compatibility with the translation of GCC inline asm coming from clang.
3406
3407There are two ways to specify alternatives, and either or both may be used in an
3408inline asm constraint list:
3409
34101) Append the codes to each other, making a constraint code set. E.g. "``im``"
3411 or "``{eax}m``". This means "choose any of the options in the set". The
3412 choice of constraint is made independently for each constraint in the
3413 constraint list.
3414
34152) Use "``|``" between constraint code sets, creating alternatives. Every
3416 constraint in the constraint list must have the same number of alternative
3417 sets. With this syntax, the same alternative in *all* of the items in the
3418 constraint list will be chosen together.
3419
3420Putting those together, you might have a two operand constraint string like
3421``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3422operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3423may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3424
3425However, the use of either of the alternatives features is *NOT* recommended, as
3426LLVM is not able to make an intelligent choice about which one to use. (At the
3427point it currently needs to choose, not enough information is available to do so
3428in a smart way.) Thus, it simply tries to make a choice that's most likely to
3429compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3430always choose to use memory, not registers). And, if given multiple registers,
3431or multiple register classes, it will simply choose the first one. (In fact, it
3432doesn't currently even ensure explicitly specified physical registers are
3433unique, so specifying multiple physical registers as alternatives, like
3434``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3435intended.)
3436
3437Supported Constraint Code List
3438""""""""""""""""""""""""""""""
3439
3440The constraint codes are, in general, expected to behave the same way they do in
3441GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3442inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3443and GCC likely indicates a bug in LLVM.
3444
3445Some constraint codes are typically supported by all targets:
3446
3447- ``r``: A register in the target's general purpose register class.
3448- ``m``: A memory address operand. It is target-specific what addressing modes
3449 are supported, typical examples are register, or register + register offset,
3450 or register + immediate offset (of some target-specific size).
3451- ``i``: An integer constant (of target-specific width). Allows either a simple
3452 immediate, or a relocatable value.
3453- ``n``: An integer constant -- *not* including relocatable values.
3454- ``s``: An integer constant, but allowing *only* relocatable values.
3455- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3456 useful to pass a label for an asm branch or call.
3457
3458 .. FIXME: but that surely isn't actually okay to jump out of an asm
3459 block without telling llvm about the control transfer???)
3460
3461- ``{register-name}``: Requires exactly the named physical register.
3462
3463Other constraints are target-specific:
3464
3465AArch64:
3466
3467- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3468- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3469 i.e. 0 to 4095 with optional shift by 12.
3470- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3471 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3472- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3473 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3474- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3475 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3476- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3477 32-bit register. This is a superset of ``K``: in addition to the bitmask
3478 immediate, also allows immediate integers which can be loaded with a single
3479 ``MOVZ`` or ``MOVL`` instruction.
3480- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3481 64-bit register. This is a superset of ``L``.
3482- ``Q``: Memory address operand must be in a single register (no
3483 offsets). (However, LLVM currently does this for the ``m`` constraint as
3484 well.)
3485- ``r``: A 32 or 64-bit integer register (W* or X*).
3486- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3487- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3488
3489AMDGPU:
3490
3491- ``r``: A 32 or 64-bit integer register.
3492- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3493- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3494
3495
3496All ARM modes:
3497
3498- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3499 operand. Treated the same as operand ``m``, at the moment.
3500
3501ARM and ARM's Thumb2 mode:
3502
3503- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3504- ``I``: An immediate integer valid for a data-processing instruction.
3505- ``J``: An immediate integer between -4095 and 4095.
3506- ``K``: An immediate integer whose bitwise inverse is valid for a
3507 data-processing instruction. (Can be used with template modifier "``B``" to
3508 print the inverted value).
3509- ``L``: An immediate integer whose negation is valid for a data-processing
3510 instruction. (Can be used with template modifier "``n``" to print the negated
3511 value).
3512- ``M``: A power of two or a integer between 0 and 32.
3513- ``N``: Invalid immediate constraint.
3514- ``O``: Invalid immediate constraint.
3515- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3516- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3517 as ``r``.
3518- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3519 invalid.
3520- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3521 ``d0-d31``, or ``q0-q15``.
3522- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3523 ``d0-d7``, or ``q0-q3``.
3524- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3525 ``s0-s31``.
3526
3527ARM's Thumb1 mode:
3528
3529- ``I``: An immediate integer between 0 and 255.
3530- ``J``: An immediate integer between -255 and -1.
3531- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3532 some amount.
3533- ``L``: An immediate integer between -7 and 7.
3534- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3535- ``N``: An immediate integer between 0 and 31.
3536- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3537- ``r``: A low 32-bit GPR register (``r0-r7``).
3538- ``l``: A low 32-bit GPR register (``r0-r7``).
3539- ``h``: A high GPR register (``r0-r7``).
3540- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3541 ``d0-d31``, or ``q0-q15``.
3542- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3543 ``d0-d7``, or ``q0-q3``.
3544- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3545 ``s0-s31``.
3546
3547
3548Hexagon:
3549
3550- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3551 at the moment.
3552- ``r``: A 32 or 64-bit register.
3553
3554MSP430:
3555
3556- ``r``: An 8 or 16-bit register.
3557
3558MIPS:
3559
3560- ``I``: An immediate signed 16-bit integer.
3561- ``J``: An immediate integer zero.
3562- ``K``: An immediate unsigned 16-bit integer.
3563- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3564- ``N``: An immediate integer between -65535 and -1.
3565- ``O``: An immediate signed 15-bit integer.
3566- ``P``: An immediate integer between 1 and 65535.
3567- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3568 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3569- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3570 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3571 ``m``.
3572- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3573 ``sc`` instruction on the given subtarget (details vary).
3574- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3575- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003576 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3577 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003578- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3579 ``25``).
3580- ``l``: The ``lo`` register, 32 or 64-bit.
3581- ``x``: Invalid.
3582
3583NVPTX:
3584
3585- ``b``: A 1-bit integer register.
3586- ``c`` or ``h``: A 16-bit integer register.
3587- ``r``: A 32-bit integer register.
3588- ``l`` or ``N``: A 64-bit integer register.
3589- ``f``: A 32-bit float register.
3590- ``d``: A 64-bit float register.
3591
3592
3593PowerPC:
3594
3595- ``I``: An immediate signed 16-bit integer.
3596- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3597- ``K``: An immediate unsigned 16-bit integer.
3598- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3599- ``M``: An immediate integer greater than 31.
3600- ``N``: An immediate integer that is an exact power of 2.
3601- ``O``: The immediate integer constant 0.
3602- ``P``: An immediate integer constant whose negation is a signed 16-bit
3603 constant.
3604- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3605 treated the same as ``m``.
3606- ``r``: A 32 or 64-bit integer register.
3607- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3608 ``R1-R31``).
3609- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3610 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3611- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3612 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3613 altivec vector register (``V0-V31``).
3614
3615 .. FIXME: is this a bug that v accepts QPX registers? I think this
3616 is supposed to only use the altivec vector registers?
3617
3618- ``y``: Condition register (``CR0-CR7``).
3619- ``wc``: An individual CR bit in a CR register.
3620- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3621 register set (overlapping both the floating-point and vector register files).
3622- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3623 set.
3624
3625Sparc:
3626
3627- ``I``: An immediate 13-bit signed integer.
3628- ``r``: A 32-bit integer register.
3629
3630SystemZ:
3631
3632- ``I``: An immediate unsigned 8-bit integer.
3633- ``J``: An immediate unsigned 12-bit integer.
3634- ``K``: An immediate signed 16-bit integer.
3635- ``L``: An immediate signed 20-bit integer.
3636- ``M``: An immediate integer 0x7fffffff.
Ulrich Weiganddaae87aa2016-06-13 14:24:05 +00003637- ``Q``: A memory address operand with a base address and a 12-bit immediate
3638 unsigned displacement.
3639- ``R``: A memory address operand with a base address, a 12-bit immediate
3640 unsigned displacement, and an index register.
3641- ``S``: A memory address operand with a base address and a 20-bit immediate
3642 signed displacement.
3643- ``T``: A memory address operand with a base address, a 20-bit immediate
3644 signed displacement, and an index register.
James Y Knightbc832ed2015-07-08 18:08:36 +00003645- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3646- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3647 address context evaluates as zero).
3648- ``h``: A 32-bit value in the high part of a 64bit data register
3649 (LLVM-specific)
3650- ``f``: A 32, 64, or 128-bit floating point register.
3651
3652X86:
3653
3654- ``I``: An immediate integer between 0 and 31.
3655- ``J``: An immediate integer between 0 and 64.
3656- ``K``: An immediate signed 8-bit integer.
3657- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3658 0xffffffff.
3659- ``M``: An immediate integer between 0 and 3.
3660- ``N``: An immediate unsigned 8-bit integer.
3661- ``O``: An immediate integer between 0 and 127.
3662- ``e``: An immediate 32-bit signed integer.
3663- ``Z``: An immediate 32-bit unsigned integer.
3664- ``o``, ``v``: Treated the same as ``m``, at the moment.
3665- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3666 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3667 registers, and on X86-64, it is all of the integer registers.
3668- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3669 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3670- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3671- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3672 existed since i386, and can be accessed without the REX prefix.
3673- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3674- ``y``: A 64-bit MMX register, if MMX is enabled.
3675- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3676 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3677 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3678 512-bit vector operand in an AVX512 register, Otherwise, an error.
3679- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3680- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3681 32-bit mode, a 64-bit integer operand will get split into two registers). It
3682 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3683 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3684 you're better off splitting it yourself, before passing it to the asm
3685 statement.
3686
3687XCore:
3688
3689- ``r``: A 32-bit integer register.
3690
3691
3692.. _inline-asm-modifiers:
3693
3694Asm template argument modifiers
3695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3696
3697In the asm template string, modifiers can be used on the operand reference, like
3698"``${0:n}``".
3699
3700The modifiers are, in general, expected to behave the same way they do in
3701GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3702inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3703and GCC likely indicates a bug in LLVM.
3704
3705Target-independent:
3706
Sean Silvaa1190322015-08-06 22:56:48 +00003707- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003708 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3709- ``n``: Negate and print immediate integer constant unadorned, without the
3710 target-specific immediate punctuation (e.g. no ``$`` prefix).
3711- ``l``: Print as an unadorned label, without the target-specific label
3712 punctuation (e.g. no ``$`` prefix).
3713
3714AArch64:
3715
3716- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3717 instead of ``x30``, print ``w30``.
3718- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3719- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3720 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3721 ``v*``.
3722
3723AMDGPU:
3724
3725- ``r``: No effect.
3726
3727ARM:
3728
3729- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3730 register).
3731- ``P``: No effect.
3732- ``q``: No effect.
3733- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3734 as ``d4[1]`` instead of ``s9``)
3735- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3736 prefix.
3737- ``L``: Print the low 16-bits of an immediate integer constant.
3738- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3739 register operands subsequent to the specified one (!), so use carefully.
3740- ``Q``: Print the low-order register of a register-pair, or the low-order
3741 register of a two-register operand.
3742- ``R``: Print the high-order register of a register-pair, or the high-order
3743 register of a two-register operand.
3744- ``H``: Print the second register of a register-pair. (On a big-endian system,
3745 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3746 to ``R``.)
3747
3748 .. FIXME: H doesn't currently support printing the second register
3749 of a two-register operand.
3750
3751- ``e``: Print the low doubleword register of a NEON quad register.
3752- ``f``: Print the high doubleword register of a NEON quad register.
3753- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3754 adornment.
3755
3756Hexagon:
3757
3758- ``L``: Print the second register of a two-register operand. Requires that it
3759 has been allocated consecutively to the first.
3760
3761 .. FIXME: why is it restricted to consecutive ones? And there's
3762 nothing that ensures that happens, is there?
3763
3764- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3765 nothing. Used to print 'addi' vs 'add' instructions.
3766
3767MSP430:
3768
3769No additional modifiers.
3770
3771MIPS:
3772
3773- ``X``: Print an immediate integer as hexadecimal
3774- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3775- ``d``: Print an immediate integer as decimal.
3776- ``m``: Subtract one and print an immediate integer as decimal.
3777- ``z``: Print $0 if an immediate zero, otherwise print normally.
3778- ``L``: Print the low-order register of a two-register operand, or prints the
3779 address of the low-order word of a double-word memory operand.
3780
3781 .. FIXME: L seems to be missing memory operand support.
3782
3783- ``M``: Print the high-order register of a two-register operand, or prints the
3784 address of the high-order word of a double-word memory operand.
3785
3786 .. FIXME: M seems to be missing memory operand support.
3787
3788- ``D``: Print the second register of a two-register operand, or prints the
3789 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3790 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3791 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003792- ``w``: No effect. Provided for compatibility with GCC which requires this
3793 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3794 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003795
3796NVPTX:
3797
3798- ``r``: No effect.
3799
3800PowerPC:
3801
3802- ``L``: Print the second register of a two-register operand. Requires that it
3803 has been allocated consecutively to the first.
3804
3805 .. FIXME: why is it restricted to consecutive ones? And there's
3806 nothing that ensures that happens, is there?
3807
3808- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3809 nothing. Used to print 'addi' vs 'add' instructions.
3810- ``y``: For a memory operand, prints formatter for a two-register X-form
3811 instruction. (Currently always prints ``r0,OPERAND``).
3812- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3813 otherwise. (NOTE: LLVM does not support update form, so this will currently
3814 always print nothing)
3815- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3816 not support indexed form, so this will currently always print nothing)
3817
3818Sparc:
3819
3820- ``r``: No effect.
3821
3822SystemZ:
3823
3824SystemZ implements only ``n``, and does *not* support any of the other
3825target-independent modifiers.
3826
3827X86:
3828
3829- ``c``: Print an unadorned integer or symbol name. (The latter is
3830 target-specific behavior for this typically target-independent modifier).
3831- ``A``: Print a register name with a '``*``' before it.
3832- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3833 operand.
3834- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3835 memory operand.
3836- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3837 operand.
3838- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3839 operand.
3840- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3841 available, otherwise the 32-bit register name; do nothing on a memory operand.
3842- ``n``: Negate and print an unadorned integer, or, for operands other than an
3843 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3844 the operand. (The behavior for relocatable symbol expressions is a
3845 target-specific behavior for this typically target-independent modifier)
3846- ``H``: Print a memory reference with additional offset +8.
3847- ``P``: Print a memory reference or operand for use as the argument of a call
3848 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3849
3850XCore:
3851
3852No additional modifiers.
3853
3854
Sean Silvab084af42012-12-07 10:36:55 +00003855Inline Asm Metadata
3856^^^^^^^^^^^^^^^^^^^
3857
3858The call instructions that wrap inline asm nodes may have a
3859"``!srcloc``" MDNode attached to it that contains a list of constant
3860integers. If present, the code generator will use the integer as the
3861location cookie value when report errors through the ``LLVMContext``
3862error reporting mechanisms. This allows a front-end to correlate backend
3863errors that occur with inline asm back to the source code that produced
3864it. For example:
3865
3866.. code-block:: llvm
3867
3868 call void asm sideeffect "something bad", ""(), !srcloc !42
3869 ...
3870 !42 = !{ i32 1234567 }
3871
3872It is up to the front-end to make sense of the magic numbers it places
3873in the IR. If the MDNode contains multiple constants, the code generator
3874will use the one that corresponds to the line of the asm that the error
3875occurs on.
3876
3877.. _metadata:
3878
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003879Metadata
3880========
Sean Silvab084af42012-12-07 10:36:55 +00003881
3882LLVM IR allows metadata to be attached to instructions in the program
3883that can convey extra information about the code to the optimizers and
3884code generator. One example application of metadata is source-level
3885debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003886
Sean Silvaa1190322015-08-06 22:56:48 +00003887Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003888``call`` instruction, it uses the ``metadata`` type.
3889
3890All metadata are identified in syntax by a exclamation point ('``!``').
3891
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003892.. _metadata-string:
3893
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003894Metadata Nodes and Metadata Strings
3895-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003896
3897A metadata string is a string surrounded by double quotes. It can
3898contain any character by escaping non-printable characters with
3899"``\xx``" where "``xx``" is the two digit hex code. For example:
3900"``!"test\00"``".
3901
3902Metadata nodes are represented with notation similar to structure
3903constants (a comma separated list of elements, surrounded by braces and
3904preceded by an exclamation point). Metadata nodes can have any values as
3905their operand. For example:
3906
3907.. code-block:: llvm
3908
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003909 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003910
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003911Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3912
Renato Golin124f2592016-07-20 12:16:38 +00003913.. code-block:: text
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003914
3915 !0 = distinct !{!"test\00", i32 10}
3916
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003917``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003918content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003919when metadata operands change.
3920
Sean Silvab084af42012-12-07 10:36:55 +00003921A :ref:`named metadata <namedmetadatastructure>` is a collection of
3922metadata nodes, which can be looked up in the module symbol table. For
3923example:
3924
3925.. code-block:: llvm
3926
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003927 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003928
3929Metadata can be used as function arguments. Here ``llvm.dbg.value``
3930function is using two metadata arguments:
3931
3932.. code-block:: llvm
3933
3934 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3935
Peter Collingbourne50108682015-11-06 02:41:02 +00003936Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3937to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003938
3939.. code-block:: llvm
3940
3941 %indvar.next = add i64 %indvar, 1, !dbg !21
3942
Peter Collingbourne50108682015-11-06 02:41:02 +00003943Metadata can also be attached to a function definition. Here metadata ``!22``
3944is attached to the ``foo`` function using the ``!dbg`` identifier:
3945
3946.. code-block:: llvm
3947
3948 define void @foo() !dbg !22 {
3949 ret void
3950 }
3951
Sean Silvab084af42012-12-07 10:36:55 +00003952More information about specific metadata nodes recognized by the
3953optimizers and code generator is found below.
3954
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003955.. _specialized-metadata:
3956
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003957Specialized Metadata Nodes
3958^^^^^^^^^^^^^^^^^^^^^^^^^^
3959
3960Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003961to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003962order.
3963
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003964These aren't inherently debug info centric, but currently all the specialized
3965metadata nodes are related to debug info.
3966
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003967.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003968
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003969DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003970"""""""""""""
3971
Sean Silvaa1190322015-08-06 22:56:48 +00003972``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003973``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3974fields are tuples containing the debug info to be emitted along with the compile
3975unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003976references to them from instructions).
3977
Renato Golin124f2592016-07-20 12:16:38 +00003978.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003979
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003980 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003981 isOptimized: true, flags: "-O2", runtimeVersion: 2,
Adrian Prantlb8089512016-04-01 00:16:49 +00003982 splitDebugFilename: "abc.debug", emissionKind: FullDebug,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003983 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003984 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003985
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003986Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003987specific compilation unit. File descriptors are defined using this scope.
3988These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003989keep track of subprograms, global variables, type information, and imported
3990entities (declarations and namespaces).
3991
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003992.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003993
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003994DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003995""""""
3996
Sean Silvaa1190322015-08-06 22:56:48 +00003997``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003998
3999.. code-block:: llvm
4000
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004001 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004002
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004003Files are sometimes used in ``scope:`` fields, and are the only valid target
4004for ``file:`` fields.
4005
Michael Kuperstein605308a2015-05-14 10:58:59 +00004006.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004007
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004008DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004009"""""""""""
4010
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004011``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00004012``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004013
Renato Golin124f2592016-07-20 12:16:38 +00004014.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004015
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004016 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004017 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004018 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004019
Sean Silvaa1190322015-08-06 22:56:48 +00004020The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004021following:
4022
Renato Golin124f2592016-07-20 12:16:38 +00004023.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004024
4025 DW_ATE_address = 1
4026 DW_ATE_boolean = 2
4027 DW_ATE_float = 4
4028 DW_ATE_signed = 5
4029 DW_ATE_signed_char = 6
4030 DW_ATE_unsigned = 7
4031 DW_ATE_unsigned_char = 8
4032
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004033.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004034
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004035DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004036""""""""""""""""
4037
Sean Silvaa1190322015-08-06 22:56:48 +00004038``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004039refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00004040types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004041represents a function with no return value (such as ``void foo() {}`` in C++).
4042
Renato Golin124f2592016-07-20 12:16:38 +00004043.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044
4045 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4046 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004047 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004049.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004050
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004051DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004052"""""""""""""
4053
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004054``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004055qualified types.
4056
Renato Golin124f2592016-07-20 12:16:38 +00004057.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004058
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004059 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004060 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004061 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004062 align: 32)
4063
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004064The following ``tag:`` values are valid:
4065
Renato Golin124f2592016-07-20 12:16:38 +00004066.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004067
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004068 DW_TAG_member = 13
4069 DW_TAG_pointer_type = 15
4070 DW_TAG_reference_type = 16
4071 DW_TAG_typedef = 22
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004072 DW_TAG_inheritance = 28
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004073 DW_TAG_ptr_to_member_type = 31
4074 DW_TAG_const_type = 38
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004075 DW_TAG_friend = 42
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004076 DW_TAG_volatile_type = 53
4077 DW_TAG_restrict_type = 55
4078
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004079.. _DIDerivedTypeMember:
4080
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004081``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smith90990cd2016-04-17 00:45:00 +00004082<DICompositeType>`. The type of the member is the ``baseType:``. The
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004083``offset:`` is the member's bit offset. If the composite type has an ODR
4084``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4085uniqued based only on its ``name:`` and ``scope:``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004086
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004087``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4088field of :ref:`composite types <DICompositeType>` to describe parents and
4089friends.
4090
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004091``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4092
4093``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
4094``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
4095``baseType:``.
4096
4097Note that the ``void *`` type is expressed as a type derived from NULL.
4098
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004099.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004100
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004101DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004102"""""""""""""""
4103
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004104``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00004105structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004106
4107If the source language supports ODR, the ``identifier:`` field gives the unique
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004108identifier used for type merging between modules. When specified,
4109:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4110derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4111``scope:`` change uniquing rules.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004112
Duncan P. N. Exon Smith5ab2be02016-04-17 03:58:21 +00004113For a given ``identifier:``, there should only be a single composite type that
4114does not have ``flags: DIFlagFwdDecl`` set. LLVM tools that link modules
4115together will unique such definitions at parse time via the ``identifier:``
4116field, even if the nodes are ``distinct``.
4117
Renato Golin124f2592016-07-20 12:16:38 +00004118.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004119
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004120 !0 = !DIEnumerator(name: "SixKind", value: 7)
4121 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4122 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4123 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004124 line: 2, size: 32, align: 32, identifier: "_M4Enum",
4125 elements: !{!0, !1, !2})
4126
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004127The following ``tag:`` values are valid:
4128
Renato Golin124f2592016-07-20 12:16:38 +00004129.. code-block:: text
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004130
4131 DW_TAG_array_type = 1
4132 DW_TAG_class_type = 2
4133 DW_TAG_enumeration_type = 4
4134 DW_TAG_structure_type = 19
4135 DW_TAG_union_type = 23
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004136
4137For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004138descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00004139level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004140array type is a native packed vector.
4141
4142For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004143descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00004144value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004145``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004146
4147For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4148``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha3f3de12016-04-16 22:46:47 +00004149<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4150``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4151``isDefinition: false``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004152
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004153.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004154
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004155DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004156""""""""""
4157
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004158``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00004159:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004160
4161.. code-block:: llvm
4162
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004163 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4164 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4165 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004166
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004167.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004168
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004169DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004170""""""""""""
4171
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004172``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4173variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004174
4175.. code-block:: llvm
4176
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004177 !0 = !DIEnumerator(name: "SixKind", value: 7)
4178 !1 = !DIEnumerator(name: "SevenKind", value: 7)
4179 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004180
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004181DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004182"""""""""""""""""""""""
4183
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004184``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004185language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004186:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004187
4188.. code-block:: llvm
4189
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004190 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004191
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004192DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004193""""""""""""""""""""""""
4194
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004195``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004196language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004197but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004198``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004199:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004200
4201.. code-block:: llvm
4202
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004203 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004204
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004205DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004206"""""""""""
4207
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004208``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004209
4210.. code-block:: llvm
4211
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004212 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004213
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004214DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004215""""""""""""""""
4216
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004217``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004218
4219.. code-block:: llvm
4220
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004221 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004222 file: !2, line: 7, type: !3, isLocal: true,
4223 isDefinition: false, variable: i32* @foo,
4224 declaration: !4)
4225
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004226All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004227:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004228
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004229.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004230
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004231DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004232""""""""""""
4233
Peter Collingbourne50108682015-11-06 02:41:02 +00004234``DISubprogram`` nodes represent functions from the source language. A
4235``DISubprogram`` may be attached to a function definition using ``!dbg``
4236metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4237that must be retained, even if their IR counterparts are optimized out of
4238the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004239
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004240.. _DISubprogramDeclaration:
4241
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004242When ``isDefinition: false``, subprograms describe a declaration in the type
Duncan P. N. Exon Smitha59d3e52016-04-23 21:08:00 +00004243tree as opposed to a definition of a function. If the scope is a composite
4244type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
4245then the subprogram declaration is uniqued based only on its ``linkageName:``
4246and ``scope:``.
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004247
Renato Golin124f2592016-07-20 12:16:38 +00004248.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004249
Peter Collingbourne50108682015-11-06 02:41:02 +00004250 define void @_Z3foov() !dbg !0 {
4251 ...
4252 }
4253
4254 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4255 file: !2, line: 7, type: !3, isLocal: true,
Duncan P. N. Exon Smith05ebfd02016-04-17 02:30:20 +00004256 isDefinition: true, scopeLine: 8,
Peter Collingbourne50108682015-11-06 02:41:02 +00004257 containingType: !4,
4258 virtuality: DW_VIRTUALITY_pure_virtual,
4259 virtualIndex: 10, flags: DIFlagPrototyped,
4260 isOptimized: true, templateParams: !5,
4261 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004262
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004263.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004264
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004265DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004266""""""""""""""
4267
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004268``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004269<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004270two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004271fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004272
Renato Golin124f2592016-07-20 12:16:38 +00004273.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004274
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004275 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004276
4277Usually lexical blocks are ``distinct`` to prevent node merging based on
4278operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004279
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004280.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004281
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004282DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004283""""""""""""""""""
4284
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004285``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004286:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004287indicate textual inclusion, or the ``discriminator:`` field can be used to
4288discriminate between control flow within a single block in the source language.
4289
4290.. code-block:: llvm
4291
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004292 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4293 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4294 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004295
Michael Kuperstein605308a2015-05-14 10:58:59 +00004296.. _DILocation:
4297
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004298DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004299""""""""""
4300
Sean Silvaa1190322015-08-06 22:56:48 +00004301``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004302mandatory, and points at an :ref:`DILexicalBlockFile`, an
4303:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004304
4305.. code-block:: llvm
4306
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004307 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004308
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004309.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004310
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004311DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004312"""""""""""""""
4313
Sean Silvaa1190322015-08-06 22:56:48 +00004314``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004315the ``arg:`` field is set to non-zero, then this variable is a subprogram
4316parameter, and it will be included in the ``variables:`` field of its
4317:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004318
Renato Golin124f2592016-07-20 12:16:38 +00004319.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004320
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004321 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4322 type: !3, flags: DIFlagArtificial)
4323 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4324 type: !3)
4325 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004326
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004327DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004328""""""""""""
4329
Sean Silvaa1190322015-08-06 22:56:48 +00004330``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004331:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4332describe how the referenced LLVM variable relates to the source language
4333variable.
4334
4335The current supported vocabulary is limited:
4336
4337- ``DW_OP_deref`` dereferences the working expression.
4338- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4339- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4340 here, respectively) of the variable piece from the working expression.
4341
Renato Golin124f2592016-07-20 12:16:38 +00004342.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004343
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004344 !0 = !DIExpression(DW_OP_deref)
4345 !1 = !DIExpression(DW_OP_plus, 3)
4346 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4347 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004348
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004349DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004350""""""""""""""
4351
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004352``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004353
4354.. code-block:: llvm
4355
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004356 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004357 getter: "getFoo", attributes: 7, type: !2)
4358
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004359DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004360""""""""""""""""
4361
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004362``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004363compile unit.
4364
Renato Golin124f2592016-07-20 12:16:38 +00004365.. code-block:: text
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004366
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004367 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004368 entity: !1, line: 7)
4369
Amjad Abouda9bcf162015-12-10 12:56:35 +00004370DIMacro
4371"""""""
4372
4373``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4374The ``name:`` field is the macro identifier, followed by macro parameters when
Sylvestre Ledru7d540502016-07-02 19:28:40 +00004375defining a function-like macro, and the ``value`` field is the token-string
Amjad Abouda9bcf162015-12-10 12:56:35 +00004376used to expand the macro identifier.
4377
Renato Golin124f2592016-07-20 12:16:38 +00004378.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004379
4380 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4381 value: "((x) + 1)")
4382 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4383
4384DIMacroFile
4385"""""""""""
4386
4387``DIMacroFile`` nodes represent inclusion of source files.
4388The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4389appear in the included source file.
4390
Renato Golin124f2592016-07-20 12:16:38 +00004391.. code-block:: text
Amjad Abouda9bcf162015-12-10 12:56:35 +00004392
4393 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4394 nodes: !3)
4395
Sean Silvab084af42012-12-07 10:36:55 +00004396'``tbaa``' Metadata
4397^^^^^^^^^^^^^^^^^^^
4398
4399In LLVM IR, memory does not have types, so LLVM's own type system is not
4400suitable for doing TBAA. Instead, metadata is added to the IR to
4401describe a type system of a higher level language. This can be used to
4402implement typical C/C++ TBAA, but it can also be used to implement
4403custom alias analysis behavior for other languages.
4404
4405The current metadata format is very simple. TBAA metadata nodes have up
4406to three fields, e.g.:
4407
4408.. code-block:: llvm
4409
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004410 !0 = !{ !"an example type tree" }
4411 !1 = !{ !"int", !0 }
4412 !2 = !{ !"float", !0 }
4413 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004414
4415The first field is an identity field. It can be any value, usually a
4416metadata string, which uniquely identifies the type. The most important
4417name in the tree is the name of the root node. Two trees with different
4418root node names are entirely disjoint, even if they have leaves with
4419common names.
4420
4421The second field identifies the type's parent node in the tree, or is
4422null or omitted for a root node. A type is considered to alias all of
4423its descendants and all of its ancestors in the tree. Also, a type is
4424considered to alias all types in other trees, so that bitcode produced
4425from multiple front-ends is handled conservatively.
4426
4427If the third field is present, it's an integer which if equal to 1
4428indicates that the type is "constant" (meaning
4429``pointsToConstantMemory`` should return true; see `other useful
4430AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4431
4432'``tbaa.struct``' Metadata
4433^^^^^^^^^^^^^^^^^^^^^^^^^^
4434
4435The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4436aggregate assignment operations in C and similar languages, however it
4437is defined to copy a contiguous region of memory, which is more than
4438strictly necessary for aggregate types which contain holes due to
4439padding. Also, it doesn't contain any TBAA information about the fields
4440of the aggregate.
4441
4442``!tbaa.struct`` metadata can describe which memory subregions in a
4443memcpy are padding and what the TBAA tags of the struct are.
4444
4445The current metadata format is very simple. ``!tbaa.struct`` metadata
4446nodes are a list of operands which are in conceptual groups of three.
4447For each group of three, the first operand gives the byte offset of a
4448field in bytes, the second gives its size in bytes, and the third gives
4449its tbaa tag. e.g.:
4450
4451.. code-block:: llvm
4452
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004453 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004454
4455This describes a struct with two fields. The first is at offset 0 bytes
4456with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4457and has size 4 bytes and has tbaa tag !2.
4458
4459Note that the fields need not be contiguous. In this example, there is a
44604 byte gap between the two fields. This gap represents padding which
4461does not carry useful data and need not be preserved.
4462
Hal Finkel94146652014-07-24 14:25:39 +00004463'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004465
4466``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4467noalias memory-access sets. This means that some collection of memory access
4468instructions (loads, stores, memory-accessing calls, etc.) that carry
4469``noalias`` metadata can specifically be specified not to alias with some other
4470collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004471Each type of metadata specifies a list of scopes where each scope has an id and
Adam Nemet569a5b32016-04-27 00:52:48 +00004472a domain.
4473
4474When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004475of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004476subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004477instruction's ``noalias`` list, then the two memory accesses are assumed not to
4478alias.
Hal Finkel94146652014-07-24 14:25:39 +00004479
Adam Nemet569a5b32016-04-27 00:52:48 +00004480Because scopes in one domain don't affect scopes in other domains, separate
4481domains can be used to compose multiple independent noalias sets. This is
4482used for example during inlining. As the noalias function parameters are
4483turned into noalias scope metadata, a new domain is used every time the
4484function is inlined.
4485
Hal Finkel029cde62014-07-25 15:50:02 +00004486The metadata identifying each domain is itself a list containing one or two
4487entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004488string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004489self-reference can be used to create globally unique domain names. A
4490descriptive string may optionally be provided as a second list entry.
4491
4492The metadata identifying each scope is also itself a list containing two or
4493three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004494is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004495self-reference can be used to create globally unique scope names. A metadata
4496reference to the scope's domain is the second entry. A descriptive string may
4497optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004498
4499For example,
4500
4501.. code-block:: llvm
4502
Hal Finkel029cde62014-07-25 15:50:02 +00004503 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004504 !0 = !{!0}
4505 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004506
Hal Finkel029cde62014-07-25 15:50:02 +00004507 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004508 !2 = !{!2, !0}
4509 !3 = !{!3, !0}
4510 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004511
Hal Finkel029cde62014-07-25 15:50:02 +00004512 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004513 !5 = !{!4} ; A list containing only scope !4
4514 !6 = !{!4, !3, !2}
4515 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004516
4517 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004518 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004519 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004520
Hal Finkel029cde62014-07-25 15:50:02 +00004521 ; These two instructions also don't alias (for domain !1, the set of scopes
4522 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004523 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004524 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004525
Adam Nemet0a8416f2015-05-11 08:30:28 +00004526 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004527 ; the !noalias list is not a superset of, or equal to, the scopes in the
4528 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004529 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004530 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004531
Sean Silvab084af42012-12-07 10:36:55 +00004532'``fpmath``' Metadata
4533^^^^^^^^^^^^^^^^^^^^^
4534
4535``fpmath`` metadata may be attached to any instruction of floating point
4536type. It can be used to express the maximum acceptable error in the
4537result of that instruction, in ULPs, thus potentially allowing the
4538compiler to use a more efficient but less accurate method of computing
4539it. ULP is defined as follows:
4540
4541 If ``x`` is a real number that lies between two finite consecutive
4542 floating-point numbers ``a`` and ``b``, without being equal to one
4543 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4544 distance between the two non-equal finite floating-point numbers
4545 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4546
Matt Arsenault82f41512016-06-27 19:43:15 +00004547The metadata node shall consist of a single positive float type number
4548representing the maximum relative error, for example:
Sean Silvab084af42012-12-07 10:36:55 +00004549
4550.. code-block:: llvm
4551
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004552 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004553
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004554.. _range-metadata:
4555
Sean Silvab084af42012-12-07 10:36:55 +00004556'``range``' Metadata
4557^^^^^^^^^^^^^^^^^^^^
4558
Jingyue Wu37fcb592014-06-19 16:50:16 +00004559``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4560integer types. It expresses the possible ranges the loaded value or the value
4561returned by the called function at this call site is in. The ranges are
4562represented with a flattened list of integers. The loaded value or the value
4563returned is known to be in the union of the ranges defined by each consecutive
4564pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004565
4566- The type must match the type loaded by the instruction.
4567- The pair ``a,b`` represents the range ``[a,b)``.
4568- Both ``a`` and ``b`` are constants.
4569- The range is allowed to wrap.
4570- The range should not represent the full or empty set. That is,
4571 ``a!=b``.
4572
4573In addition, the pairs must be in signed order of the lower bound and
4574they must be non-contiguous.
4575
4576Examples:
4577
4578.. code-block:: llvm
4579
David Blaikiec7aabbb2015-03-04 22:06:14 +00004580 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4581 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004582 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4583 %d = invoke i8 @bar() to label %cont
4584 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004585 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004586 !0 = !{ i8 0, i8 2 }
4587 !1 = !{ i8 255, i8 2 }
4588 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4589 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004590
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004591'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004592^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004593
4594``unpredictable`` metadata may be attached to any branch or switch
4595instruction. It can be used to express the unpredictability of control
4596flow. Similar to the llvm.expect intrinsic, it may be used to alter
4597optimizations related to compare and branch instructions. The metadata
4598is treated as a boolean value; if it exists, it signals that the branch
4599or switch that it is attached to is completely unpredictable.
4600
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004601'``llvm.loop``'
4602^^^^^^^^^^^^^^^
4603
4604It is sometimes useful to attach information to loop constructs. Currently,
4605loop metadata is implemented as metadata attached to the branch instruction
4606in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004607guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004608specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004609
4610The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004611itself to avoid merging it with any other identifier metadata, e.g.,
4612during module linkage or function inlining. That is, each loop should refer
4613to their own identification metadata even if they reside in separate functions.
4614The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004615constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004616
4617.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004618
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004619 !0 = !{!0}
4620 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004621
Mark Heffernan893752a2014-07-18 19:24:51 +00004622The loop identifier metadata can be used to specify additional
4623per-loop metadata. Any operands after the first operand can be treated
4624as user-defined metadata. For example the ``llvm.loop.unroll.count``
4625suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004626
Paul Redmond5fdf8362013-05-28 20:00:34 +00004627.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004628
Paul Redmond5fdf8362013-05-28 20:00:34 +00004629 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4630 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004631 !0 = !{!0, !1}
4632 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004633
Mark Heffernan9d20e422014-07-21 23:11:03 +00004634'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4635^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004636
Mark Heffernan9d20e422014-07-21 23:11:03 +00004637Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4638used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004639vectorization width and interleave count. These metadata should be used in
4640conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004641``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4642optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004643it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004644which contains information about loop-carried memory dependencies can be helpful
4645in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004646
Mark Heffernan9d20e422014-07-21 23:11:03 +00004647'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4649
Mark Heffernan9d20e422014-07-21 23:11:03 +00004650This metadata suggests an interleave count to the loop interleaver.
4651The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004652second operand is an integer specifying the interleave count. For
4653example:
4654
4655.. code-block:: llvm
4656
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004657 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004658
Mark Heffernan9d20e422014-07-21 23:11:03 +00004659Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004660multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004661then the interleave count will be determined automatically.
4662
4663'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004664^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004665
4666This metadata selectively enables or disables vectorization for the loop. The
4667first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004668is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000046690 disables vectorization:
4670
4671.. code-block:: llvm
4672
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004673 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4674 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004675
4676'``llvm.loop.vectorize.width``' Metadata
4677^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4678
4679This metadata sets the target width of the vectorizer. The first
4680operand is the string ``llvm.loop.vectorize.width`` and the second
4681operand is an integer specifying the width. For example:
4682
4683.. code-block:: llvm
4684
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004685 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004686
4687Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004688vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000046890 or if the loop does not have this metadata the width will be
4690determined automatically.
4691
4692'``llvm.loop.unroll``'
4693^^^^^^^^^^^^^^^^^^^^^^
4694
4695Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4696optimization hints such as the unroll factor. ``llvm.loop.unroll``
4697metadata should be used in conjunction with ``llvm.loop`` loop
4698identification metadata. The ``llvm.loop.unroll`` metadata are only
4699optimization hints and the unrolling will only be performed if the
4700optimizer believes it is safe to do so.
4701
Mark Heffernan893752a2014-07-18 19:24:51 +00004702'``llvm.loop.unroll.count``' Metadata
4703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4704
4705This metadata suggests an unroll factor to the loop unroller. The
4706first operand is the string ``llvm.loop.unroll.count`` and the second
4707operand is a positive integer specifying the unroll factor. For
4708example:
4709
4710.. code-block:: llvm
4711
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004712 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004713
4714If the trip count of the loop is less than the unroll count the loop
4715will be partially unrolled.
4716
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004717'``llvm.loop.unroll.disable``' Metadata
4718^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4719
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004720This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004721which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004722
4723.. code-block:: llvm
4724
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004725 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004726
Kevin Qin715b01e2015-03-09 06:14:18 +00004727'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004728^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004729
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004730This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004731operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004732
4733.. code-block:: llvm
4734
4735 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4736
Mark Heffernan89391542015-08-10 17:28:08 +00004737'``llvm.loop.unroll.enable``' Metadata
4738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4739
4740This metadata suggests that the loop should be fully unrolled if the trip count
4741is known at compile time and partially unrolled if the trip count is not known
4742at compile time. The metadata has a single operand which is the string
4743``llvm.loop.unroll.enable``. For example:
4744
4745.. code-block:: llvm
4746
4747 !0 = !{!"llvm.loop.unroll.enable"}
4748
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004749'``llvm.loop.unroll.full``' Metadata
4750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4751
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004752This metadata suggests that the loop should be unrolled fully. The
4753metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004754For example:
4755
4756.. code-block:: llvm
4757
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004758 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004759
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004760'``llvm.loop.licm_versioning.disable``' Metadata
Ashutosh Nema5f0e4722016-02-06 09:24:37 +00004761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004762
4763This metadata indicates that the loop should not be versioned for the purpose
4764of enabling loop-invariant code motion (LICM). The metadata has a single operand
4765which is the string ``llvm.loop.licm_versioning.disable``. For example:
4766
4767.. code-block:: llvm
4768
4769 !0 = !{!"llvm.loop.licm_versioning.disable"}
4770
Adam Nemetd2fa4142016-04-27 05:28:18 +00004771'``llvm.loop.distribute.enable``' Metadata
Adam Nemet55dc0af2016-04-27 05:59:51 +00004772^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adam Nemetd2fa4142016-04-27 05:28:18 +00004773
4774Loop distribution allows splitting a loop into multiple loops. Currently,
4775this is only performed if the entire loop cannot be vectorized due to unsafe
4776memory dependencies. The transformation will atempt to isolate the unsafe
4777dependencies into their own loop.
4778
4779This metadata can be used to selectively enable or disable distribution of the
4780loop. The first operand is the string ``llvm.loop.distribute.enable`` and the
4781second operand is a bit. If the bit operand value is 1 distribution is
4782enabled. A value of 0 disables distribution:
4783
4784.. code-block:: llvm
4785
4786 !0 = !{!"llvm.loop.distribute.enable", i1 0}
4787 !1 = !{!"llvm.loop.distribute.enable", i1 1}
4788
4789This metadata should be used in conjunction with ``llvm.loop`` loop
4790identification metadata.
4791
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004792'``llvm.mem``'
4793^^^^^^^^^^^^^^^
4794
4795Metadata types used to annotate memory accesses with information helpful
4796for optimizations are prefixed with ``llvm.mem``.
4797
4798'``llvm.mem.parallel_loop_access``' Metadata
4799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4800
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004801The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4802or metadata containing a list of loop identifiers for nested loops.
4803The metadata is attached to memory accessing instructions and denotes that
4804no loop carried memory dependence exist between it and other instructions denoted
Hal Finkel411d31a2016-04-26 02:00:36 +00004805with the same loop identifier. The metadata on memory reads also implies that
4806if conversion (i.e. speculative execution within a loop iteration) is safe.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004807
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004808Precisely, given two instructions ``m1`` and ``m2`` that both have the
4809``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4810set of loops associated with that metadata, respectively, then there is no loop
4811carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004812``L2``.
4813
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004814As a special case, if all memory accessing instructions in a loop have
4815``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4816loop has no loop carried memory dependences and is considered to be a parallel
4817loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004818
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004819Note that if not all memory access instructions have such metadata referring to
4820the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004821memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004822safe mechanism, this causes loops that were originally parallel to be considered
4823sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004824insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004825
4826Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004827both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004828metadata types that refer to the same loop identifier metadata.
4829
4830.. code-block:: llvm
4831
4832 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004833 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004834 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004835 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004836 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004837 ...
4838 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004839
4840 for.end:
4841 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004842 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004843
4844It is also possible to have nested parallel loops. In that case the
4845memory accesses refer to a list of loop identifier metadata nodes instead of
4846the loop identifier metadata node directly:
4847
4848.. code-block:: llvm
4849
4850 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004851 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004852 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004853 ...
4854 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004855
4856 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004857 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004858 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004859 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004860 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004861 ...
4862 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004863
4864 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004865 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004866 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004867 ...
4868 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004869
4870 outer.for.end: ; preds = %for.body
4871 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004872 !0 = !{!1, !2} ; a list of loop identifiers
4873 !1 = !{!1} ; an identifier for the inner loop
4874 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004875
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004876'``invariant.group``' Metadata
4877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4878
4879The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4880The existence of the ``invariant.group`` metadata on the instruction tells
4881the optimizer that every ``load`` and ``store`` to the same pointer operand
4882within the same invariant group can be assumed to load or store the same
4883value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4884when two pointers are considered the same).
4885
4886Examples:
4887
4888.. code-block:: llvm
4889
4890 @unknownPtr = external global i8
4891 ...
4892 %ptr = alloca i8
4893 store i8 42, i8* %ptr, !invariant.group !0
4894 call void @foo(i8* %ptr)
4895
4896 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4897 call void @foo(i8* %ptr)
4898 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4899
4900 %newPtr = call i8* @getPointer(i8* %ptr)
4901 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4902
4903 %unknownValue = load i8, i8* @unknownPtr
4904 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4905
4906 call void @foo(i8* %ptr)
4907 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4908 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4909
4910 ...
4911 declare void @foo(i8*)
4912 declare i8* @getPointer(i8*)
4913 declare i8* @llvm.invariant.group.barrier(i8*)
4914
4915 !0 = !{!"magic ptr"}
4916 !1 = !{!"other ptr"}
4917
Peter Collingbournea333db82016-07-26 22:31:30 +00004918'``type``' Metadata
4919^^^^^^^^^^^^^^^^^^^
4920
4921See :doc:`TypeMetadata`.
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004922
4923
Sean Silvab084af42012-12-07 10:36:55 +00004924Module Flags Metadata
4925=====================
4926
4927Information about the module as a whole is difficult to convey to LLVM's
4928subsystems. The LLVM IR isn't sufficient to transmit this information.
4929The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004930this. These flags are in the form of key / value pairs --- much like a
4931dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004932look it up.
4933
4934The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4935Each triplet has the following form:
4936
4937- The first element is a *behavior* flag, which specifies the behavior
4938 when two (or more) modules are merged together, and it encounters two
4939 (or more) metadata with the same ID. The supported behaviors are
4940 described below.
4941- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004942 metadata. Each module may only have one flag entry for each unique ID (not
4943 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004944- The third element is the value of the flag.
4945
4946When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004947``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4948each unique metadata ID string, there will be exactly one entry in the merged
4949modules ``llvm.module.flags`` metadata table, and the value for that entry will
4950be determined by the merge behavior flag, as described below. The only exception
4951is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004952
4953The following behaviors are supported:
4954
4955.. list-table::
4956 :header-rows: 1
4957 :widths: 10 90
4958
4959 * - Value
4960 - Behavior
4961
4962 * - 1
4963 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004964 Emits an error if two values disagree, otherwise the resulting value
4965 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004966
4967 * - 2
4968 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004969 Emits a warning if two values disagree. The result value will be the
4970 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004971
4972 * - 3
4973 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004974 Adds a requirement that another module flag be present and have a
4975 specified value after linking is performed. The value must be a
4976 metadata pair, where the first element of the pair is the ID of the
4977 module flag to be restricted, and the second element of the pair is
4978 the value the module flag should be restricted to. This behavior can
4979 be used to restrict the allowable results (via triggering of an
4980 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004981
4982 * - 4
4983 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004984 Uses the specified value, regardless of the behavior or value of the
4985 other module. If both modules specify **Override**, but the values
4986 differ, an error will be emitted.
4987
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004988 * - 5
4989 - **Append**
4990 Appends the two values, which are required to be metadata nodes.
4991
4992 * - 6
4993 - **AppendUnique**
4994 Appends the two values, which are required to be metadata
4995 nodes. However, duplicate entries in the second list are dropped
4996 during the append operation.
4997
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004998It is an error for a particular unique flag ID to have multiple behaviors,
4999except in the case of **Require** (which adds restrictions on another metadata
5000value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00005001
5002An example of module flags:
5003
5004.. code-block:: llvm
5005
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005006 !0 = !{ i32 1, !"foo", i32 1 }
5007 !1 = !{ i32 4, !"bar", i32 37 }
5008 !2 = !{ i32 2, !"qux", i32 42 }
5009 !3 = !{ i32 3, !"qux",
5010 !{
5011 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00005012 }
5013 }
5014 !llvm.module.flags = !{ !0, !1, !2, !3 }
5015
5016- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
5017 if two or more ``!"foo"`` flags are seen is to emit an error if their
5018 values are not equal.
5019
5020- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
5021 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005022 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00005023
5024- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
5025 behavior if two or more ``!"qux"`` flags are seen is to emit a
5026 warning if their values are not equal.
5027
5028- Metadata ``!3`` has the ID ``!"qux"`` and the value:
5029
5030 ::
5031
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005032 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00005033
Daniel Dunbar25c4b572013-01-15 01:22:53 +00005034 The behavior is to emit an error if the ``llvm.module.flags`` does not
5035 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
5036 performed.
Sean Silvab084af42012-12-07 10:36:55 +00005037
5038Objective-C Garbage Collection Module Flags Metadata
5039----------------------------------------------------
5040
5041On the Mach-O platform, Objective-C stores metadata about garbage
5042collection in a special section called "image info". The metadata
5043consists of a version number and a bitmask specifying what types of
5044garbage collection are supported (if any) by the file. If two or more
5045modules are linked together their garbage collection metadata needs to
5046be merged rather than appended together.
5047
5048The Objective-C garbage collection module flags metadata consists of the
5049following key-value pairs:
5050
5051.. list-table::
5052 :header-rows: 1
5053 :widths: 30 70
5054
5055 * - Key
5056 - Value
5057
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005058 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005059 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00005060
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005061 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005062 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00005063 always 0.
5064
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005065 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005066 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00005067 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
5068 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
5069 Objective-C ABI version 2.
5070
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005071 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005072 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00005073 not. Valid values are 0, for no garbage collection, and 2, for garbage
5074 collection supported.
5075
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005076 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00005077 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00005078 If present, its value must be 6. This flag requires that the
5079 ``Objective-C Garbage Collection`` flag have the value 2.
5080
5081Some important flag interactions:
5082
5083- If a module with ``Objective-C Garbage Collection`` set to 0 is
5084 merged with a module with ``Objective-C Garbage Collection`` set to
5085 2, then the resulting module has the
5086 ``Objective-C Garbage Collection`` flag set to 0.
5087- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
5088 merged with a module with ``Objective-C GC Only`` set to 6.
5089
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005090Automatic Linker Flags Module Flags Metadata
5091--------------------------------------------
5092
5093Some targets support embedding flags to the linker inside individual object
5094files. Typically this is used in conjunction with language extensions which
5095allow source files to explicitly declare the libraries they depend on, and have
5096these automatically be transmitted to the linker via object files.
5097
5098These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00005099using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005100to be ``AppendUnique``, and the value for the key is expected to be a metadata
5101node which should be a list of other metadata nodes, each of which should be a
5102list of metadata strings defining linker options.
5103
5104For example, the following metadata section specifies two separate sets of
5105linker options, presumably to link against ``libz`` and the ``Cocoa``
5106framework::
5107
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005108 !0 = !{ i32 6, !"Linker Options",
5109 !{
5110 !{ !"-lz" },
5111 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00005112 !llvm.module.flags = !{ !0 }
5113
5114The metadata encoding as lists of lists of options, as opposed to a collapsed
5115list of options, is chosen so that the IR encoding can use multiple option
5116strings to specify e.g., a single library, while still having that specifier be
5117preserved as an atomic element that can be recognized by a target specific
5118assembly writer or object file emitter.
5119
5120Each individual option is required to be either a valid option for the target's
5121linker, or an option that is reserved by the target specific assembly writer or
5122object file emitter. No other aspect of these options is defined by the IR.
5123
Oliver Stannard5dc29342014-06-20 10:08:11 +00005124C type width Module Flags Metadata
5125----------------------------------
5126
5127The ARM backend emits a section into each generated object file describing the
5128options that it was compiled with (in a compiler-independent way) to prevent
5129linking incompatible objects, and to allow automatic library selection. Some
5130of these options are not visible at the IR level, namely wchar_t width and enum
5131width.
5132
5133To pass this information to the backend, these options are encoded in module
5134flags metadata, using the following key-value pairs:
5135
5136.. list-table::
5137 :header-rows: 1
5138 :widths: 30 70
5139
5140 * - Key
5141 - Value
5142
5143 * - short_wchar
5144 - * 0 --- sizeof(wchar_t) == 4
5145 * 1 --- sizeof(wchar_t) == 2
5146
5147 * - short_enum
5148 - * 0 --- Enums are at least as large as an ``int``.
5149 * 1 --- Enums are stored in the smallest integer type which can
5150 represent all of its values.
5151
5152For example, the following metadata section specifies that the module was
5153compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
5154enum is the smallest type which can represent all of its values::
5155
5156 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00005157 !0 = !{i32 1, !"short_wchar", i32 1}
5158 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00005159
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005160.. _intrinsicglobalvariables:
5161
Sean Silvab084af42012-12-07 10:36:55 +00005162Intrinsic Global Variables
5163==========================
5164
5165LLVM has a number of "magic" global variables that contain data that
5166affect code generation or other IR semantics. These are documented here.
5167All globals of this sort should have a section specified as
5168"``llvm.metadata``". This section and all globals that start with
5169"``llvm.``" are reserved for use by LLVM.
5170
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005171.. _gv_llvmused:
5172
Sean Silvab084af42012-12-07 10:36:55 +00005173The '``llvm.used``' Global Variable
5174-----------------------------------
5175
Rafael Espindola74f2e462013-04-22 14:58:02 +00005176The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00005177:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00005178pointers to named global variables, functions and aliases which may optionally
5179have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00005180use of it is:
5181
5182.. code-block:: llvm
5183
5184 @X = global i8 4
5185 @Y = global i32 123
5186
5187 @llvm.used = appending global [2 x i8*] [
5188 i8* @X,
5189 i8* bitcast (i32* @Y to i8*)
5190 ], section "llvm.metadata"
5191
Rafael Espindola74f2e462013-04-22 14:58:02 +00005192If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
5193and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00005194symbol that it cannot see (which is why they have to be named). For example, if
5195a variable has internal linkage and no references other than that from the
5196``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
5197references from inline asms and other things the compiler cannot "see", and
5198corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00005199
5200On some targets, the code generator must emit a directive to the
5201assembler or object file to prevent the assembler and linker from
5202molesting the symbol.
5203
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005204.. _gv_llvmcompilerused:
5205
Sean Silvab084af42012-12-07 10:36:55 +00005206The '``llvm.compiler.used``' Global Variable
5207--------------------------------------------
5208
5209The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
5210directive, except that it only prevents the compiler from touching the
5211symbol. On targets that support it, this allows an intelligent linker to
5212optimize references to the symbol without being impeded as it would be
5213by ``@llvm.used``.
5214
5215This is a rare construct that should only be used in rare circumstances,
5216and should not be exposed to source languages.
5217
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005218.. _gv_llvmglobalctors:
5219
Sean Silvab084af42012-12-07 10:36:55 +00005220The '``llvm.global_ctors``' Global Variable
5221-------------------------------------------
5222
5223.. code-block:: llvm
5224
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005225 %0 = type { i32, void ()*, i8* }
5226 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005227
5228The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005229functions, priorities, and an optional associated global or function.
5230The functions referenced by this array will be called in ascending order
5231of priority (i.e. lowest first) when the module is loaded. The order of
5232functions with the same priority is not defined.
5233
5234If the third field is present, non-null, and points to a global variable
5235or function, the initializer function will only run if the associated
5236data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005237
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005238.. _llvmglobaldtors:
5239
Sean Silvab084af42012-12-07 10:36:55 +00005240The '``llvm.global_dtors``' Global Variable
5241-------------------------------------------
5242
5243.. code-block:: llvm
5244
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005245 %0 = type { i32, void ()*, i8* }
5246 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005247
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005248The ``@llvm.global_dtors`` array contains a list of destructor
5249functions, priorities, and an optional associated global or function.
5250The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005251order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005252order of functions with the same priority is not defined.
5253
5254If the third field is present, non-null, and points to a global variable
5255or function, the destructor function will only run if the associated
5256data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005257
5258Instruction Reference
5259=====================
5260
5261The LLVM instruction set consists of several different classifications
5262of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5263instructions <binaryops>`, :ref:`bitwise binary
5264instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5265:ref:`other instructions <otherops>`.
5266
5267.. _terminators:
5268
5269Terminator Instructions
5270-----------------------
5271
5272As mentioned :ref:`previously <functionstructure>`, every basic block in a
5273program ends with a "Terminator" instruction, which indicates which
5274block should be executed after the current block is finished. These
5275terminator instructions typically yield a '``void``' value: they produce
5276control flow, not values (the one exception being the
5277':ref:`invoke <i_invoke>`' instruction).
5278
5279The terminator instructions are: ':ref:`ret <i_ret>`',
5280':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5281':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005282':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005283':ref:`catchret <i_catchret>`',
5284':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005285and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005286
5287.. _i_ret:
5288
5289'``ret``' Instruction
5290^^^^^^^^^^^^^^^^^^^^^
5291
5292Syntax:
5293"""""""
5294
5295::
5296
5297 ret <type> <value> ; Return a value from a non-void function
5298 ret void ; Return from void function
5299
5300Overview:
5301"""""""""
5302
5303The '``ret``' instruction is used to return control flow (and optionally
5304a value) from a function back to the caller.
5305
5306There are two forms of the '``ret``' instruction: one that returns a
5307value and then causes control flow, and one that just causes control
5308flow to occur.
5309
5310Arguments:
5311""""""""""
5312
5313The '``ret``' instruction optionally accepts a single argument, the
5314return value. The type of the return value must be a ':ref:`first
5315class <t_firstclass>`' type.
5316
5317A function is not :ref:`well formed <wellformed>` if it it has a non-void
5318return type and contains a '``ret``' instruction with no return value or
5319a return value with a type that does not match its type, or if it has a
5320void return type and contains a '``ret``' instruction with a return
5321value.
5322
5323Semantics:
5324""""""""""
5325
5326When the '``ret``' instruction is executed, control flow returns back to
5327the calling function's context. If the caller is a
5328":ref:`call <i_call>`" instruction, execution continues at the
5329instruction after the call. If the caller was an
5330":ref:`invoke <i_invoke>`" instruction, execution continues at the
5331beginning of the "normal" destination block. If the instruction returns
5332a value, that value shall set the call or invoke instruction's return
5333value.
5334
5335Example:
5336""""""""
5337
5338.. code-block:: llvm
5339
5340 ret i32 5 ; Return an integer value of 5
5341 ret void ; Return from a void function
5342 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5343
5344.. _i_br:
5345
5346'``br``' Instruction
5347^^^^^^^^^^^^^^^^^^^^
5348
5349Syntax:
5350"""""""
5351
5352::
5353
5354 br i1 <cond>, label <iftrue>, label <iffalse>
5355 br label <dest> ; Unconditional branch
5356
5357Overview:
5358"""""""""
5359
5360The '``br``' instruction is used to cause control flow to transfer to a
5361different basic block in the current function. There are two forms of
5362this instruction, corresponding to a conditional branch and an
5363unconditional branch.
5364
5365Arguments:
5366""""""""""
5367
5368The conditional branch form of the '``br``' instruction takes a single
5369'``i1``' value and two '``label``' values. The unconditional form of the
5370'``br``' instruction takes a single '``label``' value as a target.
5371
5372Semantics:
5373""""""""""
5374
5375Upon execution of a conditional '``br``' instruction, the '``i1``'
5376argument is evaluated. If the value is ``true``, control flows to the
5377'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5378to the '``iffalse``' ``label`` argument.
5379
5380Example:
5381""""""""
5382
5383.. code-block:: llvm
5384
5385 Test:
5386 %cond = icmp eq i32 %a, %b
5387 br i1 %cond, label %IfEqual, label %IfUnequal
5388 IfEqual:
5389 ret i32 1
5390 IfUnequal:
5391 ret i32 0
5392
5393.. _i_switch:
5394
5395'``switch``' Instruction
5396^^^^^^^^^^^^^^^^^^^^^^^^
5397
5398Syntax:
5399"""""""
5400
5401::
5402
5403 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5404
5405Overview:
5406"""""""""
5407
5408The '``switch``' instruction is used to transfer control flow to one of
5409several different places. It is a generalization of the '``br``'
5410instruction, allowing a branch to occur to one of many possible
5411destinations.
5412
5413Arguments:
5414""""""""""
5415
5416The '``switch``' instruction uses three parameters: an integer
5417comparison value '``value``', a default '``label``' destination, and an
5418array of pairs of comparison value constants and '``label``'s. The table
5419is not allowed to contain duplicate constant entries.
5420
5421Semantics:
5422""""""""""
5423
5424The ``switch`` instruction specifies a table of values and destinations.
5425When the '``switch``' instruction is executed, this table is searched
5426for the given value. If the value is found, control flow is transferred
5427to the corresponding destination; otherwise, control flow is transferred
5428to the default destination.
5429
5430Implementation:
5431"""""""""""""""
5432
5433Depending on properties of the target machine and the particular
5434``switch`` instruction, this instruction may be code generated in
5435different ways. For example, it could be generated as a series of
5436chained conditional branches or with a lookup table.
5437
5438Example:
5439""""""""
5440
5441.. code-block:: llvm
5442
5443 ; Emulate a conditional br instruction
5444 %Val = zext i1 %value to i32
5445 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5446
5447 ; Emulate an unconditional br instruction
5448 switch i32 0, label %dest [ ]
5449
5450 ; Implement a jump table:
5451 switch i32 %val, label %otherwise [ i32 0, label %onzero
5452 i32 1, label %onone
5453 i32 2, label %ontwo ]
5454
5455.. _i_indirectbr:
5456
5457'``indirectbr``' Instruction
5458^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5459
5460Syntax:
5461"""""""
5462
5463::
5464
5465 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5466
5467Overview:
5468"""""""""
5469
5470The '``indirectbr``' instruction implements an indirect branch to a
5471label within the current function, whose address is specified by
5472"``address``". Address must be derived from a
5473:ref:`blockaddress <blockaddress>` constant.
5474
5475Arguments:
5476""""""""""
5477
5478The '``address``' argument is the address of the label to jump to. The
5479rest of the arguments indicate the full set of possible destinations
5480that the address may point to. Blocks are allowed to occur multiple
5481times in the destination list, though this isn't particularly useful.
5482
5483This destination list is required so that dataflow analysis has an
5484accurate understanding of the CFG.
5485
5486Semantics:
5487""""""""""
5488
5489Control transfers to the block specified in the address argument. All
5490possible destination blocks must be listed in the label list, otherwise
5491this instruction has undefined behavior. This implies that jumps to
5492labels defined in other functions have undefined behavior as well.
5493
5494Implementation:
5495"""""""""""""""
5496
5497This is typically implemented with a jump through a register.
5498
5499Example:
5500""""""""
5501
5502.. code-block:: llvm
5503
5504 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5505
5506.. _i_invoke:
5507
5508'``invoke``' Instruction
5509^^^^^^^^^^^^^^^^^^^^^^^^
5510
5511Syntax:
5512"""""""
5513
5514::
5515
David Blaikieb83cf102016-07-13 17:21:34 +00005516 <result> = invoke [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005517 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005518
5519Overview:
5520"""""""""
5521
5522The '``invoke``' instruction causes control to transfer to a specified
5523function, with the possibility of control flow transfer to either the
5524'``normal``' label or the '``exception``' label. If the callee function
5525returns with the "``ret``" instruction, control flow will return to the
5526"normal" label. If the callee (or any indirect callees) returns via the
5527":ref:`resume <i_resume>`" instruction or other exception handling
5528mechanism, control is interrupted and continued at the dynamically
5529nearest "exception" label.
5530
5531The '``exception``' label is a `landing
5532pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5533'``exception``' label is required to have the
5534":ref:`landingpad <i_landingpad>`" instruction, which contains the
5535information about the behavior of the program after unwinding happens,
5536as its first non-PHI instruction. The restrictions on the
5537"``landingpad``" instruction's tightly couples it to the "``invoke``"
5538instruction, so that the important information contained within the
5539"``landingpad``" instruction can't be lost through normal code motion.
5540
5541Arguments:
5542""""""""""
5543
5544This instruction requires several arguments:
5545
5546#. The optional "cconv" marker indicates which :ref:`calling
5547 convention <callingconv>` the call should use. If none is
5548 specified, the call defaults to using C calling conventions.
5549#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5550 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5551 are valid here.
David Blaikieb83cf102016-07-13 17:21:34 +00005552#. '``ty``': the type of the call instruction itself which is also the
5553 type of the return value. Functions that return no value are marked
5554 ``void``.
5555#. '``fnty``': shall be the signature of the function being invoked. The
5556 argument types must match the types implied by this signature. This
5557 type can be omitted if the function is not varargs.
5558#. '``fnptrval``': An LLVM value containing a pointer to a function to
5559 be invoked. In most cases, this is a direct function invocation, but
5560 indirect ``invoke``'s are just as possible, calling an arbitrary pointer
5561 to function value.
Sean Silvab084af42012-12-07 10:36:55 +00005562#. '``function args``': argument list whose types match the function
5563 signature argument types and parameter attributes. All arguments must
5564 be of :ref:`first class <t_firstclass>` type. If the function signature
5565 indicates the function accepts a variable number of arguments, the
5566 extra arguments can be specified.
5567#. '``normal label``': the label reached when the called function
5568 executes a '``ret``' instruction.
5569#. '``exception label``': the label reached when a callee returns via
5570 the :ref:`resume <i_resume>` instruction or other exception handling
5571 mechanism.
5572#. The optional :ref:`function attributes <fnattrs>` list. Only
5573 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5574 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005575#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005576
5577Semantics:
5578""""""""""
5579
5580This instruction is designed to operate as a standard '``call``'
5581instruction in most regards. The primary difference is that it
5582establishes an association with a label, which is used by the runtime
5583library to unwind the stack.
5584
5585This instruction is used in languages with destructors to ensure that
5586proper cleanup is performed in the case of either a ``longjmp`` or a
5587thrown exception. Additionally, this is important for implementation of
5588'``catch``' clauses in high-level languages that support them.
5589
5590For the purposes of the SSA form, the definition of the value returned
5591by the '``invoke``' instruction is deemed to occur on the edge from the
5592current block to the "normal" label. If the callee unwinds then no
5593return value is available.
5594
5595Example:
5596""""""""
5597
5598.. code-block:: llvm
5599
5600 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005601 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005602 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005603 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005604
5605.. _i_resume:
5606
5607'``resume``' Instruction
5608^^^^^^^^^^^^^^^^^^^^^^^^
5609
5610Syntax:
5611"""""""
5612
5613::
5614
5615 resume <type> <value>
5616
5617Overview:
5618"""""""""
5619
5620The '``resume``' instruction is a terminator instruction that has no
5621successors.
5622
5623Arguments:
5624""""""""""
5625
5626The '``resume``' instruction requires one argument, which must have the
5627same type as the result of any '``landingpad``' instruction in the same
5628function.
5629
5630Semantics:
5631""""""""""
5632
5633The '``resume``' instruction resumes propagation of an existing
5634(in-flight) exception whose unwinding was interrupted with a
5635:ref:`landingpad <i_landingpad>` instruction.
5636
5637Example:
5638""""""""
5639
5640.. code-block:: llvm
5641
5642 resume { i8*, i32 } %exn
5643
David Majnemer8a1c45d2015-12-12 05:38:55 +00005644.. _i_catchswitch:
5645
5646'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005647^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005648
5649Syntax:
5650"""""""
5651
5652::
5653
5654 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5655 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5656
5657Overview:
5658"""""""""
5659
5660The '``catchswitch``' instruction is used by `LLVM's exception handling system
5661<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5662that may be executed by the :ref:`EH personality routine <personalityfn>`.
5663
5664Arguments:
5665""""""""""
5666
5667The ``parent`` argument is the token of the funclet that contains the
5668``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5669this operand may be the token ``none``.
5670
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005671The ``default`` argument is the label of another basic block beginning with
5672either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5673must be a legal target with respect to the ``parent`` links, as described in
5674the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005675
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005676The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005677:ref:`catchpad <i_catchpad>` instruction.
5678
5679Semantics:
5680""""""""""
5681
5682Executing this instruction transfers control to one of the successors in
5683``handlers``, if appropriate, or continues to unwind via the unwind label if
5684present.
5685
5686The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5687it must be both the first non-phi instruction and last instruction in the basic
5688block. Therefore, it must be the only non-phi instruction in the block.
5689
5690Example:
5691""""""""
5692
Renato Golin124f2592016-07-20 12:16:38 +00005693.. code-block:: text
David Majnemer8a1c45d2015-12-12 05:38:55 +00005694
5695 dispatch1:
5696 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5697 dispatch2:
5698 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5699
David Majnemer654e1302015-07-31 17:58:14 +00005700.. _i_catchret:
5701
5702'``catchret``' Instruction
5703^^^^^^^^^^^^^^^^^^^^^^^^^^
5704
5705Syntax:
5706"""""""
5707
5708::
5709
David Majnemer8a1c45d2015-12-12 05:38:55 +00005710 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005711
5712Overview:
5713"""""""""
5714
5715The '``catchret``' instruction is a terminator instruction that has a
5716single successor.
5717
5718
5719Arguments:
5720""""""""""
5721
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005722The first argument to a '``catchret``' indicates which ``catchpad`` it
5723exits. It must be a :ref:`catchpad <i_catchpad>`.
5724The second argument to a '``catchret``' specifies where control will
5725transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005726
5727Semantics:
5728""""""""""
5729
David Majnemer8a1c45d2015-12-12 05:38:55 +00005730The '``catchret``' instruction ends an existing (in-flight) exception whose
5731unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5732:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5733code to, for example, destroy the active exception. Control then transfers to
5734``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005735
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005736The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5737If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5738funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5739the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005740
5741Example:
5742""""""""
5743
Renato Golin124f2592016-07-20 12:16:38 +00005744.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005745
David Majnemer8a1c45d2015-12-12 05:38:55 +00005746 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005747
David Majnemer654e1302015-07-31 17:58:14 +00005748.. _i_cleanupret:
5749
5750'``cleanupret``' Instruction
5751^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5752
5753Syntax:
5754"""""""
5755
5756::
5757
David Majnemer8a1c45d2015-12-12 05:38:55 +00005758 cleanupret from <value> unwind label <continue>
5759 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005760
5761Overview:
5762"""""""""
5763
5764The '``cleanupret``' instruction is a terminator instruction that has
5765an optional successor.
5766
5767
5768Arguments:
5769""""""""""
5770
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005771The '``cleanupret``' instruction requires one argument, which indicates
5772which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005773If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5774funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5775the ``cleanupret``'s behavior is undefined.
5776
5777The '``cleanupret``' instruction also has an optional successor, ``continue``,
5778which must be the label of another basic block beginning with either a
5779``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5780be a legal target with respect to the ``parent`` links, as described in the
5781`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005782
5783Semantics:
5784""""""""""
5785
5786The '``cleanupret``' instruction indicates to the
5787:ref:`personality function <personalityfn>` that one
5788:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5789It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005790
David Majnemer654e1302015-07-31 17:58:14 +00005791Example:
5792""""""""
5793
Renato Golin124f2592016-07-20 12:16:38 +00005794.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00005795
David Majnemer8a1c45d2015-12-12 05:38:55 +00005796 cleanupret from %cleanup unwind to caller
5797 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005798
Sean Silvab084af42012-12-07 10:36:55 +00005799.. _i_unreachable:
5800
5801'``unreachable``' Instruction
5802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5803
5804Syntax:
5805"""""""
5806
5807::
5808
5809 unreachable
5810
5811Overview:
5812"""""""""
5813
5814The '``unreachable``' instruction has no defined semantics. This
5815instruction is used to inform the optimizer that a particular portion of
5816the code is not reachable. This can be used to indicate that the code
5817after a no-return function cannot be reached, and other facts.
5818
5819Semantics:
5820""""""""""
5821
5822The '``unreachable``' instruction has no defined semantics.
5823
5824.. _binaryops:
5825
5826Binary Operations
5827-----------------
5828
5829Binary operators are used to do most of the computation in a program.
5830They require two operands of the same type, execute an operation on
5831them, and produce a single value. The operands might represent multiple
5832data, as is the case with the :ref:`vector <t_vector>` data type. The
5833result value has the same type as its operands.
5834
5835There are several different binary operators:
5836
5837.. _i_add:
5838
5839'``add``' Instruction
5840^^^^^^^^^^^^^^^^^^^^^
5841
5842Syntax:
5843"""""""
5844
5845::
5846
Tim Northover675a0962014-06-13 14:24:23 +00005847 <result> = add <ty> <op1>, <op2> ; yields ty:result
5848 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5849 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5850 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005851
5852Overview:
5853"""""""""
5854
5855The '``add``' instruction returns the sum of its two operands.
5856
5857Arguments:
5858""""""""""
5859
5860The two arguments to the '``add``' instruction must be
5861:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5862arguments must have identical types.
5863
5864Semantics:
5865""""""""""
5866
5867The value produced is the integer sum of the two operands.
5868
5869If the sum has unsigned overflow, the result returned is the
5870mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5871the result.
5872
5873Because LLVM integers use a two's complement representation, this
5874instruction is appropriate for both signed and unsigned integers.
5875
5876``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5877respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5878result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5879unsigned and/or signed overflow, respectively, occurs.
5880
5881Example:
5882""""""""
5883
Renato Golin124f2592016-07-20 12:16:38 +00005884.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005885
Tim Northover675a0962014-06-13 14:24:23 +00005886 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005887
5888.. _i_fadd:
5889
5890'``fadd``' Instruction
5891^^^^^^^^^^^^^^^^^^^^^^
5892
5893Syntax:
5894"""""""
5895
5896::
5897
Tim Northover675a0962014-06-13 14:24:23 +00005898 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005899
5900Overview:
5901"""""""""
5902
5903The '``fadd``' instruction returns the sum of its two operands.
5904
5905Arguments:
5906""""""""""
5907
5908The two arguments to the '``fadd``' instruction must be :ref:`floating
5909point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5910Both arguments must have identical types.
5911
5912Semantics:
5913""""""""""
5914
5915The value produced is the floating point sum of the two operands. This
5916instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5917which are optimization hints to enable otherwise unsafe floating point
5918optimizations:
5919
5920Example:
5921""""""""
5922
Renato Golin124f2592016-07-20 12:16:38 +00005923.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005924
Tim Northover675a0962014-06-13 14:24:23 +00005925 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005926
5927'``sub``' Instruction
5928^^^^^^^^^^^^^^^^^^^^^
5929
5930Syntax:
5931"""""""
5932
5933::
5934
Tim Northover675a0962014-06-13 14:24:23 +00005935 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5936 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5937 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5938 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005939
5940Overview:
5941"""""""""
5942
5943The '``sub``' instruction returns the difference of its two operands.
5944
5945Note that the '``sub``' instruction is used to represent the '``neg``'
5946instruction present in most other intermediate representations.
5947
5948Arguments:
5949""""""""""
5950
5951The two arguments to the '``sub``' instruction must be
5952:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5953arguments must have identical types.
5954
5955Semantics:
5956""""""""""
5957
5958The value produced is the integer difference of the two operands.
5959
5960If the difference has unsigned overflow, the result returned is the
5961mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5962the result.
5963
5964Because LLVM integers use a two's complement representation, this
5965instruction is appropriate for both signed and unsigned integers.
5966
5967``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5968respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5969result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5970unsigned and/or signed overflow, respectively, occurs.
5971
5972Example:
5973""""""""
5974
Renato Golin124f2592016-07-20 12:16:38 +00005975.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00005976
Tim Northover675a0962014-06-13 14:24:23 +00005977 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5978 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005979
5980.. _i_fsub:
5981
5982'``fsub``' Instruction
5983^^^^^^^^^^^^^^^^^^^^^^
5984
5985Syntax:
5986"""""""
5987
5988::
5989
Tim Northover675a0962014-06-13 14:24:23 +00005990 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005991
5992Overview:
5993"""""""""
5994
5995The '``fsub``' instruction returns the difference of its two operands.
5996
5997Note that the '``fsub``' instruction is used to represent the '``fneg``'
5998instruction present in most other intermediate representations.
5999
6000Arguments:
6001""""""""""
6002
6003The two arguments to the '``fsub``' instruction must be :ref:`floating
6004point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6005Both arguments must have identical types.
6006
6007Semantics:
6008""""""""""
6009
6010The value produced is the floating point difference of the two operands.
6011This instruction can also take any number of :ref:`fast-math
6012flags <fastmath>`, which are optimization hints to enable otherwise
6013unsafe floating point optimizations:
6014
6015Example:
6016""""""""
6017
Renato Golin124f2592016-07-20 12:16:38 +00006018.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006019
Tim Northover675a0962014-06-13 14:24:23 +00006020 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
6021 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00006022
6023'``mul``' Instruction
6024^^^^^^^^^^^^^^^^^^^^^
6025
6026Syntax:
6027"""""""
6028
6029::
6030
Tim Northover675a0962014-06-13 14:24:23 +00006031 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6032 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6033 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6034 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006035
6036Overview:
6037"""""""""
6038
6039The '``mul``' instruction returns the product of its two operands.
6040
6041Arguments:
6042""""""""""
6043
6044The two arguments to the '``mul``' instruction must be
6045:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6046arguments must have identical types.
6047
6048Semantics:
6049""""""""""
6050
6051The value produced is the integer product of the two operands.
6052
6053If the result of the multiplication has unsigned overflow, the result
6054returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6055bit width of the result.
6056
6057Because LLVM integers use a two's complement representation, and the
6058result is the same width as the operands, this instruction returns the
6059correct result for both signed and unsigned integers. If a full product
6060(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6061sign-extended or zero-extended as appropriate to the width of the full
6062product.
6063
6064``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6065respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6066result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6067unsigned and/or signed overflow, respectively, occurs.
6068
6069Example:
6070""""""""
6071
Renato Golin124f2592016-07-20 12:16:38 +00006072.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006073
Tim Northover675a0962014-06-13 14:24:23 +00006074 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006075
6076.. _i_fmul:
6077
6078'``fmul``' Instruction
6079^^^^^^^^^^^^^^^^^^^^^^
6080
6081Syntax:
6082"""""""
6083
6084::
6085
Tim Northover675a0962014-06-13 14:24:23 +00006086 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006087
6088Overview:
6089"""""""""
6090
6091The '``fmul``' instruction returns the product of its two operands.
6092
6093Arguments:
6094""""""""""
6095
6096The two arguments to the '``fmul``' instruction must be :ref:`floating
6097point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6098Both arguments must have identical types.
6099
6100Semantics:
6101""""""""""
6102
6103The value produced is the floating point product of the two operands.
6104This instruction can also take any number of :ref:`fast-math
6105flags <fastmath>`, which are optimization hints to enable otherwise
6106unsafe floating point optimizations:
6107
6108Example:
6109""""""""
6110
Renato Golin124f2592016-07-20 12:16:38 +00006111.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006112
Tim Northover675a0962014-06-13 14:24:23 +00006113 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006114
6115'``udiv``' Instruction
6116^^^^^^^^^^^^^^^^^^^^^^
6117
6118Syntax:
6119"""""""
6120
6121::
6122
Tim Northover675a0962014-06-13 14:24:23 +00006123 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6124 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006125
6126Overview:
6127"""""""""
6128
6129The '``udiv``' instruction returns the quotient of its two operands.
6130
6131Arguments:
6132""""""""""
6133
6134The two arguments to the '``udiv``' instruction must be
6135:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6136arguments must have identical types.
6137
6138Semantics:
6139""""""""""
6140
6141The value produced is the unsigned integer quotient of the two operands.
6142
6143Note that unsigned integer division and signed integer division are
6144distinct operations; for signed integer division, use '``sdiv``'.
6145
6146Division by zero leads to undefined behavior.
6147
6148If the ``exact`` keyword is present, the result value of the ``udiv`` is
6149a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6150such, "((a udiv exact b) mul b) == a").
6151
6152Example:
6153""""""""
6154
Renato Golin124f2592016-07-20 12:16:38 +00006155.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006156
Tim Northover675a0962014-06-13 14:24:23 +00006157 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006158
6159'``sdiv``' Instruction
6160^^^^^^^^^^^^^^^^^^^^^^
6161
6162Syntax:
6163"""""""
6164
6165::
6166
Tim Northover675a0962014-06-13 14:24:23 +00006167 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6168 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006169
6170Overview:
6171"""""""""
6172
6173The '``sdiv``' instruction returns the quotient of its two operands.
6174
6175Arguments:
6176""""""""""
6177
6178The two arguments to the '``sdiv``' instruction must be
6179:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6180arguments must have identical types.
6181
6182Semantics:
6183""""""""""
6184
6185The value produced is the signed integer quotient of the two operands
6186rounded towards zero.
6187
6188Note that signed integer division and unsigned integer division are
6189distinct operations; for unsigned integer division, use '``udiv``'.
6190
6191Division by zero leads to undefined behavior. Overflow also leads to
6192undefined behavior; this is a rare case, but can occur, for example, by
6193doing a 32-bit division of -2147483648 by -1.
6194
6195If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6196a :ref:`poison value <poisonvalues>` if the result would be rounded.
6197
6198Example:
6199""""""""
6200
Renato Golin124f2592016-07-20 12:16:38 +00006201.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006202
Tim Northover675a0962014-06-13 14:24:23 +00006203 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006204
6205.. _i_fdiv:
6206
6207'``fdiv``' Instruction
6208^^^^^^^^^^^^^^^^^^^^^^
6209
6210Syntax:
6211"""""""
6212
6213::
6214
Tim Northover675a0962014-06-13 14:24:23 +00006215 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006216
6217Overview:
6218"""""""""
6219
6220The '``fdiv``' instruction returns the quotient of its two operands.
6221
6222Arguments:
6223""""""""""
6224
6225The two arguments to the '``fdiv``' instruction must be :ref:`floating
6226point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6227Both arguments must have identical types.
6228
6229Semantics:
6230""""""""""
6231
6232The value produced is the floating point quotient of the two operands.
6233This instruction can also take any number of :ref:`fast-math
6234flags <fastmath>`, which are optimization hints to enable otherwise
6235unsafe floating point optimizations:
6236
6237Example:
6238""""""""
6239
Renato Golin124f2592016-07-20 12:16:38 +00006240.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006241
Tim Northover675a0962014-06-13 14:24:23 +00006242 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006243
6244'``urem``' Instruction
6245^^^^^^^^^^^^^^^^^^^^^^
6246
6247Syntax:
6248"""""""
6249
6250::
6251
Tim Northover675a0962014-06-13 14:24:23 +00006252 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006253
6254Overview:
6255"""""""""
6256
6257The '``urem``' instruction returns the remainder from the unsigned
6258division of its two arguments.
6259
6260Arguments:
6261""""""""""
6262
6263The two arguments to the '``urem``' instruction must be
6264:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6265arguments must have identical types.
6266
6267Semantics:
6268""""""""""
6269
6270This instruction returns the unsigned integer *remainder* of a division.
6271This instruction always performs an unsigned division to get the
6272remainder.
6273
6274Note that unsigned integer remainder and signed integer remainder are
6275distinct operations; for signed integer remainder, use '``srem``'.
6276
6277Taking the remainder of a division by zero leads to undefined behavior.
6278
6279Example:
6280""""""""
6281
Renato Golin124f2592016-07-20 12:16:38 +00006282.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006283
Tim Northover675a0962014-06-13 14:24:23 +00006284 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006285
6286'``srem``' Instruction
6287^^^^^^^^^^^^^^^^^^^^^^
6288
6289Syntax:
6290"""""""
6291
6292::
6293
Tim Northover675a0962014-06-13 14:24:23 +00006294 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006295
6296Overview:
6297"""""""""
6298
6299The '``srem``' instruction returns the remainder from the signed
6300division of its two operands. This instruction can also take
6301:ref:`vector <t_vector>` versions of the values in which case the elements
6302must be integers.
6303
6304Arguments:
6305""""""""""
6306
6307The two arguments to the '``srem``' instruction must be
6308:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6309arguments must have identical types.
6310
6311Semantics:
6312""""""""""
6313
6314This instruction returns the *remainder* of a division (where the result
6315is either zero or has the same sign as the dividend, ``op1``), not the
6316*modulo* operator (where the result is either zero or has the same sign
6317as the divisor, ``op2``) of a value. For more information about the
6318difference, see `The Math
6319Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6320table of how this is implemented in various languages, please see
6321`Wikipedia: modulo
6322operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6323
6324Note that signed integer remainder and unsigned integer remainder are
6325distinct operations; for unsigned integer remainder, use '``urem``'.
6326
6327Taking the remainder of a division by zero leads to undefined behavior.
6328Overflow also leads to undefined behavior; this is a rare case, but can
6329occur, for example, by taking the remainder of a 32-bit division of
6330-2147483648 by -1. (The remainder doesn't actually overflow, but this
6331rule lets srem be implemented using instructions that return both the
6332result of the division and the remainder.)
6333
6334Example:
6335""""""""
6336
Renato Golin124f2592016-07-20 12:16:38 +00006337.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006338
Tim Northover675a0962014-06-13 14:24:23 +00006339 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006340
6341.. _i_frem:
6342
6343'``frem``' Instruction
6344^^^^^^^^^^^^^^^^^^^^^^
6345
6346Syntax:
6347"""""""
6348
6349::
6350
Tim Northover675a0962014-06-13 14:24:23 +00006351 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006352
6353Overview:
6354"""""""""
6355
6356The '``frem``' instruction returns the remainder from the division of
6357its two operands.
6358
6359Arguments:
6360""""""""""
6361
6362The two arguments to the '``frem``' instruction must be :ref:`floating
6363point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6364Both arguments must have identical types.
6365
6366Semantics:
6367""""""""""
6368
6369This instruction returns the *remainder* of a division. The remainder
6370has the same sign as the dividend. This instruction can also take any
6371number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6372to enable otherwise unsafe floating point optimizations:
6373
6374Example:
6375""""""""
6376
Renato Golin124f2592016-07-20 12:16:38 +00006377.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006378
Tim Northover675a0962014-06-13 14:24:23 +00006379 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006380
6381.. _bitwiseops:
6382
6383Bitwise Binary Operations
6384-------------------------
6385
6386Bitwise binary operators are used to do various forms of bit-twiddling
6387in a program. They are generally very efficient instructions and can
6388commonly be strength reduced from other instructions. They require two
6389operands of the same type, execute an operation on them, and produce a
6390single value. The resulting value is the same type as its operands.
6391
6392'``shl``' Instruction
6393^^^^^^^^^^^^^^^^^^^^^
6394
6395Syntax:
6396"""""""
6397
6398::
6399
Tim Northover675a0962014-06-13 14:24:23 +00006400 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6401 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6402 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6403 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006404
6405Overview:
6406"""""""""
6407
6408The '``shl``' instruction returns the first operand shifted to the left
6409a specified number of bits.
6410
6411Arguments:
6412""""""""""
6413
6414Both arguments to the '``shl``' instruction must be the same
6415:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6416'``op2``' is treated as an unsigned value.
6417
6418Semantics:
6419""""""""""
6420
6421The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6422where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006423dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006424``op1``, the result is undefined. If the arguments are vectors, each
6425vector element of ``op1`` is shifted by the corresponding shift amount
6426in ``op2``.
6427
6428If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6429value <poisonvalues>` if it shifts out any non-zero bits. If the
6430``nsw`` keyword is present, then the shift produces a :ref:`poison
6431value <poisonvalues>` if it shifts out any bits that disagree with the
6432resultant sign bit. As such, NUW/NSW have the same semantics as they
6433would if the shift were expressed as a mul instruction with the same
6434nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6435
6436Example:
6437""""""""
6438
Renato Golin124f2592016-07-20 12:16:38 +00006439.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006440
Tim Northover675a0962014-06-13 14:24:23 +00006441 <result> = shl i32 4, %var ; yields i32: 4 << %var
6442 <result> = shl i32 4, 2 ; yields i32: 16
6443 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006444 <result> = shl i32 1, 32 ; undefined
6445 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6446
6447'``lshr``' Instruction
6448^^^^^^^^^^^^^^^^^^^^^^
6449
6450Syntax:
6451"""""""
6452
6453::
6454
Tim Northover675a0962014-06-13 14:24:23 +00006455 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6456 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006457
6458Overview:
6459"""""""""
6460
6461The '``lshr``' instruction (logical shift right) returns the first
6462operand shifted to the right a specified number of bits with zero fill.
6463
6464Arguments:
6465""""""""""
6466
6467Both arguments to the '``lshr``' instruction must be the same
6468:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6469'``op2``' is treated as an unsigned value.
6470
6471Semantics:
6472""""""""""
6473
6474This instruction always performs a logical shift right operation. The
6475most significant bits of the result will be filled with zero bits after
6476the shift. If ``op2`` is (statically or dynamically) equal to or larger
6477than the number of bits in ``op1``, the result is undefined. If the
6478arguments are vectors, each vector element of ``op1`` is shifted by the
6479corresponding shift amount in ``op2``.
6480
6481If the ``exact`` keyword is present, the result value of the ``lshr`` is
6482a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6483non-zero.
6484
6485Example:
6486""""""""
6487
Renato Golin124f2592016-07-20 12:16:38 +00006488.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006489
Tim Northover675a0962014-06-13 14:24:23 +00006490 <result> = lshr i32 4, 1 ; yields i32:result = 2
6491 <result> = lshr i32 4, 2 ; yields i32:result = 1
6492 <result> = lshr i8 4, 3 ; yields i8:result = 0
6493 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006494 <result> = lshr i32 1, 32 ; undefined
6495 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6496
6497'``ashr``' Instruction
6498^^^^^^^^^^^^^^^^^^^^^^
6499
6500Syntax:
6501"""""""
6502
6503::
6504
Tim Northover675a0962014-06-13 14:24:23 +00006505 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6506 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006507
6508Overview:
6509"""""""""
6510
6511The '``ashr``' instruction (arithmetic shift right) returns the first
6512operand shifted to the right a specified number of bits with sign
6513extension.
6514
6515Arguments:
6516""""""""""
6517
6518Both arguments to the '``ashr``' instruction must be the same
6519:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6520'``op2``' is treated as an unsigned value.
6521
6522Semantics:
6523""""""""""
6524
6525This instruction always performs an arithmetic shift right operation,
6526The most significant bits of the result will be filled with the sign bit
6527of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6528than the number of bits in ``op1``, the result is undefined. If the
6529arguments are vectors, each vector element of ``op1`` is shifted by the
6530corresponding shift amount in ``op2``.
6531
6532If the ``exact`` keyword is present, the result value of the ``ashr`` is
6533a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6534non-zero.
6535
6536Example:
6537""""""""
6538
Renato Golin124f2592016-07-20 12:16:38 +00006539.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006540
Tim Northover675a0962014-06-13 14:24:23 +00006541 <result> = ashr i32 4, 1 ; yields i32:result = 2
6542 <result> = ashr i32 4, 2 ; yields i32:result = 1
6543 <result> = ashr i8 4, 3 ; yields i8:result = 0
6544 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006545 <result> = ashr i32 1, 32 ; undefined
6546 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6547
6548'``and``' Instruction
6549^^^^^^^^^^^^^^^^^^^^^
6550
6551Syntax:
6552"""""""
6553
6554::
6555
Tim Northover675a0962014-06-13 14:24:23 +00006556 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006557
6558Overview:
6559"""""""""
6560
6561The '``and``' instruction returns the bitwise logical and of its two
6562operands.
6563
6564Arguments:
6565""""""""""
6566
6567The two arguments to the '``and``' instruction must be
6568:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6569arguments must have identical types.
6570
6571Semantics:
6572""""""""""
6573
6574The truth table used for the '``and``' instruction is:
6575
6576+-----+-----+-----+
6577| In0 | In1 | Out |
6578+-----+-----+-----+
6579| 0 | 0 | 0 |
6580+-----+-----+-----+
6581| 0 | 1 | 0 |
6582+-----+-----+-----+
6583| 1 | 0 | 0 |
6584+-----+-----+-----+
6585| 1 | 1 | 1 |
6586+-----+-----+-----+
6587
6588Example:
6589""""""""
6590
Renato Golin124f2592016-07-20 12:16:38 +00006591.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006592
Tim Northover675a0962014-06-13 14:24:23 +00006593 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6594 <result> = and i32 15, 40 ; yields i32:result = 8
6595 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006596
6597'``or``' Instruction
6598^^^^^^^^^^^^^^^^^^^^
6599
6600Syntax:
6601"""""""
6602
6603::
6604
Tim Northover675a0962014-06-13 14:24:23 +00006605 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006606
6607Overview:
6608"""""""""
6609
6610The '``or``' instruction returns the bitwise logical inclusive or of its
6611two operands.
6612
6613Arguments:
6614""""""""""
6615
6616The two arguments to the '``or``' instruction must be
6617:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6618arguments must have identical types.
6619
6620Semantics:
6621""""""""""
6622
6623The truth table used for the '``or``' instruction is:
6624
6625+-----+-----+-----+
6626| In0 | In1 | Out |
6627+-----+-----+-----+
6628| 0 | 0 | 0 |
6629+-----+-----+-----+
6630| 0 | 1 | 1 |
6631+-----+-----+-----+
6632| 1 | 0 | 1 |
6633+-----+-----+-----+
6634| 1 | 1 | 1 |
6635+-----+-----+-----+
6636
6637Example:
6638""""""""
6639
6640::
6641
Tim Northover675a0962014-06-13 14:24:23 +00006642 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6643 <result> = or i32 15, 40 ; yields i32:result = 47
6644 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006645
6646'``xor``' Instruction
6647^^^^^^^^^^^^^^^^^^^^^
6648
6649Syntax:
6650"""""""
6651
6652::
6653
Tim Northover675a0962014-06-13 14:24:23 +00006654 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006655
6656Overview:
6657"""""""""
6658
6659The '``xor``' instruction returns the bitwise logical exclusive or of
6660its two operands. The ``xor`` is used to implement the "one's
6661complement" operation, which is the "~" operator in C.
6662
6663Arguments:
6664""""""""""
6665
6666The two arguments to the '``xor``' instruction must be
6667:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6668arguments must have identical types.
6669
6670Semantics:
6671""""""""""
6672
6673The truth table used for the '``xor``' instruction is:
6674
6675+-----+-----+-----+
6676| In0 | In1 | Out |
6677+-----+-----+-----+
6678| 0 | 0 | 0 |
6679+-----+-----+-----+
6680| 0 | 1 | 1 |
6681+-----+-----+-----+
6682| 1 | 0 | 1 |
6683+-----+-----+-----+
6684| 1 | 1 | 0 |
6685+-----+-----+-----+
6686
6687Example:
6688""""""""
6689
Renato Golin124f2592016-07-20 12:16:38 +00006690.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006691
Tim Northover675a0962014-06-13 14:24:23 +00006692 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6693 <result> = xor i32 15, 40 ; yields i32:result = 39
6694 <result> = xor i32 4, 8 ; yields i32:result = 12
6695 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006696
6697Vector Operations
6698-----------------
6699
6700LLVM supports several instructions to represent vector operations in a
6701target-independent manner. These instructions cover the element-access
6702and vector-specific operations needed to process vectors effectively.
6703While LLVM does directly support these vector operations, many
6704sophisticated algorithms will want to use target-specific intrinsics to
6705take full advantage of a specific target.
6706
6707.. _i_extractelement:
6708
6709'``extractelement``' Instruction
6710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6711
6712Syntax:
6713"""""""
6714
6715::
6716
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006717 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006718
6719Overview:
6720"""""""""
6721
6722The '``extractelement``' instruction extracts a single scalar element
6723from a vector at a specified index.
6724
6725Arguments:
6726""""""""""
6727
6728The first operand of an '``extractelement``' instruction is a value of
6729:ref:`vector <t_vector>` type. The second operand is an index indicating
6730the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006731variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006732
6733Semantics:
6734""""""""""
6735
6736The result is a scalar of the same type as the element type of ``val``.
6737Its value is the value at position ``idx`` of ``val``. If ``idx``
6738exceeds the length of ``val``, the results are undefined.
6739
6740Example:
6741""""""""
6742
Renato Golin124f2592016-07-20 12:16:38 +00006743.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006744
6745 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6746
6747.. _i_insertelement:
6748
6749'``insertelement``' Instruction
6750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6751
6752Syntax:
6753"""""""
6754
6755::
6756
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006757 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006758
6759Overview:
6760"""""""""
6761
6762The '``insertelement``' instruction inserts a scalar element into a
6763vector at a specified index.
6764
6765Arguments:
6766""""""""""
6767
6768The first operand of an '``insertelement``' instruction is a value of
6769:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6770type must equal the element type of the first operand. The third operand
6771is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006772index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006773
6774Semantics:
6775""""""""""
6776
6777The result is a vector of the same type as ``val``. Its element values
6778are those of ``val`` except at position ``idx``, where it gets the value
6779``elt``. If ``idx`` exceeds the length of ``val``, the results are
6780undefined.
6781
6782Example:
6783""""""""
6784
Renato Golin124f2592016-07-20 12:16:38 +00006785.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006786
6787 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6788
6789.. _i_shufflevector:
6790
6791'``shufflevector``' Instruction
6792^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6793
6794Syntax:
6795"""""""
6796
6797::
6798
6799 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6800
6801Overview:
6802"""""""""
6803
6804The '``shufflevector``' instruction constructs a permutation of elements
6805from two input vectors, returning a vector with the same element type as
6806the input and length that is the same as the shuffle mask.
6807
6808Arguments:
6809""""""""""
6810
6811The first two operands of a '``shufflevector``' instruction are vectors
6812with the same type. The third argument is a shuffle mask whose element
6813type is always 'i32'. The result of the instruction is a vector whose
6814length is the same as the shuffle mask and whose element type is the
6815same as the element type of the first two operands.
6816
6817The shuffle mask operand is required to be a constant vector with either
6818constant integer or undef values.
6819
6820Semantics:
6821""""""""""
6822
6823The elements of the two input vectors are numbered from left to right
6824across both of the vectors. The shuffle mask operand specifies, for each
6825element of the result vector, which element of the two input vectors the
6826result element gets. The element selector may be undef (meaning "don't
6827care") and the second operand may be undef if performing a shuffle from
6828only one vector.
6829
6830Example:
6831""""""""
6832
Renato Golin124f2592016-07-20 12:16:38 +00006833.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006834
6835 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6836 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6837 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6838 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6839 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6840 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6841 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6842 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6843
6844Aggregate Operations
6845--------------------
6846
6847LLVM supports several instructions for working with
6848:ref:`aggregate <t_aggregate>` values.
6849
6850.. _i_extractvalue:
6851
6852'``extractvalue``' Instruction
6853^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6854
6855Syntax:
6856"""""""
6857
6858::
6859
6860 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6861
6862Overview:
6863"""""""""
6864
6865The '``extractvalue``' instruction extracts the value of a member field
6866from an :ref:`aggregate <t_aggregate>` value.
6867
6868Arguments:
6869""""""""""
6870
6871The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006872:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006873constant indices to specify which value to extract in a similar manner
6874as indices in a '``getelementptr``' instruction.
6875
6876The major differences to ``getelementptr`` indexing are:
6877
6878- Since the value being indexed is not a pointer, the first index is
6879 omitted and assumed to be zero.
6880- At least one index must be specified.
6881- Not only struct indices but also array indices must be in bounds.
6882
6883Semantics:
6884""""""""""
6885
6886The result is the value at the position in the aggregate specified by
6887the index operands.
6888
6889Example:
6890""""""""
6891
Renato Golin124f2592016-07-20 12:16:38 +00006892.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00006893
6894 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6895
6896.. _i_insertvalue:
6897
6898'``insertvalue``' Instruction
6899^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6900
6901Syntax:
6902"""""""
6903
6904::
6905
6906 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6907
6908Overview:
6909"""""""""
6910
6911The '``insertvalue``' instruction inserts a value into a member field in
6912an :ref:`aggregate <t_aggregate>` value.
6913
6914Arguments:
6915""""""""""
6916
6917The first operand of an '``insertvalue``' instruction is a value of
6918:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6919a first-class value to insert. The following operands are constant
6920indices indicating the position at which to insert the value in a
6921similar manner as indices in a '``extractvalue``' instruction. The value
6922to insert must have the same type as the value identified by the
6923indices.
6924
6925Semantics:
6926""""""""""
6927
6928The result is an aggregate of the same type as ``val``. Its value is
6929that of ``val`` except that the value at the position specified by the
6930indices is that of ``elt``.
6931
6932Example:
6933""""""""
6934
6935.. code-block:: llvm
6936
6937 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6938 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006939 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006940
6941.. _memoryops:
6942
6943Memory Access and Addressing Operations
6944---------------------------------------
6945
6946A key design point of an SSA-based representation is how it represents
6947memory. In LLVM, no memory locations are in SSA form, which makes things
6948very simple. This section describes how to read, write, and allocate
6949memory in LLVM.
6950
6951.. _i_alloca:
6952
6953'``alloca``' Instruction
6954^^^^^^^^^^^^^^^^^^^^^^^^
6955
6956Syntax:
6957"""""""
6958
6959::
6960
Tim Northover675a0962014-06-13 14:24:23 +00006961 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006962
6963Overview:
6964"""""""""
6965
6966The '``alloca``' instruction allocates memory on the stack frame of the
6967currently executing function, to be automatically released when this
6968function returns to its caller. The object is always allocated in the
6969generic address space (address space zero).
6970
6971Arguments:
6972""""""""""
6973
6974The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6975bytes of memory on the runtime stack, returning a pointer of the
6976appropriate type to the program. If "NumElements" is specified, it is
6977the number of elements allocated, otherwise "NumElements" is defaulted
6978to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006979allocation is guaranteed to be aligned to at least that boundary. The
6980alignment may not be greater than ``1 << 29``. If not specified, or if
6981zero, the target can choose to align the allocation on any convenient
6982boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006983
6984'``type``' may be any sized type.
6985
6986Semantics:
6987""""""""""
6988
6989Memory is allocated; a pointer is returned. The operation is undefined
6990if there is insufficient stack space for the allocation. '``alloca``'d
6991memory is automatically released when the function returns. The
6992'``alloca``' instruction is commonly used to represent automatic
6993variables that must have an address available. When the function returns
6994(either with the ``ret`` or ``resume`` instructions), the memory is
6995reclaimed. Allocating zero bytes is legal, but the result is undefined.
6996The order in which memory is allocated (ie., which way the stack grows)
6997is not specified.
6998
6999Example:
7000""""""""
7001
7002.. code-block:: llvm
7003
Tim Northover675a0962014-06-13 14:24:23 +00007004 %ptr = alloca i32 ; yields i32*:ptr
7005 %ptr = alloca i32, i32 4 ; yields i32*:ptr
7006 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
7007 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00007008
7009.. _i_load:
7010
7011'``load``' Instruction
7012^^^^^^^^^^^^^^^^^^^^^^
7013
7014Syntax:
7015"""""""
7016
7017::
7018
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007019 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Matt Arsenaultd5b9a362016-04-12 14:41:03 +00007020 <result> = load atomic [volatile] <ty>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00007021 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007022 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007023 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00007024
7025Overview:
7026"""""""""
7027
7028The '``load``' instruction is used to read from memory.
7029
7030Arguments:
7031""""""""""
7032
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007033The argument to the ``load`` instruction specifies the memory address from which
7034to load. The type specified must be a :ref:`first class <t_firstclass>` type of
7035known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
7036the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
7037modify the number or order of execution of this ``load`` with other
7038:ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007039
JF Bastiend1fb5852015-12-17 22:09:19 +00007040If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
7041<ordering>` and optional ``singlethread`` argument. The ``release`` and
7042``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
7043produce :ref:`defined <memmodel>` results when they may see multiple atomic
7044stores. The type of the pointee must be an integer, pointer, or floating-point
7045type whose bit width is a power of two greater than or equal to eight and less
7046than or equal to a target-specific size limit. ``align`` must be explicitly
7047specified on atomic loads, and the load has undefined behavior if the alignment
7048is not set to a value which is at least the size in bytes of the
7049pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00007050
7051The optional constant ``align`` argument specifies the alignment of the
7052operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007053or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007054alignment for the target. It is the responsibility of the code emitter
7055to ensure that the alignment information is correct. Overestimating the
7056alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007057may produce less efficient code. An alignment of 1 is always safe. The
Matt Arsenault7020f252016-06-16 16:33:41 +00007058maximum possible alignment is ``1 << 29``. An alignment value higher
7059than the size of the loaded type implies memory up to the alignment
7060value bytes can be safely loaded without trapping in the default
7061address space. Access of the high bytes can interfere with debugging
7062tools, so should not be accessed if the function has the
7063``sanitize_thread`` or ``sanitize_address`` attributes.
Sean Silvab084af42012-12-07 10:36:55 +00007064
7065The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007066metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007067``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007068metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007069that this load is not expected to be reused in the cache. The code
7070generator may select special instructions to save cache bandwidth, such
7071as the ``MOVNT`` instruction on x86.
7072
7073The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007074metadata name ``<index>`` corresponding to a metadata node with no
7075entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00007076instruction tells the optimizer and code generator that the address
7077operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007078Being invariant does not imply that a location is dereferenceable,
7079but it does imply that once the location is known dereferenceable
7080its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00007081
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007082The optional ``!invariant.group`` metadata must reference a single metadata name
7083 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7084
Philip Reamescdb72f32014-10-20 22:40:55 +00007085The optional ``!nonnull`` metadata must reference a single
7086metadata name ``<index>`` corresponding to a metadata node with no
7087entries. The existence of the ``!nonnull`` metadata on the
7088instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007089never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007090on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007091to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007092
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007093The optional ``!dereferenceable`` metadata must reference a single metadata
7094name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007095entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007096tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007097The number of bytes known to be dereferenceable is specified by the integer
7098value in the metadata node. This is analogous to the ''dereferenceable''
7099attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007100to loads of a pointer type.
7101
7102The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007103metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7104``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007105instruction tells the optimizer that the value loaded is known to be either
7106dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007107The number of bytes known to be dereferenceable is specified by the integer
7108value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7109attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007110to loads of a pointer type.
7111
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007112The optional ``!align`` metadata must reference a single metadata name
7113``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7114The existence of the ``!align`` metadata on the instruction tells the
7115optimizer that the value loaded is known to be aligned to a boundary specified
7116by the integer value in the metadata node. The alignment must be a power of 2.
7117This is analogous to the ''align'' attribute on parameters and return values.
7118This metadata can only be applied to loads of a pointer type.
7119
Sean Silvab084af42012-12-07 10:36:55 +00007120Semantics:
7121""""""""""
7122
7123The location of memory pointed to is loaded. If the value being loaded
7124is of scalar type then the number of bytes read does not exceed the
7125minimum number of bytes needed to hold all bits of the type. For
7126example, loading an ``i24`` reads at most three bytes. When loading a
7127value of a type like ``i20`` with a size that is not an integral number
7128of bytes, the result is undefined if the value was not originally
7129written using a store of the same type.
7130
7131Examples:
7132"""""""""
7133
7134.. code-block:: llvm
7135
Tim Northover675a0962014-06-13 14:24:23 +00007136 %ptr = alloca i32 ; yields i32*:ptr
7137 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007138 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007139
7140.. _i_store:
7141
7142'``store``' Instruction
7143^^^^^^^^^^^^^^^^^^^^^^^
7144
7145Syntax:
7146"""""""
7147
7148::
7149
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007150 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7151 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007152
7153Overview:
7154"""""""""
7155
7156The '``store``' instruction is used to write to memory.
7157
7158Arguments:
7159""""""""""
7160
Sanjoy Dasc2cf6ef2016-06-01 16:13:10 +00007161There are two arguments to the ``store`` instruction: a value to store and an
7162address at which to store it. The type of the ``<pointer>`` operand must be a
7163pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
7164operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
7165allowed to modify the number or order of execution of this ``store`` with other
7166:ref:`volatile operations <volatile>`. Only values of :ref:`first class
7167<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
7168structural type <t_opaque>`) can be stored.
Sean Silvab084af42012-12-07 10:36:55 +00007169
JF Bastiend1fb5852015-12-17 22:09:19 +00007170If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
7171<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
7172``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
7173produce :ref:`defined <memmodel>` results when they may see multiple atomic
7174stores. The type of the pointee must be an integer, pointer, or floating-point
7175type whose bit width is a power of two greater than or equal to eight and less
7176than or equal to a target-specific size limit. ``align`` must be explicitly
7177specified on atomic stores, and the store has undefined behavior if the
7178alignment is not set to a value which is at least the size in bytes of the
7179pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00007180
Eli Benderskyca380842013-04-17 17:17:20 +00007181The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007182operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007183or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007184alignment for the target. It is the responsibility of the code emitter
7185to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007186alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007187alignment may produce less efficient code. An alignment of 1 is always
Matt Arsenault7020f252016-06-16 16:33:41 +00007188safe. The maximum possible alignment is ``1 << 29``. An alignment
7189value higher than the size of the stored type implies memory up to the
7190alignment value bytes can be stored to without trapping in the default
7191address space. Storing to the higher bytes however may result in data
7192races if another thread can access the same address. Introducing a
7193data race is not allowed. Storing to the extra bytes is not allowed
7194even in situations where a data race is known to not exist if the
7195function has the ``sanitize_address`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00007196
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007197The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007198name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007199value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007200tells the optimizer and code generator that this load is not expected to
7201be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00007202instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00007203x86.
7204
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007205The optional ``!invariant.group`` metadata must reference a
7206single metadata name ``<index>``. See ``invariant.group`` metadata.
7207
Sean Silvab084af42012-12-07 10:36:55 +00007208Semantics:
7209""""""""""
7210
Eli Benderskyca380842013-04-17 17:17:20 +00007211The contents of memory are updated to contain ``<value>`` at the
7212location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007213of scalar type then the number of bytes written does not exceed the
7214minimum number of bytes needed to hold all bits of the type. For
7215example, storing an ``i24`` writes at most three bytes. When writing a
7216value of a type like ``i20`` with a size that is not an integral number
7217of bytes, it is unspecified what happens to the extra bits that do not
7218belong to the type, but they will typically be overwritten.
7219
7220Example:
7221""""""""
7222
7223.. code-block:: llvm
7224
Tim Northover675a0962014-06-13 14:24:23 +00007225 %ptr = alloca i32 ; yields i32*:ptr
7226 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007227 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007228
7229.. _i_fence:
7230
7231'``fence``' Instruction
7232^^^^^^^^^^^^^^^^^^^^^^^
7233
7234Syntax:
7235"""""""
7236
7237::
7238
Tim Northover675a0962014-06-13 14:24:23 +00007239 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007240
7241Overview:
7242"""""""""
7243
7244The '``fence``' instruction is used to introduce happens-before edges
7245between operations.
7246
7247Arguments:
7248""""""""""
7249
7250'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7251defines what *synchronizes-with* edges they add. They can only be given
7252``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7253
7254Semantics:
7255""""""""""
7256
7257A fence A which has (at least) ``release`` ordering semantics
7258*synchronizes with* a fence B with (at least) ``acquire`` ordering
7259semantics if and only if there exist atomic operations X and Y, both
7260operating on some atomic object M, such that A is sequenced before X, X
7261modifies M (either directly or through some side effect of a sequence
7262headed by X), Y is sequenced before B, and Y observes M. This provides a
7263*happens-before* dependency between A and B. Rather than an explicit
7264``fence``, one (but not both) of the atomic operations X or Y might
7265provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7266still *synchronize-with* the explicit ``fence`` and establish the
7267*happens-before* edge.
7268
7269A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7270``acquire`` and ``release`` semantics specified above, participates in
7271the global program order of other ``seq_cst`` operations and/or fences.
7272
7273The optional ":ref:`singlethread <singlethread>`" argument specifies
7274that the fence only synchronizes with other fences in the same thread.
7275(This is useful for interacting with signal handlers.)
7276
7277Example:
7278""""""""
7279
7280.. code-block:: llvm
7281
Tim Northover675a0962014-06-13 14:24:23 +00007282 fence acquire ; yields void
7283 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007284
7285.. _i_cmpxchg:
7286
7287'``cmpxchg``' Instruction
7288^^^^^^^^^^^^^^^^^^^^^^^^^
7289
7290Syntax:
7291"""""""
7292
7293::
7294
Tim Northover675a0962014-06-13 14:24:23 +00007295 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007296
7297Overview:
7298"""""""""
7299
7300The '``cmpxchg``' instruction is used to atomically modify memory. It
7301loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007302equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007303
7304Arguments:
7305""""""""""
7306
7307There are three arguments to the '``cmpxchg``' instruction: an address
7308to operate on, a value to compare to the value currently be at that
7309address, and a new value to place at that address if the compared values
Philip Reames1960cfd2016-02-19 00:06:41 +00007310are equal. The type of '<cmp>' must be an integer or pointer type whose
7311bit width is a power of two greater than or equal to eight and less
7312than or equal to a target-specific size limit. '<cmp>' and '<new>' must
7313have the same type, and the type of '<pointer>' must be a pointer to
7314that type. If the ``cmpxchg`` is marked as ``volatile``, then the
7315optimizer is not allowed to modify the number or order of execution of
7316this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
Sean Silvab084af42012-12-07 10:36:55 +00007317
Tim Northovere94a5182014-03-11 10:48:52 +00007318The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007319``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7320must be at least ``monotonic``, the ordering constraint on failure must be no
7321stronger than that on success, and the failure ordering cannot be either
7322``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007323
7324The optional "``singlethread``" argument declares that the ``cmpxchg``
7325is only atomic with respect to code (usually signal handlers) running in
7326the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7327respect to all other code in the system.
7328
7329The pointer passed into cmpxchg must have alignment greater than or
7330equal to the size in memory of the operand.
7331
7332Semantics:
7333""""""""""
7334
Tim Northover420a2162014-06-13 14:24:07 +00007335The contents of memory at the location specified by the '``<pointer>``' operand
7336is read and compared to '``<cmp>``'; if the read value is the equal, the
7337'``<new>``' is written. The original value at the location is returned, together
7338with a flag indicating success (true) or failure (false).
7339
7340If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7341permitted: the operation may not write ``<new>`` even if the comparison
7342matched.
7343
7344If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7345if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007346
Tim Northovere94a5182014-03-11 10:48:52 +00007347A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7348identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7349load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007350
7351Example:
7352""""""""
7353
7354.. code-block:: llvm
7355
7356 entry:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007357 %orig = load atomic i32, i32* %ptr unordered, align 4 ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007358 br label %loop
7359
7360 loop:
Duncan P. N. Exon Smithc917c7a2016-02-07 05:06:35 +00007361 %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
Sean Silvab084af42012-12-07 10:36:55 +00007362 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007363 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007364 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7365 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007366 br i1 %success, label %done, label %loop
7367
7368 done:
7369 ...
7370
7371.. _i_atomicrmw:
7372
7373'``atomicrmw``' Instruction
7374^^^^^^^^^^^^^^^^^^^^^^^^^^^
7375
7376Syntax:
7377"""""""
7378
7379::
7380
Tim Northover675a0962014-06-13 14:24:23 +00007381 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007382
7383Overview:
7384"""""""""
7385
7386The '``atomicrmw``' instruction is used to atomically modify memory.
7387
7388Arguments:
7389""""""""""
7390
7391There are three arguments to the '``atomicrmw``' instruction: an
7392operation to apply, an address whose value to modify, an argument to the
7393operation. The operation must be one of the following keywords:
7394
7395- xchg
7396- add
7397- sub
7398- and
7399- nand
7400- or
7401- xor
7402- max
7403- min
7404- umax
7405- umin
7406
7407The type of '<value>' must be an integer type whose bit width is a power
7408of two greater than or equal to eight and less than or equal to a
7409target-specific size limit. The type of the '``<pointer>``' operand must
7410be a pointer to that type. If the ``atomicrmw`` is marked as
7411``volatile``, then the optimizer is not allowed to modify the number or
7412order of execution of this ``atomicrmw`` with other :ref:`volatile
7413operations <volatile>`.
7414
7415Semantics:
7416""""""""""
7417
7418The contents of memory at the location specified by the '``<pointer>``'
7419operand are atomically read, modified, and written back. The original
7420value at the location is returned. The modification is specified by the
7421operation argument:
7422
7423- xchg: ``*ptr = val``
7424- add: ``*ptr = *ptr + val``
7425- sub: ``*ptr = *ptr - val``
7426- and: ``*ptr = *ptr & val``
7427- nand: ``*ptr = ~(*ptr & val)``
7428- or: ``*ptr = *ptr | val``
7429- xor: ``*ptr = *ptr ^ val``
7430- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7431- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7432- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7433 comparison)
7434- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7435 comparison)
7436
7437Example:
7438""""""""
7439
7440.. code-block:: llvm
7441
Tim Northover675a0962014-06-13 14:24:23 +00007442 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007443
7444.. _i_getelementptr:
7445
7446'``getelementptr``' Instruction
7447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7448
7449Syntax:
7450"""""""
7451
7452::
7453
David Blaikie16a97eb2015-03-04 22:02:58 +00007454 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7455 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7456 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007457
7458Overview:
7459"""""""""
7460
7461The '``getelementptr``' instruction is used to get the address of a
7462subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007463address calculation only and does not access memory. The instruction can also
7464be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007465
7466Arguments:
7467""""""""""
7468
David Blaikie16a97eb2015-03-04 22:02:58 +00007469The first argument is always a type used as the basis for the calculations.
7470The second argument is always a pointer or a vector of pointers, and is the
7471base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007472that indicate which of the elements of the aggregate object are indexed.
7473The interpretation of each index is dependent on the type being indexed
7474into. The first index always indexes the pointer value given as the
7475first argument, the second index indexes a value of the type pointed to
7476(not necessarily the value directly pointed to, since the first index
7477can be non-zero), etc. The first type indexed into must be a pointer
7478value, subsequent types can be arrays, vectors, and structs. Note that
7479subsequent types being indexed into can never be pointers, since that
7480would require loading the pointer before continuing calculation.
7481
7482The type of each index argument depends on the type it is indexing into.
7483When indexing into a (optionally packed) structure, only ``i32`` integer
7484**constants** are allowed (when using a vector of indices they must all
7485be the **same** ``i32`` integer constant). When indexing into an array,
7486pointer or vector, integers of any width are allowed, and they are not
7487required to be constant. These integers are treated as signed values
7488where relevant.
7489
7490For example, let's consider a C code fragment and how it gets compiled
7491to LLVM:
7492
7493.. code-block:: c
7494
7495 struct RT {
7496 char A;
7497 int B[10][20];
7498 char C;
7499 };
7500 struct ST {
7501 int X;
7502 double Y;
7503 struct RT Z;
7504 };
7505
7506 int *foo(struct ST *s) {
7507 return &s[1].Z.B[5][13];
7508 }
7509
7510The LLVM code generated by Clang is:
7511
7512.. code-block:: llvm
7513
7514 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7515 %struct.ST = type { i32, double, %struct.RT }
7516
7517 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7518 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007519 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007520 ret i32* %arrayidx
7521 }
7522
7523Semantics:
7524""""""""""
7525
7526In the example above, the first index is indexing into the
7527'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7528= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7529indexes into the third element of the structure, yielding a
7530'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7531structure. The third index indexes into the second element of the
7532structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7533dimensions of the array are subscripted into, yielding an '``i32``'
7534type. The '``getelementptr``' instruction returns a pointer to this
7535element, thus computing a value of '``i32*``' type.
7536
7537Note that it is perfectly legal to index partially through a structure,
7538returning a pointer to an inner element. Because of this, the LLVM code
7539for the given testcase is equivalent to:
7540
7541.. code-block:: llvm
7542
7543 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007544 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7545 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7546 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7547 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7548 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007549 ret i32* %t5
7550 }
7551
7552If the ``inbounds`` keyword is present, the result value of the
7553``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7554pointer is not an *in bounds* address of an allocated object, or if any
7555of the addresses that would be formed by successive addition of the
7556offsets implied by the indices to the base address with infinitely
7557precise signed arithmetic are not an *in bounds* address of that
7558allocated object. The *in bounds* addresses for an allocated object are
7559all the addresses that point into the object, plus the address one byte
7560past the end. In cases where the base is a vector of pointers the
7561``inbounds`` keyword applies to each of the computations element-wise.
7562
7563If the ``inbounds`` keyword is not present, the offsets are added to the
7564base address with silently-wrapping two's complement arithmetic. If the
7565offsets have a different width from the pointer, they are sign-extended
7566or truncated to the width of the pointer. The result value of the
7567``getelementptr`` may be outside the object pointed to by the base
7568pointer. The result value may not necessarily be used to access memory
7569though, even if it happens to point into allocated storage. See the
7570:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7571information.
7572
7573The getelementptr instruction is often confusing. For some more insight
7574into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7575
7576Example:
7577""""""""
7578
7579.. code-block:: llvm
7580
7581 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007582 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007583 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007584 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007585 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007586 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007587 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007588 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007589
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007590Vector of pointers:
7591"""""""""""""""""""
7592
7593The ``getelementptr`` returns a vector of pointers, instead of a single address,
7594when one or more of its arguments is a vector. In such cases, all vector
7595arguments should have the same number of elements, and every scalar argument
7596will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007597
7598.. code-block:: llvm
7599
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007600 ; All arguments are vectors:
7601 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7602 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007603
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007604 ; Add the same scalar offset to each pointer of a vector:
7605 ; A[i] = ptrs[i] + offset*sizeof(i8)
7606 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007607
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007608 ; Add distinct offsets to the same pointer:
7609 ; A[i] = ptr + offsets[i]*sizeof(i8)
7610 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007611
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007612 ; In all cases described above the type of the result is <4 x i8*>
7613
7614The two following instructions are equivalent:
7615
7616.. code-block:: llvm
7617
7618 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7619 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7620 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7621 <4 x i32> %ind4,
7622 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007623
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007624 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7625 i32 2, i32 1, <4 x i32> %ind4, i64 13
7626
7627Let's look at the C code, where the vector version of ``getelementptr``
7628makes sense:
7629
7630.. code-block:: c
7631
7632 // Let's assume that we vectorize the following loop:
7633 double *A, B; int *C;
7634 for (int i = 0; i < size; ++i) {
7635 A[i] = B[C[i]];
7636 }
7637
7638.. code-block:: llvm
7639
7640 ; get pointers for 8 elements from array B
7641 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7642 ; load 8 elements from array B into A
7643 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7644 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007645
7646Conversion Operations
7647---------------------
7648
7649The instructions in this category are the conversion instructions
7650(casting) which all take a single operand and a type. They perform
7651various bit conversions on the operand.
7652
7653'``trunc .. to``' Instruction
7654^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7655
7656Syntax:
7657"""""""
7658
7659::
7660
7661 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7662
7663Overview:
7664"""""""""
7665
7666The '``trunc``' instruction truncates its operand to the type ``ty2``.
7667
7668Arguments:
7669""""""""""
7670
7671The '``trunc``' instruction takes a value to trunc, and a type to trunc
7672it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7673of the same number of integers. The bit size of the ``value`` must be
7674larger than the bit size of the destination type, ``ty2``. Equal sized
7675types are not allowed.
7676
7677Semantics:
7678""""""""""
7679
7680The '``trunc``' instruction truncates the high order bits in ``value``
7681and converts the remaining bits to ``ty2``. Since the source size must
7682be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7683It will always truncate bits.
7684
7685Example:
7686""""""""
7687
7688.. code-block:: llvm
7689
7690 %X = trunc i32 257 to i8 ; yields i8:1
7691 %Y = trunc i32 123 to i1 ; yields i1:true
7692 %Z = trunc i32 122 to i1 ; yields i1:false
7693 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7694
7695'``zext .. to``' Instruction
7696^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7697
7698Syntax:
7699"""""""
7700
7701::
7702
7703 <result> = zext <ty> <value> to <ty2> ; yields ty2
7704
7705Overview:
7706"""""""""
7707
7708The '``zext``' instruction zero extends its operand to type ``ty2``.
7709
7710Arguments:
7711""""""""""
7712
7713The '``zext``' instruction takes a value to cast, and a type to cast it
7714to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7715the same number of integers. The bit size of the ``value`` must be
7716smaller than the bit size of the destination type, ``ty2``.
7717
7718Semantics:
7719""""""""""
7720
7721The ``zext`` fills the high order bits of the ``value`` with zero bits
7722until it reaches the size of the destination type, ``ty2``.
7723
7724When zero extending from i1, the result will always be either 0 or 1.
7725
7726Example:
7727""""""""
7728
7729.. code-block:: llvm
7730
7731 %X = zext i32 257 to i64 ; yields i64:257
7732 %Y = zext i1 true to i32 ; yields i32:1
7733 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7734
7735'``sext .. to``' Instruction
7736^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7737
7738Syntax:
7739"""""""
7740
7741::
7742
7743 <result> = sext <ty> <value> to <ty2> ; yields ty2
7744
7745Overview:
7746"""""""""
7747
7748The '``sext``' sign extends ``value`` to the type ``ty2``.
7749
7750Arguments:
7751""""""""""
7752
7753The '``sext``' instruction takes a value to cast, and a type to cast it
7754to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7755the same number of integers. The bit size of the ``value`` must be
7756smaller than the bit size of the destination type, ``ty2``.
7757
7758Semantics:
7759""""""""""
7760
7761The '``sext``' instruction performs a sign extension by copying the sign
7762bit (highest order bit) of the ``value`` until it reaches the bit size
7763of the type ``ty2``.
7764
7765When sign extending from i1, the extension always results in -1 or 0.
7766
7767Example:
7768""""""""
7769
7770.. code-block:: llvm
7771
7772 %X = sext i8 -1 to i16 ; yields i16 :65535
7773 %Y = sext i1 true to i32 ; yields i32:-1
7774 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7775
7776'``fptrunc .. to``' Instruction
7777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7778
7779Syntax:
7780"""""""
7781
7782::
7783
7784 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7785
7786Overview:
7787"""""""""
7788
7789The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7790
7791Arguments:
7792""""""""""
7793
7794The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7795value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7796The size of ``value`` must be larger than the size of ``ty2``. This
7797implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7798
7799Semantics:
7800""""""""""
7801
Dan Liew50456fb2015-09-03 18:43:56 +00007802The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007803:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007804point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7805destination type, ``ty2``, then the results are undefined. If the cast produces
7806an inexact result, how rounding is performed (e.g. truncation, also known as
7807round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007808
7809Example:
7810""""""""
7811
7812.. code-block:: llvm
7813
7814 %X = fptrunc double 123.0 to float ; yields float:123.0
7815 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7816
7817'``fpext .. to``' Instruction
7818^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7819
7820Syntax:
7821"""""""
7822
7823::
7824
7825 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7826
7827Overview:
7828"""""""""
7829
7830The '``fpext``' extends a floating point ``value`` to a larger floating
7831point value.
7832
7833Arguments:
7834""""""""""
7835
7836The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7837``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7838to. The source type must be smaller than the destination type.
7839
7840Semantics:
7841""""""""""
7842
7843The '``fpext``' instruction extends the ``value`` from a smaller
7844:ref:`floating point <t_floating>` type to a larger :ref:`floating
7845point <t_floating>` type. The ``fpext`` cannot be used to make a
7846*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7847*no-op cast* for a floating point cast.
7848
7849Example:
7850""""""""
7851
7852.. code-block:: llvm
7853
7854 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7855 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7856
7857'``fptoui .. to``' Instruction
7858^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7859
7860Syntax:
7861"""""""
7862
7863::
7864
7865 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7866
7867Overview:
7868"""""""""
7869
7870The '``fptoui``' converts a floating point ``value`` to its unsigned
7871integer equivalent of type ``ty2``.
7872
7873Arguments:
7874""""""""""
7875
7876The '``fptoui``' instruction takes a value to cast, which must be a
7877scalar or vector :ref:`floating point <t_floating>` value, and a type to
7878cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7879``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7880type with the same number of elements as ``ty``
7881
7882Semantics:
7883""""""""""
7884
7885The '``fptoui``' instruction converts its :ref:`floating
7886point <t_floating>` operand into the nearest (rounding towards zero)
7887unsigned integer value. If the value cannot fit in ``ty2``, the results
7888are undefined.
7889
7890Example:
7891""""""""
7892
7893.. code-block:: llvm
7894
7895 %X = fptoui double 123.0 to i32 ; yields i32:123
7896 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7897 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7898
7899'``fptosi .. to``' Instruction
7900^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7901
7902Syntax:
7903"""""""
7904
7905::
7906
7907 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7908
7909Overview:
7910"""""""""
7911
7912The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7913``value`` to type ``ty2``.
7914
7915Arguments:
7916""""""""""
7917
7918The '``fptosi``' instruction takes a value to cast, which must be a
7919scalar or vector :ref:`floating point <t_floating>` value, and a type to
7920cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7921``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7922type with the same number of elements as ``ty``
7923
7924Semantics:
7925""""""""""
7926
7927The '``fptosi``' instruction converts its :ref:`floating
7928point <t_floating>` operand into the nearest (rounding towards zero)
7929signed integer value. If the value cannot fit in ``ty2``, the results
7930are undefined.
7931
7932Example:
7933""""""""
7934
7935.. code-block:: llvm
7936
7937 %X = fptosi double -123.0 to i32 ; yields i32:-123
7938 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7939 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7940
7941'``uitofp .. to``' Instruction
7942^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7943
7944Syntax:
7945"""""""
7946
7947::
7948
7949 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7950
7951Overview:
7952"""""""""
7953
7954The '``uitofp``' instruction regards ``value`` as an unsigned integer
7955and converts that value to the ``ty2`` type.
7956
7957Arguments:
7958""""""""""
7959
7960The '``uitofp``' instruction takes a value to cast, which must be a
7961scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7962``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7963``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7964type with the same number of elements as ``ty``
7965
7966Semantics:
7967""""""""""
7968
7969The '``uitofp``' instruction interprets its operand as an unsigned
7970integer quantity and converts it to the corresponding floating point
7971value. If the value cannot fit in the floating point value, the results
7972are undefined.
7973
7974Example:
7975""""""""
7976
7977.. code-block:: llvm
7978
7979 %X = uitofp i32 257 to float ; yields float:257.0
7980 %Y = uitofp i8 -1 to double ; yields double:255.0
7981
7982'``sitofp .. to``' Instruction
7983^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7984
7985Syntax:
7986"""""""
7987
7988::
7989
7990 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7991
7992Overview:
7993"""""""""
7994
7995The '``sitofp``' instruction regards ``value`` as a signed integer and
7996converts that value to the ``ty2`` type.
7997
7998Arguments:
7999""""""""""
8000
8001The '``sitofp``' instruction takes a value to cast, which must be a
8002scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
8003``ty2``, which must be an :ref:`floating point <t_floating>` type. If
8004``ty`` is a vector integer type, ``ty2`` must be a vector floating point
8005type with the same number of elements as ``ty``
8006
8007Semantics:
8008""""""""""
8009
8010The '``sitofp``' instruction interprets its operand as a signed integer
8011quantity and converts it to the corresponding floating point value. If
8012the value cannot fit in the floating point value, the results are
8013undefined.
8014
8015Example:
8016""""""""
8017
8018.. code-block:: llvm
8019
8020 %X = sitofp i32 257 to float ; yields float:257.0
8021 %Y = sitofp i8 -1 to double ; yields double:-1.0
8022
8023.. _i_ptrtoint:
8024
8025'``ptrtoint .. to``' Instruction
8026^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8027
8028Syntax:
8029"""""""
8030
8031::
8032
8033 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
8034
8035Overview:
8036"""""""""
8037
8038The '``ptrtoint``' instruction converts the pointer or a vector of
8039pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8040
8041Arguments:
8042""""""""""
8043
8044The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008045a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008046type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8047a vector of integers type.
8048
8049Semantics:
8050""""""""""
8051
8052The '``ptrtoint``' instruction converts ``value`` to integer type
8053``ty2`` by interpreting the pointer value as an integer and either
8054truncating or zero extending that value to the size of the integer type.
8055If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8056``value`` is larger than ``ty2`` then a truncation is done. If they are
8057the same size, then nothing is done (*no-op cast*) other than a type
8058change.
8059
8060Example:
8061""""""""
8062
8063.. code-block:: llvm
8064
8065 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8066 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8067 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8068
8069.. _i_inttoptr:
8070
8071'``inttoptr .. to``' Instruction
8072^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8073
8074Syntax:
8075"""""""
8076
8077::
8078
8079 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8080
8081Overview:
8082"""""""""
8083
8084The '``inttoptr``' instruction converts an integer ``value`` to a
8085pointer type, ``ty2``.
8086
8087Arguments:
8088""""""""""
8089
8090The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8091cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8092type.
8093
8094Semantics:
8095""""""""""
8096
8097The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8098applying either a zero extension or a truncation depending on the size
8099of the integer ``value``. If ``value`` is larger than the size of a
8100pointer then a truncation is done. If ``value`` is smaller than the size
8101of a pointer then a zero extension is done. If they are the same size,
8102nothing is done (*no-op cast*).
8103
8104Example:
8105""""""""
8106
8107.. code-block:: llvm
8108
8109 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8110 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8111 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8112 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8113
8114.. _i_bitcast:
8115
8116'``bitcast .. to``' Instruction
8117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8118
8119Syntax:
8120"""""""
8121
8122::
8123
8124 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8125
8126Overview:
8127"""""""""
8128
8129The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8130changing any bits.
8131
8132Arguments:
8133""""""""""
8134
8135The '``bitcast``' instruction takes a value to cast, which must be a
8136non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008137also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8138bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008139identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008140also be a pointer of the same size. This instruction supports bitwise
8141conversion of vectors to integers and to vectors of other types (as
8142long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008143
8144Semantics:
8145""""""""""
8146
Matt Arsenault24b49c42013-07-31 17:49:08 +00008147The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8148is always a *no-op cast* because no bits change with this
8149conversion. The conversion is done as if the ``value`` had been stored
8150to memory and read back as type ``ty2``. Pointer (or vector of
8151pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008152pointers) types with the same address space through this instruction.
8153To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8154or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008155
8156Example:
8157""""""""
8158
Renato Golin124f2592016-07-20 12:16:38 +00008159.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008160
8161 %X = bitcast i8 255 to i8 ; yields i8 :-1
8162 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8163 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8164 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8165
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008166.. _i_addrspacecast:
8167
8168'``addrspacecast .. to``' Instruction
8169^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8170
8171Syntax:
8172"""""""
8173
8174::
8175
8176 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8177
8178Overview:
8179"""""""""
8180
8181The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8182address space ``n`` to type ``pty2`` in address space ``m``.
8183
8184Arguments:
8185""""""""""
8186
8187The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8188to cast and a pointer type to cast it to, which must have a different
8189address space.
8190
8191Semantics:
8192""""""""""
8193
8194The '``addrspacecast``' instruction converts the pointer value
8195``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008196value modification, depending on the target and the address space
8197pair. Pointer conversions within the same address space must be
8198performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008199conversion is legal then both result and operand refer to the same memory
8200location.
8201
8202Example:
8203""""""""
8204
8205.. code-block:: llvm
8206
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008207 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8208 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8209 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008210
Sean Silvab084af42012-12-07 10:36:55 +00008211.. _otherops:
8212
8213Other Operations
8214----------------
8215
8216The instructions in this category are the "miscellaneous" instructions,
8217which defy better classification.
8218
8219.. _i_icmp:
8220
8221'``icmp``' Instruction
8222^^^^^^^^^^^^^^^^^^^^^^
8223
8224Syntax:
8225"""""""
8226
8227::
8228
Tim Northover675a0962014-06-13 14:24:23 +00008229 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008230
8231Overview:
8232"""""""""
8233
8234The '``icmp``' instruction returns a boolean value or a vector of
8235boolean values based on comparison of its two integer, integer vector,
8236pointer, or pointer vector operands.
8237
8238Arguments:
8239""""""""""
8240
8241The '``icmp``' instruction takes three operands. The first operand is
8242the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008243not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008244
8245#. ``eq``: equal
8246#. ``ne``: not equal
8247#. ``ugt``: unsigned greater than
8248#. ``uge``: unsigned greater or equal
8249#. ``ult``: unsigned less than
8250#. ``ule``: unsigned less or equal
8251#. ``sgt``: signed greater than
8252#. ``sge``: signed greater or equal
8253#. ``slt``: signed less than
8254#. ``sle``: signed less or equal
8255
8256The remaining two arguments must be :ref:`integer <t_integer>` or
8257:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8258must also be identical types.
8259
8260Semantics:
8261""""""""""
8262
8263The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8264code given as ``cond``. The comparison performed always yields either an
8265:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8266
8267#. ``eq``: yields ``true`` if the operands are equal, ``false``
8268 otherwise. No sign interpretation is necessary or performed.
8269#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8270 otherwise. No sign interpretation is necessary or performed.
8271#. ``ugt``: interprets the operands as unsigned values and yields
8272 ``true`` if ``op1`` is greater than ``op2``.
8273#. ``uge``: interprets the operands as unsigned values and yields
8274 ``true`` if ``op1`` is greater than or equal to ``op2``.
8275#. ``ult``: interprets the operands as unsigned values and yields
8276 ``true`` if ``op1`` is less than ``op2``.
8277#. ``ule``: interprets the operands as unsigned values and yields
8278 ``true`` if ``op1`` is less than or equal to ``op2``.
8279#. ``sgt``: interprets the operands as signed values and yields ``true``
8280 if ``op1`` is greater than ``op2``.
8281#. ``sge``: interprets the operands as signed values and yields ``true``
8282 if ``op1`` is greater than or equal to ``op2``.
8283#. ``slt``: interprets the operands as signed values and yields ``true``
8284 if ``op1`` is less than ``op2``.
8285#. ``sle``: interprets the operands as signed values and yields ``true``
8286 if ``op1`` is less than or equal to ``op2``.
8287
8288If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8289are compared as if they were integers.
8290
8291If the operands are integer vectors, then they are compared element by
8292element. The result is an ``i1`` vector with the same number of elements
8293as the values being compared. Otherwise, the result is an ``i1``.
8294
8295Example:
8296""""""""
8297
Renato Golin124f2592016-07-20 12:16:38 +00008298.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008299
8300 <result> = icmp eq i32 4, 5 ; yields: result=false
8301 <result> = icmp ne float* %X, %X ; yields: result=false
8302 <result> = icmp ult i16 4, 5 ; yields: result=true
8303 <result> = icmp sgt i16 4, 5 ; yields: result=false
8304 <result> = icmp ule i16 -4, 5 ; yields: result=false
8305 <result> = icmp sge i16 4, 5 ; yields: result=false
8306
Sean Silvab084af42012-12-07 10:36:55 +00008307.. _i_fcmp:
8308
8309'``fcmp``' Instruction
8310^^^^^^^^^^^^^^^^^^^^^^
8311
8312Syntax:
8313"""""""
8314
8315::
8316
James Molloy88eb5352015-07-10 12:52:00 +00008317 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008318
8319Overview:
8320"""""""""
8321
8322The '``fcmp``' instruction returns a boolean value or vector of boolean
8323values based on comparison of its operands.
8324
8325If the operands are floating point scalars, then the result type is a
8326boolean (:ref:`i1 <t_integer>`).
8327
8328If the operands are floating point vectors, then the result type is a
8329vector of boolean with the same number of elements as the operands being
8330compared.
8331
8332Arguments:
8333""""""""""
8334
8335The '``fcmp``' instruction takes three operands. The first operand is
8336the condition code indicating the kind of comparison to perform. It is
Sanjay Patel43d41442016-03-30 21:38:20 +00008337not a value, just a keyword. The possible condition codes are:
Sean Silvab084af42012-12-07 10:36:55 +00008338
8339#. ``false``: no comparison, always returns false
8340#. ``oeq``: ordered and equal
8341#. ``ogt``: ordered and greater than
8342#. ``oge``: ordered and greater than or equal
8343#. ``olt``: ordered and less than
8344#. ``ole``: ordered and less than or equal
8345#. ``one``: ordered and not equal
8346#. ``ord``: ordered (no nans)
8347#. ``ueq``: unordered or equal
8348#. ``ugt``: unordered or greater than
8349#. ``uge``: unordered or greater than or equal
8350#. ``ult``: unordered or less than
8351#. ``ule``: unordered or less than or equal
8352#. ``une``: unordered or not equal
8353#. ``uno``: unordered (either nans)
8354#. ``true``: no comparison, always returns true
8355
8356*Ordered* means that neither operand is a QNAN while *unordered* means
8357that either operand may be a QNAN.
8358
8359Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8360point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8361type. They must have identical types.
8362
8363Semantics:
8364""""""""""
8365
8366The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8367condition code given as ``cond``. If the operands are vectors, then the
8368vectors are compared element by element. Each comparison performed
8369always yields an :ref:`i1 <t_integer>` result, as follows:
8370
8371#. ``false``: always yields ``false``, regardless of operands.
8372#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8373 is equal to ``op2``.
8374#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8375 is greater than ``op2``.
8376#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8377 is greater than or equal to ``op2``.
8378#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8379 is less than ``op2``.
8380#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8381 is less than or equal to ``op2``.
8382#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8383 is not equal to ``op2``.
8384#. ``ord``: yields ``true`` if both operands are not a QNAN.
8385#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8386 equal to ``op2``.
8387#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8388 greater than ``op2``.
8389#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8390 greater than or equal to ``op2``.
8391#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8392 less than ``op2``.
8393#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8394 less than or equal to ``op2``.
8395#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8396 not equal to ``op2``.
8397#. ``uno``: yields ``true`` if either operand is a QNAN.
8398#. ``true``: always yields ``true``, regardless of operands.
8399
James Molloy88eb5352015-07-10 12:52:00 +00008400The ``fcmp`` instruction can also optionally take any number of
8401:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8402otherwise unsafe floating point optimizations.
8403
8404Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8405only flags that have any effect on its semantics are those that allow
8406assumptions to be made about the values of input arguments; namely
8407``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8408
Sean Silvab084af42012-12-07 10:36:55 +00008409Example:
8410""""""""
8411
Renato Golin124f2592016-07-20 12:16:38 +00008412.. code-block:: text
Sean Silvab084af42012-12-07 10:36:55 +00008413
8414 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8415 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8416 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8417 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8418
Sean Silvab084af42012-12-07 10:36:55 +00008419.. _i_phi:
8420
8421'``phi``' Instruction
8422^^^^^^^^^^^^^^^^^^^^^
8423
8424Syntax:
8425"""""""
8426
8427::
8428
8429 <result> = phi <ty> [ <val0>, <label0>], ...
8430
8431Overview:
8432"""""""""
8433
8434The '``phi``' instruction is used to implement the φ node in the SSA
8435graph representing the function.
8436
8437Arguments:
8438""""""""""
8439
8440The type of the incoming values is specified with the first type field.
8441After this, the '``phi``' instruction takes a list of pairs as
8442arguments, with one pair for each predecessor basic block of the current
8443block. Only values of :ref:`first class <t_firstclass>` type may be used as
8444the value arguments to the PHI node. Only labels may be used as the
8445label arguments.
8446
8447There must be no non-phi instructions between the start of a basic block
8448and the PHI instructions: i.e. PHI instructions must be first in a basic
8449block.
8450
8451For the purposes of the SSA form, the use of each incoming value is
8452deemed to occur on the edge from the corresponding predecessor block to
8453the current block (but after any definition of an '``invoke``'
8454instruction's return value on the same edge).
8455
8456Semantics:
8457""""""""""
8458
8459At runtime, the '``phi``' instruction logically takes on the value
8460specified by the pair corresponding to the predecessor basic block that
8461executed just prior to the current block.
8462
8463Example:
8464""""""""
8465
8466.. code-block:: llvm
8467
8468 Loop: ; Infinite loop that counts from 0 on up...
8469 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8470 %nextindvar = add i32 %indvar, 1
8471 br label %Loop
8472
8473.. _i_select:
8474
8475'``select``' Instruction
8476^^^^^^^^^^^^^^^^^^^^^^^^
8477
8478Syntax:
8479"""""""
8480
8481::
8482
8483 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8484
8485 selty is either i1 or {<N x i1>}
8486
8487Overview:
8488"""""""""
8489
8490The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008491condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008492
8493Arguments:
8494""""""""""
8495
8496The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8497values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008498class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008499
8500Semantics:
8501""""""""""
8502
8503If the condition is an i1 and it evaluates to 1, the instruction returns
8504the first value argument; otherwise, it returns the second value
8505argument.
8506
8507If the condition is a vector of i1, then the value arguments must be
8508vectors of the same size, and the selection is done element by element.
8509
David Majnemer40a0b592015-03-03 22:45:47 +00008510If the condition is an i1 and the value arguments are vectors of the
8511same size, then an entire vector is selected.
8512
Sean Silvab084af42012-12-07 10:36:55 +00008513Example:
8514""""""""
8515
8516.. code-block:: llvm
8517
8518 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8519
8520.. _i_call:
8521
8522'``call``' Instruction
8523^^^^^^^^^^^^^^^^^^^^^^
8524
8525Syntax:
8526"""""""
8527
8528::
8529
David Blaikieb83cf102016-07-13 17:21:34 +00008530 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008531 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008532
8533Overview:
8534"""""""""
8535
8536The '``call``' instruction represents a simple function call.
8537
8538Arguments:
8539""""""""""
8540
8541This instruction requires several arguments:
8542
Reid Kleckner5772b772014-04-24 20:14:34 +00008543#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008544 should perform tail call optimization. The ``tail`` marker is a hint that
8545 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008546 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008547 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008548
8549 #. The call will not cause unbounded stack growth if it is part of a
8550 recursive cycle in the call graph.
8551 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8552 forwarded in place.
8553
8554 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008555 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008556 rules:
8557
8558 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8559 or a pointer bitcast followed by a ret instruction.
8560 - The ret instruction must return the (possibly bitcasted) value
8561 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008562 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008563 parameters or return types may differ in pointee type, but not
8564 in address space.
8565 - The calling conventions of the caller and callee must match.
8566 - All ABI-impacting function attributes, such as sret, byval, inreg,
8567 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008568 - The callee must be varargs iff the caller is varargs. Bitcasting a
8569 non-varargs function to the appropriate varargs type is legal so
8570 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008571
8572 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8573 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008574
8575 - Caller and callee both have the calling convention ``fastcc``.
8576 - The call is in tail position (ret immediately follows call and ret
8577 uses value of call or is void).
8578 - Option ``-tailcallopt`` is enabled, or
8579 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008580 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008581 met. <CodeGenerator.html#tailcallopt>`_
8582
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008583#. The optional ``notail`` marker indicates that the optimizers should not add
8584 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8585 call optimization from being performed on the call.
8586
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008587#. The optional ``fast-math flags`` marker indicates that the call has one or more
8588 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8589 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8590 for calls that return a floating-point scalar or vector type.
8591
Sean Silvab084af42012-12-07 10:36:55 +00008592#. The optional "cconv" marker indicates which :ref:`calling
8593 convention <callingconv>` the call should use. If none is
8594 specified, the call defaults to using C calling conventions. The
8595 calling convention of the call must match the calling convention of
8596 the target function, or else the behavior is undefined.
8597#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8598 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8599 are valid here.
8600#. '``ty``': the type of the call instruction itself which is also the
8601 type of the return value. Functions that return no value are marked
8602 ``void``.
David Blaikieb83cf102016-07-13 17:21:34 +00008603#. '``fnty``': shall be the signature of the function being called. The
8604 argument types must match the types implied by this signature. This
8605 type can be omitted if the function is not varargs.
Sean Silvab084af42012-12-07 10:36:55 +00008606#. '``fnptrval``': An LLVM value containing a pointer to a function to
David Blaikieb83cf102016-07-13 17:21:34 +00008607 be called. In most cases, this is a direct function call, but
Sean Silvab084af42012-12-07 10:36:55 +00008608 indirect ``call``'s are just as possible, calling an arbitrary pointer
8609 to function value.
8610#. '``function args``': argument list whose types match the function
8611 signature argument types and parameter attributes. All arguments must
8612 be of :ref:`first class <t_firstclass>` type. If the function signature
8613 indicates the function accepts a variable number of arguments, the
8614 extra arguments can be specified.
8615#. The optional :ref:`function attributes <fnattrs>` list. Only
Matt Arsenault50d02ef2016-06-10 00:36:57 +00008616 '``noreturn``', '``nounwind``', '``readonly``' , '``readnone``',
8617 and '``convergent``' attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008618#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008619
8620Semantics:
8621""""""""""
8622
8623The '``call``' instruction is used to cause control flow to transfer to
8624a specified function, with its incoming arguments bound to the specified
8625values. Upon a '``ret``' instruction in the called function, control
8626flow continues with the instruction after the function call, and the
8627return value of the function is bound to the result argument.
8628
8629Example:
8630""""""""
8631
8632.. code-block:: llvm
8633
8634 %retval = call i32 @test(i32 %argc)
8635 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8636 %X = tail call i32 @foo() ; yields i32
8637 %Y = tail call fastcc i32 @foo() ; yields i32
8638 call void %foo(i8 97 signext)
8639
8640 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008641 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008642 %gr = extractvalue %struct.A %r, 0 ; yields i32
8643 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8644 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8645 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8646
8647llvm treats calls to some functions with names and arguments that match
8648the standard C99 library as being the C99 library functions, and may
8649perform optimizations or generate code for them under that assumption.
8650This is something we'd like to change in the future to provide better
8651support for freestanding environments and non-C-based languages.
8652
8653.. _i_va_arg:
8654
8655'``va_arg``' Instruction
8656^^^^^^^^^^^^^^^^^^^^^^^^
8657
8658Syntax:
8659"""""""
8660
8661::
8662
8663 <resultval> = va_arg <va_list*> <arglist>, <argty>
8664
8665Overview:
8666"""""""""
8667
8668The '``va_arg``' instruction is used to access arguments passed through
8669the "variable argument" area of a function call. It is used to implement
8670the ``va_arg`` macro in C.
8671
8672Arguments:
8673""""""""""
8674
8675This instruction takes a ``va_list*`` value and the type of the
8676argument. It returns a value of the specified argument type and
8677increments the ``va_list`` to point to the next argument. The actual
8678type of ``va_list`` is target specific.
8679
8680Semantics:
8681""""""""""
8682
8683The '``va_arg``' instruction loads an argument of the specified type
8684from the specified ``va_list`` and causes the ``va_list`` to point to
8685the next argument. For more information, see the variable argument
8686handling :ref:`Intrinsic Functions <int_varargs>`.
8687
8688It is legal for this instruction to be called in a function which does
8689not take a variable number of arguments, for example, the ``vfprintf``
8690function.
8691
8692``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8693function <intrinsics>` because it takes a type as an argument.
8694
8695Example:
8696""""""""
8697
8698See the :ref:`variable argument processing <int_varargs>` section.
8699
8700Note that the code generator does not yet fully support va\_arg on many
8701targets. Also, it does not currently support va\_arg with aggregate
8702types on any target.
8703
8704.. _i_landingpad:
8705
8706'``landingpad``' Instruction
8707^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8708
8709Syntax:
8710"""""""
8711
8712::
8713
David Majnemer7fddecc2015-06-17 20:52:32 +00008714 <resultval> = landingpad <resultty> <clause>+
8715 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008716
8717 <clause> := catch <type> <value>
8718 <clause> := filter <array constant type> <array constant>
8719
8720Overview:
8721"""""""""
8722
8723The '``landingpad``' instruction is used by `LLVM's exception handling
8724system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008725is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008726code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008727defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008728re-entry to the function. The ``resultval`` has the type ``resultty``.
8729
8730Arguments:
8731""""""""""
8732
David Majnemer7fddecc2015-06-17 20:52:32 +00008733The optional
Sean Silvab084af42012-12-07 10:36:55 +00008734``cleanup`` flag indicates that the landing pad block is a cleanup.
8735
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008736A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008737contains the global variable representing the "type" that may be caught
8738or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8739clause takes an array constant as its argument. Use
8740"``[0 x i8**] undef``" for a filter which cannot throw. The
8741'``landingpad``' instruction must contain *at least* one ``clause`` or
8742the ``cleanup`` flag.
8743
8744Semantics:
8745""""""""""
8746
8747The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008748:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008749therefore the "result type" of the ``landingpad`` instruction. As with
8750calling conventions, how the personality function results are
8751represented in LLVM IR is target specific.
8752
8753The clauses are applied in order from top to bottom. If two
8754``landingpad`` instructions are merged together through inlining, the
8755clauses from the calling function are appended to the list of clauses.
8756When the call stack is being unwound due to an exception being thrown,
8757the exception is compared against each ``clause`` in turn. If it doesn't
8758match any of the clauses, and the ``cleanup`` flag is not set, then
8759unwinding continues further up the call stack.
8760
8761The ``landingpad`` instruction has several restrictions:
8762
8763- A landing pad block is a basic block which is the unwind destination
8764 of an '``invoke``' instruction.
8765- A landing pad block must have a '``landingpad``' instruction as its
8766 first non-PHI instruction.
8767- There can be only one '``landingpad``' instruction within the landing
8768 pad block.
8769- A basic block that is not a landing pad block may not include a
8770 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008771
8772Example:
8773""""""""
8774
8775.. code-block:: llvm
8776
8777 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008778 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008779 catch i8** @_ZTIi
8780 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008781 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008782 cleanup
8783 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008784 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008785 catch i8** @_ZTIi
8786 filter [1 x i8**] [@_ZTId]
8787
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008788.. _i_catchpad:
8789
8790'``catchpad``' Instruction
8791^^^^^^^^^^^^^^^^^^^^^^^^^^
8792
8793Syntax:
8794"""""""
8795
8796::
8797
8798 <resultval> = catchpad within <catchswitch> [<args>*]
8799
8800Overview:
8801"""""""""
8802
8803The '``catchpad``' instruction is used by `LLVM's exception handling
8804system <ExceptionHandling.html#overview>`_ to specify that a basic block
8805begins a catch handler --- one where a personality routine attempts to transfer
8806control to catch an exception.
8807
8808Arguments:
8809""""""""""
8810
8811The ``catchswitch`` operand must always be a token produced by a
8812:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8813ensures that each ``catchpad`` has exactly one predecessor block, and it always
8814terminates in a ``catchswitch``.
8815
8816The ``args`` correspond to whatever information the personality routine
8817requires to know if this is an appropriate handler for the exception. Control
8818will transfer to the ``catchpad`` if this is the first appropriate handler for
8819the exception.
8820
8821The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8822``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8823pads.
8824
8825Semantics:
8826""""""""""
8827
8828When the call stack is being unwound due to an exception being thrown, the
8829exception is compared against the ``args``. If it doesn't match, control will
8830not reach the ``catchpad`` instruction. The representation of ``args`` is
8831entirely target and personality function-specific.
8832
8833Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8834instruction must be the first non-phi of its parent basic block.
8835
8836The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8837instructions is described in the
8838`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8839
8840When a ``catchpad`` has been "entered" but not yet "exited" (as
8841described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8842it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8843that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8844
8845Example:
8846""""""""
8847
Renato Golin124f2592016-07-20 12:16:38 +00008848.. code-block:: text
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008849
8850 dispatch:
8851 %cs = catchswitch within none [label %handler0] unwind to caller
8852 ;; A catch block which can catch an integer.
8853 handler0:
8854 %tok = catchpad within %cs [i8** @_ZTIi]
8855
David Majnemer654e1302015-07-31 17:58:14 +00008856.. _i_cleanuppad:
8857
8858'``cleanuppad``' Instruction
8859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8860
8861Syntax:
8862"""""""
8863
8864::
8865
David Majnemer8a1c45d2015-12-12 05:38:55 +00008866 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008867
8868Overview:
8869"""""""""
8870
8871The '``cleanuppad``' instruction is used by `LLVM's exception handling
8872system <ExceptionHandling.html#overview>`_ to specify that a basic block
8873is a cleanup block --- one where a personality routine attempts to
8874transfer control to run cleanup actions.
8875The ``args`` correspond to whatever additional
8876information the :ref:`personality function <personalityfn>` requires to
8877execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008878The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008879match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8880The ``parent`` argument is the token of the funclet that contains the
8881``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8882this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008883
8884Arguments:
8885""""""""""
8886
8887The instruction takes a list of arbitrary values which are interpreted
8888by the :ref:`personality function <personalityfn>`.
8889
8890Semantics:
8891""""""""""
8892
David Majnemer654e1302015-07-31 17:58:14 +00008893When the call stack is being unwound due to an exception being thrown,
8894the :ref:`personality function <personalityfn>` transfers control to the
8895``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008896As with calling conventions, how the personality function results are
8897represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008898
8899The ``cleanuppad`` instruction has several restrictions:
8900
8901- A cleanup block is a basic block which is the unwind destination of
8902 an exceptional instruction.
8903- A cleanup block must have a '``cleanuppad``' instruction as its
8904 first non-PHI instruction.
8905- There can be only one '``cleanuppad``' instruction within the
8906 cleanup block.
8907- A basic block that is not a cleanup block may not include a
8908 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008909
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008910When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8911described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8912it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8913that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008914
David Majnemer654e1302015-07-31 17:58:14 +00008915Example:
8916""""""""
8917
Renato Golin124f2592016-07-20 12:16:38 +00008918.. code-block:: text
David Majnemer654e1302015-07-31 17:58:14 +00008919
David Majnemer8a1c45d2015-12-12 05:38:55 +00008920 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008921
Sean Silvab084af42012-12-07 10:36:55 +00008922.. _intrinsics:
8923
8924Intrinsic Functions
8925===================
8926
8927LLVM supports the notion of an "intrinsic function". These functions
8928have well known names and semantics and are required to follow certain
8929restrictions. Overall, these intrinsics represent an extension mechanism
8930for the LLVM language that does not require changing all of the
8931transformations in LLVM when adding to the language (or the bitcode
8932reader/writer, the parser, etc...).
8933
8934Intrinsic function names must all start with an "``llvm.``" prefix. This
8935prefix is reserved in LLVM for intrinsic names; thus, function names may
8936not begin with this prefix. Intrinsic functions must always be external
8937functions: you cannot define the body of intrinsic functions. Intrinsic
8938functions may only be used in call or invoke instructions: it is illegal
8939to take the address of an intrinsic function. Additionally, because
8940intrinsic functions are part of the LLVM language, it is required if any
8941are added that they be documented here.
8942
8943Some intrinsic functions can be overloaded, i.e., the intrinsic
8944represents a family of functions that perform the same operation but on
8945different data types. Because LLVM can represent over 8 million
8946different integer types, overloading is used commonly to allow an
8947intrinsic function to operate on any integer type. One or more of the
8948argument types or the result type can be overloaded to accept any
8949integer type. Argument types may also be defined as exactly matching a
8950previous argument's type or the result type. This allows an intrinsic
8951function which accepts multiple arguments, but needs all of them to be
8952of the same type, to only be overloaded with respect to a single
8953argument or the result.
8954
8955Overloaded intrinsics will have the names of its overloaded argument
8956types encoded into its function name, each preceded by a period. Only
8957those types which are overloaded result in a name suffix. Arguments
8958whose type is matched against another type do not. For example, the
8959``llvm.ctpop`` function can take an integer of any width and returns an
8960integer of exactly the same integer width. This leads to a family of
8961functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8962``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8963overloaded, and only one type suffix is required. Because the argument's
8964type is matched against the return type, it does not require its own
8965name suffix.
8966
8967To learn how to add an intrinsic function, please see the `Extending
8968LLVM Guide <ExtendingLLVM.html>`_.
8969
8970.. _int_varargs:
8971
8972Variable Argument Handling Intrinsics
8973-------------------------------------
8974
8975Variable argument support is defined in LLVM with the
8976:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8977functions. These functions are related to the similarly named macros
8978defined in the ``<stdarg.h>`` header file.
8979
8980All of these functions operate on arguments that use a target-specific
8981value type "``va_list``". The LLVM assembly language reference manual
8982does not define what this type is, so all transformations should be
8983prepared to handle these functions regardless of the type used.
8984
8985This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8986variable argument handling intrinsic functions are used.
8987
8988.. code-block:: llvm
8989
Tim Northoverab60bb92014-11-02 01:21:51 +00008990 ; This struct is different for every platform. For most platforms,
8991 ; it is merely an i8*.
8992 %struct.va_list = type { i8* }
8993
8994 ; For Unix x86_64 platforms, va_list is the following struct:
8995 ; %struct.va_list = type { i32, i32, i8*, i8* }
8996
Sean Silvab084af42012-12-07 10:36:55 +00008997 define i32 @test(i32 %X, ...) {
8998 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008999 %ap = alloca %struct.va_list
9000 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00009001 call void @llvm.va_start(i8* %ap2)
9002
9003 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00009004 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00009005
9006 ; Demonstrate usage of llvm.va_copy and llvm.va_end
9007 %aq = alloca i8*
9008 %aq2 = bitcast i8** %aq to i8*
9009 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
9010 call void @llvm.va_end(i8* %aq2)
9011
9012 ; Stop processing of arguments.
9013 call void @llvm.va_end(i8* %ap2)
9014 ret i32 %tmp
9015 }
9016
9017 declare void @llvm.va_start(i8*)
9018 declare void @llvm.va_copy(i8*, i8*)
9019 declare void @llvm.va_end(i8*)
9020
9021.. _int_va_start:
9022
9023'``llvm.va_start``' Intrinsic
9024^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9025
9026Syntax:
9027"""""""
9028
9029::
9030
Nick Lewycky04f6de02013-09-11 22:04:52 +00009031 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00009032
9033Overview:
9034"""""""""
9035
9036The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
9037subsequent use by ``va_arg``.
9038
9039Arguments:
9040""""""""""
9041
9042The argument is a pointer to a ``va_list`` element to initialize.
9043
9044Semantics:
9045""""""""""
9046
9047The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
9048available in C. In a target-dependent way, it initializes the
9049``va_list`` element to which the argument points, so that the next call
9050to ``va_arg`` will produce the first variable argument passed to the
9051function. Unlike the C ``va_start`` macro, this intrinsic does not need
9052to know the last argument of the function as the compiler can figure
9053that out.
9054
9055'``llvm.va_end``' Intrinsic
9056^^^^^^^^^^^^^^^^^^^^^^^^^^^
9057
9058Syntax:
9059"""""""
9060
9061::
9062
9063 declare void @llvm.va_end(i8* <arglist>)
9064
9065Overview:
9066"""""""""
9067
9068The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
9069initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
9070
9071Arguments:
9072""""""""""
9073
9074The argument is a pointer to a ``va_list`` to destroy.
9075
9076Semantics:
9077""""""""""
9078
9079The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
9080available in C. In a target-dependent way, it destroys the ``va_list``
9081element to which the argument points. Calls to
9082:ref:`llvm.va_start <int_va_start>` and
9083:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
9084``llvm.va_end``.
9085
9086.. _int_va_copy:
9087
9088'``llvm.va_copy``' Intrinsic
9089^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9090
9091Syntax:
9092"""""""
9093
9094::
9095
9096 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
9097
9098Overview:
9099"""""""""
9100
9101The '``llvm.va_copy``' intrinsic copies the current argument position
9102from the source argument list to the destination argument list.
9103
9104Arguments:
9105""""""""""
9106
9107The first argument is a pointer to a ``va_list`` element to initialize.
9108The second argument is a pointer to a ``va_list`` element to copy from.
9109
9110Semantics:
9111""""""""""
9112
9113The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9114available in C. In a target-dependent way, it copies the source
9115``va_list`` element into the destination ``va_list`` element. This
9116intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9117arbitrarily complex and require, for example, memory allocation.
9118
9119Accurate Garbage Collection Intrinsics
9120--------------------------------------
9121
Philip Reamesc5b0f562015-02-25 23:52:06 +00009122LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009123(GC) requires the frontend to generate code containing appropriate intrinsic
9124calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009125intrinsics in a manner which is appropriate for the target collector.
9126
Sean Silvab084af42012-12-07 10:36:55 +00009127These intrinsics allow identification of :ref:`GC roots on the
9128stack <int_gcroot>`, as well as garbage collector implementations that
9129require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009130Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009131these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009132details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009133
Philip Reamesf80bbff2015-02-25 23:45:20 +00009134Experimental Statepoint Intrinsics
9135^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9136
9137LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009138collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009139to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009140:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009141differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009142<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009143described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009144
9145.. _int_gcroot:
9146
9147'``llvm.gcroot``' Intrinsic
9148^^^^^^^^^^^^^^^^^^^^^^^^^^^
9149
9150Syntax:
9151"""""""
9152
9153::
9154
9155 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9156
9157Overview:
9158"""""""""
9159
9160The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9161the code generator, and allows some metadata to be associated with it.
9162
9163Arguments:
9164""""""""""
9165
9166The first argument specifies the address of a stack object that contains
9167the root pointer. The second pointer (which must be either a constant or
9168a global value address) contains the meta-data to be associated with the
9169root.
9170
9171Semantics:
9172""""""""""
9173
9174At runtime, a call to this intrinsic stores a null pointer into the
9175"ptrloc" location. At compile-time, the code generator generates
9176information to allow the runtime to find the pointer at GC safe points.
9177The '``llvm.gcroot``' intrinsic may only be used in a function which
9178:ref:`specifies a GC algorithm <gc>`.
9179
9180.. _int_gcread:
9181
9182'``llvm.gcread``' Intrinsic
9183^^^^^^^^^^^^^^^^^^^^^^^^^^^
9184
9185Syntax:
9186"""""""
9187
9188::
9189
9190 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9191
9192Overview:
9193"""""""""
9194
9195The '``llvm.gcread``' intrinsic identifies reads of references from heap
9196locations, allowing garbage collector implementations that require read
9197barriers.
9198
9199Arguments:
9200""""""""""
9201
9202The second argument is the address to read from, which should be an
9203address allocated from the garbage collector. The first object is a
9204pointer to the start of the referenced object, if needed by the language
9205runtime (otherwise null).
9206
9207Semantics:
9208""""""""""
9209
9210The '``llvm.gcread``' intrinsic has the same semantics as a load
9211instruction, but may be replaced with substantially more complex code by
9212the garbage collector runtime, as needed. The '``llvm.gcread``'
9213intrinsic may only be used in a function which :ref:`specifies a GC
9214algorithm <gc>`.
9215
9216.. _int_gcwrite:
9217
9218'``llvm.gcwrite``' Intrinsic
9219^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9220
9221Syntax:
9222"""""""
9223
9224::
9225
9226 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9227
9228Overview:
9229"""""""""
9230
9231The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9232locations, allowing garbage collector implementations that require write
9233barriers (such as generational or reference counting collectors).
9234
9235Arguments:
9236""""""""""
9237
9238The first argument is the reference to store, the second is the start of
9239the object to store it to, and the third is the address of the field of
9240Obj to store to. If the runtime does not require a pointer to the
9241object, Obj may be null.
9242
9243Semantics:
9244""""""""""
9245
9246The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9247instruction, but may be replaced with substantially more complex code by
9248the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9249intrinsic may only be used in a function which :ref:`specifies a GC
9250algorithm <gc>`.
9251
9252Code Generator Intrinsics
9253-------------------------
9254
9255These intrinsics are provided by LLVM to expose special features that
9256may only be implemented with code generator support.
9257
9258'``llvm.returnaddress``' Intrinsic
9259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9260
9261Syntax:
9262"""""""
9263
9264::
9265
9266 declare i8 *@llvm.returnaddress(i32 <level>)
9267
9268Overview:
9269"""""""""
9270
9271The '``llvm.returnaddress``' intrinsic attempts to compute a
9272target-specific value indicating the return address of the current
9273function or one of its callers.
9274
9275Arguments:
9276""""""""""
9277
9278The argument to this intrinsic indicates which function to return the
9279address for. Zero indicates the calling function, one indicates its
9280caller, etc. The argument is **required** to be a constant integer
9281value.
9282
9283Semantics:
9284""""""""""
9285
9286The '``llvm.returnaddress``' intrinsic either returns a pointer
9287indicating the return address of the specified call frame, or zero if it
9288cannot be identified. The value returned by this intrinsic is likely to
9289be incorrect or 0 for arguments other than zero, so it should only be
9290used for debugging purposes.
9291
9292Note that calling this intrinsic does not prevent function inlining or
9293other aggressive transformations, so the value returned may not be that
9294of the obvious source-language caller.
9295
9296'``llvm.frameaddress``' Intrinsic
9297^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9298
9299Syntax:
9300"""""""
9301
9302::
9303
9304 declare i8* @llvm.frameaddress(i32 <level>)
9305
9306Overview:
9307"""""""""
9308
9309The '``llvm.frameaddress``' intrinsic attempts to return the
9310target-specific frame pointer value for the specified stack frame.
9311
9312Arguments:
9313""""""""""
9314
9315The argument to this intrinsic indicates which function to return the
9316frame pointer for. Zero indicates the calling function, one indicates
9317its caller, etc. The argument is **required** to be a constant integer
9318value.
9319
9320Semantics:
9321""""""""""
9322
9323The '``llvm.frameaddress``' intrinsic either returns a pointer
9324indicating the frame address of the specified call frame, or zero if it
9325cannot be identified. The value returned by this intrinsic is likely to
9326be incorrect or 0 for arguments other than zero, so it should only be
9327used for debugging purposes.
9328
9329Note that calling this intrinsic does not prevent function inlining or
9330other aggressive transformations, so the value returned may not be that
9331of the obvious source-language caller.
9332
Reid Kleckner60381792015-07-07 22:25:32 +00009333'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9335
9336Syntax:
9337"""""""
9338
9339::
9340
Reid Kleckner60381792015-07-07 22:25:32 +00009341 declare void @llvm.localescape(...)
9342 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009343
9344Overview:
9345"""""""""
9346
Reid Kleckner60381792015-07-07 22:25:32 +00009347The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9348allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009349live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009350computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009351
9352Arguments:
9353""""""""""
9354
Reid Kleckner60381792015-07-07 22:25:32 +00009355All arguments to '``llvm.localescape``' must be pointers to static allocas or
9356casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009357once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009358
Reid Kleckner60381792015-07-07 22:25:32 +00009359The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009360bitcasted pointer to a function defined in the current module. The code
9361generator cannot determine the frame allocation offset of functions defined in
9362other modules.
9363
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009364The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9365call frame that is currently live. The return value of '``llvm.localaddress``'
9366is one way to produce such a value, but various runtimes also expose a suitable
9367pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009368
Reid Kleckner60381792015-07-07 22:25:32 +00009369The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9370'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009371
Reid Klecknere9b89312015-01-13 00:48:10 +00009372Semantics:
9373""""""""""
9374
Reid Kleckner60381792015-07-07 22:25:32 +00009375These intrinsics allow a group of functions to share access to a set of local
9376stack allocations of a one parent function. The parent function may call the
9377'``llvm.localescape``' intrinsic once from the function entry block, and the
9378child functions can use '``llvm.localrecover``' to access the escaped allocas.
9379The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9380the escaped allocas are allocated, which would break attempts to use
9381'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009382
Renato Golinc7aea402014-05-06 16:51:25 +00009383.. _int_read_register:
9384.. _int_write_register:
9385
9386'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9387^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9388
9389Syntax:
9390"""""""
9391
9392::
9393
9394 declare i32 @llvm.read_register.i32(metadata)
9395 declare i64 @llvm.read_register.i64(metadata)
9396 declare void @llvm.write_register.i32(metadata, i32 @value)
9397 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009398 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009399
9400Overview:
9401"""""""""
9402
9403The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9404provides access to the named register. The register must be valid on
9405the architecture being compiled to. The type needs to be compatible
9406with the register being read.
9407
9408Semantics:
9409""""""""""
9410
9411The '``llvm.read_register``' intrinsic returns the current value of the
9412register, where possible. The '``llvm.write_register``' intrinsic sets
9413the current value of the register, where possible.
9414
9415This is useful to implement named register global variables that need
9416to always be mapped to a specific register, as is common practice on
9417bare-metal programs including OS kernels.
9418
9419The compiler doesn't check for register availability or use of the used
9420register in surrounding code, including inline assembly. Because of that,
9421allocatable registers are not supported.
9422
9423Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009424architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009425work is needed to support other registers and even more so, allocatable
9426registers.
9427
Sean Silvab084af42012-12-07 10:36:55 +00009428.. _int_stacksave:
9429
9430'``llvm.stacksave``' Intrinsic
9431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9432
9433Syntax:
9434"""""""
9435
9436::
9437
9438 declare i8* @llvm.stacksave()
9439
9440Overview:
9441"""""""""
9442
9443The '``llvm.stacksave``' intrinsic is used to remember the current state
9444of the function stack, for use with
9445:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9446implementing language features like scoped automatic variable sized
9447arrays in C99.
9448
9449Semantics:
9450""""""""""
9451
9452This intrinsic returns a opaque pointer value that can be passed to
9453:ref:`llvm.stackrestore <int_stackrestore>`. When an
9454``llvm.stackrestore`` intrinsic is executed with a value saved from
9455``llvm.stacksave``, it effectively restores the state of the stack to
9456the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9457practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9458were allocated after the ``llvm.stacksave`` was executed.
9459
9460.. _int_stackrestore:
9461
9462'``llvm.stackrestore``' Intrinsic
9463^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9464
9465Syntax:
9466"""""""
9467
9468::
9469
9470 declare void @llvm.stackrestore(i8* %ptr)
9471
9472Overview:
9473"""""""""
9474
9475The '``llvm.stackrestore``' intrinsic is used to restore the state of
9476the function stack to the state it was in when the corresponding
9477:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9478useful for implementing language features like scoped automatic variable
9479sized arrays in C99.
9480
9481Semantics:
9482""""""""""
9483
9484See the description for :ref:`llvm.stacksave <int_stacksave>`.
9485
Yury Gribovd7dbb662015-12-01 11:40:55 +00009486.. _int_get_dynamic_area_offset:
9487
9488'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009490
9491Syntax:
9492"""""""
9493
9494::
9495
9496 declare i32 @llvm.get.dynamic.area.offset.i32()
9497 declare i64 @llvm.get.dynamic.area.offset.i64()
9498
9499 Overview:
9500 """""""""
9501
9502 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9503 get the offset from native stack pointer to the address of the most
9504 recent dynamic alloca on the caller's stack. These intrinsics are
9505 intendend for use in combination with
9506 :ref:`llvm.stacksave <int_stacksave>` to get a
9507 pointer to the most recent dynamic alloca. This is useful, for example,
9508 for AddressSanitizer's stack unpoisoning routines.
9509
9510Semantics:
9511""""""""""
9512
9513 These intrinsics return a non-negative integer value that can be used to
9514 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9515 on the caller's stack. In particular, for targets where stack grows downwards,
9516 adding this offset to the native stack pointer would get the address of the most
9517 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
Sylvestre Ledru0455cbe2016-07-28 09:28:58 +00009518 complicated, because subtracting this value from stack pointer would get the address
Yury Gribovd7dbb662015-12-01 11:40:55 +00009519 one past the end of the most recent dynamic alloca.
9520
9521 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9522 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9523 compile-time-known constant value.
9524
9525 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9526 must match the target's generic address space's (address space 0) pointer type.
9527
Sean Silvab084af42012-12-07 10:36:55 +00009528'``llvm.prefetch``' Intrinsic
9529^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9530
9531Syntax:
9532"""""""
9533
9534::
9535
9536 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9537
9538Overview:
9539"""""""""
9540
9541The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9542insert a prefetch instruction if supported; otherwise, it is a noop.
9543Prefetches have no effect on the behavior of the program but can change
9544its performance characteristics.
9545
9546Arguments:
9547""""""""""
9548
9549``address`` is the address to be prefetched, ``rw`` is the specifier
9550determining if the fetch should be for a read (0) or write (1), and
9551``locality`` is a temporal locality specifier ranging from (0) - no
9552locality, to (3) - extremely local keep in cache. The ``cache type``
9553specifies whether the prefetch is performed on the data (1) or
9554instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9555arguments must be constant integers.
9556
9557Semantics:
9558""""""""""
9559
9560This intrinsic does not modify the behavior of the program. In
9561particular, prefetches cannot trap and do not produce a value. On
9562targets that support this intrinsic, the prefetch can provide hints to
9563the processor cache for better performance.
9564
9565'``llvm.pcmarker``' Intrinsic
9566^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9567
9568Syntax:
9569"""""""
9570
9571::
9572
9573 declare void @llvm.pcmarker(i32 <id>)
9574
9575Overview:
9576"""""""""
9577
9578The '``llvm.pcmarker``' intrinsic is a method to export a Program
9579Counter (PC) in a region of code to simulators and other tools. The
9580method is target specific, but it is expected that the marker will use
9581exported symbols to transmit the PC of the marker. The marker makes no
9582guarantees that it will remain with any specific instruction after
9583optimizations. It is possible that the presence of a marker will inhibit
9584optimizations. The intended use is to be inserted after optimizations to
9585allow correlations of simulation runs.
9586
9587Arguments:
9588""""""""""
9589
9590``id`` is a numerical id identifying the marker.
9591
9592Semantics:
9593""""""""""
9594
9595This intrinsic does not modify the behavior of the program. Backends
9596that do not support this intrinsic may ignore it.
9597
9598'``llvm.readcyclecounter``' Intrinsic
9599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9600
9601Syntax:
9602"""""""
9603
9604::
9605
9606 declare i64 @llvm.readcyclecounter()
9607
9608Overview:
9609"""""""""
9610
9611The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9612counter register (or similar low latency, high accuracy clocks) on those
9613targets that support it. On X86, it should map to RDTSC. On Alpha, it
9614should map to RPCC. As the backing counters overflow quickly (on the
9615order of 9 seconds on alpha), this should only be used for small
9616timings.
9617
9618Semantics:
9619""""""""""
9620
9621When directly supported, reading the cycle counter should not modify any
9622memory. Implementations are allowed to either return a application
9623specific value or a system wide value. On backends without support, this
9624is lowered to a constant 0.
9625
Tim Northoverbc933082013-05-23 19:11:20 +00009626Note that runtime support may be conditional on the privilege-level code is
9627running at and the host platform.
9628
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009629'``llvm.clear_cache``' Intrinsic
9630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9631
9632Syntax:
9633"""""""
9634
9635::
9636
9637 declare void @llvm.clear_cache(i8*, i8*)
9638
9639Overview:
9640"""""""""
9641
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009642The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9643in the specified range to the execution unit of the processor. On
9644targets with non-unified instruction and data cache, the implementation
9645flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009646
9647Semantics:
9648""""""""""
9649
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009650On platforms with coherent instruction and data caches (e.g. x86), this
9651intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009652cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009653instructions or a system call, if cache flushing requires special
9654privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009655
Sean Silvad02bf3e2014-04-07 22:29:53 +00009656The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009657time library.
Renato Golin93010e62014-03-26 14:01:32 +00009658
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009659This instrinsic does *not* empty the instruction pipeline. Modifications
9660of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009661
Justin Bogner61ba2e32014-12-08 18:02:35 +00009662'``llvm.instrprof_increment``' Intrinsic
9663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9664
9665Syntax:
9666"""""""
9667
9668::
9669
9670 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9671 i32 <num-counters>, i32 <index>)
9672
9673Overview:
9674"""""""""
9675
9676The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9677frontend for use with instrumentation based profiling. These will be
9678lowered by the ``-instrprof`` pass to generate execution counts of a
9679program at runtime.
9680
9681Arguments:
9682""""""""""
9683
9684The first argument is a pointer to a global variable containing the
9685name of the entity being instrumented. This should generally be the
9686(mangled) function name for a set of counters.
9687
9688The second argument is a hash value that can be used by the consumer
9689of the profile data to detect changes to the instrumented source, and
9690the third is the number of counters associated with ``name``. It is an
9691error if ``hash`` or ``num-counters`` differ between two instances of
9692``instrprof_increment`` that refer to the same name.
9693
9694The last argument refers to which of the counters for ``name`` should
9695be incremented. It should be a value between 0 and ``num-counters``.
9696
9697Semantics:
9698""""""""""
9699
9700This intrinsic represents an increment of a profiling counter. It will
9701cause the ``-instrprof`` pass to generate the appropriate data
9702structures and the code to increment the appropriate value, in a
9703format that can be written out by a compiler runtime and consumed via
9704the ``llvm-profdata`` tool.
9705
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009706'``llvm.instrprof_value_profile``' Intrinsic
9707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9708
9709Syntax:
9710"""""""
9711
9712::
9713
9714 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9715 i64 <value>, i32 <value_kind>,
9716 i32 <index>)
9717
9718Overview:
9719"""""""""
9720
9721The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9722frontend for use with instrumentation based profiling. This will be
9723lowered by the ``-instrprof`` pass to find out the target values,
9724instrumented expressions take in a program at runtime.
9725
9726Arguments:
9727""""""""""
9728
9729The first argument is a pointer to a global variable containing the
9730name of the entity being instrumented. ``name`` should generally be the
9731(mangled) function name for a set of counters.
9732
9733The second argument is a hash value that can be used by the consumer
9734of the profile data to detect changes to the instrumented source. It
9735is an error if ``hash`` differs between two instances of
9736``llvm.instrprof_*`` that refer to the same name.
9737
9738The third argument is the value of the expression being profiled. The profiled
9739expression's value should be representable as an unsigned 64-bit value. The
9740fourth argument represents the kind of value profiling that is being done. The
9741supported value profiling kinds are enumerated through the
9742``InstrProfValueKind`` type declared in the
9743``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9744index of the instrumented expression within ``name``. It should be >= 0.
9745
9746Semantics:
9747""""""""""
9748
9749This intrinsic represents the point where a call to a runtime routine
9750should be inserted for value profiling of target expressions. ``-instrprof``
9751pass will generate the appropriate data structures and replace the
9752``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9753runtime library with proper arguments.
9754
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00009755'``llvm.thread.pointer``' Intrinsic
9756^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9757
9758Syntax:
9759"""""""
9760
9761::
9762
9763 declare i8* @llvm.thread.pointer()
9764
9765Overview:
9766"""""""""
9767
9768The '``llvm.thread.pointer``' intrinsic returns the value of the thread
9769pointer.
9770
9771Semantics:
9772""""""""""
9773
9774The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
9775for the current thread. The exact semantics of this value are target
9776specific: it may point to the start of TLS area, to the end, or somewhere
9777in the middle. Depending on the target, this intrinsic may read a register,
9778call a helper function, read from an alternate memory space, or perform
9779other operations necessary to locate the TLS area. Not all targets support
9780this intrinsic.
9781
Sean Silvab084af42012-12-07 10:36:55 +00009782Standard C Library Intrinsics
9783-----------------------------
9784
9785LLVM provides intrinsics for a few important standard C library
9786functions. These intrinsics allow source-language front-ends to pass
9787information about the alignment of the pointer arguments to the code
9788generator, providing opportunity for more efficient code generation.
9789
9790.. _int_memcpy:
9791
9792'``llvm.memcpy``' Intrinsic
9793^^^^^^^^^^^^^^^^^^^^^^^^^^^
9794
9795Syntax:
9796"""""""
9797
9798This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9799integer bit width and for different address spaces. Not all targets
9800support all bit widths however.
9801
9802::
9803
9804 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9805 i32 <len>, i32 <align>, i1 <isvolatile>)
9806 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9807 i64 <len>, i32 <align>, i1 <isvolatile>)
9808
9809Overview:
9810"""""""""
9811
9812The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9813source location to the destination location.
9814
9815Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9816intrinsics do not return a value, takes extra alignment/isvolatile
9817arguments and the pointers can be in specified address spaces.
9818
9819Arguments:
9820""""""""""
9821
9822The first argument is a pointer to the destination, the second is a
9823pointer to the source. The third argument is an integer argument
9824specifying the number of bytes to copy, the fourth argument is the
9825alignment of the source and destination locations, and the fifth is a
9826boolean indicating a volatile access.
9827
9828If the call to this intrinsic has an alignment value that is not 0 or 1,
9829then the caller guarantees that both the source and destination pointers
9830are aligned to that boundary.
9831
9832If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9833a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9834very cleanly specified and it is unwise to depend on it.
9835
9836Semantics:
9837""""""""""
9838
9839The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9840source location to the destination location, which are not allowed to
9841overlap. It copies "len" bytes of memory over. If the argument is known
9842to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009843argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009844
9845'``llvm.memmove``' Intrinsic
9846^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9847
9848Syntax:
9849"""""""
9850
9851This is an overloaded intrinsic. You can use llvm.memmove on any integer
9852bit width and for different address space. Not all targets support all
9853bit widths however.
9854
9855::
9856
9857 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9858 i32 <len>, i32 <align>, i1 <isvolatile>)
9859 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9860 i64 <len>, i32 <align>, i1 <isvolatile>)
9861
9862Overview:
9863"""""""""
9864
9865The '``llvm.memmove.*``' intrinsics move a block of memory from the
9866source location to the destination location. It is similar to the
9867'``llvm.memcpy``' intrinsic but allows the two memory locations to
9868overlap.
9869
9870Note that, unlike the standard libc function, the ``llvm.memmove.*``
9871intrinsics do not return a value, takes extra alignment/isvolatile
9872arguments and the pointers can be in specified address spaces.
9873
9874Arguments:
9875""""""""""
9876
9877The first argument is a pointer to the destination, the second is a
9878pointer to the source. The third argument is an integer argument
9879specifying the number of bytes to copy, the fourth argument is the
9880alignment of the source and destination locations, and the fifth is a
9881boolean indicating a volatile access.
9882
9883If the call to this intrinsic has an alignment value that is not 0 or 1,
9884then the caller guarantees that the source and destination pointers are
9885aligned to that boundary.
9886
9887If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9888is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9889not very cleanly specified and it is unwise to depend on it.
9890
9891Semantics:
9892""""""""""
9893
9894The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9895source location to the destination location, which may overlap. It
9896copies "len" bytes of memory over. If the argument is known to be
9897aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009898otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009899
9900'``llvm.memset.*``' Intrinsics
9901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9902
9903Syntax:
9904"""""""
9905
9906This is an overloaded intrinsic. You can use llvm.memset on any integer
9907bit width and for different address spaces. However, not all targets
9908support all bit widths.
9909
9910::
9911
9912 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9913 i32 <len>, i32 <align>, i1 <isvolatile>)
9914 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9915 i64 <len>, i32 <align>, i1 <isvolatile>)
9916
9917Overview:
9918"""""""""
9919
9920The '``llvm.memset.*``' intrinsics fill a block of memory with a
9921particular byte value.
9922
9923Note that, unlike the standard libc function, the ``llvm.memset``
9924intrinsic does not return a value and takes extra alignment/volatile
9925arguments. Also, the destination can be in an arbitrary address space.
9926
9927Arguments:
9928""""""""""
9929
9930The first argument is a pointer to the destination to fill, the second
9931is the byte value with which to fill it, the third argument is an
9932integer argument specifying the number of bytes to fill, and the fourth
9933argument is the known alignment of the destination location.
9934
9935If the call to this intrinsic has an alignment value that is not 0 or 1,
9936then the caller guarantees that the destination pointer is aligned to
9937that boundary.
9938
9939If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9940a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9941very cleanly specified and it is unwise to depend on it.
9942
9943Semantics:
9944""""""""""
9945
9946The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9947at the destination location. If the argument is known to be aligned to
9948some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009949it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009950
9951'``llvm.sqrt.*``' Intrinsic
9952^^^^^^^^^^^^^^^^^^^^^^^^^^^
9953
9954Syntax:
9955"""""""
9956
9957This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9958floating point or vector of floating point type. Not all targets support
9959all types however.
9960
9961::
9962
9963 declare float @llvm.sqrt.f32(float %Val)
9964 declare double @llvm.sqrt.f64(double %Val)
9965 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9966 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9967 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9968
9969Overview:
9970"""""""""
9971
9972The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9973returning the same value as the libm '``sqrt``' functions would. Unlike
9974``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9975negative numbers other than -0.0 (which allows for better optimization,
9976because there is no need to worry about errno being set).
9977``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9978
9979Arguments:
9980""""""""""
9981
9982The argument and return value are floating point numbers of the same
9983type.
9984
9985Semantics:
9986""""""""""
9987
9988This function returns the sqrt of the specified operand if it is a
9989nonnegative floating point number.
9990
9991'``llvm.powi.*``' Intrinsic
9992^^^^^^^^^^^^^^^^^^^^^^^^^^^
9993
9994Syntax:
9995"""""""
9996
9997This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9998floating point or vector of floating point type. Not all targets support
9999all types however.
10000
10001::
10002
10003 declare float @llvm.powi.f32(float %Val, i32 %power)
10004 declare double @llvm.powi.f64(double %Val, i32 %power)
10005 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
10006 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
10007 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
10008
10009Overview:
10010"""""""""
10011
10012The '``llvm.powi.*``' intrinsics return the first operand raised to the
10013specified (positive or negative) power. The order of evaluation of
10014multiplications is not defined. When a vector of floating point type is
10015used, the second argument remains a scalar integer value.
10016
10017Arguments:
10018""""""""""
10019
10020The second argument is an integer power, and the first is a value to
10021raise to that power.
10022
10023Semantics:
10024""""""""""
10025
10026This function returns the first value raised to the second power with an
10027unspecified sequence of rounding operations.
10028
10029'``llvm.sin.*``' Intrinsic
10030^^^^^^^^^^^^^^^^^^^^^^^^^^
10031
10032Syntax:
10033"""""""
10034
10035This is an overloaded intrinsic. You can use ``llvm.sin`` on any
10036floating point or vector of floating point type. Not all targets support
10037all types however.
10038
10039::
10040
10041 declare float @llvm.sin.f32(float %Val)
10042 declare double @llvm.sin.f64(double %Val)
10043 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
10044 declare fp128 @llvm.sin.f128(fp128 %Val)
10045 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
10046
10047Overview:
10048"""""""""
10049
10050The '``llvm.sin.*``' intrinsics return the sine of the operand.
10051
10052Arguments:
10053""""""""""
10054
10055The argument and return value are floating point numbers of the same
10056type.
10057
10058Semantics:
10059""""""""""
10060
10061This function returns the sine of the specified operand, returning the
10062same values as the libm ``sin`` functions would, and handles error
10063conditions in the same way.
10064
10065'``llvm.cos.*``' Intrinsic
10066^^^^^^^^^^^^^^^^^^^^^^^^^^
10067
10068Syntax:
10069"""""""
10070
10071This is an overloaded intrinsic. You can use ``llvm.cos`` on any
10072floating point or vector of floating point type. Not all targets support
10073all types however.
10074
10075::
10076
10077 declare float @llvm.cos.f32(float %Val)
10078 declare double @llvm.cos.f64(double %Val)
10079 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
10080 declare fp128 @llvm.cos.f128(fp128 %Val)
10081 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
10082
10083Overview:
10084"""""""""
10085
10086The '``llvm.cos.*``' intrinsics return the cosine of the operand.
10087
10088Arguments:
10089""""""""""
10090
10091The argument and return value are floating point numbers of the same
10092type.
10093
10094Semantics:
10095""""""""""
10096
10097This function returns the cosine of the specified operand, returning the
10098same values as the libm ``cos`` functions would, and handles error
10099conditions in the same way.
10100
10101'``llvm.pow.*``' Intrinsic
10102^^^^^^^^^^^^^^^^^^^^^^^^^^
10103
10104Syntax:
10105"""""""
10106
10107This is an overloaded intrinsic. You can use ``llvm.pow`` on any
10108floating point or vector of floating point type. Not all targets support
10109all types however.
10110
10111::
10112
10113 declare float @llvm.pow.f32(float %Val, float %Power)
10114 declare double @llvm.pow.f64(double %Val, double %Power)
10115 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
10116 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
10117 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
10118
10119Overview:
10120"""""""""
10121
10122The '``llvm.pow.*``' intrinsics return the first operand raised to the
10123specified (positive or negative) power.
10124
10125Arguments:
10126""""""""""
10127
10128The second argument is a floating point power, and the first is a value
10129to raise to that power.
10130
10131Semantics:
10132""""""""""
10133
10134This function returns the first value raised to the second power,
10135returning the same values as the libm ``pow`` functions would, and
10136handles error conditions in the same way.
10137
10138'``llvm.exp.*``' Intrinsic
10139^^^^^^^^^^^^^^^^^^^^^^^^^^
10140
10141Syntax:
10142"""""""
10143
10144This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10145floating point or vector of floating point type. Not all targets support
10146all types however.
10147
10148::
10149
10150 declare float @llvm.exp.f32(float %Val)
10151 declare double @llvm.exp.f64(double %Val)
10152 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10153 declare fp128 @llvm.exp.f128(fp128 %Val)
10154 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10155
10156Overview:
10157"""""""""
10158
10159The '``llvm.exp.*``' intrinsics perform the exp function.
10160
10161Arguments:
10162""""""""""
10163
10164The argument and return value are floating point numbers of the same
10165type.
10166
10167Semantics:
10168""""""""""
10169
10170This function returns the same values as the libm ``exp`` functions
10171would, and handles error conditions in the same way.
10172
10173'``llvm.exp2.*``' Intrinsic
10174^^^^^^^^^^^^^^^^^^^^^^^^^^^
10175
10176Syntax:
10177"""""""
10178
10179This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10180floating point or vector of floating point type. Not all targets support
10181all types however.
10182
10183::
10184
10185 declare float @llvm.exp2.f32(float %Val)
10186 declare double @llvm.exp2.f64(double %Val)
10187 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10188 declare fp128 @llvm.exp2.f128(fp128 %Val)
10189 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10190
10191Overview:
10192"""""""""
10193
10194The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10195
10196Arguments:
10197""""""""""
10198
10199The argument and return value are floating point numbers of the same
10200type.
10201
10202Semantics:
10203""""""""""
10204
10205This function returns the same values as the libm ``exp2`` functions
10206would, and handles error conditions in the same way.
10207
10208'``llvm.log.*``' Intrinsic
10209^^^^^^^^^^^^^^^^^^^^^^^^^^
10210
10211Syntax:
10212"""""""
10213
10214This is an overloaded intrinsic. You can use ``llvm.log`` on any
10215floating point or vector of floating point type. Not all targets support
10216all types however.
10217
10218::
10219
10220 declare float @llvm.log.f32(float %Val)
10221 declare double @llvm.log.f64(double %Val)
10222 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10223 declare fp128 @llvm.log.f128(fp128 %Val)
10224 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10225
10226Overview:
10227"""""""""
10228
10229The '``llvm.log.*``' intrinsics perform the log function.
10230
10231Arguments:
10232""""""""""
10233
10234The argument and return value are floating point numbers of the same
10235type.
10236
10237Semantics:
10238""""""""""
10239
10240This function returns the same values as the libm ``log`` functions
10241would, and handles error conditions in the same way.
10242
10243'``llvm.log10.*``' Intrinsic
10244^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10245
10246Syntax:
10247"""""""
10248
10249This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10250floating point or vector of floating point type. Not all targets support
10251all types however.
10252
10253::
10254
10255 declare float @llvm.log10.f32(float %Val)
10256 declare double @llvm.log10.f64(double %Val)
10257 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10258 declare fp128 @llvm.log10.f128(fp128 %Val)
10259 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10260
10261Overview:
10262"""""""""
10263
10264The '``llvm.log10.*``' intrinsics perform the log10 function.
10265
10266Arguments:
10267""""""""""
10268
10269The argument and return value are floating point numbers of the same
10270type.
10271
10272Semantics:
10273""""""""""
10274
10275This function returns the same values as the libm ``log10`` functions
10276would, and handles error conditions in the same way.
10277
10278'``llvm.log2.*``' Intrinsic
10279^^^^^^^^^^^^^^^^^^^^^^^^^^^
10280
10281Syntax:
10282"""""""
10283
10284This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10285floating point or vector of floating point type. Not all targets support
10286all types however.
10287
10288::
10289
10290 declare float @llvm.log2.f32(float %Val)
10291 declare double @llvm.log2.f64(double %Val)
10292 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10293 declare fp128 @llvm.log2.f128(fp128 %Val)
10294 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10295
10296Overview:
10297"""""""""
10298
10299The '``llvm.log2.*``' intrinsics perform the log2 function.
10300
10301Arguments:
10302""""""""""
10303
10304The argument and return value are floating point numbers of the same
10305type.
10306
10307Semantics:
10308""""""""""
10309
10310This function returns the same values as the libm ``log2`` functions
10311would, and handles error conditions in the same way.
10312
10313'``llvm.fma.*``' Intrinsic
10314^^^^^^^^^^^^^^^^^^^^^^^^^^
10315
10316Syntax:
10317"""""""
10318
10319This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10320floating point or vector of floating point type. Not all targets support
10321all types however.
10322
10323::
10324
10325 declare float @llvm.fma.f32(float %a, float %b, float %c)
10326 declare double @llvm.fma.f64(double %a, double %b, double %c)
10327 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10328 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10329 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10330
10331Overview:
10332"""""""""
10333
10334The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10335operation.
10336
10337Arguments:
10338""""""""""
10339
10340The argument and return value are floating point numbers of the same
10341type.
10342
10343Semantics:
10344""""""""""
10345
10346This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010347would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010348
10349'``llvm.fabs.*``' Intrinsic
10350^^^^^^^^^^^^^^^^^^^^^^^^^^^
10351
10352Syntax:
10353"""""""
10354
10355This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10356floating point or vector of floating point type. Not all targets support
10357all types however.
10358
10359::
10360
10361 declare float @llvm.fabs.f32(float %Val)
10362 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010363 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010364 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010365 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010366
10367Overview:
10368"""""""""
10369
10370The '``llvm.fabs.*``' intrinsics return the absolute value of the
10371operand.
10372
10373Arguments:
10374""""""""""
10375
10376The argument and return value are floating point numbers of the same
10377type.
10378
10379Semantics:
10380""""""""""
10381
10382This function returns the same values as the libm ``fabs`` functions
10383would, and handles error conditions in the same way.
10384
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010385'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010386^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010387
10388Syntax:
10389"""""""
10390
10391This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10392floating point or vector of floating point type. Not all targets support
10393all types however.
10394
10395::
10396
Matt Arsenault64313c92014-10-22 18:25:02 +000010397 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10398 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10399 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10400 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10401 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010402
10403Overview:
10404"""""""""
10405
10406The '``llvm.minnum.*``' intrinsics return the minimum of the two
10407arguments.
10408
10409
10410Arguments:
10411""""""""""
10412
10413The arguments and return value are floating point numbers of the same
10414type.
10415
10416Semantics:
10417""""""""""
10418
10419Follows the IEEE-754 semantics for minNum, which also match for libm's
10420fmin.
10421
10422If either operand is a NaN, returns the other non-NaN operand. Returns
10423NaN only if both operands are NaN. If the operands compare equal,
10424returns a value that compares equal to both operands. This means that
10425fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10426
10427'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010428^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010429
10430Syntax:
10431"""""""
10432
10433This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10434floating point or vector of floating point type. Not all targets support
10435all types however.
10436
10437::
10438
Matt Arsenault64313c92014-10-22 18:25:02 +000010439 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10440 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10441 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10442 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10443 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010444
10445Overview:
10446"""""""""
10447
10448The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10449arguments.
10450
10451
10452Arguments:
10453""""""""""
10454
10455The arguments and return value are floating point numbers of the same
10456type.
10457
10458Semantics:
10459""""""""""
10460Follows the IEEE-754 semantics for maxNum, which also match for libm's
10461fmax.
10462
10463If either operand is a NaN, returns the other non-NaN operand. Returns
10464NaN only if both operands are NaN. If the operands compare equal,
10465returns a value that compares equal to both operands. This means that
10466fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10467
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010468'``llvm.copysign.*``' Intrinsic
10469^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10470
10471Syntax:
10472"""""""
10473
10474This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10475floating point or vector of floating point type. Not all targets support
10476all types however.
10477
10478::
10479
10480 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10481 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10482 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10483 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10484 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10485
10486Overview:
10487"""""""""
10488
10489The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10490first operand and the sign of the second operand.
10491
10492Arguments:
10493""""""""""
10494
10495The arguments and return value are floating point numbers of the same
10496type.
10497
10498Semantics:
10499""""""""""
10500
10501This function returns the same values as the libm ``copysign``
10502functions would, and handles error conditions in the same way.
10503
Sean Silvab084af42012-12-07 10:36:55 +000010504'``llvm.floor.*``' Intrinsic
10505^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10506
10507Syntax:
10508"""""""
10509
10510This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10511floating point or vector of floating point type. Not all targets support
10512all types however.
10513
10514::
10515
10516 declare float @llvm.floor.f32(float %Val)
10517 declare double @llvm.floor.f64(double %Val)
10518 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10519 declare fp128 @llvm.floor.f128(fp128 %Val)
10520 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10521
10522Overview:
10523"""""""""
10524
10525The '``llvm.floor.*``' intrinsics return the floor of the operand.
10526
10527Arguments:
10528""""""""""
10529
10530The argument and return value are floating point numbers of the same
10531type.
10532
10533Semantics:
10534""""""""""
10535
10536This function returns the same values as the libm ``floor`` functions
10537would, and handles error conditions in the same way.
10538
10539'``llvm.ceil.*``' Intrinsic
10540^^^^^^^^^^^^^^^^^^^^^^^^^^^
10541
10542Syntax:
10543"""""""
10544
10545This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10546floating point or vector of floating point type. Not all targets support
10547all types however.
10548
10549::
10550
10551 declare float @llvm.ceil.f32(float %Val)
10552 declare double @llvm.ceil.f64(double %Val)
10553 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10554 declare fp128 @llvm.ceil.f128(fp128 %Val)
10555 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10556
10557Overview:
10558"""""""""
10559
10560The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10561
10562Arguments:
10563""""""""""
10564
10565The argument and return value are floating point numbers of the same
10566type.
10567
10568Semantics:
10569""""""""""
10570
10571This function returns the same values as the libm ``ceil`` functions
10572would, and handles error conditions in the same way.
10573
10574'``llvm.trunc.*``' Intrinsic
10575^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10576
10577Syntax:
10578"""""""
10579
10580This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10581floating point or vector of floating point type. Not all targets support
10582all types however.
10583
10584::
10585
10586 declare float @llvm.trunc.f32(float %Val)
10587 declare double @llvm.trunc.f64(double %Val)
10588 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10589 declare fp128 @llvm.trunc.f128(fp128 %Val)
10590 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10591
10592Overview:
10593"""""""""
10594
10595The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10596nearest integer not larger in magnitude than the operand.
10597
10598Arguments:
10599""""""""""
10600
10601The argument and return value are floating point numbers of the same
10602type.
10603
10604Semantics:
10605""""""""""
10606
10607This function returns the same values as the libm ``trunc`` functions
10608would, and handles error conditions in the same way.
10609
10610'``llvm.rint.*``' Intrinsic
10611^^^^^^^^^^^^^^^^^^^^^^^^^^^
10612
10613Syntax:
10614"""""""
10615
10616This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10617floating point or vector of floating point type. Not all targets support
10618all types however.
10619
10620::
10621
10622 declare float @llvm.rint.f32(float %Val)
10623 declare double @llvm.rint.f64(double %Val)
10624 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10625 declare fp128 @llvm.rint.f128(fp128 %Val)
10626 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10627
10628Overview:
10629"""""""""
10630
10631The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10632nearest integer. It may raise an inexact floating-point exception if the
10633operand isn't an integer.
10634
10635Arguments:
10636""""""""""
10637
10638The argument and return value are floating point numbers of the same
10639type.
10640
10641Semantics:
10642""""""""""
10643
10644This function returns the same values as the libm ``rint`` functions
10645would, and handles error conditions in the same way.
10646
10647'``llvm.nearbyint.*``' Intrinsic
10648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10649
10650Syntax:
10651"""""""
10652
10653This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10654floating point or vector of floating point type. Not all targets support
10655all types however.
10656
10657::
10658
10659 declare float @llvm.nearbyint.f32(float %Val)
10660 declare double @llvm.nearbyint.f64(double %Val)
10661 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10662 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10663 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10664
10665Overview:
10666"""""""""
10667
10668The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10669nearest integer.
10670
10671Arguments:
10672""""""""""
10673
10674The argument and return value are floating point numbers of the same
10675type.
10676
10677Semantics:
10678""""""""""
10679
10680This function returns the same values as the libm ``nearbyint``
10681functions would, and handles error conditions in the same way.
10682
Hal Finkel171817e2013-08-07 22:49:12 +000010683'``llvm.round.*``' Intrinsic
10684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10685
10686Syntax:
10687"""""""
10688
10689This is an overloaded intrinsic. You can use ``llvm.round`` on any
10690floating point or vector of floating point type. Not all targets support
10691all types however.
10692
10693::
10694
10695 declare float @llvm.round.f32(float %Val)
10696 declare double @llvm.round.f64(double %Val)
10697 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10698 declare fp128 @llvm.round.f128(fp128 %Val)
10699 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10700
10701Overview:
10702"""""""""
10703
10704The '``llvm.round.*``' intrinsics returns the operand rounded to the
10705nearest integer.
10706
10707Arguments:
10708""""""""""
10709
10710The argument and return value are floating point numbers of the same
10711type.
10712
10713Semantics:
10714""""""""""
10715
10716This function returns the same values as the libm ``round``
10717functions would, and handles error conditions in the same way.
10718
Sean Silvab084af42012-12-07 10:36:55 +000010719Bit Manipulation Intrinsics
10720---------------------------
10721
10722LLVM provides intrinsics for a few important bit manipulation
10723operations. These allow efficient code generation for some algorithms.
10724
James Molloy90111f72015-11-12 12:29:09 +000010725'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010726^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010727
10728Syntax:
10729"""""""
10730
10731This is an overloaded intrinsic function. You can use bitreverse on any
10732integer type.
10733
10734::
10735
10736 declare i16 @llvm.bitreverse.i16(i16 <id>)
10737 declare i32 @llvm.bitreverse.i32(i32 <id>)
10738 declare i64 @llvm.bitreverse.i64(i64 <id>)
10739
10740Overview:
10741"""""""""
10742
10743The '``llvm.bitreverse``' family of intrinsics is used to reverse the
Matt Arsenaultde2d6a32016-03-07 21:54:52 +000010744bitpattern of an integer value; for example ``0b10110110`` becomes
10745``0b01101101``.
James Molloy90111f72015-11-12 12:29:09 +000010746
10747Semantics:
10748""""""""""
10749
10750The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10751``M`` in the input moved to bit ``N-M`` in the output.
10752
Sean Silvab084af42012-12-07 10:36:55 +000010753'``llvm.bswap.*``' Intrinsics
10754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10755
10756Syntax:
10757"""""""
10758
10759This is an overloaded intrinsic function. You can use bswap on any
10760integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10761
10762::
10763
10764 declare i16 @llvm.bswap.i16(i16 <id>)
10765 declare i32 @llvm.bswap.i32(i32 <id>)
10766 declare i64 @llvm.bswap.i64(i64 <id>)
10767
10768Overview:
10769"""""""""
10770
10771The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10772values with an even number of bytes (positive multiple of 16 bits).
10773These are useful for performing operations on data that is not in the
10774target's native byte order.
10775
10776Semantics:
10777""""""""""
10778
10779The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10780and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10781intrinsic returns an i32 value that has the four bytes of the input i32
10782swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10783returned i32 will have its bytes in 3, 2, 1, 0 order. The
10784``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10785concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10786respectively).
10787
10788'``llvm.ctpop.*``' Intrinsic
10789^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10790
10791Syntax:
10792"""""""
10793
10794This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10795bit width, or on any vector with integer elements. Not all targets
10796support all bit widths or vector types, however.
10797
10798::
10799
10800 declare i8 @llvm.ctpop.i8(i8 <src>)
10801 declare i16 @llvm.ctpop.i16(i16 <src>)
10802 declare i32 @llvm.ctpop.i32(i32 <src>)
10803 declare i64 @llvm.ctpop.i64(i64 <src>)
10804 declare i256 @llvm.ctpop.i256(i256 <src>)
10805 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10806
10807Overview:
10808"""""""""
10809
10810The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10811in a value.
10812
10813Arguments:
10814""""""""""
10815
10816The only argument is the value to be counted. The argument may be of any
10817integer type, or a vector with integer elements. The return type must
10818match the argument type.
10819
10820Semantics:
10821""""""""""
10822
10823The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10824each element of a vector.
10825
10826'``llvm.ctlz.*``' Intrinsic
10827^^^^^^^^^^^^^^^^^^^^^^^^^^^
10828
10829Syntax:
10830"""""""
10831
10832This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10833integer bit width, or any vector whose elements are integers. Not all
10834targets support all bit widths or vector types, however.
10835
10836::
10837
10838 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10839 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10840 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10841 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10842 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010843 declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010844
10845Overview:
10846"""""""""
10847
10848The '``llvm.ctlz``' family of intrinsic functions counts the number of
10849leading zeros in a variable.
10850
10851Arguments:
10852""""""""""
10853
10854The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010855any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010856type must match the first argument type.
10857
10858The second argument must be a constant and is a flag to indicate whether
10859the intrinsic should ensure that a zero as the first argument produces a
10860defined result. Historically some architectures did not provide a
10861defined result for zero values as efficiently, and many algorithms are
10862now predicated on avoiding zero-value inputs.
10863
10864Semantics:
10865""""""""""
10866
10867The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10868zeros in a variable, or within each element of the vector. If
10869``src == 0`` then the result is the size in bits of the type of ``src``
10870if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10871``llvm.ctlz(i32 2) = 30``.
10872
10873'``llvm.cttz.*``' Intrinsic
10874^^^^^^^^^^^^^^^^^^^^^^^^^^^
10875
10876Syntax:
10877"""""""
10878
10879This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10880integer bit width, or any vector of integer elements. Not all targets
10881support all bit widths or vector types, however.
10882
10883::
10884
10885 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10886 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10887 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10888 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10889 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
Alexey Samsonovc4b18302016-03-17 23:08:01 +000010890 declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
Sean Silvab084af42012-12-07 10:36:55 +000010891
10892Overview:
10893"""""""""
10894
10895The '``llvm.cttz``' family of intrinsic functions counts the number of
10896trailing zeros.
10897
10898Arguments:
10899""""""""""
10900
10901The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010902any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010903type must match the first argument type.
10904
10905The second argument must be a constant and is a flag to indicate whether
10906the intrinsic should ensure that a zero as the first argument produces a
10907defined result. Historically some architectures did not provide a
10908defined result for zero values as efficiently, and many algorithms are
10909now predicated on avoiding zero-value inputs.
10910
10911Semantics:
10912""""""""""
10913
10914The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10915zeros in a variable, or within each element of a vector. If ``src == 0``
10916then the result is the size in bits of the type of ``src`` if
10917``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10918``llvm.cttz(2) = 1``.
10919
Philip Reames34843ae2015-03-05 05:55:55 +000010920.. _int_overflow:
10921
Sean Silvab084af42012-12-07 10:36:55 +000010922Arithmetic with Overflow Intrinsics
10923-----------------------------------
10924
John Regehr6a493f22016-05-12 20:55:09 +000010925LLVM provides intrinsics for fast arithmetic overflow checking.
10926
10927Each of these intrinsics returns a two-element struct. The first
10928element of this struct contains the result of the corresponding
10929arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
10930the result. Therefore, for example, the first element of the struct
10931returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
10932result of a 32-bit ``add`` instruction with the same operands, where
10933the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
10934
10935The second element of the result is an ``i1`` that is 1 if the
10936arithmetic operation overflowed and 0 otherwise. An operation
10937overflows if, for any values of its operands ``A`` and ``B`` and for
10938any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
10939not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
10940``sext`` for signed overflow and ``zext`` for unsigned overflow, and
10941``op`` is the underlying arithmetic operation.
10942
10943The behavior of these intrinsics is well-defined for all argument
10944values.
Sean Silvab084af42012-12-07 10:36:55 +000010945
10946'``llvm.sadd.with.overflow.*``' Intrinsics
10947^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10948
10949Syntax:
10950"""""""
10951
10952This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10953on any integer bit width.
10954
10955::
10956
10957 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10958 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10959 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10960
10961Overview:
10962"""""""""
10963
10964The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10965a signed addition of the two arguments, and indicate whether an overflow
10966occurred during the signed summation.
10967
10968Arguments:
10969""""""""""
10970
10971The arguments (%a and %b) and the first element of the result structure
10972may be of integer types of any bit width, but they must have the same
10973bit width. The second element of the result structure must be of type
10974``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10975addition.
10976
10977Semantics:
10978""""""""""
10979
10980The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010981a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010982first element of which is the signed summation, and the second element
10983of which is a bit specifying if the signed summation resulted in an
10984overflow.
10985
10986Examples:
10987"""""""""
10988
10989.. code-block:: llvm
10990
10991 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10992 %sum = extractvalue {i32, i1} %res, 0
10993 %obit = extractvalue {i32, i1} %res, 1
10994 br i1 %obit, label %overflow, label %normal
10995
10996'``llvm.uadd.with.overflow.*``' Intrinsics
10997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10998
10999Syntax:
11000"""""""
11001
11002This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
11003on any integer bit width.
11004
11005::
11006
11007 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
11008 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11009 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
11010
11011Overview:
11012"""""""""
11013
11014The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
11015an unsigned addition of the two arguments, and indicate whether a carry
11016occurred during the unsigned summation.
11017
11018Arguments:
11019""""""""""
11020
11021The arguments (%a and %b) and the first element of the result structure
11022may be of integer types of any bit width, but they must have the same
11023bit width. The second element of the result structure must be of type
11024``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11025addition.
11026
11027Semantics:
11028""""""""""
11029
11030The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011031an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011032first element of which is the sum, and the second element of which is a
11033bit specifying if the unsigned summation resulted in a carry.
11034
11035Examples:
11036"""""""""
11037
11038.. code-block:: llvm
11039
11040 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
11041 %sum = extractvalue {i32, i1} %res, 0
11042 %obit = extractvalue {i32, i1} %res, 1
11043 br i1 %obit, label %carry, label %normal
11044
11045'``llvm.ssub.with.overflow.*``' Intrinsics
11046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11047
11048Syntax:
11049"""""""
11050
11051This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
11052on any integer bit width.
11053
11054::
11055
11056 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
11057 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11058 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
11059
11060Overview:
11061"""""""""
11062
11063The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
11064a signed subtraction of the two arguments, and indicate whether an
11065overflow occurred during the signed subtraction.
11066
11067Arguments:
11068""""""""""
11069
11070The arguments (%a and %b) and the first element of the result structure
11071may be of integer types of any bit width, but they must have the same
11072bit width. The second element of the result structure must be of type
11073``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11074subtraction.
11075
11076Semantics:
11077""""""""""
11078
11079The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011080a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000011081first element of which is the subtraction, and the second element of
11082which is a bit specifying if the signed subtraction resulted in an
11083overflow.
11084
11085Examples:
11086"""""""""
11087
11088.. code-block:: llvm
11089
11090 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
11091 %sum = extractvalue {i32, i1} %res, 0
11092 %obit = extractvalue {i32, i1} %res, 1
11093 br i1 %obit, label %overflow, label %normal
11094
11095'``llvm.usub.with.overflow.*``' Intrinsics
11096^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11097
11098Syntax:
11099"""""""
11100
11101This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
11102on any integer bit width.
11103
11104::
11105
11106 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
11107 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11108 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
11109
11110Overview:
11111"""""""""
11112
11113The '``llvm.usub.with.overflow``' family of intrinsic functions perform
11114an unsigned subtraction of the two arguments, and indicate whether an
11115overflow occurred during the unsigned subtraction.
11116
11117Arguments:
11118""""""""""
11119
11120The arguments (%a and %b) and the first element of the result structure
11121may be of integer types of any bit width, but they must have the same
11122bit width. The second element of the result structure must be of type
11123``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11124subtraction.
11125
11126Semantics:
11127""""""""""
11128
11129The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011130an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011131the first element of which is the subtraction, and the second element of
11132which is a bit specifying if the unsigned subtraction resulted in an
11133overflow.
11134
11135Examples:
11136"""""""""
11137
11138.. code-block:: llvm
11139
11140 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
11141 %sum = extractvalue {i32, i1} %res, 0
11142 %obit = extractvalue {i32, i1} %res, 1
11143 br i1 %obit, label %overflow, label %normal
11144
11145'``llvm.smul.with.overflow.*``' Intrinsics
11146^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11147
11148Syntax:
11149"""""""
11150
11151This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11152on any integer bit width.
11153
11154::
11155
11156 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11157 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11158 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11159
11160Overview:
11161"""""""""
11162
11163The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11164a signed multiplication of the two arguments, and indicate whether an
11165overflow occurred during the signed multiplication.
11166
11167Arguments:
11168""""""""""
11169
11170The arguments (%a and %b) and the first element of the result structure
11171may be of integer types of any bit width, but they must have the same
11172bit width. The second element of the result structure must be of type
11173``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11174multiplication.
11175
11176Semantics:
11177""""""""""
11178
11179The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011180a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011181the first element of which is the multiplication, and the second element
11182of which is a bit specifying if the signed multiplication resulted in an
11183overflow.
11184
11185Examples:
11186"""""""""
11187
11188.. code-block:: llvm
11189
11190 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11191 %sum = extractvalue {i32, i1} %res, 0
11192 %obit = extractvalue {i32, i1} %res, 1
11193 br i1 %obit, label %overflow, label %normal
11194
11195'``llvm.umul.with.overflow.*``' Intrinsics
11196^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11197
11198Syntax:
11199"""""""
11200
11201This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11202on any integer bit width.
11203
11204::
11205
11206 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11207 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11208 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11209
11210Overview:
11211"""""""""
11212
11213The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11214a unsigned multiplication of the two arguments, and indicate whether an
11215overflow occurred during the unsigned multiplication.
11216
11217Arguments:
11218""""""""""
11219
11220The arguments (%a and %b) and the first element of the result structure
11221may be of integer types of any bit width, but they must have the same
11222bit width. The second element of the result structure must be of type
11223``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11224multiplication.
11225
11226Semantics:
11227""""""""""
11228
11229The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011230an unsigned multiplication of the two arguments. They return a structure ---
11231the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011232element of which is a bit specifying if the unsigned multiplication
11233resulted in an overflow.
11234
11235Examples:
11236"""""""""
11237
11238.. code-block:: llvm
11239
11240 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11241 %sum = extractvalue {i32, i1} %res, 0
11242 %obit = extractvalue {i32, i1} %res, 1
11243 br i1 %obit, label %overflow, label %normal
11244
11245Specialised Arithmetic Intrinsics
11246---------------------------------
11247
Owen Anderson1056a922015-07-11 07:01:27 +000011248'``llvm.canonicalize.*``' Intrinsic
11249^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11250
11251Syntax:
11252"""""""
11253
11254::
11255
11256 declare float @llvm.canonicalize.f32(float %a)
11257 declare double @llvm.canonicalize.f64(double %b)
11258
11259Overview:
11260"""""""""
11261
11262The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011263encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011264implementing certain numeric primitives such as frexp. The canonical encoding is
11265defined by IEEE-754-2008 to be:
11266
11267::
11268
11269 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011270 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011271 numbers, infinities, and NaNs, especially in decimal formats.
11272
11273This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011274conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011275according to section 6.2.
11276
11277Examples of non-canonical encodings:
11278
Sean Silvaa1190322015-08-06 22:56:48 +000011279- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011280 converted to a canonical representation per hardware-specific protocol.
11281- Many normal decimal floating point numbers have non-canonical alternative
11282 encodings.
11283- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
Sanjay Patelcc330962016-02-24 23:44:19 +000011284 These are treated as non-canonical encodings of zero and will be flushed to
Owen Anderson1056a922015-07-11 07:01:27 +000011285 a zero of the same sign by this operation.
11286
11287Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11288default exception handling must signal an invalid exception, and produce a
11289quiet NaN result.
11290
11291This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011292that the compiler does not constant fold the operation. Likewise, division by
112931.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011294-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11295
Sean Silvaa1190322015-08-06 22:56:48 +000011296``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011297
11298- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11299- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11300 to ``(x == y)``
11301
11302Additionally, the sign of zero must be conserved:
11303``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11304
11305The payload bits of a NaN must be conserved, with two exceptions.
11306First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011307must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011308usual methods.
11309
11310The canonicalization operation may be optimized away if:
11311
Sean Silvaa1190322015-08-06 22:56:48 +000011312- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011313 floating-point operation that is required by the standard to be canonical.
11314- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011315 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011316
Sean Silvab084af42012-12-07 10:36:55 +000011317'``llvm.fmuladd.*``' Intrinsic
11318^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11319
11320Syntax:
11321"""""""
11322
11323::
11324
11325 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11326 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11327
11328Overview:
11329"""""""""
11330
11331The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011332expressions that can be fused if the code generator determines that (a) the
11333target instruction set has support for a fused operation, and (b) that the
11334fused operation is more efficient than the equivalent, separate pair of mul
11335and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011336
11337Arguments:
11338""""""""""
11339
11340The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11341multiplicands, a and b, and an addend c.
11342
11343Semantics:
11344""""""""""
11345
11346The expression:
11347
11348::
11349
11350 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11351
11352is equivalent to the expression a \* b + c, except that rounding will
11353not be performed between the multiplication and addition steps if the
11354code generator fuses the operations. Fusion is not guaranteed, even if
11355the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011356corresponding llvm.fma.\* intrinsic function should be used
11357instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011358
11359Examples:
11360"""""""""
11361
11362.. code-block:: llvm
11363
Tim Northover675a0962014-06-13 14:24:23 +000011364 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011365
11366Half Precision Floating Point Intrinsics
11367----------------------------------------
11368
11369For most target platforms, half precision floating point is a
11370storage-only format. This means that it is a dense encoding (in memory)
11371but does not support computation in the format.
11372
11373This means that code must first load the half-precision floating point
11374value as an i16, then convert it to float with
11375:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11376then be performed on the float value (including extending to double
11377etc). To store the value back to memory, it is first converted to float
11378if needed, then converted to i16 with
11379:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11380i16 value.
11381
11382.. _int_convert_to_fp16:
11383
11384'``llvm.convert.to.fp16``' Intrinsic
11385^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11386
11387Syntax:
11388"""""""
11389
11390::
11391
Tim Northoverfd7e4242014-07-17 10:51:23 +000011392 declare i16 @llvm.convert.to.fp16.f32(float %a)
11393 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011394
11395Overview:
11396"""""""""
11397
Tim Northoverfd7e4242014-07-17 10:51:23 +000011398The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11399conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011400
11401Arguments:
11402""""""""""
11403
11404The intrinsic function contains single argument - the value to be
11405converted.
11406
11407Semantics:
11408""""""""""
11409
Tim Northoverfd7e4242014-07-17 10:51:23 +000011410The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11411conventional floating point format to half precision floating point format. The
11412return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011413
11414Examples:
11415"""""""""
11416
11417.. code-block:: llvm
11418
Tim Northoverfd7e4242014-07-17 10:51:23 +000011419 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011420 store i16 %res, i16* @x, align 2
11421
11422.. _int_convert_from_fp16:
11423
11424'``llvm.convert.from.fp16``' Intrinsic
11425^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11426
11427Syntax:
11428"""""""
11429
11430::
11431
Tim Northoverfd7e4242014-07-17 10:51:23 +000011432 declare float @llvm.convert.from.fp16.f32(i16 %a)
11433 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011434
11435Overview:
11436"""""""""
11437
11438The '``llvm.convert.from.fp16``' intrinsic function performs a
11439conversion from half precision floating point format to single precision
11440floating point format.
11441
11442Arguments:
11443""""""""""
11444
11445The intrinsic function contains single argument - the value to be
11446converted.
11447
11448Semantics:
11449""""""""""
11450
11451The '``llvm.convert.from.fp16``' intrinsic function performs a
11452conversion from half single precision floating point format to single
11453precision floating point format. The input half-float value is
11454represented by an ``i16`` value.
11455
11456Examples:
11457"""""""""
11458
11459.. code-block:: llvm
11460
David Blaikiec7aabbb2015-03-04 22:06:14 +000011461 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011462 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011463
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011464.. _dbg_intrinsics:
11465
Sean Silvab084af42012-12-07 10:36:55 +000011466Debugger Intrinsics
11467-------------------
11468
11469The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11470prefix), are described in the `LLVM Source Level
11471Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11472document.
11473
11474Exception Handling Intrinsics
11475-----------------------------
11476
11477The LLVM exception handling intrinsics (which all start with
11478``llvm.eh.`` prefix), are described in the `LLVM Exception
11479Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11480
11481.. _int_trampoline:
11482
11483Trampoline Intrinsics
11484---------------------
11485
11486These intrinsics make it possible to excise one parameter, marked with
11487the :ref:`nest <nest>` attribute, from a function. The result is a
11488callable function pointer lacking the nest parameter - the caller does
11489not need to provide a value for it. Instead, the value to use is stored
11490in advance in a "trampoline", a block of memory usually allocated on the
11491stack, which also contains code to splice the nest value into the
11492argument list. This is used to implement the GCC nested function address
11493extension.
11494
11495For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11496then the resulting function pointer has signature ``i32 (i32, i32)*``.
11497It can be created as follows:
11498
11499.. code-block:: llvm
11500
11501 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011502 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011503 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11504 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11505 %fp = bitcast i8* %p to i32 (i32, i32)*
11506
11507The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11508``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11509
11510.. _int_it:
11511
11512'``llvm.init.trampoline``' Intrinsic
11513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11514
11515Syntax:
11516"""""""
11517
11518::
11519
11520 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11521
11522Overview:
11523"""""""""
11524
11525This fills the memory pointed to by ``tramp`` with executable code,
11526turning it into a trampoline.
11527
11528Arguments:
11529""""""""""
11530
11531The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11532pointers. The ``tramp`` argument must point to a sufficiently large and
11533sufficiently aligned block of memory; this memory is written to by the
11534intrinsic. Note that the size and the alignment are target-specific -
11535LLVM currently provides no portable way of determining them, so a
11536front-end that generates this intrinsic needs to have some
11537target-specific knowledge. The ``func`` argument must hold a function
11538bitcast to an ``i8*``.
11539
11540Semantics:
11541""""""""""
11542
11543The block of memory pointed to by ``tramp`` is filled with target
11544dependent code, turning it into a function. Then ``tramp`` needs to be
11545passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11546be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11547function's signature is the same as that of ``func`` with any arguments
11548marked with the ``nest`` attribute removed. At most one such ``nest``
11549argument is allowed, and it must be of pointer type. Calling the new
11550function is equivalent to calling ``func`` with the same argument list,
11551but with ``nval`` used for the missing ``nest`` argument. If, after
11552calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11553modified, then the effect of any later call to the returned function
11554pointer is undefined.
11555
11556.. _int_at:
11557
11558'``llvm.adjust.trampoline``' Intrinsic
11559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11560
11561Syntax:
11562"""""""
11563
11564::
11565
11566 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11567
11568Overview:
11569"""""""""
11570
11571This performs any required machine-specific adjustment to the address of
11572a trampoline (passed as ``tramp``).
11573
11574Arguments:
11575""""""""""
11576
11577``tramp`` must point to a block of memory which already has trampoline
11578code filled in by a previous call to
11579:ref:`llvm.init.trampoline <int_it>`.
11580
11581Semantics:
11582""""""""""
11583
11584On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011585different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011586intrinsic returns the executable address corresponding to ``tramp``
11587after performing the required machine specific adjustments. The pointer
11588returned can then be :ref:`bitcast and executed <int_trampoline>`.
11589
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011590.. _int_mload_mstore:
11591
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011592Masked Vector Load and Store Intrinsics
11593---------------------------------------
11594
11595LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11596
11597.. _int_mload:
11598
11599'``llvm.masked.load.*``' Intrinsics
11600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11601
11602Syntax:
11603"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011604This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011605
11606::
11607
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011608 declare <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11609 declare <2 x double> @llvm.masked.load.v2f64.p0v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011610 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011611 declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011612 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011613 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011614
11615Overview:
11616"""""""""
11617
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011618Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011619
11620
11621Arguments:
11622""""""""""
11623
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011624The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011625
11626
11627Semantics:
11628""""""""""
11629
11630The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11631The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11632
11633
11634::
11635
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011636 %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011637
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011638 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011639 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011640 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011641
11642.. _int_mstore:
11643
11644'``llvm.masked.store.*``' Intrinsics
11645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11646
11647Syntax:
11648"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011649This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011650
11651::
11652
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011653 declare void @llvm.masked.store.v8i32.p0v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11654 declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011655 ;; The data is a vector of pointers to double
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011656 declare void @llvm.masked.store.v8p0f64.p0v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011657 ;; The data is a vector of function pointers
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011658 declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011659
11660Overview:
11661"""""""""
11662
11663Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11664
11665Arguments:
11666""""""""""
11667
11668The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11669
11670
11671Semantics:
11672""""""""""
11673
11674The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11675The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11676
11677::
11678
Artur Pilipenko7ad95ec2016-06-28 18:27:25 +000011679 call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011680
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011681 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011682 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011683 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11684 store <16 x float> %res, <16 x float>* %ptr, align 4
11685
11686
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011687Masked Vector Gather and Scatter Intrinsics
11688-------------------------------------------
11689
11690LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11691
11692.. _int_mgather:
11693
11694'``llvm.masked.gather.*``' Intrinsics
11695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11696
11697Syntax:
11698"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011699This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011700
11701::
11702
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011703 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11704 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11705 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011706
11707Overview:
11708"""""""""
11709
11710Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11711
11712
11713Arguments:
11714""""""""""
11715
11716The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11717
11718
11719Semantics:
11720""""""""""
11721
11722The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11723The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11724
11725
11726::
11727
11728 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11729
11730 ;; The gather with all-true mask is equivalent to the following instruction sequence
11731 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11732 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11733 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11734 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11735
11736 %val0 = load double, double* %ptr0, align 8
11737 %val1 = load double, double* %ptr1, align 8
11738 %val2 = load double, double* %ptr2, align 8
11739 %val3 = load double, double* %ptr3, align 8
11740
11741 %vec0 = insertelement <4 x double>undef, %val0, 0
11742 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11743 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11744 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11745
11746.. _int_mscatter:
11747
11748'``llvm.masked.scatter.*``' Intrinsics
11749^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11750
11751Syntax:
11752"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011753This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011754
11755::
11756
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011757 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11758 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11759 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011760
11761Overview:
11762"""""""""
11763
11764Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11765
11766Arguments:
11767""""""""""
11768
11769The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11770
11771
11772Semantics:
11773""""""""""
11774
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011775The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011776
11777::
11778
Sylvestre Ledru84666a12016-02-14 20:16:22 +000011779 ;; This instruction unconditionally stores data vector in multiple addresses
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011780 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11781
11782 ;; It is equivalent to a list of scalar stores
11783 %val0 = extractelement <8 x i32> %value, i32 0
11784 %val1 = extractelement <8 x i32> %value, i32 1
11785 ..
11786 %val7 = extractelement <8 x i32> %value, i32 7
11787 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11788 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11789 ..
11790 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11791 ;; Note: the order of the following stores is important when they overlap:
11792 store i32 %val0, i32* %ptr0, align 4
11793 store i32 %val1, i32* %ptr1, align 4
11794 ..
11795 store i32 %val7, i32* %ptr7, align 4
11796
11797
Sean Silvab084af42012-12-07 10:36:55 +000011798Memory Use Markers
11799------------------
11800
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011801This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011802memory objects and ranges where variables are immutable.
11803
Reid Klecknera534a382013-12-19 02:14:12 +000011804.. _int_lifestart:
11805
Sean Silvab084af42012-12-07 10:36:55 +000011806'``llvm.lifetime.start``' Intrinsic
11807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11808
11809Syntax:
11810"""""""
11811
11812::
11813
11814 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11815
11816Overview:
11817"""""""""
11818
11819The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11820object's lifetime.
11821
11822Arguments:
11823""""""""""
11824
11825The first argument is a constant integer representing the size of the
11826object, or -1 if it is variable sized. The second argument is a pointer
11827to the object.
11828
11829Semantics:
11830""""""""""
11831
11832This intrinsic indicates that before this point in the code, the value
11833of the memory pointed to by ``ptr`` is dead. This means that it is known
11834to never be used and has an undefined value. A load from the pointer
11835that precedes this intrinsic can be replaced with ``'undef'``.
11836
Reid Klecknera534a382013-12-19 02:14:12 +000011837.. _int_lifeend:
11838
Sean Silvab084af42012-12-07 10:36:55 +000011839'``llvm.lifetime.end``' Intrinsic
11840^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11841
11842Syntax:
11843"""""""
11844
11845::
11846
11847 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11848
11849Overview:
11850"""""""""
11851
11852The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11853object's lifetime.
11854
11855Arguments:
11856""""""""""
11857
11858The first argument is a constant integer representing the size of the
11859object, or -1 if it is variable sized. The second argument is a pointer
11860to the object.
11861
11862Semantics:
11863""""""""""
11864
11865This intrinsic indicates that after this point in the code, the value of
11866the memory pointed to by ``ptr`` is dead. This means that it is known to
11867never be used and has an undefined value. Any stores into the memory
11868object following this intrinsic may be removed as dead.
11869
11870'``llvm.invariant.start``' Intrinsic
11871^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11872
11873Syntax:
11874"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011875This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011876
11877::
11878
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011879 declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011880
11881Overview:
11882"""""""""
11883
11884The '``llvm.invariant.start``' intrinsic specifies that the contents of
11885a memory object will not change.
11886
11887Arguments:
11888""""""""""
11889
11890The first argument is a constant integer representing the size of the
11891object, or -1 if it is variable sized. The second argument is a pointer
11892to the object.
11893
11894Semantics:
11895""""""""""
11896
11897This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11898the return value, the referenced memory location is constant and
11899unchanging.
11900
11901'``llvm.invariant.end``' Intrinsic
11902^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11903
11904Syntax:
11905"""""""
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011906This is an overloaded intrinsic. The memory object can belong to any address space.
Sean Silvab084af42012-12-07 10:36:55 +000011907
11908::
11909
Mehdi Amini8c629ec2016-08-13 23:31:24 +000011910 declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
Sean Silvab084af42012-12-07 10:36:55 +000011911
11912Overview:
11913"""""""""
11914
11915The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11916memory object are mutable.
11917
11918Arguments:
11919""""""""""
11920
11921The first argument is the matching ``llvm.invariant.start`` intrinsic.
11922The second argument is a constant integer representing the size of the
11923object, or -1 if it is variable sized and the third argument is a
11924pointer to the object.
11925
11926Semantics:
11927""""""""""
11928
11929This intrinsic indicates that the memory is mutable again.
11930
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011931'``llvm.invariant.group.barrier``' Intrinsic
11932^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11933
11934Syntax:
11935"""""""
11936
11937::
11938
11939 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11940
11941Overview:
11942"""""""""
11943
11944The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11945established by invariant.group metadata no longer holds, to obtain a new pointer
11946value that does not carry the invariant information.
11947
11948
11949Arguments:
11950""""""""""
11951
11952The ``llvm.invariant.group.barrier`` takes only one argument, which is
11953the pointer to the memory for which the ``invariant.group`` no longer holds.
11954
11955Semantics:
11956""""""""""
11957
11958Returns another pointer that aliases its argument but which is considered different
11959for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11960
Sean Silvab084af42012-12-07 10:36:55 +000011961General Intrinsics
11962------------------
11963
11964This class of intrinsics is designed to be generic and has no specific
11965purpose.
11966
11967'``llvm.var.annotation``' Intrinsic
11968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11969
11970Syntax:
11971"""""""
11972
11973::
11974
11975 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11976
11977Overview:
11978"""""""""
11979
11980The '``llvm.var.annotation``' intrinsic.
11981
11982Arguments:
11983""""""""""
11984
11985The first argument is a pointer to a value, the second is a pointer to a
11986global string, the third is a pointer to a global string which is the
11987source file name, and the last argument is the line number.
11988
11989Semantics:
11990""""""""""
11991
11992This intrinsic allows annotation of local variables with arbitrary
11993strings. This can be useful for special purpose optimizations that want
11994to look for these annotations. These have no other defined use; they are
11995ignored by code generation and optimization.
11996
Michael Gottesman88d18832013-03-26 00:34:27 +000011997'``llvm.ptr.annotation.*``' Intrinsic
11998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11999
12000Syntax:
12001"""""""
12002
12003This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
12004pointer to an integer of any width. *NOTE* you must specify an address space for
12005the pointer. The identifier for the default address space is the integer
12006'``0``'.
12007
12008::
12009
12010 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
12011 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
12012 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
12013 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
12014 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
12015
12016Overview:
12017"""""""""
12018
12019The '``llvm.ptr.annotation``' intrinsic.
12020
12021Arguments:
12022""""""""""
12023
12024The first argument is a pointer to an integer value of arbitrary bitwidth
12025(result of some expression), the second is a pointer to a global string, the
12026third is a pointer to a global string which is the source file name, and the
12027last argument is the line number. It returns the value of the first argument.
12028
12029Semantics:
12030""""""""""
12031
12032This intrinsic allows annotation of a pointer to an integer with arbitrary
12033strings. This can be useful for special purpose optimizations that want to look
12034for these annotations. These have no other defined use; they are ignored by code
12035generation and optimization.
12036
Sean Silvab084af42012-12-07 10:36:55 +000012037'``llvm.annotation.*``' Intrinsic
12038^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12039
12040Syntax:
12041"""""""
12042
12043This is an overloaded intrinsic. You can use '``llvm.annotation``' on
12044any integer bit width.
12045
12046::
12047
12048 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
12049 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
12050 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
12051 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
12052 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
12053
12054Overview:
12055"""""""""
12056
12057The '``llvm.annotation``' intrinsic.
12058
12059Arguments:
12060""""""""""
12061
12062The first argument is an integer value (result of some expression), the
12063second is a pointer to a global string, the third is a pointer to a
12064global string which is the source file name, and the last argument is
12065the line number. It returns the value of the first argument.
12066
12067Semantics:
12068""""""""""
12069
12070This intrinsic allows annotations to be put on arbitrary expressions
12071with arbitrary strings. This can be useful for special purpose
12072optimizations that want to look for these annotations. These have no
12073other defined use; they are ignored by code generation and optimization.
12074
12075'``llvm.trap``' Intrinsic
12076^^^^^^^^^^^^^^^^^^^^^^^^^
12077
12078Syntax:
12079"""""""
12080
12081::
12082
12083 declare void @llvm.trap() noreturn nounwind
12084
12085Overview:
12086"""""""""
12087
12088The '``llvm.trap``' intrinsic.
12089
12090Arguments:
12091""""""""""
12092
12093None.
12094
12095Semantics:
12096""""""""""
12097
12098This intrinsic is lowered to the target dependent trap instruction. If
12099the target does not have a trap instruction, this intrinsic will be
12100lowered to a call of the ``abort()`` function.
12101
12102'``llvm.debugtrap``' Intrinsic
12103^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12104
12105Syntax:
12106"""""""
12107
12108::
12109
12110 declare void @llvm.debugtrap() nounwind
12111
12112Overview:
12113"""""""""
12114
12115The '``llvm.debugtrap``' intrinsic.
12116
12117Arguments:
12118""""""""""
12119
12120None.
12121
12122Semantics:
12123""""""""""
12124
12125This intrinsic is lowered to code which is intended to cause an
12126execution trap with the intention of requesting the attention of a
12127debugger.
12128
12129'``llvm.stackprotector``' Intrinsic
12130^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12131
12132Syntax:
12133"""""""
12134
12135::
12136
12137 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12138
12139Overview:
12140"""""""""
12141
12142The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12143onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12144is placed on the stack before local variables.
12145
12146Arguments:
12147""""""""""
12148
12149The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12150The first argument is the value loaded from the stack guard
12151``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12152enough space to hold the value of the guard.
12153
12154Semantics:
12155""""""""""
12156
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012157This intrinsic causes the prologue/epilogue inserter to force the position of
12158the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12159to ensure that if a local variable on the stack is overwritten, it will destroy
12160the value of the guard. When the function exits, the guard on the stack is
12161checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12162different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12163calling the ``__stack_chk_fail()`` function.
12164
Tim Shene885d5e2016-04-19 19:40:37 +000012165'``llvm.stackguard``' Intrinsic
12166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12167
12168Syntax:
12169"""""""
12170
12171::
12172
12173 declare i8* @llvm.stackguard()
12174
12175Overview:
12176"""""""""
12177
12178The ``llvm.stackguard`` intrinsic returns the system stack guard value.
12179
12180It should not be generated by frontends, since it is only for internal usage.
12181The reason why we create this intrinsic is that we still support IR form Stack
12182Protector in FastISel.
12183
12184Arguments:
12185""""""""""
12186
12187None.
12188
12189Semantics:
12190""""""""""
12191
12192On some platforms, the value returned by this intrinsic remains unchanged
12193between loads in the same thread. On other platforms, it returns the same
12194global variable value, if any, e.g. ``@__stack_chk_guard``.
12195
12196Currently some platforms have IR-level customized stack guard loading (e.g.
12197X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
12198in the future.
12199
Sean Silvab084af42012-12-07 10:36:55 +000012200'``llvm.objectsize``' Intrinsic
12201^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12202
12203Syntax:
12204"""""""
12205
12206::
12207
12208 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12209 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12210
12211Overview:
12212"""""""""
12213
12214The ``llvm.objectsize`` intrinsic is designed to provide information to
12215the optimizers to determine at compile time whether a) an operation
12216(like memcpy) will overflow a buffer that corresponds to an object, or
12217b) that a runtime check for overflow isn't necessary. An object in this
12218context means an allocation of a specific class, structure, array, or
12219other object.
12220
12221Arguments:
12222""""""""""
12223
12224The ``llvm.objectsize`` intrinsic takes two arguments. The first
12225argument is a pointer to or into the ``object``. The second argument is
12226a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12227or -1 (if false) when the object size is unknown. The second argument
12228only accepts constants.
12229
12230Semantics:
12231""""""""""
12232
12233The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12234the size of the object concerned. If the size cannot be determined at
12235compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12236on the ``min`` argument).
12237
12238'``llvm.expect``' Intrinsic
12239^^^^^^^^^^^^^^^^^^^^^^^^^^^
12240
12241Syntax:
12242"""""""
12243
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012244This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12245integer bit width.
12246
Sean Silvab084af42012-12-07 10:36:55 +000012247::
12248
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012249 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012250 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12251 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12252
12253Overview:
12254"""""""""
12255
12256The ``llvm.expect`` intrinsic provides information about expected (the
12257most probable) value of ``val``, which can be used by optimizers.
12258
12259Arguments:
12260""""""""""
12261
12262The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12263a value. The second argument is an expected value, this needs to be a
12264constant value, variables are not allowed.
12265
12266Semantics:
12267""""""""""
12268
12269This intrinsic is lowered to the ``val``.
12270
Philip Reamese0e90832015-04-26 22:23:12 +000012271.. _int_assume:
12272
Hal Finkel93046912014-07-25 21:13:35 +000012273'``llvm.assume``' Intrinsic
12274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12275
12276Syntax:
12277"""""""
12278
12279::
12280
12281 declare void @llvm.assume(i1 %cond)
12282
12283Overview:
12284"""""""""
12285
12286The ``llvm.assume`` allows the optimizer to assume that the provided
12287condition is true. This information can then be used in simplifying other parts
12288of the code.
12289
12290Arguments:
12291""""""""""
12292
12293The condition which the optimizer may assume is always true.
12294
12295Semantics:
12296""""""""""
12297
12298The intrinsic allows the optimizer to assume that the provided condition is
12299always true whenever the control flow reaches the intrinsic call. No code is
12300generated for this intrinsic, and instructions that contribute only to the
12301provided condition are not used for code generation. If the condition is
12302violated during execution, the behavior is undefined.
12303
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012304Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012305used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12306only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012307if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012308sufficient overall improvement in code quality. For this reason,
12309``llvm.assume`` should not be used to document basic mathematical invariants
12310that the optimizer can otherwise deduce or facts that are of little use to the
12311optimizer.
12312
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012313.. _type.test:
Peter Collingbournee6909c82015-02-20 20:30:47 +000012314
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012315'``llvm.type.test``' Intrinsic
Peter Collingbournee6909c82015-02-20 20:30:47 +000012316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12317
12318Syntax:
12319"""""""
12320
12321::
12322
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012323 declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
Peter Collingbournee6909c82015-02-20 20:30:47 +000012324
12325
12326Arguments:
12327""""""""""
12328
12329The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012330metadata object representing a :doc:`type identifier <TypeMetadata>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012331
12332Overview:
12333"""""""""
12334
Peter Collingbourne7efd7502016-06-24 21:21:32 +000012335The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
12336with the given type identifier.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012337
Peter Collingbourne0312f612016-06-25 00:23:04 +000012338'``llvm.type.checked.load``' Intrinsic
12339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12340
12341Syntax:
12342"""""""
12343
12344::
12345
12346 declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
12347
12348
12349Arguments:
12350""""""""""
12351
12352The first argument is a pointer from which to load a function pointer. The
12353second argument is the byte offset from which to load the function pointer. The
12354third argument is a metadata object representing a :doc:`type identifier
12355<TypeMetadata>`.
12356
12357Overview:
12358"""""""""
12359
12360The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
12361virtual table pointer using type metadata. This intrinsic is used to implement
12362control flow integrity in conjunction with virtual call optimization. The
12363virtual call optimization pass will optimize away ``llvm.type.checked.load``
12364intrinsics associated with devirtualized calls, thereby removing the type
12365check in cases where it is not needed to enforce the control flow integrity
12366constraint.
12367
12368If the given pointer is associated with a type metadata identifier, this
12369function returns true as the second element of its return value. (Note that
12370the function may also return true if the given pointer is not associated
12371with a type metadata identifier.) If the function's return value's second
12372element is true, the following rules apply to the first element:
12373
12374- If the given pointer is associated with the given type metadata identifier,
12375 it is the function pointer loaded from the given byte offset from the given
12376 pointer.
12377
12378- If the given pointer is not associated with the given type metadata
12379 identifier, it is one of the following (the choice of which is unspecified):
12380
12381 1. The function pointer that would have been loaded from an arbitrarily chosen
12382 (through an unspecified mechanism) pointer associated with the type
12383 metadata.
12384
12385 2. If the function has a non-void return type, a pointer to a function that
12386 returns an unspecified value without causing side effects.
12387
12388If the function's return value's second element is false, the value of the
12389first element is undefined.
12390
12391
Sean Silvab084af42012-12-07 10:36:55 +000012392'``llvm.donothing``' Intrinsic
12393^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12394
12395Syntax:
12396"""""""
12397
12398::
12399
12400 declare void @llvm.donothing() nounwind readnone
12401
12402Overview:
12403"""""""""
12404
Juergen Ributzkac9161192014-10-23 22:36:13 +000012405The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
Sanjoy Das7a4c94d2016-02-26 03:33:59 +000012406three intrinsics (besides ``llvm.experimental.patchpoint`` and
12407``llvm.experimental.gc.statepoint``) that can be called with an invoke
12408instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012409
12410Arguments:
12411""""""""""
12412
12413None.
12414
12415Semantics:
12416""""""""""
12417
12418This intrinsic does nothing, and it's removed by optimizers and ignored
12419by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012420
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012421'``llvm.experimental.deoptimize``' Intrinsic
12422^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12423
12424Syntax:
12425"""""""
12426
12427::
12428
12429 declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
12430
12431Overview:
12432"""""""""
12433
12434This intrinsic, together with :ref:`deoptimization operand bundles
12435<deopt_opbundles>`, allow frontends to express transfer of control and
12436frame-local state from the currently executing (typically more specialized,
12437hence faster) version of a function into another (typically more generic, hence
12438slower) version.
12439
12440In languages with a fully integrated managed runtime like Java and JavaScript
12441this intrinsic can be used to implement "uncommon trap" or "side exit" like
12442functionality. In unmanaged languages like C and C++, this intrinsic can be
12443used to represent the slow paths of specialized functions.
12444
12445
12446Arguments:
12447""""""""""
12448
12449The intrinsic takes an arbitrary number of arguments, whose meaning is
12450decided by the :ref:`lowering strategy<deoptimize_lowering>`.
12451
12452Semantics:
12453""""""""""
12454
12455The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
12456deoptimization continuation (denoted using a :ref:`deoptimization
12457operand bundle <deopt_opbundles>`) and returns the value returned by
12458the deoptimization continuation. Defining the semantic properties of
12459the continuation itself is out of scope of the language reference --
12460as far as LLVM is concerned, the deoptimization continuation can
12461invoke arbitrary side effects, including reading from and writing to
12462the entire heap.
12463
12464Deoptimization continuations expressed using ``"deopt"`` operand bundles always
12465continue execution to the end of the physical frame containing them, so all
12466calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
12467
12468 - ``@llvm.experimental.deoptimize`` cannot be invoked.
12469 - The call must immediately precede a :ref:`ret <i_ret>` instruction.
12470 - The ``ret`` instruction must return the value produced by the
12471 ``@llvm.experimental.deoptimize`` call if there is one, or void.
12472
12473Note that the above restrictions imply that the return type for a call to
12474``@llvm.experimental.deoptimize`` will match the return type of its immediate
12475caller.
12476
12477The inliner composes the ``"deopt"`` continuations of the caller into the
12478``"deopt"`` continuations present in the inlinee, and also updates calls to this
12479intrinsic to return directly from the frame of the function it inlined into.
12480
Sanjoy Dase0aa4142016-05-12 01:17:38 +000012481All declarations of ``@llvm.experimental.deoptimize`` must share the
12482same calling convention.
12483
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012484.. _deoptimize_lowering:
12485
12486Lowering:
12487"""""""""
12488
Sanjoy Dasdf9ae702016-03-24 20:23:29 +000012489Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
12490symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
12491ensure that this symbol is defined). The call arguments to
12492``@llvm.experimental.deoptimize`` are lowered as if they were formal
12493arguments of the specified types, and not as varargs.
12494
Sanjoy Dasb51325d2016-03-11 19:08:34 +000012495
Sanjoy Das021de052016-03-31 00:18:46 +000012496'``llvm.experimental.guard``' Intrinsic
12497^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12498
12499Syntax:
12500"""""""
12501
12502::
12503
12504 declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
12505
12506Overview:
12507"""""""""
12508
12509This intrinsic, together with :ref:`deoptimization operand bundles
12510<deopt_opbundles>`, allows frontends to express guards or checks on
12511optimistic assumptions made during compilation. The semantics of
12512``@llvm.experimental.guard`` is defined in terms of
12513``@llvm.experimental.deoptimize`` -- its body is defined to be
12514equivalent to:
12515
Renato Golin124f2592016-07-20 12:16:38 +000012516.. code-block:: text
Sanjoy Das021de052016-03-31 00:18:46 +000012517
Renato Golin124f2592016-07-20 12:16:38 +000012518 define void @llvm.experimental.guard(i1 %pred, <args...>) {
12519 %realPred = and i1 %pred, undef
12520 br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
Sanjoy Das021de052016-03-31 00:18:46 +000012521
Renato Golin124f2592016-07-20 12:16:38 +000012522 leave:
12523 call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
12524 ret void
Sanjoy Das021de052016-03-31 00:18:46 +000012525
Renato Golin124f2592016-07-20 12:16:38 +000012526 continue:
12527 ret void
12528 }
Sanjoy Das021de052016-03-31 00:18:46 +000012529
Sanjoy Das47cf2af2016-04-30 00:55:59 +000012530
12531with the optional ``[, !make.implicit !{}]`` present if and only if it
12532is present on the call site. For more details on ``!make.implicit``,
12533see :doc:`FaultMaps`.
12534
Sanjoy Das021de052016-03-31 00:18:46 +000012535In words, ``@llvm.experimental.guard`` executes the attached
12536``"deopt"`` continuation if (but **not** only if) its first argument
12537is ``false``. Since the optimizer is allowed to replace the ``undef``
12538with an arbitrary value, it can optimize guard to fail "spuriously",
12539i.e. without the original condition being false (hence the "not only
12540if"); and this allows for "check widening" type optimizations.
12541
12542``@llvm.experimental.guard`` cannot be invoked.
12543
12544
Peter Collingbourne7dd8dbf2016-04-22 21:18:02 +000012545'``llvm.load.relative``' Intrinsic
12546^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12547
12548Syntax:
12549"""""""
12550
12551::
12552
12553 declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
12554
12555Overview:
12556"""""""""
12557
12558This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
12559adds ``%ptr`` to that value and returns it. The constant folder specifically
12560recognizes the form of this intrinsic and the constant initializers it may
12561load from; if a loaded constant initializer is known to have the form
12562``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
12563
12564LLVM provides that the calculation of such a constant initializer will
12565not overflow at link time under the medium code model if ``x`` is an
12566``unnamed_addr`` function. However, it does not provide this guarantee for
12567a constant initializer folded into a function body. This intrinsic can be
12568used to avoid the possibility of overflows when loading from such a constant.
12569
Andrew Trick5e029ce2013-12-24 02:57:25 +000012570Stack Map Intrinsics
12571--------------------
12572
12573LLVM provides experimental intrinsics to support runtime patching
12574mechanisms commonly desired in dynamic language JITs. These intrinsics
12575are described in :doc:`StackMaps`.